From 0aefa1afdb30b8a161e4cb10ce4bb3e96ccb2022 Mon Sep 17 00:00:00 2001 From: Anton Gladky Date: Sat, 2 Mar 2019 03:42:57 -0600 Subject: [PATCH] fix compilation on Armel due to coincident variables in Last-Update: 2011-10-27 sys/ucontext.h (R2, R3, R4). Thanks to Paul Brook http://lists.alioth.debian.org/pipermail/debian-science-maintainers/2011-October/009876.html Gbp-Pq: Name fix_armel_FTBFS.patch --- src/3rdParty/salomesmesh/inc/Rn.h | 198 +++++++++--------- .../salomesmesh/inc/StdMeshers_MEFISTO_2D.hxx | 4 +- src/3rdParty/salomesmesh/inc/aptrte.h | 30 +-- .../salomesmesh/src/MEFISTO2/aptrte.cpp | 18 +- .../src/StdMeshers/StdMeshers_MEFISTO_2D.cpp | 18 +- 5 files changed, 134 insertions(+), 134 deletions(-) diff --git a/src/3rdParty/salomesmesh/inc/Rn.h b/src/3rdParty/salomesmesh/inc/Rn.h index 6ec871d9..ccebce96 100644 --- a/src/3rdParty/salomesmesh/inc/Rn.h +++ b/src/3rdParty/salomesmesh/inc/Rn.h @@ -31,7 +31,7 @@ #include //Dans OpenCascade //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ -// BUT: Definir les espaces affines R R2 R3 R4 soit Rn pour n=1,2,3,4 +// BUT: Definir les espaces affines R R_2 R_3 R_4 soit Rn pour n=1,2,3,4 //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ // AUTEUR : Frederic HECHT ANALYSE NUMERIQUE UPMC PARIS OCTOBRE 2000 // MODIFS : Alain PERRONNET ANALYSE NUMERIQUE UPMC PARIS NOVEMBRE 2000 @@ -82,155 +82,155 @@ typedef double R; //============== //typedef struct { short int x,y } XPoint; //en fait ce type est defini dans X11-Window // #include -//la classe R2 +//la classe R_2 //============ -class R2 +class R_2 { - friend std::ostream& operator << (std::ostream& f, const R2 & P) + friend std::ostream& operator << (std::ostream& f, const R_2 & P) { f << P.x << ' ' << P.y ; return f; } - friend std::istream& operator >> (std::istream& f, R2 & P) + friend std::istream& operator >> (std::istream& f, R_2 & P) { f >> P.x >> P.y ; return f; } - friend std::ostream& operator << (std::ostream& f, const R2 * P) + friend std::ostream& operator << (std::ostream& f, const R_2 * P) { f << P->x << ' ' << P->y ; return f; } - friend std::istream& operator >> (std::istream& f, R2 * P) + friend std::istream& operator >> (std::istream& f, R_2 * P) { f >> P->x >> P->y ; return f; } public: R x,y; //les donnees - R2 () :x(0),y(0) {} //les constructeurs - R2 (R a,R b) :x(a),y(b) {} - R2 (R2 A,R2 B) :x(B.x-A.x),y(B.y-A.y) {} //vecteur defini par 2 points - - R2 operator+(R2 P) const {return R2(x+P.x,y+P.y);} // Q+P possible - R2 operator+=(R2 P) {x += P.x;y += P.y; return *this;}// Q+=P; - R2 operator-(R2 P) const {return R2(x-P.x,y-P.y);} // Q-P - R2 operator-=(R2 P) {x -= P.x;y -= P.y; return *this;} // Q-=P; - R2 operator-()const {return R2(-x,-y);} // -Q - R2 operator+()const {return *this;} // +Q - R operator,(R2 P)const {return x*P.x+y*P.y;} // produit scalaire (Q,P) - R operator^(R2 P)const {return x*P.y-y*P.x;} // produit vectoriel Q^P - R2 operator*(R c)const {return R2(x*c,y*c);} // produit a droite P*c - R2 operator*=(R c) {x *= c; y *= c; return *this;} - R2 operator/(R c)const {return R2(x/c,y/c);} // division par un reel - R2 operator/=(R c) {x /= c; y /= c; return *this;} + R_2 () :x(0),y(0) {} //les constructeurs + R_2 (R a,R b) :x(a),y(b) {} + R_2 (R_2 A,R_2 B) :x(B.x-A.x),y(B.y-A.y) {} //vecteur defini par 2 points + + R_2 operator+(R_2 P) const {return R_2(x+P.x,y+P.y);} // Q+P possible + R_2 operator+=(R_2 P) {x += P.x;y += P.y; return *this;}// Q+=P; + R_2 operator-(R_2 P) const {return R_2(x-P.x,y-P.y);} // Q-P + R_2 operator-=(R_2 P) {x -= P.x;y -= P.y; return *this;} // Q-=P; + R_2 operator-()const {return R_2(-x,-y);} // -Q + R_2 operator+()const {return *this;} // +Q + R operator,(R_2 P)const {return x*P.x+y*P.y;} // produit scalaire (Q,P) + R operator^(R_2 P)const {return x*P.y-y*P.x;} // produit vectoriel Q^P + R_2 operator*(R c)const {return R_2(x*c,y*c);} // produit a droite P*c + R_2 operator*=(R c) {x *= c; y *= c; return *this;} + R_2 operator/(R c)const {return R_2(x/c,y/c);} // division par un reel + R_2 operator/=(R c) {x /= c; y /= c; return *this;} R & operator[](int i) {return (&x)[i];} // la coordonnee i - R2 orthogonal() {return R2(-y,x);} //le vecteur orthogonal dans R2 - friend R2 operator*(R c,R2 P) {return P*c;} // produit a gauche c*P + R_2 orthogonal() {return R_2(-y,x);} //le vecteur orthogonal dans R_2 + friend R_2 operator*(R c,R_2 P) {return P*c;} // produit a gauche c*P }; -//la classe R3 +//la classe R_3 //============ -class R3 +class R_3 { - friend std::ostream& operator << (std::ostream& f, const R3 & P) + friend std::ostream& operator << (std::ostream& f, const R_3 & P) { f << P.x << ' ' << P.y << ' ' << P.z ; return f; } - friend std::istream& operator >> (std::istream& f, R3 & P) + friend std::istream& operator >> (std::istream& f, R_3 & P) { f >> P.x >> P.y >> P.z ; return f; } - friend std::ostream& operator << (std::ostream& f, const R3 * P) + friend std::ostream& operator << (std::ostream& f, const R_3 * P) { f << P->x << ' ' << P->y << ' ' << P->z ; return f; } - friend std::istream& operator >> (std::istream& f, R3 * P) + friend std::istream& operator >> (std::istream& f, R_3 * P) { f >> P->x >> P->y >> P->z ; return f; } public: R x,y,z; //les 3 coordonnees - R3 () :x(0),y(0),z(0) {} //les constructeurs - R3 (R a,R b,R c):x(a),y(b),z(c) {} //Point ou Vecteur (a,b,c) - R3 (R3 A,R3 B):x(B.x-A.x),y(B.y-A.y),z(B.z-A.z) {} //Vecteur AB - - R3 (gp_Pnt P) : x(P.X()), y(P.Y()), z(P.Z()) {} //Point d'OpenCascade - R3 (gp_Vec V) : x(V.X()), y(V.Y()), z(V.Z()) {} //Vecteur d'OpenCascade - R3 (gp_Dir P) : x(P.X()), y(P.Y()), z(P.Z()) {} //Direction d'OpenCascade - - R3 operator+(R3 P)const {return R3(x+P.x,y+P.y,z+P.z);} - R3 operator+=(R3 P) {x += P.x; y += P.y; z += P.z; return *this;} - R3 operator-(R3 P)const {return R3(x-P.x,y-P.y,z-P.z);} - R3 operator-=(R3 P) {x -= P.x; y -= P.y; z -= P.z; return *this;} - R3 operator-()const {return R3(-x,-y,-z);} - R3 operator+()const {return *this;} - R operator,(R3 P)const {return x*P.x+y*P.y+z*P.z;} // produit scalaire - R3 operator^(R3 P)const {return R3(y*P.z-z*P.y ,P.x*z-x*P.z, x*P.y-y*P.x);} // produit vectoriel - R3 operator*(R c)const {return R3(x*c,y*c,z*c);} - R3 operator*=(R c) {x *= c; y *= c; z *= c; return *this;} - R3 operator/(R c)const {return R3(x/c,y/c,z/c);} - R3 operator/=(R c) {x /= c; y /= c; z /= c; return *this;} + R_3 () :x(0),y(0),z(0) {} //les constructeurs + R_3 (R a,R b,R c):x(a),y(b),z(c) {} //Point ou Vecteur (a,b,c) + R_3 (R_3 A,R_3 B):x(B.x-A.x),y(B.y-A.y),z(B.z-A.z) {} //Vecteur AB + + R_3 (gp_Pnt P) : x(P.X()), y(P.Y()), z(P.Z()) {} //Point d'OpenCascade + R_3 (gp_Vec V) : x(V.X()), y(V.Y()), z(V.Z()) {} //Vecteur d'OpenCascade + R_3 (gp_Dir P) : x(P.X()), y(P.Y()), z(P.Z()) {} //Direction d'OpenCascade + + R_3 operator+(R_3 P)const {return R_3(x+P.x,y+P.y,z+P.z);} + R_3 operator+=(R_3 P) {x += P.x; y += P.y; z += P.z; return *this;} + R_3 operator-(R_3 P)const {return R_3(x-P.x,y-P.y,z-P.z);} + R_3 operator-=(R_3 P) {x -= P.x; y -= P.y; z -= P.z; return *this;} + R_3 operator-()const {return R_3(-x,-y,-z);} + R_3 operator+()const {return *this;} + R operator,(R_3 P)const {return x*P.x+y*P.y+z*P.z;} // produit scalaire + R_3 operator^(R_3 P)const {return R_3(y*P.z-z*P.y ,P.x*z-x*P.z, x*P.y-y*P.x);} // produit vectoriel + R_3 operator*(R c)const {return R_3(x*c,y*c,z*c);} + R_3 operator*=(R c) {x *= c; y *= c; z *= c; return *this;} + R_3 operator/(R c)const {return R_3(x/c,y/c,z/c);} + R_3 operator/=(R c) {x /= c; y /= c; z /= c; return *this;} R & operator[](int i) {return (&x)[i];} - friend R3 operator*(R c,R3 P) {return P*c;} + friend R_3 operator*(R c,R_3 P) {return P*c;} - R3 operator=(gp_Pnt P) {return R3(P.X(),P.Y(),P.Z());} - R3 operator=(gp_Dir P) {return R3(P.X(),P.Y(),P.Z());} + R_3 operator=(gp_Pnt P) {return R_3(P.X(),P.Y(),P.Z());} + R_3 operator=(gp_Dir P) {return R_3(P.X(),P.Y(),P.Z());} - friend gp_Pnt gp_pnt(R3 xyz) { return gp_Pnt(xyz.x,xyz.y,xyz.z); } + friend gp_Pnt gp_pnt(R_3 xyz) { return gp_Pnt(xyz.x,xyz.y,xyz.z); } //friend gp_Pnt operator=() { return gp_Pnt(x,y,z); } - friend gp_Dir gp_dir(R3 xyz) { return gp_Dir(xyz.x,xyz.y,xyz.z); } + friend gp_Dir gp_dir(R_3 xyz) { return gp_Dir(xyz.x,xyz.y,xyz.z); } - bool DansPave( R3 & xyzMin, R3 & xyzMax ) + bool DansPave( R_3 & xyzMin, R_3 & xyzMax ) { return xyzMin.x<=x && x<=xyzMax.x && xyzMin.y<=y && y<=xyzMax.y && xyzMin.z<=z && z<=xyzMax.z; } }; -//la classe R4 +//la classe R_4 //============ -class R4: public R3 +class R_4: public R_3 { - friend std::ostream& operator <<(std::ostream& f, const R4 & P ) + friend std::ostream& operator <<(std::ostream& f, const R_4 & P ) { f << P.x << ' ' << P.y << ' ' << P.z << ' ' << P.omega; return f; } - friend istream& operator >>(istream& f, R4 & P) + friend istream& operator >>(istream& f, R_4 & P) { f >> P.x >> P.y >> P.z >> P.omega ; return f; } - friend std::ostream& operator <<(std::ostream& f, const R4 * P ) + friend std::ostream& operator <<(std::ostream& f, const R_4 * P ) { f << P->x << ' ' << P->y << ' ' << P->z << ' ' << P->omega; return f; } - friend istream& operator >>(istream& f, R4 * P) + friend istream& operator >>(istream& f, R_4 * P) { f >> P->x >> P->y >> P->z >> P->omega ; return f; } public: R omega; //la donnee du poids supplementaire - R4 () :omega(1.0) {} //les constructeurs - R4 (R a,R b,R c,R d):R3(a,b,c),omega(d) {} - R4 (R4 A,R4 B) :R3(B.x-A.x,B.y-A.y,B.z-A.z),omega(B.omega-A.omega) {} - - R4 operator+(R4 P)const {return R4(x+P.x,y+P.y,z+P.z,omega+P.omega);} - R4 operator+=(R4 P) {x += P.x;y += P.y;z += P.z;omega += P.omega;return *this;} - R4 operator-(R4 P)const {return R4(x-P.x,y-P.y,z-P.z,omega-P.omega);} - R4 operator-=(R4 P) {x -= P.x;y -= P.y;z -= P.z;omega -= P.omega;return *this;} - R4 operator-()const {return R4(-x,-y,-z,-omega);} - R4 operator+()const {return *this;} - R operator,(R4 P)const {return x*P.x+y*P.y+z*P.z+omega*P.omega;} // produit scalaire - R4 operator*(R c)const {return R4(x*c,y*c,z*c,omega*c);} - R4 operator*=(R c) {x *= c; y *= c; z *= c; omega *= c; return *this;} - R4 operator/(R c)const {return R4(x/c,y/c,z/c,omega/c);} - R4 operator/=(R c) {x /= c; y /= c; z /= c; omega /= c; return *this;} + R_4 () :omega(1.0) {} //les constructeurs + R_4 (R a,R b,R c,R d):R_3(a,b,c),omega(d) {} + R_4 (R_4 A,R_4 B) :R_3(B.x-A.x,B.y-A.y,B.z-A.z),omega(B.omega-A.omega) {} + + R_4 operator+(R_4 P)const {return R_4(x+P.x,y+P.y,z+P.z,omega+P.omega);} + R_4 operator+=(R_4 P) {x += P.x;y += P.y;z += P.z;omega += P.omega;return *this;} + R_4 operator-(R_4 P)const {return R_4(x-P.x,y-P.y,z-P.z,omega-P.omega);} + R_4 operator-=(R_4 P) {x -= P.x;y -= P.y;z -= P.z;omega -= P.omega;return *this;} + R_4 operator-()const {return R_4(-x,-y,-z,-omega);} + R_4 operator+()const {return *this;} + R operator,(R_4 P)const {return x*P.x+y*P.y+z*P.z+omega*P.omega;} // produit scalaire + R_4 operator*(R c)const {return R_4(x*c,y*c,z*c,omega*c);} + R_4 operator*=(R c) {x *= c; y *= c; z *= c; omega *= c; return *this;} + R_4 operator/(R c)const {return R_4(x/c,y/c,z/c,omega/c);} + R_4 operator/=(R c) {x /= c; y /= c; z /= c; omega /= c; return *this;} R & operator[](int i) {return (&x)[i];} - friend R4 operator*(R c,R4 P) {return P*c;} + friend R_4 operator*(R c,R_4 P) {return P*c;} }; //quelques fonctions supplementaires sur ces classes //================================================== -inline R Aire2d(const R2 A,const R2 B,const R2 C){return (B-A)^(C-A);} -inline R Angle2d(R2 P){ return atan2(P.y,P.x);} - -inline R Norme2_2(const R2 & A){ return (A,A);} -inline R Norme2(const R2 & A){ return sqrt((A,A));} -inline R NormeInfinie(const R2 & A){return Max(Abs(A.x),Abs(A.y));} - -inline R Norme2_2(const R3 & A){ return (A,A);} -inline R Norme2(const R3 & A){ return sqrt((A,A));} -inline R NormeInfinie(const R3 & A){return Max(Abs(A.x),Abs(A.y),Abs(A.z));} - -inline R Norme2_2(const R4 & A){ return (A,A);} -inline R Norme2(const R4 & A){ return sqrt((A,A));} -inline R NormeInfinie(const R4 & A){return Max(Abs(A.x),Abs(A.y),Abs(A.z),Abs(A.omega));} - -inline R2 XY(R3 P) {return R2(P.x, P.y);} //restriction a R2 d'un R3 par perte de z -inline R3 Min(R3 P, R3 Q) -{return R3(P.xQ.x ? P.x : Q.x, P.y>Q.y ? P.y : Q.y, P.z>Q.z ? P.z : Q.z);} //Pt de xyz Max +inline R Aire2d(const R_2 A,const R_2 B,const R_2 C){return (B-A)^(C-A);} +inline R Angle2d(R_2 P){ return atan2(P.y,P.x);} + +inline R Norme2_2(const R_2 & A){ return (A,A);} +inline R Norme2(const R_2 & A){ return sqrt((A,A));} +inline R NormeInfinie(const R_2 & A){return Max(Abs(A.x),Abs(A.y));} + +inline R Norme2_2(const R_3 & A){ return (A,A);} +inline R Norme2(const R_3 & A){ return sqrt((A,A));} +inline R NormeInfinie(const R_3 & A){return Max(Abs(A.x),Abs(A.y),Abs(A.z));} + +inline R Norme2_2(const R_4 & A){ return (A,A);} +inline R Norme2(const R_4 & A){ return sqrt((A,A));} +inline R NormeInfinie(const R_4 & A){return Max(Abs(A.x),Abs(A.y),Abs(A.z),Abs(A.omega));} + +inline R_2 XY(R_3 P) {return R_2(P.x, P.y);} //restriction a R_2 d'un R_3 par perte de z +inline R_3 Min(R_3 P, R_3 Q) +{return R_3(P.xQ.x ? P.x : Q.x, P.y>Q.y ? P.y : Q.y, P.z>Q.z ? P.z : Q.z);} //Pt de xyz Max #endif diff --git a/src/3rdParty/salomesmesh/inc/StdMeshers_MEFISTO_2D.hxx b/src/3rdParty/salomesmesh/inc/StdMeshers_MEFISTO_2D.hxx index a1ece4b7..fb40ac7f 100644 --- a/src/3rdParty/salomesmesh/inc/StdMeshers_MEFISTO_2D.hxx +++ b/src/3rdParty/salomesmesh/inc/StdMeshers_MEFISTO_2D.hxx @@ -64,7 +64,7 @@ public: typedef std::vector< StdMeshers_FaceSidePtr > TWireVector; bool LoadPoints(TWireVector & wires, - R2* uvslf, + R_2* uvslf, std::vector< const SMDS_MeshNode*>& mefistoToDS, double scalex, double scaley); @@ -73,7 +73,7 @@ public: double& scalex, double& scaley); - void StoreResult (Z nbst, R2* uvst, Z nbt, Z* nust, + void StoreResult (Z nbst, R_2* uvst, Z nbt, Z* nust, std::vector< const SMDS_MeshNode*>& mefistoToDS, double scalex, double scaley); diff --git a/src/3rdParty/salomesmesh/inc/aptrte.h b/src/3rdParty/salomesmesh/inc/aptrte.h index 7b8965d6..e6306e7a 100644 --- a/src/3rdParty/salomesmesh/inc/aptrte.h +++ b/src/3rdParty/salomesmesh/inc/aptrte.h @@ -60,9 +60,9 @@ MEFISTO2D_EXPORT void aptrte( Z nutysu, R aretmx, - Z nblf, Z *nudslf, R2 *uvslf, - Z nbpti, R2 *uvpti, - Z & nbst, R2 * & uvst, Z & nbt, Z * & nust, + Z nblf, Z *nudslf, R_2 *uvslf, + Z nbpti, R_2 *uvpti, + Z & nbst, R_2 * & uvst, Z & nbt, Z * & nust, Z & ierr ); //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ // but : appel de la triangulation par un arbre-4 recouvrant @@ -123,7 +123,7 @@ MEFISTO2D_EXPORT #define tesuex TESUEX #define teamqt TEAMQT #define nusotr NUSOTR - #define qutr2d QUTR2D + #define qutr2d QUTR_2D #define surtd2 SURTD2 #define qualitetrte QUALITETRTE @@ -160,7 +160,7 @@ extern "C" { void __stdcall #endif #endif - qualitetrte( R3 *mnpxyd, + qualitetrte( R_3 *mnpxyd, Z & mosoar, Z & mxsoar, Z *mnsoar, Z & moartr, Z & mxartr, Z *mnartr, Z & nbtria, R & quamoy, R & quamin ); } @@ -301,7 +301,7 @@ extern "C" {void __stdcall #endif #endif - teajte( Z & mxsomm, Z & nbsomm, R3 * mnpxyd, R3 * comxmi, + teajte( Z & mxsomm, Z & nbsomm, R_3 * mnpxyd, R_3 * comxmi, R & aretmx, Z & mxtree, Z * letree, Z & ierr ); } @@ -313,8 +313,8 @@ extern "C" {void __stdcall #endif #endif - tehote( Z & nutysu, Z & nbarpi, Z & mxsomm, Z & nbsomm, R3 * mnpxyd, - R3 * comxmi, R & aretmx, + tehote( Z & nutysu, Z & nbarpi, Z & mxsomm, Z & nbsomm, R_3 * mnpxyd, + R_3 * comxmi, R & aretmx, Z * letree, Z & mxqueu, Z * mnqueu, Z & ierr ); } @@ -328,7 +328,7 @@ extern "C" {void __stdcall #endif #endif - tetrte( R3 * comxmi, R & aretmx, Z & nbarpi, Z & mxsomm, R3 * mnpxyd, + tetrte( R_3 * comxmi, R & aretmx, Z & nbarpi, Z & mxsomm, R_3 * mnpxyd, Z & mxqueu, Z * mnqueu, Z * mntree, Z & mosoar, Z & mxsoar, Z & n1soar, Z * mnsoar, Z & moartr, Z & mxartr, Z & n1artr, Z * mnartr, Z * mnarst, @@ -355,7 +355,7 @@ extern "C" {void __stdcall #endif #endif - tedela( R3 * mnpxyd, Z * mnarst, + tedela( R_3 * mnpxyd, Z * mnarst, Z & mosoar, Z & mxsoar, Z & n1soar, Z * mnsoar, Z & na, Z & moartr, Z & mxartr, Z & n1artr, Z * mnartr, Z & n ); } @@ -369,7 +369,7 @@ extern "C" {void __stdcall #endif #endif - terefr( Z & nbarpi, R3 * mnpxyd, + terefr( Z & nbarpi, R_3 * mnpxyd, Z & mosoar, Z & mxsoar, Z & n1soar, Z * mnsoar, Z & moartr, Z & mxartr, Z & n1artr, Z * mnartr, Z * mnarst, Z & mxarcf, Z * mnarc1, Z * mnarc2, @@ -387,7 +387,7 @@ extern "C" {void #endif #endif tesuex( Z & nblf, Z * nulftr, - Z & ndtri0, Z & nbsomm, R3 * mnpxyd, Z * mnslig, + Z & ndtri0, Z & nbsomm, R_3 * mnpxyd, Z * mnslig, Z & mosoar, Z & mxsoar, Z * mnsoar, Z & moartr, Z & mxartr, Z & n1artr, Z * mnartr, Z * mnarst, Z & nbtria, Z * mntrsu, Z & ierr ); @@ -407,7 +407,7 @@ extern "C" {void Z & mxarcf, Z * mntrcf, Z * mnstbo, Z * n1arcf, Z * mnarcf, Z * mnarc1, Z & nbarpi, Z & nbsomm, Z & mxsomm, - R3 * mnpxyd, Z * mnslig, + R_3 * mnpxyd, Z * mnslig, Z & ierr ); } // amelioration de la qualite de la triangulation par @@ -434,7 +434,7 @@ extern "C" {void __stdcall #endif #endif - qutr2d( R3 & p1, R3 & p2, R3 & p3, R & qualite ); + qutr2d( R_3 & p1, R_3 & p2, R_3 & p3, R & qualite ); } //calculer la qualite d'un triangle de R2 de sommets p1, p2, p3 @@ -445,7 +445,7 @@ extern "C" { R __stdcall #endif #endif - surtd2( R3 & p1, R3 & p2, R3 & p3 ); + surtd2( R_3 & p1, R_3 & p2, R_3 & p3 ); } //calcul de la surface d'un triangle defini par 3 points de r**2 diff --git a/src/3rdParty/salomesmesh/src/MEFISTO2/aptrte.cpp b/src/3rdParty/salomesmesh/src/MEFISTO2/aptrte.cpp index d0659a6d..b9cf17e2 100644 --- a/src/3rdParty/salomesmesh/src/MEFISTO2/aptrte.cpp +++ b/src/3rdParty/salomesmesh/src/MEFISTO2/aptrte.cpp @@ -88,9 +88,9 @@ deltacpu_( R & dtcpu ) void aptrte( Z nutysu, R aretmx, - Z nblf, Z * nudslf, R2 * uvslf, - Z nbpti, R2 * uvpti, - Z & nbst, R2 * & uvst, + Z nblf, Z * nudslf, R_2 * uvslf, + Z nbpti, R_2 * uvpti, + Z & nbst, R_2 * & uvst, Z & nbt, Z * & nust, Z & ierr ) //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ @@ -142,11 +142,11 @@ void aptrte( Z nutysu, R aretmx, //no st1, st2, st3, 0 (non quadrangle) R d, tcpu=0; -// R3 direction=R3(0,0,0); //direction pour areteideale() inactive ici! +// R_3 direction=R_3(0,0,0); //direction pour areteideale() inactive ici! Z nbarfr=nudslf[nblf]; //nombre total d'aretes des lignes fermees Z mxtrou = Max( 1024, nblf ); //nombre maximal de trous dans la surface - R3 *mnpxyd=NULL; + R_3 *mnpxyd=NULL; Z *mnsoar=NULL, mosoar=7, mxsoar, n1soar; //le hachage des aretes Z *mnartr=NULL, moartr=3, mxartr, n1artr; //le no des 3 aretes des triangles Z *mntree=NULL, motree=9, mxtree; //L'arbre 4 de TE et nombre d'entiers par TE @@ -161,7 +161,7 @@ void aptrte( Z nutysu, R aretmx, Z *mnarst=NULL; Z *mnlftr=NULL; - R3 comxmi[2]; //coordonnees UV Min et Maximales + R_3 comxmi[2]; //coordonnees UV Min et Maximales R aremin, aremax; //longueur minimale et maximale des aretes R airemx; //aire maximale souhaitee d'un triangle R quamoy, quamin; @@ -191,7 +191,7 @@ void aptrte( Z nutysu, R aretmx, NEWDEPART: //mnpxyd( 3, mxsomm ) les coordonnees UV des sommets et la taille d'arete aux sommets if( mnpxyd!=NULL ) delete [] mnpxyd; - mnpxyd = new R3[mxsomm]; + mnpxyd = new R_3[mxsomm]; if( mnpxyd==NULL ) goto ERREUR; // le tableau mnsoar des aretes des triangles @@ -655,7 +655,7 @@ void aptrte( Z nutysu, R aretmx, // generation du tableau uvst de la surface triangulee // --------------------------------------------------- if( uvst != NULL ) delete [] uvst; - uvst = new R2[nbst]; + uvst = new R_2[nbst]; if( uvst == NULL ) goto ERREUR; nbst=-1; @@ -761,7 +761,7 @@ void __stdcall #endif #endif - qualitetrte( R3 *mnpxyd, + qualitetrte( R_3 *mnpxyd, Z & mosoar, Z & mxsoar, Z *mnsoar, Z & moartr, Z & mxartr, Z *mnartr, Z & nbtria, R & quamoy, R & quamin ) diff --git a/src/3rdParty/salomesmesh/src/StdMeshers/StdMeshers_MEFISTO_2D.cpp b/src/3rdParty/salomesmesh/src/StdMeshers/StdMeshers_MEFISTO_2D.cpp index 26418917..274680c2 100644 --- a/src/3rdParty/salomesmesh/src/StdMeshers/StdMeshers_MEFISTO_2D.cpp +++ b/src/3rdParty/salomesmesh/src/StdMeshers/StdMeshers_MEFISTO_2D.cpp @@ -234,12 +234,12 @@ bool StdMeshers_MEFISTO_2D::Compute(SMESH_Mesh & aMesh, const TopoDS_Shape & aSh Z nblf; //nombre de lignes fermees (enveloppe en tete) Z *nudslf = NULL; //numero du dernier sommet de chaque ligne fermee - R2 *uvslf = NULL; + R_2 *uvslf = NULL; Z nbpti = 0; //nombre points internes futurs sommets de la triangulation - R2 *uvpti = NULL; + R_2 *uvpti = NULL; Z nbst; - R2 *uvst = NULL; + R_2 *uvst = NULL; Z nbt; Z *nust = NULL; Z ierr = 0; @@ -264,7 +264,7 @@ bool StdMeshers_MEFISTO_2D::Compute(SMESH_Mesh & aMesh, const TopoDS_Shape & aSh nudslf[iw++] = nbpnt; } - uvslf = new R2[nudslf[nblf]]; + uvslf = new R_2[nudslf[nblf]]; double scalex, scaley; ComputeScaleOnFace(aMesh, F, scalex, scaley); @@ -390,7 +390,7 @@ bool StdMeshers_MEFISTO_2D::Evaluate(SMESH_Mesh & aMesh, //purpose : prevent failure due to overlapped adjacent links //======================================================================= -static bool fixOverlappedLinkUV( R2& uv0, const R2& uv1, const R2& uv2 ) +static bool fixOverlappedLinkUV( R_2& uv0, const R_2& uv1, const R_2& uv2 ) { gp_XY v1( uv0.x - uv1.x, uv0.y - uv1.y ); gp_XY v2( uv2.x - uv1.x, uv2.y - uv1.y ); @@ -441,7 +441,7 @@ static bool fixOverlappedLinkUV( R2& uv0, const R2& uv1, const R2& uv2 ) //purpose : //======================================================================= -static bool fixCommonVertexUV (R2 & theUV, +static bool fixCommonVertexUV (R_2 & theUV, const TopoDS_Vertex& theV, const TopoDS_Face& theF, const TopTools_IndexedDataMapOfShapeListOfShape & theVWMap, @@ -540,7 +540,7 @@ static bool fixCommonVertexUV (R2 & theUV, nextUV = uv; } } - R2 uv0, uv1, uv2; + R_2 uv0, uv1, uv2; uv0.x = thisUV.X(); uv0.y = thisUV.Y(); uv1.x = nextUV.X(); uv1.y = nextUV.Y(); uv2.x = thisUV.X(); uv2.y = thisUV.Y(); @@ -574,7 +574,7 @@ static bool fixCommonVertexUV (R2 & theUV, //============================================================================= bool StdMeshers_MEFISTO_2D::LoadPoints(TWireVector & wires, - R2 * uvslf, + R_2 * uvslf, vector& mefistoToDS, double scalex, double scaley) @@ -782,7 +782,7 @@ void StdMeshers_MEFISTO_2D::ComputeScaleOnFace(SMESH_Mesh & aMesh, */ //============================================================================= -void StdMeshers_MEFISTO_2D::StoreResult(Z nbst, R2 * uvst, Z nbt, Z * nust, +void StdMeshers_MEFISTO_2D::StoreResult(Z nbst, R_2 * uvst, Z nbt, Z * nust, vector< const SMDS_MeshNode*>&mefistoToDS, double scalex, double scaley) { -- 2.30.2