From: Jochen Sprickerhof Date: Tue, 5 Apr 2022 11:39:26 +0000 (+0100) Subject: android-platform-art (10.0.0+r36-5) unstable; urgency=medium X-Git-Tag: archive/raspbian/11.0.0+r48-4+rpi1~1^2^2~16 X-Git-Url: https://dgit.raspbian.org/?a=commitdiff_plain;h=6d52101c38bfea928e6da28d760edd5018eb37c2;p=android-platform-art.git android-platform-art (10.0.0+r36-5) unstable; urgency=medium * Team upload. * Drop dmtracedump (moved to android-platform-tools) * Fix compile error [dgit import unpatched android-platform-art 10.0.0+r36-5] --- 6d52101c38bfea928e6da28d760edd5018eb37c2 diff --cc debian/.gitlab-ci.yml index 0000000,0000000..6d0a7fc new file mode 100644 --- /dev/null +++ b/debian/.gitlab-ci.yml @@@ -1,0 -1,0 +1,16 @@@ ++pages: ++ image: registry.salsa.debian.org/salsa-ci-team/ci-image-git-buildpackage ++ stage: deploy ++ except: ++ - tags ++ - pristine-tar ++ - upstream ++ artifacts: ++ paths: ++ - public ++ expire_in: 1 day ++ script: ++ - gitlab-ci-add-pages-repo android-tools-team/android-platform-libnativehelper ++ - gitlab-ci-add-pages-repo android-tools-team/android-platform-system-core ++ - gitlab-ci-git-buildpackage-all ++ - gitlab-ci-aptly diff --cc debian/android-libart.docs index 0000000,0000000..132d13f new file mode 100644 --- /dev/null +++ b/debian/android-libart.docs @@@ -1,0 -1,0 +1,1 @@@ ++NOTICE diff --cc debian/android-libart.install index 0000000,0000000..b2a0776 new file mode 100755 --- /dev/null +++ b/debian/android-libart.install @@@ -1,0 -1,0 +1,8 @@@ ++#!/usr/bin/dh-exec ++ ++libdexfile/external/include/art_api/dex_file_support.h /usr/include/android/art_api ++libdexfile/external/include/art_api/dex_file_external.h /usr/include/android/art_api ++debian/out/libart.so* usr/lib/${DEB_HOST_MULTIARCH}/android ++debian/out/libdexfile_external.so* usr/lib/${DEB_HOST_MULTIARCH}/android ++debian/out/libdexfile_support.so* usr/lib/${DEB_HOST_MULTIARCH}/android ++debian/out/libsigchain.so* usr/lib/${DEB_HOST_MULTIARCH}/android diff --cc debian/changelog index 0000000,0000000..9dae7cf new file mode 100644 --- /dev/null +++ b/debian/changelog @@@ -1,0 -1,0 +1,168 @@@ ++android-platform-art (10.0.0+r36-5) unstable; urgency=medium ++ ++ * Team upload. ++ * Drop dmtracedump (moved to android-platform-tools) ++ * Fix compile error ++ ++ -- Jochen Sprickerhof Tue, 05 Apr 2022 13:39:26 +0200 ++ ++android-platform-art (10.0.0+r36-4) unstable; urgency=medium ++ ++ * Team upload. ++ * debian/patches: ++ - Add patch to fix ftbfs for c++17 (Closes: #983964). ++ ++ -- Roger Shimizu Sat, 22 Jan 2022 00:26:23 +0900 ++ ++android-platform-art (10.0.0+r36-3) unstable; urgency=medium ++ ++ * Team upload. ++ ++ [ Roger Shimizu ] ++ * debian/*.mk: ++ - Remove runtime library path: debian/out, which is only needed ++ after building. ++ - Remove LDFLAGS=-nodefaultlibs for library. ++ * debian/rules: ++ - Add LD_LIBRARY_PATH=debian/out for help2man calling. ++ ++ [ Hans-Christoph Steiner ] ++ * mv man page gen to dh_auto_build and respect arches ++ ++ -- Hans-Christoph Steiner Thu, 07 Jan 2021 13:08:42 +0100 ++ ++android-platform-art (10.0.0+r36-2) unstable; urgency=medium ++ ++ * Team upload. ++ * debian/*.mk: ++ - Add necessary linking libraries to fix ftbfs issue. ++ ++ -- Roger Shimizu Wed, 06 Jan 2021 19:29:23 +0900 ++ ++android-platform-art (10.0.0+r36-1) unstable; urgency=medium ++ ++ * Team upload. ++ * Revert "remove stage1 components" ++ * debian/tests: ++ - Add "Depends" to each test command. ++ * debian/control: ++ - Remove building package dexlist/dexdump for armel. ++ - Fix package description. ++ * debian/*.mk: ++ - Remove unnecessary linking dependencies. ++ - Add "-nodefaultlibs" to LDFLAGS. ++ * lintian-overrides: ++ - Rename binary-or-shlib-defines-rpath to custom-library-search-path ++ ++ -- Roger Shimizu Wed, 06 Jan 2021 00:31:36 +0900 ++ ++android-platform-art (10.0.0+r36-1~stage1.5) unstable; urgency=medium ++ ++ * Team upload. ++ * debian/patches: ++ - Backport patch from upstream to fix mterp asm build on arm64. ++ (Closes: #963058) ++ ++ -- Roger Shimizu Mon, 04 Jan 2021 16:03:34 +0900 ++ ++android-platform-art (10.0.0+r36-1~stage1.4) unstable; urgency=medium ++ ++ * Team upload. ++ * debian/*.mk: ++ - "mkdir debian/out" command move to debian/rules. ++ * debian/patches: ++ - Add patches to fix ftbfs on armhf/arm64. ++ ++ -- Roger Shimizu Mon, 04 Jan 2021 01:24:17 +0900 ++ ++android-platform-art (10.0.0+r36-1~stage1.3) unstable; urgency=medium ++ ++ * debian/control: ++ - Bump B-D android-platform-system-core. ++ * debian/patches: ++ - Add patch to workaround cacheflush on arm. ++ * debian/control: ++ - Remove valgrind from B-D. ++ * debian/*.mk: ++ - Remove duplicated "-fPIC" and "-I/usr/include/android" ++ ++ -- Roger Shimizu Sat, 02 Jan 2021 01:30:12 +0900 ++ ++android-platform-art (10.0.0+r36-1~stage1.2) unstable; urgency=low ++ ++ * Team upload. ++ * d/rules: Exclude building libdexfile_support.so from "any" ++ architecture. ++ ++ -- Roger Shimizu Fri, 01 Jan 2021 01:21:41 +0900 ++ ++android-platform-art (10.0.0+r36-1~stage1.1) unstable; urgency=low ++ ++ * Team upload. ++ ++ [ Hans-Christoph Steiner ] ++ * add missing art_api headers and .cc files ++ * build libdexfile_external and libdexfile_support separately ++ ++ [ Roger Shimizu ] ++ * Fix ftbfs issues on mips* ++ * Use patch from android-platform-system-core to fix non-x86 systems ++ ++ -- Hans-Christoph Steiner Wed, 30 Dec 2020 23:15:12 +0100 ++ ++android-platform-art (10.0.0+r36-1~stage1) unstable; urgency=low ++ ++ * Team upload. ++ ++ [ Debian Janitor ] ++ * Use correct machine-readable copyright file URI. ++ * Bump debhelper from old 11 to 12. ++ * Set debhelper-compat version in Build-Depends. ++ ++ [ Hans-Christoph Steiner ] ++ * New upstream release (Closes: #963058) ++ ++ -- Hans-Christoph Steiner Tue, 13 Oct 2020 17:10:14 +0200 ++ ++android-platform-art (8.1.0+r23-4) unstable; urgency=medium ++ ++ * Team upload. ++ * debian/watch: ++ - Remove the unsupported "rename" option. ++ - Update rule to get new upstream version. ++ * debian/control: ++ - Add Rules-Requires-Root: no ++ - Add help2man to B-D. ++ * debian/rules: ++ - Add more security hardening. ++ - Use help2man to generate manpages for dexdump, and dmtracedump. ++ ++ -- Roger Shimizu Sun, 10 May 2020 18:42:38 +0900 ++ ++android-platform-art (8.1.0+r23-3) unstable; urgency=medium ++ ++ * Put all LDFLAGS that link libraries at the end of the command line. This ++ fixes FTBFS on Ubuntu because `--as-needed` is used by default. ++ (Closes: #916250) Thanks to Logan Rosen. ++ * ucontext.patch: Fix a type mismatch causing FTBFS on armhf ++ * Use GCC to compile assembly code on armhf as Clang does not support the ++ `ADRL` instruction. See . ++ ++ -- Kai-Chung Yan Thu, 13 Dec 2018 17:11:09 +0800 ++ ++android-platform-art (8.1.0+r23-2) unstable; urgency=medium ++ ++ * Use my DD account in Uploaders ++ * Disable libart and its users on MIPS as ART only supports MIPSr6 while ++ Debian is by default MIPSr2 ++ * Fix FTBFS on i386 ++ * Use Clang only for libart and its users while GCC for the rest. This allows ++ `dmtracedump` to be released on all architectures. ++ ++ -- Kai-Chung Yan Thu, 06 Dec 2018 03:40:05 +0800 ++ ++android-platform-art (8.1.0+r23-1) unstable; urgency=low ++ ++ * Initial release (Closes: #913785) ++ ++ -- Kai-Chung Yan Tue, 30 Oct 2018 15:33:48 +0800 diff --cc debian/clean index 0000000,0000000..92a7cdc new file mode 100644 --- /dev/null +++ b/debian/clean @@@ -1,0 -1,0 +1,1 @@@ ++debian/out/ diff --cc debian/control index 0000000,0000000..e6a11a9 new file mode 100644 --- /dev/null +++ b/debian/control @@@ -1,0 -1,0 +1,67 @@@ ++Source: android-platform-art ++Section: devel ++Priority: optional ++Maintainer: Android Tools Maintainers ++Uploaders: Kai-Chung Yan ++Build-Depends: ++ android-libbacktrace-dev (>= 1:10.0.0+r36-3~~) [amd64 i386 armel armhf arm64], ++ android-libbase-dev (>= 1:10.0.0+r36-3~~) [amd64 i386 armel armhf arm64], ++ android-libcutils-dev (>= 1:10.0.0+r36-3~~) [amd64 i386 armel armhf arm64], ++ android-libnativebridge-dev (>= 1:10.0.0+r36-3~~) [amd64 i386 armel armhf arm64], ++ android-libnativeloader-dev (>= 1:10.0.0+r36-3~~) [amd64 i386 armel armhf arm64], ++ android-libutils-dev (>= 1:10.0.0+r36-3~~) [amd64 i386 armel armhf arm64], ++ android-libziparchive-dev (>= 1:10.0.0+r36-3~~) [amd64 i386 armel armhf arm64], ++ clang [amd64 i386 armel armhf arm64], ++ debhelper-compat (= 12), ++ dh-exec, ++ help2man, ++ libicu-dev [amd64 i386 armel armhf arm64], ++ liblz4-dev [amd64 i386 armel armhf arm64], ++ python3 [amd64 i386 armel armhf arm64], ++ zlib1g-dev [amd64 i386 armel armhf arm64] ++Standards-Version: 4.5.0 ++Rules-Requires-Root: no ++Homepage: https://android.googlesource.com/platform/art ++Vcs-Git: https://salsa.debian.org/android-tools-team/android-platform-art.git ++Vcs-Browser: https://salsa.debian.org/android-tools-team/android-platform-art ++ ++Package: dexdump ++Architecture: amd64 i386 armhf arm64 ++Multi-Arch: foreign ++Build-Profiles: ++Depends: ${misc:Depends}, ${shlibs:Depends} ++Description: Displays information about Android DEX files ++ The `dexdump` tool is intended to mimic `objdump`. When possible, use ++ similar command-line arguments. ++ . ++ This is a re-implementation of the original `dexdump` utility that was ++ based on Dalvik functions in `libdex` into a new `dexdump` that is now ++ based on ART functions in `libart` instead. The output is very similar ++ to the original for correct DEX files. Error messages may differ, ++ however. Also, ODEX files are no longer supported. ++ ++Package: android-libart ++Architecture: amd64 i386 armhf arm64 ++Depends: ${shlibs:Depends}, ${misc:Depends} ++Description: Android Runtime ++ Android Runtime (ART) is the managed runtime used by applications and ++ some system services on Android. ART and its predecessor Dalvik were ++ originally created specifically for the Android project. ART as the ++ runtime executes the Dalvik Executable format and DEX bytecode ++ specification. ++ . ++ This package provides `libart` and `libsigchain`. ++ . ++ This library is only used by Android SDK and uses a customized RPATH. ++ ++Package: dexlist ++Architecture: amd64 i386 armhf arm64 ++Multi-Arch: foreign ++Build-Profiles: ++Depends: ${misc:Depends}, ${shlibs:Depends} ++Description: Lists all methods in all concrete classes in Android DEX files ++ This is a re-implementation of the original `dexlist` utility that was ++ based on Dalvik functions in `libdex` into a new `dexlist` that is now ++ based on ART functions in `libart` instead. The output is very similar ++ to the original for correct DEX files. Error messages may differ, ++ however. Also, ODEX files are no longer supported. diff --cc debian/copyright index 0000000,0000000..c0276a9 new file mode 100644 --- /dev/null +++ b/debian/copyright @@@ -1,0 -1,0 +1,51 @@@ ++Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/ ++Upstream-Name: Android Runtime ++Source: https://android.googlesource.com/platform/art ++ ++Files: * ++Copyright: 2005-2018, The Android Open Source Project ++License: Apache-2.0 ++ ++Files: debian/* ++Copyright: 2018, Kai-Chung Yan (殷啟聰) ++License: Apache-2.0 ++ ++Files: debian/dlmalloc/* ++Copyright: N/A ++License: public-domain ++ ++License: Apache-2.0 ++ Licensed under the Apache License, Version 2.0 (the "License"); ++ you may not use this file except in compliance with the License. ++ . ++ Unless required by applicable law or agreed to in writing, software ++ distributed under the License is distributed on an "AS IS" BASIS, ++ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ++ See the License for the specific language governing permissions and ++ limitations under the License. ++ . ++ On Debian systems, the full text of the Apache License, Version 2.0 ++ can be found in the file `/usr/share/common-licenses/Apache-2.0'. ++ ++License: public-domain ++ The person who associated a work with this deed has dedicated the work to the ++ public domain by waiving all of his or her rights to the work worldwide under ++ copyright law, including all related and neighboring rights, to the extent ++ allowed by law. ++ . ++ You can copy, modify, distribute and perform the work, even for commercial ++ purposes, all without asking permission. ++ . ++ In no way are the patent or trademark rights of any person affected by CC0, nor ++ are the rights that other persons may have in the work or in how the work is ++ used, such as publicity or privacy rights. ++ . ++ Unless expressly stated otherwise, the person who associated a work with this ++ deed makes no warranties about the work, and disclaims liability for all uses ++ of the work, to the fullest extent permitted by applicable law. ++ . ++ When using or citing the work, you should not imply endorsement by the author ++ or the affirmer. ++ . ++ The full text of this license is can be found at ++ . diff --cc debian/detect-arch.mk index 0000000,0000000..25c68a4 new file mode 100644 --- /dev/null +++ b/debian/detect-arch.mk @@@ -1,0 -1,0 +1,26 @@@ ++# More info see: /usr/share/dpkg/cputable ++ ++ifeq ($(DEB_HOST_ARCH), amd64) ++ CPU = x86_64 ++endif ++ifeq ($(DEB_HOST_ARCH), i386) ++ CPU = x86 ++endif ++ifeq ($(DEB_HOST_ARCH), armel) ++ CPU = arm ++endif ++ifeq ($(DEB_HOST_ARCH), armhf) ++ CPU = arm ++endif ++ifeq ($(DEB_HOST_ARCH), arm64) ++ CPU = arm64 ++endif ++ifeq ($(DEB_HOST_ARCH), mips) ++ CPU = mips ++endif ++ifeq ($(DEB_HOST_ARCH), mipsel) ++ CPU = mips ++endif ++ifeq ($(DEB_HOST_ARCH), mips64el) ++ CPU = mips64 ++endif diff --cc debian/dexdump.docs index 0000000,0000000..132d13f new file mode 100644 --- /dev/null +++ b/debian/dexdump.docs @@@ -1,0 -1,0 +1,1 @@@ ++NOTICE diff --cc debian/dexdump.install index 0000000,0000000..a973884 new file mode 100644 --- /dev/null +++ b/debian/dexdump.install @@@ -1,0 -1,0 +1,1 @@@ ++debian/out/dexdump usr/lib/android-sdk/build-tools/debian diff --cc debian/dexdump.links index 0000000,0000000..67eccc8 new file mode 100644 --- /dev/null +++ b/debian/dexdump.links @@@ -1,0 -1,0 +1,2 @@@ ++usr/lib/android-sdk/build-tools/debian/dexdump usr/bin/dexdump ++usr/lib/android-sdk/build-tools/debian/dexdump usr/bin/dexdump2 diff --cc debian/dexdump.lintian-overrides index 0000000,0000000..a8109fc new file mode 100644 --- /dev/null +++ b/debian/dexdump.lintian-overrides @@@ -1,0 -1,0 +1,4 @@@ ++# Executables and libraries of Android SDK uses private libraries located in ++# /usr/lib/${DEB_HOST_MULTIARCH}/android ++ ++custom-library-search-path diff --cc debian/dexdump.manpages index 0000000,0000000..020c7c8 new file mode 100644 --- /dev/null +++ b/debian/dexdump.manpages @@@ -1,0 -1,0 +1,1 @@@ ++debian/out/dexdump.1 diff --cc debian/dexdump.mk index 0000000,0000000..fe8dac0 new file mode 100644 --- /dev/null +++ b/debian/dexdump.mk @@@ -1,0 -1,0 +1,30 @@@ ++NAME = dexdump ++SOURCES = dexdump_cfg.cc dexdump_main.cc dexdump.cc ++SOURCES := $(foreach source, $(SOURCES), dexdump/$(source)) ++ ++CPPFLAGS += \ ++ -Ilibartbase \ ++ -Idexdump \ ++ -Ilibdexfile \ ++ -Iruntime \ ++ -I/usr/include/android/nativehelper \ ++ ++CXXFLAGS += -std=gnu++17 ++ ++# libsigchain defines wrapper functions around sigaction() family. In order to ++# override the ones provided by libc, libsignal must appear in the shared ++# object dependency tree before libc in the breadth-first order. ++LDFLAGS += -nodefaultlibs \ ++ -L/usr/lib/$(DEB_HOST_MULTIARCH)/android \ ++ -Ldebian/out \ ++ -Wl,-rpath=/usr/lib/$(DEB_HOST_MULTIARCH)/android ++LIBRARIES_FLAGS += \ ++ -lsigchain \ ++ -lc \ ++ -lstdc++ \ ++ -lgcc_s \ ++ -lart \ ++ -lbase \ ++ ++debian/out/$(NAME): $(SOURCES) ++ $(CXX) $^ -o $@ $(CXXFLAGS) $(CPPFLAGS) $(LDFLAGS) $(LIBRARIES_FLAGS) diff --cc debian/dexlist.docs index 0000000,0000000..132d13f new file mode 100644 --- /dev/null +++ b/debian/dexlist.docs @@@ -1,0 -1,0 +1,1 @@@ ++NOTICE diff --cc debian/dexlist.install index 0000000,0000000..3387d7e new file mode 100644 --- /dev/null +++ b/debian/dexlist.install @@@ -1,0 -1,0 +1,1 @@@ ++debian/out/dexlist usr/bin diff --cc debian/dexlist.lintian-overrides index 0000000,0000000..a8109fc new file mode 100644 --- /dev/null +++ b/debian/dexlist.lintian-overrides @@@ -1,0 -1,0 +1,4 @@@ ++# Executables and libraries of Android SDK uses private libraries located in ++# /usr/lib/${DEB_HOST_MULTIARCH}/android ++ ++custom-library-search-path diff --cc debian/dexlist.mk index 0000000,0000000..042804d new file mode 100644 --- /dev/null +++ b/debian/dexlist.mk @@@ -1,0 -1,0 +1,26 @@@ ++NAME = dexlist ++SOURCES = dexlist.cc ++SOURCES := $(foreach source, $(SOURCES), dexlist/$(source)) ++CPPFLAGS += \ ++ -Ilibartbase \ ++ -Ilibdexfile \ ++ -Iruntime \ ++ -I/usr/include/android/nativehelper \ ++ ++CXXFLAGS += -std=gnu++17 ++ ++# See the comment in `dexdump.mk` ++LDFLAGS += -nodefaultlibs \ ++ -L/usr/lib/$(DEB_HOST_MULTIARCH)/android \ ++ -Ldebian/out \ ++ -Wl,-rpath=/usr/lib/$(DEB_HOST_MULTIARCH)/android ++LIBRARIES_FLAGS += \ ++ -lbase \ ++ -lsigchain \ ++ -lc \ ++ -lstdc++ \ ++ -lgcc_s \ ++ -lart \ ++ ++debian/out/$(NAME): $(SOURCES) ++ $(CXX) $^ -o $@ $(CXXFLAGS) $(CPPFLAGS) $(LDFLAGS) $(LIBRARIES_FLAGS) diff --cc debian/dlmalloc/README.source index 0000000,0000000..148f0b5 new file mode 100644 --- /dev/null +++ b/debian/dlmalloc/README.source @@@ -1,0 -1,0 +1,4 @@@ ++The code is pulled from ++[here](https://android.googlesource.com/platform/external/dlmalloc). ++It seems to be used only at 2 places in AOSP and never receive any update, so ++I decided not to go through the trouble of the NEW queue. diff --cc debian/dlmalloc/malloc.c index 0000000,0000000..a61c0da new file mode 100644 --- /dev/null +++ b/debian/dlmalloc/malloc.c @@@ -1,0 -1,0 +1,6323 @@@ ++/* ++ This is a version (aka dlmalloc) of malloc/free/realloc written by ++ Doug Lea and released to the public domain, as explained at ++ http://creativecommons.org/publicdomain/zero/1.0/ Send questions, ++ comments, complaints, performance data, etc to dl@cs.oswego.edu ++ ++* Version 2.8.6 Wed Aug 29 06:57:58 2012 Doug Lea ++ Note: There may be an updated version of this malloc obtainable at ++ ftp://gee.cs.oswego.edu/pub/misc/malloc.c ++ Check before installing! ++ ++* Quickstart ++ ++ This library is all in one file to simplify the most common usage: ++ ftp it, compile it (-O3), and link it into another program. All of ++ the compile-time options default to reasonable values for use on ++ most platforms. You might later want to step through various ++ compile-time and dynamic tuning options. ++ ++ For convenience, an include file for code using this malloc is at: ++ ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.6.h ++ You don't really need this .h file unless you call functions not ++ defined in your system include files. The .h file contains only the ++ excerpts from this file needed for using this malloc on ANSI C/C++ ++ systems, so long as you haven't changed compile-time options about ++ naming and tuning parameters. If you do, then you can create your ++ own malloc.h that does include all settings by cutting at the point ++ indicated below. Note that you may already by default be using a C ++ library containing a malloc that is based on some version of this ++ malloc (for example in linux). You might still want to use the one ++ in this file to customize settings or to avoid overheads associated ++ with library versions. ++ ++* Vital statistics: ++ ++ Supported pointer/size_t representation: 4 or 8 bytes ++ size_t MUST be an unsigned type of the same width as ++ pointers. (If you are using an ancient system that declares ++ size_t as a signed type, or need it to be a different width ++ than pointers, you can use a previous release of this malloc ++ (e.g. 2.7.2) supporting these.) ++ ++ Alignment: 8 bytes (minimum) ++ This suffices for nearly all current machines and C compilers. ++ However, you can define MALLOC_ALIGNMENT to be wider than this ++ if necessary (up to 128bytes), at the expense of using more space. ++ ++ Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes) ++ 8 or 16 bytes (if 8byte sizes) ++ Each malloced chunk has a hidden word of overhead holding size ++ and status information, and additional cross-check word ++ if FOOTERS is defined. ++ ++ Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead) ++ 8-byte ptrs: 32 bytes (including overhead) ++ ++ Even a request for zero bytes (i.e., malloc(0)) returns a ++ pointer to something of the minimum allocatable size. ++ The maximum overhead wastage (i.e., number of extra bytes ++ allocated than were requested in malloc) is less than or equal ++ to the minimum size, except for requests >= mmap_threshold that ++ are serviced via mmap(), where the worst case wastage is about ++ 32 bytes plus the remainder from a system page (the minimal ++ mmap unit); typically 4096 or 8192 bytes. ++ ++ Security: static-safe; optionally more or less ++ The "security" of malloc refers to the ability of malicious ++ code to accentuate the effects of errors (for example, freeing ++ space that is not currently malloc'ed or overwriting past the ++ ends of chunks) in code that calls malloc. This malloc ++ guarantees not to modify any memory locations below the base of ++ heap, i.e., static variables, even in the presence of usage ++ errors. The routines additionally detect most improper frees ++ and reallocs. All this holds as long as the static bookkeeping ++ for malloc itself is not corrupted by some other means. This ++ is only one aspect of security -- these checks do not, and ++ cannot, detect all possible programming errors. ++ ++ If FOOTERS is defined nonzero, then each allocated chunk ++ carries an additional check word to verify that it was malloced ++ from its space. These check words are the same within each ++ execution of a program using malloc, but differ across ++ executions, so externally crafted fake chunks cannot be ++ freed. This improves security by rejecting frees/reallocs that ++ could corrupt heap memory, in addition to the checks preventing ++ writes to statics that are always on. This may further improve ++ security at the expense of time and space overhead. (Note that ++ FOOTERS may also be worth using with MSPACES.) ++ ++ By default detected errors cause the program to abort (calling ++ "abort()"). You can override this to instead proceed past ++ errors by defining PROCEED_ON_ERROR. In this case, a bad free ++ has no effect, and a malloc that encounters a bad address ++ caused by user overwrites will ignore the bad address by ++ dropping pointers and indices to all known memory. This may ++ be appropriate for programs that should continue if at all ++ possible in the face of programming errors, although they may ++ run out of memory because dropped memory is never reclaimed. ++ ++ If you don't like either of these options, you can define ++ CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything ++ else. And if if you are sure that your program using malloc has ++ no errors or vulnerabilities, you can define INSECURE to 1, ++ which might (or might not) provide a small performance improvement. ++ ++ It is also possible to limit the maximum total allocatable ++ space, using malloc_set_footprint_limit. This is not ++ designed as a security feature in itself (calls to set limits ++ are not screened or privileged), but may be useful as one ++ aspect of a secure implementation. ++ ++ Thread-safety: NOT thread-safe unless USE_LOCKS defined non-zero ++ When USE_LOCKS is defined, each public call to malloc, free, ++ etc is surrounded with a lock. By default, this uses a plain ++ pthread mutex, win32 critical section, or a spin-lock if if ++ available for the platform and not disabled by setting ++ USE_SPIN_LOCKS=0. However, if USE_RECURSIVE_LOCKS is defined, ++ recursive versions are used instead (which are not required for ++ base functionality but may be needed in layered extensions). ++ Using a global lock is not especially fast, and can be a major ++ bottleneck. It is designed only to provide minimal protection ++ in concurrent environments, and to provide a basis for ++ extensions. If you are using malloc in a concurrent program, ++ consider instead using nedmalloc ++ (http://www.nedprod.com/programs/portable/nedmalloc/) or ++ ptmalloc (See http://www.malloc.de), which are derived from ++ versions of this malloc. ++ ++ System requirements: Any combination of MORECORE and/or MMAP/MUNMAP ++ This malloc can use unix sbrk or any emulation (invoked using ++ the CALL_MORECORE macro) and/or mmap/munmap or any emulation ++ (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system ++ memory. On most unix systems, it tends to work best if both ++ MORECORE and MMAP are enabled. On Win32, it uses emulations ++ based on VirtualAlloc. It also uses common C library functions ++ like memset. ++ ++ Compliance: I believe it is compliant with the Single Unix Specification ++ (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably ++ others as well. ++ ++* Overview of algorithms ++ ++ This is not the fastest, most space-conserving, most portable, or ++ most tunable malloc ever written. However it is among the fastest ++ while also being among the most space-conserving, portable and ++ tunable. Consistent balance across these factors results in a good ++ general-purpose allocator for malloc-intensive programs. ++ ++ In most ways, this malloc is a best-fit allocator. Generally, it ++ chooses the best-fitting existing chunk for a request, with ties ++ broken in approximately least-recently-used order. (This strategy ++ normally maintains low fragmentation.) However, for requests less ++ than 256bytes, it deviates from best-fit when there is not an ++ exactly fitting available chunk by preferring to use space adjacent ++ to that used for the previous small request, as well as by breaking ++ ties in approximately most-recently-used order. (These enhance ++ locality of series of small allocations.) And for very large requests ++ (>= 256Kb by default), it relies on system memory mapping ++ facilities, if supported. (This helps avoid carrying around and ++ possibly fragmenting memory used only for large chunks.) ++ ++ All operations (except malloc_stats and mallinfo) have execution ++ times that are bounded by a constant factor of the number of bits in ++ a size_t, not counting any clearing in calloc or copying in realloc, ++ or actions surrounding MORECORE and MMAP that have times ++ proportional to the number of non-contiguous regions returned by ++ system allocation routines, which is often just 1. In real-time ++ applications, you can optionally suppress segment traversals using ++ NO_SEGMENT_TRAVERSAL, which assures bounded execution even when ++ system allocators return non-contiguous spaces, at the typical ++ expense of carrying around more memory and increased fragmentation. ++ ++ The implementation is not very modular and seriously overuses ++ macros. Perhaps someday all C compilers will do as good a job ++ inlining modular code as can now be done by brute-force expansion, ++ but now, enough of them seem not to. ++ ++ Some compilers issue a lot of warnings about code that is ++ dead/unreachable only on some platforms, and also about intentional ++ uses of negation on unsigned types. All known cases of each can be ++ ignored. ++ ++ For a longer but out of date high-level description, see ++ http://gee.cs.oswego.edu/dl/html/malloc.html ++ ++* MSPACES ++ If MSPACES is defined, then in addition to malloc, free, etc., ++ this file also defines mspace_malloc, mspace_free, etc. These ++ are versions of malloc routines that take an "mspace" argument ++ obtained using create_mspace, to control all internal bookkeeping. ++ If ONLY_MSPACES is defined, only these versions are compiled. ++ So if you would like to use this allocator for only some allocations, ++ and your system malloc for others, you can compile with ++ ONLY_MSPACES and then do something like... ++ static mspace mymspace = create_mspace(0,0); // for example ++ #define mymalloc(bytes) mspace_malloc(mymspace, bytes) ++ ++ (Note: If you only need one instance of an mspace, you can instead ++ use "USE_DL_PREFIX" to relabel the global malloc.) ++ ++ You can similarly create thread-local allocators by storing ++ mspaces as thread-locals. For example: ++ static __thread mspace tlms = 0; ++ void* tlmalloc(size_t bytes) { ++ if (tlms == 0) tlms = create_mspace(0, 0); ++ return mspace_malloc(tlms, bytes); ++ } ++ void tlfree(void* mem) { mspace_free(tlms, mem); } ++ ++ Unless FOOTERS is defined, each mspace is completely independent. ++ You cannot allocate from one and free to another (although ++ conformance is only weakly checked, so usage errors are not always ++ caught). If FOOTERS is defined, then each chunk carries around a tag ++ indicating its originating mspace, and frees are directed to their ++ originating spaces. Normally, this requires use of locks. ++ ++ ------------------------- Compile-time options --------------------------- ++ ++Be careful in setting #define values for numerical constants of type ++size_t. On some systems, literal values are not automatically extended ++to size_t precision unless they are explicitly casted. You can also ++use the symbolic values MAX_SIZE_T, SIZE_T_ONE, etc below. ++ ++WIN32 default: defined if _WIN32 defined ++ Defining WIN32 sets up defaults for MS environment and compilers. ++ Otherwise defaults are for unix. Beware that there seem to be some ++ cases where this malloc might not be a pure drop-in replacement for ++ Win32 malloc: Random-looking failures from Win32 GDI API's (eg; ++ SetDIBits()) may be due to bugs in some video driver implementations ++ when pixel buffers are malloc()ed, and the region spans more than ++ one VirtualAlloc()ed region. Because dlmalloc uses a small (64Kb) ++ default granularity, pixel buffers may straddle virtual allocation ++ regions more often than when using the Microsoft allocator. You can ++ avoid this by using VirtualAlloc() and VirtualFree() for all pixel ++ buffers rather than using malloc(). If this is not possible, ++ recompile this malloc with a larger DEFAULT_GRANULARITY. Note: ++ in cases where MSC and gcc (cygwin) are known to differ on WIN32, ++ conditions use _MSC_VER to distinguish them. ++ ++DLMALLOC_EXPORT default: extern ++ Defines how public APIs are declared. If you want to export via a ++ Windows DLL, you might define this as ++ #define DLMALLOC_EXPORT extern __declspec(dllexport) ++ If you want a POSIX ELF shared object, you might use ++ #define DLMALLOC_EXPORT extern __attribute__((visibility("default"))) ++ ++MALLOC_ALIGNMENT default: (size_t)(2 * sizeof(void *)) ++ Controls the minimum alignment for malloc'ed chunks. It must be a ++ power of two and at least 8, even on machines for which smaller ++ alignments would suffice. It may be defined as larger than this ++ though. Note however that code and data structures are optimized for ++ the case of 8-byte alignment. ++ ++MSPACES default: 0 (false) ++ If true, compile in support for independent allocation spaces. ++ This is only supported if HAVE_MMAP is true. ++ ++ONLY_MSPACES default: 0 (false) ++ If true, only compile in mspace versions, not regular versions. ++ ++USE_LOCKS default: 0 (false) ++ Causes each call to each public routine to be surrounded with ++ pthread or WIN32 mutex lock/unlock. (If set true, this can be ++ overridden on a per-mspace basis for mspace versions.) If set to a ++ non-zero value other than 1, locks are used, but their ++ implementation is left out, so lock functions must be supplied manually, ++ as described below. ++ ++USE_SPIN_LOCKS default: 1 iff USE_LOCKS and spin locks available ++ If true, uses custom spin locks for locking. This is currently ++ supported only gcc >= 4.1, older gccs on x86 platforms, and recent ++ MS compilers. Otherwise, posix locks or win32 critical sections are ++ used. ++ ++USE_RECURSIVE_LOCKS default: not defined ++ If defined nonzero, uses recursive (aka reentrant) locks, otherwise ++ uses plain mutexes. This is not required for malloc proper, but may ++ be needed for layered allocators such as nedmalloc. ++ ++LOCK_AT_FORK default: not defined ++ If defined nonzero, performs pthread_atfork upon initialization ++ to initialize child lock while holding parent lock. The implementation ++ assumes that pthread locks (not custom locks) are being used. In other ++ cases, you may need to customize the implementation. ++ ++FOOTERS default: 0 ++ If true, provide extra checking and dispatching by placing ++ information in the footers of allocated chunks. This adds ++ space and time overhead. ++ ++INSECURE default: 0 ++ If true, omit checks for usage errors and heap space overwrites. ++ ++USE_DL_PREFIX default: NOT defined ++ Causes compiler to prefix all public routines with the string 'dl'. ++ This can be useful when you only want to use this malloc in one part ++ of a program, using your regular system malloc elsewhere. ++ ++MALLOC_INSPECT_ALL default: NOT defined ++ If defined, compiles malloc_inspect_all and mspace_inspect_all, that ++ perform traversal of all heap space. Unless access to these ++ functions is otherwise restricted, you probably do not want to ++ include them in secure implementations. ++ ++ABORT default: defined as abort() ++ Defines how to abort on failed checks. On most systems, a failed ++ check cannot die with an "assert" or even print an informative ++ message, because the underlying print routines in turn call malloc, ++ which will fail again. Generally, the best policy is to simply call ++ abort(). It's not very useful to do more than this because many ++ errors due to overwriting will show up as address faults (null, odd ++ addresses etc) rather than malloc-triggered checks, so will also ++ abort. Also, most compilers know that abort() does not return, so ++ can better optimize code conditionally calling it. ++ ++PROCEED_ON_ERROR default: defined as 0 (false) ++ Controls whether detected bad addresses cause them to bypassed ++ rather than aborting. If set, detected bad arguments to free and ++ realloc are ignored. And all bookkeeping information is zeroed out ++ upon a detected overwrite of freed heap space, thus losing the ++ ability to ever return it from malloc again, but enabling the ++ application to proceed. If PROCEED_ON_ERROR is defined, the ++ static variable malloc_corruption_error_count is compiled in ++ and can be examined to see if errors have occurred. This option ++ generates slower code than the default abort policy. ++ ++DEBUG default: NOT defined ++ The DEBUG setting is mainly intended for people trying to modify ++ this code or diagnose problems when porting to new platforms. ++ However, it may also be able to better isolate user errors than just ++ using runtime checks. The assertions in the check routines spell ++ out in more detail the assumptions and invariants underlying the ++ algorithms. The checking is fairly extensive, and will slow down ++ execution noticeably. Calling malloc_stats or mallinfo with DEBUG ++ set will attempt to check every non-mmapped allocated and free chunk ++ in the course of computing the summaries. ++ ++ABORT_ON_ASSERT_FAILURE default: defined as 1 (true) ++ Debugging assertion failures can be nearly impossible if your ++ version of the assert macro causes malloc to be called, which will ++ lead to a cascade of further failures, blowing the runtime stack. ++ ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(), ++ which will usually make debugging easier. ++ ++MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32 ++ The action to take before "return 0" when malloc fails to be able to ++ return memory because there is none available. ++ ++HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES ++ True if this system supports sbrk or an emulation of it. ++ ++MORECORE default: sbrk ++ The name of the sbrk-style system routine to call to obtain more ++ memory. See below for guidance on writing custom MORECORE ++ functions. The type of the argument to sbrk/MORECORE varies across ++ systems. It cannot be size_t, because it supports negative ++ arguments, so it is normally the signed type of the same width as ++ size_t (sometimes declared as "intptr_t"). It doesn't much matter ++ though. Internally, we only call it with arguments less than half ++ the max value of a size_t, which should work across all reasonable ++ possibilities, although sometimes generating compiler warnings. ++ ++MORECORE_CONTIGUOUS default: 1 (true) if HAVE_MORECORE ++ If true, take advantage of fact that consecutive calls to MORECORE ++ with positive arguments always return contiguous increasing ++ addresses. This is true of unix sbrk. It does not hurt too much to ++ set it true anyway, since malloc copes with non-contiguities. ++ Setting it false when definitely non-contiguous saves time ++ and possibly wasted space it would take to discover this though. ++ ++MORECORE_CANNOT_TRIM default: NOT defined ++ True if MORECORE cannot release space back to the system when given ++ negative arguments. This is generally necessary only if you are ++ using a hand-crafted MORECORE function that cannot handle negative ++ arguments. ++ ++NO_SEGMENT_TRAVERSAL default: 0 ++ If non-zero, suppresses traversals of memory segments ++ returned by either MORECORE or CALL_MMAP. This disables ++ merging of segments that are contiguous, and selectively ++ releasing them to the OS if unused, but bounds execution times. ++ ++HAVE_MMAP default: 1 (true) ++ True if this system supports mmap or an emulation of it. If so, and ++ HAVE_MORECORE is not true, MMAP is used for all system ++ allocation. If set and HAVE_MORECORE is true as well, MMAP is ++ primarily used to directly allocate very large blocks. It is also ++ used as a backup strategy in cases where MORECORE fails to provide ++ space from system. Note: A single call to MUNMAP is assumed to be ++ able to unmap memory that may have be allocated using multiple calls ++ to MMAP, so long as they are adjacent. ++ ++HAVE_MREMAP default: 1 on linux, else 0 ++ If true realloc() uses mremap() to re-allocate large blocks and ++ extend or shrink allocation spaces. ++ ++MMAP_CLEARS default: 1 except on WINCE. ++ True if mmap clears memory so calloc doesn't need to. This is true ++ for standard unix mmap using /dev/zero and on WIN32 except for WINCE. ++ ++USE_BUILTIN_FFS default: 0 (i.e., not used) ++ Causes malloc to use the builtin ffs() function to compute indices. ++ Some compilers may recognize and intrinsify ffs to be faster than the ++ supplied C version. Also, the case of x86 using gcc is special-cased ++ to an asm instruction, so is already as fast as it can be, and so ++ this setting has no effect. Similarly for Win32 under recent MS compilers. ++ (On most x86s, the asm version is only slightly faster than the C version.) ++ ++malloc_getpagesize default: derive from system includes, or 4096. ++ The system page size. To the extent possible, this malloc manages ++ memory from the system in page-size units. This may be (and ++ usually is) a function rather than a constant. This is ignored ++ if WIN32, where page size is determined using getSystemInfo during ++ initialization. ++ ++USE_DEV_RANDOM default: 0 (i.e., not used) ++ Causes malloc to use /dev/random to initialize secure magic seed for ++ stamping footers. Otherwise, the current time is used. ++ ++NO_MALLINFO default: 0 ++ If defined, don't compile "mallinfo". This can be a simple way ++ of dealing with mismatches between system declarations and ++ those in this file. ++ ++MALLINFO_FIELD_TYPE default: size_t ++ The type of the fields in the mallinfo struct. This was originally ++ defined as "int" in SVID etc, but is more usefully defined as ++ size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set ++ ++NO_MALLOC_STATS default: 0 ++ If defined, don't compile "malloc_stats". This avoids calls to ++ fprintf and bringing in stdio dependencies you might not want. ++ ++REALLOC_ZERO_BYTES_FREES default: not defined ++ This should be set if a call to realloc with zero bytes should ++ be the same as a call to free. Some people think it should. Otherwise, ++ since this malloc returns a unique pointer for malloc(0), so does ++ realloc(p, 0). ++ ++LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H ++LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H ++LACKS_STDLIB_H LACKS_SCHED_H LACKS_TIME_H default: NOT defined unless on WIN32 ++ Define these if your system does not have these header files. ++ You might need to manually insert some of the declarations they provide. ++ ++DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS, ++ system_info.dwAllocationGranularity in WIN32, ++ otherwise 64K. ++ Also settable using mallopt(M_GRANULARITY, x) ++ The unit for allocating and deallocating memory from the system. On ++ most systems with contiguous MORECORE, there is no reason to ++ make this more than a page. However, systems with MMAP tend to ++ either require or encourage larger granularities. You can increase ++ this value to prevent system allocation functions to be called so ++ often, especially if they are slow. The value must be at least one ++ page and must be a power of two. Setting to 0 causes initialization ++ to either page size or win32 region size. (Note: In previous ++ versions of malloc, the equivalent of this option was called ++ "TOP_PAD") ++ ++DEFAULT_TRIM_THRESHOLD default: 2MB ++ Also settable using mallopt(M_TRIM_THRESHOLD, x) ++ The maximum amount of unused top-most memory to keep before ++ releasing via malloc_trim in free(). Automatic trimming is mainly ++ useful in long-lived programs using contiguous MORECORE. Because ++ trimming via sbrk can be slow on some systems, and can sometimes be ++ wasteful (in cases where programs immediately afterward allocate ++ more large chunks) the value should be high enough so that your ++ overall system performance would improve by releasing this much ++ memory. As a rough guide, you might set to a value close to the ++ average size of a process (program) running on your system. ++ Releasing this much memory would allow such a process to run in ++ memory. Generally, it is worth tuning trim thresholds when a ++ program undergoes phases where several large chunks are allocated ++ and released in ways that can reuse each other's storage, perhaps ++ mixed with phases where there are no such chunks at all. The trim ++ value must be greater than page size to have any useful effect. To ++ disable trimming completely, you can set to MAX_SIZE_T. Note that the trick ++ some people use of mallocing a huge space and then freeing it at ++ program startup, in an attempt to reserve system memory, doesn't ++ have the intended effect under automatic trimming, since that memory ++ will immediately be returned to the system. ++ ++DEFAULT_MMAP_THRESHOLD default: 256K ++ Also settable using mallopt(M_MMAP_THRESHOLD, x) ++ The request size threshold for using MMAP to directly service a ++ request. Requests of at least this size that cannot be allocated ++ using already-existing space will be serviced via mmap. (If enough ++ normal freed space already exists it is used instead.) Using mmap ++ segregates relatively large chunks of memory so that they can be ++ individually obtained and released from the host system. A request ++ serviced through mmap is never reused by any other request (at least ++ not directly; the system may just so happen to remap successive ++ requests to the same locations). Segregating space in this way has ++ the benefits that: Mmapped space can always be individually released ++ back to the system, which helps keep the system level memory demands ++ of a long-lived program low. Also, mapped memory doesn't become ++ `locked' between other chunks, as can happen with normally allocated ++ chunks, which means that even trimming via malloc_trim would not ++ release them. However, it has the disadvantage that the space ++ cannot be reclaimed, consolidated, and then used to service later ++ requests, as happens with normal chunks. The advantages of mmap ++ nearly always outweigh disadvantages for "large" chunks, but the ++ value of "large" may vary across systems. The default is an ++ empirically derived value that works well in most systems. You can ++ disable mmap by setting to MAX_SIZE_T. ++ ++MAX_RELEASE_CHECK_RATE default: 4095 unless not HAVE_MMAP ++ The number of consolidated frees between checks to release ++ unused segments when freeing. When using non-contiguous segments, ++ especially with multiple mspaces, checking only for topmost space ++ doesn't always suffice to trigger trimming. To compensate for this, ++ free() will, with a period of MAX_RELEASE_CHECK_RATE (or the ++ current number of segments, if greater) try to release unused ++ segments to the OS when freeing chunks that result in ++ consolidation. The best value for this parameter is a compromise ++ between slowing down frees with relatively costly checks that ++ rarely trigger versus holding on to unused memory. To effectively ++ disable, set to MAX_SIZE_T. This may lead to a very slight speed ++ improvement at the expense of carrying around more memory. ++*/ ++ ++/* Version identifier to allow people to support multiple versions */ ++#ifndef DLMALLOC_VERSION ++#define DLMALLOC_VERSION 20806 ++#endif /* DLMALLOC_VERSION */ ++ ++#ifndef DLMALLOC_EXPORT ++#define DLMALLOC_EXPORT extern ++#endif ++ ++#ifndef WIN32 ++#ifdef _WIN32 ++#define WIN32 1 ++#endif /* _WIN32 */ ++#ifdef _WIN32_WCE ++#define LACKS_FCNTL_H ++#define WIN32 1 ++#endif /* _WIN32_WCE */ ++#endif /* WIN32 */ ++#ifdef WIN32 ++#define WIN32_LEAN_AND_MEAN ++#include ++#include ++#define HAVE_MMAP 1 ++#define HAVE_MORECORE 0 ++#define LACKS_UNISTD_H ++#define LACKS_SYS_PARAM_H ++#define LACKS_SYS_MMAN_H ++#define LACKS_STRING_H ++#define LACKS_STRINGS_H ++#define LACKS_SYS_TYPES_H ++#define LACKS_ERRNO_H ++#define LACKS_SCHED_H ++#ifndef MALLOC_FAILURE_ACTION ++#define MALLOC_FAILURE_ACTION ++#endif /* MALLOC_FAILURE_ACTION */ ++#ifndef MMAP_CLEARS ++#ifdef _WIN32_WCE /* WINCE reportedly does not clear */ ++#define MMAP_CLEARS 0 ++#else ++#define MMAP_CLEARS 1 ++#endif /* _WIN32_WCE */ ++#endif /*MMAP_CLEARS */ ++#endif /* WIN32 */ ++ ++#if defined(DARWIN) || defined(_DARWIN) ++/* Mac OSX docs advise not to use sbrk; it seems better to use mmap */ ++#ifndef HAVE_MORECORE ++#define HAVE_MORECORE 0 ++#define HAVE_MMAP 1 ++/* OSX allocators provide 16 byte alignment */ ++#ifndef MALLOC_ALIGNMENT ++#define MALLOC_ALIGNMENT ((size_t)16U) ++#endif ++#endif /* HAVE_MORECORE */ ++#endif /* DARWIN */ ++ ++#ifndef LACKS_SYS_TYPES_H ++#include /* For size_t */ ++#endif /* LACKS_SYS_TYPES_H */ ++ ++/* The maximum possible size_t value has all bits set */ ++#define MAX_SIZE_T (~(size_t)0) ++ ++#ifndef USE_LOCKS /* ensure true if spin or recursive locks set */ ++#define USE_LOCKS ((defined(USE_SPIN_LOCKS) && USE_SPIN_LOCKS != 0) || \ ++ (defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0)) ++#endif /* USE_LOCKS */ ++ ++#if USE_LOCKS /* Spin locks for gcc >= 4.1, older gcc on x86, MSC >= 1310 */ ++#if ((defined(__GNUC__) && \ ++ ((__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1)) || \ ++ defined(__i386__) || defined(__x86_64__))) || \ ++ (defined(_MSC_VER) && _MSC_VER>=1310)) ++#ifndef USE_SPIN_LOCKS ++#define USE_SPIN_LOCKS 1 ++#endif /* USE_SPIN_LOCKS */ ++#elif USE_SPIN_LOCKS ++#error "USE_SPIN_LOCKS defined without implementation" ++#endif /* ... locks available... */ ++#elif !defined(USE_SPIN_LOCKS) ++#define USE_SPIN_LOCKS 0 ++#endif /* USE_LOCKS */ ++ ++#ifndef ONLY_MSPACES ++#define ONLY_MSPACES 0 ++#endif /* ONLY_MSPACES */ ++#ifndef MSPACES ++#if ONLY_MSPACES ++#define MSPACES 1 ++#else /* ONLY_MSPACES */ ++#define MSPACES 0 ++#endif /* ONLY_MSPACES */ ++#endif /* MSPACES */ ++#ifndef MALLOC_ALIGNMENT ++#define MALLOC_ALIGNMENT ((size_t)(2 * sizeof(void *))) ++#endif /* MALLOC_ALIGNMENT */ ++#ifndef FOOTERS ++#define FOOTERS 0 ++#endif /* FOOTERS */ ++#ifndef ABORT ++#define ABORT abort() ++#endif /* ABORT */ ++#ifndef ABORT_ON_ASSERT_FAILURE ++#define ABORT_ON_ASSERT_FAILURE 1 ++#endif /* ABORT_ON_ASSERT_FAILURE */ ++#ifndef PROCEED_ON_ERROR ++#define PROCEED_ON_ERROR 0 ++#endif /* PROCEED_ON_ERROR */ ++ ++#ifndef INSECURE ++#define INSECURE 0 ++#endif /* INSECURE */ ++#ifndef MALLOC_INSPECT_ALL ++#define MALLOC_INSPECT_ALL 0 ++#endif /* MALLOC_INSPECT_ALL */ ++#ifndef HAVE_MMAP ++#define HAVE_MMAP 1 ++#endif /* HAVE_MMAP */ ++#ifndef MMAP_CLEARS ++#define MMAP_CLEARS 1 ++#endif /* MMAP_CLEARS */ ++#ifndef HAVE_MREMAP ++#ifdef linux ++#define HAVE_MREMAP 1 ++#define _GNU_SOURCE /* Turns on mremap() definition */ ++#else /* linux */ ++#define HAVE_MREMAP 0 ++#endif /* linux */ ++#endif /* HAVE_MREMAP */ ++#ifndef MALLOC_FAILURE_ACTION ++#define MALLOC_FAILURE_ACTION errno = ENOMEM; ++#endif /* MALLOC_FAILURE_ACTION */ ++#ifndef HAVE_MORECORE ++#if ONLY_MSPACES ++#define HAVE_MORECORE 0 ++#else /* ONLY_MSPACES */ ++#define HAVE_MORECORE 1 ++#endif /* ONLY_MSPACES */ ++#endif /* HAVE_MORECORE */ ++#if !HAVE_MORECORE ++#define MORECORE_CONTIGUOUS 0 ++#else /* !HAVE_MORECORE */ ++#define MORECORE_DEFAULT sbrk ++#ifndef MORECORE_CONTIGUOUS ++#define MORECORE_CONTIGUOUS 1 ++#endif /* MORECORE_CONTIGUOUS */ ++#endif /* HAVE_MORECORE */ ++#ifndef DEFAULT_GRANULARITY ++#if (MORECORE_CONTIGUOUS || defined(WIN32)) ++#define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */ ++#else /* MORECORE_CONTIGUOUS */ ++#define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U) ++#endif /* MORECORE_CONTIGUOUS */ ++#endif /* DEFAULT_GRANULARITY */ ++#ifndef DEFAULT_TRIM_THRESHOLD ++#ifndef MORECORE_CANNOT_TRIM ++#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U) ++#else /* MORECORE_CANNOT_TRIM */ ++#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T ++#endif /* MORECORE_CANNOT_TRIM */ ++#endif /* DEFAULT_TRIM_THRESHOLD */ ++#ifndef DEFAULT_MMAP_THRESHOLD ++#if HAVE_MMAP ++#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U) ++#else /* HAVE_MMAP */ ++#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T ++#endif /* HAVE_MMAP */ ++#endif /* DEFAULT_MMAP_THRESHOLD */ ++#ifndef MAX_RELEASE_CHECK_RATE ++#if HAVE_MMAP ++#define MAX_RELEASE_CHECK_RATE 4095 ++#else ++#define MAX_RELEASE_CHECK_RATE MAX_SIZE_T ++#endif /* HAVE_MMAP */ ++#endif /* MAX_RELEASE_CHECK_RATE */ ++#ifndef USE_BUILTIN_FFS ++#define USE_BUILTIN_FFS 0 ++#endif /* USE_BUILTIN_FFS */ ++#ifndef USE_DEV_RANDOM ++#define USE_DEV_RANDOM 0 ++#endif /* USE_DEV_RANDOM */ ++#ifndef NO_MALLINFO ++#define NO_MALLINFO 0 ++#endif /* NO_MALLINFO */ ++#ifndef MALLINFO_FIELD_TYPE ++#define MALLINFO_FIELD_TYPE size_t ++#endif /* MALLINFO_FIELD_TYPE */ ++#ifndef NO_MALLOC_STATS ++#define NO_MALLOC_STATS 0 ++#endif /* NO_MALLOC_STATS */ ++#ifndef NO_SEGMENT_TRAVERSAL ++#define NO_SEGMENT_TRAVERSAL 0 ++#endif /* NO_SEGMENT_TRAVERSAL */ ++ ++/* ++ mallopt tuning options. SVID/XPG defines four standard parameter ++ numbers for mallopt, normally defined in malloc.h. None of these ++ are used in this malloc, so setting them has no effect. But this ++ malloc does support the following options. ++*/ ++ ++#define M_TRIM_THRESHOLD (-1) ++#define M_GRANULARITY (-2) ++#define M_MMAP_THRESHOLD (-3) ++ ++/* ------------------------ Mallinfo declarations ------------------------ */ ++ ++#if !NO_MALLINFO ++/* ++ This version of malloc supports the standard SVID/XPG mallinfo ++ routine that returns a struct containing usage properties and ++ statistics. It should work on any system that has a ++ /usr/include/malloc.h defining struct mallinfo. The main ++ declaration needed is the mallinfo struct that is returned (by-copy) ++ by mallinfo(). The malloinfo struct contains a bunch of fields that ++ are not even meaningful in this version of malloc. These fields are ++ are instead filled by mallinfo() with other numbers that might be of ++ interest. ++ ++ HAVE_USR_INCLUDE_MALLOC_H should be set if you have a ++ /usr/include/malloc.h file that includes a declaration of struct ++ mallinfo. If so, it is included; else a compliant version is ++ declared below. These must be precisely the same for mallinfo() to ++ work. The original SVID version of this struct, defined on most ++ systems with mallinfo, declares all fields as ints. But some others ++ define as unsigned long. If your system defines the fields using a ++ type of different width than listed here, you MUST #include your ++ system version and #define HAVE_USR_INCLUDE_MALLOC_H. ++*/ ++ ++/* #define HAVE_USR_INCLUDE_MALLOC_H */ ++ ++#ifdef HAVE_USR_INCLUDE_MALLOC_H ++#include "/usr/include/malloc.h" ++#else /* HAVE_USR_INCLUDE_MALLOC_H */ ++#ifndef STRUCT_MALLINFO_DECLARED ++/* HP-UX (and others?) redefines mallinfo unless _STRUCT_MALLINFO is defined */ ++#define _STRUCT_MALLINFO ++#define STRUCT_MALLINFO_DECLARED 1 ++struct mallinfo { ++ MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */ ++ MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */ ++ MALLINFO_FIELD_TYPE smblks; /* always 0 */ ++ MALLINFO_FIELD_TYPE hblks; /* always 0 */ ++ MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */ ++ MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */ ++ MALLINFO_FIELD_TYPE fsmblks; /* always 0 */ ++ MALLINFO_FIELD_TYPE uordblks; /* total allocated space */ ++ MALLINFO_FIELD_TYPE fordblks; /* total free space */ ++ MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */ ++}; ++#endif /* STRUCT_MALLINFO_DECLARED */ ++#endif /* HAVE_USR_INCLUDE_MALLOC_H */ ++#endif /* NO_MALLINFO */ ++ ++/* ++ Try to persuade compilers to inline. The most critical functions for ++ inlining are defined as macros, so these aren't used for them. ++*/ ++ ++#ifndef FORCEINLINE ++ #if defined(__GNUC__) ++#define FORCEINLINE __inline __attribute__ ((always_inline)) ++ #elif defined(_MSC_VER) ++ #define FORCEINLINE __forceinline ++ #endif ++#endif ++#ifndef NOINLINE ++ #if defined(__GNUC__) ++ #define NOINLINE __attribute__ ((noinline)) ++ #elif defined(_MSC_VER) ++ #define NOINLINE __declspec(noinline) ++ #else ++ #define NOINLINE ++ #endif ++#endif ++ ++#ifdef __cplusplus ++extern "C" { ++#ifndef FORCEINLINE ++ #define FORCEINLINE inline ++#endif ++#endif /* __cplusplus */ ++#ifndef FORCEINLINE ++ #define FORCEINLINE ++#endif ++ ++#if !ONLY_MSPACES ++ ++/* ------------------- Declarations of public routines ------------------- */ ++ ++#ifndef USE_DL_PREFIX ++#define dlcalloc calloc ++#define dlfree free ++#define dlmalloc malloc ++#define dlmemalign memalign ++#define dlposix_memalign posix_memalign ++#define dlrealloc realloc ++#define dlrealloc_in_place realloc_in_place ++#define dlvalloc valloc ++#define dlpvalloc pvalloc ++#define dlmallinfo mallinfo ++#define dlmallopt mallopt ++#define dlmalloc_trim malloc_trim ++#define dlmalloc_stats malloc_stats ++#define dlmalloc_usable_size malloc_usable_size ++#define dlmalloc_footprint malloc_footprint ++#define dlmalloc_max_footprint malloc_max_footprint ++#define dlmalloc_footprint_limit malloc_footprint_limit ++#define dlmalloc_set_footprint_limit malloc_set_footprint_limit ++#define dlmalloc_inspect_all malloc_inspect_all ++#define dlindependent_calloc independent_calloc ++#define dlindependent_comalloc independent_comalloc ++#define dlbulk_free bulk_free ++#endif /* USE_DL_PREFIX */ ++ ++/* ++ malloc(size_t n) ++ Returns a pointer to a newly allocated chunk of at least n bytes, or ++ null if no space is available, in which case errno is set to ENOMEM ++ on ANSI C systems. ++ ++ If n is zero, malloc returns a minimum-sized chunk. (The minimum ++ size is 16 bytes on most 32bit systems, and 32 bytes on 64bit ++ systems.) Note that size_t is an unsigned type, so calls with ++ arguments that would be negative if signed are interpreted as ++ requests for huge amounts of space, which will often fail. The ++ maximum supported value of n differs across systems, but is in all ++ cases less than the maximum representable value of a size_t. ++*/ ++DLMALLOC_EXPORT void* dlmalloc(size_t); ++ ++/* ++ free(void* p) ++ Releases the chunk of memory pointed to by p, that had been previously ++ allocated using malloc or a related routine such as realloc. ++ It has no effect if p is null. If p was not malloced or already ++ freed, free(p) will by default cause the current program to abort. ++*/ ++DLMALLOC_EXPORT void dlfree(void*); ++ ++/* ++ calloc(size_t n_elements, size_t element_size); ++ Returns a pointer to n_elements * element_size bytes, with all locations ++ set to zero. ++*/ ++DLMALLOC_EXPORT void* dlcalloc(size_t, size_t); ++ ++/* ++ realloc(void* p, size_t n) ++ Returns a pointer to a chunk of size n that contains the same data ++ as does chunk p up to the minimum of (n, p's size) bytes, or null ++ if no space is available. ++ ++ The returned pointer may or may not be the same as p. The algorithm ++ prefers extending p in most cases when possible, otherwise it ++ employs the equivalent of a malloc-copy-free sequence. ++ ++ If p is null, realloc is equivalent to malloc. ++ ++ If space is not available, realloc returns null, errno is set (if on ++ ANSI) and p is NOT freed. ++ ++ if n is for fewer bytes than already held by p, the newly unused ++ space is lopped off and freed if possible. realloc with a size ++ argument of zero (re)allocates a minimum-sized chunk. ++ ++ The old unix realloc convention of allowing the last-free'd chunk ++ to be used as an argument to realloc is not supported. ++*/ ++DLMALLOC_EXPORT void* dlrealloc(void*, size_t); ++ ++/* ++ realloc_in_place(void* p, size_t n) ++ Resizes the space allocated for p to size n, only if this can be ++ done without moving p (i.e., only if there is adjacent space ++ available if n is greater than p's current allocated size, or n is ++ less than or equal to p's size). This may be used instead of plain ++ realloc if an alternative allocation strategy is needed upon failure ++ to expand space; for example, reallocation of a buffer that must be ++ memory-aligned or cleared. You can use realloc_in_place to trigger ++ these alternatives only when needed. ++ ++ Returns p if successful; otherwise null. ++*/ ++DLMALLOC_EXPORT void* dlrealloc_in_place(void*, size_t); ++ ++/* ++ memalign(size_t alignment, size_t n); ++ Returns a pointer to a newly allocated chunk of n bytes, aligned ++ in accord with the alignment argument. ++ ++ The alignment argument should be a power of two. If the argument is ++ not a power of two, the nearest greater power is used. ++ 8-byte alignment is guaranteed by normal malloc calls, so don't ++ bother calling memalign with an argument of 8 or less. ++ ++ Overreliance on memalign is a sure way to fragment space. ++*/ ++DLMALLOC_EXPORT void* dlmemalign(size_t, size_t); ++ ++/* ++ int posix_memalign(void** pp, size_t alignment, size_t n); ++ Allocates a chunk of n bytes, aligned in accord with the alignment ++ argument. Differs from memalign only in that it (1) assigns the ++ allocated memory to *pp rather than returning it, (2) fails and ++ returns EINVAL if the alignment is not a power of two (3) fails and ++ returns ENOMEM if memory cannot be allocated. ++*/ ++DLMALLOC_EXPORT int dlposix_memalign(void**, size_t, size_t); ++ ++/* ++ valloc(size_t n); ++ Equivalent to memalign(pagesize, n), where pagesize is the page ++ size of the system. If the pagesize is unknown, 4096 is used. ++*/ ++DLMALLOC_EXPORT void* dlvalloc(size_t); ++ ++/* ++ mallopt(int parameter_number, int parameter_value) ++ Sets tunable parameters The format is to provide a ++ (parameter-number, parameter-value) pair. mallopt then sets the ++ corresponding parameter to the argument value if it can (i.e., so ++ long as the value is meaningful), and returns 1 if successful else ++ 0. To workaround the fact that mallopt is specified to use int, ++ not size_t parameters, the value -1 is specially treated as the ++ maximum unsigned size_t value. ++ ++ SVID/XPG/ANSI defines four standard param numbers for mallopt, ++ normally defined in malloc.h. None of these are use in this malloc, ++ so setting them has no effect. But this malloc also supports other ++ options in mallopt. See below for details. Briefly, supported ++ parameters are as follows (listed defaults are for "typical" ++ configurations). ++ ++ Symbol param # default allowed param values ++ M_TRIM_THRESHOLD -1 2*1024*1024 any (-1 disables) ++ M_GRANULARITY -2 page size any power of 2 >= page size ++ M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support) ++*/ ++DLMALLOC_EXPORT int dlmallopt(int, int); ++ ++/* ++ malloc_footprint(); ++ Returns the number of bytes obtained from the system. The total ++ number of bytes allocated by malloc, realloc etc., is less than this ++ value. Unlike mallinfo, this function returns only a precomputed ++ result, so can be called frequently to monitor memory consumption. ++ Even if locks are otherwise defined, this function does not use them, ++ so results might not be up to date. ++*/ ++DLMALLOC_EXPORT size_t dlmalloc_footprint(void); ++ ++/* ++ malloc_max_footprint(); ++ Returns the maximum number of bytes obtained from the system. This ++ value will be greater than current footprint if deallocated space ++ has been reclaimed by the system. The peak number of bytes allocated ++ by malloc, realloc etc., is less than this value. Unlike mallinfo, ++ this function returns only a precomputed result, so can be called ++ frequently to monitor memory consumption. Even if locks are ++ otherwise defined, this function does not use them, so results might ++ not be up to date. ++*/ ++DLMALLOC_EXPORT size_t dlmalloc_max_footprint(void); ++ ++/* ++ malloc_footprint_limit(); ++ Returns the number of bytes that the heap is allowed to obtain from ++ the system, returning the last value returned by ++ malloc_set_footprint_limit, or the maximum size_t value if ++ never set. The returned value reflects a permission. There is no ++ guarantee that this number of bytes can actually be obtained from ++ the system. ++*/ ++DLMALLOC_EXPORT size_t dlmalloc_footprint_limit(); ++ ++/* ++ malloc_set_footprint_limit(); ++ Sets the maximum number of bytes to obtain from the system, causing ++ failure returns from malloc and related functions upon attempts to ++ exceed this value. The argument value may be subject to page ++ rounding to an enforceable limit; this actual value is returned. ++ Using an argument of the maximum possible size_t effectively ++ disables checks. If the argument is less than or equal to the ++ current malloc_footprint, then all future allocations that require ++ additional system memory will fail. However, invocation cannot ++ retroactively deallocate existing used memory. ++*/ ++DLMALLOC_EXPORT size_t dlmalloc_set_footprint_limit(size_t bytes); ++ ++#if MALLOC_INSPECT_ALL ++/* ++ malloc_inspect_all(void(*handler)(void *start, ++ void *end, ++ size_t used_bytes, ++ void* callback_arg), ++ void* arg); ++ Traverses the heap and calls the given handler for each managed ++ region, skipping all bytes that are (or may be) used for bookkeeping ++ purposes. Traversal does not include include chunks that have been ++ directly memory mapped. Each reported region begins at the start ++ address, and continues up to but not including the end address. The ++ first used_bytes of the region contain allocated data. If ++ used_bytes is zero, the region is unallocated. The handler is ++ invoked with the given callback argument. If locks are defined, they ++ are held during the entire traversal. It is a bad idea to invoke ++ other malloc functions from within the handler. ++ ++ For example, to count the number of in-use chunks with size greater ++ than 1000, you could write: ++ static int count = 0; ++ void count_chunks(void* start, void* end, size_t used, void* arg) { ++ if (used >= 1000) ++count; ++ } ++ then: ++ malloc_inspect_all(count_chunks, NULL); ++ ++ malloc_inspect_all is compiled only if MALLOC_INSPECT_ALL is defined. ++*/ ++DLMALLOC_EXPORT void dlmalloc_inspect_all(void(*handler)(void*, void *, size_t, void*), ++ void* arg); ++ ++#endif /* MALLOC_INSPECT_ALL */ ++ ++#if !NO_MALLINFO ++/* ++ mallinfo() ++ Returns (by copy) a struct containing various summary statistics: ++ ++ arena: current total non-mmapped bytes allocated from system ++ ordblks: the number of free chunks ++ smblks: always zero. ++ hblks: current number of mmapped regions ++ hblkhd: total bytes held in mmapped regions ++ usmblks: the maximum total allocated space. This will be greater ++ than current total if trimming has occurred. ++ fsmblks: always zero ++ uordblks: current total allocated space (normal or mmapped) ++ fordblks: total free space ++ keepcost: the maximum number of bytes that could ideally be released ++ back to system via malloc_trim. ("ideally" means that ++ it ignores page restrictions etc.) ++ ++ Because these fields are ints, but internal bookkeeping may ++ be kept as longs, the reported values may wrap around zero and ++ thus be inaccurate. ++*/ ++DLMALLOC_EXPORT struct mallinfo dlmallinfo(void); ++#endif /* NO_MALLINFO */ ++ ++/* ++ independent_calloc(size_t n_elements, size_t element_size, void* chunks[]); ++ ++ independent_calloc is similar to calloc, but instead of returning a ++ single cleared space, it returns an array of pointers to n_elements ++ independent elements that can hold contents of size elem_size, each ++ of which starts out cleared, and can be independently freed, ++ realloc'ed etc. The elements are guaranteed to be adjacently ++ allocated (this is not guaranteed to occur with multiple callocs or ++ mallocs), which may also improve cache locality in some ++ applications. ++ ++ The "chunks" argument is optional (i.e., may be null, which is ++ probably the most typical usage). If it is null, the returned array ++ is itself dynamically allocated and should also be freed when it is ++ no longer needed. Otherwise, the chunks array must be of at least ++ n_elements in length. It is filled in with the pointers to the ++ chunks. ++ ++ In either case, independent_calloc returns this pointer array, or ++ null if the allocation failed. If n_elements is zero and "chunks" ++ is null, it returns a chunk representing an array with zero elements ++ (which should be freed if not wanted). ++ ++ Each element must be freed when it is no longer needed. This can be ++ done all at once using bulk_free. ++ ++ independent_calloc simplifies and speeds up implementations of many ++ kinds of pools. It may also be useful when constructing large data ++ structures that initially have a fixed number of fixed-sized nodes, ++ but the number is not known at compile time, and some of the nodes ++ may later need to be freed. For example: ++ ++ struct Node { int item; struct Node* next; }; ++ ++ struct Node* build_list() { ++ struct Node** pool; ++ int n = read_number_of_nodes_needed(); ++ if (n <= 0) return 0; ++ pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0); ++ if (pool == 0) die(); ++ // organize into a linked list... ++ struct Node* first = pool[0]; ++ for (i = 0; i < n-1; ++i) ++ pool[i]->next = pool[i+1]; ++ free(pool); // Can now free the array (or not, if it is needed later) ++ return first; ++ } ++*/ ++DLMALLOC_EXPORT void** dlindependent_calloc(size_t, size_t, void**); ++ ++/* ++ independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]); ++ ++ independent_comalloc allocates, all at once, a set of n_elements ++ chunks with sizes indicated in the "sizes" array. It returns ++ an array of pointers to these elements, each of which can be ++ independently freed, realloc'ed etc. The elements are guaranteed to ++ be adjacently allocated (this is not guaranteed to occur with ++ multiple callocs or mallocs), which may also improve cache locality ++ in some applications. ++ ++ The "chunks" argument is optional (i.e., may be null). If it is null ++ the returned array is itself dynamically allocated and should also ++ be freed when it is no longer needed. Otherwise, the chunks array ++ must be of at least n_elements in length. It is filled in with the ++ pointers to the chunks. ++ ++ In either case, independent_comalloc returns this pointer array, or ++ null if the allocation failed. If n_elements is zero and chunks is ++ null, it returns a chunk representing an array with zero elements ++ (which should be freed if not wanted). ++ ++ Each element must be freed when it is no longer needed. This can be ++ done all at once using bulk_free. ++ ++ independent_comallac differs from independent_calloc in that each ++ element may have a different size, and also that it does not ++ automatically clear elements. ++ ++ independent_comalloc can be used to speed up allocation in cases ++ where several structs or objects must always be allocated at the ++ same time. For example: ++ ++ struct Head { ... } ++ struct Foot { ... } ++ ++ void send_message(char* msg) { ++ int msglen = strlen(msg); ++ size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) }; ++ void* chunks[3]; ++ if (independent_comalloc(3, sizes, chunks) == 0) ++ die(); ++ struct Head* head = (struct Head*)(chunks[0]); ++ char* body = (char*)(chunks[1]); ++ struct Foot* foot = (struct Foot*)(chunks[2]); ++ // ... ++ } ++ ++ In general though, independent_comalloc is worth using only for ++ larger values of n_elements. For small values, you probably won't ++ detect enough difference from series of malloc calls to bother. ++ ++ Overuse of independent_comalloc can increase overall memory usage, ++ since it cannot reuse existing noncontiguous small chunks that ++ might be available for some of the elements. ++*/ ++DLMALLOC_EXPORT void** dlindependent_comalloc(size_t, size_t*, void**); ++ ++/* ++ bulk_free(void* array[], size_t n_elements) ++ Frees and clears (sets to null) each non-null pointer in the given ++ array. This is likely to be faster than freeing them one-by-one. ++ If footers are used, pointers that have been allocated in different ++ mspaces are not freed or cleared, and the count of all such pointers ++ is returned. For large arrays of pointers with poor locality, it ++ may be worthwhile to sort this array before calling bulk_free. ++*/ ++DLMALLOC_EXPORT size_t dlbulk_free(void**, size_t n_elements); ++ ++/* ++ pvalloc(size_t n); ++ Equivalent to valloc(minimum-page-that-holds(n)), that is, ++ round up n to nearest pagesize. ++ */ ++DLMALLOC_EXPORT void* dlpvalloc(size_t); ++ ++/* ++ malloc_trim(size_t pad); ++ ++ If possible, gives memory back to the system (via negative arguments ++ to sbrk) if there is unused memory at the `high' end of the malloc ++ pool or in unused MMAP segments. You can call this after freeing ++ large blocks of memory to potentially reduce the system-level memory ++ requirements of a program. However, it cannot guarantee to reduce ++ memory. Under some allocation patterns, some large free blocks of ++ memory will be locked between two used chunks, so they cannot be ++ given back to the system. ++ ++ The `pad' argument to malloc_trim represents the amount of free ++ trailing space to leave untrimmed. If this argument is zero, only ++ the minimum amount of memory to maintain internal data structures ++ will be left. Non-zero arguments can be supplied to maintain enough ++ trailing space to service future expected allocations without having ++ to re-obtain memory from the system. ++ ++ Malloc_trim returns 1 if it actually released any memory, else 0. ++*/ ++DLMALLOC_EXPORT int dlmalloc_trim(size_t); ++ ++/* ++ malloc_stats(); ++ Prints on stderr the amount of space obtained from the system (both ++ via sbrk and mmap), the maximum amount (which may be more than ++ current if malloc_trim and/or munmap got called), and the current ++ number of bytes allocated via malloc (or realloc, etc) but not yet ++ freed. Note that this is the number of bytes allocated, not the ++ number requested. It will be larger than the number requested ++ because of alignment and bookkeeping overhead. Because it includes ++ alignment wastage as being in use, this figure may be greater than ++ zero even when no user-level chunks are allocated. ++ ++ The reported current and maximum system memory can be inaccurate if ++ a program makes other calls to system memory allocation functions ++ (normally sbrk) outside of malloc. ++ ++ malloc_stats prints only the most commonly interesting statistics. ++ More information can be obtained by calling mallinfo. ++*/ ++DLMALLOC_EXPORT void dlmalloc_stats(void); ++ ++/* ++ malloc_usable_size(void* p); ++ ++ Returns the number of bytes you can actually use in ++ an allocated chunk, which may be more than you requested (although ++ often not) due to alignment and minimum size constraints. ++ You can use this many bytes without worrying about ++ overwriting other allocated objects. This is not a particularly great ++ programming practice. malloc_usable_size can be more useful in ++ debugging and assertions, for example: ++ ++ p = malloc(n); ++ assert(malloc_usable_size(p) >= 256); ++*/ ++/* BEGIN android-changed: added const */ ++size_t dlmalloc_usable_size(const void*); ++/* END android-change */ ++ ++#endif /* ONLY_MSPACES */ ++ ++#if MSPACES ++ ++/* ++ mspace is an opaque type representing an independent ++ region of space that supports mspace_malloc, etc. ++*/ ++typedef void* mspace; ++ ++/* ++ create_mspace creates and returns a new independent space with the ++ given initial capacity, or, if 0, the default granularity size. It ++ returns null if there is no system memory available to create the ++ space. If argument locked is non-zero, the space uses a separate ++ lock to control access. The capacity of the space will grow ++ dynamically as needed to service mspace_malloc requests. You can ++ control the sizes of incremental increases of this space by ++ compiling with a different DEFAULT_GRANULARITY or dynamically ++ setting with mallopt(M_GRANULARITY, value). ++*/ ++DLMALLOC_EXPORT mspace create_mspace(size_t capacity, int locked); ++ ++/* ++ destroy_mspace destroys the given space, and attempts to return all ++ of its memory back to the system, returning the total number of ++ bytes freed. After destruction, the results of access to all memory ++ used by the space become undefined. ++*/ ++DLMALLOC_EXPORT size_t destroy_mspace(mspace msp); ++ ++/* ++ create_mspace_with_base uses the memory supplied as the initial base ++ of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this ++ space is used for bookkeeping, so the capacity must be at least this ++ large. (Otherwise 0 is returned.) When this initial space is ++ exhausted, additional memory will be obtained from the system. ++ Destroying this space will deallocate all additionally allocated ++ space (if possible) but not the initial base. ++*/ ++DLMALLOC_EXPORT mspace create_mspace_with_base(void* base, size_t capacity, int locked); ++ ++/* ++ mspace_track_large_chunks controls whether requests for large chunks ++ are allocated in their own untracked mmapped regions, separate from ++ others in this mspace. By default large chunks are not tracked, ++ which reduces fragmentation. However, such chunks are not ++ necessarily released to the system upon destroy_mspace. Enabling ++ tracking by setting to true may increase fragmentation, but avoids ++ leakage when relying on destroy_mspace to release all memory ++ allocated using this space. The function returns the previous ++ setting. ++*/ ++DLMALLOC_EXPORT int mspace_track_large_chunks(mspace msp, int enable); ++ ++ ++/* ++ mspace_malloc behaves as malloc, but operates within ++ the given space. ++*/ ++DLMALLOC_EXPORT void* mspace_malloc(mspace msp, size_t bytes); ++ ++/* ++ mspace_free behaves as free, but operates within ++ the given space. ++ ++ If compiled with FOOTERS==1, mspace_free is not actually needed. ++ free may be called instead of mspace_free because freed chunks from ++ any space are handled by their originating spaces. ++*/ ++DLMALLOC_EXPORT void mspace_free(mspace msp, void* mem); ++ ++/* ++ mspace_realloc behaves as realloc, but operates within ++ the given space. ++ ++ If compiled with FOOTERS==1, mspace_realloc is not actually ++ needed. realloc may be called instead of mspace_realloc because ++ realloced chunks from any space are handled by their originating ++ spaces. ++*/ ++DLMALLOC_EXPORT void* mspace_realloc(mspace msp, void* mem, size_t newsize); ++ ++/* ++ mspace_calloc behaves as calloc, but operates within ++ the given space. ++*/ ++DLMALLOC_EXPORT void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size); ++ ++/* ++ mspace_memalign behaves as memalign, but operates within ++ the given space. ++*/ ++DLMALLOC_EXPORT void* mspace_memalign(mspace msp, size_t alignment, size_t bytes); ++ ++/* ++ mspace_independent_calloc behaves as independent_calloc, but ++ operates within the given space. ++*/ ++DLMALLOC_EXPORT void** mspace_independent_calloc(mspace msp, size_t n_elements, ++ size_t elem_size, void* chunks[]); ++ ++/* ++ mspace_independent_comalloc behaves as independent_comalloc, but ++ operates within the given space. ++*/ ++DLMALLOC_EXPORT void** mspace_independent_comalloc(mspace msp, size_t n_elements, ++ size_t sizes[], void* chunks[]); ++ ++/* ++ mspace_footprint() returns the number of bytes obtained from the ++ system for this space. ++*/ ++DLMALLOC_EXPORT size_t mspace_footprint(mspace msp); ++ ++/* ++ mspace_max_footprint() returns the peak number of bytes obtained from the ++ system for this space. ++*/ ++DLMALLOC_EXPORT size_t mspace_max_footprint(mspace msp); ++ ++ ++#if !NO_MALLINFO ++/* ++ mspace_mallinfo behaves as mallinfo, but reports properties of ++ the given space. ++*/ ++DLMALLOC_EXPORT struct mallinfo mspace_mallinfo(mspace msp); ++#endif /* NO_MALLINFO */ ++ ++/* ++ malloc_usable_size(void* p) behaves the same as malloc_usable_size; ++*/ ++DLMALLOC_EXPORT size_t mspace_usable_size(const void* mem); ++ ++/* ++ mspace_malloc_stats behaves as malloc_stats, but reports ++ properties of the given space. ++*/ ++DLMALLOC_EXPORT void mspace_malloc_stats(mspace msp); ++ ++/* ++ mspace_trim behaves as malloc_trim, but ++ operates within the given space. ++*/ ++DLMALLOC_EXPORT int mspace_trim(mspace msp, size_t pad); ++ ++/* ++ An alias for mallopt. ++*/ ++DLMALLOC_EXPORT int mspace_mallopt(int, int); ++ ++#endif /* MSPACES */ ++ ++#ifdef __cplusplus ++} /* end of extern "C" */ ++#endif /* __cplusplus */ ++ ++/* ++ ======================================================================== ++ To make a fully customizable malloc.h header file, cut everything ++ above this line, put into file malloc.h, edit to suit, and #include it ++ on the next line, as well as in programs that use this malloc. ++ ======================================================================== ++*/ ++ ++/* #include "malloc.h" */ ++ ++/*------------------------------ internal #includes ---------------------- */ ++ ++#ifdef _MSC_VER ++#pragma warning( disable : 4146 ) /* no "unsigned" warnings */ ++#endif /* _MSC_VER */ ++#if !NO_MALLOC_STATS ++#include /* for printing in malloc_stats */ ++#endif /* NO_MALLOC_STATS */ ++#ifndef LACKS_ERRNO_H ++#include /* for MALLOC_FAILURE_ACTION */ ++#endif /* LACKS_ERRNO_H */ ++#ifdef DEBUG ++#if ABORT_ON_ASSERT_FAILURE ++#undef assert ++#define assert(x) if(!(x)) ABORT ++#else /* ABORT_ON_ASSERT_FAILURE */ ++#include ++#endif /* ABORT_ON_ASSERT_FAILURE */ ++#else /* DEBUG */ ++#ifndef assert ++#define assert(x) ++#endif ++#define DEBUG 0 ++#endif /* DEBUG */ ++#if !defined(WIN32) && !defined(LACKS_TIME_H) ++#include /* for magic initialization */ ++#endif /* WIN32 */ ++#ifndef LACKS_STDLIB_H ++#include /* for abort() */ ++#endif /* LACKS_STDLIB_H */ ++#ifndef LACKS_STRING_H ++#include /* for memset etc */ ++#endif /* LACKS_STRING_H */ ++#if USE_BUILTIN_FFS ++#ifndef LACKS_STRINGS_H ++#include /* for ffs */ ++#endif /* LACKS_STRINGS_H */ ++#endif /* USE_BUILTIN_FFS */ ++#if HAVE_MMAP ++#ifndef LACKS_SYS_MMAN_H ++/* On some versions of linux, mremap decl in mman.h needs __USE_GNU set */ ++#if (defined(linux) && !defined(__USE_GNU)) ++#define __USE_GNU 1 ++#include /* for mmap */ ++#undef __USE_GNU ++#else ++#include /* for mmap */ ++#endif /* linux */ ++#endif /* LACKS_SYS_MMAN_H */ ++#ifndef LACKS_FCNTL_H ++#include ++#endif /* LACKS_FCNTL_H */ ++#endif /* HAVE_MMAP */ ++#ifndef LACKS_UNISTD_H ++#include /* for sbrk, sysconf */ ++#else /* LACKS_UNISTD_H */ ++#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__) ++extern void* sbrk(ptrdiff_t); ++#endif /* FreeBSD etc */ ++#endif /* LACKS_UNISTD_H */ ++ ++/* Declarations for locking */ ++#if USE_LOCKS ++#ifndef WIN32 ++#if defined (__SVR4) && defined (__sun) /* solaris */ ++#include ++#elif !defined(LACKS_SCHED_H) ++#include ++#endif /* solaris or LACKS_SCHED_H */ ++#if (defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0) || !USE_SPIN_LOCKS ++#include ++#endif /* USE_RECURSIVE_LOCKS ... */ ++#elif defined(_MSC_VER) ++#ifndef _M_AMD64 ++/* These are already defined on AMD64 builds */ ++#ifdef __cplusplus ++extern "C" { ++#endif /* __cplusplus */ ++LONG __cdecl _InterlockedCompareExchange(LONG volatile *Dest, LONG Exchange, LONG Comp); ++LONG __cdecl _InterlockedExchange(LONG volatile *Target, LONG Value); ++#ifdef __cplusplus ++} ++#endif /* __cplusplus */ ++#endif /* _M_AMD64 */ ++#pragma intrinsic (_InterlockedCompareExchange) ++#pragma intrinsic (_InterlockedExchange) ++#define interlockedcompareexchange _InterlockedCompareExchange ++#define interlockedexchange _InterlockedExchange ++#elif defined(WIN32) && defined(__GNUC__) ++#define interlockedcompareexchange(a, b, c) __sync_val_compare_and_swap(a, c, b) ++#define interlockedexchange __sync_lock_test_and_set ++#endif /* Win32 */ ++#else /* USE_LOCKS */ ++#endif /* USE_LOCKS */ ++ ++#ifndef LOCK_AT_FORK ++#define LOCK_AT_FORK 0 ++#endif ++ ++/* Declarations for bit scanning on win32 */ ++#if defined(_MSC_VER) && _MSC_VER>=1300 ++#ifndef BitScanForward /* Try to avoid pulling in WinNT.h */ ++#ifdef __cplusplus ++extern "C" { ++#endif /* __cplusplus */ ++unsigned char _BitScanForward(unsigned long *index, unsigned long mask); ++unsigned char _BitScanReverse(unsigned long *index, unsigned long mask); ++#ifdef __cplusplus ++} ++#endif /* __cplusplus */ ++ ++#define BitScanForward _BitScanForward ++#define BitScanReverse _BitScanReverse ++#pragma intrinsic(_BitScanForward) ++#pragma intrinsic(_BitScanReverse) ++#endif /* BitScanForward */ ++#endif /* defined(_MSC_VER) && _MSC_VER>=1300 */ ++ ++#ifndef WIN32 ++#ifndef malloc_getpagesize ++# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */ ++# ifndef _SC_PAGE_SIZE ++# define _SC_PAGE_SIZE _SC_PAGESIZE ++# endif ++# endif ++# ifdef _SC_PAGE_SIZE ++# define malloc_getpagesize sysconf(_SC_PAGE_SIZE) ++# else ++# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE) ++ extern size_t getpagesize(); ++# define malloc_getpagesize getpagesize() ++# else ++# ifdef WIN32 /* use supplied emulation of getpagesize */ ++# define malloc_getpagesize getpagesize() ++# else ++# ifndef LACKS_SYS_PARAM_H ++# include ++# endif ++# ifdef EXEC_PAGESIZE ++# define malloc_getpagesize EXEC_PAGESIZE ++# else ++# ifdef NBPG ++# ifndef CLSIZE ++# define malloc_getpagesize NBPG ++# else ++# define malloc_getpagesize (NBPG * CLSIZE) ++# endif ++# else ++# ifdef NBPC ++# define malloc_getpagesize NBPC ++# else ++# ifdef PAGESIZE ++# define malloc_getpagesize PAGESIZE ++# else /* just guess */ ++# define malloc_getpagesize ((size_t)4096U) ++# endif ++# endif ++# endif ++# endif ++# endif ++# endif ++# endif ++#endif ++#endif ++ ++/* ------------------- size_t and alignment properties -------------------- */ ++ ++/* The byte and bit size of a size_t */ ++#define SIZE_T_SIZE (sizeof(size_t)) ++#define SIZE_T_BITSIZE (sizeof(size_t) << 3) ++ ++/* Some constants coerced to size_t */ ++/* Annoying but necessary to avoid errors on some platforms */ ++#define SIZE_T_ZERO ((size_t)0) ++#define SIZE_T_ONE ((size_t)1) ++#define SIZE_T_TWO ((size_t)2) ++#define SIZE_T_FOUR ((size_t)4) ++#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1) ++#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2) ++#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES) ++#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U) ++ ++/* The bit mask value corresponding to MALLOC_ALIGNMENT */ ++#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE) ++ ++/* True if address a has acceptable alignment */ ++#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0) ++ ++/* the number of bytes to offset an address to align it */ ++#define align_offset(A)\ ++ ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\ ++ ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK)) ++ ++/* -------------------------- MMAP preliminaries ------------------------- */ ++ ++/* ++ If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and ++ checks to fail so compiler optimizer can delete code rather than ++ using so many "#if"s. ++*/ ++ ++ ++/* MORECORE and MMAP must return MFAIL on failure */ ++#define MFAIL ((void*)(MAX_SIZE_T)) ++#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */ ++ ++#if HAVE_MMAP ++ ++#ifndef WIN32 ++#define MUNMAP_DEFAULT(a, s) munmap((a), (s)) ++#define MMAP_PROT (PROT_READ|PROT_WRITE) ++#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) ++#define MAP_ANONYMOUS MAP_ANON ++#endif /* MAP_ANON */ ++#ifdef MAP_ANONYMOUS ++#define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS) ++#define MMAP_DEFAULT(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0) ++#else /* MAP_ANONYMOUS */ ++/* ++ Nearly all versions of mmap support MAP_ANONYMOUS, so the following ++ is unlikely to be needed, but is supplied just in case. ++*/ ++#define MMAP_FLAGS (MAP_PRIVATE) ++static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */ ++#define MMAP_DEFAULT(s) ((dev_zero_fd < 0) ? \ ++ (dev_zero_fd = open("/dev/zero", O_RDWR), \ ++ mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \ ++ mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) ++#endif /* MAP_ANONYMOUS */ ++ ++#define DIRECT_MMAP_DEFAULT(s) MMAP_DEFAULT(s) ++ ++#else /* WIN32 */ ++ ++/* Win32 MMAP via VirtualAlloc */ ++static FORCEINLINE void* win32mmap(size_t size) { ++ void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE); ++ return (ptr != 0)? ptr: MFAIL; ++} ++ ++/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */ ++static FORCEINLINE void* win32direct_mmap(size_t size) { ++ void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN, ++ PAGE_READWRITE); ++ return (ptr != 0)? ptr: MFAIL; ++} ++ ++/* This function supports releasing coalesed segments */ ++static FORCEINLINE int win32munmap(void* ptr, size_t size) { ++ MEMORY_BASIC_INFORMATION minfo; ++ char* cptr = (char*)ptr; ++ while (size) { ++ if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0) ++ return -1; ++ if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr || ++ minfo.State != MEM_COMMIT || minfo.RegionSize > size) ++ return -1; ++ if (VirtualFree(cptr, 0, MEM_RELEASE) == 0) ++ return -1; ++ cptr += minfo.RegionSize; ++ size -= minfo.RegionSize; ++ } ++ return 0; ++} ++ ++#define MMAP_DEFAULT(s) win32mmap(s) ++#define MUNMAP_DEFAULT(a, s) win32munmap((a), (s)) ++#define DIRECT_MMAP_DEFAULT(s) win32direct_mmap(s) ++#endif /* WIN32 */ ++#endif /* HAVE_MMAP */ ++ ++#if HAVE_MREMAP ++#ifndef WIN32 ++#define MREMAP_DEFAULT(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv)) ++#endif /* WIN32 */ ++#endif /* HAVE_MREMAP */ ++ ++/** ++ * Define CALL_MORECORE ++ */ ++#if HAVE_MORECORE ++ #ifdef MORECORE ++ #define CALL_MORECORE(S) MORECORE(S) ++ #else /* MORECORE */ ++ #define CALL_MORECORE(S) MORECORE_DEFAULT(S) ++ #endif /* MORECORE */ ++#else /* HAVE_MORECORE */ ++ #define CALL_MORECORE(S) MFAIL ++#endif /* HAVE_MORECORE */ ++ ++/** ++ * Define CALL_MMAP/CALL_MUNMAP/CALL_DIRECT_MMAP ++ */ ++#if HAVE_MMAP ++ #define USE_MMAP_BIT (SIZE_T_ONE) ++ ++ #ifdef MMAP ++ #define CALL_MMAP(s) MMAP(s) ++ #else /* MMAP */ ++ #define CALL_MMAP(s) MMAP_DEFAULT(s) ++ #endif /* MMAP */ ++ #ifdef MUNMAP ++ #define CALL_MUNMAP(a, s) MUNMAP((a), (s)) ++ #else /* MUNMAP */ ++ #define CALL_MUNMAP(a, s) MUNMAP_DEFAULT((a), (s)) ++ #endif /* MUNMAP */ ++ #ifdef DIRECT_MMAP ++ #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s) ++ #else /* DIRECT_MMAP */ ++ #define CALL_DIRECT_MMAP(s) DIRECT_MMAP_DEFAULT(s) ++ #endif /* DIRECT_MMAP */ ++#else /* HAVE_MMAP */ ++ #define USE_MMAP_BIT (SIZE_T_ZERO) ++ ++ #define MMAP(s) MFAIL ++ #define MUNMAP(a, s) (-1) ++ #define DIRECT_MMAP(s) MFAIL ++ #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s) ++ #define CALL_MMAP(s) MMAP(s) ++ #define CALL_MUNMAP(a, s) MUNMAP((a), (s)) ++#endif /* HAVE_MMAP */ ++ ++/** ++ * Define CALL_MREMAP ++ */ ++#if HAVE_MMAP && HAVE_MREMAP ++ #ifdef MREMAP ++ #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP((addr), (osz), (nsz), (mv)) ++ #else /* MREMAP */ ++ #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP_DEFAULT((addr), (osz), (nsz), (mv)) ++ #endif /* MREMAP */ ++#else /* HAVE_MMAP && HAVE_MREMAP */ ++ #define CALL_MREMAP(addr, osz, nsz, mv) MFAIL ++#endif /* HAVE_MMAP && HAVE_MREMAP */ ++ ++/* mstate bit set if continguous morecore disabled or failed */ ++#define USE_NONCONTIGUOUS_BIT (4U) ++ ++/* segment bit set in create_mspace_with_base */ ++#define EXTERN_BIT (8U) ++ ++ ++/* --------------------------- Lock preliminaries ------------------------ */ ++ ++/* ++ When locks are defined, there is one global lock, plus ++ one per-mspace lock. ++ ++ The global lock_ensures that mparams.magic and other unique ++ mparams values are initialized only once. It also protects ++ sequences of calls to MORECORE. In many cases sys_alloc requires ++ two calls, that should not be interleaved with calls by other ++ threads. This does not protect against direct calls to MORECORE ++ by other threads not using this lock, so there is still code to ++ cope the best we can on interference. ++ ++ Per-mspace locks surround calls to malloc, free, etc. ++ By default, locks are simple non-reentrant mutexes. ++ ++ Because lock-protected regions generally have bounded times, it is ++ OK to use the supplied simple spinlocks. Spinlocks are likely to ++ improve performance for lightly contended applications, but worsen ++ performance under heavy contention. ++ ++ If USE_LOCKS is > 1, the definitions of lock routines here are ++ bypassed, in which case you will need to define the type MLOCK_T, ++ and at least INITIAL_LOCK, DESTROY_LOCK, ACQUIRE_LOCK, RELEASE_LOCK ++ and TRY_LOCK. You must also declare a ++ static MLOCK_T malloc_global_mutex = { initialization values };. ++ ++*/ ++ ++#if !USE_LOCKS ++#define USE_LOCK_BIT (0U) ++#define INITIAL_LOCK(l) (0) ++#define DESTROY_LOCK(l) (0) ++#define ACQUIRE_MALLOC_GLOBAL_LOCK() ++#define RELEASE_MALLOC_GLOBAL_LOCK() ++ ++#else ++#if USE_LOCKS > 1 ++/* ----------------------- User-defined locks ------------------------ */ ++/* Define your own lock implementation here */ ++/* #define INITIAL_LOCK(lk) ... */ ++/* #define DESTROY_LOCK(lk) ... */ ++/* #define ACQUIRE_LOCK(lk) ... */ ++/* #define RELEASE_LOCK(lk) ... */ ++/* #define TRY_LOCK(lk) ... */ ++/* static MLOCK_T malloc_global_mutex = ... */ ++ ++#elif USE_SPIN_LOCKS ++ ++/* First, define CAS_LOCK and CLEAR_LOCK on ints */ ++/* Note CAS_LOCK defined to return 0 on success */ ++ ++#if defined(__GNUC__)&& (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1)) ++#define CAS_LOCK(sl) __sync_lock_test_and_set(sl, 1) ++#define CLEAR_LOCK(sl) __sync_lock_release(sl) ++ ++#elif (defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))) ++/* Custom spin locks for older gcc on x86 */ ++static FORCEINLINE int x86_cas_lock(int *sl) { ++ int ret; ++ int val = 1; ++ int cmp = 0; ++ __asm__ __volatile__ ("lock; cmpxchgl %1, %2" ++ : "=a" (ret) ++ : "r" (val), "m" (*(sl)), "0"(cmp) ++ : "memory", "cc"); ++ return ret; ++} ++ ++static FORCEINLINE void x86_clear_lock(int* sl) { ++ assert(*sl != 0); ++ int prev = 0; ++ int ret; ++ __asm__ __volatile__ ("lock; xchgl %0, %1" ++ : "=r" (ret) ++ : "m" (*(sl)), "0"(prev) ++ : "memory"); ++} ++ ++#define CAS_LOCK(sl) x86_cas_lock(sl) ++#define CLEAR_LOCK(sl) x86_clear_lock(sl) ++ ++#else /* Win32 MSC */ ++#define CAS_LOCK(sl) interlockedexchange(sl, (LONG)1) ++#define CLEAR_LOCK(sl) interlockedexchange (sl, (LONG)0) ++ ++#endif /* ... gcc spins locks ... */ ++ ++/* How to yield for a spin lock */ ++#define SPINS_PER_YIELD 63 ++#if defined(_MSC_VER) ++#define SLEEP_EX_DURATION 50 /* delay for yield/sleep */ ++#define SPIN_LOCK_YIELD SleepEx(SLEEP_EX_DURATION, FALSE) ++#elif defined (__SVR4) && defined (__sun) /* solaris */ ++#define SPIN_LOCK_YIELD thr_yield(); ++#elif !defined(LACKS_SCHED_H) ++#define SPIN_LOCK_YIELD sched_yield(); ++#else ++#define SPIN_LOCK_YIELD ++#endif /* ... yield ... */ ++ ++#if !defined(USE_RECURSIVE_LOCKS) || USE_RECURSIVE_LOCKS == 0 ++/* Plain spin locks use single word (embedded in malloc_states) */ ++static int spin_acquire_lock(int *sl) { ++ int spins = 0; ++ while (*(volatile int *)sl != 0 || CAS_LOCK(sl)) { ++ if ((++spins & SPINS_PER_YIELD) == 0) { ++ SPIN_LOCK_YIELD; ++ } ++ } ++ return 0; ++} ++ ++#define MLOCK_T int ++#define TRY_LOCK(sl) !CAS_LOCK(sl) ++#define RELEASE_LOCK(sl) CLEAR_LOCK(sl) ++#define ACQUIRE_LOCK(sl) (CAS_LOCK(sl)? spin_acquire_lock(sl) : 0) ++#define INITIAL_LOCK(sl) (*sl = 0) ++#define DESTROY_LOCK(sl) (0) ++static MLOCK_T malloc_global_mutex = 0; ++ ++#else /* USE_RECURSIVE_LOCKS */ ++/* types for lock owners */ ++#ifdef WIN32 ++#define THREAD_ID_T DWORD ++#define CURRENT_THREAD GetCurrentThreadId() ++#define EQ_OWNER(X,Y) ((X) == (Y)) ++#else ++/* ++ Note: the following assume that pthread_t is a type that can be ++ initialized to (casted) zero. If this is not the case, you will need to ++ somehow redefine these or not use spin locks. ++*/ ++#define THREAD_ID_T pthread_t ++#define CURRENT_THREAD pthread_self() ++#define EQ_OWNER(X,Y) pthread_equal(X, Y) ++#endif ++ ++struct malloc_recursive_lock { ++ int sl; ++ unsigned int c; ++ THREAD_ID_T threadid; ++}; ++ ++#define MLOCK_T struct malloc_recursive_lock ++static MLOCK_T malloc_global_mutex = { 0, 0, (THREAD_ID_T)0}; ++ ++static FORCEINLINE void recursive_release_lock(MLOCK_T *lk) { ++ assert(lk->sl != 0); ++ if (--lk->c == 0) { ++ CLEAR_LOCK(&lk->sl); ++ } ++} ++ ++static FORCEINLINE int recursive_acquire_lock(MLOCK_T *lk) { ++ THREAD_ID_T mythreadid = CURRENT_THREAD; ++ int spins = 0; ++ for (;;) { ++ if (*((volatile int *)(&lk->sl)) == 0) { ++ if (!CAS_LOCK(&lk->sl)) { ++ lk->threadid = mythreadid; ++ lk->c = 1; ++ return 0; ++ } ++ } ++ else if (EQ_OWNER(lk->threadid, mythreadid)) { ++ ++lk->c; ++ return 0; ++ } ++ if ((++spins & SPINS_PER_YIELD) == 0) { ++ SPIN_LOCK_YIELD; ++ } ++ } ++} ++ ++static FORCEINLINE int recursive_try_lock(MLOCK_T *lk) { ++ THREAD_ID_T mythreadid = CURRENT_THREAD; ++ if (*((volatile int *)(&lk->sl)) == 0) { ++ if (!CAS_LOCK(&lk->sl)) { ++ lk->threadid = mythreadid; ++ lk->c = 1; ++ return 1; ++ } ++ } ++ else if (EQ_OWNER(lk->threadid, mythreadid)) { ++ ++lk->c; ++ return 1; ++ } ++ return 0; ++} ++ ++#define RELEASE_LOCK(lk) recursive_release_lock(lk) ++#define TRY_LOCK(lk) recursive_try_lock(lk) ++#define ACQUIRE_LOCK(lk) recursive_acquire_lock(lk) ++#define INITIAL_LOCK(lk) ((lk)->threadid = (THREAD_ID_T)0, (lk)->sl = 0, (lk)->c = 0) ++#define DESTROY_LOCK(lk) (0) ++#endif /* USE_RECURSIVE_LOCKS */ ++ ++#elif defined(WIN32) /* Win32 critical sections */ ++#define MLOCK_T CRITICAL_SECTION ++#define ACQUIRE_LOCK(lk) (EnterCriticalSection(lk), 0) ++#define RELEASE_LOCK(lk) LeaveCriticalSection(lk) ++#define TRY_LOCK(lk) TryEnterCriticalSection(lk) ++#define INITIAL_LOCK(lk) (!InitializeCriticalSectionAndSpinCount((lk), 0x80000000|4000)) ++#define DESTROY_LOCK(lk) (DeleteCriticalSection(lk), 0) ++#define NEED_GLOBAL_LOCK_INIT ++ ++static MLOCK_T malloc_global_mutex; ++static volatile LONG malloc_global_mutex_status; ++ ++/* Use spin loop to initialize global lock */ ++static void init_malloc_global_mutex() { ++ for (;;) { ++ long stat = malloc_global_mutex_status; ++ if (stat > 0) ++ return; ++ /* transition to < 0 while initializing, then to > 0) */ ++ if (stat == 0 && ++ interlockedcompareexchange(&malloc_global_mutex_status, (LONG)-1, (LONG)0) == 0) { ++ InitializeCriticalSection(&malloc_global_mutex); ++ interlockedexchange(&malloc_global_mutex_status, (LONG)1); ++ return; ++ } ++ SleepEx(0, FALSE); ++ } ++} ++ ++#else /* pthreads-based locks */ ++#define MLOCK_T pthread_mutex_t ++#define ACQUIRE_LOCK(lk) pthread_mutex_lock(lk) ++#define RELEASE_LOCK(lk) pthread_mutex_unlock(lk) ++#define TRY_LOCK(lk) (!pthread_mutex_trylock(lk)) ++#define INITIAL_LOCK(lk) pthread_init_lock(lk) ++#define DESTROY_LOCK(lk) pthread_mutex_destroy(lk) ++ ++#if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0 && defined(linux) && !defined(PTHREAD_MUTEX_RECURSIVE) ++/* Cope with old-style linux recursive lock initialization by adding */ ++/* skipped internal declaration from pthread.h */ ++extern int pthread_mutexattr_setkind_np __P ((pthread_mutexattr_t *__attr, ++ int __kind)); ++#define PTHREAD_MUTEX_RECURSIVE PTHREAD_MUTEX_RECURSIVE_NP ++#define pthread_mutexattr_settype(x,y) pthread_mutexattr_setkind_np(x,y) ++#endif /* USE_RECURSIVE_LOCKS ... */ ++ ++static MLOCK_T malloc_global_mutex = PTHREAD_MUTEX_INITIALIZER; ++ ++static int pthread_init_lock (MLOCK_T *lk) { ++ pthread_mutexattr_t attr; ++ if (pthread_mutexattr_init(&attr)) return 1; ++#if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0 ++ if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) return 1; ++#endif ++ if (pthread_mutex_init(lk, &attr)) return 1; ++ if (pthread_mutexattr_destroy(&attr)) return 1; ++ return 0; ++} ++ ++#endif /* ... lock types ... */ ++ ++/* Common code for all lock types */ ++#define USE_LOCK_BIT (2U) ++ ++#ifndef ACQUIRE_MALLOC_GLOBAL_LOCK ++#define ACQUIRE_MALLOC_GLOBAL_LOCK() ACQUIRE_LOCK(&malloc_global_mutex); ++#endif ++ ++#ifndef RELEASE_MALLOC_GLOBAL_LOCK ++#define RELEASE_MALLOC_GLOBAL_LOCK() RELEASE_LOCK(&malloc_global_mutex); ++#endif ++ ++#endif /* USE_LOCKS */ ++ ++/* ----------------------- Chunk representations ------------------------ */ ++ ++/* ++ (The following includes lightly edited explanations by Colin Plumb.) ++ ++ The malloc_chunk declaration below is misleading (but accurate and ++ necessary). It declares a "view" into memory allowing access to ++ necessary fields at known offsets from a given base. ++ ++ Chunks of memory are maintained using a `boundary tag' method as ++ originally described by Knuth. (See the paper by Paul Wilson ++ ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such ++ techniques.) Sizes of free chunks are stored both in the front of ++ each chunk and at the end. This makes consolidating fragmented ++ chunks into bigger chunks fast. The head fields also hold bits ++ representing whether chunks are free or in use. ++ ++ Here are some pictures to make it clearer. They are "exploded" to ++ show that the state of a chunk can be thought of as extending from ++ the high 31 bits of the head field of its header through the ++ prev_foot and PINUSE_BIT bit of the following chunk header. ++ ++ A chunk that's in use looks like: ++ ++ chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ | Size of previous chunk (if P = 0) | ++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| ++ | Size of this chunk 1| +-+ ++ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ | | ++ +- -+ ++ | | ++ +- -+ ++ | : ++ +- size - sizeof(size_t) available payload bytes -+ ++ : | ++ chunk-> +- -+ ++ | | ++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1| ++ | Size of next chunk (may or may not be in use) | +-+ ++ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ ++ And if it's free, it looks like this: ++ ++ chunk-> +- -+ ++ | User payload (must be in use, or we would have merged!) | ++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| ++ | Size of this chunk 0| +-+ ++ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ | Next pointer | ++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ | Prev pointer | ++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ | : ++ +- size - sizeof(struct chunk) unused bytes -+ ++ : | ++ chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ | Size of this chunk | ++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0| ++ | Size of next chunk (must be in use, or we would have merged)| +-+ ++ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ | : ++ +- User payload -+ ++ : | ++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ |0| ++ +-+ ++ Note that since we always merge adjacent free chunks, the chunks ++ adjacent to a free chunk must be in use. ++ ++ Given a pointer to a chunk (which can be derived trivially from the ++ payload pointer) we can, in O(1) time, find out whether the adjacent ++ chunks are free, and if so, unlink them from the lists that they ++ are on and merge them with the current chunk. ++ ++ Chunks always begin on even word boundaries, so the mem portion ++ (which is returned to the user) is also on an even word boundary, and ++ thus at least double-word aligned. ++ ++ The P (PINUSE_BIT) bit, stored in the unused low-order bit of the ++ chunk size (which is always a multiple of two words), is an in-use ++ bit for the *previous* chunk. If that bit is *clear*, then the ++ word before the current chunk size contains the previous chunk ++ size, and can be used to find the front of the previous chunk. ++ The very first chunk allocated always has this bit set, preventing ++ access to non-existent (or non-owned) memory. If pinuse is set for ++ any given chunk, then you CANNOT determine the size of the ++ previous chunk, and might even get a memory addressing fault when ++ trying to do so. ++ ++ The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of ++ the chunk size redundantly records whether the current chunk is ++ inuse (unless the chunk is mmapped). This redundancy enables usage ++ checks within free and realloc, and reduces indirection when freeing ++ and consolidating chunks. ++ ++ Each freshly allocated chunk must have both cinuse and pinuse set. ++ That is, each allocated chunk borders either a previously allocated ++ and still in-use chunk, or the base of its memory arena. This is ++ ensured by making all allocations from the `lowest' part of any ++ found chunk. Further, no free chunk physically borders another one, ++ so each free chunk is known to be preceded and followed by either ++ inuse chunks or the ends of memory. ++ ++ Note that the `foot' of the current chunk is actually represented ++ as the prev_foot of the NEXT chunk. This makes it easier to ++ deal with alignments etc but can be very confusing when trying ++ to extend or adapt this code. ++ ++ The exceptions to all this are ++ ++ 1. The special chunk `top' is the top-most available chunk (i.e., ++ the one bordering the end of available memory). It is treated ++ specially. Top is never included in any bin, is used only if ++ no other chunk is available, and is released back to the ++ system if it is very large (see M_TRIM_THRESHOLD). In effect, ++ the top chunk is treated as larger (and thus less well ++ fitting) than any other available chunk. The top chunk ++ doesn't update its trailing size field since there is no next ++ contiguous chunk that would have to index off it. However, ++ space is still allocated for it (TOP_FOOT_SIZE) to enable ++ separation or merging when space is extended. ++ ++ 3. Chunks allocated via mmap, have both cinuse and pinuse bits ++ cleared in their head fields. Because they are allocated ++ one-by-one, each must carry its own prev_foot field, which is ++ also used to hold the offset this chunk has within its mmapped ++ region, which is needed to preserve alignment. Each mmapped ++ chunk is trailed by the first two fields of a fake next-chunk ++ for sake of usage checks. ++ ++*/ ++ ++struct malloc_chunk { ++ size_t prev_foot; /* Size of previous chunk (if free). */ ++ size_t head; /* Size and inuse bits. */ ++ struct malloc_chunk* fd; /* double links -- used only if free. */ ++ struct malloc_chunk* bk; ++}; ++ ++typedef struct malloc_chunk mchunk; ++typedef struct malloc_chunk* mchunkptr; ++typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */ ++typedef unsigned int bindex_t; /* Described below */ ++typedef unsigned int binmap_t; /* Described below */ ++typedef unsigned int flag_t; /* The type of various bit flag sets */ ++ ++/* ------------------- Chunks sizes and alignments ----------------------- */ ++ ++#define MCHUNK_SIZE (sizeof(mchunk)) ++ ++#if FOOTERS ++#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) ++#else /* FOOTERS */ ++#define CHUNK_OVERHEAD (SIZE_T_SIZE) ++#endif /* FOOTERS */ ++ ++/* MMapped chunks need a second word of overhead ... */ ++#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) ++/* ... and additional padding for fake next-chunk at foot */ ++#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES) ++ ++/* The smallest size we can malloc is an aligned minimal chunk */ ++#define MIN_CHUNK_SIZE\ ++ ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) ++ ++/* conversion from malloc headers to user pointers, and back */ ++#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES)) ++#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES)) ++/* chunk associated with aligned address A */ ++#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A))) ++ ++/* Bounds on request (not chunk) sizes. */ ++#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2) ++#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE) ++ ++/* pad request bytes into a usable size */ ++#define pad_request(req) \ ++ (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) ++ ++/* pad request, checking for minimum (but not maximum) */ ++#define request2size(req) \ ++ (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req)) ++ ++ ++/* ------------------ Operations on head and foot fields ----------------- */ ++ ++/* ++ The head field of a chunk is or'ed with PINUSE_BIT when previous ++ adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in ++ use, unless mmapped, in which case both bits are cleared. ++ ++ FLAG4_BIT is not used by this malloc, but might be useful in extensions. ++*/ ++ ++#define PINUSE_BIT (SIZE_T_ONE) ++#define CINUSE_BIT (SIZE_T_TWO) ++#define FLAG4_BIT (SIZE_T_FOUR) ++#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT) ++#define FLAG_BITS (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT) ++ ++/* Head value for fenceposts */ ++#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE) ++ ++/* extraction of fields from head words */ ++#define cinuse(p) ((p)->head & CINUSE_BIT) ++#define pinuse(p) ((p)->head & PINUSE_BIT) ++#define flag4inuse(p) ((p)->head & FLAG4_BIT) ++#define is_inuse(p) (((p)->head & INUSE_BITS) != PINUSE_BIT) ++#define is_mmapped(p) (((p)->head & INUSE_BITS) == 0) ++ ++#define chunksize(p) ((p)->head & ~(FLAG_BITS)) ++ ++#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT) ++#define set_flag4(p) ((p)->head |= FLAG4_BIT) ++#define clear_flag4(p) ((p)->head &= ~FLAG4_BIT) ++ ++/* Treat space at ptr +/- offset as a chunk */ ++#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s))) ++#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s))) ++ ++/* Ptr to next or previous physical malloc_chunk. */ ++#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS))) ++#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) )) ++ ++/* extract next chunk's pinuse bit */ ++#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT) ++ ++/* Get/set size at footer */ ++#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot) ++#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s)) ++ ++/* Set size, pinuse bit, and foot */ ++#define set_size_and_pinuse_of_free_chunk(p, s)\ ++ ((p)->head = (s|PINUSE_BIT), set_foot(p, s)) ++ ++/* Set size, pinuse bit, foot, and clear next pinuse */ ++#define set_free_with_pinuse(p, s, n)\ ++ (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s)) ++ ++/* Get the internal overhead associated with chunk p */ ++#define overhead_for(p)\ ++ (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD) ++ ++/* Return true if malloced space is not necessarily cleared */ ++#if MMAP_CLEARS ++#define calloc_must_clear(p) (!is_mmapped(p)) ++#else /* MMAP_CLEARS */ ++#define calloc_must_clear(p) (1) ++#endif /* MMAP_CLEARS */ ++ ++/* ---------------------- Overlaid data structures ----------------------- */ ++ ++/* ++ When chunks are not in use, they are treated as nodes of either ++ lists or trees. ++ ++ "Small" chunks are stored in circular doubly-linked lists, and look ++ like this: ++ ++ chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ | Size of previous chunk | ++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ `head:' | Size of chunk, in bytes |P| ++ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ | Forward pointer to next chunk in list | ++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ | Back pointer to previous chunk in list | ++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ | Unused space (may be 0 bytes long) . ++ . . ++ . | ++nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ `foot:' | Size of chunk, in bytes | ++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ ++ Larger chunks are kept in a form of bitwise digital trees (aka ++ tries) keyed on chunksizes. Because malloc_tree_chunks are only for ++ free chunks greater than 256 bytes, their size doesn't impose any ++ constraints on user chunk sizes. Each node looks like: ++ ++ chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ | Size of previous chunk | ++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ `head:' | Size of chunk, in bytes |P| ++ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ | Forward pointer to next chunk of same size | ++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ | Back pointer to previous chunk of same size | ++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ | Pointer to left child (child[0]) | ++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ | Pointer to right child (child[1]) | ++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ | Pointer to parent | ++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ | bin index of this chunk | ++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ | Unused space . ++ . | ++nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ `foot:' | Size of chunk, in bytes | ++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ++ ++ Each tree holding treenodes is a tree of unique chunk sizes. Chunks ++ of the same size are arranged in a circularly-linked list, with only ++ the oldest chunk (the next to be used, in our FIFO ordering) ++ actually in the tree. (Tree members are distinguished by a non-null ++ parent pointer.) If a chunk with the same size an an existing node ++ is inserted, it is linked off the existing node using pointers that ++ work in the same way as fd/bk pointers of small chunks. ++ ++ Each tree contains a power of 2 sized range of chunk sizes (the ++ smallest is 0x100 <= x < 0x180), which is is divided in half at each ++ tree level, with the chunks in the smaller half of the range (0x100 ++ <= x < 0x140 for the top nose) in the left subtree and the larger ++ half (0x140 <= x < 0x180) in the right subtree. This is, of course, ++ done by inspecting individual bits. ++ ++ Using these rules, each node's left subtree contains all smaller ++ sizes than its right subtree. However, the node at the root of each ++ subtree has no particular ordering relationship to either. (The ++ dividing line between the subtree sizes is based on trie relation.) ++ If we remove the last chunk of a given size from the interior of the ++ tree, we need to replace it with a leaf node. The tree ordering ++ rules permit a node to be replaced by any leaf below it. ++ ++ The smallest chunk in a tree (a common operation in a best-fit ++ allocator) can be found by walking a path to the leftmost leaf in ++ the tree. Unlike a usual binary tree, where we follow left child ++ pointers until we reach a null, here we follow the right child ++ pointer any time the left one is null, until we reach a leaf with ++ both child pointers null. The smallest chunk in the tree will be ++ somewhere along that path. ++ ++ The worst case number of steps to add, find, or remove a node is ++ bounded by the number of bits differentiating chunks within ++ bins. Under current bin calculations, this ranges from 6 up to 21 ++ (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case ++ is of course much better. ++*/ ++ ++struct malloc_tree_chunk { ++ /* The first four fields must be compatible with malloc_chunk */ ++ size_t prev_foot; ++ size_t head; ++ struct malloc_tree_chunk* fd; ++ struct malloc_tree_chunk* bk; ++ ++ struct malloc_tree_chunk* child[2]; ++ struct malloc_tree_chunk* parent; ++ bindex_t index; ++}; ++ ++typedef struct malloc_tree_chunk tchunk; ++typedef struct malloc_tree_chunk* tchunkptr; ++typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */ ++ ++/* A little helper macro for trees */ ++#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1]) ++ ++/* ----------------------------- Segments -------------------------------- */ ++ ++/* ++ Each malloc space may include non-contiguous segments, held in a ++ list headed by an embedded malloc_segment record representing the ++ top-most space. Segments also include flags holding properties of ++ the space. Large chunks that are directly allocated by mmap are not ++ included in this list. They are instead independently created and ++ destroyed without otherwise keeping track of them. ++ ++ Segment management mainly comes into play for spaces allocated by ++ MMAP. Any call to MMAP might or might not return memory that is ++ adjacent to an existing segment. MORECORE normally contiguously ++ extends the current space, so this space is almost always adjacent, ++ which is simpler and faster to deal with. (This is why MORECORE is ++ used preferentially to MMAP when both are available -- see ++ sys_alloc.) When allocating using MMAP, we don't use any of the ++ hinting mechanisms (inconsistently) supported in various ++ implementations of unix mmap, or distinguish reserving from ++ committing memory. Instead, we just ask for space, and exploit ++ contiguity when we get it. It is probably possible to do ++ better than this on some systems, but no general scheme seems ++ to be significantly better. ++ ++ Management entails a simpler variant of the consolidation scheme ++ used for chunks to reduce fragmentation -- new adjacent memory is ++ normally prepended or appended to an existing segment. However, ++ there are limitations compared to chunk consolidation that mostly ++ reflect the fact that segment processing is relatively infrequent ++ (occurring only when getting memory from system) and that we ++ don't expect to have huge numbers of segments: ++ ++ * Segments are not indexed, so traversal requires linear scans. (It ++ would be possible to index these, but is not worth the extra ++ overhead and complexity for most programs on most platforms.) ++ * New segments are only appended to old ones when holding top-most ++ memory; if they cannot be prepended to others, they are held in ++ different segments. ++ ++ Except for the top-most segment of an mstate, each segment record ++ is kept at the tail of its segment. Segments are added by pushing ++ segment records onto the list headed by &mstate.seg for the ++ containing mstate. ++ ++ Segment flags control allocation/merge/deallocation policies: ++ * If EXTERN_BIT set, then we did not allocate this segment, ++ and so should not try to deallocate or merge with others. ++ (This currently holds only for the initial segment passed ++ into create_mspace_with_base.) ++ * If USE_MMAP_BIT set, the segment may be merged with ++ other surrounding mmapped segments and trimmed/de-allocated ++ using munmap. ++ * If neither bit is set, then the segment was obtained using ++ MORECORE so can be merged with surrounding MORECORE'd segments ++ and deallocated/trimmed using MORECORE with negative arguments. ++*/ ++ ++struct malloc_segment { ++ char* base; /* base address */ ++ size_t size; /* allocated size */ ++ struct malloc_segment* next; /* ptr to next segment */ ++ flag_t sflags; /* mmap and extern flag */ ++}; ++ ++#define is_mmapped_segment(S) ((S)->sflags & USE_MMAP_BIT) ++#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT) ++ ++typedef struct malloc_segment msegment; ++typedef struct malloc_segment* msegmentptr; ++ ++/* ---------------------------- malloc_state ----------------------------- */ ++ ++/* ++ A malloc_state holds all of the bookkeeping for a space. ++ The main fields are: ++ ++ Top ++ The topmost chunk of the currently active segment. Its size is ++ cached in topsize. The actual size of topmost space is ++ topsize+TOP_FOOT_SIZE, which includes space reserved for adding ++ fenceposts and segment records if necessary when getting more ++ space from the system. The size at which to autotrim top is ++ cached from mparams in trim_check, except that it is disabled if ++ an autotrim fails. ++ ++ Designated victim (dv) ++ This is the preferred chunk for servicing small requests that ++ don't have exact fits. It is normally the chunk split off most ++ recently to service another small request. Its size is cached in ++ dvsize. The link fields of this chunk are not maintained since it ++ is not kept in a bin. ++ ++ SmallBins ++ An array of bin headers for free chunks. These bins hold chunks ++ with sizes less than MIN_LARGE_SIZE bytes. Each bin contains ++ chunks of all the same size, spaced 8 bytes apart. To simplify ++ use in double-linked lists, each bin header acts as a malloc_chunk ++ pointing to the real first node, if it exists (else pointing to ++ itself). This avoids special-casing for headers. But to avoid ++ waste, we allocate only the fd/bk pointers of bins, and then use ++ repositioning tricks to treat these as the fields of a chunk. ++ ++ TreeBins ++ Treebins are pointers to the roots of trees holding a range of ++ sizes. There are 2 equally spaced treebins for each power of two ++ from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything ++ larger. ++ ++ Bin maps ++ There is one bit map for small bins ("smallmap") and one for ++ treebins ("treemap). Each bin sets its bit when non-empty, and ++ clears the bit when empty. Bit operations are then used to avoid ++ bin-by-bin searching -- nearly all "search" is done without ever ++ looking at bins that won't be selected. The bit maps ++ conservatively use 32 bits per map word, even if on 64bit system. ++ For a good description of some of the bit-based techniques used ++ here, see Henry S. Warren Jr's book "Hacker's Delight" (and ++ supplement at http://hackersdelight.org/). Many of these are ++ intended to reduce the branchiness of paths through malloc etc, as ++ well as to reduce the number of memory locations read or written. ++ ++ Segments ++ A list of segments headed by an embedded malloc_segment record ++ representing the initial space. ++ ++ Address check support ++ The least_addr field is the least address ever obtained from ++ MORECORE or MMAP. Attempted frees and reallocs of any address less ++ than this are trapped (unless INSECURE is defined). ++ ++ Magic tag ++ A cross-check field that should always hold same value as mparams.magic. ++ ++ Max allowed footprint ++ The maximum allowed bytes to allocate from system (zero means no limit) ++ ++ Flags ++ Bits recording whether to use MMAP, locks, or contiguous MORECORE ++ ++ Statistics ++ Each space keeps track of current and maximum system memory ++ obtained via MORECORE or MMAP. ++ ++ Trim support ++ Fields holding the amount of unused topmost memory that should trigger ++ trimming, and a counter to force periodic scanning to release unused ++ non-topmost segments. ++ ++ Locking ++ If USE_LOCKS is defined, the "mutex" lock is acquired and released ++ around every public call using this mspace. ++ ++ Extension support ++ A void* pointer and a size_t field that can be used to help implement ++ extensions to this malloc. ++*/ ++ ++/* Bin types, widths and sizes */ ++#define NSMALLBINS (32U) ++#define NTREEBINS (32U) ++#define SMALLBIN_SHIFT (3U) ++#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT) ++#define TREEBIN_SHIFT (8U) ++#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT) ++#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE) ++#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD) ++ ++struct malloc_state { ++ binmap_t smallmap; ++ binmap_t treemap; ++ size_t dvsize; ++ size_t topsize; ++ char* least_addr; ++ mchunkptr dv; ++ mchunkptr top; ++ size_t trim_check; ++ size_t release_checks; ++ size_t magic; ++ mchunkptr smallbins[(NSMALLBINS+1)*2]; ++ tbinptr treebins[NTREEBINS]; ++ size_t footprint; ++ size_t max_footprint; ++ size_t footprint_limit; /* zero means no limit */ ++ flag_t mflags; ++#if USE_LOCKS ++ MLOCK_T mutex; /* locate lock among fields that rarely change */ ++#endif /* USE_LOCKS */ ++ msegment seg; ++ void* extp; /* Unused but available for extensions */ ++ size_t exts; ++}; ++ ++typedef struct malloc_state* mstate; ++ ++/* ------------- Global malloc_state and malloc_params ------------------- */ ++ ++/* ++ malloc_params holds global properties, including those that can be ++ dynamically set using mallopt. There is a single instance, mparams, ++ initialized in init_mparams. Note that the non-zeroness of "magic" ++ also serves as an initialization flag. ++*/ ++ ++struct malloc_params { ++ size_t magic; ++ size_t page_size; ++ size_t granularity; ++ size_t mmap_threshold; ++ size_t trim_threshold; ++ flag_t default_mflags; ++}; ++ ++static struct malloc_params mparams; ++ ++/* Ensure mparams initialized */ ++#define ensure_initialization() (void)(mparams.magic != 0 || init_mparams()) ++ ++#if !ONLY_MSPACES ++ ++/* The global malloc_state used for all non-"mspace" calls */ ++static struct malloc_state _gm_; ++#define gm (&_gm_) ++#define is_global(M) ((M) == &_gm_) ++ ++#endif /* !ONLY_MSPACES */ ++ ++#define is_initialized(M) ((M)->top != 0) ++ ++/* -------------------------- system alloc setup ------------------------- */ ++ ++/* Operations on mflags */ ++ ++#define use_lock(M) ((M)->mflags & USE_LOCK_BIT) ++#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT) ++#if USE_LOCKS ++#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT) ++#else ++#define disable_lock(M) ++#endif ++ ++#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT) ++#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT) ++#if HAVE_MMAP ++#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT) ++#else ++#define disable_mmap(M) ++#endif ++ ++#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT) ++#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT) ++ ++#define set_lock(M,L)\ ++ ((M)->mflags = (L)?\ ++ ((M)->mflags | USE_LOCK_BIT) :\ ++ ((M)->mflags & ~USE_LOCK_BIT)) ++ ++/* page-align a size */ ++#define page_align(S)\ ++ (((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE)) ++ ++/* granularity-align a size */ ++#define granularity_align(S)\ ++ (((S) + (mparams.granularity - SIZE_T_ONE))\ ++ & ~(mparams.granularity - SIZE_T_ONE)) ++ ++ ++/* For mmap, use granularity alignment on windows, else page-align */ ++#ifdef WIN32 ++#define mmap_align(S) granularity_align(S) ++#else ++#define mmap_align(S) page_align(S) ++#endif ++ ++/* For sys_alloc, enough padding to ensure can malloc request on success */ ++#define SYS_ALLOC_PADDING (TOP_FOOT_SIZE + MALLOC_ALIGNMENT) ++ ++#define is_page_aligned(S)\ ++ (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0) ++#define is_granularity_aligned(S)\ ++ (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0) ++ ++/* True if segment S holds address A */ ++#define segment_holds(S, A)\ ++ ((char*)(A) >= S->base && (char*)(A) < S->base + S->size) ++ ++/* Return segment holding given address */ ++static msegmentptr segment_holding(mstate m, char* addr) { ++ msegmentptr sp = &m->seg; ++ for (;;) { ++ if (addr >= sp->base && addr < sp->base + sp->size) ++ return sp; ++ if ((sp = sp->next) == 0) ++ return 0; ++ } ++} ++ ++/* Return true if segment contains a segment link */ ++static int has_segment_link(mstate m, msegmentptr ss) { ++ msegmentptr sp = &m->seg; ++ for (;;) { ++ if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size) ++ return 1; ++ if ((sp = sp->next) == 0) ++ return 0; ++ } ++} ++ ++#ifndef MORECORE_CANNOT_TRIM ++#define should_trim(M,s) ((s) > (M)->trim_check) ++#else /* MORECORE_CANNOT_TRIM */ ++#define should_trim(M,s) (0) ++#endif /* MORECORE_CANNOT_TRIM */ ++ ++/* ++ TOP_FOOT_SIZE is padding at the end of a segment, including space ++ that may be needed to place segment records and fenceposts when new ++ noncontiguous segments are added. ++*/ ++#define TOP_FOOT_SIZE\ ++ (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE) ++ ++ ++/* ------------------------------- Hooks -------------------------------- */ ++ ++/* ++ PREACTION should be defined to return 0 on success, and nonzero on ++ failure. If you are not using locking, you can redefine these to do ++ anything you like. ++*/ ++ ++#if USE_LOCKS ++#define PREACTION(M) ((use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0) ++#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); } ++#else /* USE_LOCKS */ ++ ++#ifndef PREACTION ++#define PREACTION(M) (0) ++#endif /* PREACTION */ ++ ++#ifndef POSTACTION ++#define POSTACTION(M) ++#endif /* POSTACTION */ ++ ++#endif /* USE_LOCKS */ ++ ++/* ++ CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses. ++ USAGE_ERROR_ACTION is triggered on detected bad frees and ++ reallocs. The argument p is an address that might have triggered the ++ fault. It is ignored by the two predefined actions, but might be ++ useful in custom actions that try to help diagnose errors. ++*/ ++ ++#if PROCEED_ON_ERROR ++ ++/* A count of the number of corruption errors causing resets */ ++int malloc_corruption_error_count; ++ ++/* default corruption action */ ++static void reset_on_error(mstate m); ++ ++#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m) ++#define USAGE_ERROR_ACTION(m, p) ++ ++#else /* PROCEED_ON_ERROR */ ++ ++#ifndef CORRUPTION_ERROR_ACTION ++#define CORRUPTION_ERROR_ACTION(m) ABORT ++#endif /* CORRUPTION_ERROR_ACTION */ ++ ++#ifndef USAGE_ERROR_ACTION ++#define USAGE_ERROR_ACTION(m,p) ABORT ++#endif /* USAGE_ERROR_ACTION */ ++ ++#endif /* PROCEED_ON_ERROR */ ++ ++ ++/* -------------------------- Debugging setup ---------------------------- */ ++ ++#if ! DEBUG ++ ++#define check_free_chunk(M,P) ++#define check_inuse_chunk(M,P) ++#define check_malloced_chunk(M,P,N) ++#define check_mmapped_chunk(M,P) ++#define check_malloc_state(M) ++#define check_top_chunk(M,P) ++ ++#else /* DEBUG */ ++#define check_free_chunk(M,P) do_check_free_chunk(M,P) ++#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P) ++#define check_top_chunk(M,P) do_check_top_chunk(M,P) ++#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N) ++#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P) ++#define check_malloc_state(M) do_check_malloc_state(M) ++ ++static void do_check_any_chunk(mstate m, mchunkptr p); ++static void do_check_top_chunk(mstate m, mchunkptr p); ++static void do_check_mmapped_chunk(mstate m, mchunkptr p); ++static void do_check_inuse_chunk(mstate m, mchunkptr p); ++static void do_check_free_chunk(mstate m, mchunkptr p); ++static void do_check_malloced_chunk(mstate m, void* mem, size_t s); ++static void do_check_tree(mstate m, tchunkptr t); ++static void do_check_treebin(mstate m, bindex_t i); ++static void do_check_smallbin(mstate m, bindex_t i); ++static void do_check_malloc_state(mstate m); ++static int bin_find(mstate m, mchunkptr x); ++static size_t traverse_and_check(mstate m); ++#endif /* DEBUG */ ++ ++/* ---------------------------- Indexing Bins ---------------------------- */ ++ ++#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS) ++#define small_index(s) (bindex_t)((s) >> SMALLBIN_SHIFT) ++#define small_index2size(i) ((i) << SMALLBIN_SHIFT) ++#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE)) ++ ++/* addressing by index. See above about smallbin repositioning */ ++/* BEGIN android-changed: strict aliasing change: char* cast to void* */ ++#define smallbin_at(M, i) ((sbinptr)((void*)&((M)->smallbins[(i)<<1]))) ++/* END android-changed */ ++#define treebin_at(M,i) (&((M)->treebins[i])) ++ ++/* assign tree index for size S to variable I. Use x86 asm if possible */ ++#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) ++#define compute_tree_index(S, I)\ ++{\ ++ unsigned int X = S >> TREEBIN_SHIFT;\ ++ if (X == 0)\ ++ I = 0;\ ++ else if (X > 0xFFFF)\ ++ I = NTREEBINS-1;\ ++ else {\ ++ unsigned int K = (unsigned) sizeof(X)*__CHAR_BIT__ - 1 - (unsigned) __builtin_clz(X); \ ++ I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ ++ }\ ++} ++ ++#elif defined (__INTEL_COMPILER) ++#define compute_tree_index(S, I)\ ++{\ ++ size_t X = S >> TREEBIN_SHIFT;\ ++ if (X == 0)\ ++ I = 0;\ ++ else if (X > 0xFFFF)\ ++ I = NTREEBINS-1;\ ++ else {\ ++ unsigned int K = _bit_scan_reverse (X); \ ++ I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ ++ }\ ++} ++ ++#elif defined(_MSC_VER) && _MSC_VER>=1300 ++#define compute_tree_index(S, I)\ ++{\ ++ size_t X = S >> TREEBIN_SHIFT;\ ++ if (X == 0)\ ++ I = 0;\ ++ else if (X > 0xFFFF)\ ++ I = NTREEBINS-1;\ ++ else {\ ++ unsigned int K;\ ++ _BitScanReverse((DWORD *) &K, (DWORD) X);\ ++ I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ ++ }\ ++} ++ ++#else /* GNUC */ ++#define compute_tree_index(S, I)\ ++{\ ++ size_t X = S >> TREEBIN_SHIFT;\ ++ if (X == 0)\ ++ I = 0;\ ++ else if (X > 0xFFFF)\ ++ I = NTREEBINS-1;\ ++ else {\ ++ unsigned int Y = (unsigned int)X;\ ++ unsigned int N = ((Y - 0x100) >> 16) & 8;\ ++ unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\ ++ N += K;\ ++ N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\ ++ K = 14 - N + ((Y <<= K) >> 15);\ ++ I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\ ++ }\ ++} ++#endif /* GNUC */ ++ ++/* Bit representing maximum resolved size in a treebin at i */ ++#define bit_for_tree_index(i) \ ++ (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2) ++ ++/* Shift placing maximum resolved bit in a treebin at i as sign bit */ ++#define leftshift_for_tree_index(i) \ ++ ((i == NTREEBINS-1)? 0 : \ ++ ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2))) ++ ++/* The size of the smallest chunk held in bin with index i */ ++#define minsize_for_tree_index(i) \ ++ ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \ ++ (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1))) ++ ++ ++/* ------------------------ Operations on bin maps ----------------------- */ ++ ++/* bit corresponding to given index */ ++#define idx2bit(i) ((binmap_t)(1) << (i)) ++ ++/* Mark/Clear bits with given index */ ++#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i)) ++#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i)) ++#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i)) ++ ++#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i)) ++#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i)) ++#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i)) ++ ++/* isolate the least set bit of a bitmap */ ++#define least_bit(x) ((x) & -(x)) ++ ++/* mask with all bits to left of least bit of x on */ ++#define left_bits(x) ((x<<1) | -(x<<1)) ++ ++/* mask with all bits to left of or equal to least bit of x on */ ++#define same_or_left_bits(x) ((x) | -(x)) ++ ++/* index corresponding to given bit. Use x86 asm if possible */ ++ ++#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) ++#define compute_bit2idx(X, I)\ ++{\ ++ unsigned int J;\ ++ J = __builtin_ctz(X); \ ++ I = (bindex_t)J;\ ++} ++ ++#elif defined (__INTEL_COMPILER) ++#define compute_bit2idx(X, I)\ ++{\ ++ unsigned int J;\ ++ J = _bit_scan_forward (X); \ ++ I = (bindex_t)J;\ ++} ++ ++#elif defined(_MSC_VER) && _MSC_VER>=1300 ++#define compute_bit2idx(X, I)\ ++{\ ++ unsigned int J;\ ++ _BitScanForward((DWORD *) &J, X);\ ++ I = (bindex_t)J;\ ++} ++ ++#elif USE_BUILTIN_FFS ++#define compute_bit2idx(X, I) I = ffs(X)-1 ++ ++#else ++#define compute_bit2idx(X, I)\ ++{\ ++ unsigned int Y = X - 1;\ ++ unsigned int K = Y >> (16-4) & 16;\ ++ unsigned int N = K; Y >>= K;\ ++ N += K = Y >> (8-3) & 8; Y >>= K;\ ++ N += K = Y >> (4-2) & 4; Y >>= K;\ ++ N += K = Y >> (2-1) & 2; Y >>= K;\ ++ N += K = Y >> (1-0) & 1; Y >>= K;\ ++ I = (bindex_t)(N + Y);\ ++} ++#endif /* GNUC */ ++ ++ ++/* ----------------------- Runtime Check Support ------------------------- */ ++ ++/* ++ For security, the main invariant is that malloc/free/etc never ++ writes to a static address other than malloc_state, unless static ++ malloc_state itself has been corrupted, which cannot occur via ++ malloc (because of these checks). In essence this means that we ++ believe all pointers, sizes, maps etc held in malloc_state, but ++ check all of those linked or offsetted from other embedded data ++ structures. These checks are interspersed with main code in a way ++ that tends to minimize their run-time cost. ++ ++ When FOOTERS is defined, in addition to range checking, we also ++ verify footer fields of inuse chunks, which can be used guarantee ++ that the mstate controlling malloc/free is intact. This is a ++ streamlined version of the approach described by William Robertson ++ et al in "Run-time Detection of Heap-based Overflows" LISA'03 ++ http://www.usenix.org/events/lisa03/tech/robertson.html The footer ++ of an inuse chunk holds the xor of its mstate and a random seed, ++ that is checked upon calls to free() and realloc(). This is ++ (probabalistically) unguessable from outside the program, but can be ++ computed by any code successfully malloc'ing any chunk, so does not ++ itself provide protection against code that has already broken ++ security through some other means. Unlike Robertson et al, we ++ always dynamically check addresses of all offset chunks (previous, ++ next, etc). This turns out to be cheaper than relying on hashes. ++*/ ++ ++#if !INSECURE ++/* Check if address a is at least as high as any from MORECORE or MMAP */ ++#define ok_address(M, a) ((char*)(a) >= (M)->least_addr) ++/* Check if address of next chunk n is higher than base chunk p */ ++#define ok_next(p, n) ((char*)(p) < (char*)(n)) ++/* Check if p has inuse status */ ++#define ok_inuse(p) is_inuse(p) ++/* Check if p has its pinuse bit on */ ++#define ok_pinuse(p) pinuse(p) ++ ++#else /* !INSECURE */ ++#define ok_address(M, a) (1) ++#define ok_next(b, n) (1) ++#define ok_inuse(p) (1) ++#define ok_pinuse(p) (1) ++#endif /* !INSECURE */ ++ ++#if (FOOTERS && !INSECURE) ++/* Check if (alleged) mstate m has expected magic field */ ++#define ok_magic(M) ((M)->magic == mparams.magic) ++#else /* (FOOTERS && !INSECURE) */ ++#define ok_magic(M) (1) ++#endif /* (FOOTERS && !INSECURE) */ ++ ++/* In gcc, use __builtin_expect to minimize impact of checks */ ++#if !INSECURE ++#if defined(__GNUC__) && __GNUC__ >= 3 ++#define RTCHECK(e) __builtin_expect(e, 1) ++#else /* GNUC */ ++#define RTCHECK(e) (e) ++#endif /* GNUC */ ++#else /* !INSECURE */ ++#define RTCHECK(e) (1) ++#endif /* !INSECURE */ ++ ++/* macros to set up inuse chunks with or without footers */ ++ ++#if !FOOTERS ++ ++#define mark_inuse_foot(M,p,s) ++ ++/* Macros for setting head/foot of non-mmapped chunks */ ++ ++/* Set cinuse bit and pinuse bit of next chunk */ ++#define set_inuse(M,p,s)\ ++ ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ ++ ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) ++ ++/* Set cinuse and pinuse of this chunk and pinuse of next chunk */ ++#define set_inuse_and_pinuse(M,p,s)\ ++ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ ++ ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) ++ ++/* Set size, cinuse and pinuse bit of this chunk */ ++#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ ++ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT)) ++ ++#else /* FOOTERS */ ++ ++/* Set foot of inuse chunk to be xor of mstate and seed */ ++#define mark_inuse_foot(M,p,s)\ ++ (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic)) ++ ++#define get_mstate_for(p)\ ++ ((mstate)(((mchunkptr)((char*)(p) +\ ++ (chunksize(p))))->prev_foot ^ mparams.magic)) ++ ++#define set_inuse(M,p,s)\ ++ ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ ++ (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \ ++ mark_inuse_foot(M,p,s)) ++ ++#define set_inuse_and_pinuse(M,p,s)\ ++ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ ++ (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\ ++ mark_inuse_foot(M,p,s)) ++ ++#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ ++ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ ++ mark_inuse_foot(M, p, s)) ++ ++#endif /* !FOOTERS */ ++ ++/* ---------------------------- setting mparams -------------------------- */ ++ ++#if LOCK_AT_FORK ++static void pre_fork(void) { ACQUIRE_LOCK(&(gm)->mutex); } ++static void post_fork_parent(void) { RELEASE_LOCK(&(gm)->mutex); } ++static void post_fork_child(void) { INITIAL_LOCK(&(gm)->mutex); } ++#endif /* LOCK_AT_FORK */ ++ ++/* Initialize mparams */ ++static int init_mparams(void) { ++ /* BEGIN android-added: move pthread_atfork outside of lock */ ++ int first_run = 0; ++ /* END android-added */ ++#ifdef NEED_GLOBAL_LOCK_INIT ++ if (malloc_global_mutex_status <= 0) ++ init_malloc_global_mutex(); ++#endif ++ ++ ACQUIRE_MALLOC_GLOBAL_LOCK(); ++ if (mparams.magic == 0) { ++ size_t magic; ++ size_t psize; ++ size_t gsize; ++ /* BEGIN android-added: move pthread_atfork outside of lock */ ++ first_run = 1; ++ /* END android-added */ ++ ++#ifndef WIN32 ++ psize = malloc_getpagesize; ++ gsize = ((DEFAULT_GRANULARITY != 0)? DEFAULT_GRANULARITY : psize); ++#else /* WIN32 */ ++ { ++ SYSTEM_INFO system_info; ++ GetSystemInfo(&system_info); ++ psize = system_info.dwPageSize; ++ gsize = ((DEFAULT_GRANULARITY != 0)? ++ DEFAULT_GRANULARITY : system_info.dwAllocationGranularity); ++ } ++#endif /* WIN32 */ ++ ++ /* Sanity-check configuration: ++ size_t must be unsigned and as wide as pointer type. ++ ints must be at least 4 bytes. ++ alignment must be at least 8. ++ Alignment, min chunk size, and page size must all be powers of 2. ++ */ ++ if ((sizeof(size_t) != sizeof(char*)) || ++ (MAX_SIZE_T < MIN_CHUNK_SIZE) || ++ (sizeof(int) < 4) || ++ (MALLOC_ALIGNMENT < (size_t)8U) || ++ ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) || ++ ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) || ++ ((gsize & (gsize-SIZE_T_ONE)) != 0) || ++ ((psize & (psize-SIZE_T_ONE)) != 0)) ++ ABORT; ++ mparams.granularity = gsize; ++ mparams.page_size = psize; ++ mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD; ++ mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD; ++#if MORECORE_CONTIGUOUS ++ mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT; ++#else /* MORECORE_CONTIGUOUS */ ++ mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT; ++#endif /* MORECORE_CONTIGUOUS */ ++ ++#if !ONLY_MSPACES ++ /* Set up lock for main malloc area */ ++ gm->mflags = mparams.default_mflags; ++ (void)INITIAL_LOCK(&gm->mutex); ++#endif ++ /* BEGIN android-removed: move pthread_atfork outside of lock */ ++#if 0 && LOCK_AT_FORK ++ pthread_atfork(&pre_fork, &post_fork_parent, &post_fork_child); ++#endif ++ /* END android-removed */ ++ ++ { ++#if USE_DEV_RANDOM ++ int fd; ++ unsigned char buf[sizeof(size_t)]; ++ /* Try to use /dev/urandom, else fall back on using time */ ++ if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 && ++ read(fd, buf, sizeof(buf)) == sizeof(buf)) { ++ magic = *((size_t *) buf); ++ close(fd); ++ } ++ else ++#endif /* USE_DEV_RANDOM */ ++#ifdef WIN32 ++ magic = (size_t)(GetTickCount() ^ (size_t)0x55555555U); ++#elif defined(LACKS_TIME_H) ++ magic = (size_t)&magic ^ (size_t)0x55555555U; ++#else ++ magic = (size_t)(time(0) ^ (size_t)0x55555555U); ++#endif ++ magic |= (size_t)8U; /* ensure nonzero */ ++ magic &= ~(size_t)7U; /* improve chances of fault for bad values */ ++ /* Until memory modes commonly available, use volatile-write */ ++ (*(volatile size_t *)(&(mparams.magic))) = magic; ++ } ++ } ++ ++ RELEASE_MALLOC_GLOBAL_LOCK(); ++ /* BEGIN android-added: move pthread_atfork outside of lock */ ++ if (first_run != 0) { ++#if LOCK_AT_FORK ++ pthread_atfork(&pre_fork, &post_fork_parent, &post_fork_child); ++#endif ++ } ++ /* END android-added */ ++ return 1; ++} ++ ++/* support for mallopt */ ++static int change_mparam(int param_number, int value) { ++ size_t val; ++ ensure_initialization(); ++ val = (value == -1)? MAX_SIZE_T : (size_t)value; ++ switch(param_number) { ++ case M_TRIM_THRESHOLD: ++ mparams.trim_threshold = val; ++ return 1; ++ case M_GRANULARITY: ++ if (val >= mparams.page_size && ((val & (val-1)) == 0)) { ++ mparams.granularity = val; ++ return 1; ++ } ++ else ++ return 0; ++ case M_MMAP_THRESHOLD: ++ mparams.mmap_threshold = val; ++ return 1; ++ default: ++ return 0; ++ } ++} ++ ++#if DEBUG ++/* ------------------------- Debugging Support --------------------------- */ ++ ++/* Check properties of any chunk, whether free, inuse, mmapped etc */ ++static void do_check_any_chunk(mstate m, mchunkptr p) { ++ assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); ++ assert(ok_address(m, p)); ++} ++ ++/* Check properties of top chunk */ ++static void do_check_top_chunk(mstate m, mchunkptr p) { ++ msegmentptr sp = segment_holding(m, (char*)p); ++ size_t sz = p->head & ~INUSE_BITS; /* third-lowest bit can be set! */ ++ assert(sp != 0); ++ assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); ++ assert(ok_address(m, p)); ++ assert(sz == m->topsize); ++ assert(sz > 0); ++ assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE); ++ assert(pinuse(p)); ++ assert(!pinuse(chunk_plus_offset(p, sz))); ++} ++ ++/* Check properties of (inuse) mmapped chunks */ ++static void do_check_mmapped_chunk(mstate m, mchunkptr p) { ++ size_t sz = chunksize(p); ++ size_t len = (sz + (p->prev_foot) + MMAP_FOOT_PAD); ++ assert(is_mmapped(p)); ++ assert(use_mmap(m)); ++ assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); ++ assert(ok_address(m, p)); ++ assert(!is_small(sz)); ++ assert((len & (mparams.page_size-SIZE_T_ONE)) == 0); ++ assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD); ++ assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0); ++} ++ ++/* Check properties of inuse chunks */ ++static void do_check_inuse_chunk(mstate m, mchunkptr p) { ++ do_check_any_chunk(m, p); ++ assert(is_inuse(p)); ++ assert(next_pinuse(p)); ++ /* If not pinuse and not mmapped, previous chunk has OK offset */ ++ assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p); ++ if (is_mmapped(p)) ++ do_check_mmapped_chunk(m, p); ++} ++ ++/* Check properties of free chunks */ ++static void do_check_free_chunk(mstate m, mchunkptr p) { ++ size_t sz = chunksize(p); ++ mchunkptr next = chunk_plus_offset(p, sz); ++ do_check_any_chunk(m, p); ++ assert(!is_inuse(p)); ++ assert(!next_pinuse(p)); ++ assert (!is_mmapped(p)); ++ if (p != m->dv && p != m->top) { ++ if (sz >= MIN_CHUNK_SIZE) { ++ assert((sz & CHUNK_ALIGN_MASK) == 0); ++ assert(is_aligned(chunk2mem(p))); ++ assert(next->prev_foot == sz); ++ assert(pinuse(p)); ++ assert (next == m->top || is_inuse(next)); ++ assert(p->fd->bk == p); ++ assert(p->bk->fd == p); ++ } ++ else /* markers are always of size SIZE_T_SIZE */ ++ assert(sz == SIZE_T_SIZE); ++ } ++} ++ ++/* Check properties of malloced chunks at the point they are malloced */ ++static void do_check_malloced_chunk(mstate m, void* mem, size_t s) { ++ if (mem != 0) { ++ mchunkptr p = mem2chunk(mem); ++ size_t sz = p->head & ~INUSE_BITS; ++ do_check_inuse_chunk(m, p); ++ assert((sz & CHUNK_ALIGN_MASK) == 0); ++ assert(sz >= MIN_CHUNK_SIZE); ++ assert(sz >= s); ++ /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */ ++ assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE)); ++ } ++} ++ ++/* Check a tree and its subtrees. */ ++static void do_check_tree(mstate m, tchunkptr t) { ++ tchunkptr head = 0; ++ tchunkptr u = t; ++ bindex_t tindex = t->index; ++ size_t tsize = chunksize(t); ++ bindex_t idx; ++ compute_tree_index(tsize, idx); ++ assert(tindex == idx); ++ assert(tsize >= MIN_LARGE_SIZE); ++ assert(tsize >= minsize_for_tree_index(idx)); ++ assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1)))); ++ ++ do { /* traverse through chain of same-sized nodes */ ++ do_check_any_chunk(m, ((mchunkptr)u)); ++ assert(u->index == tindex); ++ assert(chunksize(u) == tsize); ++ assert(!is_inuse(u)); ++ assert(!next_pinuse(u)); ++ assert(u->fd->bk == u); ++ assert(u->bk->fd == u); ++ if (u->parent == 0) { ++ assert(u->child[0] == 0); ++ assert(u->child[1] == 0); ++ } ++ else { ++ assert(head == 0); /* only one node on chain has parent */ ++ head = u; ++ assert(u->parent != u); ++ assert (u->parent->child[0] == u || ++ u->parent->child[1] == u || ++ *((tbinptr*)(u->parent)) == u); ++ if (u->child[0] != 0) { ++ assert(u->child[0]->parent == u); ++ assert(u->child[0] != u); ++ do_check_tree(m, u->child[0]); ++ } ++ if (u->child[1] != 0) { ++ assert(u->child[1]->parent == u); ++ assert(u->child[1] != u); ++ do_check_tree(m, u->child[1]); ++ } ++ if (u->child[0] != 0 && u->child[1] != 0) { ++ assert(chunksize(u->child[0]) < chunksize(u->child[1])); ++ } ++ } ++ u = u->fd; ++ } while (u != t); ++ assert(head != 0); ++} ++ ++/* Check all the chunks in a treebin. */ ++static void do_check_treebin(mstate m, bindex_t i) { ++ tbinptr* tb = treebin_at(m, i); ++ tchunkptr t = *tb; ++ int empty = (m->treemap & (1U << i)) == 0; ++ if (t == 0) ++ assert(empty); ++ if (!empty) ++ do_check_tree(m, t); ++} ++ ++/* Check all the chunks in a smallbin. */ ++static void do_check_smallbin(mstate m, bindex_t i) { ++ sbinptr b = smallbin_at(m, i); ++ mchunkptr p = b->bk; ++ unsigned int empty = (m->smallmap & (1U << i)) == 0; ++ if (p == b) ++ assert(empty); ++ if (!empty) { ++ for (; p != b; p = p->bk) { ++ size_t size = chunksize(p); ++ mchunkptr q; ++ /* each chunk claims to be free */ ++ do_check_free_chunk(m, p); ++ /* chunk belongs in bin */ ++ assert(small_index(size) == i); ++ assert(p->bk == b || chunksize(p->bk) == chunksize(p)); ++ /* chunk is followed by an inuse chunk */ ++ q = next_chunk(p); ++ if (q->head != FENCEPOST_HEAD) ++ do_check_inuse_chunk(m, q); ++ } ++ } ++} ++ ++/* Find x in a bin. Used in other check functions. */ ++static int bin_find(mstate m, mchunkptr x) { ++ size_t size = chunksize(x); ++ if (is_small(size)) { ++ bindex_t sidx = small_index(size); ++ sbinptr b = smallbin_at(m, sidx); ++ if (smallmap_is_marked(m, sidx)) { ++ mchunkptr p = b; ++ do { ++ if (p == x) ++ return 1; ++ } while ((p = p->fd) != b); ++ } ++ } ++ else { ++ bindex_t tidx; ++ compute_tree_index(size, tidx); ++ if (treemap_is_marked(m, tidx)) { ++ tchunkptr t = *treebin_at(m, tidx); ++ size_t sizebits = size << leftshift_for_tree_index(tidx); ++ while (t != 0 && chunksize(t) != size) { ++ t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; ++ sizebits <<= 1; ++ } ++ if (t != 0) { ++ tchunkptr u = t; ++ do { ++ if (u == (tchunkptr)x) ++ return 1; ++ } while ((u = u->fd) != t); ++ } ++ } ++ } ++ return 0; ++} ++ ++/* Traverse each chunk and check it; return total */ ++static size_t traverse_and_check(mstate m) { ++ size_t sum = 0; ++ if (is_initialized(m)) { ++ msegmentptr s = &m->seg; ++ sum += m->topsize + TOP_FOOT_SIZE; ++ while (s != 0) { ++ mchunkptr q = align_as_chunk(s->base); ++ mchunkptr lastq = 0; ++ assert(pinuse(q)); ++ while (segment_holds(s, q) && ++ q != m->top && q->head != FENCEPOST_HEAD) { ++ sum += chunksize(q); ++ if (is_inuse(q)) { ++ assert(!bin_find(m, q)); ++ do_check_inuse_chunk(m, q); ++ } ++ else { ++ assert(q == m->dv || bin_find(m, q)); ++ assert(lastq == 0 || is_inuse(lastq)); /* Not 2 consecutive free */ ++ do_check_free_chunk(m, q); ++ } ++ lastq = q; ++ q = next_chunk(q); ++ } ++ s = s->next; ++ } ++ } ++ return sum; ++} ++ ++ ++/* Check all properties of malloc_state. */ ++static void do_check_malloc_state(mstate m) { ++ bindex_t i; ++ size_t total; ++ /* check bins */ ++ for (i = 0; i < NSMALLBINS; ++i) ++ do_check_smallbin(m, i); ++ for (i = 0; i < NTREEBINS; ++i) ++ do_check_treebin(m, i); ++ ++ if (m->dvsize != 0) { /* check dv chunk */ ++ do_check_any_chunk(m, m->dv); ++ assert(m->dvsize == chunksize(m->dv)); ++ assert(m->dvsize >= MIN_CHUNK_SIZE); ++ assert(bin_find(m, m->dv) == 0); ++ } ++ ++ if (m->top != 0) { /* check top chunk */ ++ do_check_top_chunk(m, m->top); ++ /*assert(m->topsize == chunksize(m->top)); redundant */ ++ assert(m->topsize > 0); ++ assert(bin_find(m, m->top) == 0); ++ } ++ ++ total = traverse_and_check(m); ++ assert(total <= m->footprint); ++ assert(m->footprint <= m->max_footprint); ++} ++#endif /* DEBUG */ ++ ++/* ----------------------------- statistics ------------------------------ */ ++ ++#if !NO_MALLINFO ++static struct mallinfo internal_mallinfo(mstate m) { ++ struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; ++ ensure_initialization(); ++ if (!PREACTION(m)) { ++ check_malloc_state(m); ++ if (is_initialized(m)) { ++ size_t nfree = SIZE_T_ONE; /* top always free */ ++ size_t mfree = m->topsize + TOP_FOOT_SIZE; ++ size_t sum = mfree; ++ msegmentptr s = &m->seg; ++ while (s != 0) { ++ mchunkptr q = align_as_chunk(s->base); ++ while (segment_holds(s, q) && ++ q != m->top && q->head != FENCEPOST_HEAD) { ++ size_t sz = chunksize(q); ++ sum += sz; ++ if (!is_inuse(q)) { ++ mfree += sz; ++ ++nfree; ++ } ++ q = next_chunk(q); ++ } ++ s = s->next; ++ } ++ ++ nm.arena = sum; ++ nm.ordblks = nfree; ++ nm.hblkhd = m->footprint - sum; ++ /* BEGIN android-changed: usmblks set to footprint from max_footprint */ ++ nm.usmblks = m->footprint; ++ /* END android-changed */ ++ nm.uordblks = m->footprint - mfree; ++ nm.fordblks = mfree; ++ nm.keepcost = m->topsize; ++ } ++ ++ POSTACTION(m); ++ } ++ return nm; ++} ++#endif /* !NO_MALLINFO */ ++ ++#if !NO_MALLOC_STATS ++static void internal_malloc_stats(mstate m) { ++ ensure_initialization(); ++ if (!PREACTION(m)) { ++ size_t maxfp = 0; ++ size_t fp = 0; ++ size_t used = 0; ++ check_malloc_state(m); ++ if (is_initialized(m)) { ++ msegmentptr s = &m->seg; ++ maxfp = m->max_footprint; ++ fp = m->footprint; ++ used = fp - (m->topsize + TOP_FOOT_SIZE); ++ ++ while (s != 0) { ++ mchunkptr q = align_as_chunk(s->base); ++ while (segment_holds(s, q) && ++ q != m->top && q->head != FENCEPOST_HEAD) { ++ if (!is_inuse(q)) ++ used -= chunksize(q); ++ q = next_chunk(q); ++ } ++ s = s->next; ++ } ++ } ++ POSTACTION(m); /* drop lock */ ++ fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp)); ++ fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp)); ++ fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used)); ++ } ++} ++#endif /* NO_MALLOC_STATS */ ++ ++/* ----------------------- Operations on smallbins ----------------------- */ ++ ++/* ++ Various forms of linking and unlinking are defined as macros. Even ++ the ones for trees, which are very long but have very short typical ++ paths. This is ugly but reduces reliance on inlining support of ++ compilers. ++*/ ++ ++/* Link a free chunk into a smallbin */ ++#define insert_small_chunk(M, P, S) {\ ++ bindex_t I = small_index(S);\ ++ mchunkptr B = smallbin_at(M, I);\ ++ mchunkptr F = B;\ ++ assert(S >= MIN_CHUNK_SIZE);\ ++ if (!smallmap_is_marked(M, I))\ ++ mark_smallmap(M, I);\ ++ else if (RTCHECK(ok_address(M, B->fd)))\ ++ F = B->fd;\ ++ else {\ ++ CORRUPTION_ERROR_ACTION(M);\ ++ }\ ++ B->fd = P;\ ++ F->bk = P;\ ++ P->fd = F;\ ++ P->bk = B;\ ++} ++ ++/* Unlink a chunk from a smallbin */ ++#define unlink_small_chunk(M, P, S) {\ ++ mchunkptr F = P->fd;\ ++ mchunkptr B = P->bk;\ ++ bindex_t I = small_index(S);\ ++ assert(P != B);\ ++ assert(P != F);\ ++ assert(chunksize(P) == small_index2size(I));\ ++ if (RTCHECK(F == smallbin_at(M,I) || (ok_address(M, F) && F->bk == P))) { \ ++ if (B == F) {\ ++ clear_smallmap(M, I);\ ++ }\ ++ else if (RTCHECK(B == smallbin_at(M,I) ||\ ++ (ok_address(M, B) && B->fd == P))) {\ ++ F->bk = B;\ ++ B->fd = F;\ ++ }\ ++ else {\ ++ CORRUPTION_ERROR_ACTION(M);\ ++ }\ ++ }\ ++ else {\ ++ CORRUPTION_ERROR_ACTION(M);\ ++ }\ ++} ++ ++/* Unlink the first chunk from a smallbin */ ++#define unlink_first_small_chunk(M, B, P, I) {\ ++ mchunkptr F = P->fd;\ ++ assert(P != B);\ ++ assert(P != F);\ ++ assert(chunksize(P) == small_index2size(I));\ ++ if (B == F) {\ ++ clear_smallmap(M, I);\ ++ }\ ++ else if (RTCHECK(ok_address(M, F) && F->bk == P)) {\ ++ F->bk = B;\ ++ B->fd = F;\ ++ }\ ++ else {\ ++ CORRUPTION_ERROR_ACTION(M);\ ++ }\ ++} ++ ++/* Replace dv node, binning the old one */ ++/* Used only when dvsize known to be small */ ++#define replace_dv(M, P, S) {\ ++ size_t DVS = M->dvsize;\ ++ assert(is_small(DVS));\ ++ if (DVS != 0) {\ ++ mchunkptr DV = M->dv;\ ++ insert_small_chunk(M, DV, DVS);\ ++ }\ ++ M->dvsize = S;\ ++ M->dv = P;\ ++} ++ ++/* ------------------------- Operations on trees ------------------------- */ ++ ++/* Insert chunk into tree */ ++#define insert_large_chunk(M, X, S) {\ ++ tbinptr* H;\ ++ bindex_t I;\ ++ compute_tree_index(S, I);\ ++ H = treebin_at(M, I);\ ++ X->index = I;\ ++ X->child[0] = X->child[1] = 0;\ ++ if (!treemap_is_marked(M, I)) {\ ++ mark_treemap(M, I);\ ++ *H = X;\ ++ X->parent = (tchunkptr)H;\ ++ X->fd = X->bk = X;\ ++ }\ ++ else {\ ++ tchunkptr T = *H;\ ++ size_t K = S << leftshift_for_tree_index(I);\ ++ for (;;) {\ ++ if (chunksize(T) != S) {\ ++ tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\ ++ K <<= 1;\ ++ if (*C != 0)\ ++ T = *C;\ ++ else if (RTCHECK(ok_address(M, C))) {\ ++ *C = X;\ ++ X->parent = T;\ ++ X->fd = X->bk = X;\ ++ break;\ ++ }\ ++ else {\ ++ CORRUPTION_ERROR_ACTION(M);\ ++ break;\ ++ }\ ++ }\ ++ else {\ ++ tchunkptr F = T->fd;\ ++ if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\ ++ T->fd = F->bk = X;\ ++ X->fd = F;\ ++ X->bk = T;\ ++ X->parent = 0;\ ++ break;\ ++ }\ ++ else {\ ++ CORRUPTION_ERROR_ACTION(M);\ ++ break;\ ++ }\ ++ }\ ++ }\ ++ }\ ++} ++ ++/* ++ Unlink steps: ++ ++ 1. If x is a chained node, unlink it from its same-sized fd/bk links ++ and choose its bk node as its replacement. ++ 2. If x was the last node of its size, but not a leaf node, it must ++ be replaced with a leaf node (not merely one with an open left or ++ right), to make sure that lefts and rights of descendents ++ correspond properly to bit masks. We use the rightmost descendent ++ of x. We could use any other leaf, but this is easy to locate and ++ tends to counteract removal of leftmosts elsewhere, and so keeps ++ paths shorter than minimally guaranteed. This doesn't loop much ++ because on average a node in a tree is near the bottom. ++ 3. If x is the base of a chain (i.e., has parent links) relink ++ x's parent and children to x's replacement (or null if none). ++*/ ++ ++#define unlink_large_chunk(M, X) {\ ++ tchunkptr XP = X->parent;\ ++ tchunkptr R;\ ++ if (X->bk != X) {\ ++ tchunkptr F = X->fd;\ ++ R = X->bk;\ ++ if (RTCHECK(ok_address(M, F) && F->bk == X && R->fd == X)) {\ ++ F->bk = R;\ ++ R->fd = F;\ ++ }\ ++ else {\ ++ CORRUPTION_ERROR_ACTION(M);\ ++ }\ ++ }\ ++ else {\ ++ tchunkptr* RP;\ ++ if (((R = *(RP = &(X->child[1]))) != 0) ||\ ++ ((R = *(RP = &(X->child[0]))) != 0)) {\ ++ tchunkptr* CP;\ ++ while ((*(CP = &(R->child[1])) != 0) ||\ ++ (*(CP = &(R->child[0])) != 0)) {\ ++ R = *(RP = CP);\ ++ }\ ++ if (RTCHECK(ok_address(M, RP)))\ ++ *RP = 0;\ ++ else {\ ++ CORRUPTION_ERROR_ACTION(M);\ ++ }\ ++ }\ ++ }\ ++ if (XP != 0) {\ ++ tbinptr* H = treebin_at(M, X->index);\ ++ if (X == *H) {\ ++ if ((*H = R) == 0) \ ++ clear_treemap(M, X->index);\ ++ }\ ++ else if (RTCHECK(ok_address(M, XP))) {\ ++ if (XP->child[0] == X) \ ++ XP->child[0] = R;\ ++ else \ ++ XP->child[1] = R;\ ++ }\ ++ else\ ++ CORRUPTION_ERROR_ACTION(M);\ ++ if (R != 0) {\ ++ if (RTCHECK(ok_address(M, R))) {\ ++ tchunkptr C0, C1;\ ++ R->parent = XP;\ ++ if ((C0 = X->child[0]) != 0) {\ ++ if (RTCHECK(ok_address(M, C0))) {\ ++ R->child[0] = C0;\ ++ C0->parent = R;\ ++ }\ ++ else\ ++ CORRUPTION_ERROR_ACTION(M);\ ++ }\ ++ if ((C1 = X->child[1]) != 0) {\ ++ if (RTCHECK(ok_address(M, C1))) {\ ++ R->child[1] = C1;\ ++ C1->parent = R;\ ++ }\ ++ else\ ++ CORRUPTION_ERROR_ACTION(M);\ ++ }\ ++ }\ ++ else\ ++ CORRUPTION_ERROR_ACTION(M);\ ++ }\ ++ }\ ++} ++ ++/* Relays to large vs small bin operations */ ++ ++#define insert_chunk(M, P, S)\ ++ if (is_small(S)) insert_small_chunk(M, P, S)\ ++ else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); } ++ ++#define unlink_chunk(M, P, S)\ ++ if (is_small(S)) unlink_small_chunk(M, P, S)\ ++ else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); } ++ ++ ++/* Relays to internal calls to malloc/free from realloc, memalign etc */ ++ ++#if ONLY_MSPACES ++#define internal_malloc(m, b) mspace_malloc(m, b) ++#define internal_free(m, mem) mspace_free(m,mem); ++#else /* ONLY_MSPACES */ ++#if MSPACES ++#define internal_malloc(m, b)\ ++ ((m == gm)? dlmalloc(b) : mspace_malloc(m, b)) ++#define internal_free(m, mem)\ ++ if (m == gm) dlfree(mem); else mspace_free(m,mem); ++#else /* MSPACES */ ++#define internal_malloc(m, b) dlmalloc(b) ++#define internal_free(m, mem) dlfree(mem) ++#endif /* MSPACES */ ++#endif /* ONLY_MSPACES */ ++ ++/* ----------------------- Direct-mmapping chunks ----------------------- */ ++ ++/* ++ Directly mmapped chunks are set up with an offset to the start of ++ the mmapped region stored in the prev_foot field of the chunk. This ++ allows reconstruction of the required argument to MUNMAP when freed, ++ and also allows adjustment of the returned chunk to meet alignment ++ requirements (especially in memalign). ++*/ ++ ++/* Malloc using mmap */ ++static void* mmap_alloc(mstate m, size_t nb) { ++ size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); ++ if (m->footprint_limit != 0) { ++ size_t fp = m->footprint + mmsize; ++ if (fp <= m->footprint || fp > m->footprint_limit) ++ return 0; ++ } ++ if (mmsize > nb) { /* Check for wrap around 0 */ ++ char* mm = (char*)(CALL_DIRECT_MMAP(mmsize)); ++ if (mm != CMFAIL) { ++ size_t offset = align_offset(chunk2mem(mm)); ++ size_t psize = mmsize - offset - MMAP_FOOT_PAD; ++ mchunkptr p = (mchunkptr)(mm + offset); ++ p->prev_foot = offset; ++ p->head = psize; ++ mark_inuse_foot(m, p, psize); ++ chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD; ++ chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0; ++ ++ if (m->least_addr == 0 || mm < m->least_addr) ++ m->least_addr = mm; ++ if ((m->footprint += mmsize) > m->max_footprint) ++ m->max_footprint = m->footprint; ++ assert(is_aligned(chunk2mem(p))); ++ check_mmapped_chunk(m, p); ++ return chunk2mem(p); ++ } ++ } ++ return 0; ++} ++ ++/* Realloc using mmap */ ++static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb, int flags) { ++ size_t oldsize = chunksize(oldp); ++ (void)flags; /* placate people compiling -Wunused */ ++ if (is_small(nb)) /* Can't shrink mmap regions below small size */ ++ return 0; ++ /* Keep old chunk if big enough but not too big */ ++ if (oldsize >= nb + SIZE_T_SIZE && ++ (oldsize - nb) <= (mparams.granularity << 1)) ++ return oldp; ++ else { ++ size_t offset = oldp->prev_foot; ++ size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD; ++ size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); ++ char* cp = (char*)CALL_MREMAP((char*)oldp - offset, ++ oldmmsize, newmmsize, flags); ++ if (cp != CMFAIL) { ++ mchunkptr newp = (mchunkptr)(cp + offset); ++ size_t psize = newmmsize - offset - MMAP_FOOT_PAD; ++ newp->head = psize; ++ mark_inuse_foot(m, newp, psize); ++ chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD; ++ chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0; ++ ++ if (cp < m->least_addr) ++ m->least_addr = cp; ++ if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint) ++ m->max_footprint = m->footprint; ++ check_mmapped_chunk(m, newp); ++ return newp; ++ } ++ } ++ return 0; ++} ++ ++ ++/* -------------------------- mspace management -------------------------- */ ++ ++/* Initialize top chunk and its size */ ++static void init_top(mstate m, mchunkptr p, size_t psize) { ++ /* Ensure alignment */ ++ size_t offset = align_offset(chunk2mem(p)); ++ p = (mchunkptr)((char*)p + offset); ++ psize -= offset; ++ ++ m->top = p; ++ m->topsize = psize; ++ p->head = psize | PINUSE_BIT; ++ /* set size of fake trailing chunk holding overhead space only once */ ++ chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE; ++ m->trim_check = mparams.trim_threshold; /* reset on each update */ ++} ++ ++/* Initialize bins for a new mstate that is otherwise zeroed out */ ++static void init_bins(mstate m) { ++ /* Establish circular links for smallbins */ ++ bindex_t i; ++ for (i = 0; i < NSMALLBINS; ++i) { ++ sbinptr bin = smallbin_at(m,i); ++ bin->fd = bin->bk = bin; ++ } ++} ++ ++#if PROCEED_ON_ERROR ++ ++/* default corruption action */ ++static void reset_on_error(mstate m) { ++ int i; ++ ++malloc_corruption_error_count; ++ /* Reinitialize fields to forget about all memory */ ++ m->smallmap = m->treemap = 0; ++ m->dvsize = m->topsize = 0; ++ m->seg.base = 0; ++ m->seg.size = 0; ++ m->seg.next = 0; ++ m->top = m->dv = 0; ++ for (i = 0; i < NTREEBINS; ++i) ++ *treebin_at(m, i) = 0; ++ init_bins(m); ++} ++#endif /* PROCEED_ON_ERROR */ ++ ++/* Allocate chunk and prepend remainder with chunk in successor base. */ ++static void* prepend_alloc(mstate m, char* newbase, char* oldbase, ++ size_t nb) { ++ mchunkptr p = align_as_chunk(newbase); ++ mchunkptr oldfirst = align_as_chunk(oldbase); ++ size_t psize = (char*)oldfirst - (char*)p; ++ mchunkptr q = chunk_plus_offset(p, nb); ++ size_t qsize = psize - nb; ++ set_size_and_pinuse_of_inuse_chunk(m, p, nb); ++ ++ assert((char*)oldfirst > (char*)q); ++ assert(pinuse(oldfirst)); ++ assert(qsize >= MIN_CHUNK_SIZE); ++ ++ /* consolidate remainder with first chunk of old base */ ++ if (oldfirst == m->top) { ++ size_t tsize = m->topsize += qsize; ++ m->top = q; ++ q->head = tsize | PINUSE_BIT; ++ check_top_chunk(m, q); ++ } ++ else if (oldfirst == m->dv) { ++ size_t dsize = m->dvsize += qsize; ++ m->dv = q; ++ set_size_and_pinuse_of_free_chunk(q, dsize); ++ } ++ else { ++ if (!is_inuse(oldfirst)) { ++ size_t nsize = chunksize(oldfirst); ++ unlink_chunk(m, oldfirst, nsize); ++ oldfirst = chunk_plus_offset(oldfirst, nsize); ++ qsize += nsize; ++ } ++ set_free_with_pinuse(q, qsize, oldfirst); ++ insert_chunk(m, q, qsize); ++ check_free_chunk(m, q); ++ } ++ ++ check_malloced_chunk(m, chunk2mem(p), nb); ++ return chunk2mem(p); ++} ++ ++/* Add a segment to hold a new noncontiguous region */ ++static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) { ++ /* Determine locations and sizes of segment, fenceposts, old top */ ++ char* old_top = (char*)m->top; ++ msegmentptr oldsp = segment_holding(m, old_top); ++ char* old_end = oldsp->base + oldsp->size; ++ size_t ssize = pad_request(sizeof(struct malloc_segment)); ++ char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK); ++ size_t offset = align_offset(chunk2mem(rawsp)); ++ char* asp = rawsp + offset; ++ char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp; ++ mchunkptr sp = (mchunkptr)csp; ++ msegmentptr ss = (msegmentptr)(chunk2mem(sp)); ++ mchunkptr tnext = chunk_plus_offset(sp, ssize); ++ mchunkptr p = tnext; ++ int nfences = 0; ++ ++ /* reset top to new space */ ++ init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); ++ ++ /* Set up segment record */ ++ assert(is_aligned(ss)); ++ set_size_and_pinuse_of_inuse_chunk(m, sp, ssize); ++ *ss = m->seg; /* Push current record */ ++ m->seg.base = tbase; ++ m->seg.size = tsize; ++ m->seg.sflags = mmapped; ++ m->seg.next = ss; ++ ++ /* Insert trailing fenceposts */ ++ for (;;) { ++ mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE); ++ p->head = FENCEPOST_HEAD; ++ ++nfences; ++ if ((char*)(&(nextp->head)) < old_end) ++ p = nextp; ++ else ++ break; ++ } ++ assert(nfences >= 2); ++ ++ /* Insert the rest of old top into a bin as an ordinary free chunk */ ++ if (csp != old_top) { ++ mchunkptr q = (mchunkptr)old_top; ++ size_t psize = csp - old_top; ++ mchunkptr tn = chunk_plus_offset(q, psize); ++ set_free_with_pinuse(q, psize, tn); ++ insert_chunk(m, q, psize); ++ } ++ ++ check_top_chunk(m, m->top); ++} ++ ++/* -------------------------- System allocation -------------------------- */ ++ ++/* Get memory from system using MORECORE or MMAP */ ++static void* sys_alloc(mstate m, size_t nb) { ++ char* tbase = CMFAIL; ++ size_t tsize = 0; ++ flag_t mmap_flag = 0; ++ size_t asize; /* allocation size */ ++ ++ ensure_initialization(); ++ ++ /* Directly map large chunks, but only if already initialized */ ++ if (use_mmap(m) && nb >= mparams.mmap_threshold && m->topsize != 0) { ++ void* mem = mmap_alloc(m, nb); ++ if (mem != 0) ++ return mem; ++ } ++ ++ asize = granularity_align(nb + SYS_ALLOC_PADDING); ++ if (asize <= nb) { ++ /* BEGIN android-added: set errno */ ++ MALLOC_FAILURE_ACTION; ++ /* END android-added */ ++ return 0; /* wraparound */ ++ } ++ if (m->footprint_limit != 0) { ++ size_t fp = m->footprint + asize; ++ if (fp <= m->footprint || fp > m->footprint_limit) { ++ /* BEGIN android-added: set errno */ ++ MALLOC_FAILURE_ACTION; ++ /* END android-added */ ++ return 0; ++ } ++ } ++ ++ /* ++ Try getting memory in any of three ways (in most-preferred to ++ least-preferred order): ++ 1. A call to MORECORE that can normally contiguously extend memory. ++ (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or ++ or main space is mmapped or a previous contiguous call failed) ++ 2. A call to MMAP new space (disabled if not HAVE_MMAP). ++ Note that under the default settings, if MORECORE is unable to ++ fulfill a request, and HAVE_MMAP is true, then mmap is ++ used as a noncontiguous system allocator. This is a useful backup ++ strategy for systems with holes in address spaces -- in this case ++ sbrk cannot contiguously expand the heap, but mmap may be able to ++ find space. ++ 3. A call to MORECORE that cannot usually contiguously extend memory. ++ (disabled if not HAVE_MORECORE) ++ ++ In all cases, we need to request enough bytes from system to ensure ++ we can malloc nb bytes upon success, so pad with enough space for ++ top_foot, plus alignment-pad to make sure we don't lose bytes if ++ not on boundary, and round this up to a granularity unit. ++ */ ++ ++ if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) { ++ char* br = CMFAIL; ++ size_t ssize = asize; /* sbrk call size */ ++ msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top); ++ ACQUIRE_MALLOC_GLOBAL_LOCK(); ++ ++ if (ss == 0) { /* First time through or recovery */ ++ char* base = (char*)CALL_MORECORE(0); ++ if (base != CMFAIL) { ++ size_t fp; ++ /* Adjust to end on a page boundary */ ++ if (!is_page_aligned(base)) ++ ssize += (page_align((size_t)base) - (size_t)base); ++ fp = m->footprint + ssize; /* recheck limits */ ++ if (ssize > nb && ssize < HALF_MAX_SIZE_T && ++ (m->footprint_limit == 0 || ++ (fp > m->footprint && fp <= m->footprint_limit)) && ++ (br = (char*)(CALL_MORECORE(ssize))) == base) { ++ tbase = base; ++ tsize = ssize; ++ } ++ } ++ } ++ else { ++ /* Subtract out existing available top space from MORECORE request. */ ++ ssize = granularity_align(nb - m->topsize + SYS_ALLOC_PADDING); ++ /* Use mem here only if it did continuously extend old space */ ++ if (ssize < HALF_MAX_SIZE_T && ++ (br = (char*)(CALL_MORECORE(ssize))) == ss->base+ss->size) { ++ tbase = br; ++ tsize = ssize; ++ } ++ } ++ ++ if (tbase == CMFAIL) { /* Cope with partial failure */ ++ if (br != CMFAIL) { /* Try to use/extend the space we did get */ ++ if (ssize < HALF_MAX_SIZE_T && ++ ssize < nb + SYS_ALLOC_PADDING) { ++ size_t esize = granularity_align(nb + SYS_ALLOC_PADDING - ssize); ++ if (esize < HALF_MAX_SIZE_T) { ++ char* end = (char*)CALL_MORECORE(esize); ++ if (end != CMFAIL) ++ ssize += esize; ++ else { /* Can't use; try to release */ ++ (void) CALL_MORECORE(-ssize); ++ br = CMFAIL; ++ } ++ } ++ } ++ } ++ if (br != CMFAIL) { /* Use the space we did get */ ++ tbase = br; ++ tsize = ssize; ++ } ++ else ++ disable_contiguous(m); /* Don't try contiguous path in the future */ ++ } ++ ++ RELEASE_MALLOC_GLOBAL_LOCK(); ++ } ++ ++ if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */ ++ char* mp = (char*)(CALL_MMAP(asize)); ++ if (mp != CMFAIL) { ++ tbase = mp; ++ tsize = asize; ++ mmap_flag = USE_MMAP_BIT; ++ } ++ } ++ ++ if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */ ++ if (asize < HALF_MAX_SIZE_T) { ++ char* br = CMFAIL; ++ char* end = CMFAIL; ++ ACQUIRE_MALLOC_GLOBAL_LOCK(); ++ br = (char*)(CALL_MORECORE(asize)); ++ end = (char*)(CALL_MORECORE(0)); ++ RELEASE_MALLOC_GLOBAL_LOCK(); ++ if (br != CMFAIL && end != CMFAIL && br < end) { ++ size_t ssize = end - br; ++ if (ssize > nb + TOP_FOOT_SIZE) { ++ tbase = br; ++ tsize = ssize; ++ } ++ } ++ } ++ } ++ ++ if (tbase != CMFAIL) { ++ ++ if ((m->footprint += tsize) > m->max_footprint) ++ m->max_footprint = m->footprint; ++ ++ if (!is_initialized(m)) { /* first-time initialization */ ++ if (m->least_addr == 0 || tbase < m->least_addr) ++ m->least_addr = tbase; ++ m->seg.base = tbase; ++ m->seg.size = tsize; ++ m->seg.sflags = mmap_flag; ++ m->magic = mparams.magic; ++ m->release_checks = MAX_RELEASE_CHECK_RATE; ++ init_bins(m); ++#if !ONLY_MSPACES ++ if (is_global(m)) ++ init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); ++ else ++#endif ++ { ++ /* Offset top by embedded malloc_state */ ++ mchunkptr mn = next_chunk(mem2chunk(m)); ++ init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE); ++ } ++ } ++ ++ else { ++ /* Try to merge with an existing segment */ ++ msegmentptr sp = &m->seg; ++ /* Only consider most recent segment if traversal suppressed */ ++ while (sp != 0 && tbase != sp->base + sp->size) ++ sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next; ++ if (sp != 0 && ++ !is_extern_segment(sp) && ++ (sp->sflags & USE_MMAP_BIT) == mmap_flag && ++ segment_holds(sp, m->top)) { /* append */ ++ sp->size += tsize; ++ init_top(m, m->top, m->topsize + tsize); ++ } ++ else { ++ if (tbase < m->least_addr) ++ m->least_addr = tbase; ++ sp = &m->seg; ++ while (sp != 0 && sp->base != tbase + tsize) ++ sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next; ++ if (sp != 0 && ++ !is_extern_segment(sp) && ++ (sp->sflags & USE_MMAP_BIT) == mmap_flag) { ++ char* oldbase = sp->base; ++ sp->base = tbase; ++ sp->size += tsize; ++ return prepend_alloc(m, tbase, oldbase, nb); ++ } ++ else ++ add_segment(m, tbase, tsize, mmap_flag); ++ } ++ } ++ ++ if (nb < m->topsize) { /* Allocate from new or extended top space */ ++ size_t rsize = m->topsize -= nb; ++ mchunkptr p = m->top; ++ mchunkptr r = m->top = chunk_plus_offset(p, nb); ++ r->head = rsize | PINUSE_BIT; ++ set_size_and_pinuse_of_inuse_chunk(m, p, nb); ++ check_top_chunk(m, m->top); ++ check_malloced_chunk(m, chunk2mem(p), nb); ++ return chunk2mem(p); ++ } ++ } ++ ++ MALLOC_FAILURE_ACTION; ++ return 0; ++} ++ ++/* ----------------------- system deallocation -------------------------- */ ++ ++/* Unmap and unlink any mmapped segments that don't contain used chunks */ ++static size_t release_unused_segments(mstate m) { ++ size_t released = 0; ++ int nsegs = 0; ++ msegmentptr pred = &m->seg; ++ msegmentptr sp = pred->next; ++ while (sp != 0) { ++ char* base = sp->base; ++ size_t size = sp->size; ++ msegmentptr next = sp->next; ++ ++nsegs; ++ if (is_mmapped_segment(sp) && !is_extern_segment(sp)) { ++ mchunkptr p = align_as_chunk(base); ++ size_t psize = chunksize(p); ++ /* Can unmap if first chunk holds entire segment and not pinned */ ++ if (!is_inuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) { ++ tchunkptr tp = (tchunkptr)p; ++ assert(segment_holds(sp, (char*)sp)); ++ if (p == m->dv) { ++ m->dv = 0; ++ m->dvsize = 0; ++ } ++ else { ++ unlink_large_chunk(m, tp); ++ } ++ if (CALL_MUNMAP(base, size) == 0) { ++ released += size; ++ m->footprint -= size; ++ /* unlink obsoleted record */ ++ sp = pred; ++ sp->next = next; ++ } ++ else { /* back out if cannot unmap */ ++ insert_large_chunk(m, tp, psize); ++ } ++ } ++ } ++ if (NO_SEGMENT_TRAVERSAL) /* scan only first segment */ ++ break; ++ pred = sp; ++ sp = next; ++ } ++ /* Reset check counter */ ++ m->release_checks = (((size_t) nsegs > (size_t) MAX_RELEASE_CHECK_RATE)? ++ (size_t) nsegs : (size_t) MAX_RELEASE_CHECK_RATE); ++ return released; ++} ++ ++static int sys_trim(mstate m, size_t pad) { ++ size_t released = 0; ++ ensure_initialization(); ++ if (pad < MAX_REQUEST && is_initialized(m)) { ++ pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */ ++ ++ if (m->topsize > pad) { ++ /* Shrink top space in granularity-size units, keeping at least one */ ++ size_t unit = mparams.granularity; ++ size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit - ++ SIZE_T_ONE) * unit; ++ msegmentptr sp = segment_holding(m, (char*)m->top); ++ ++ if (!is_extern_segment(sp)) { ++ if (is_mmapped_segment(sp)) { ++ if (HAVE_MMAP && ++ sp->size >= extra && ++ !has_segment_link(m, sp)) { /* can't shrink if pinned */ ++ size_t newsize = sp->size - extra; ++ (void)newsize; /* placate people compiling -Wunused-variable */ ++ /* Prefer mremap, fall back to munmap */ ++ if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) || ++ (CALL_MUNMAP(sp->base + newsize, extra) == 0)) { ++ released = extra; ++ } ++ } ++ } ++ else if (HAVE_MORECORE) { ++ if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */ ++ extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit; ++ ACQUIRE_MALLOC_GLOBAL_LOCK(); ++ { ++ /* Make sure end of memory is where we last set it. */ ++ char* old_br = (char*)(CALL_MORECORE(0)); ++ if (old_br == sp->base + sp->size) { ++ char* rel_br = (char*)(CALL_MORECORE(-extra)); ++ char* new_br = (char*)(CALL_MORECORE(0)); ++ if (rel_br != CMFAIL && new_br < old_br) ++ released = old_br - new_br; ++ } ++ } ++ RELEASE_MALLOC_GLOBAL_LOCK(); ++ } ++ } ++ ++ if (released != 0) { ++ sp->size -= released; ++ m->footprint -= released; ++ init_top(m, m->top, m->topsize - released); ++ check_top_chunk(m, m->top); ++ } ++ } ++ ++ /* Unmap any unused mmapped segments */ ++ if (HAVE_MMAP) ++ released += release_unused_segments(m); ++ ++ /* On failure, disable autotrim to avoid repeated failed future calls */ ++ if (released == 0 && m->topsize > m->trim_check) ++ m->trim_check = MAX_SIZE_T; ++ } ++ ++ return (released != 0)? 1 : 0; ++} ++ ++/* Consolidate and bin a chunk. Differs from exported versions ++ of free mainly in that the chunk need not be marked as inuse. ++*/ ++static void dispose_chunk(mstate m, mchunkptr p, size_t psize) { ++ mchunkptr next = chunk_plus_offset(p, psize); ++ if (!pinuse(p)) { ++ mchunkptr prev; ++ size_t prevsize = p->prev_foot; ++ if (is_mmapped(p)) { ++ psize += prevsize + MMAP_FOOT_PAD; ++ if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) ++ m->footprint -= psize; ++ return; ++ } ++ prev = chunk_minus_offset(p, prevsize); ++ psize += prevsize; ++ p = prev; ++ if (RTCHECK(ok_address(m, prev))) { /* consolidate backward */ ++ if (p != m->dv) { ++ unlink_chunk(m, p, prevsize); ++ } ++ else if ((next->head & INUSE_BITS) == INUSE_BITS) { ++ m->dvsize = psize; ++ set_free_with_pinuse(p, psize, next); ++ return; ++ } ++ } ++ else { ++ CORRUPTION_ERROR_ACTION(m); ++ return; ++ } ++ } ++ if (RTCHECK(ok_address(m, next))) { ++ if (!cinuse(next)) { /* consolidate forward */ ++ if (next == m->top) { ++ size_t tsize = m->topsize += psize; ++ m->top = p; ++ p->head = tsize | PINUSE_BIT; ++ if (p == m->dv) { ++ m->dv = 0; ++ m->dvsize = 0; ++ } ++ return; ++ } ++ else if (next == m->dv) { ++ size_t dsize = m->dvsize += psize; ++ m->dv = p; ++ set_size_and_pinuse_of_free_chunk(p, dsize); ++ return; ++ } ++ else { ++ size_t nsize = chunksize(next); ++ psize += nsize; ++ unlink_chunk(m, next, nsize); ++ set_size_and_pinuse_of_free_chunk(p, psize); ++ if (p == m->dv) { ++ m->dvsize = psize; ++ return; ++ } ++ } ++ } ++ else { ++ set_free_with_pinuse(p, psize, next); ++ } ++ insert_chunk(m, p, psize); ++ } ++ else { ++ CORRUPTION_ERROR_ACTION(m); ++ } ++} ++ ++/* ---------------------------- malloc --------------------------- */ ++ ++/* allocate a large request from the best fitting chunk in a treebin */ ++static void* tmalloc_large(mstate m, size_t nb) { ++ tchunkptr v = 0; ++ size_t rsize = -nb; /* Unsigned negation */ ++ tchunkptr t; ++ bindex_t idx; ++ compute_tree_index(nb, idx); ++ if ((t = *treebin_at(m, idx)) != 0) { ++ /* Traverse tree for this bin looking for node with size == nb */ ++ size_t sizebits = nb << leftshift_for_tree_index(idx); ++ tchunkptr rst = 0; /* The deepest untaken right subtree */ ++ for (;;) { ++ tchunkptr rt; ++ size_t trem = chunksize(t) - nb; ++ if (trem < rsize) { ++ v = t; ++ if ((rsize = trem) == 0) ++ break; ++ } ++ rt = t->child[1]; ++ t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; ++ if (rt != 0 && rt != t) ++ rst = rt; ++ if (t == 0) { ++ t = rst; /* set t to least subtree holding sizes > nb */ ++ break; ++ } ++ sizebits <<= 1; ++ } ++ } ++ if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */ ++ binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap; ++ if (leftbits != 0) { ++ bindex_t i; ++ binmap_t leastbit = least_bit(leftbits); ++ compute_bit2idx(leastbit, i); ++ t = *treebin_at(m, i); ++ } ++ } ++ ++ while (t != 0) { /* find smallest of tree or subtree */ ++ size_t trem = chunksize(t) - nb; ++ if (trem < rsize) { ++ rsize = trem; ++ v = t; ++ } ++ t = leftmost_child(t); ++ } ++ ++ /* If dv is a better fit, return 0 so malloc will use it */ ++ if (v != 0 && rsize < (size_t)(m->dvsize - nb)) { ++ if (RTCHECK(ok_address(m, v))) { /* split */ ++ mchunkptr r = chunk_plus_offset(v, nb); ++ assert(chunksize(v) == rsize + nb); ++ if (RTCHECK(ok_next(v, r))) { ++ unlink_large_chunk(m, v); ++ if (rsize < MIN_CHUNK_SIZE) ++ set_inuse_and_pinuse(m, v, (rsize + nb)); ++ else { ++ set_size_and_pinuse_of_inuse_chunk(m, v, nb); ++ set_size_and_pinuse_of_free_chunk(r, rsize); ++ insert_chunk(m, r, rsize); ++ } ++ return chunk2mem(v); ++ } ++ } ++ CORRUPTION_ERROR_ACTION(m); ++ } ++ return 0; ++} ++ ++/* allocate a small request from the best fitting chunk in a treebin */ ++static void* tmalloc_small(mstate m, size_t nb) { ++ tchunkptr t, v; ++ size_t rsize; ++ bindex_t i; ++ binmap_t leastbit = least_bit(m->treemap); ++ compute_bit2idx(leastbit, i); ++ v = t = *treebin_at(m, i); ++ rsize = chunksize(t) - nb; ++ ++ while ((t = leftmost_child(t)) != 0) { ++ size_t trem = chunksize(t) - nb; ++ if (trem < rsize) { ++ rsize = trem; ++ v = t; ++ } ++ } ++ ++ if (RTCHECK(ok_address(m, v))) { ++ mchunkptr r = chunk_plus_offset(v, nb); ++ assert(chunksize(v) == rsize + nb); ++ if (RTCHECK(ok_next(v, r))) { ++ unlink_large_chunk(m, v); ++ if (rsize < MIN_CHUNK_SIZE) ++ set_inuse_and_pinuse(m, v, (rsize + nb)); ++ else { ++ set_size_and_pinuse_of_inuse_chunk(m, v, nb); ++ set_size_and_pinuse_of_free_chunk(r, rsize); ++ replace_dv(m, r, rsize); ++ } ++ return chunk2mem(v); ++ } ++ } ++ ++ CORRUPTION_ERROR_ACTION(m); ++ return 0; ++} ++ ++#if !ONLY_MSPACES ++ ++void* dlmalloc(size_t bytes) { ++ /* ++ Basic algorithm: ++ If a small request (< 256 bytes minus per-chunk overhead): ++ 1. If one exists, use a remainderless chunk in associated smallbin. ++ (Remainderless means that there are too few excess bytes to ++ represent as a chunk.) ++ 2. If it is big enough, use the dv chunk, which is normally the ++ chunk adjacent to the one used for the most recent small request. ++ 3. If one exists, split the smallest available chunk in a bin, ++ saving remainder in dv. ++ 4. If it is big enough, use the top chunk. ++ 5. If available, get memory from system and use it ++ Otherwise, for a large request: ++ 1. Find the smallest available binned chunk that fits, and use it ++ if it is better fitting than dv chunk, splitting if necessary. ++ 2. If better fitting than any binned chunk, use the dv chunk. ++ 3. If it is big enough, use the top chunk. ++ 4. If request size >= mmap threshold, try to directly mmap this chunk. ++ 5. If available, get memory from system and use it ++ ++ The ugly goto's here ensure that postaction occurs along all paths. ++ */ ++ ++#if USE_LOCKS ++ ensure_initialization(); /* initialize in sys_alloc if not using locks */ ++#endif ++ ++ if (!PREACTION(gm)) { ++ void* mem; ++ size_t nb; ++ if (bytes <= MAX_SMALL_REQUEST) { ++ bindex_t idx; ++ binmap_t smallbits; ++ nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); ++ idx = small_index(nb); ++ smallbits = gm->smallmap >> idx; ++ ++ if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ ++ mchunkptr b, p; ++ idx += ~smallbits & 1; /* Uses next bin if idx empty */ ++ b = smallbin_at(gm, idx); ++ p = b->fd; ++ assert(chunksize(p) == small_index2size(idx)); ++ unlink_first_small_chunk(gm, b, p, idx); ++ set_inuse_and_pinuse(gm, p, small_index2size(idx)); ++ mem = chunk2mem(p); ++ check_malloced_chunk(gm, mem, nb); ++ goto postaction; ++ } ++ ++ else if (nb > gm->dvsize) { ++ if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ ++ mchunkptr b, p, r; ++ size_t rsize; ++ bindex_t i; ++ binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); ++ binmap_t leastbit = least_bit(leftbits); ++ compute_bit2idx(leastbit, i); ++ b = smallbin_at(gm, i); ++ p = b->fd; ++ assert(chunksize(p) == small_index2size(i)); ++ unlink_first_small_chunk(gm, b, p, i); ++ rsize = small_index2size(i) - nb; ++ /* Fit here cannot be remainderless if 4byte sizes */ ++ if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) ++ set_inuse_and_pinuse(gm, p, small_index2size(i)); ++ else { ++ set_size_and_pinuse_of_inuse_chunk(gm, p, nb); ++ r = chunk_plus_offset(p, nb); ++ set_size_and_pinuse_of_free_chunk(r, rsize); ++ replace_dv(gm, r, rsize); ++ } ++ mem = chunk2mem(p); ++ check_malloced_chunk(gm, mem, nb); ++ goto postaction; ++ } ++ ++ else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) { ++ check_malloced_chunk(gm, mem, nb); ++ goto postaction; ++ } ++ } ++ } ++ else if (bytes >= MAX_REQUEST) ++ nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ ++ else { ++ nb = pad_request(bytes); ++ if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) { ++ check_malloced_chunk(gm, mem, nb); ++ goto postaction; ++ } ++ } ++ ++ if (nb <= gm->dvsize) { ++ size_t rsize = gm->dvsize - nb; ++ mchunkptr p = gm->dv; ++ if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ ++ mchunkptr r = gm->dv = chunk_plus_offset(p, nb); ++ gm->dvsize = rsize; ++ set_size_and_pinuse_of_free_chunk(r, rsize); ++ set_size_and_pinuse_of_inuse_chunk(gm, p, nb); ++ } ++ else { /* exhaust dv */ ++ size_t dvs = gm->dvsize; ++ gm->dvsize = 0; ++ gm->dv = 0; ++ set_inuse_and_pinuse(gm, p, dvs); ++ } ++ mem = chunk2mem(p); ++ check_malloced_chunk(gm, mem, nb); ++ goto postaction; ++ } ++ ++ else if (nb < gm->topsize) { /* Split top */ ++ size_t rsize = gm->topsize -= nb; ++ mchunkptr p = gm->top; ++ mchunkptr r = gm->top = chunk_plus_offset(p, nb); ++ r->head = rsize | PINUSE_BIT; ++ set_size_and_pinuse_of_inuse_chunk(gm, p, nb); ++ mem = chunk2mem(p); ++ check_top_chunk(gm, gm->top); ++ check_malloced_chunk(gm, mem, nb); ++ goto postaction; ++ } ++ ++ mem = sys_alloc(gm, nb); ++ ++ postaction: ++ POSTACTION(gm); ++ return mem; ++ } ++ ++ return 0; ++} ++ ++/* ---------------------------- free --------------------------- */ ++ ++void dlfree(void* mem) { ++ /* ++ Consolidate freed chunks with preceeding or succeeding bordering ++ free chunks, if they exist, and then place in a bin. Intermixed ++ with special cases for top, dv, mmapped chunks, and usage errors. ++ */ ++ ++ if (mem != 0) { ++ mchunkptr p = mem2chunk(mem); ++#if FOOTERS ++ mstate fm = get_mstate_for(p); ++ if (!ok_magic(fm)) { ++ USAGE_ERROR_ACTION(fm, p); ++ return; ++ } ++#else /* FOOTERS */ ++#define fm gm ++#endif /* FOOTERS */ ++ if (!PREACTION(fm)) { ++ check_inuse_chunk(fm, p); ++ if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) { ++ size_t psize = chunksize(p); ++ mchunkptr next = chunk_plus_offset(p, psize); ++ if (!pinuse(p)) { ++ size_t prevsize = p->prev_foot; ++ if (is_mmapped(p)) { ++ psize += prevsize + MMAP_FOOT_PAD; ++ if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) ++ fm->footprint -= psize; ++ goto postaction; ++ } ++ else { ++ mchunkptr prev = chunk_minus_offset(p, prevsize); ++ psize += prevsize; ++ p = prev; ++ if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ ++ if (p != fm->dv) { ++ unlink_chunk(fm, p, prevsize); ++ } ++ else if ((next->head & INUSE_BITS) == INUSE_BITS) { ++ fm->dvsize = psize; ++ set_free_with_pinuse(p, psize, next); ++ goto postaction; ++ } ++ } ++ else ++ goto erroraction; ++ } ++ } ++ ++ if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { ++ if (!cinuse(next)) { /* consolidate forward */ ++ if (next == fm->top) { ++ size_t tsize = fm->topsize += psize; ++ fm->top = p; ++ p->head = tsize | PINUSE_BIT; ++ if (p == fm->dv) { ++ fm->dv = 0; ++ fm->dvsize = 0; ++ } ++ if (should_trim(fm, tsize)) ++ sys_trim(fm, 0); ++ goto postaction; ++ } ++ else if (next == fm->dv) { ++ size_t dsize = fm->dvsize += psize; ++ fm->dv = p; ++ set_size_and_pinuse_of_free_chunk(p, dsize); ++ goto postaction; ++ } ++ else { ++ size_t nsize = chunksize(next); ++ psize += nsize; ++ unlink_chunk(fm, next, nsize); ++ set_size_and_pinuse_of_free_chunk(p, psize); ++ if (p == fm->dv) { ++ fm->dvsize = psize; ++ goto postaction; ++ } ++ } ++ } ++ else ++ set_free_with_pinuse(p, psize, next); ++ ++ if (is_small(psize)) { ++ insert_small_chunk(fm, p, psize); ++ check_free_chunk(fm, p); ++ } ++ else { ++ tchunkptr tp = (tchunkptr)p; ++ insert_large_chunk(fm, tp, psize); ++ check_free_chunk(fm, p); ++ if (--fm->release_checks == 0) ++ release_unused_segments(fm); ++ } ++ goto postaction; ++ } ++ } ++ erroraction: ++ USAGE_ERROR_ACTION(fm, p); ++ postaction: ++ POSTACTION(fm); ++ } ++ } ++#if !FOOTERS ++#undef fm ++#endif /* FOOTERS */ ++} ++ ++void* dlcalloc(size_t n_elements, size_t elem_size) { ++ void* mem; ++ size_t req = 0; ++ if (n_elements != 0) { ++ req = n_elements * elem_size; ++ if (((n_elements | elem_size) & ~(size_t)0xffff) && ++ (req / n_elements != elem_size)) ++ req = MAX_SIZE_T; /* force downstream failure on overflow */ ++ } ++ mem = dlmalloc(req); ++ if (mem != 0) { ++ mchunkptr p = mem2chunk(mem); ++ if (calloc_must_clear(p)) { ++ /* Make sure to clear all of the buffer, not just the requested size. */ ++ memset(mem, 0, chunksize(p) - overhead_for(p)); ++ } ++ } ++ return mem; ++} ++ ++#endif /* !ONLY_MSPACES */ ++ ++/* ------------ Internal support for realloc, memalign, etc -------------- */ ++ ++/* Try to realloc; only in-place unless can_move true */ ++static mchunkptr try_realloc_chunk(mstate m, mchunkptr p, size_t nb, ++ int can_move) { ++ mchunkptr newp = 0; ++ size_t oldsize = chunksize(p); ++ mchunkptr next = chunk_plus_offset(p, oldsize); ++ if (RTCHECK(ok_address(m, p) && ok_inuse(p) && ++ ok_next(p, next) && ok_pinuse(next))) { ++ if (is_mmapped(p)) { ++ newp = mmap_resize(m, p, nb, can_move); ++ } ++ else if (oldsize >= nb) { /* already big enough */ ++ size_t rsize = oldsize - nb; ++ if (rsize >= MIN_CHUNK_SIZE) { /* split off remainder */ ++ mchunkptr r = chunk_plus_offset(p, nb); ++ set_inuse(m, p, nb); ++ set_inuse(m, r, rsize); ++ dispose_chunk(m, r, rsize); ++ } ++ newp = p; ++ } ++ else if (next == m->top) { /* extend into top */ ++ if (oldsize + m->topsize > nb) { ++ size_t newsize = oldsize + m->topsize; ++ size_t newtopsize = newsize - nb; ++ mchunkptr newtop = chunk_plus_offset(p, nb); ++ set_inuse(m, p, nb); ++ newtop->head = newtopsize |PINUSE_BIT; ++ m->top = newtop; ++ m->topsize = newtopsize; ++ newp = p; ++ } ++ } ++ else if (next == m->dv) { /* extend into dv */ ++ size_t dvs = m->dvsize; ++ if (oldsize + dvs >= nb) { ++ size_t dsize = oldsize + dvs - nb; ++ if (dsize >= MIN_CHUNK_SIZE) { ++ mchunkptr r = chunk_plus_offset(p, nb); ++ mchunkptr n = chunk_plus_offset(r, dsize); ++ set_inuse(m, p, nb); ++ set_size_and_pinuse_of_free_chunk(r, dsize); ++ clear_pinuse(n); ++ m->dvsize = dsize; ++ m->dv = r; ++ } ++ else { /* exhaust dv */ ++ size_t newsize = oldsize + dvs; ++ set_inuse(m, p, newsize); ++ m->dvsize = 0; ++ m->dv = 0; ++ } ++ newp = p; ++ } ++ } ++ else if (!cinuse(next)) { /* extend into next free chunk */ ++ size_t nextsize = chunksize(next); ++ if (oldsize + nextsize >= nb) { ++ size_t rsize = oldsize + nextsize - nb; ++ unlink_chunk(m, next, nextsize); ++ if (rsize < MIN_CHUNK_SIZE) { ++ size_t newsize = oldsize + nextsize; ++ set_inuse(m, p, newsize); ++ } ++ else { ++ mchunkptr r = chunk_plus_offset(p, nb); ++ set_inuse(m, p, nb); ++ set_inuse(m, r, rsize); ++ dispose_chunk(m, r, rsize); ++ } ++ newp = p; ++ } ++ } ++ } ++ else { ++ USAGE_ERROR_ACTION(m, chunk2mem(p)); ++ } ++ return newp; ++} ++ ++static void* internal_memalign(mstate m, size_t alignment, size_t bytes) { ++ void* mem = 0; ++ if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */ ++ alignment = MIN_CHUNK_SIZE; ++ if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */ ++ size_t a = MALLOC_ALIGNMENT << 1; ++ while (a < alignment) a <<= 1; ++ alignment = a; ++ } ++ if (bytes >= MAX_REQUEST - alignment) { ++ if (m != 0) { /* Test isn't needed but avoids compiler warning */ ++ MALLOC_FAILURE_ACTION; ++ } ++ } ++ else { ++ size_t nb = request2size(bytes); ++ size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD; ++ mem = internal_malloc(m, req); ++ if (mem != 0) { ++ mchunkptr p = mem2chunk(mem); ++ if (PREACTION(m)) ++ return 0; ++ if ((((size_t)(mem)) & (alignment - 1)) != 0) { /* misaligned */ ++ /* ++ Find an aligned spot inside chunk. Since we need to give ++ back leading space in a chunk of at least MIN_CHUNK_SIZE, if ++ the first calculation places us at a spot with less than ++ MIN_CHUNK_SIZE leader, we can move to the next aligned spot. ++ We've allocated enough total room so that this is always ++ possible. ++ */ ++ char* br = (char*)mem2chunk((size_t)(((size_t)((char*)mem + alignment - ++ SIZE_T_ONE)) & ++ -alignment)); ++ char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)? ++ br : br+alignment; ++ mchunkptr newp = (mchunkptr)pos; ++ size_t leadsize = pos - (char*)(p); ++ size_t newsize = chunksize(p) - leadsize; ++ ++ if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */ ++ newp->prev_foot = p->prev_foot + leadsize; ++ newp->head = newsize; ++ } ++ else { /* Otherwise, give back leader, use the rest */ ++ set_inuse(m, newp, newsize); ++ set_inuse(m, p, leadsize); ++ dispose_chunk(m, p, leadsize); ++ } ++ p = newp; ++ } ++ ++ /* Give back spare room at the end */ ++ if (!is_mmapped(p)) { ++ size_t size = chunksize(p); ++ if (size > nb + MIN_CHUNK_SIZE) { ++ size_t remainder_size = size - nb; ++ mchunkptr remainder = chunk_plus_offset(p, nb); ++ set_inuse(m, p, nb); ++ set_inuse(m, remainder, remainder_size); ++ dispose_chunk(m, remainder, remainder_size); ++ } ++ } ++ ++ mem = chunk2mem(p); ++ assert (chunksize(p) >= nb); ++ assert(((size_t)mem & (alignment - 1)) == 0); ++ check_inuse_chunk(m, p); ++ POSTACTION(m); ++ } ++ } ++ return mem; ++} ++ ++/* ++ Common support for independent_X routines, handling ++ all of the combinations that can result. ++ The opts arg has: ++ bit 0 set if all elements are same size (using sizes[0]) ++ bit 1 set if elements should be zeroed ++*/ ++static void** ialloc(mstate m, ++ size_t n_elements, ++ size_t* sizes, ++ int opts, ++ void* chunks[]) { ++ ++ size_t element_size; /* chunksize of each element, if all same */ ++ size_t contents_size; /* total size of elements */ ++ size_t array_size; /* request size of pointer array */ ++ void* mem; /* malloced aggregate space */ ++ mchunkptr p; /* corresponding chunk */ ++ size_t remainder_size; /* remaining bytes while splitting */ ++ void** marray; /* either "chunks" or malloced ptr array */ ++ mchunkptr array_chunk; /* chunk for malloced ptr array */ ++ flag_t was_enabled; /* to disable mmap */ ++ size_t size; ++ size_t i; ++ ++ ensure_initialization(); ++ /* compute array length, if needed */ ++ if (chunks != 0) { ++ if (n_elements == 0) ++ return chunks; /* nothing to do */ ++ marray = chunks; ++ array_size = 0; ++ } ++ else { ++ /* if empty req, must still return chunk representing empty array */ ++ if (n_elements == 0) ++ return (void**)internal_malloc(m, 0); ++ marray = 0; ++ array_size = request2size(n_elements * (sizeof(void*))); ++ } ++ ++ /* compute total element size */ ++ if (opts & 0x1) { /* all-same-size */ ++ element_size = request2size(*sizes); ++ contents_size = n_elements * element_size; ++ } ++ else { /* add up all the sizes */ ++ element_size = 0; ++ contents_size = 0; ++ for (i = 0; i != n_elements; ++i) ++ contents_size += request2size(sizes[i]); ++ } ++ ++ size = contents_size + array_size; ++ ++ /* ++ Allocate the aggregate chunk. First disable direct-mmapping so ++ malloc won't use it, since we would not be able to later ++ free/realloc space internal to a segregated mmap region. ++ */ ++ was_enabled = use_mmap(m); ++ disable_mmap(m); ++ mem = internal_malloc(m, size - CHUNK_OVERHEAD); ++ if (was_enabled) ++ enable_mmap(m); ++ if (mem == 0) ++ return 0; ++ ++ if (PREACTION(m)) return 0; ++ p = mem2chunk(mem); ++ remainder_size = chunksize(p); ++ ++ assert(!is_mmapped(p)); ++ ++ if (opts & 0x2) { /* optionally clear the elements */ ++ memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size); ++ } ++ ++ /* If not provided, allocate the pointer array as final part of chunk */ ++ if (marray == 0) { ++ size_t array_chunk_size; ++ array_chunk = chunk_plus_offset(p, contents_size); ++ array_chunk_size = remainder_size - contents_size; ++ marray = (void**) (chunk2mem(array_chunk)); ++ set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size); ++ remainder_size = contents_size; ++ } ++ ++ /* split out elements */ ++ for (i = 0; ; ++i) { ++ marray[i] = chunk2mem(p); ++ if (i != n_elements-1) { ++ if (element_size != 0) ++ size = element_size; ++ else ++ size = request2size(sizes[i]); ++ remainder_size -= size; ++ set_size_and_pinuse_of_inuse_chunk(m, p, size); ++ p = chunk_plus_offset(p, size); ++ } ++ else { /* the final element absorbs any overallocation slop */ ++ set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size); ++ break; ++ } ++ } ++ ++#if DEBUG ++ if (marray != chunks) { ++ /* final element must have exactly exhausted chunk */ ++ if (element_size != 0) { ++ assert(remainder_size == element_size); ++ } ++ else { ++ assert(remainder_size == request2size(sizes[i])); ++ } ++ check_inuse_chunk(m, mem2chunk(marray)); ++ } ++ for (i = 0; i != n_elements; ++i) ++ check_inuse_chunk(m, mem2chunk(marray[i])); ++ ++#endif /* DEBUG */ ++ ++ POSTACTION(m); ++ return marray; ++} ++ ++/* Try to free all pointers in the given array. ++ Note: this could be made faster, by delaying consolidation, ++ at the price of disabling some user integrity checks, We ++ still optimize some consolidations by combining adjacent ++ chunks before freeing, which will occur often if allocated ++ with ialloc or the array is sorted. ++*/ ++static size_t internal_bulk_free(mstate m, void* array[], size_t nelem) { ++ size_t unfreed = 0; ++ if (!PREACTION(m)) { ++ void** a; ++ void** fence = &(array[nelem]); ++ for (a = array; a != fence; ++a) { ++ void* mem = *a; ++ if (mem != 0) { ++ mchunkptr p = mem2chunk(mem); ++ size_t psize = chunksize(p); ++#if FOOTERS ++ if (get_mstate_for(p) != m) { ++ ++unfreed; ++ continue; ++ } ++#endif ++ check_inuse_chunk(m, p); ++ *a = 0; ++ if (RTCHECK(ok_address(m, p) && ok_inuse(p))) { ++ void ** b = a + 1; /* try to merge with next chunk */ ++ mchunkptr next = next_chunk(p); ++ if (b != fence && *b == chunk2mem(next)) { ++ size_t newsize = chunksize(next) + psize; ++ set_inuse(m, p, newsize); ++ *b = chunk2mem(p); ++ } ++ else ++ dispose_chunk(m, p, psize); ++ } ++ else { ++ CORRUPTION_ERROR_ACTION(m); ++ break; ++ } ++ } ++ } ++ if (should_trim(m, m->topsize)) ++ sys_trim(m, 0); ++ POSTACTION(m); ++ } ++ return unfreed; ++} ++ ++/* Traversal */ ++#if MALLOC_INSPECT_ALL ++static void internal_inspect_all(mstate m, ++ void(*handler)(void *start, ++ void *end, ++ size_t used_bytes, ++ void* callback_arg), ++ void* arg) { ++ if (is_initialized(m)) { ++ mchunkptr top = m->top; ++ msegmentptr s; ++ for (s = &m->seg; s != 0; s = s->next) { ++ mchunkptr q = align_as_chunk(s->base); ++ while (segment_holds(s, q) && q->head != FENCEPOST_HEAD) { ++ mchunkptr next = next_chunk(q); ++ size_t sz = chunksize(q); ++ size_t used; ++ void* start; ++ if (is_inuse(q)) { ++ used = sz - CHUNK_OVERHEAD; /* must not be mmapped */ ++ start = chunk2mem(q); ++ } ++ else { ++ used = 0; ++ if (is_small(sz)) { /* offset by possible bookkeeping */ ++ start = (void*)((char*)q + sizeof(struct malloc_chunk)); ++ } ++ else { ++ start = (void*)((char*)q + sizeof(struct malloc_tree_chunk)); ++ } ++ } ++ if (start < (void*)next) /* skip if all space is bookkeeping */ ++ handler(start, next, used, arg); ++ if (q == top) ++ break; ++ q = next; ++ } ++ } ++ } ++} ++#endif /* MALLOC_INSPECT_ALL */ ++ ++/* ------------------ Exported realloc, memalign, etc -------------------- */ ++ ++#if !ONLY_MSPACES ++ ++void* dlrealloc(void* oldmem, size_t bytes) { ++ void* mem = 0; ++ if (oldmem == 0) { ++ mem = dlmalloc(bytes); ++ } ++ else if (bytes >= MAX_REQUEST) { ++ MALLOC_FAILURE_ACTION; ++ } ++#ifdef REALLOC_ZERO_BYTES_FREES ++ else if (bytes == 0) { ++ dlfree(oldmem); ++ } ++#endif /* REALLOC_ZERO_BYTES_FREES */ ++ else { ++ size_t nb = request2size(bytes); ++ mchunkptr oldp = mem2chunk(oldmem); ++#if ! FOOTERS ++ mstate m = gm; ++#else /* FOOTERS */ ++ mstate m = get_mstate_for(oldp); ++ if (!ok_magic(m)) { ++ USAGE_ERROR_ACTION(m, oldmem); ++ return 0; ++ } ++#endif /* FOOTERS */ ++ if (!PREACTION(m)) { ++ mchunkptr newp = try_realloc_chunk(m, oldp, nb, 1); ++ POSTACTION(m); ++ if (newp != 0) { ++ check_inuse_chunk(m, newp); ++ mem = chunk2mem(newp); ++ } ++ else { ++ mem = internal_malloc(m, bytes); ++ if (mem != 0) { ++ size_t oc = chunksize(oldp) - overhead_for(oldp); ++ memcpy(mem, oldmem, (oc < bytes)? oc : bytes); ++ internal_free(m, oldmem); ++ } ++ } ++ } ++ } ++ return mem; ++} ++ ++void* dlrealloc_in_place(void* oldmem, size_t bytes) { ++ void* mem = 0; ++ if (oldmem != 0) { ++ if (bytes >= MAX_REQUEST) { ++ MALLOC_FAILURE_ACTION; ++ } ++ else { ++ size_t nb = request2size(bytes); ++ mchunkptr oldp = mem2chunk(oldmem); ++#if ! FOOTERS ++ mstate m = gm; ++#else /* FOOTERS */ ++ mstate m = get_mstate_for(oldp); ++ if (!ok_magic(m)) { ++ USAGE_ERROR_ACTION(m, oldmem); ++ return 0; ++ } ++#endif /* FOOTERS */ ++ if (!PREACTION(m)) { ++ mchunkptr newp = try_realloc_chunk(m, oldp, nb, 0); ++ POSTACTION(m); ++ if (newp == oldp) { ++ check_inuse_chunk(m, newp); ++ mem = oldmem; ++ } ++ } ++ } ++ } ++ return mem; ++} ++ ++void* dlmemalign(size_t alignment, size_t bytes) { ++ if (alignment <= MALLOC_ALIGNMENT) { ++ return dlmalloc(bytes); ++ } ++ return internal_memalign(gm, alignment, bytes); ++} ++ ++int dlposix_memalign(void** pp, size_t alignment, size_t bytes) { ++ void* mem = 0; ++ if (alignment == MALLOC_ALIGNMENT) ++ mem = dlmalloc(bytes); ++ else { ++ size_t d = alignment / sizeof(void*); ++ size_t r = alignment % sizeof(void*); ++ if (r != 0 || d == 0 || (d & (d-SIZE_T_ONE)) != 0) ++ return EINVAL; ++ else if (bytes <= MAX_REQUEST - alignment) { ++ if (alignment < MIN_CHUNK_SIZE) ++ alignment = MIN_CHUNK_SIZE; ++ mem = internal_memalign(gm, alignment, bytes); ++ } ++ } ++ if (mem == 0) ++ return ENOMEM; ++ else { ++ *pp = mem; ++ return 0; ++ } ++} ++ ++void* dlvalloc(size_t bytes) { ++ size_t pagesz; ++ ensure_initialization(); ++ pagesz = mparams.page_size; ++ return dlmemalign(pagesz, bytes); ++} ++ ++/* BEGIN android-changed: added overflow check */ ++void* dlpvalloc(size_t bytes) { ++ size_t pagesz; ++ size_t size; ++ ensure_initialization(); ++ pagesz = mparams.page_size; ++ size = (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE); ++ if (size < bytes) { ++ return NULL; ++ } ++ return dlmemalign(pagesz, size); ++} ++/* END android-change */ ++ ++void** dlindependent_calloc(size_t n_elements, size_t elem_size, ++ void* chunks[]) { ++ size_t sz = elem_size; /* serves as 1-element array */ ++ return ialloc(gm, n_elements, &sz, 3, chunks); ++} ++ ++void** dlindependent_comalloc(size_t n_elements, size_t sizes[], ++ void* chunks[]) { ++ return ialloc(gm, n_elements, sizes, 0, chunks); ++} ++ ++size_t dlbulk_free(void* array[], size_t nelem) { ++ return internal_bulk_free(gm, array, nelem); ++} ++ ++#if MALLOC_INSPECT_ALL ++void dlmalloc_inspect_all(void(*handler)(void *start, ++ void *end, ++ size_t used_bytes, ++ void* callback_arg), ++ void* arg) { ++ ensure_initialization(); ++ if (!PREACTION(gm)) { ++ internal_inspect_all(gm, handler, arg); ++ POSTACTION(gm); ++ } ++} ++#endif /* MALLOC_INSPECT_ALL */ ++ ++int dlmalloc_trim(size_t pad) { ++ int result = 0; ++ ensure_initialization(); ++ if (!PREACTION(gm)) { ++ result = sys_trim(gm, pad); ++ POSTACTION(gm); ++ } ++ return result; ++} ++ ++size_t dlmalloc_footprint(void) { ++ return gm->footprint; ++} ++ ++size_t dlmalloc_max_footprint(void) { ++ return gm->max_footprint; ++} ++ ++size_t dlmalloc_footprint_limit(void) { ++ size_t maf = gm->footprint_limit; ++ return maf == 0 ? MAX_SIZE_T : maf; ++} ++ ++size_t dlmalloc_set_footprint_limit(size_t bytes) { ++ size_t result; /* invert sense of 0 */ ++ if (bytes == 0) ++ result = granularity_align(1); /* Use minimal size */ ++ if (bytes == MAX_SIZE_T) ++ result = 0; /* disable */ ++ else ++ result = granularity_align(bytes); ++ return gm->footprint_limit = result; ++} ++ ++#if !NO_MALLINFO ++struct mallinfo dlmallinfo(void) { ++ return internal_mallinfo(gm); ++} ++#endif /* NO_MALLINFO */ ++ ++#if !NO_MALLOC_STATS ++void dlmalloc_stats() { ++ internal_malloc_stats(gm); ++} ++#endif /* NO_MALLOC_STATS */ ++ ++int dlmallopt(int param_number, int value) { ++ return change_mparam(param_number, value); ++} ++ ++/* BEGIN android-changed: added const */ ++size_t dlmalloc_usable_size(const void* mem) { ++/* END android-change */ ++ if (mem != 0) { ++ mchunkptr p = mem2chunk(mem); ++ if (is_inuse(p)) ++ return chunksize(p) - overhead_for(p); ++ } ++ return 0; ++} ++ ++#endif /* !ONLY_MSPACES */ ++ ++/* ----------------------------- user mspaces ---------------------------- */ ++ ++#if MSPACES ++ ++static mstate init_user_mstate(char* tbase, size_t tsize) { ++ size_t msize = pad_request(sizeof(struct malloc_state)); ++ mchunkptr mn; ++ mchunkptr msp = align_as_chunk(tbase); ++ mstate m = (mstate)(chunk2mem(msp)); ++ memset(m, 0, msize); ++ (void)INITIAL_LOCK(&m->mutex); ++ msp->head = (msize|INUSE_BITS); ++ m->seg.base = m->least_addr = tbase; ++ m->seg.size = m->footprint = m->max_footprint = tsize; ++ m->magic = mparams.magic; ++ m->release_checks = MAX_RELEASE_CHECK_RATE; ++ m->mflags = mparams.default_mflags; ++ m->extp = 0; ++ m->exts = 0; ++ disable_contiguous(m); ++ init_bins(m); ++ mn = next_chunk(mem2chunk(m)); ++ init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE); ++ check_top_chunk(m, m->top); ++ return m; ++} ++ ++mspace create_mspace(size_t capacity, int locked) { ++ mstate m = 0; ++ size_t msize; ++ ensure_initialization(); ++ msize = pad_request(sizeof(struct malloc_state)); ++ if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) { ++ size_t rs = ((capacity == 0)? mparams.granularity : ++ (capacity + TOP_FOOT_SIZE + msize)); ++ size_t tsize = granularity_align(rs); ++ char* tbase = (char*)(CALL_MMAP(tsize)); ++ if (tbase != CMFAIL) { ++ m = init_user_mstate(tbase, tsize); ++ m->seg.sflags = USE_MMAP_BIT; ++ set_lock(m, locked); ++ } ++ } ++ return (mspace)m; ++} ++ ++mspace create_mspace_with_base(void* base, size_t capacity, int locked) { ++ mstate m = 0; ++ size_t msize; ++ ensure_initialization(); ++ msize = pad_request(sizeof(struct malloc_state)); ++ if (capacity > msize + TOP_FOOT_SIZE && ++ capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) { ++ m = init_user_mstate((char*)base, capacity); ++ m->seg.sflags = EXTERN_BIT; ++ set_lock(m, locked); ++ } ++ return (mspace)m; ++} ++ ++int mspace_track_large_chunks(mspace msp, int enable) { ++ int ret = 0; ++ mstate ms = (mstate)msp; ++ if (!PREACTION(ms)) { ++ if (!use_mmap(ms)) { ++ ret = 1; ++ } ++ if (!enable) { ++ enable_mmap(ms); ++ } else { ++ disable_mmap(ms); ++ } ++ POSTACTION(ms); ++ } ++ return ret; ++} ++ ++size_t destroy_mspace(mspace msp) { ++ size_t freed = 0; ++ mstate ms = (mstate)msp; ++ if (ok_magic(ms)) { ++ msegmentptr sp = &ms->seg; ++ (void)DESTROY_LOCK(&ms->mutex); /* destroy before unmapped */ ++ while (sp != 0) { ++ char* base = sp->base; ++ size_t size = sp->size; ++ flag_t flag = sp->sflags; ++ (void)base; /* placate people compiling -Wunused-variable */ ++ sp = sp->next; ++ if ((flag & USE_MMAP_BIT) && !(flag & EXTERN_BIT) && ++ CALL_MUNMAP(base, size) == 0) ++ freed += size; ++ } ++ } ++ else { ++ USAGE_ERROR_ACTION(ms,ms); ++ } ++ return freed; ++} ++ ++/* ++ mspace versions of routines are near-clones of the global ++ versions. This is not so nice but better than the alternatives. ++*/ ++ ++void* mspace_malloc(mspace msp, size_t bytes) { ++ mstate ms = (mstate)msp; ++ if (!ok_magic(ms)) { ++ USAGE_ERROR_ACTION(ms,ms); ++ return 0; ++ } ++ if (!PREACTION(ms)) { ++ void* mem; ++ size_t nb; ++ if (bytes <= MAX_SMALL_REQUEST) { ++ bindex_t idx; ++ binmap_t smallbits; ++ nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); ++ idx = small_index(nb); ++ smallbits = ms->smallmap >> idx; ++ ++ if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ ++ mchunkptr b, p; ++ idx += ~smallbits & 1; /* Uses next bin if idx empty */ ++ b = smallbin_at(ms, idx); ++ p = b->fd; ++ assert(chunksize(p) == small_index2size(idx)); ++ unlink_first_small_chunk(ms, b, p, idx); ++ set_inuse_and_pinuse(ms, p, small_index2size(idx)); ++ mem = chunk2mem(p); ++ check_malloced_chunk(ms, mem, nb); ++ goto postaction; ++ } ++ ++ else if (nb > ms->dvsize) { ++ if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ ++ mchunkptr b, p, r; ++ size_t rsize; ++ bindex_t i; ++ binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); ++ binmap_t leastbit = least_bit(leftbits); ++ compute_bit2idx(leastbit, i); ++ b = smallbin_at(ms, i); ++ p = b->fd; ++ assert(chunksize(p) == small_index2size(i)); ++ unlink_first_small_chunk(ms, b, p, i); ++ rsize = small_index2size(i) - nb; ++ /* Fit here cannot be remainderless if 4byte sizes */ ++ if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) ++ set_inuse_and_pinuse(ms, p, small_index2size(i)); ++ else { ++ set_size_and_pinuse_of_inuse_chunk(ms, p, nb); ++ r = chunk_plus_offset(p, nb); ++ set_size_and_pinuse_of_free_chunk(r, rsize); ++ replace_dv(ms, r, rsize); ++ } ++ mem = chunk2mem(p); ++ check_malloced_chunk(ms, mem, nb); ++ goto postaction; ++ } ++ ++ else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) { ++ check_malloced_chunk(ms, mem, nb); ++ goto postaction; ++ } ++ } ++ } ++ else if (bytes >= MAX_REQUEST) ++ nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ ++ else { ++ nb = pad_request(bytes); ++ if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) { ++ check_malloced_chunk(ms, mem, nb); ++ goto postaction; ++ } ++ } ++ ++ if (nb <= ms->dvsize) { ++ size_t rsize = ms->dvsize - nb; ++ mchunkptr p = ms->dv; ++ if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ ++ mchunkptr r = ms->dv = chunk_plus_offset(p, nb); ++ ms->dvsize = rsize; ++ set_size_and_pinuse_of_free_chunk(r, rsize); ++ set_size_and_pinuse_of_inuse_chunk(ms, p, nb); ++ } ++ else { /* exhaust dv */ ++ size_t dvs = ms->dvsize; ++ ms->dvsize = 0; ++ ms->dv = 0; ++ set_inuse_and_pinuse(ms, p, dvs); ++ } ++ mem = chunk2mem(p); ++ check_malloced_chunk(ms, mem, nb); ++ goto postaction; ++ } ++ ++ else if (nb < ms->topsize) { /* Split top */ ++ size_t rsize = ms->topsize -= nb; ++ mchunkptr p = ms->top; ++ mchunkptr r = ms->top = chunk_plus_offset(p, nb); ++ r->head = rsize | PINUSE_BIT; ++ set_size_and_pinuse_of_inuse_chunk(ms, p, nb); ++ mem = chunk2mem(p); ++ check_top_chunk(ms, ms->top); ++ check_malloced_chunk(ms, mem, nb); ++ goto postaction; ++ } ++ ++ mem = sys_alloc(ms, nb); ++ ++ postaction: ++ POSTACTION(ms); ++ return mem; ++ } ++ ++ return 0; ++} ++ ++void mspace_free(mspace msp, void* mem) { ++ if (mem != 0) { ++ mchunkptr p = mem2chunk(mem); ++#if FOOTERS ++ mstate fm = get_mstate_for(p); ++ (void)msp; /* placate people compiling -Wunused */ ++#else /* FOOTERS */ ++ mstate fm = (mstate)msp; ++#endif /* FOOTERS */ ++ if (!ok_magic(fm)) { ++ USAGE_ERROR_ACTION(fm, p); ++ return; ++ } ++ if (!PREACTION(fm)) { ++ check_inuse_chunk(fm, p); ++ if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) { ++ size_t psize = chunksize(p); ++ mchunkptr next = chunk_plus_offset(p, psize); ++ if (!pinuse(p)) { ++ size_t prevsize = p->prev_foot; ++ if (is_mmapped(p)) { ++ psize += prevsize + MMAP_FOOT_PAD; ++ if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) ++ fm->footprint -= psize; ++ goto postaction; ++ } ++ else { ++ mchunkptr prev = chunk_minus_offset(p, prevsize); ++ psize += prevsize; ++ p = prev; ++ if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ ++ if (p != fm->dv) { ++ unlink_chunk(fm, p, prevsize); ++ } ++ else if ((next->head & INUSE_BITS) == INUSE_BITS) { ++ fm->dvsize = psize; ++ set_free_with_pinuse(p, psize, next); ++ goto postaction; ++ } ++ } ++ else ++ goto erroraction; ++ } ++ } ++ ++ if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { ++ if (!cinuse(next)) { /* consolidate forward */ ++ if (next == fm->top) { ++ size_t tsize = fm->topsize += psize; ++ fm->top = p; ++ p->head = tsize | PINUSE_BIT; ++ if (p == fm->dv) { ++ fm->dv = 0; ++ fm->dvsize = 0; ++ } ++ if (should_trim(fm, tsize)) ++ sys_trim(fm, 0); ++ goto postaction; ++ } ++ else if (next == fm->dv) { ++ size_t dsize = fm->dvsize += psize; ++ fm->dv = p; ++ set_size_and_pinuse_of_free_chunk(p, dsize); ++ goto postaction; ++ } ++ else { ++ size_t nsize = chunksize(next); ++ psize += nsize; ++ unlink_chunk(fm, next, nsize); ++ set_size_and_pinuse_of_free_chunk(p, psize); ++ if (p == fm->dv) { ++ fm->dvsize = psize; ++ goto postaction; ++ } ++ } ++ } ++ else ++ set_free_with_pinuse(p, psize, next); ++ ++ if (is_small(psize)) { ++ insert_small_chunk(fm, p, psize); ++ check_free_chunk(fm, p); ++ } ++ else { ++ tchunkptr tp = (tchunkptr)p; ++ insert_large_chunk(fm, tp, psize); ++ check_free_chunk(fm, p); ++ if (--fm->release_checks == 0) ++ release_unused_segments(fm); ++ } ++ goto postaction; ++ } ++ } ++ erroraction: ++ USAGE_ERROR_ACTION(fm, p); ++ postaction: ++ POSTACTION(fm); ++ } ++ } ++} ++ ++void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) { ++ void* mem; ++ size_t req = 0; ++ mstate ms = (mstate)msp; ++ if (!ok_magic(ms)) { ++ USAGE_ERROR_ACTION(ms,ms); ++ return 0; ++ } ++ if (n_elements != 0) { ++ req = n_elements * elem_size; ++ if (((n_elements | elem_size) & ~(size_t)0xffff) && ++ (req / n_elements != elem_size)) ++ req = MAX_SIZE_T; /* force downstream failure on overflow */ ++ } ++ mem = internal_malloc(ms, req); ++ if (mem != 0 && calloc_must_clear(mem2chunk(mem))) ++ memset(mem, 0, req); ++ return mem; ++} ++ ++void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) { ++ void* mem = 0; ++ if (oldmem == 0) { ++ mem = mspace_malloc(msp, bytes); ++ } ++ else if (bytes >= MAX_REQUEST) { ++ MALLOC_FAILURE_ACTION; ++ } ++#ifdef REALLOC_ZERO_BYTES_FREES ++ else if (bytes == 0) { ++ mspace_free(msp, oldmem); ++ } ++#endif /* REALLOC_ZERO_BYTES_FREES */ ++ else { ++ size_t nb = request2size(bytes); ++ mchunkptr oldp = mem2chunk(oldmem); ++#if ! FOOTERS ++ mstate m = (mstate)msp; ++#else /* FOOTERS */ ++ mstate m = get_mstate_for(oldp); ++ if (!ok_magic(m)) { ++ USAGE_ERROR_ACTION(m, oldmem); ++ return 0; ++ } ++#endif /* FOOTERS */ ++ if (!PREACTION(m)) { ++ mchunkptr newp = try_realloc_chunk(m, oldp, nb, 1); ++ POSTACTION(m); ++ if (newp != 0) { ++ check_inuse_chunk(m, newp); ++ mem = chunk2mem(newp); ++ } ++ else { ++ mem = mspace_malloc(m, bytes); ++ if (mem != 0) { ++ size_t oc = chunksize(oldp) - overhead_for(oldp); ++ memcpy(mem, oldmem, (oc < bytes)? oc : bytes); ++ mspace_free(m, oldmem); ++ } ++ } ++ } ++ } ++ return mem; ++} ++ ++void* mspace_realloc_in_place(mspace msp, void* oldmem, size_t bytes) { ++ void* mem = 0; ++ if (oldmem != 0) { ++ if (bytes >= MAX_REQUEST) { ++ MALLOC_FAILURE_ACTION; ++ } ++ else { ++ size_t nb = request2size(bytes); ++ mchunkptr oldp = mem2chunk(oldmem); ++#if ! FOOTERS ++ mstate m = (mstate)msp; ++#else /* FOOTERS */ ++ mstate m = get_mstate_for(oldp); ++ (void)msp; /* placate people compiling -Wunused */ ++ if (!ok_magic(m)) { ++ USAGE_ERROR_ACTION(m, oldmem); ++ return 0; ++ } ++#endif /* FOOTERS */ ++ if (!PREACTION(m)) { ++ mchunkptr newp = try_realloc_chunk(m, oldp, nb, 0); ++ POSTACTION(m); ++ if (newp == oldp) { ++ check_inuse_chunk(m, newp); ++ mem = oldmem; ++ } ++ } ++ } ++ } ++ return mem; ++} ++ ++void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) { ++ mstate ms = (mstate)msp; ++ if (!ok_magic(ms)) { ++ USAGE_ERROR_ACTION(ms,ms); ++ return 0; ++ } ++ if (alignment <= MALLOC_ALIGNMENT) ++ return mspace_malloc(msp, bytes); ++ return internal_memalign(ms, alignment, bytes); ++} ++ ++void** mspace_independent_calloc(mspace msp, size_t n_elements, ++ size_t elem_size, void* chunks[]) { ++ size_t sz = elem_size; /* serves as 1-element array */ ++ mstate ms = (mstate)msp; ++ if (!ok_magic(ms)) { ++ USAGE_ERROR_ACTION(ms,ms); ++ return 0; ++ } ++ return ialloc(ms, n_elements, &sz, 3, chunks); ++} ++ ++void** mspace_independent_comalloc(mspace msp, size_t n_elements, ++ size_t sizes[], void* chunks[]) { ++ mstate ms = (mstate)msp; ++ if (!ok_magic(ms)) { ++ USAGE_ERROR_ACTION(ms,ms); ++ return 0; ++ } ++ return ialloc(ms, n_elements, sizes, 0, chunks); ++} ++ ++size_t mspace_bulk_free(mspace msp, void* array[], size_t nelem) { ++ return internal_bulk_free((mstate)msp, array, nelem); ++} ++ ++#if MALLOC_INSPECT_ALL ++void mspace_inspect_all(mspace msp, ++ void(*handler)(void *start, ++ void *end, ++ size_t used_bytes, ++ void* callback_arg), ++ void* arg) { ++ mstate ms = (mstate)msp; ++ if (ok_magic(ms)) { ++ if (!PREACTION(ms)) { ++ internal_inspect_all(ms, handler, arg); ++ POSTACTION(ms); ++ } ++ } ++ else { ++ USAGE_ERROR_ACTION(ms,ms); ++ } ++} ++#endif /* MALLOC_INSPECT_ALL */ ++ ++int mspace_trim(mspace msp, size_t pad) { ++ int result = 0; ++ mstate ms = (mstate)msp; ++ if (ok_magic(ms)) { ++ if (!PREACTION(ms)) { ++ result = sys_trim(ms, pad); ++ POSTACTION(ms); ++ } ++ } ++ else { ++ USAGE_ERROR_ACTION(ms,ms); ++ } ++ return result; ++} ++ ++#if !NO_MALLOC_STATS ++void mspace_malloc_stats(mspace msp) { ++ mstate ms = (mstate)msp; ++ if (ok_magic(ms)) { ++ internal_malloc_stats(ms); ++ } ++ else { ++ USAGE_ERROR_ACTION(ms,ms); ++ } ++} ++#endif /* NO_MALLOC_STATS */ ++ ++size_t mspace_footprint(mspace msp) { ++ size_t result = 0; ++ mstate ms = (mstate)msp; ++ if (ok_magic(ms)) { ++ result = ms->footprint; ++ } ++ else { ++ USAGE_ERROR_ACTION(ms,ms); ++ } ++ return result; ++} ++ ++size_t mspace_max_footprint(mspace msp) { ++ size_t result = 0; ++ mstate ms = (mstate)msp; ++ if (ok_magic(ms)) { ++ result = ms->max_footprint; ++ } ++ else { ++ USAGE_ERROR_ACTION(ms,ms); ++ } ++ return result; ++} ++ ++size_t mspace_footprint_limit(mspace msp) { ++ size_t result = 0; ++ mstate ms = (mstate)msp; ++ if (ok_magic(ms)) { ++ size_t maf = ms->footprint_limit; ++ result = (maf == 0) ? MAX_SIZE_T : maf; ++ } ++ else { ++ USAGE_ERROR_ACTION(ms,ms); ++ } ++ return result; ++} ++ ++size_t mspace_set_footprint_limit(mspace msp, size_t bytes) { ++ size_t result = 0; ++ mstate ms = (mstate)msp; ++ if (ok_magic(ms)) { ++ if (bytes == 0) ++ result = granularity_align(1); /* Use minimal size */ ++ if (bytes == MAX_SIZE_T) ++ result = 0; /* disable */ ++ else ++ result = granularity_align(bytes); ++ ms->footprint_limit = result; ++ } ++ else { ++ USAGE_ERROR_ACTION(ms,ms); ++ } ++ return result; ++} ++ ++#if !NO_MALLINFO ++struct mallinfo mspace_mallinfo(mspace msp) { ++ mstate ms = (mstate)msp; ++ if (!ok_magic(ms)) { ++ USAGE_ERROR_ACTION(ms,ms); ++ } ++ return internal_mallinfo(ms); ++} ++#endif /* NO_MALLINFO */ ++ ++size_t mspace_usable_size(const void* mem) { ++ if (mem != 0) { ++ mchunkptr p = mem2chunk(mem); ++ if (is_inuse(p)) ++ return chunksize(p) - overhead_for(p); ++ } ++ return 0; ++} ++ ++int mspace_mallopt(int param_number, int value) { ++ return change_mparam(param_number, value); ++} ++ ++#endif /* MSPACES */ ++ ++ ++/* -------------------- Alternative MORECORE functions ------------------- */ ++ ++/* ++ Guidelines for creating a custom version of MORECORE: ++ ++ * For best performance, MORECORE should allocate in multiples of pagesize. ++ * MORECORE may allocate more memory than requested. (Or even less, ++ but this will usually result in a malloc failure.) ++ * MORECORE must not allocate memory when given argument zero, but ++ instead return one past the end address of memory from previous ++ nonzero call. ++ * For best performance, consecutive calls to MORECORE with positive ++ arguments should return increasing addresses, indicating that ++ space has been contiguously extended. ++ * Even though consecutive calls to MORECORE need not return contiguous ++ addresses, it must be OK for malloc'ed chunks to span multiple ++ regions in those cases where they do happen to be contiguous. ++ * MORECORE need not handle negative arguments -- it may instead ++ just return MFAIL when given negative arguments. ++ Negative arguments are always multiples of pagesize. MORECORE ++ must not misinterpret negative args as large positive unsigned ++ args. You can suppress all such calls from even occurring by defining ++ MORECORE_CANNOT_TRIM, ++ ++ As an example alternative MORECORE, here is a custom allocator ++ kindly contributed for pre-OSX macOS. It uses virtually but not ++ necessarily physically contiguous non-paged memory (locked in, ++ present and won't get swapped out). You can use it by uncommenting ++ this section, adding some #includes, and setting up the appropriate ++ defines above: ++ ++ #define MORECORE osMoreCore ++ ++ There is also a shutdown routine that should somehow be called for ++ cleanup upon program exit. ++ ++ #define MAX_POOL_ENTRIES 100 ++ #define MINIMUM_MORECORE_SIZE (64 * 1024U) ++ static int next_os_pool; ++ void *our_os_pools[MAX_POOL_ENTRIES]; ++ ++ void *osMoreCore(int size) ++ { ++ void *ptr = 0; ++ static void *sbrk_top = 0; ++ ++ if (size > 0) ++ { ++ if (size < MINIMUM_MORECORE_SIZE) ++ size = MINIMUM_MORECORE_SIZE; ++ if (CurrentExecutionLevel() == kTaskLevel) ++ ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0); ++ if (ptr == 0) ++ { ++ return (void *) MFAIL; ++ } ++ // save ptrs so they can be freed during cleanup ++ our_os_pools[next_os_pool] = ptr; ++ next_os_pool++; ++ ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK); ++ sbrk_top = (char *) ptr + size; ++ return ptr; ++ } ++ else if (size < 0) ++ { ++ // we don't currently support shrink behavior ++ return (void *) MFAIL; ++ } ++ else ++ { ++ return sbrk_top; ++ } ++ } ++ ++ // cleanup any allocated memory pools ++ // called as last thing before shutting down driver ++ ++ void osCleanupMem(void) ++ { ++ void **ptr; ++ ++ for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++) ++ if (*ptr) ++ { ++ PoolDeallocate(*ptr); ++ *ptr = 0; ++ } ++ } ++ ++*/ ++ ++ ++/* ----------------------------------------------------------------------- ++History: ++ v2.8.6 Wed Aug 29 06:57:58 2012 Doug Lea ++ * fix bad comparison in dlposix_memalign ++ * don't reuse adjusted asize in sys_alloc ++ * add LOCK_AT_FORK -- thanks to Kirill Artamonov for the suggestion ++ * reduce compiler warnings -- thanks to all who reported/suggested these ++ ++ v2.8.5 Sun May 22 10:26:02 2011 Doug Lea (dl at gee) ++ * Always perform unlink checks unless INSECURE ++ * Add posix_memalign. ++ * Improve realloc to expand in more cases; expose realloc_in_place. ++ Thanks to Peter Buhr for the suggestion. ++ * Add footprint_limit, inspect_all, bulk_free. Thanks ++ to Barry Hayes and others for the suggestions. ++ * Internal refactorings to avoid calls while holding locks ++ * Use non-reentrant locks by default. Thanks to Roland McGrath ++ for the suggestion. ++ * Small fixes to mspace_destroy, reset_on_error. ++ * Various configuration extensions/changes. Thanks ++ to all who contributed these. ++ ++ V2.8.4a Thu Apr 28 14:39:43 2011 (dl at gee.cs.oswego.edu) ++ * Update Creative Commons URL ++ ++ V2.8.4 Wed May 27 09:56:23 2009 Doug Lea (dl at gee) ++ * Use zeros instead of prev foot for is_mmapped ++ * Add mspace_track_large_chunks; thanks to Jean Brouwers ++ * Fix set_inuse in internal_realloc; thanks to Jean Brouwers ++ * Fix insufficient sys_alloc padding when using 16byte alignment ++ * Fix bad error check in mspace_footprint ++ * Adaptations for ptmalloc; thanks to Wolfram Gloger. ++ * Reentrant spin locks; thanks to Earl Chew and others ++ * Win32 improvements; thanks to Niall Douglas and Earl Chew ++ * Add NO_SEGMENT_TRAVERSAL and MAX_RELEASE_CHECK_RATE options ++ * Extension hook in malloc_state ++ * Various small adjustments to reduce warnings on some compilers ++ * Various configuration extensions/changes for more platforms. Thanks ++ to all who contributed these. ++ ++ V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee) ++ * Add max_footprint functions ++ * Ensure all appropriate literals are size_t ++ * Fix conditional compilation problem for some #define settings ++ * Avoid concatenating segments with the one provided ++ in create_mspace_with_base ++ * Rename some variables to avoid compiler shadowing warnings ++ * Use explicit lock initialization. ++ * Better handling of sbrk interference. ++ * Simplify and fix segment insertion, trimming and mspace_destroy ++ * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x ++ * Thanks especially to Dennis Flanagan for help on these. ++ ++ V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee) ++ * Fix memalign brace error. ++ ++ V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee) ++ * Fix improper #endif nesting in C++ ++ * Add explicit casts needed for C++ ++ ++ V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee) ++ * Use trees for large bins ++ * Support mspaces ++ * Use segments to unify sbrk-based and mmap-based system allocation, ++ removing need for emulation on most platforms without sbrk. ++ * Default safety checks ++ * Optional footer checks. Thanks to William Robertson for the idea. ++ * Internal code refactoring ++ * Incorporate suggestions and platform-specific changes. ++ Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas, ++ Aaron Bachmann, Emery Berger, and others. ++ * Speed up non-fastbin processing enough to remove fastbins. ++ * Remove useless cfree() to avoid conflicts with other apps. ++ * Remove internal memcpy, memset. Compilers handle builtins better. ++ * Remove some options that no one ever used and rename others. ++ ++ V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee) ++ * Fix malloc_state bitmap array misdeclaration ++ ++ V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee) ++ * Allow tuning of FIRST_SORTED_BIN_SIZE ++ * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte. ++ * Better detection and support for non-contiguousness of MORECORE. ++ Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger ++ * Bypass most of malloc if no frees. Thanks To Emery Berger. ++ * Fix freeing of old top non-contiguous chunk im sysmalloc. ++ * Raised default trim and map thresholds to 256K. ++ * Fix mmap-related #defines. Thanks to Lubos Lunak. ++ * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield. ++ * Branch-free bin calculation ++ * Default trim and mmap thresholds now 256K. ++ ++ V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee) ++ * Introduce independent_comalloc and independent_calloc. ++ Thanks to Michael Pachos for motivation and help. ++ * Make optional .h file available ++ * Allow > 2GB requests on 32bit systems. ++ * new WIN32 sbrk, mmap, munmap, lock code from . ++ Thanks also to Andreas Mueller , ++ and Anonymous. ++ * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for ++ helping test this.) ++ * memalign: check alignment arg ++ * realloc: don't try to shift chunks backwards, since this ++ leads to more fragmentation in some programs and doesn't ++ seem to help in any others. ++ * Collect all cases in malloc requiring system memory into sysmalloc ++ * Use mmap as backup to sbrk ++ * Place all internal state in malloc_state ++ * Introduce fastbins (although similar to 2.5.1) ++ * Many minor tunings and cosmetic improvements ++ * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK ++ * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS ++ Thanks to Tony E. Bennett and others. ++ * Include errno.h to support default failure action. ++ ++ V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee) ++ * return null for negative arguments ++ * Added Several WIN32 cleanups from Martin C. Fong ++ * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h' ++ (e.g. WIN32 platforms) ++ * Cleanup header file inclusion for WIN32 platforms ++ * Cleanup code to avoid Microsoft Visual C++ compiler complaints ++ * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing ++ memory allocation routines ++ * Set 'malloc_getpagesize' for WIN32 platforms (needs more work) ++ * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to ++ usage of 'assert' in non-WIN32 code ++ * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to ++ avoid infinite loop ++ * Always call 'fREe()' rather than 'free()' ++ ++ V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee) ++ * Fixed ordering problem with boundary-stamping ++ ++ V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee) ++ * Added pvalloc, as recommended by H.J. Liu ++ * Added 64bit pointer support mainly from Wolfram Gloger ++ * Added anonymously donated WIN32 sbrk emulation ++ * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen ++ * malloc_extend_top: fix mask error that caused wastage after ++ foreign sbrks ++ * Add linux mremap support code from HJ Liu ++ ++ V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee) ++ * Integrated most documentation with the code. ++ * Add support for mmap, with help from ++ Wolfram Gloger (Gloger@lrz.uni-muenchen.de). ++ * Use last_remainder in more cases. ++ * Pack bins using idea from colin@nyx10.cs.du.edu ++ * Use ordered bins instead of best-fit threshhold ++ * Eliminate block-local decls to simplify tracing and debugging. ++ * Support another case of realloc via move into top ++ * Fix error occuring when initial sbrk_base not word-aligned. ++ * Rely on page size for units instead of SBRK_UNIT to ++ avoid surprises about sbrk alignment conventions. ++ * Add mallinfo, mallopt. Thanks to Raymond Nijssen ++ (raymond@es.ele.tue.nl) for the suggestion. ++ * Add `pad' argument to malloc_trim and top_pad mallopt parameter. ++ * More precautions for cases where other routines call sbrk, ++ courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de). ++ * Added macros etc., allowing use in linux libc from ++ H.J. Lu (hjl@gnu.ai.mit.edu) ++ * Inverted this history list ++ ++ V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee) ++ * Re-tuned and fixed to behave more nicely with V2.6.0 changes. ++ * Removed all preallocation code since under current scheme ++ the work required to undo bad preallocations exceeds ++ the work saved in good cases for most test programs. ++ * No longer use return list or unconsolidated bins since ++ no scheme using them consistently outperforms those that don't ++ given above changes. ++ * Use best fit for very large chunks to prevent some worst-cases. ++ * Added some support for debugging ++ ++ V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee) ++ * Removed footers when chunks are in use. Thanks to ++ Paul Wilson (wilson@cs.texas.edu) for the suggestion. ++ ++ V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee) ++ * Added malloc_trim, with help from Wolfram Gloger ++ (wmglo@Dent.MED.Uni-Muenchen.DE). ++ ++ V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g) ++ ++ V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g) ++ * realloc: try to expand in both directions ++ * malloc: swap order of clean-bin strategy; ++ * realloc: only conditionally expand backwards ++ * Try not to scavenge used bins ++ * Use bin counts as a guide to preallocation ++ * Occasionally bin return list chunks in first scan ++ * Add a few optimizations from colin@nyx10.cs.du.edu ++ ++ V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g) ++ * faster bin computation & slightly different binning ++ * merged all consolidations to one part of malloc proper ++ (eliminating old malloc_find_space & malloc_clean_bin) ++ * Scan 2 returns chunks (not just 1) ++ * Propagate failure in realloc if malloc returns 0 ++ * Add stuff to allow compilation on non-ANSI compilers ++ from kpv@research.att.com ++ ++ V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu) ++ * removed potential for odd address access in prev_chunk ++ * removed dependency on getpagesize.h ++ * misc cosmetics and a bit more internal documentation ++ * anticosmetics: mangled names in macros to evade debugger strangeness ++ * tested on sparc, hp-700, dec-mips, rs6000 ++ with gcc & native cc (hp, dec only) allowing ++ Detlefs & Zorn comparison study (in SIGPLAN Notices.) ++ ++ Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu) ++ * Based loosely on libg++-1.2X malloc. (It retains some of the overall ++ structure of old version, but most details differ.) ++ ++*/ diff --cc debian/dlmalloc/malloc.h index 0000000,0000000..e52c9e5 new file mode 100644 --- /dev/null +++ b/debian/dlmalloc/malloc.h @@@ -1,0 -1,0 +1,620 @@@ ++/* ++ Default header file for malloc-2.8.x, written by Doug Lea ++ and released to the public domain, as explained at ++ http://creativecommons.org/publicdomain/zero/1.0/ ++ ++ This header is for ANSI C/C++ only. You can set any of ++ the following #defines before including: ++ ++ * If USE_DL_PREFIX is defined, it is assumed that malloc.c ++ was also compiled with this option, so all routines ++ have names starting with "dl". ++ ++ * If HAVE_USR_INCLUDE_MALLOC_H is defined, it is assumed that this ++ file will be #included AFTER . This is needed only if ++ your system defines a struct mallinfo that is incompatible with the ++ standard one declared here. Otherwise, you can include this file ++ INSTEAD of your system system . At least on ANSI, all ++ declarations should be compatible with system versions ++ ++ * If MSPACES is defined, declarations for mspace versions are included. ++*/ ++ ++#ifndef MALLOC_280_H ++#define MALLOC_280_H ++ ++#ifdef __cplusplus ++extern "C" { ++#endif ++ ++#include /* for size_t */ ++ ++#ifndef ONLY_MSPACES ++#define ONLY_MSPACES 0 /* define to a value */ ++#elif ONLY_MSPACES != 0 ++#define ONLY_MSPACES 1 ++#endif /* ONLY_MSPACES */ ++#ifndef NO_MALLINFO ++#define NO_MALLINFO 0 ++#endif /* NO_MALLINFO */ ++ ++#ifndef MSPACES ++#if ONLY_MSPACES ++#define MSPACES 1 ++#else /* ONLY_MSPACES */ ++#define MSPACES 0 ++#endif /* ONLY_MSPACES */ ++#endif /* MSPACES */ ++ ++#if !ONLY_MSPACES ++ ++#ifndef USE_DL_PREFIX ++#define dlcalloc calloc ++#define dlfree free ++#define dlmalloc malloc ++#define dlmemalign memalign ++#define dlposix_memalign posix_memalign ++#define dlrealloc realloc ++#define dlvalloc valloc ++#define dlpvalloc pvalloc ++#define dlmallinfo mallinfo ++#define dlmallopt mallopt ++#define dlmalloc_trim malloc_trim ++#define dlmalloc_stats malloc_stats ++#define dlmalloc_usable_size malloc_usable_size ++#define dlmalloc_footprint malloc_footprint ++#define dlmalloc_max_footprint malloc_max_footprint ++#define dlmalloc_footprint_limit malloc_footprint_limit ++#define dlmalloc_set_footprint_limit malloc_set_footprint_limit ++#define dlmalloc_inspect_all malloc_inspect_all ++#define dlindependent_calloc independent_calloc ++#define dlindependent_comalloc independent_comalloc ++#define dlbulk_free bulk_free ++#endif /* USE_DL_PREFIX */ ++ ++#if !NO_MALLINFO ++#ifndef HAVE_USR_INCLUDE_MALLOC_H ++#ifndef _MALLOC_H ++#ifndef MALLINFO_FIELD_TYPE ++#define MALLINFO_FIELD_TYPE size_t ++#endif /* MALLINFO_FIELD_TYPE */ ++#ifndef STRUCT_MALLINFO_DECLARED ++#define STRUCT_MALLINFO_DECLARED 1 ++struct mallinfo { ++ MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */ ++ MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */ ++ MALLINFO_FIELD_TYPE smblks; /* always 0 */ ++ MALLINFO_FIELD_TYPE hblks; /* always 0 */ ++ MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */ ++ MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */ ++ MALLINFO_FIELD_TYPE fsmblks; /* always 0 */ ++ MALLINFO_FIELD_TYPE uordblks; /* total allocated space */ ++ MALLINFO_FIELD_TYPE fordblks; /* total free space */ ++ MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */ ++}; ++#endif /* STRUCT_MALLINFO_DECLARED */ ++#endif /* _MALLOC_H */ ++#endif /* HAVE_USR_INCLUDE_MALLOC_H */ ++#endif /* !NO_MALLINFO */ ++ ++/* ++ malloc(size_t n) ++ Returns a pointer to a newly allocated chunk of at least n bytes, or ++ null if no space is available, in which case errno is set to ENOMEM ++ on ANSI C systems. ++ ++ If n is zero, malloc returns a minimum-sized chunk. (The minimum ++ size is 16 bytes on most 32bit systems, and 32 bytes on 64bit ++ systems.) Note that size_t is an unsigned type, so calls with ++ arguments that would be negative if signed are interpreted as ++ requests for huge amounts of space, which will often fail. The ++ maximum supported value of n differs across systems, but is in all ++ cases less than the maximum representable value of a size_t. ++*/ ++void* dlmalloc(size_t); ++ ++/* ++ free(void* p) ++ Releases the chunk of memory pointed to by p, that had been previously ++ allocated using malloc or a related routine such as realloc. ++ It has no effect if p is null. If p was not malloced or already ++ freed, free(p) will by default cuase the current program to abort. ++*/ ++void dlfree(void*); ++ ++/* ++ calloc(size_t n_elements, size_t element_size); ++ Returns a pointer to n_elements * element_size bytes, with all locations ++ set to zero. ++*/ ++void* dlcalloc(size_t, size_t); ++ ++/* ++ realloc(void* p, size_t n) ++ Returns a pointer to a chunk of size n that contains the same data ++ as does chunk p up to the minimum of (n, p's size) bytes, or null ++ if no space is available. ++ ++ The returned pointer may or may not be the same as p. The algorithm ++ prefers extending p in most cases when possible, otherwise it ++ employs the equivalent of a malloc-copy-free sequence. ++ ++ If p is null, realloc is equivalent to malloc. ++ ++ If space is not available, realloc returns null, errno is set (if on ++ ANSI) and p is NOT freed. ++ ++ if n is for fewer bytes than already held by p, the newly unused ++ space is lopped off and freed if possible. realloc with a size ++ argument of zero (re)allocates a minimum-sized chunk. ++ ++ The old unix realloc convention of allowing the last-free'd chunk ++ to be used as an argument to realloc is not supported. ++*/ ++void* dlrealloc(void*, size_t); ++ ++/* ++ realloc_in_place(void* p, size_t n) ++ Resizes the space allocated for p to size n, only if this can be ++ done without moving p (i.e., only if there is adjacent space ++ available if n is greater than p's current allocated size, or n is ++ less than or equal to p's size). This may be used instead of plain ++ realloc if an alternative allocation strategy is needed upon failure ++ to expand space; for example, reallocation of a buffer that must be ++ memory-aligned or cleared. You can use realloc_in_place to trigger ++ these alternatives only when needed. ++ ++ Returns p if successful; otherwise null. ++*/ ++void* dlrealloc_in_place(void*, size_t); ++ ++/* ++ memalign(size_t alignment, size_t n); ++ Returns a pointer to a newly allocated chunk of n bytes, aligned ++ in accord with the alignment argument. ++ ++ The alignment argument should be a power of two. If the argument is ++ not a power of two, the nearest greater power is used. ++ 8-byte alignment is guaranteed by normal malloc calls, so don't ++ bother calling memalign with an argument of 8 or less. ++ ++ Overreliance on memalign is a sure way to fragment space. ++*/ ++void* dlmemalign(size_t, size_t); ++ ++/* ++ int posix_memalign(void** pp, size_t alignment, size_t n); ++ Allocates a chunk of n bytes, aligned in accord with the alignment ++ argument. Differs from memalign only in that it (1) assigns the ++ allocated memory to *pp rather than returning it, (2) fails and ++ returns EINVAL if the alignment is not a power of two (3) fails and ++ returns ENOMEM if memory cannot be allocated. ++*/ ++int dlposix_memalign(void**, size_t, size_t); ++ ++/* ++ valloc(size_t n); ++ Equivalent to memalign(pagesize, n), where pagesize is the page ++ size of the system. If the pagesize is unknown, 4096 is used. ++*/ ++void* dlvalloc(size_t); ++ ++/* ++ mallopt(int parameter_number, int parameter_value) ++ Sets tunable parameters The format is to provide a ++ (parameter-number, parameter-value) pair. mallopt then sets the ++ corresponding parameter to the argument value if it can (i.e., so ++ long as the value is meaningful), and returns 1 if successful else ++ 0. SVID/XPG/ANSI defines four standard param numbers for mallopt, ++ normally defined in malloc.h. None of these are use in this malloc, ++ so setting them has no effect. But this malloc also supports other ++ options in mallopt: ++ ++ Symbol param # default allowed param values ++ M_TRIM_THRESHOLD -1 2*1024*1024 any (-1U disables trimming) ++ M_GRANULARITY -2 page size any power of 2 >= page size ++ M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support) ++*/ ++int dlmallopt(int, int); ++ ++#define M_TRIM_THRESHOLD (-1) ++#define M_GRANULARITY (-2) ++#define M_MMAP_THRESHOLD (-3) ++ ++ ++/* ++ malloc_footprint(); ++ Returns the number of bytes obtained from the system. The total ++ number of bytes allocated by malloc, realloc etc., is less than this ++ value. Unlike mallinfo, this function returns only a precomputed ++ result, so can be called frequently to monitor memory consumption. ++ Even if locks are otherwise defined, this function does not use them, ++ so results might not be up to date. ++*/ ++size_t dlmalloc_footprint(void); ++ ++/* ++ malloc_max_footprint(); ++ Returns the maximum number of bytes obtained from the system. This ++ value will be greater than current footprint if deallocated space ++ has been reclaimed by the system. The peak number of bytes allocated ++ by malloc, realloc etc., is less than this value. Unlike mallinfo, ++ this function returns only a precomputed result, so can be called ++ frequently to monitor memory consumption. Even if locks are ++ otherwise defined, this function does not use them, so results might ++ not be up to date. ++*/ ++size_t dlmalloc_max_footprint(void); ++ ++/* ++ malloc_footprint_limit(); ++ Returns the number of bytes that the heap is allowed to obtain from ++ the system, returning the last value returned by ++ malloc_set_footprint_limit, or the maximum size_t value if ++ never set. The returned value reflects a permission. There is no ++ guarantee that this number of bytes can actually be obtained from ++ the system. ++*/ ++size_t dlmalloc_footprint_limit(void); ++ ++/* ++ malloc_set_footprint_limit(); ++ Sets the maximum number of bytes to obtain from the system, causing ++ failure returns from malloc and related functions upon attempts to ++ exceed this value. The argument value may be subject to page ++ rounding to an enforceable limit; this actual value is returned. ++ Using an argument of the maximum possible size_t effectively ++ disables checks. If the argument is less than or equal to the ++ current malloc_footprint, then all future allocations that require ++ additional system memory will fail. However, invocation cannot ++ retroactively deallocate existing used memory. ++*/ ++size_t dlmalloc_set_footprint_limit(size_t bytes); ++ ++/* ++ malloc_inspect_all(void(*handler)(void *start, ++ void *end, ++ size_t used_bytes, ++ void* callback_arg), ++ void* arg); ++ Traverses the heap and calls the given handler for each managed ++ region, skipping all bytes that are (or may be) used for bookkeeping ++ purposes. Traversal does not include include chunks that have been ++ directly memory mapped. Each reported region begins at the start ++ address, and continues up to but not including the end address. The ++ first used_bytes of the region contain allocated data. If ++ used_bytes is zero, the region is unallocated. The handler is ++ invoked with the given callback argument. If locks are defined, they ++ are held during the entire traversal. It is a bad idea to invoke ++ other malloc functions from within the handler. ++ ++ For example, to count the number of in-use chunks with size greater ++ than 1000, you could write: ++ static int count = 0; ++ void count_chunks(void* start, void* end, size_t used, void* arg) { ++ if (used >= 1000) ++count; ++ } ++ then: ++ malloc_inspect_all(count_chunks, NULL); ++ ++ malloc_inspect_all is compiled only if MALLOC_INSPECT_ALL is defined. ++*/ ++void dlmalloc_inspect_all(void(*handler)(void*, void *, size_t, void*), ++ void* arg); ++ ++#if !NO_MALLINFO ++/* ++ mallinfo() ++ Returns (by copy) a struct containing various summary statistics: ++ ++ arena: current total non-mmapped bytes allocated from system ++ ordblks: the number of free chunks ++ smblks: always zero. ++ hblks: current number of mmapped regions ++ hblkhd: total bytes held in mmapped regions ++ usmblks: the maximum total allocated space. This will be greater ++ than current total if trimming has occurred. ++ fsmblks: always zero ++ uordblks: current total allocated space (normal or mmapped) ++ fordblks: total free space ++ keepcost: the maximum number of bytes that could ideally be released ++ back to system via malloc_trim. ("ideally" means that ++ it ignores page restrictions etc.) ++ ++ Because these fields are ints, but internal bookkeeping may ++ be kept as longs, the reported values may wrap around zero and ++ thus be inaccurate. ++*/ ++ ++struct mallinfo dlmallinfo(void); ++#endif /* NO_MALLINFO */ ++ ++/* ++ independent_calloc(size_t n_elements, size_t element_size, void* chunks[]); ++ ++ independent_calloc is similar to calloc, but instead of returning a ++ single cleared space, it returns an array of pointers to n_elements ++ independent elements that can hold contents of size elem_size, each ++ of which starts out cleared, and can be independently freed, ++ realloc'ed etc. The elements are guaranteed to be adjacently ++ allocated (this is not guaranteed to occur with multiple callocs or ++ mallocs), which may also improve cache locality in some ++ applications. ++ ++ The "chunks" argument is optional (i.e., may be null, which is ++ probably the most typical usage). If it is null, the returned array ++ is itself dynamically allocated and should also be freed when it is ++ no longer needed. Otherwise, the chunks array must be of at least ++ n_elements in length. It is filled in with the pointers to the ++ chunks. ++ ++ In either case, independent_calloc returns this pointer array, or ++ null if the allocation failed. If n_elements is zero and "chunks" ++ is null, it returns a chunk representing an array with zero elements ++ (which should be freed if not wanted). ++ ++ Each element must be freed when it is no longer needed. This can be ++ done all at once using bulk_free. ++ ++ independent_calloc simplifies and speeds up implementations of many ++ kinds of pools. It may also be useful when constructing large data ++ structures that initially have a fixed number of fixed-sized nodes, ++ but the number is not known at compile time, and some of the nodes ++ may later need to be freed. For example: ++ ++ struct Node { int item; struct Node* next; }; ++ ++ struct Node* build_list() { ++ struct Node** pool; ++ int n = read_number_of_nodes_needed(); ++ if (n <= 0) return 0; ++ pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0); ++ if (pool == 0) die(); ++ // organize into a linked list... ++ struct Node* first = pool[0]; ++ for (i = 0; i < n-1; ++i) ++ pool[i]->next = pool[i+1]; ++ free(pool); // Can now free the array (or not, if it is needed later) ++ return first; ++ } ++*/ ++void** dlindependent_calloc(size_t, size_t, void**); ++ ++/* ++ independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]); ++ ++ independent_comalloc allocates, all at once, a set of n_elements ++ chunks with sizes indicated in the "sizes" array. It returns ++ an array of pointers to these elements, each of which can be ++ independently freed, realloc'ed etc. The elements are guaranteed to ++ be adjacently allocated (this is not guaranteed to occur with ++ multiple callocs or mallocs), which may also improve cache locality ++ in some applications. ++ ++ The "chunks" argument is optional (i.e., may be null). If it is null ++ the returned array is itself dynamically allocated and should also ++ be freed when it is no longer needed. Otherwise, the chunks array ++ must be of at least n_elements in length. It is filled in with the ++ pointers to the chunks. ++ ++ In either case, independent_comalloc returns this pointer array, or ++ null if the allocation failed. If n_elements is zero and chunks is ++ null, it returns a chunk representing an array with zero elements ++ (which should be freed if not wanted). ++ ++ Each element must be freed when it is no longer needed. This can be ++ done all at once using bulk_free. ++ ++ independent_comallac differs from independent_calloc in that each ++ element may have a different size, and also that it does not ++ automatically clear elements. ++ ++ independent_comalloc can be used to speed up allocation in cases ++ where several structs or objects must always be allocated at the ++ same time. For example: ++ ++ struct Head { ... } ++ struct Foot { ... } ++ ++ void send_message(char* msg) { ++ int msglen = strlen(msg); ++ size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) }; ++ void* chunks[3]; ++ if (independent_comalloc(3, sizes, chunks) == 0) ++ die(); ++ struct Head* head = (struct Head*)(chunks[0]); ++ char* body = (char*)(chunks[1]); ++ struct Foot* foot = (struct Foot*)(chunks[2]); ++ // ... ++ } ++ ++ In general though, independent_comalloc is worth using only for ++ larger values of n_elements. For small values, you probably won't ++ detect enough difference from series of malloc calls to bother. ++ ++ Overuse of independent_comalloc can increase overall memory usage, ++ since it cannot reuse existing noncontiguous small chunks that ++ might be available for some of the elements. ++*/ ++void** dlindependent_comalloc(size_t, size_t*, void**); ++ ++/* ++ bulk_free(void* array[], size_t n_elements) ++ Frees and clears (sets to null) each non-null pointer in the given ++ array. This is likely to be faster than freeing them one-by-one. ++ If footers are used, pointers that have been allocated in different ++ mspaces are not freed or cleared, and the count of all such pointers ++ is returned. For large arrays of pointers with poor locality, it ++ may be worthwhile to sort this array before calling bulk_free. ++*/ ++size_t dlbulk_free(void**, size_t n_elements); ++ ++/* ++ pvalloc(size_t n); ++ Equivalent to valloc(minimum-page-that-holds(n)), that is, ++ round up n to nearest pagesize. ++ */ ++void* dlpvalloc(size_t); ++ ++/* ++ malloc_trim(size_t pad); ++ ++ If possible, gives memory back to the system (via negative arguments ++ to sbrk) if there is unused memory at the `high' end of the malloc ++ pool or in unused MMAP segments. You can call this after freeing ++ large blocks of memory to potentially reduce the system-level memory ++ requirements of a program. However, it cannot guarantee to reduce ++ memory. Under some allocation patterns, some large free blocks of ++ memory will be locked between two used chunks, so they cannot be ++ given back to the system. ++ ++ The `pad' argument to malloc_trim represents the amount of free ++ trailing space to leave untrimmed. If this argument is zero, only ++ the minimum amount of memory to maintain internal data structures ++ will be left. Non-zero arguments can be supplied to maintain enough ++ trailing space to service future expected allocations without having ++ to re-obtain memory from the system. ++ ++ Malloc_trim returns 1 if it actually released any memory, else 0. ++*/ ++int dlmalloc_trim(size_t); ++ ++/* ++ malloc_stats(); ++ Prints on stderr the amount of space obtained from the system (both ++ via sbrk and mmap), the maximum amount (which may be more than ++ current if malloc_trim and/or munmap got called), and the current ++ number of bytes allocated via malloc (or realloc, etc) but not yet ++ freed. Note that this is the number of bytes allocated, not the ++ number requested. It will be larger than the number requested ++ because of alignment and bookkeeping overhead. Because it includes ++ alignment wastage as being in use, this figure may be greater than ++ zero even when no user-level chunks are allocated. ++ ++ The reported current and maximum system memory can be inaccurate if ++ a program makes other calls to system memory allocation functions ++ (normally sbrk) outside of malloc. ++ ++ malloc_stats prints only the most commonly interesting statistics. ++ More information can be obtained by calling mallinfo. ++ ++ malloc_stats is not compiled if NO_MALLOC_STATS is defined. ++*/ ++void dlmalloc_stats(void); ++ ++#endif /* !ONLY_MSPACES */ ++ ++/* ++ malloc_usable_size(void* p); ++ ++ Returns the number of bytes you can actually use in ++ an allocated chunk, which may be more than you requested (although ++ often not) due to alignment and minimum size constraints. ++ You can use this many bytes without worrying about ++ overwriting other allocated objects. This is not a particularly great ++ programming practice. malloc_usable_size can be more useful in ++ debugging and assertions, for example: ++ ++ p = malloc(n); ++ assert(malloc_usable_size(p) >= 256); ++*/ ++size_t dlmalloc_usable_size(const void*); ++ ++#if MSPACES ++ ++/* ++ mspace is an opaque type representing an independent ++ region of space that supports mspace_malloc, etc. ++*/ ++typedef void* mspace; ++ ++/* ++ create_mspace creates and returns a new independent space with the ++ given initial capacity, or, if 0, the default granularity size. It ++ returns null if there is no system memory available to create the ++ space. If argument locked is non-zero, the space uses a separate ++ lock to control access. The capacity of the space will grow ++ dynamically as needed to service mspace_malloc requests. You can ++ control the sizes of incremental increases of this space by ++ compiling with a different DEFAULT_GRANULARITY or dynamically ++ setting with mallopt(M_GRANULARITY, value). ++*/ ++mspace create_mspace(size_t capacity, int locked); ++ ++/* ++ destroy_mspace destroys the given space, and attempts to return all ++ of its memory back to the system, returning the total number of ++ bytes freed. After destruction, the results of access to all memory ++ used by the space become undefined. ++*/ ++size_t destroy_mspace(mspace msp); ++ ++/* ++ create_mspace_with_base uses the memory supplied as the initial base ++ of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this ++ space is used for bookkeeping, so the capacity must be at least this ++ large. (Otherwise 0 is returned.) When this initial space is ++ exhausted, additional memory will be obtained from the system. ++ Destroying this space will deallocate all additionally allocated ++ space (if possible) but not the initial base. ++*/ ++mspace create_mspace_with_base(void* base, size_t capacity, int locked); ++ ++/* ++ mspace_track_large_chunks controls whether requests for large chunks ++ are allocated in their own untracked mmapped regions, separate from ++ others in this mspace. By default large chunks are not tracked, ++ which reduces fragmentation. However, such chunks are not ++ necessarily released to the system upon destroy_mspace. Enabling ++ tracking by setting to true may increase fragmentation, but avoids ++ leakage when relying on destroy_mspace to release all memory ++ allocated using this space. The function returns the previous ++ setting. ++*/ ++int mspace_track_large_chunks(mspace msp, int enable); ++ ++#if !NO_MALLINFO ++/* ++ mspace_mallinfo behaves as mallinfo, but reports properties of ++ the given space. ++*/ ++struct mallinfo mspace_mallinfo(mspace msp); ++#endif /* NO_MALLINFO */ ++ ++/* ++ An alias for mallopt. ++*/ ++int mspace_mallopt(int, int); ++ ++/* ++ The following operate identically to their malloc counterparts ++ but operate only for the given mspace argument ++*/ ++void* mspace_malloc(mspace msp, size_t bytes); ++void mspace_free(mspace msp, void* mem); ++void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size); ++void* mspace_realloc(mspace msp, void* mem, size_t newsize); ++void* mspace_realloc_in_place(mspace msp, void* mem, size_t newsize); ++void* mspace_memalign(mspace msp, size_t alignment, size_t bytes); ++void** mspace_independent_calloc(mspace msp, size_t n_elements, ++ size_t elem_size, void* chunks[]); ++void** mspace_independent_comalloc(mspace msp, size_t n_elements, ++ size_t sizes[], void* chunks[]); ++size_t mspace_bulk_free(mspace msp, void**, size_t n_elements); ++size_t mspace_usable_size(const void* mem); ++void mspace_malloc_stats(mspace msp); ++int mspace_trim(mspace msp, size_t pad); ++size_t mspace_footprint(mspace msp); ++size_t mspace_max_footprint(mspace msp); ++size_t mspace_footprint_limit(mspace msp); ++size_t mspace_set_footprint_limit(mspace msp, size_t bytes); ++void mspace_inspect_all(mspace msp, ++ void(*handler)(void *, void *, size_t, void*), ++ void* arg); ++#endif /* MSPACES */ ++ ++#ifdef __cplusplus ++}; /* end of extern "C" */ ++#endif ++ ++#endif /* MALLOC_280_H */ diff --cc debian/libart.mk index 0000000,0000000..5292682 new file mode 100644 --- /dev/null +++ b/debian/libart.mk @@@ -1,0 -1,0 +1,516 @@@ ++NAME = libart ++ ++SOURCES_runtime = \ ++ aot_class_linker.cc \ ++ art_field.cc \ ++ art_method.cc \ ++ backtrace_helper.cc \ ++ barrier.cc \ ++ base/locks.cc \ ++ base/mem_map_arena_pool.cc \ ++ base/mutex.cc \ ++ base/quasi_atomic.cc \ ++ base/timing_logger.cc \ ++ cha.cc \ ++ class_linker.cc \ ++ class_loader_context.cc \ ++ class_root.cc \ ++ class_table.cc \ ++ common_throws.cc \ ++ compiler_filter.cc \ ++ debug_print.cc \ ++ debugger.cc \ ++ dex/dex_file_annotations.cc \ ++ dex_register_location.cc \ ++ dex_to_dex_decompiler.cc \ ++ elf_file.cc \ ++ exec_utils.cc \ ++ fault_handler.cc \ ++ gc/allocation_record.cc \ ++ gc/allocator/dlmalloc.cc \ ++ gc/allocator/rosalloc.cc \ ++ gc/accounting/bitmap.cc \ ++ gc/accounting/card_table.cc \ ++ gc/accounting/heap_bitmap.cc \ ++ gc/accounting/mod_union_table.cc \ ++ gc/accounting/remembered_set.cc \ ++ gc/accounting/space_bitmap.cc \ ++ gc/collector/concurrent_copying.cc \ ++ gc/collector/garbage_collector.cc \ ++ gc/collector/immune_region.cc \ ++ gc/collector/immune_spaces.cc \ ++ gc/collector/mark_sweep.cc \ ++ gc/collector/partial_mark_sweep.cc \ ++ gc/collector/semi_space.cc \ ++ gc/collector/sticky_mark_sweep.cc \ ++ gc/gc_cause.cc \ ++ gc/heap.cc \ ++ gc/reference_processor.cc \ ++ gc/reference_queue.cc \ ++ gc/scoped_gc_critical_section.cc \ ++ gc/space/bump_pointer_space.cc \ ++ gc/space/dlmalloc_space.cc \ ++ gc/space/image_space.cc \ ++ gc/space/large_object_space.cc \ ++ gc/space/malloc_space.cc \ ++ gc/space/region_space.cc \ ++ gc/space/rosalloc_space.cc \ ++ gc/space/space.cc \ ++ gc/space/zygote_space.cc \ ++ gc/task_processor.cc \ ++ gc/verification.cc \ ++ hidden_api.cc \ ++ hprof/hprof.cc \ ++ image.cc \ ++ index_bss_mapping.cc \ ++ indirect_reference_table.cc \ ++ instrumentation.cc \ ++ intern_table.cc \ ++ interpreter/interpreter.cc \ ++ interpreter/interpreter_cache.cc \ ++ interpreter/interpreter_common.cc \ ++ interpreter/interpreter_intrinsics.cc \ ++ interpreter/interpreter_switch_impl0.cc \ ++ interpreter/interpreter_switch_impl1.cc \ ++ interpreter/interpreter_switch_impl2.cc \ ++ interpreter/interpreter_switch_impl3.cc \ ++ interpreter/lock_count_data.cc \ ++ interpreter/shadow_frame.cc \ ++ interpreter/unstarted_runtime.cc \ ++ java_frame_root_info.cc \ ++ jdwp/jdwp_event.cc \ ++ jdwp/jdwp_expand_buf.cc \ ++ jdwp/jdwp_handler.cc \ ++ jdwp/jdwp_main.cc \ ++ jdwp/jdwp_request.cc \ ++ jdwp/jdwp_socket.cc \ ++ jdwp/object_registry.cc \ ++ jit/debugger_interface.cc \ ++ jit/jit.cc \ ++ jit/jit_code_cache.cc \ ++ jit/profiling_info.cc \ ++ jit/profile_saver.cc \ ++ jni/check_jni.cc \ ++ jni/java_vm_ext.cc \ ++ jni/jni_env_ext.cc \ ++ jni/jni_internal.cc \ ++ linear_alloc.cc \ ++ managed_stack.cc \ ++ method_handles.cc \ ++ mirror/array.cc \ ++ mirror/class.cc \ ++ mirror/class_ext.cc \ ++ mirror/dex_cache.cc \ ++ mirror/emulated_stack_frame.cc \ ++ mirror/executable.cc \ ++ mirror/field.cc \ ++ mirror/method.cc \ ++ mirror/method_handle_impl.cc \ ++ mirror/method_handles_lookup.cc \ ++ mirror/method_type.cc \ ++ mirror/object.cc \ ++ mirror/stack_trace_element.cc \ ++ mirror/string.cc \ ++ mirror/throwable.cc \ ++ mirror/var_handle.cc \ ++ monitor.cc \ ++ monitor_objects_stack_visitor.cc \ ++ native_bridge_art_interface.cc \ ++ native_stack_dump.cc \ ++ native/dalvik_system_DexFile.cc \ ++ native/dalvik_system_VMDebug.cc \ ++ native/dalvik_system_VMRuntime.cc \ ++ native/dalvik_system_VMStack.cc \ ++ native/dalvik_system_ZygoteHooks.cc \ ++ native/java_lang_Class.cc \ ++ native/java_lang_Object.cc \ ++ native/java_lang_String.cc \ ++ native/java_lang_StringFactory.cc \ ++ native/java_lang_System.cc \ ++ native/java_lang_Thread.cc \ ++ native/java_lang_Throwable.cc \ ++ native/java_lang_VMClassLoader.cc \ ++ native/java_lang_invoke_MethodHandleImpl.cc \ ++ native/java_lang_ref_FinalizerReference.cc \ ++ native/java_lang_ref_Reference.cc \ ++ native/java_lang_reflect_Array.cc \ ++ native/java_lang_reflect_Constructor.cc \ ++ native/java_lang_reflect_Executable.cc \ ++ native/java_lang_reflect_Field.cc \ ++ native/java_lang_reflect_Method.cc \ ++ native/java_lang_reflect_Parameter.cc \ ++ native/java_lang_reflect_Proxy.cc \ ++ native/java_util_concurrent_atomic_AtomicLong.cc \ ++ native/libcore_util_CharsetUtils.cc \ ++ native/org_apache_harmony_dalvik_ddmc_DdmServer.cc \ ++ native/org_apache_harmony_dalvik_ddmc_DdmVmInternal.cc \ ++ native/sun_misc_Unsafe.cc \ ++ non_debuggable_classes.cc \ ++ oat.cc \ ++ oat_file.cc \ ++ oat_file_assistant.cc \ ++ oat_file_manager.cc \ ++ oat_quick_method_header.cc \ ++ object_lock.cc \ ++ offsets.cc \ ++ parsed_options.cc \ ++ plugin.cc \ ++ quick_exception_handler.cc \ ++ read_barrier.cc \ ++ reference_table.cc \ ++ reflection.cc \ ++ runtime.cc \ ++ runtime_callbacks.cc \ ++ runtime_common.cc \ ++ runtime_intrinsics.cc \ ++ runtime_options.cc \ ++ scoped_thread_state_change.cc \ ++ signal_catcher.cc \ ++ stack.cc \ ++ stack_map.cc \ ++ thread.cc \ ++ thread_list.cc \ ++ thread_pool.cc \ ++ ti/agent.cc \ ++ trace.cc \ ++ transaction.cc \ ++ var_handles.cc \ ++ vdex_file.cc \ ++ verifier/class_verifier.cc \ ++ verifier/instruction_flags.cc \ ++ verifier/method_verifier.cc \ ++ verifier/reg_type.cc \ ++ verifier/reg_type_cache.cc \ ++ verifier/register_line.cc \ ++ verifier/verifier_deps.cc \ ++ verify_object.cc \ ++ well_known_classes.cc \ ++ arch/context.cc \ ++ arch/instruction_set_features.cc \ ++ arch/memcmp16.cc \ ++ arch/arm/instruction_set_features_arm.cc \ ++ arch/arm/registers_arm.cc \ ++ arch/arm64/instruction_set_features_arm64.cc \ ++ arch/arm64/registers_arm64.cc \ ++ arch/mips/instruction_set_features_mips.cc \ ++ arch/mips/registers_mips.cc \ ++ arch/mips64/instruction_set_features_mips64.cc \ ++ arch/mips64/registers_mips64.cc \ ++ arch/x86/instruction_set_features_x86.cc \ ++ arch/x86/registers_x86.cc \ ++ arch/x86_64/registers_x86_64.cc \ ++ entrypoints/entrypoint_utils.cc \ ++ entrypoints/jni/jni_entrypoints.cc \ ++ entrypoints/math_entrypoints.cc \ ++ entrypoints/quick/quick_alloc_entrypoints.cc \ ++ entrypoints/quick/quick_cast_entrypoints.cc \ ++ entrypoints/quick/quick_deoptimization_entrypoints.cc \ ++ entrypoints/quick/quick_dexcache_entrypoints.cc \ ++ entrypoints/quick/quick_entrypoints_enum.cc \ ++ entrypoints/quick/quick_field_entrypoints.cc \ ++ entrypoints/quick/quick_fillarray_entrypoints.cc \ ++ entrypoints/quick/quick_jni_entrypoints.cc \ ++ entrypoints/quick/quick_lock_entrypoints.cc \ ++ entrypoints/quick/quick_math_entrypoints.cc \ ++ entrypoints/quick/quick_thread_entrypoints.cc \ ++ entrypoints/quick/quick_throw_entrypoints.cc \ ++ entrypoints/quick/quick_trampoline_entrypoints.cc \ ++ ++# Sources for a host library ++SOURCES_runtime += \ ++ monitor_linux.cc \ ++ runtime_linux.cc \ ++ thread_linux.cc ++ ++# Architecture specific sources, which come from runtime/Android.bp ++SOURCES_runtime_arm = \ ++ interpreter/mterp/mterp.cc \ ++ arch/arm/context_arm.cc \ ++ arch/arm/entrypoints_init_arm.cc \ ++ arch/arm/instruction_set_features_assembly_tests.S \ ++ arch/arm/jni_entrypoints_arm.S \ ++ arch/arm/memcmp16_arm.S \ ++ arch/arm/quick_entrypoints_arm.S \ ++ arch/arm/quick_entrypoints_cc_arm.cc \ ++ arch/arm/thread_arm.cc \ ++ arch/arm/fault_handler_arm.cc \ ++ ++SOURCES_runtime_arm64 = \ ++ interpreter/mterp/mterp.cc \ ++ arch/arm64/context_arm64.cc \ ++ arch/arm64/entrypoints_init_arm64.cc \ ++ arch/arm64/jni_entrypoints_arm64.S \ ++ arch/arm64/memcmp16_arm64.S \ ++ arch/arm64/quick_entrypoints_arm64.S \ ++ arch/arm64/thread_arm64.cc \ ++ monitor_pool.cc \ ++ arch/arm64/fault_handler_arm64.cc \ ++ ++SOURCES_runtime_x86 = \ ++ interpreter/mterp/mterp.cc \ ++ arch/x86/context_x86.cc \ ++ arch/x86/entrypoints_init_x86.cc \ ++ arch/x86/jni_entrypoints_x86.S \ ++ arch/x86/memcmp16_x86.S \ ++ arch/x86/quick_entrypoints_x86.S \ ++ arch/x86/thread_x86.cc \ ++ arch/x86/fault_handler_x86.cc \ ++ ++SOURCES_runtime_x86_64 = \ ++ interpreter/mterp/mterp.cc \ ++ arch/x86_64/context_x86_64.cc \ ++ arch/x86_64/entrypoints_init_x86_64.cc \ ++ arch/x86_64/jni_entrypoints_x86_64.S \ ++ arch/x86_64/memcmp16_x86_64.S \ ++ arch/x86_64/quick_entrypoints_x86_64.S \ ++ arch/x86_64/thread_x86_64.cc \ ++ monitor_pool.cc \ ++ arch/x86/fault_handler_x86.cc \ ++ ++SOURCES_runtime_mips = \ ++ interpreter/mterp/mterp.cc \ ++ arch/mips/context_mips.cc \ ++ arch/mips/entrypoints_init_mips.cc \ ++ arch/mips/jni_entrypoints_mips.S \ ++ arch/mips/memcmp16_mips.S \ ++ arch/mips/quick_entrypoints_mips.S \ ++ arch/mips/thread_mips.cc \ ++ arch/mips/fault_handler_mips.cc \ ++ ++SOURCES_runtime_mips64 = \ ++ interpreter/mterp/mterp.cc \ ++ arch/mips64/context_mips64.cc \ ++ arch/mips64/entrypoints_init_mips64.cc \ ++ arch/mips64/jni_entrypoints_mips64.S \ ++ arch/mips64/memcmp16_mips64.S \ ++ arch/mips64/quick_entrypoints_mips64.S \ ++ arch/mips64/thread_mips64.cc \ ++ monitor_pool.cc \ ++ arch/mips64/fault_handler_mips64.cc \ ++ ++ ++include debian/detect-arch.mk ++SOURCES_runtime += $(SOURCES_runtime_$(CPU)) ++ ++# From libartbase/Android.bp ++SOURCES_libartbase = \ ++ arch/instruction_set.cc \ ++ base/allocator.cc \ ++ base/arena_allocator.cc \ ++ base/arena_bit_vector.cc \ ++ base/bit_vector.cc \ ++ base/enums.cc \ ++ base/file_magic.cc \ ++ base/file_utils.cc \ ++ base/hex_dump.cc \ ++ base/hiddenapi_flags.cc \ ++ base/logging.cc \ ++ base/malloc_arena_pool.cc \ ++ base/membarrier.cc \ ++ base/memfd.cc \ ++ base/memory_region.cc \ ++ base/mem_map.cc \ ++ base/os_linux.cc \ ++ base/runtime_debug.cc \ ++ base/safe_copy.cc \ ++ base/scoped_arena_allocator.cc \ ++ base/scoped_flock.cc \ ++ base/socket_peer_is_trusted.cc \ ++ base/time_utils.cc \ ++ base/unix_file/fd_file.cc \ ++ base/unix_file/random_access_file_utils.cc \ ++ base/utils.cc \ ++ base/zip_archive.cc \ ++ base/mem_map_unix.cc \ ++ ++# From libdexfile/Android.bp ++SOURCES_libdexfile = \ ++ dex/art_dex_file_loader.cc \ ++ dex/compact_dex_file.cc \ ++ dex/compact_offset_table.cc \ ++ dex/descriptors_names.cc \ ++ dex/dex_file.cc \ ++ dex/dex_file_exception_helpers.cc \ ++ dex/dex_file_layout.cc \ ++ dex/dex_file_loader.cc \ ++ dex/dex_file_tracking_registrar.cc \ ++ dex/dex_file_verifier.cc \ ++ dex/dex_instruction.cc \ ++ dex/modifiers.cc \ ++ dex/primitive.cc \ ++ dex/signature.cc \ ++ dex/standard_dex_file.cc \ ++ dex/type_lookup_table.cc \ ++ dex/utf.cc \ ++ external/dex_file_ext.cc \ ++ external/dex_file_supp.cc \ ++ ++SOURCES := $(foreach source, $(SOURCES_libartbase), libartbase/$(source)) \ ++ $(foreach source, $(SOURCES_libdexfile), libdexfile/$(source)) \ ++ $(foreach source, $(SOURCES_runtime), runtime/$(source)) \ ++ libartpalette/system/palette_fake.cc \ ++ libprofile/profile/profile_compilation_info.cc \ ++ ++ ++# Add generated operator_out.cc and mterp.S ++SOURCES += \ ++ debian/out/operator_out.cc \ ++ debian/out/mterp.S ++ ++# from runtime/Android.bp ++SOURCES_OPERATOR = \ ++ base/callee_save_type.h \ ++ base/locks.h \ ++ class_loader_context.h \ ++ class_status.h \ ++ debugger.h \ ++ gc_root.h \ ++ gc/allocator_type.h \ ++ gc/allocator/rosalloc.h \ ++ gc/collector_type.h \ ++ gc/collector/gc_type.h \ ++ gc/heap.h \ ++ gc/space/region_space.h \ ++ gc/space/space.h \ ++ gc/weak_root_state.h \ ++ image.h \ ++ instrumentation.h \ ++ indirect_reference_table.h \ ++ jdwp_provider.h \ ++ jdwp/jdwp.h \ ++ jdwp/jdwp_constants.h \ ++ lock_word.h \ ++ oat.h \ ++ object_callbacks.h \ ++ process_state.h \ ++ stack.h \ ++ suspend_reason.h \ ++ thread.h \ ++ thread_state.h \ ++ ti/agent.h \ ++ trace.h \ ++ verifier/verifier_enums.h ++SOURCES_OPERATOR := $(foreach source, $(SOURCES_OPERATOR), runtime/$(source)) ++ ++# from libartbase/Android.bp, and libdexfile/Android.bp ++SOURCES_OPERATOR += \ ++ libartbase/arch/instruction_set.h \ ++ libartbase/base/allocator.h \ ++ libartbase/base/unix_file/fd_file.h \ ++ \ ++ libdexfile/dex/dex_file.h \ ++ libdexfile/dex/dex_file_layout.h \ ++ libdexfile/dex/dex_instruction.h \ ++ libdexfile/dex/dex_instruction_utils.h \ ++ libdexfile/dex/invoke_type.h \ ++ libdexfile/dex/method_reference.h \ ++ ++# If directly compile all sources together, it will take a huge amount of time ++# and potentially huge amount of memory. Not good for devel-time. ++# On the other hand, individual compiling every source allows incremental ++# compilation and multi-thread accelration. ++OBJECTS_ASSEMBLY = $(SOURCES_ASSEMBLY:.S=.o) ++OBJECTS_CXX = $(SOURCES_CXX:.cc=.o) ++SOURCES_ASSEMBLY = $(filter %.S,$(SOURCES)) ++SOURCES_CXX = $(filter %.cc,$(SOURCES)) ++ ++CFLAGS += -c -D_FILE_OFFSET_BITS=64 -D_LARGEFILE_SOURCE=1 -Wa,--noexecstack -fcommon \ ++ -fno-rtti -fstrict-aliasing -fvisibility=protected \ ++ ++CXXFLAGS += -c -std=gnu++17 \ ++ -Wno-invalid-offsetof -Wno-invalid-partial-specialization \ ++ -D__STDC_FORMAT_MACROS -D__STDC_CONSTANT_MACROS \ ++ -fno-rtti -fstrict-aliasing -fvisibility=protected -fno-omit-frame-pointer \ ++ ++CPPFLAGS += \ ++ -DART_BASE_ADDRESS_MAX_DELTA=0x1000000 \ ++ -DART_BASE_ADDRESS_MIN_DELTA=-0x1000000 \ ++ -DART_BASE_ADDRESS=0x60000000 \ ++ -DART_DEFAULT_COMPACT_DEX_LEVEL=fast \ ++ -DART_DEFAULT_GC_TYPE_IS_CMS \ ++ -DART_ENABLE_ADDRESS_SANITIZER=1 \ ++ -DART_ENABLE_CODEGEN_${CPU} \ ++ -DART_FRAME_SIZE_LIMIT=1736 \ ++ -DART_READ_BARRIER_TYPE_IS_BAKER=1 \ ++ -DART_STACK_OVERFLOW_GAP_arm=8192 \ ++ -DART_STACK_OVERFLOW_GAP_arm64=8192 \ ++ -DART_STACK_OVERFLOW_GAP_mips=16384 \ ++ -DART_STACK_OVERFLOW_GAP_mips64=16384 \ ++ -DART_STACK_OVERFLOW_GAP_x86_64=8192 \ ++ -DART_STACK_OVERFLOW_GAP_x86=8192 \ ++ -DART_USE_READ_BARRIER=1 \ ++ -DBUILDING_LIBART=1 \ ++ -DIMT_SIZE=43 \ ++ -DUSE_D8_DESUGAR=1 \ ++ -I. \ ++ -I/usr/include/android/nativehelper \ ++ -Icmdline \ ++ -Iruntime \ ++ -Ilibartbase \ ++ -Ilibartbase/arch \ ++ -Ilibartpalette/include \ ++ -Ilibdexfile \ ++ -Ilibdexfile/external/include \ ++ -Ilibelffile \ ++ -Ilibprofile \ ++ -Isigchainlib \ ++ -Itools/cpp-define-generator \ ++ -Idebian/out \ ++ ++LDFLAGS += \ ++ -fuse-ld=gold \ ++ -L/usr/lib/$(DEB_HOST_MULTIARCH)/android \ ++ -Ldebian/out \ ++ -Wl,-rpath=/usr/lib/$(DEB_HOST_MULTIARCH)/android \ ++ -shared -Wl,-soname,$(NAME).so.0 ++LIBRARIES_FLAGS = \ ++ -latomic \ ++ -lbacktrace \ ++ -lbase \ ++ -ldl \ ++ -llz4 \ ++ -lnativebridge \ ++ -lnativeloader \ ++ -lpthread \ ++ -lsigchain \ ++ -lz \ ++ -lziparchive \ ++ ++CC_ASSEMBLY = clang ++ifeq ($(CPU),arm) ++ # Clang does not support the `ADRL` instruction. See ++ CC_ASSEMBLY = gcc ++endif ++ ++debian/out/$(NAME).so.0: $(OBJECTS_CXX) $(OBJECTS_ASSEMBLY) ++ $(CXX) -o $@ $(LDFLAGS) $^ $(LIBRARIES_FLAGS) ++ ln -s $(NAME).so.0 debian/out/$(NAME).so ++ ++clean: ++ $(RM) $(NAME).so* debian/out/operator_out.cc debian/out/mterp.S ++ $(RM) $(OBJECTS_CXX) ++ $(RM) $(OBJECTS_ASSEMBLY) ++ ++.PHONY: clean ++ ++$(OBJECTS_CXX): %.o: %.cc ++ $(CXX) -o $@ $(CXXFLAGS) $(CPPFLAGS) $^ ++ ++$(OBJECTS_ASSEMBLY): %.o: %.S ++ $(CC_ASSEMBLY) -o $@ $(CFLAGS) $(CPPFLAGS) $^ ++ ++debian/out/operator_out.cc: $(SOURCES_OPERATOR) ++ python3 tools/generate_operator_out.py art/libartbase $^ > $@ ++ ++debian/out/mterp.S: runtime/interpreter/mterp/$(CPU)/*.S ++ python3 runtime/interpreter/mterp/gen_mterp.py $@ $^ ++ ++debian/out/asm_defines.h: debian/out/asm_defines.output ++ python3 tools/cpp-define-generator/make_header.py $^ > $@ ++ ++debian/out/asm_defines.output: tools/cpp-define-generator/asm_defines.cc ++ $(CXX) \ ++ $(CPPFLAGS) \ ++ $(CXXFLAGS) \ ++ -S \ ++ -o $@ $^ diff --cc debian/libdexfile_external.mk index 0000000,0000000..7a39aa4 new file mode 100644 --- /dev/null +++ b/debian/libdexfile_external.mk @@@ -1,0 -1,0 +1,20 @@@ ++NAME = libdexfile_external ++ ++SOURCES = libdexfile/external/dex_file_ext.cc ++CPPFLAGS += \ ++ -Ilibartbase \ ++ -Ilibdexfile \ ++ -Ilibdexfile/external/include \ ++ -I/usr/include/android/nativehelper \ ++ ++CXXFLAGS += -std=gnu++17 ++LDFLAGS += \ ++ -shared \ ++ -Wl,-soname,$(NAME).so.0 ++LIBRARIES_FLAGS = \ ++ -ldl \ ++ -lpthread \ ++ ++debian/out/$(NAME).so.0: $(SOURCES) ++ $(CXX) -o $@ $(CXXFLAGS) $(CPPFLAGS) $(LDFLAGS) $^ $(LIBRARIES_FLAGS) ++ ln -s $(NAME).so.0 debian/out/$(NAME).so diff --cc debian/libdexfile_support.mk index 0000000,0000000..4b449a9 new file mode 100644 --- /dev/null +++ b/debian/libdexfile_support.mk @@@ -1,0 -1,0 +1,20 @@@ ++NAME = libdexfile_support ++ ++SOURCES = libdexfile/external/dex_file_supp.cc ++CPPFLAGS += \ ++ -DNO_DEXFILE_SUPPORT \ ++ -Ilibartbase \ ++ -Ilibdexfile \ ++ -Ilibdexfile/external/include \ ++ ++CXXFLAGS += -std=gnu++17 ++LDFLAGS += \ ++ -shared \ ++ -Wl,-soname,$(NAME).so.0 ++LIBRARIES_FLAGS = \ ++ -ldl \ ++ -lpthread \ ++ ++debian/out/$(NAME).so.0: $(SOURCES) ++ $(CXX) -o $@ $(CXXFLAGS) $(CPPFLAGS) $(LDFLAGS) $^ $(LIBRARIES_FLAGS) ++ ln -s $(NAME).so.0 debian/out/$(NAME).so diff --cc debian/libsigchain.mk index 0000000,0000000..cf8cdfa new file mode 100644 --- /dev/null +++ b/debian/libsigchain.mk @@@ -1,0 -1,0 +1,17 @@@ ++NAME = libsigchain ++ ++SOURCES = sigchain.cc ++SOURCES := $(foreach source, $(SOURCES), sigchainlib/$(source)) ++ ++CPPFLAGS += -Isigchainlib ++CXXFLAGS += -std=gnu++17 ++LDFLAGS += \ ++ -shared \ ++ -Wl,-soname,$(NAME).so.0 ++LIBRARIES_FLAGS = \ ++ -ldl \ ++ -lpthread \ ++ ++debian/out/$(NAME).so.0: $(SOURCES) ++ $(CXX) -o $@ $(CXXFLAGS) $(CPPFLAGS) $(LDFLAGS) $^ $(LIBRARIES_FLAGS) ++ ln -s $(NAME).so.0 debian/out/$(NAME).so diff --cc debian/patches/Fix-ftbfs-for-c-17.patch index 0000000,0000000..f6e2d10 new file mode 100644 --- /dev/null +++ b/debian/patches/Fix-ftbfs-for-c-17.patch @@@ -1,0 -1,0 +1,31 @@@ ++From: Roger Shimizu ++Date: Sat, 22 Jan 2022 00:23:15 +0900 ++Subject: Fix ftbfs for c++17 ++ ++Closes: #983964 ++--- ++ libdexfile/dex/compact_offset_table.h | 4 ++-- ++ 1 file changed, 2 insertions(+), 2 deletions(-) ++ ++diff --git a/libdexfile/dex/compact_offset_table.h b/libdexfile/dex/compact_offset_table.h ++index ec759e2..e651363 100644 ++--- a/libdexfile/dex/compact_offset_table.h +++++ b/libdexfile/dex/compact_offset_table.h ++@@ -28,7 +28,7 @@ class CompactOffsetTable { ++ public: ++ // This value is coupled with the leb chunk bitmask. That logic must also be adjusted when the ++ // integer is modified. ++- static constexpr size_t kElementsPerIndex = 16; +++ static constexpr std::size_t kElementsPerIndex = 16; ++ ++ // Leb block format: ++ // [uint16_t] 16 bit mask for what indexes actually have a non zero offset for the chunk. ++@@ -61,7 +61,7 @@ class CompactOffsetTable { ++ uint32_t* out_table_offset); ++ ++ // 32 bit aligned for the offset table. ++- static constexpr size_t kAlignment = sizeof(uint32_t); +++ static constexpr std::size_t kAlignment = sizeof(uint32_t); ++ }; ++ ++ } // namespace art diff --cc debian/patches/adapt-asm-output-of-clang-that-no-is-placed-before-data.patch index 0000000,0000000..ecb81f8 new file mode 100644 --- /dev/null +++ b/debian/patches/adapt-asm-output-of-clang-that-no-is-placed-before-data.patch @@@ -1,0 -1,0 +1,13 @@@ ++Description: Adapt asm output of clang that no #/$ is placed before data ++Forwarded: not-needed ++--- a/tools/cpp-define-generator/make_header.py +++++ b/tools/cpp-define-generator/make_header.py ++@@ -31,7 +31,7 @@ import sys ++ def convert(input): ++ """Find all defines in the compiler generated assembly and convert them to #define pragmas""" ++ ++- asm_define_re = re.compile(r'">>(\w+) (?:\$|#)([-0-9]+) (?:\$|#)(0|1)<<"') +++ asm_define_re = re.compile(r'">>(\w+) (?:\$|#|)([-0-9]+) (?:\$|#|)(0|1)<<"') ++ asm_defines = asm_define_re.findall(input) ++ if not asm_defines: ++ raise RuntimeError("Failed to find any asm defines in the input") diff --cc debian/patches/arm-asm-instruction.patch index 0000000,0000000..7a0b2ca new file mode 100644 --- /dev/null +++ b/debian/patches/arm-asm-instruction.patch @@@ -1,0 -1,0 +1,13 @@@ ++Description: arm asm instruction ++Forwarded: not-needed ++--- a/runtime/interpreter/mterp/arm/main.S +++++ b/runtime/interpreter/mterp/arm/main.S ++@@ -602,7 +602,7 @@ MterpCommonTakenBranch: ++ #endif ++ cmp rPROFILE, #JIT_CHECK_OSR ++ beq .L_osr_check ++- subsgt rPROFILE, #1 +++ subgt rPROFILE, #1 ++ beq .L_add_batch @ counted down to zero - report ++ .L_resume_backward_branch: ++ ldr lr, [rSELF, #THREAD_FLAGS_OFFSET] diff --cc debian/patches/atomic-exception-specification.patch index 0000000,0000000..3c91ea2 new file mode 100644 --- /dev/null +++ b/debian/patches/atomic-exception-specification.patch @@@ -1,0 -1,0 +1,45 @@@ ++Description: Conforms with the exception specification of `std::atomic` ++ All constructors of `std::atomic` require `noexcept`. As a result, its members ++ must also be able to instantiate without any exception throwing. ++--- a/runtime/mirror/dex_cache.h +++++ b/runtime/mirror/dex_cache.h ++@@ -68,7 +68,7 @@ ++ // Set the initial state for the 0th entry to be {0,1} which is guaranteed to fail ++ // the lookup id == stored id branch. ++ DexCachePair(ObjPtr object, uint32_t index); ++- DexCachePair() : index(0) {} +++ DexCachePair() noexcept : index(0) {} ++ DexCachePair(const DexCachePair&) = default; ++ DexCachePair& operator=(const DexCachePair&) = default; ++ ++@@ -91,7 +91,7 @@ ++ NativeDexCachePair(T* object, uint32_t index) ++ : object(object), ++ index(index) {} ++- NativeDexCachePair() : object(nullptr), index(0u) { } +++ NativeDexCachePair() noexcept : object(nullptr), index(0u) { } ++ NativeDexCachePair(const NativeDexCachePair&) = default; ++ NativeDexCachePair& operator=(const NativeDexCachePair&) = default; ++ ++--- a/runtime/mirror/object_reference.h +++++ b/runtime/mirror/object_reference.h ++@@ -164,7 +164,7 @@ ++ template ++ class MANAGED CompressedReference : public mirror::ObjectReference { ++ public: ++- CompressedReference() REQUIRES_SHARED(Locks::mutator_lock_) +++ CompressedReference() noexcept REQUIRES_SHARED(Locks::mutator_lock_) ++ : mirror::ObjectReference(nullptr) {} ++ ++ static CompressedReference FromMirrorPtr(MirrorType* p) ++--- a/runtime/gc_root.h +++++ b/runtime/gc_root.h ++@@ -213,7 +213,7 @@ ++ return root_.IsNull(); ++ } ++ ++- ALWAYS_INLINE GcRoot() {} +++ ALWAYS_INLINE GcRoot() noexcept {} ++ explicit ALWAYS_INLINE GcRoot(MirrorType* ref) ++ REQUIRES_SHARED(Locks::mutator_lock_); ++ explicit ALWAYS_INLINE GcRoot(ObjPtr ref) diff --cc debian/patches/fix-build-on-non-x86.patch index 0000000,0000000..96d2f18 new file mode 100644 --- /dev/null +++ b/debian/patches/fix-build-on-non-x86.patch @@@ -1,0 -1,0 +1,19 @@@ ++Description: non-x86 arches do not have PAGE_SIZE ++Forwarded: not-needed ++--- a/libartbase/base/safe_copy.cc +++++ b/libartbase/base/safe_copy.cc ++@@ -56,10 +56,11 @@ ssize_t SafeCopy(void *dst, const void *src, size_t len) { ++ } ++ ++ src_iovs[iovecs_used].iov_base = const_cast(cur); ++- if (!IsAlignedParam(cur, PAGE_SIZE)) { ++- src_iovs[iovecs_used].iov_len = AlignUp(cur, PAGE_SIZE) - cur; +++ size_t pagesize = static_cast(sysconf(_SC_PAGE_SIZE)); +++ if (!IsAlignedParam(cur, pagesize)) { +++ src_iovs[iovecs_used].iov_len = AlignUp(cur, pagesize) - cur; ++ } else { ++- src_iovs[iovecs_used].iov_len = PAGE_SIZE; +++ src_iovs[iovecs_used].iov_len = pagesize; ++ } ++ ++ src_iovs[iovecs_used].iov_len = std::min(src_iovs[iovecs_used].iov_len, len); diff --cc debian/patches/fix-mterp-assembly-to-use-uxtw-instead-of-lsl-where-needed.patch index 0000000,0000000..9b473d4 new file mode 100644 --- /dev/null +++ b/debian/patches/fix-mterp-assembly-to-use-uxtw-instead-of-lsl-where-needed.patch @@@ -1,0 -1,0 +1,122 @@@ ++From: David Srbecky ++Date: Thu, 4 Apr 2019 16:16:17 +0100 ++Subject: [PATCH] Fix mterp assembly to use uxtw instead of lsl where needed. ++ ++Bug: https://bugs.llvm.org/show_bug.cgi?id=41504 ++Origin: https://android-review.googlesource.com/c/platform/art/+/940018 ++ ++The old instructions are invalid according to the ARM spec. ++ ++Event though UXTW and LSL are aliases this is binary change: ++"add x0, x1, w2, lsl #1" was invalid and would be treated as ++"add x0, x1, x2, uxtx #1" which would keep the high bits. ++ ++With uxtw, we ignore the high bits, as expected in code. ++ ++Test: test.py -r --target --interpreter ++Change-Id: I66f67ccc5a401d0cf6ac5b42d41d8df26a190046 ++--- ++ runtime/interpreter/mterp/arm64/array.S | 6 +++--- ++ runtime/interpreter/mterp/arm64/main.S | 18 +++++++++--------- ++ runtime/interpreter/mterp/arm64/other.S | 2 +- ++ 3 files changed, 13 insertions(+), 13 deletions(-) ++ ++diff --git a/runtime/interpreter/mterp/arm64/array.S b/runtime/interpreter/mterp/arm64/array.S ++index a023d22..628f832 100644 ++--- a/runtime/interpreter/mterp/arm64/array.S +++++ b/runtime/interpreter/mterp/arm64/array.S ++@@ -75,7 +75,7 @@ ++ GET_VREG w1, w3 // w1<- vCC (requested index) ++ cbz w0, common_errNullObject // yes, bail ++ ldr w3, [x0, #MIRROR_ARRAY_LENGTH_OFFSET] // w3<- arrayObj->length ++- add x0, x0, w1, lsl #3 // w0<- arrayObj + index*width +++ add x0, x0, w1, uxtw #3 // w0<- arrayObj + index*width ++ cmp w1, w3 // compare unsigned index, length ++ bcs common_errArrayIndex // index >= length, bail ++ FETCH_ADVANCE_INST 2 // advance rPC, load wINST ++@@ -104,7 +104,7 @@ ++ GET_VREG w1, w3 // w1<- vCC (requested index) ++ cbz w0, common_errNullObject // bail if null ++ ldr w3, [x0, #MIRROR_ARRAY_LENGTH_OFFSET] // w3<- arrayObj->length ++- add x0, x0, w1, lsl #$shift // w0<- arrayObj + index*width +++ add x0, x0, w1, uxtw #$shift // w0<- arrayObj + index*width ++ cmp w1, w3 // compare unsigned index, length ++ bcs common_errArrayIndex // index >= length, bail ++ FETCH_ADVANCE_INST 2 // advance rPC, load rINST ++@@ -154,7 +154,7 @@ ++ GET_VREG w1, w3 // w1<- vCC (requested index) ++ cbz w0, common_errNullObject // bail if null ++ ldr w3, [x0, #MIRROR_ARRAY_LENGTH_OFFSET] // w3<- arrayObj->length ++- add x0, x0, w1, lsl #3 // w0<- arrayObj + index*width +++ add x0, x0, w1, uxtw #3 // w0<- arrayObj + index*width ++ cmp w1, w3 // compare unsigned index, length ++ bcs common_errArrayIndex // index >= length, bail ++ GET_VREG_WIDE x1, w4 ++diff --git a/runtime/interpreter/mterp/arm64/main.S b/runtime/interpreter/mterp/arm64/main.S ++index aefec61..fd745f1 100644 ++--- a/runtime/interpreter/mterp/arm64/main.S +++++ b/runtime/interpreter/mterp/arm64/main.S ++@@ -268,23 +268,23 @@ codes. ++ * Get/set the 64-bit value from a Dalvik register. ++ */ ++ .macro GET_VREG_WIDE reg, vreg ++- add ip2, xFP, \vreg, lsl #2 +++ add ip2, xFP, \vreg, uxtw #2 ++ ldr \reg, [ip2] ++ .endm ++ .macro SET_VREG_WIDE reg, vreg ++- add ip2, xFP, \vreg, lsl #2 +++ add ip2, xFP, \vreg, uxtw #2 ++ str \reg, [ip2] ++- add ip2, xREFS, \vreg, lsl #2 +++ add ip2, xREFS, \vreg, uxtw #2 ++ str xzr, [ip2] ++ .endm ++ .macro GET_VREG_DOUBLE reg, vreg ++- add ip2, xFP, \vreg, lsl #2 +++ add ip2, xFP, \vreg, uxtw #2 ++ ldr \reg, [ip2] ++ .endm ++ .macro SET_VREG_DOUBLE reg, vreg ++- add ip2, xFP, \vreg, lsl #2 +++ add ip2, xFP, \vreg, uxtw #2 ++ str \reg, [ip2] ++- add ip2, xREFS, \vreg, lsl #2 +++ add ip2, xREFS, \vreg, uxtw #2 ++ str xzr, [ip2] ++ .endm ++ ++@@ -300,7 +300,7 @@ codes. ++ * Convert a virtual register index into an address. ++ */ ++ .macro VREG_INDEX_TO_ADDR reg, vreg ++- add \reg, xFP, \vreg, lsl #2 /* WARNING: handle shadow frame vreg zero if store */ +++ add \reg, xFP, \vreg, uxtw #2 /* WARNING: handle shadow frame vreg zero if store */ ++ .endm ++ ++ /* ++@@ -418,9 +418,9 @@ ENTRY ExecuteMterpImpl ++ mov xSELF, x0 ++ ldr w0, [x2, #SHADOWFRAME_NUMBER_OF_VREGS_OFFSET] ++ add xFP, x2, #SHADOWFRAME_VREGS_OFFSET // point to vregs. ++- add xREFS, xFP, w0, lsl #2 // point to reference array in shadow frame +++ add xREFS, xFP, w0, uxtw #2 // point to reference array in shadow frame ++ ldr w0, [x2, #SHADOWFRAME_DEX_PC_OFFSET] // Get starting dex_pc. ++- add xPC, x1, w0, lsl #1 // Create direct pointer to 1st dex opcode +++ add xPC, x1, w0, uxtw #1 // Create direct pointer to 1st dex opcode ++ CFI_DEFINE_DEX_PC_WITH_OFFSET(CFI_TMP, CFI_DEX, 0) ++ EXPORT_PC ++ ++diff --git a/runtime/interpreter/mterp/arm64/other.S b/runtime/interpreter/mterp/arm64/other.S ++index f1d0ef3..eccd521 100644 ++--- a/runtime/interpreter/mterp/arm64/other.S +++++ b/runtime/interpreter/mterp/arm64/other.S ++@@ -263,7 +263,7 @@ ++ ldr x0, [xFP, #OFF_FP_RESULT_REGISTER] // get pointer to result JType. ++ ldr x0, [x0] // r0 <- result.i. ++ GET_INST_OPCODE ip // extract opcode from wINST ++- SET_VREG_WIDE x0, x2 // fp[AA]<- r0 +++ SET_VREG_WIDE x0, w2 // fp[AA]<- r0 ++ GOTO_OPCODE ip // jump to next instruction ++ ++ %def op_move_wide(): diff --cc debian/patches/image-space-dereference.patch index 0000000,0000000..3956b36 new file mode 100644 --- /dev/null +++ b/debian/patches/image-space-dereference.patch @@@ -1,0 -1,0 +1,20 @@@ ++--- a/runtime/gc/space/image_space.cc +++++ b/runtime/gc/space/image_space.cc ++@@ -1432,7 +1432,7 @@ class ImageSpace::BootImageLoader { ++ ++ if (VLOG_IS_ON(image)) { ++ LOG(INFO) << "ImageSpace::BootImageLoader::LoadFromSystem exiting " ++- << boot_image_spaces->front(); +++ << *boot_image_spaces->front(); ++ logger.Dump(LOG_STREAM(INFO)); ++ } ++ return true; ++@@ -1459,7 +1459,7 @@ class ImageSpace::BootImageLoader { ++ ++ if (VLOG_IS_ON(image)) { ++ LOG(INFO) << "ImageSpace::BootImageLoader::LoadFromDalvikCache exiting " ++- << boot_image_spaces->front(); +++ << *boot_image_spaces->front(); ++ logger.Dump(LOG_STREAM(INFO)); ++ } ++ return true; diff --cc debian/patches/method-reference-std-ns.patch index 0000000,0000000..7a261b0 new file mode 100644 --- /dev/null +++ b/debian/patches/method-reference-std-ns.patch @@@ -1,0 -1,0 +1,35 @@@ ++--- a/libdexfile/dex/method_reference.h +++++ b/libdexfile/dex/method_reference.h ++@@ -52,20 +52,20 @@ struct MethodReferenceValueComparator { ++ // Compare the class descriptors first. ++ const dex::MethodId& mid1 = mr1.GetMethodId(); ++ const dex::MethodId& mid2 = mr2.GetMethodId(); ++- int descriptor_diff = strcmp(mr1.dex_file->StringByTypeIdx(mid1.class_idx_), +++ int descriptor_diff = std::strcmp(mr1.dex_file->StringByTypeIdx(mid1.class_idx_), ++ mr2.dex_file->StringByTypeIdx(mid2.class_idx_)); ++ if (descriptor_diff != 0) { ++ return descriptor_diff < 0; ++ } ++ // Compare names second. ++- int name_diff = strcmp(mr1.dex_file->GetMethodName(mid1), mr2.dex_file->GetMethodName(mid2)); +++ int name_diff = std::strcmp(mr1.dex_file->GetMethodName(mid1), mr2.dex_file->GetMethodName(mid2)); ++ if (name_diff != 0) { ++ return name_diff < 0; ++ } ++ // And then compare proto ids, starting with return type comparison. ++ const dex::ProtoId& prid1 = mr1.dex_file->GetProtoId(mid1.proto_idx_); ++ const dex::ProtoId& prid2 = mr2.dex_file->GetProtoId(mid2.proto_idx_); ++- int return_type_diff = strcmp(mr1.dex_file->StringByTypeIdx(prid1.return_type_idx_), +++ int return_type_diff = std::strcmp(mr1.dex_file->StringByTypeIdx(prid1.return_type_idx_), ++ mr2.dex_file->StringByTypeIdx(prid2.return_type_idx_)); ++ if (return_type_diff != 0) { ++ return return_type_diff < 0; ++@@ -76,7 +76,7 @@ struct MethodReferenceValueComparator { ++ const dex::TypeList* params2 = mr2.dex_file->GetProtoParameters(prid2); ++ size_t param2_size = (params2 != nullptr) ? params2->Size() : 0u; ++ for (size_t i = 0, num = std::min(param1_size, param2_size); i != num; ++i) { ++- int param_diff = strcmp(mr1.dex_file->StringByTypeIdx(params1->GetTypeItem(i).type_idx_), +++ int param_diff = std::strcmp(mr1.dex_file->StringByTypeIdx(params1->GetTypeItem(i).type_idx_), ++ mr2.dex_file->StringByTypeIdx(params2->GetTypeItem(i).type_idx_)); ++ if (param_diff != 0) { ++ return param_diff < 0; diff --cc debian/patches/missing-system-includes.patch index 0000000,0000000..69926f2 new file mode 100644 --- /dev/null +++ b/debian/patches/missing-system-includes.patch @@@ -1,0 -1,0 +1,287 @@@ ++Description: somehow upstream builds don't need these headers :-/ ++Forwarded: not-needed ++--- a/runtime/runtime_common.h +++++ b/runtime/runtime_common.h ++@@ -27,6 +27,7 @@ ++ ++ #include ++ #include +++#include ++ ++ #include ++ ++--- a/sigchainlib/sigchain.cc +++++ b/sigchainlib/sigchain.cc ++@@ -27,6 +27,7 @@ ++ #include ++ #include ++ #include +++#include ++ ++ #include "log.h" ++ #include "sigchain.h" ++--- a/runtime/base/mutex.cc +++++ b/runtime/base/mutex.cc ++@@ -18,6 +18,7 @@ ++ ++ #include ++ #include +++#include ++ ++ #include "android-base/stringprintf.h" ++ ++--- a/runtime/exec_utils.cc +++++ b/runtime/exec_utils.cc ++@@ -20,6 +20,7 @@ ++ #include ++ #include ++ #include +++#include ++ ++ #include "android-base/stringprintf.h" ++ #include "android-base/strings.h" ++--- a/runtime/gc/accounting/heap_bitmap.cc +++++ b/runtime/gc/accounting/heap_bitmap.cc ++@@ -16,6 +16,8 @@ ++ ++ #include "heap_bitmap.h" ++ +++#include +++ ++ #include "gc/accounting/space_bitmap-inl.h" ++ #include "gc/space/space.h" ++ ++--- a/runtime/gc/accounting/read_barrier_table.h +++++ b/runtime/gc/accounting/read_barrier_table.h ++@@ -18,6 +18,7 @@ ++ #define ART_RUNTIME_GC_ACCOUNTING_READ_BARRIER_TABLE_H_ ++ ++ #include // For the PROT_* and MAP_* constants. +++#include ++ ++ #include "base/bit_utils.h" ++ #include "base/locks.h" ++--- a/runtime/jdwp/jdwp_handler.cc +++++ b/runtime/jdwp/jdwp_handler.cc ++@@ -19,6 +19,7 @@ ++ #include ++ #include ++ #include +++#include ++ ++ #include "android-base/stringprintf.h" ++ ++--- a/runtime/jit/profiling_info.h +++++ b/runtime/jit/profiling_info.h ++@@ -18,6 +18,7 @@ ++ #define ART_RUNTIME_JIT_PROFILING_INFO_H_ ++ ++ #include +++#include ++ ++ #include "base/macros.h" ++ #include "gc_root.h" ++--- a/runtime/arch/instruction_set_features.cc +++++ b/runtime/arch/instruction_set_features.cc ++@@ -21,6 +21,8 @@ ++ #include ++ #include ++ +++#include +++ ++ #include "android-base/strings.h" ++ ++ #include "base/casts.h" ++--- a/runtime/arch/mips/instruction_set_features_mips.cc +++++ b/runtime/arch/mips/instruction_set_features_mips.cc ++@@ -18,6 +18,7 @@ ++ ++ #include ++ #include +++#include ++ ++ #include ++ #include ++--- a/runtime/monitor.h +++++ b/runtime/monitor.h ++@@ -24,6 +24,7 @@ ++ #include ++ #include ++ #include +++#include ++ ++ #include "base/allocator.h" ++ #include "base/atomic.h" ++--- a/runtime/arch/x86/context_x86.cc +++++ b/runtime/arch/x86/context_x86.cc ++@@ -16,6 +16,8 @@ ++ ++ #include "context_x86.h" ++ +++#include +++ ++ #include "base/bit_utils.h" ++ #include "base/bit_utils_iterator.h" ++ #include "base/memory_tool.h" ++--- a/libartbase/base/arena_allocator.h +++++ b/libartbase/base/arena_allocator.h ++@@ -17,6 +17,7 @@ ++ #ifndef ART_LIBARTBASE_BASE_ARENA_ALLOCATOR_H_ ++ #define ART_LIBARTBASE_BASE_ARENA_ALLOCATOR_H_ ++ +++#include ++ #include ++ #include ++ ++--- a/libdexfile/dex/dex_file_types.h +++++ b/libdexfile/dex/dex_file_types.h ++@@ -17,6 +17,8 @@ ++ #ifndef ART_LIBDEXFILE_DEX_DEX_FILE_TYPES_H_ ++ #define ART_LIBDEXFILE_DEX_DEX_FILE_TYPES_H_ ++ +++#include +++#include ++ #include ++ #include ++ #include ++--- a/libdexfile/dex/method_reference.h +++++ b/libdexfile/dex/method_reference.h ++@@ -17,6 +17,7 @@ ++ #ifndef ART_LIBDEXFILE_DEX_METHOD_REFERENCE_H_ ++ #define ART_LIBDEXFILE_DEX_METHOD_REFERENCE_H_ ++ +++#include ++ #include ++ #include ++ #include "dex/dex_file.h" ++--- a/libartbase/base/arena_containers.h +++++ b/libartbase/base/arena_containers.h ++@@ -17,6 +17,7 @@ ++ #ifndef ART_LIBARTBASE_BASE_ARENA_CONTAINERS_H_ ++ #define ART_LIBARTBASE_BASE_ARENA_CONTAINERS_H_ ++ +++#include ++ #include ++ #include ++ #include ++--- a/libartbase/arch/instruction_set.cc +++++ b/libartbase/arch/instruction_set.cc ++@@ -19,6 +19,7 @@ ++ #include "android-base/logging.h" ++ #include "base/bit_utils.h" ++ #include "base/globals.h" +++#include ++ ++ namespace art { ++ ++--- a/libartbase/base/bit_vector-inl.h +++++ b/libartbase/base/bit_vector-inl.h ++@@ -20,6 +20,7 @@ ++ #include "bit_vector.h" ++ ++ #include +++#include ++ ++ #include "bit_utils.h" ++ ++--- a/libartbase/base/bit_vector.cc +++++ b/libartbase/base/bit_vector.cc ++@@ -16,6 +16,7 @@ ++ ++ #include "bit_vector.h" ++ +++#include ++ #include ++ #include ++ ++--- a/libartbase/base/file_utils.cc +++++ b/libartbase/base/file_utils.cc ++@@ -40,6 +40,7 @@ ++ ++ ++ #include +++#include ++ ++ #include "android-base/stringprintf.h" ++ #include "android-base/strings.h" ++--- a/libartbase/base/bit_vector.h +++++ b/libartbase/base/bit_vector.h ++@@ -18,6 +18,7 @@ ++ #define ART_LIBARTBASE_BASE_BIT_VECTOR_H_ ++ ++ #include +++#include ++ #include ++ ++ #include "bit_utils.h" ++--- a/libartbase/base/file_magic.cc +++++ b/libartbase/base/file_magic.cc ++@@ -19,6 +19,7 @@ ++ #include ++ #include ++ #include +++#include ++ ++ #include ++ #include ++--- a/libartbase/base/logging.cc +++++ b/libartbase/base/logging.cc ++@@ -16,6 +16,7 @@ ++ ++ #include "logging.h" ++ +++#include ++ #include ++ #include ++ #include ++--- a/libartbase/base/memfd.cc +++++ b/libartbase/base/memfd.cc ++@@ -24,6 +24,7 @@ ++ #include ++ #endif ++ +++#include ++ #include "macros.h" ++ ++ // When building for linux host, glibc in prebuilts does not include memfd_create system call ++--- a/libartbase/base/scoped_flock.cc +++++ b/libartbase/base/scoped_flock.cc ++@@ -19,6 +19,8 @@ ++ #include ++ #include ++ +++#include +++ ++ #include ++ #include ++ ++--- a/libartbase/base/unix_file/fd_file.cc +++++ b/libartbase/base/unix_file/fd_file.cc ++@@ -29,6 +29,7 @@ ++ #include ++ #endif ++ +++#include ++ #include ++ ++ #include ++--- a/libdexfile/dex/descriptors_names.cc +++++ b/libdexfile/dex/descriptors_names.cc ++@@ -21,6 +21,7 @@ ++ ++ #include "base/macros.h" ++ #include "dex/utf-inl.h" +++#include ++ ++ namespace art { ++ ++--- a/libdexfile/dex/dex_file_loader.h +++++ b/libdexfile/dex/dex_file_loader.h ++@@ -18,6 +18,7 @@ ++ #define ART_LIBDEXFILE_DEX_DEX_FILE_LOADER_H_ ++ ++ #include +++#include ++ #include ++ #include ++ #include diff --cc debian/patches/python3-gen_mterp.patch index 0000000,0000000..fe06ea2 new file mode 100644 --- /dev/null +++ b/debian/patches/python3-gen_mterp.patch @@@ -1,0 -1,0 +1,45 @@@ ++diff --git a/runtime/interpreter/mterp/common/gen_setup.py b/runtime/interpreter/mterp/common/gen_setup.py ++index 2684ab2..ac0606b 100644 ++--- a/runtime/interpreter/mterp/common/gen_setup.py +++++ b/runtime/interpreter/mterp/common/gen_setup.py ++@@ -19,7 +19,7 @@ ++ # the templated snippets. Those define all the helper functions used below. ++ ++ import sys, re ++-from cStringIO import StringIO +++from io import StringIO ++ ++ out = StringIO() # File-like in-memory buffer. ++ handler_size_bytes = "MTERP_HANDLER_SIZE" ++diff --git a/runtime/interpreter/mterp/gen_mterp.py b/runtime/interpreter/mterp/gen_mterp.py ++index 5d25955..8534e99 100755 ++--- a/runtime/interpreter/mterp/gen_mterp.py +++++ b/runtime/interpreter/mterp/gen_mterp.py ++@@ -1,4 +1,4 @@ ++-#!/usr/bin/env python +++#!/usr/bin/env python3 ++ # ++ # Copyright (C) 2016 The Android Open Source Project ++ # ++@@ -15,7 +15,7 @@ ++ # limitations under the License. ++ ++ import sys, re, os ++-from cStringIO import StringIO +++from io import StringIO ++ ++ SCRIPT_DIR = os.path.dirname(sys.argv[0]) ++ # This file is included verbatim at the start of the in-memory python script. ++@@ -37,9 +37,9 @@ def getOpcodeList(): ++ opcode_fp.close() ++ ++ if len(opcodes) != NUM_PACKED_OPCODES: ++- print "ERROR: found %d opcodes in Interp.h (expected %d)" \ ++- % (len(opcodes), NUM_PACKED_OPCODES) ++- raise SyntaxError, "bad opcode count" +++ print("ERROR: found %d opcodes in Interp.h (expected %d)" \ +++ % (len(opcodes), NUM_PACKED_OPCODES)) +++ raise SyntaxError("bad opcode count") ++ return opcodes ++ ++ indent_re = re.compile(r"^%( *)") diff --cc debian/patches/series index 0000000,0000000..b0ad5b7 new file mode 100644 --- /dev/null +++ b/debian/patches/series @@@ -1,0 -1,0 +1,15 @@@ ++use-android-dlmalloc.patch ++missing-system-includes.patch ++ucontext.patch ++atomic-exception-specification.patch ++image-space-dereference.patch ++storage-mode-concat.patch ++method-reference-std-ns.patch ++python3-gen_mterp.patch ++stats-incomplete-def.patch ++fix-build-on-non-x86.patch ++workaround-cacheflush-on-arm.patch ++adapt-asm-output-of-clang-that-no-is-placed-before-data.patch ++arm-asm-instruction.patch ++fix-mterp-assembly-to-use-uxtw-instead-of-lsl-where-needed.patch ++Fix-ftbfs-for-c-17.patch diff --cc debian/patches/stats-incomplete-def.patch index 0000000,0000000..867603b new file mode 100644 --- /dev/null +++ b/debian/patches/stats-incomplete-def.patch @@@ -1,0 -1,0 +1,31 @@@ ++--- a/libartbase/base/stats.h +++++ b/libartbase/base/stats.h ++@@ -28,8 +28,8 @@ class Stats { ++ public: ++ double Value() const { return value_; } ++ size_t Count() const { return count_; } ++- Stats* Child(const char* name) { return &children_[name]; } ++- const std::unordered_map& Children() const { return children_; } +++ Stats* Child(const char* name) { return &(*children_)[name]; } +++ const std::unordered_map& Children() const { return *children_; } ++ ++ void AddBytes(double bytes, size_t count = 1) { Add(bytes, count); } ++ void AddBits(double bits, size_t count = 1) { Add(bits / kBitsPerByte, count); } ++@@ -38,7 +38,7 @@ class Stats { ++ ++ double SumChildrenValues() const { ++ double sum = 0.0; ++- for (auto it : children_) { +++ for (auto it : *children_) { ++ sum += it.second.Value(); ++ } ++ return sum; ++@@ -52,7 +52,7 @@ class Stats { ++ ++ double value_ = 0.0; // Commutative sum of the collected statistic in basic units. ++ size_t count_ = 0; // The number of samples for this node. ++- std::unordered_map children_; +++ std::unordered_map* children_; ++ }; ++ ++ } // namespace art diff --cc debian/patches/storage-mode-concat.patch index 0000000,0000000..517c248 new file mode 100644 --- /dev/null +++ b/debian/patches/storage-mode-concat.patch @@@ -1,0 -1,0 +1,11 @@@ ++--- a/runtime/image.cc +++++ b/runtime/image.cc ++@@ -172,7 +172,7 @@ bool ImageHeader::Block::Decompress(uint8_t* out_ptr, ++ } ++ default: { ++ if (error_msg != nullptr) { ++- *error_msg = (std::ostringstream() << "Invalid image format " << storage_mode_).str(); +++ *error_msg = "Invalid image format " + storage_mode_; ++ } ++ return false; ++ } diff --cc debian/patches/ucontext.patch index 0000000,0000000..544f5a6 new file mode 100644 --- /dev/null +++ b/debian/patches/ucontext.patch @@@ -1,0 -1,0 +1,208 @@@ ++Description: Use `ucontext_t` instead of `ucontext` ++ Both Bionic and glibc define a struct called `ucontext_t` but only Bionic ++ defines an alias `ucontext_t`. Let's use the more standardized one. ++--- a/runtime/native_stack_dump.cc +++++ b/runtime/native_stack_dump.cc ++@@ -38,6 +38,7 @@ ++ #include ++ #include ++ #include +++#include ++ ++ #include "android-base/stringprintf.h" ++ #include "android-base/strings.h" ++@@ -328,7 +329,7 @@ ++ } ++ std::unique_ptr backtrace(Backtrace::Create(BACKTRACE_CURRENT_PROCESS, tid, map)); ++ backtrace->SetSkipFrames(skip_frames); ++- if (!backtrace->Unwind(0, reinterpret_cast(ucontext_ptr))) { +++ if (!backtrace->Unwind(0, reinterpret_cast(ucontext_ptr))) { ++ os << prefix << "(backtrace::Unwind failed for thread " << tid ++ << ": " << backtrace->GetErrorString(backtrace->GetError()) << ")" << std::endl; ++ return; ++--- a/runtime/arch/x86/fault_handler_x86.cc +++++ b/runtime/arch/x86/fault_handler_x86.cc ++@@ -280,7 +280,7 @@ ++ void FaultManager::GetMethodAndReturnPcAndSp(siginfo_t* siginfo, void* context, ++ ArtMethod** out_method, ++ uintptr_t* out_return_pc, uintptr_t* out_sp) { ++- struct ucontext* uc = reinterpret_cast(context); +++ struct ucontext_t* uc = reinterpret_cast(context); ++ *out_sp = static_cast(uc->CTX_ESP); ++ VLOG(signals) << "sp: " << std::hex << *out_sp; ++ if (*out_sp == 0) { ++@@ -325,7 +325,7 @@ ++ if (!IsValidImplicitCheck(sig)) { ++ return false; ++ } ++- struct ucontext *uc = reinterpret_cast(context); +++ struct ucontext_t *uc = reinterpret_cast(context); ++ uint8_t* pc = reinterpret_cast(uc->CTX_EIP); ++ uint8_t* sp = reinterpret_cast(uc->CTX_ESP); ++ ++@@ -381,7 +381,7 @@ ++ #endif ++ uint8_t checkinst2[] = {0x85, 0x00}; ++ ++- struct ucontext *uc = reinterpret_cast(context); +++ struct ucontext_t *uc = reinterpret_cast(context); ++ uint8_t* pc = reinterpret_cast(uc->CTX_EIP); ++ uint8_t* sp = reinterpret_cast(uc->CTX_ESP); ++ ++@@ -437,7 +437,7 @@ ++ // address for the previous method is on the stack at ESP. ++ ++ bool StackOverflowHandler::Action(int, siginfo_t* info, void* context) { ++- struct ucontext *uc = reinterpret_cast(context); +++ struct ucontext_t *uc = reinterpret_cast(context); ++ uintptr_t sp = static_cast(uc->CTX_ESP); ++ ++ uintptr_t fault_addr = reinterpret_cast(info->si_addr); ++--- a/runtime/arch/arm64/fault_handler_arm64.cc +++++ b/runtime/arch/arm64/fault_handler_arm64.cc ++@@ -41,7 +41,7 @@ ++ void FaultManager::GetMethodAndReturnPcAndSp(siginfo_t* siginfo ATTRIBUTE_UNUSED, void* context, ++ ArtMethod** out_method, ++ uintptr_t* out_return_pc, uintptr_t* out_sp) { ++- struct ucontext *uc = reinterpret_cast(context); +++ struct ucontext_t *uc = reinterpret_cast(context); ++ struct sigcontext *sc = reinterpret_cast(&uc->uc_mcontext); ++ *out_sp = static_cast(sc->sp); ++ VLOG(signals) << "sp: " << *out_sp; ++@@ -77,7 +77,7 @@ ++ // PC at the point of call. For Null checks we insert a GC map that is immediately after ++ // the load/store instruction that might cause the fault. ++ ++- struct ucontext *uc = reinterpret_cast(context); +++ struct ucontext_t *uc = reinterpret_cast(context); ++ struct sigcontext *sc = reinterpret_cast(&uc->uc_mcontext); ++ ++ // Push the gc map location to the stack and pass the fault address in LR. ++@@ -106,7 +106,7 @@ ++ (Thread::ThreadSuspendTriggerOffset().Int32Value() << 7); ++ uint32_t checkinst2 = 0xf9400000; ++ ++- struct ucontext *uc = reinterpret_cast(context); +++ struct ucontext_t *uc = reinterpret_cast(context); ++ struct sigcontext *sc = reinterpret_cast(&uc->uc_mcontext); ++ uint8_t* ptr2 = reinterpret_cast(sc->pc); ++ uint8_t* ptr1 = ptr2 - 4; ++@@ -152,7 +152,7 @@ ++ ++ bool StackOverflowHandler::Action(int sig ATTRIBUTE_UNUSED, siginfo_t* info ATTRIBUTE_UNUSED, ++ void* context) { ++- struct ucontext *uc = reinterpret_cast(context); +++ struct ucontext_t *uc = reinterpret_cast(context); ++ struct sigcontext *sc = reinterpret_cast(&uc->uc_mcontext); ++ VLOG(signals) << "stack overflow handler with sp at " << std::hex << &uc; ++ VLOG(signals) << "sigcontext: " << std::hex << sc; ++--- a/runtime/arch/arm/fault_handler_arm.cc +++++ b/runtime/arch/arm/fault_handler_arm.cc ++@@ -48,7 +48,7 @@ ++ void FaultManager::GetMethodAndReturnPcAndSp(siginfo_t* siginfo ATTRIBUTE_UNUSED, void* context, ++ ArtMethod** out_method, ++ uintptr_t* out_return_pc, uintptr_t* out_sp) { ++- struct ucontext* uc = reinterpret_cast(context); +++ struct ucontext_t* uc = reinterpret_cast(context); ++ struct sigcontext *sc = reinterpret_cast(&uc->uc_mcontext); ++ *out_sp = static_cast(sc->arm_sp); ++ VLOG(signals) << "sp: " << std::hex << *out_sp; ++@@ -99,7 +99,7 @@ ++ // register in order to find the mapping. ++ ++ // Need to work out the size of the instruction that caused the exception. ++- struct ucontext *uc = reinterpret_cast(context); +++ struct ucontext_t *uc = reinterpret_cast(context); ++ struct sigcontext *sc = reinterpret_cast(&uc->uc_mcontext); ++ uint8_t* ptr = reinterpret_cast(sc->arm_pc); ++ uint32_t instr_size = GetInstructionSize(ptr); ++@@ -132,7 +132,7 @@ ++ + Thread::ThreadSuspendTriggerOffset().Int32Value(); ++ uint16_t checkinst2 = 0x6800; ++ ++- struct ucontext* uc = reinterpret_cast(context); +++ struct ucontext_t* uc = reinterpret_cast(context); ++ struct sigcontext *sc = reinterpret_cast(&uc->uc_mcontext); ++ uint8_t* ptr2 = reinterpret_cast(sc->arm_pc); ++ uint8_t* ptr1 = ptr2 - 4; ++@@ -197,7 +197,7 @@ ++ ++ bool StackOverflowHandler::Action(int sig ATTRIBUTE_UNUSED, siginfo_t* info ATTRIBUTE_UNUSED, ++ void* context) { ++- struct ucontext* uc = reinterpret_cast(context); +++ struct ucontext_t* uc = reinterpret_cast(context); ++ struct sigcontext *sc = reinterpret_cast(&uc->uc_mcontext); ++ VLOG(signals) << "stack overflow handler with sp at " << std::hex << &uc; ++ VLOG(signals) << "sigcontext: " << std::hex << sc; ++--- a/runtime/arch/arm/instruction_set_features_arm.cc +++++ b/runtime/arch/arm/instruction_set_features_arm.cc ++@@ -223,8 +223,9 @@ ++ siginfo_t* si ATTRIBUTE_UNUSED, ++ void* data) { ++ #if defined(__arm__) ++- struct ucontext *uc = (struct ucontext *)data; ++- struct sigcontext *sc = &uc->uc_mcontext; +++ struct ucontext_t *uc = (struct ucontext_t *)data; +++ // See the starting chunk of `FaultManager::GetMethodAndReturnPcAndSp()` in `fault_handler_arm.cc` +++ struct sigcontext *sc = reinterpret_cast(&uc->uc_mcontext); ++ sc->arm_r0 = 0; // Set R0 to #0 to signal error. ++ sc->arm_pc += 4; // Skip offending instruction. ++ #else ++--- a/runtime/arch/mips/fault_handler_mips.cc +++++ b/runtime/arch/mips/fault_handler_mips.cc ++@@ -40,7 +40,7 @@ ++ void FaultManager::GetMethodAndReturnPcAndSp(siginfo_t* siginfo, void* context, ++ ArtMethod** out_method, ++ uintptr_t* out_return_pc, uintptr_t* out_sp) { ++- struct ucontext* uc = reinterpret_cast(context); +++ struct ucontext_t* uc = reinterpret_cast(context); ++ struct sigcontext *sc = reinterpret_cast(&uc->uc_mcontext); ++ *out_sp = static_cast(sc->sc_regs[mips::SP]); ++ VLOG(signals) << "sp: " << *out_sp; ++@@ -77,7 +77,7 @@ ++ // PC at the point of call. For Null checks we insert a GC map that is immediately after ++ // the load/store instruction that might cause the fault. ++ ++- struct ucontext *uc = reinterpret_cast(context); +++ struct ucontext_t *uc = reinterpret_cast(context); ++ struct sigcontext *sc = reinterpret_cast(&uc->uc_mcontext); ++ ++ // Decrement $sp by the frame size of the kSaveEverything method and store ++@@ -112,7 +112,7 @@ ++ // to the overflow region below the protected region. ++ ++ bool StackOverflowHandler::Action(int sig ATTRIBUTE_UNUSED, siginfo_t* info, void* context) { ++- struct ucontext* uc = reinterpret_cast(context); +++ struct ucontext_t* uc = reinterpret_cast(context); ++ struct sigcontext *sc = reinterpret_cast(&uc->uc_mcontext); ++ VLOG(signals) << "stack overflow handler with sp at " << std::hex << &uc; ++ VLOG(signals) << "sigcontext: " << std::hex << sc; ++--- a/runtime/arch/mips64/fault_handler_mips64.cc +++++ b/runtime/arch/mips64/fault_handler_mips64.cc ++@@ -41,7 +41,7 @@ ++ void FaultManager::GetMethodAndReturnPcAndSp(siginfo_t* siginfo, void* context, ++ ArtMethod** out_method, ++ uintptr_t* out_return_pc, uintptr_t* out_sp) { ++- struct ucontext* uc = reinterpret_cast(context); +++ struct ucontext_t* uc = reinterpret_cast(context); ++ struct sigcontext *sc = reinterpret_cast(&uc->uc_mcontext); ++ *out_sp = static_cast(sc->sc_regs[mips64::SP]); ++ VLOG(signals) << "sp: " << *out_sp; ++@@ -79,7 +79,7 @@ ++ // PC at the point of call. For Null checks we insert a GC map that is immediately after ++ // the load/store instruction that might cause the fault. ++ ++- struct ucontext *uc = reinterpret_cast(context); +++ struct ucontext_t *uc = reinterpret_cast(context); ++ struct sigcontext *sc = reinterpret_cast(&uc->uc_mcontext); ++ ++ // Decrement $sp by the frame size of the kSaveEverything method and store ++@@ -114,7 +114,7 @@ ++ // to the overflow region below the protected region. ++ ++ bool StackOverflowHandler::Action(int sig ATTRIBUTE_UNUSED, siginfo_t* info, void* context) { ++- struct ucontext* uc = reinterpret_cast(context); +++ struct ucontext_t* uc = reinterpret_cast(context); ++ struct sigcontext *sc = reinterpret_cast(&uc->uc_mcontext); ++ VLOG(signals) << "stack overflow handler with sp at " << std::hex << &uc; ++ VLOG(signals) << "sigcontext: " << std::hex << sc; diff --cc debian/patches/use-android-dlmalloc.patch index 0000000,0000000..b3ddc94 new file mode 100644 --- /dev/null +++ b/debian/patches/use-android-dlmalloc.patch @@@ -1,0 -1,0 +1,22 @@@ ++--- a/runtime/gc/allocator/dlmalloc.h +++++ b/runtime/gc/allocator/dlmalloc.h ++@@ -33,7 +33,7 @@ ++ #pragma GCC diagnostic push ++ #pragma GCC diagnostic ignored "-Wredundant-decls" ++ #pragma GCC diagnostic ignored "-Wnull-pointer-arithmetic" ++-#include "../../external/dlmalloc/malloc.h" +++#include "debian/dlmalloc/malloc.h" ++ #pragma GCC diagnostic pop ++ ++ // Callback for dlmalloc_inspect_all or mspace_inspect_all that will madvise(2) unused ++--- a/runtime/gc/allocator/dlmalloc.cc +++++ b/runtime/gc/allocator/dlmalloc.cc ++@@ -39,7 +39,7 @@ ++ #pragma GCC diagnostic ignored "-Wstrict-aliasing" ++ #pragma GCC diagnostic ignored "-Wnull-pointer-arithmetic" ++ #pragma GCC diagnostic ignored "-Wexpansion-to-defined" ++-#include "../../../external/dlmalloc/malloc.c" +++#include "debian/dlmalloc/malloc.c" ++ // Note: malloc.c uses a DEBUG define to drive debug code. This interferes with the DEBUG severity ++ // of libbase, so undefine it now. ++ #undef DEBUG diff --cc debian/patches/workaround-cacheflush-on-arm.patch index 0000000,0000000..8075b6f new file mode 100644 --- /dev/null +++ b/debian/patches/workaround-cacheflush-on-arm.patch @@@ -1,0 -1,0 +1,16 @@@ ++Description: Workaround cacheflush on arm ++Forwarded: not-needed ++--- a/libartbase/base/utils.cc +++++ b/libartbase/base/utils.cc ++@@ -76,7 +76,10 @@ static constexpr size_t kMaxFlushAttempts = 4; ++ int CacheFlush(uintptr_t start, uintptr_t limit) { ++ // The signature of cacheflush(2) seems to vary by source. On ARM the system call wrapper ++ // (bionic/SYSCALLS.TXT) has the form: int cacheflush(long start, long end, long flags); ++- int r = cacheflush(start, limit, kCacheFlushFlags); +++// int r = cacheflush(start, limit, kCacheFlushFlags); +++//This is only for ARM +++//Workaround/skip cacheflush until we find the real replacement +++ int r = 0; ++ if (r == -1) { ++ CHECK_NE(errno, EINVAL); ++ } diff --cc debian/rules index 0000000,0000000..777d7e7 new file mode 100755 --- /dev/null +++ b/debian/rules @@@ -1,0 -1,0 +1,82 @@@ ++#!/usr/bin/make -f ++ ++include /usr/share/dpkg/architecture.mk ++include /usr/share/dpkg/pkg-info.mk ++ ++export DEB_HOST_MULTIARCH ++ ++# Security Hardening ++export DEB_BUILD_MAINT_OPTIONS = hardening=+all ++export DEB_CFLAGS_MAINT_APPEND = -fPIC ++export DEB_CXXFLAGS_MAINT_APPEND = -fPIC ++export DEB_LDFLAGS_MAINT_APPEND = -fPIC ++ ++ifneq ($(filter armhf,$(DEB_HOST_ARCH)),) ++ export DEB_CFLAGS_MAINT_APPEND = -fPIC -mfpu=neon ++ export DEB_CXXFLAGS_MAINT_APPEND = -fPIC -mfpu=neon ++endif ++ ++DEB_CPPFLAGS_MAINT_APPEND += \ ++ -DNDEBUG \ ++ -I/usr/include/android \ ++ -UDEBUG ++# Clang defines a macro `mips = 1` which disrupts the namespace declaration `art::mips` ++DEB_CPPFLAGS_MAINT_APPEND += -Umips ++export DEB_CPPFLAGS_MAINT_APPEND ++ ++ ++# MIPS is left out because ART only supports MIPSr6 while Debian is by default MIPSr2 ++ifneq ($(filter amd64 i386 armel armhf arm64,$(DEB_HOST_ARCH)),) ++ ifeq ($(findstring stage1,$(DEB_VERSION)),) ++ COMPONENTS = debian/out/dexdump debian/out/dexlist ++ MAN_COMPONENTS = debian/out/dexdump.1 ++ endif ++ COMPONENTS += debian/out/libdexfile_external.so debian/out/libdexfile_support.so ++ export CC=clang ++ export CXX=clang++ ++endif ++ ++debian/out: ++ mkdir -p $@ ++ ++debian/out/libdexfile_support.so: debian/libdexfile_support.mk ++ dh_auto_build --buildsystem=makefile -- --file=$< ++ ++debian/out/libsigchain.so: debian/libsigchain.mk ++ dh_auto_build --buildsystem=makefile -- --file=$< ++ ++debian/out/dexlist: debian/out/libart.so ++ dh_auto_build --buildsystem=makefile -- --file=debian/dexlist.mk ++ ++debian/out/dexdump: debian/out/libart.so ++ dh_auto_build --buildsystem=makefile -- --file=debian/dexdump.mk ++ ++debian/out/libdexfile_external.so: debian/out/libart.so ++ dh_auto_build --buildsystem=makefile -- --file=debian/libdexfile_external.mk ++ ++debian/out/libart.so: debian/out/asm_defines.h debian/out/libsigchain.so ++ dh_auto_build --buildsystem=makefile -- --file=debian/libart.mk ++ ++# Only for debug purpose to build standalone object ++debian/out/asm_defines.h debian/out/operator_out.cc: debian/out ++ dh_auto_build --buildsystem=makefile -- --file=debian/libart.mk $@ ++debian/out/mterp.S: debian/out debian/out/asm_defines.h ++ dh_auto_build --buildsystem=makefile -- --file=debian/libart.mk $@ ++runtime/%.o libartbase/%.o libdexfile/%.o debian/out/%.o: debian/out ++ dh_auto_build --buildsystem=makefile -- --file=debian/libart.mk $@ ++ ++debian/out/%.1: debian/out/% ++ help2man -N -n "Dex Tool" --no-discard-stderr --version-string="$(DEB_VERSION)" \ ++ -o $@ $< ++ ++%: ++ dh $@ ++ ++override_dh_auto_build: debian/out $(COMPONENTS) $(MAN_COMPONENTS) ++ ++override_dh_auto_clean: ++ dh_auto_clean ++ make clean --file=debian/libart.mk ++ ++override_dh_shlibdeps: ++ dh_shlibdeps -l/usr/lib/$(DEB_HOST_MULTIARCH)/android diff --cc debian/source/format index 0000000,0000000..46ebe02 new file mode 100644 --- /dev/null +++ b/debian/source/format @@@ -1,0 -1,0 +1,1 @@@ ++3.0 (quilt) diff --cc debian/tests/control index 0000000,0000000..4cfd823 new file mode 100644 --- /dev/null +++ b/debian/tests/control @@@ -1,0 -1,0 +1,3 @@@ ++# ++Tests: dexdump-dexlist ++Depends: dexdump, dexlist diff --cc debian/tests/dexdump-dexlist index 0000000,0000000..98d4ec5 new file mode 100755 --- /dev/null +++ b/debian/tests/dexdump-dexlist @@@ -1,0 -1,0 +1,4 @@@ ++#!/usr/bin/env bash ++ ++export ANDROID_HOST_OUT=/usr ++test/dexdump/run-all-tests diff --cc debian/upstream/metadata index 0000000,0000000..8b9528d new file mode 100644 --- /dev/null +++ b/debian/upstream/metadata @@@ -1,0 -1,0 +1,7 @@@ ++--- ++Archive: Google Git ++Bug-Database: https://issuetracker.google.com/issues?q=componentid:192728%20status:open ++Bug-Submit: https://developer.android.com/studio/report-bugs ++Homepage: https://source.android.com/source/developing.html ++Repository-Browse: https://android.googlesource.com/platform/art ++Repository: https://android.googlesource.com/platform/art diff --cc debian/watch index 0000000,0000000..f1315dc new file mode 100644 --- /dev/null +++ b/debian/watch @@@ -1,0 -1,0 +1,6 @@@ ++version=4 ++opts="pagemangle=s%\">android-%\.tar\.gz\">android-%g;s%/\+/refs/tags/%/+archive/%g, \ ++ uversionmangle=s%\.(\d+)\.\.tar\.gz%\+r$1%, \ ++ filenamemangle=s%[\w\/]+\+archive\/android-%@PACKAGE@-%" \ ++https://android.googlesource.com/platform/art/+refs \ ++ [\w\/]+\+archive\/android-([0-9\.]+)_r(\d+|\d+\.\d+|\w)(\.tar\.gz) debian uupdate