d = 1e-5
arr = make_array(N, d, np.nan, np.float64)
self.sp_arr = SparseArray(arr)
- b_arr = np.full(shape=N, fill_value=fill_value, dtype=np.bool8)
+ b_arr = np.full(shape=N, fill_value=fill_value, dtype=np.bool_)
fv_inds = np.unique(
np.random.randint(low=0, high=N - 1, size=int(N * d), dtype=np.int32)
)
b_arr[fv_inds] = True if pd.isna(fill_value) else not fill_value
- self.sp_b_arr = SparseArray(b_arr, dtype=np.bool8, fill_value=fill_value)
+ self.sp_b_arr = SparseArray(b_arr, dtype=np.bool_, fill_value=fill_value)
def time_mask(self, fill_value):
self.sp_arr[self.sp_b_arr]
dtype = SparseDtype(bool, self._null_fill_value)
if self._null_fill_value:
return type(self)._simple_new(isna(self.sp_values), self.sp_index, dtype)
- mask = np.full(len(self), False, dtype=np.bool8)
+ mask = np.full(len(self), False, dtype=np.bool_)
mask[self.sp_index.indices] = isna(self.sp_values)
return type(self)(mask, fill_value=False, dtype=dtype)
if not key.fill_value:
return self.take(key.sp_index.indices)
n = len(self)
- mask = np.full(n, True, dtype=np.bool8)
+ mask = np.full(n, True, dtype=np.bool_)
mask[key.sp_index.indices] = False
return self.take(np.arange(n)[mask])
else:
valid = invalid == 0
invalid = not valid
- mask = np.zeros(shape=(len(buf),), dtype=np.bool8)
+ mask = np.zeros(shape=(len(buf),), dtype=np.bool_)
for i, obj in enumerate(buf):
mask[i] = valid if isinstance(obj, str) else invalid
def test_getitem_bool_sparse_array(self):
# GH 23122
- spar_bool = SparseArray([False, True] * 5, dtype=np.bool8, fill_value=True)
+ spar_bool = SparseArray([False, True] * 5, dtype=np.bool_, fill_value=True)
exp = SparseArray([np.nan, 2, np.nan, 5, 6])
tm.assert_sp_array_equal(arr[spar_bool], exp)
tm.assert_sp_array_equal(res, exp)
spar_bool = SparseArray(
- [False, True, np.nan] * 3, dtype=np.bool8, fill_value=np.nan
+ [False, True, np.nan] * 3, dtype=np.bool_, fill_value=np.nan
)
res = arr[spar_bool]
exp = SparseArray([np.nan, 3, 5])
assert result == expected
def test_bool_sum_min_count(self):
- spar_bool = SparseArray([False, True] * 5, dtype=np.bool8, fill_value=True)
+ spar_bool = SparseArray([False, True] * 5, dtype=np.bool_, fill_value=True)
res = spar_bool.sum(min_count=1)
assert res == 5
res = spar_bool.sum(min_count=11)
tm.assert_sp_array_equal(exp, res)
def test_invert_operator(self):
- arr = SparseArray([False, True, False, True], fill_value=False, dtype=np.bool8)
+ arr = SparseArray([False, True, False, True], fill_value=False, dtype=np.bool_)
exp = SparseArray(
- np.invert([False, True, False, True]), fill_value=True, dtype=np.bool8
+ np.invert([False, True, False, True]), fill_value=True, dtype=np.bool_
)
res = ~arr
tm.assert_sp_array_equal(exp, res)
tm.assert_frame_equal(df, recons)
- @pytest.mark.parametrize("np_type", [np.bool8, np.bool_])
- def test_bool_types(self, np_type, path):
- # Test np.bool8 and np.bool_ values read come back as float.
- df = DataFrame([1, 0, True, False], dtype=np_type)
+ def test_bool_types(self, path):
+ # Test np.bool_ values read come back as float.
+ df = DataFrame([1, 0, True, False], dtype=np.bool_)
df.to_excel(path, "test1")
with ExcelFile(path) as reader:
recons = pd.read_excel(reader, sheet_name="test1", index_col=0).astype(
- np_type
+ np.bool_
)
tm.assert_frame_equal(df, recons)
def test_constructor_signed_int_overflow_deprecation(self):
# GH#41734 disallow silent overflow
msg = "Values are too large to be losslessly cast"
- numpy_warning = DeprecationWarning if is_numpy_dev else None
+ numpy_warning = DeprecationWarning
with tm.assert_produces_warning(
(FutureWarning, numpy_warning), match=msg, check_stacklevel=False
):