import numpy as np
import statsmodels.api as sm
+ np.random.seed(50) # for reproducibility
# Generate Data
x = np.random.standard_normal(50)
"from scipy import stats\n",
"\n",
"sns.set_style(\"darkgrid\")\n",
- "sns.mpl.rc(\"figure\", figsize=(8, 8))"
+ "sns.mpl.rc(\"figure\", figsize=(8, 8))\n",
+ "np.random.seed(1234) # for reproducibility"
]
},
{
"import pandas as pd\n",
"\n",
"%matplotlib inline\n",
- "from statsmodels.tsa.exponential_smoothing.ets import ETSModel"
+ "from statsmodels.tsa.exponential_smoothing.ets import ETSModel\n",
+ "np.random.seed(1234) # for reproducibility"
]
},
{
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"from statsmodels.tsa.api import ExponentialSmoothing, SimpleExpSmoothing, Holt\n",
+ "np.random.seed(1234) # for reproducibility\n",
"\n",
"%matplotlib inline\n",
"\n",
"import numpy as np\n",
"from scipy.stats.distributions import norm, poisson\n",
"import statsmodels.api as sm\n",
- "import matplotlib.pyplot as plt"
+ "import matplotlib.pyplot as plt\n",
+ "np.random.seed(1234) # for reproducibility"
]
},
{
"\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
- "import statsmodels.api as sm"
+ "import statsmodels.api as sm\n",
+ "np.random.seed(1234) # for reproducibility"
]
},
{
"import statsmodels.api as sm\n",
"\n",
"plt.rc(\"figure\", figsize=(16, 8))\n",
- "plt.rc(\"font\", size=14)"
+ "plt.rc(\"font\", size=14)\n",
+ "np.random.seed(1234) # for reproducibility"
]
},
{
"source": [
"import matplotlib.pyplot as plt\n",
"import numpy as np\n",
- "import statsmodels.api as sm"
+ "import statsmodels.api as sm\n",
+ "np.random.seed(1234) # for reproducibility"
]
},
{