"source": [
"import pandas as pd\n",
"import numpy as np\n",
- "import matplotlib as mpl\n",
- "\n",
+ "import matplotlib as mpl\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "nbsphinx": "hidden"
+ },
+ "outputs": [],
+ "source": [
+ "# For reproducibility - this doesn't respect uuid_len or positionally-passed uuid but the places here that use that coincidentally bypass this anyway\n",
+ "from pandas.io.formats.style import Styler\n",
+ "next_uuid = 1000\n",
+ "class StylerReproducible(Styler):\n",
+ " def __init__(self, *args, uuid=None, **kwargs):\n",
+ " global next_uuid\n",
+ " if uuid is None:\n",
+ " uuid = str(next_uuid)\n",
+ " next_uuid = next_uuid + 1\n",
+ " super().__init__(*args, uuid=uuid, **kwargs)\n",
+ "Styler = StylerReproducible\n",
+ "pd.DataFrame.style = property(lambda self: StylerReproducible(self))\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {},
+ "outputs": [],
+ "source": [
"df = pd.DataFrame({\n",
" \"strings\": [\"Adam\", \"Mike\"],\n",
" \"ints\": [1, 3],\n",
"metadata": {},
"outputs": [],
"source": [
+ "np.random.seed(25) # for reproducibility\n",
"weather_df = pd.DataFrame(np.random.rand(10,2)*5, \n",
" index=pd.date_range(start=\"2021-01-01\", periods=10),\n",
" columns=[\"Tokyo\", \"Beijing\"])\n",
"outputs": [],
"source": [
"# Hide the construction of the display chart from the user\n",
- "import pandas as pd\n",
"from IPython.display import HTML\n",
"\n",
"# Test series\n",
"from pandas.io.formats.style import Styler"
]
},
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "nbsphinx": "hidden"
+ },
+ "outputs": [],
+ "source": [
+ "# For reproducibility\n",
+ "Styler = StylerReproducible\n"
+ ]
+ },
{
"cell_type": "markdown",
"metadata": {},
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.5"
- }
+ },
+ "record_timing": false
},
"nbformat": 4,
"nbformat_minor": 1
.. plot::
:context: close-figs
+ >>> np.random.seed(1234)
>>> import itertools
>>> tuples = [t for t in itertools.product(range(1000), range(4))]
>>> index = pd.MultiIndex.from_tuples(tuples, names=['lvl0', 'lvl1'])
.. plot::
:context: close-figs
+ >>> np.random.seed(1234)
>>> data = np.random.randn(25, 4)
>>> df = pd.DataFrame(data, columns=list('ABCD'))
>>> ax = df.plot.box()
.. plot::
:context: close-figs
+ >>> np.random.seed(1234)
>>> df = pd.DataFrame(np.random.randint(1, 7, 6000), columns=['one'])
>>> df['two'] = df['one'] + np.random.randint(1, 7, 6000)
>>> ax = df.plot.hist(bins=12, alpha=0.5)
.. plot::
:context: close-figs
+ >>> np.random.seed(1234)
>>> n = 10000
>>> df = pd.DataFrame({'x': np.random.randn(n),
... 'y': np.random.randn(n)})
.. plot::
:context: close-figs
+ >>> np.random.seed(1234)
+ >>> random.seed(1234) # for reproducibility
>>> s = pd.Series(np.random.uniform(size=100))
>>> pd.plotting.bootstrap_plot(s) # doctest: +SKIP
<Figure size 640x480 with 6 Axes>
.. plot::
:context: close-figs
+ >>> np.random.seed(1234)
>>> spacing = np.linspace(-9 * np.pi, 9 * np.pi, num=1000)
>>> s = pd.Series(0.7 * np.random.rand(1000) + 0.3 * np.sin(spacing))
>>> pd.plotting.autocorrelation_plot(s) # doctest: +SKIP