--- /dev/null
--- /dev/null
++/*
++ This is a version (aka dlmalloc) of malloc/free/realloc written by
++ Doug Lea and released to the public domain, as explained at
++ http://creativecommons.org/publicdomain/zero/1.0/ Send questions,
++ comments, complaints, performance data, etc to dl@cs.oswego.edu
++
++* Version 2.8.6 Wed Aug 29 06:57:58 2012 Doug Lea
++ Note: There may be an updated version of this malloc obtainable at
++ ftp://gee.cs.oswego.edu/pub/misc/malloc.c
++ Check before installing!
++
++* Quickstart
++
++ This library is all in one file to simplify the most common usage:
++ ftp it, compile it (-O3), and link it into another program. All of
++ the compile-time options default to reasonable values for use on
++ most platforms. You might later want to step through various
++ compile-time and dynamic tuning options.
++
++ For convenience, an include file for code using this malloc is at:
++ ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.6.h
++ You don't really need this .h file unless you call functions not
++ defined in your system include files. The .h file contains only the
++ excerpts from this file needed for using this malloc on ANSI C/C++
++ systems, so long as you haven't changed compile-time options about
++ naming and tuning parameters. If you do, then you can create your
++ own malloc.h that does include all settings by cutting at the point
++ indicated below. Note that you may already by default be using a C
++ library containing a malloc that is based on some version of this
++ malloc (for example in linux). You might still want to use the one
++ in this file to customize settings or to avoid overheads associated
++ with library versions.
++
++* Vital statistics:
++
++ Supported pointer/size_t representation: 4 or 8 bytes
++ size_t MUST be an unsigned type of the same width as
++ pointers. (If you are using an ancient system that declares
++ size_t as a signed type, or need it to be a different width
++ than pointers, you can use a previous release of this malloc
++ (e.g. 2.7.2) supporting these.)
++
++ Alignment: 8 bytes (minimum)
++ This suffices for nearly all current machines and C compilers.
++ However, you can define MALLOC_ALIGNMENT to be wider than this
++ if necessary (up to 128bytes), at the expense of using more space.
++
++ Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes)
++ 8 or 16 bytes (if 8byte sizes)
++ Each malloced chunk has a hidden word of overhead holding size
++ and status information, and additional cross-check word
++ if FOOTERS is defined.
++
++ Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead)
++ 8-byte ptrs: 32 bytes (including overhead)
++
++ Even a request for zero bytes (i.e., malloc(0)) returns a
++ pointer to something of the minimum allocatable size.
++ The maximum overhead wastage (i.e., number of extra bytes
++ allocated than were requested in malloc) is less than or equal
++ to the minimum size, except for requests >= mmap_threshold that
++ are serviced via mmap(), where the worst case wastage is about
++ 32 bytes plus the remainder from a system page (the minimal
++ mmap unit); typically 4096 or 8192 bytes.
++
++ Security: static-safe; optionally more or less
++ The "security" of malloc refers to the ability of malicious
++ code to accentuate the effects of errors (for example, freeing
++ space that is not currently malloc'ed or overwriting past the
++ ends of chunks) in code that calls malloc. This malloc
++ guarantees not to modify any memory locations below the base of
++ heap, i.e., static variables, even in the presence of usage
++ errors. The routines additionally detect most improper frees
++ and reallocs. All this holds as long as the static bookkeeping
++ for malloc itself is not corrupted by some other means. This
++ is only one aspect of security -- these checks do not, and
++ cannot, detect all possible programming errors.
++
++ If FOOTERS is defined nonzero, then each allocated chunk
++ carries an additional check word to verify that it was malloced
++ from its space. These check words are the same within each
++ execution of a program using malloc, but differ across
++ executions, so externally crafted fake chunks cannot be
++ freed. This improves security by rejecting frees/reallocs that
++ could corrupt heap memory, in addition to the checks preventing
++ writes to statics that are always on. This may further improve
++ security at the expense of time and space overhead. (Note that
++ FOOTERS may also be worth using with MSPACES.)
++
++ By default detected errors cause the program to abort (calling
++ "abort()"). You can override this to instead proceed past
++ errors by defining PROCEED_ON_ERROR. In this case, a bad free
++ has no effect, and a malloc that encounters a bad address
++ caused by user overwrites will ignore the bad address by
++ dropping pointers and indices to all known memory. This may
++ be appropriate for programs that should continue if at all
++ possible in the face of programming errors, although they may
++ run out of memory because dropped memory is never reclaimed.
++
++ If you don't like either of these options, you can define
++ CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything
++ else. And if if you are sure that your program using malloc has
++ no errors or vulnerabilities, you can define INSECURE to 1,
++ which might (or might not) provide a small performance improvement.
++
++ It is also possible to limit the maximum total allocatable
++ space, using malloc_set_footprint_limit. This is not
++ designed as a security feature in itself (calls to set limits
++ are not screened or privileged), but may be useful as one
++ aspect of a secure implementation.
++
++ Thread-safety: NOT thread-safe unless USE_LOCKS defined non-zero
++ When USE_LOCKS is defined, each public call to malloc, free,
++ etc is surrounded with a lock. By default, this uses a plain
++ pthread mutex, win32 critical section, or a spin-lock if if
++ available for the platform and not disabled by setting
++ USE_SPIN_LOCKS=0. However, if USE_RECURSIVE_LOCKS is defined,
++ recursive versions are used instead (which are not required for
++ base functionality but may be needed in layered extensions).
++ Using a global lock is not especially fast, and can be a major
++ bottleneck. It is designed only to provide minimal protection
++ in concurrent environments, and to provide a basis for
++ extensions. If you are using malloc in a concurrent program,
++ consider instead using nedmalloc
++ (http://www.nedprod.com/programs/portable/nedmalloc/) or
++ ptmalloc (See http://www.malloc.de), which are derived from
++ versions of this malloc.
++
++ System requirements: Any combination of MORECORE and/or MMAP/MUNMAP
++ This malloc can use unix sbrk or any emulation (invoked using
++ the CALL_MORECORE macro) and/or mmap/munmap or any emulation
++ (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system
++ memory. On most unix systems, it tends to work best if both
++ MORECORE and MMAP are enabled. On Win32, it uses emulations
++ based on VirtualAlloc. It also uses common C library functions
++ like memset.
++
++ Compliance: I believe it is compliant with the Single Unix Specification
++ (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably
++ others as well.
++
++* Overview of algorithms
++
++ This is not the fastest, most space-conserving, most portable, or
++ most tunable malloc ever written. However it is among the fastest
++ while also being among the most space-conserving, portable and
++ tunable. Consistent balance across these factors results in a good
++ general-purpose allocator for malloc-intensive programs.
++
++ In most ways, this malloc is a best-fit allocator. Generally, it
++ chooses the best-fitting existing chunk for a request, with ties
++ broken in approximately least-recently-used order. (This strategy
++ normally maintains low fragmentation.) However, for requests less
++ than 256bytes, it deviates from best-fit when there is not an
++ exactly fitting available chunk by preferring to use space adjacent
++ to that used for the previous small request, as well as by breaking
++ ties in approximately most-recently-used order. (These enhance
++ locality of series of small allocations.) And for very large requests
++ (>= 256Kb by default), it relies on system memory mapping
++ facilities, if supported. (This helps avoid carrying around and
++ possibly fragmenting memory used only for large chunks.)
++
++ All operations (except malloc_stats and mallinfo) have execution
++ times that are bounded by a constant factor of the number of bits in
++ a size_t, not counting any clearing in calloc or copying in realloc,
++ or actions surrounding MORECORE and MMAP that have times
++ proportional to the number of non-contiguous regions returned by
++ system allocation routines, which is often just 1. In real-time
++ applications, you can optionally suppress segment traversals using
++ NO_SEGMENT_TRAVERSAL, which assures bounded execution even when
++ system allocators return non-contiguous spaces, at the typical
++ expense of carrying around more memory and increased fragmentation.
++
++ The implementation is not very modular and seriously overuses
++ macros. Perhaps someday all C compilers will do as good a job
++ inlining modular code as can now be done by brute-force expansion,
++ but now, enough of them seem not to.
++
++ Some compilers issue a lot of warnings about code that is
++ dead/unreachable only on some platforms, and also about intentional
++ uses of negation on unsigned types. All known cases of each can be
++ ignored.
++
++ For a longer but out of date high-level description, see
++ http://gee.cs.oswego.edu/dl/html/malloc.html
++
++* MSPACES
++ If MSPACES is defined, then in addition to malloc, free, etc.,
++ this file also defines mspace_malloc, mspace_free, etc. These
++ are versions of malloc routines that take an "mspace" argument
++ obtained using create_mspace, to control all internal bookkeeping.
++ If ONLY_MSPACES is defined, only these versions are compiled.
++ So if you would like to use this allocator for only some allocations,
++ and your system malloc for others, you can compile with
++ ONLY_MSPACES and then do something like...
++ static mspace mymspace = create_mspace(0,0); // for example
++ #define mymalloc(bytes) mspace_malloc(mymspace, bytes)
++
++ (Note: If you only need one instance of an mspace, you can instead
++ use "USE_DL_PREFIX" to relabel the global malloc.)
++
++ You can similarly create thread-local allocators by storing
++ mspaces as thread-locals. For example:
++ static __thread mspace tlms = 0;
++ void* tlmalloc(size_t bytes) {
++ if (tlms == 0) tlms = create_mspace(0, 0);
++ return mspace_malloc(tlms, bytes);
++ }
++ void tlfree(void* mem) { mspace_free(tlms, mem); }
++
++ Unless FOOTERS is defined, each mspace is completely independent.
++ You cannot allocate from one and free to another (although
++ conformance is only weakly checked, so usage errors are not always
++ caught). If FOOTERS is defined, then each chunk carries around a tag
++ indicating its originating mspace, and frees are directed to their
++ originating spaces. Normally, this requires use of locks.
++
++ ------------------------- Compile-time options ---------------------------
++
++Be careful in setting #define values for numerical constants of type
++size_t. On some systems, literal values are not automatically extended
++to size_t precision unless they are explicitly casted. You can also
++use the symbolic values MAX_SIZE_T, SIZE_T_ONE, etc below.
++
++WIN32 default: defined if _WIN32 defined
++ Defining WIN32 sets up defaults for MS environment and compilers.
++ Otherwise defaults are for unix. Beware that there seem to be some
++ cases where this malloc might not be a pure drop-in replacement for
++ Win32 malloc: Random-looking failures from Win32 GDI API's (eg;
++ SetDIBits()) may be due to bugs in some video driver implementations
++ when pixel buffers are malloc()ed, and the region spans more than
++ one VirtualAlloc()ed region. Because dlmalloc uses a small (64Kb)
++ default granularity, pixel buffers may straddle virtual allocation
++ regions more often than when using the Microsoft allocator. You can
++ avoid this by using VirtualAlloc() and VirtualFree() for all pixel
++ buffers rather than using malloc(). If this is not possible,
++ recompile this malloc with a larger DEFAULT_GRANULARITY. Note:
++ in cases where MSC and gcc (cygwin) are known to differ on WIN32,
++ conditions use _MSC_VER to distinguish them.
++
++DLMALLOC_EXPORT default: extern
++ Defines how public APIs are declared. If you want to export via a
++ Windows DLL, you might define this as
++ #define DLMALLOC_EXPORT extern __declspec(dllexport)
++ If you want a POSIX ELF shared object, you might use
++ #define DLMALLOC_EXPORT extern __attribute__((visibility("default")))
++
++MALLOC_ALIGNMENT default: (size_t)(2 * sizeof(void *))
++ Controls the minimum alignment for malloc'ed chunks. It must be a
++ power of two and at least 8, even on machines for which smaller
++ alignments would suffice. It may be defined as larger than this
++ though. Note however that code and data structures are optimized for
++ the case of 8-byte alignment.
++
++MSPACES default: 0 (false)
++ If true, compile in support for independent allocation spaces.
++ This is only supported if HAVE_MMAP is true.
++
++ONLY_MSPACES default: 0 (false)
++ If true, only compile in mspace versions, not regular versions.
++
++USE_LOCKS default: 0 (false)
++ Causes each call to each public routine to be surrounded with
++ pthread or WIN32 mutex lock/unlock. (If set true, this can be
++ overridden on a per-mspace basis for mspace versions.) If set to a
++ non-zero value other than 1, locks are used, but their
++ implementation is left out, so lock functions must be supplied manually,
++ as described below.
++
++USE_SPIN_LOCKS default: 1 iff USE_LOCKS and spin locks available
++ If true, uses custom spin locks for locking. This is currently
++ supported only gcc >= 4.1, older gccs on x86 platforms, and recent
++ MS compilers. Otherwise, posix locks or win32 critical sections are
++ used.
++
++USE_RECURSIVE_LOCKS default: not defined
++ If defined nonzero, uses recursive (aka reentrant) locks, otherwise
++ uses plain mutexes. This is not required for malloc proper, but may
++ be needed for layered allocators such as nedmalloc.
++
++LOCK_AT_FORK default: not defined
++ If defined nonzero, performs pthread_atfork upon initialization
++ to initialize child lock while holding parent lock. The implementation
++ assumes that pthread locks (not custom locks) are being used. In other
++ cases, you may need to customize the implementation.
++
++FOOTERS default: 0
++ If true, provide extra checking and dispatching by placing
++ information in the footers of allocated chunks. This adds
++ space and time overhead.
++
++INSECURE default: 0
++ If true, omit checks for usage errors and heap space overwrites.
++
++USE_DL_PREFIX default: NOT defined
++ Causes compiler to prefix all public routines with the string 'dl'.
++ This can be useful when you only want to use this malloc in one part
++ of a program, using your regular system malloc elsewhere.
++
++MALLOC_INSPECT_ALL default: NOT defined
++ If defined, compiles malloc_inspect_all and mspace_inspect_all, that
++ perform traversal of all heap space. Unless access to these
++ functions is otherwise restricted, you probably do not want to
++ include them in secure implementations.
++
++ABORT default: defined as abort()
++ Defines how to abort on failed checks. On most systems, a failed
++ check cannot die with an "assert" or even print an informative
++ message, because the underlying print routines in turn call malloc,
++ which will fail again. Generally, the best policy is to simply call
++ abort(). It's not very useful to do more than this because many
++ errors due to overwriting will show up as address faults (null, odd
++ addresses etc) rather than malloc-triggered checks, so will also
++ abort. Also, most compilers know that abort() does not return, so
++ can better optimize code conditionally calling it.
++
++PROCEED_ON_ERROR default: defined as 0 (false)
++ Controls whether detected bad addresses cause them to bypassed
++ rather than aborting. If set, detected bad arguments to free and
++ realloc are ignored. And all bookkeeping information is zeroed out
++ upon a detected overwrite of freed heap space, thus losing the
++ ability to ever return it from malloc again, but enabling the
++ application to proceed. If PROCEED_ON_ERROR is defined, the
++ static variable malloc_corruption_error_count is compiled in
++ and can be examined to see if errors have occurred. This option
++ generates slower code than the default abort policy.
++
++DEBUG default: NOT defined
++ The DEBUG setting is mainly intended for people trying to modify
++ this code or diagnose problems when porting to new platforms.
++ However, it may also be able to better isolate user errors than just
++ using runtime checks. The assertions in the check routines spell
++ out in more detail the assumptions and invariants underlying the
++ algorithms. The checking is fairly extensive, and will slow down
++ execution noticeably. Calling malloc_stats or mallinfo with DEBUG
++ set will attempt to check every non-mmapped allocated and free chunk
++ in the course of computing the summaries.
++
++ABORT_ON_ASSERT_FAILURE default: defined as 1 (true)
++ Debugging assertion failures can be nearly impossible if your
++ version of the assert macro causes malloc to be called, which will
++ lead to a cascade of further failures, blowing the runtime stack.
++ ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(),
++ which will usually make debugging easier.
++
++MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32
++ The action to take before "return 0" when malloc fails to be able to
++ return memory because there is none available.
++
++HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES
++ True if this system supports sbrk or an emulation of it.
++
++MORECORE default: sbrk
++ The name of the sbrk-style system routine to call to obtain more
++ memory. See below for guidance on writing custom MORECORE
++ functions. The type of the argument to sbrk/MORECORE varies across
++ systems. It cannot be size_t, because it supports negative
++ arguments, so it is normally the signed type of the same width as
++ size_t (sometimes declared as "intptr_t"). It doesn't much matter
++ though. Internally, we only call it with arguments less than half
++ the max value of a size_t, which should work across all reasonable
++ possibilities, although sometimes generating compiler warnings.
++
++MORECORE_CONTIGUOUS default: 1 (true) if HAVE_MORECORE
++ If true, take advantage of fact that consecutive calls to MORECORE
++ with positive arguments always return contiguous increasing
++ addresses. This is true of unix sbrk. It does not hurt too much to
++ set it true anyway, since malloc copes with non-contiguities.
++ Setting it false when definitely non-contiguous saves time
++ and possibly wasted space it would take to discover this though.
++
++MORECORE_CANNOT_TRIM default: NOT defined
++ True if MORECORE cannot release space back to the system when given
++ negative arguments. This is generally necessary only if you are
++ using a hand-crafted MORECORE function that cannot handle negative
++ arguments.
++
++NO_SEGMENT_TRAVERSAL default: 0
++ If non-zero, suppresses traversals of memory segments
++ returned by either MORECORE or CALL_MMAP. This disables
++ merging of segments that are contiguous, and selectively
++ releasing them to the OS if unused, but bounds execution times.
++
++HAVE_MMAP default: 1 (true)
++ True if this system supports mmap or an emulation of it. If so, and
++ HAVE_MORECORE is not true, MMAP is used for all system
++ allocation. If set and HAVE_MORECORE is true as well, MMAP is
++ primarily used to directly allocate very large blocks. It is also
++ used as a backup strategy in cases where MORECORE fails to provide
++ space from system. Note: A single call to MUNMAP is assumed to be
++ able to unmap memory that may have be allocated using multiple calls
++ to MMAP, so long as they are adjacent.
++
++HAVE_MREMAP default: 1 on linux, else 0
++ If true realloc() uses mremap() to re-allocate large blocks and
++ extend or shrink allocation spaces.
++
++MMAP_CLEARS default: 1 except on WINCE.
++ True if mmap clears memory so calloc doesn't need to. This is true
++ for standard unix mmap using /dev/zero and on WIN32 except for WINCE.
++
++USE_BUILTIN_FFS default: 0 (i.e., not used)
++ Causes malloc to use the builtin ffs() function to compute indices.
++ Some compilers may recognize and intrinsify ffs to be faster than the
++ supplied C version. Also, the case of x86 using gcc is special-cased
++ to an asm instruction, so is already as fast as it can be, and so
++ this setting has no effect. Similarly for Win32 under recent MS compilers.
++ (On most x86s, the asm version is only slightly faster than the C version.)
++
++malloc_getpagesize default: derive from system includes, or 4096.
++ The system page size. To the extent possible, this malloc manages
++ memory from the system in page-size units. This may be (and
++ usually is) a function rather than a constant. This is ignored
++ if WIN32, where page size is determined using getSystemInfo during
++ initialization.
++
++USE_DEV_RANDOM default: 0 (i.e., not used)
++ Causes malloc to use /dev/random to initialize secure magic seed for
++ stamping footers. Otherwise, the current time is used.
++
++NO_MALLINFO default: 0
++ If defined, don't compile "mallinfo". This can be a simple way
++ of dealing with mismatches between system declarations and
++ those in this file.
++
++MALLINFO_FIELD_TYPE default: size_t
++ The type of the fields in the mallinfo struct. This was originally
++ defined as "int" in SVID etc, but is more usefully defined as
++ size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set
++
++NO_MALLOC_STATS default: 0
++ If defined, don't compile "malloc_stats". This avoids calls to
++ fprintf and bringing in stdio dependencies you might not want.
++
++REALLOC_ZERO_BYTES_FREES default: not defined
++ This should be set if a call to realloc with zero bytes should
++ be the same as a call to free. Some people think it should. Otherwise,
++ since this malloc returns a unique pointer for malloc(0), so does
++ realloc(p, 0).
++
++LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H
++LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H
++LACKS_STDLIB_H LACKS_SCHED_H LACKS_TIME_H default: NOT defined unless on WIN32
++ Define these if your system does not have these header files.
++ You might need to manually insert some of the declarations they provide.
++
++DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS,
++ system_info.dwAllocationGranularity in WIN32,
++ otherwise 64K.
++ Also settable using mallopt(M_GRANULARITY, x)
++ The unit for allocating and deallocating memory from the system. On
++ most systems with contiguous MORECORE, there is no reason to
++ make this more than a page. However, systems with MMAP tend to
++ either require or encourage larger granularities. You can increase
++ this value to prevent system allocation functions to be called so
++ often, especially if they are slow. The value must be at least one
++ page and must be a power of two. Setting to 0 causes initialization
++ to either page size or win32 region size. (Note: In previous
++ versions of malloc, the equivalent of this option was called
++ "TOP_PAD")
++
++DEFAULT_TRIM_THRESHOLD default: 2MB
++ Also settable using mallopt(M_TRIM_THRESHOLD, x)
++ The maximum amount of unused top-most memory to keep before
++ releasing via malloc_trim in free(). Automatic trimming is mainly
++ useful in long-lived programs using contiguous MORECORE. Because
++ trimming via sbrk can be slow on some systems, and can sometimes be
++ wasteful (in cases where programs immediately afterward allocate
++ more large chunks) the value should be high enough so that your
++ overall system performance would improve by releasing this much
++ memory. As a rough guide, you might set to a value close to the
++ average size of a process (program) running on your system.
++ Releasing this much memory would allow such a process to run in
++ memory. Generally, it is worth tuning trim thresholds when a
++ program undergoes phases where several large chunks are allocated
++ and released in ways that can reuse each other's storage, perhaps
++ mixed with phases where there are no such chunks at all. The trim
++ value must be greater than page size to have any useful effect. To
++ disable trimming completely, you can set to MAX_SIZE_T. Note that the trick
++ some people use of mallocing a huge space and then freeing it at
++ program startup, in an attempt to reserve system memory, doesn't
++ have the intended effect under automatic trimming, since that memory
++ will immediately be returned to the system.
++
++DEFAULT_MMAP_THRESHOLD default: 256K
++ Also settable using mallopt(M_MMAP_THRESHOLD, x)
++ The request size threshold for using MMAP to directly service a
++ request. Requests of at least this size that cannot be allocated
++ using already-existing space will be serviced via mmap. (If enough
++ normal freed space already exists it is used instead.) Using mmap
++ segregates relatively large chunks of memory so that they can be
++ individually obtained and released from the host system. A request
++ serviced through mmap is never reused by any other request (at least
++ not directly; the system may just so happen to remap successive
++ requests to the same locations). Segregating space in this way has
++ the benefits that: Mmapped space can always be individually released
++ back to the system, which helps keep the system level memory demands
++ of a long-lived program low. Also, mapped memory doesn't become
++ `locked' between other chunks, as can happen with normally allocated
++ chunks, which means that even trimming via malloc_trim would not
++ release them. However, it has the disadvantage that the space
++ cannot be reclaimed, consolidated, and then used to service later
++ requests, as happens with normal chunks. The advantages of mmap
++ nearly always outweigh disadvantages for "large" chunks, but the
++ value of "large" may vary across systems. The default is an
++ empirically derived value that works well in most systems. You can
++ disable mmap by setting to MAX_SIZE_T.
++
++MAX_RELEASE_CHECK_RATE default: 4095 unless not HAVE_MMAP
++ The number of consolidated frees between checks to release
++ unused segments when freeing. When using non-contiguous segments,
++ especially with multiple mspaces, checking only for topmost space
++ doesn't always suffice to trigger trimming. To compensate for this,
++ free() will, with a period of MAX_RELEASE_CHECK_RATE (or the
++ current number of segments, if greater) try to release unused
++ segments to the OS when freeing chunks that result in
++ consolidation. The best value for this parameter is a compromise
++ between slowing down frees with relatively costly checks that
++ rarely trigger versus holding on to unused memory. To effectively
++ disable, set to MAX_SIZE_T. This may lead to a very slight speed
++ improvement at the expense of carrying around more memory.
++*/
++
++/* Version identifier to allow people to support multiple versions */
++#ifndef DLMALLOC_VERSION
++#define DLMALLOC_VERSION 20806
++#endif /* DLMALLOC_VERSION */
++
++#ifndef DLMALLOC_EXPORT
++#define DLMALLOC_EXPORT extern
++#endif
++
++#ifndef WIN32
++#ifdef _WIN32
++#define WIN32 1
++#endif /* _WIN32 */
++#ifdef _WIN32_WCE
++#define LACKS_FCNTL_H
++#define WIN32 1
++#endif /* _WIN32_WCE */
++#endif /* WIN32 */
++#ifdef WIN32
++#define WIN32_LEAN_AND_MEAN
++#include <windows.h>
++#include <tchar.h>
++#define HAVE_MMAP 1
++#define HAVE_MORECORE 0
++#define LACKS_UNISTD_H
++#define LACKS_SYS_PARAM_H
++#define LACKS_SYS_MMAN_H
++#define LACKS_STRING_H
++#define LACKS_STRINGS_H
++#define LACKS_SYS_TYPES_H
++#define LACKS_ERRNO_H
++#define LACKS_SCHED_H
++#ifndef MALLOC_FAILURE_ACTION
++#define MALLOC_FAILURE_ACTION
++#endif /* MALLOC_FAILURE_ACTION */
++#ifndef MMAP_CLEARS
++#ifdef _WIN32_WCE /* WINCE reportedly does not clear */
++#define MMAP_CLEARS 0
++#else
++#define MMAP_CLEARS 1
++#endif /* _WIN32_WCE */
++#endif /*MMAP_CLEARS */
++#endif /* WIN32 */
++
++#if defined(DARWIN) || defined(_DARWIN)
++/* Mac OSX docs advise not to use sbrk; it seems better to use mmap */
++#ifndef HAVE_MORECORE
++#define HAVE_MORECORE 0
++#define HAVE_MMAP 1
++/* OSX allocators provide 16 byte alignment */
++#ifndef MALLOC_ALIGNMENT
++#define MALLOC_ALIGNMENT ((size_t)16U)
++#endif
++#endif /* HAVE_MORECORE */
++#endif /* DARWIN */
++
++#ifndef LACKS_SYS_TYPES_H
++#include <sys/types.h> /* For size_t */
++#endif /* LACKS_SYS_TYPES_H */
++
++/* The maximum possible size_t value has all bits set */
++#define MAX_SIZE_T (~(size_t)0)
++
++#ifndef USE_LOCKS /* ensure true if spin or recursive locks set */
++#define USE_LOCKS ((defined(USE_SPIN_LOCKS) && USE_SPIN_LOCKS != 0) || \
++ (defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0))
++#endif /* USE_LOCKS */
++
++#if USE_LOCKS /* Spin locks for gcc >= 4.1, older gcc on x86, MSC >= 1310 */
++#if ((defined(__GNUC__) && \
++ ((__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1)) || \
++ defined(__i386__) || defined(__x86_64__))) || \
++ (defined(_MSC_VER) && _MSC_VER>=1310))
++#ifndef USE_SPIN_LOCKS
++#define USE_SPIN_LOCKS 1
++#endif /* USE_SPIN_LOCKS */
++#elif USE_SPIN_LOCKS
++#error "USE_SPIN_LOCKS defined without implementation"
++#endif /* ... locks available... */
++#elif !defined(USE_SPIN_LOCKS)
++#define USE_SPIN_LOCKS 0
++#endif /* USE_LOCKS */
++
++#ifndef ONLY_MSPACES
++#define ONLY_MSPACES 0
++#endif /* ONLY_MSPACES */
++#ifndef MSPACES
++#if ONLY_MSPACES
++#define MSPACES 1
++#else /* ONLY_MSPACES */
++#define MSPACES 0
++#endif /* ONLY_MSPACES */
++#endif /* MSPACES */
++#ifndef MALLOC_ALIGNMENT
++#define MALLOC_ALIGNMENT ((size_t)(2 * sizeof(void *)))
++#endif /* MALLOC_ALIGNMENT */
++#ifndef FOOTERS
++#define FOOTERS 0
++#endif /* FOOTERS */
++#ifndef ABORT
++#define ABORT abort()
++#endif /* ABORT */
++#ifndef ABORT_ON_ASSERT_FAILURE
++#define ABORT_ON_ASSERT_FAILURE 1
++#endif /* ABORT_ON_ASSERT_FAILURE */
++#ifndef PROCEED_ON_ERROR
++#define PROCEED_ON_ERROR 0
++#endif /* PROCEED_ON_ERROR */
++
++#ifndef INSECURE
++#define INSECURE 0
++#endif /* INSECURE */
++#ifndef MALLOC_INSPECT_ALL
++#define MALLOC_INSPECT_ALL 0
++#endif /* MALLOC_INSPECT_ALL */
++#ifndef HAVE_MMAP
++#define HAVE_MMAP 1
++#endif /* HAVE_MMAP */
++#ifndef MMAP_CLEARS
++#define MMAP_CLEARS 1
++#endif /* MMAP_CLEARS */
++#ifndef HAVE_MREMAP
++#ifdef linux
++#define HAVE_MREMAP 1
++#define _GNU_SOURCE /* Turns on mremap() definition */
++#else /* linux */
++#define HAVE_MREMAP 0
++#endif /* linux */
++#endif /* HAVE_MREMAP */
++#ifndef MALLOC_FAILURE_ACTION
++#define MALLOC_FAILURE_ACTION errno = ENOMEM;
++#endif /* MALLOC_FAILURE_ACTION */
++#ifndef HAVE_MORECORE
++#if ONLY_MSPACES
++#define HAVE_MORECORE 0
++#else /* ONLY_MSPACES */
++#define HAVE_MORECORE 1
++#endif /* ONLY_MSPACES */
++#endif /* HAVE_MORECORE */
++#if !HAVE_MORECORE
++#define MORECORE_CONTIGUOUS 0
++#else /* !HAVE_MORECORE */
++#define MORECORE_DEFAULT sbrk
++#ifndef MORECORE_CONTIGUOUS
++#define MORECORE_CONTIGUOUS 1
++#endif /* MORECORE_CONTIGUOUS */
++#endif /* HAVE_MORECORE */
++#ifndef DEFAULT_GRANULARITY
++#if (MORECORE_CONTIGUOUS || defined(WIN32))
++#define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */
++#else /* MORECORE_CONTIGUOUS */
++#define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U)
++#endif /* MORECORE_CONTIGUOUS */
++#endif /* DEFAULT_GRANULARITY */
++#ifndef DEFAULT_TRIM_THRESHOLD
++#ifndef MORECORE_CANNOT_TRIM
++#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U)
++#else /* MORECORE_CANNOT_TRIM */
++#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T
++#endif /* MORECORE_CANNOT_TRIM */
++#endif /* DEFAULT_TRIM_THRESHOLD */
++#ifndef DEFAULT_MMAP_THRESHOLD
++#if HAVE_MMAP
++#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U)
++#else /* HAVE_MMAP */
++#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T
++#endif /* HAVE_MMAP */
++#endif /* DEFAULT_MMAP_THRESHOLD */
++#ifndef MAX_RELEASE_CHECK_RATE
++#if HAVE_MMAP
++#define MAX_RELEASE_CHECK_RATE 4095
++#else
++#define MAX_RELEASE_CHECK_RATE MAX_SIZE_T
++#endif /* HAVE_MMAP */
++#endif /* MAX_RELEASE_CHECK_RATE */
++#ifndef USE_BUILTIN_FFS
++#define USE_BUILTIN_FFS 0
++#endif /* USE_BUILTIN_FFS */
++#ifndef USE_DEV_RANDOM
++#define USE_DEV_RANDOM 0
++#endif /* USE_DEV_RANDOM */
++#ifndef NO_MALLINFO
++#define NO_MALLINFO 0
++#endif /* NO_MALLINFO */
++#ifndef MALLINFO_FIELD_TYPE
++#define MALLINFO_FIELD_TYPE size_t
++#endif /* MALLINFO_FIELD_TYPE */
++#ifndef NO_MALLOC_STATS
++#define NO_MALLOC_STATS 0
++#endif /* NO_MALLOC_STATS */
++#ifndef NO_SEGMENT_TRAVERSAL
++#define NO_SEGMENT_TRAVERSAL 0
++#endif /* NO_SEGMENT_TRAVERSAL */
++
++/*
++ mallopt tuning options. SVID/XPG defines four standard parameter
++ numbers for mallopt, normally defined in malloc.h. None of these
++ are used in this malloc, so setting them has no effect. But this
++ malloc does support the following options.
++*/
++
++#define M_TRIM_THRESHOLD (-1)
++#define M_GRANULARITY (-2)
++#define M_MMAP_THRESHOLD (-3)
++
++/* ------------------------ Mallinfo declarations ------------------------ */
++
++#if !NO_MALLINFO
++/*
++ This version of malloc supports the standard SVID/XPG mallinfo
++ routine that returns a struct containing usage properties and
++ statistics. It should work on any system that has a
++ /usr/include/malloc.h defining struct mallinfo. The main
++ declaration needed is the mallinfo struct that is returned (by-copy)
++ by mallinfo(). The malloinfo struct contains a bunch of fields that
++ are not even meaningful in this version of malloc. These fields are
++ are instead filled by mallinfo() with other numbers that might be of
++ interest.
++
++ HAVE_USR_INCLUDE_MALLOC_H should be set if you have a
++ /usr/include/malloc.h file that includes a declaration of struct
++ mallinfo. If so, it is included; else a compliant version is
++ declared below. These must be precisely the same for mallinfo() to
++ work. The original SVID version of this struct, defined on most
++ systems with mallinfo, declares all fields as ints. But some others
++ define as unsigned long. If your system defines the fields using a
++ type of different width than listed here, you MUST #include your
++ system version and #define HAVE_USR_INCLUDE_MALLOC_H.
++*/
++
++/* #define HAVE_USR_INCLUDE_MALLOC_H */
++
++#ifdef HAVE_USR_INCLUDE_MALLOC_H
++#include "/usr/include/malloc.h"
++#else /* HAVE_USR_INCLUDE_MALLOC_H */
++#ifndef STRUCT_MALLINFO_DECLARED
++/* HP-UX (and others?) redefines mallinfo unless _STRUCT_MALLINFO is defined */
++#define _STRUCT_MALLINFO
++#define STRUCT_MALLINFO_DECLARED 1
++struct mallinfo {
++ MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */
++ MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */
++ MALLINFO_FIELD_TYPE smblks; /* always 0 */
++ MALLINFO_FIELD_TYPE hblks; /* always 0 */
++ MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */
++ MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */
++ MALLINFO_FIELD_TYPE fsmblks; /* always 0 */
++ MALLINFO_FIELD_TYPE uordblks; /* total allocated space */
++ MALLINFO_FIELD_TYPE fordblks; /* total free space */
++ MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */
++};
++#endif /* STRUCT_MALLINFO_DECLARED */
++#endif /* HAVE_USR_INCLUDE_MALLOC_H */
++#endif /* NO_MALLINFO */
++
++/*
++ Try to persuade compilers to inline. The most critical functions for
++ inlining are defined as macros, so these aren't used for them.
++*/
++
++#ifndef FORCEINLINE
++ #if defined(__GNUC__)
++#define FORCEINLINE __inline __attribute__ ((always_inline))
++ #elif defined(_MSC_VER)
++ #define FORCEINLINE __forceinline
++ #endif
++#endif
++#ifndef NOINLINE
++ #if defined(__GNUC__)
++ #define NOINLINE __attribute__ ((noinline))
++ #elif defined(_MSC_VER)
++ #define NOINLINE __declspec(noinline)
++ #else
++ #define NOINLINE
++ #endif
++#endif
++
++#ifdef __cplusplus
++extern "C" {
++#ifndef FORCEINLINE
++ #define FORCEINLINE inline
++#endif
++#endif /* __cplusplus */
++#ifndef FORCEINLINE
++ #define FORCEINLINE
++#endif
++
++#if !ONLY_MSPACES
++
++/* ------------------- Declarations of public routines ------------------- */
++
++#ifndef USE_DL_PREFIX
++#define dlcalloc calloc
++#define dlfree free
++#define dlmalloc malloc
++#define dlmemalign memalign
++#define dlposix_memalign posix_memalign
++#define dlrealloc realloc
++#define dlrealloc_in_place realloc_in_place
++#define dlvalloc valloc
++#define dlpvalloc pvalloc
++#define dlmallinfo mallinfo
++#define dlmallopt mallopt
++#define dlmalloc_trim malloc_trim
++#define dlmalloc_stats malloc_stats
++#define dlmalloc_usable_size malloc_usable_size
++#define dlmalloc_footprint malloc_footprint
++#define dlmalloc_max_footprint malloc_max_footprint
++#define dlmalloc_footprint_limit malloc_footprint_limit
++#define dlmalloc_set_footprint_limit malloc_set_footprint_limit
++#define dlmalloc_inspect_all malloc_inspect_all
++#define dlindependent_calloc independent_calloc
++#define dlindependent_comalloc independent_comalloc
++#define dlbulk_free bulk_free
++#endif /* USE_DL_PREFIX */
++
++/*
++ malloc(size_t n)
++ Returns a pointer to a newly allocated chunk of at least n bytes, or
++ null if no space is available, in which case errno is set to ENOMEM
++ on ANSI C systems.
++
++ If n is zero, malloc returns a minimum-sized chunk. (The minimum
++ size is 16 bytes on most 32bit systems, and 32 bytes on 64bit
++ systems.) Note that size_t is an unsigned type, so calls with
++ arguments that would be negative if signed are interpreted as
++ requests for huge amounts of space, which will often fail. The
++ maximum supported value of n differs across systems, but is in all
++ cases less than the maximum representable value of a size_t.
++*/
++DLMALLOC_EXPORT void* dlmalloc(size_t);
++
++/*
++ free(void* p)
++ Releases the chunk of memory pointed to by p, that had been previously
++ allocated using malloc or a related routine such as realloc.
++ It has no effect if p is null. If p was not malloced or already
++ freed, free(p) will by default cause the current program to abort.
++*/
++DLMALLOC_EXPORT void dlfree(void*);
++
++/*
++ calloc(size_t n_elements, size_t element_size);
++ Returns a pointer to n_elements * element_size bytes, with all locations
++ set to zero.
++*/
++DLMALLOC_EXPORT void* dlcalloc(size_t, size_t);
++
++/*
++ realloc(void* p, size_t n)
++ Returns a pointer to a chunk of size n that contains the same data
++ as does chunk p up to the minimum of (n, p's size) bytes, or null
++ if no space is available.
++
++ The returned pointer may or may not be the same as p. The algorithm
++ prefers extending p in most cases when possible, otherwise it
++ employs the equivalent of a malloc-copy-free sequence.
++
++ If p is null, realloc is equivalent to malloc.
++
++ If space is not available, realloc returns null, errno is set (if on
++ ANSI) and p is NOT freed.
++
++ if n is for fewer bytes than already held by p, the newly unused
++ space is lopped off and freed if possible. realloc with a size
++ argument of zero (re)allocates a minimum-sized chunk.
++
++ The old unix realloc convention of allowing the last-free'd chunk
++ to be used as an argument to realloc is not supported.
++*/
++DLMALLOC_EXPORT void* dlrealloc(void*, size_t);
++
++/*
++ realloc_in_place(void* p, size_t n)
++ Resizes the space allocated for p to size n, only if this can be
++ done without moving p (i.e., only if there is adjacent space
++ available if n is greater than p's current allocated size, or n is
++ less than or equal to p's size). This may be used instead of plain
++ realloc if an alternative allocation strategy is needed upon failure
++ to expand space; for example, reallocation of a buffer that must be
++ memory-aligned or cleared. You can use realloc_in_place to trigger
++ these alternatives only when needed.
++
++ Returns p if successful; otherwise null.
++*/
++DLMALLOC_EXPORT void* dlrealloc_in_place(void*, size_t);
++
++/*
++ memalign(size_t alignment, size_t n);
++ Returns a pointer to a newly allocated chunk of n bytes, aligned
++ in accord with the alignment argument.
++
++ The alignment argument should be a power of two. If the argument is
++ not a power of two, the nearest greater power is used.
++ 8-byte alignment is guaranteed by normal malloc calls, so don't
++ bother calling memalign with an argument of 8 or less.
++
++ Overreliance on memalign is a sure way to fragment space.
++*/
++DLMALLOC_EXPORT void* dlmemalign(size_t, size_t);
++
++/*
++ int posix_memalign(void** pp, size_t alignment, size_t n);
++ Allocates a chunk of n bytes, aligned in accord with the alignment
++ argument. Differs from memalign only in that it (1) assigns the
++ allocated memory to *pp rather than returning it, (2) fails and
++ returns EINVAL if the alignment is not a power of two (3) fails and
++ returns ENOMEM if memory cannot be allocated.
++*/
++DLMALLOC_EXPORT int dlposix_memalign(void**, size_t, size_t);
++
++/*
++ valloc(size_t n);
++ Equivalent to memalign(pagesize, n), where pagesize is the page
++ size of the system. If the pagesize is unknown, 4096 is used.
++*/
++DLMALLOC_EXPORT void* dlvalloc(size_t);
++
++/*
++ mallopt(int parameter_number, int parameter_value)
++ Sets tunable parameters The format is to provide a
++ (parameter-number, parameter-value) pair. mallopt then sets the
++ corresponding parameter to the argument value if it can (i.e., so
++ long as the value is meaningful), and returns 1 if successful else
++ 0. To workaround the fact that mallopt is specified to use int,
++ not size_t parameters, the value -1 is specially treated as the
++ maximum unsigned size_t value.
++
++ SVID/XPG/ANSI defines four standard param numbers for mallopt,
++ normally defined in malloc.h. None of these are use in this malloc,
++ so setting them has no effect. But this malloc also supports other
++ options in mallopt. See below for details. Briefly, supported
++ parameters are as follows (listed defaults are for "typical"
++ configurations).
++
++ Symbol param # default allowed param values
++ M_TRIM_THRESHOLD -1 2*1024*1024 any (-1 disables)
++ M_GRANULARITY -2 page size any power of 2 >= page size
++ M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support)
++*/
++DLMALLOC_EXPORT int dlmallopt(int, int);
++
++/*
++ malloc_footprint();
++ Returns the number of bytes obtained from the system. The total
++ number of bytes allocated by malloc, realloc etc., is less than this
++ value. Unlike mallinfo, this function returns only a precomputed
++ result, so can be called frequently to monitor memory consumption.
++ Even if locks are otherwise defined, this function does not use them,
++ so results might not be up to date.
++*/
++DLMALLOC_EXPORT size_t dlmalloc_footprint(void);
++
++/*
++ malloc_max_footprint();
++ Returns the maximum number of bytes obtained from the system. This
++ value will be greater than current footprint if deallocated space
++ has been reclaimed by the system. The peak number of bytes allocated
++ by malloc, realloc etc., is less than this value. Unlike mallinfo,
++ this function returns only a precomputed result, so can be called
++ frequently to monitor memory consumption. Even if locks are
++ otherwise defined, this function does not use them, so results might
++ not be up to date.
++*/
++DLMALLOC_EXPORT size_t dlmalloc_max_footprint(void);
++
++/*
++ malloc_footprint_limit();
++ Returns the number of bytes that the heap is allowed to obtain from
++ the system, returning the last value returned by
++ malloc_set_footprint_limit, or the maximum size_t value if
++ never set. The returned value reflects a permission. There is no
++ guarantee that this number of bytes can actually be obtained from
++ the system.
++*/
++DLMALLOC_EXPORT size_t dlmalloc_footprint_limit();
++
++/*
++ malloc_set_footprint_limit();
++ Sets the maximum number of bytes to obtain from the system, causing
++ failure returns from malloc and related functions upon attempts to
++ exceed this value. The argument value may be subject to page
++ rounding to an enforceable limit; this actual value is returned.
++ Using an argument of the maximum possible size_t effectively
++ disables checks. If the argument is less than or equal to the
++ current malloc_footprint, then all future allocations that require
++ additional system memory will fail. However, invocation cannot
++ retroactively deallocate existing used memory.
++*/
++DLMALLOC_EXPORT size_t dlmalloc_set_footprint_limit(size_t bytes);
++
++#if MALLOC_INSPECT_ALL
++/*
++ malloc_inspect_all(void(*handler)(void *start,
++ void *end,
++ size_t used_bytes,
++ void* callback_arg),
++ void* arg);
++ Traverses the heap and calls the given handler for each managed
++ region, skipping all bytes that are (or may be) used for bookkeeping
++ purposes. Traversal does not include include chunks that have been
++ directly memory mapped. Each reported region begins at the start
++ address, and continues up to but not including the end address. The
++ first used_bytes of the region contain allocated data. If
++ used_bytes is zero, the region is unallocated. The handler is
++ invoked with the given callback argument. If locks are defined, they
++ are held during the entire traversal. It is a bad idea to invoke
++ other malloc functions from within the handler.
++
++ For example, to count the number of in-use chunks with size greater
++ than 1000, you could write:
++ static int count = 0;
++ void count_chunks(void* start, void* end, size_t used, void* arg) {
++ if (used >= 1000) ++count;
++ }
++ then:
++ malloc_inspect_all(count_chunks, NULL);
++
++ malloc_inspect_all is compiled only if MALLOC_INSPECT_ALL is defined.
++*/
++DLMALLOC_EXPORT void dlmalloc_inspect_all(void(*handler)(void*, void *, size_t, void*),
++ void* arg);
++
++#endif /* MALLOC_INSPECT_ALL */
++
++#if !NO_MALLINFO
++/*
++ mallinfo()
++ Returns (by copy) a struct containing various summary statistics:
++
++ arena: current total non-mmapped bytes allocated from system
++ ordblks: the number of free chunks
++ smblks: always zero.
++ hblks: current number of mmapped regions
++ hblkhd: total bytes held in mmapped regions
++ usmblks: the maximum total allocated space. This will be greater
++ than current total if trimming has occurred.
++ fsmblks: always zero
++ uordblks: current total allocated space (normal or mmapped)
++ fordblks: total free space
++ keepcost: the maximum number of bytes that could ideally be released
++ back to system via malloc_trim. ("ideally" means that
++ it ignores page restrictions etc.)
++
++ Because these fields are ints, but internal bookkeeping may
++ be kept as longs, the reported values may wrap around zero and
++ thus be inaccurate.
++*/
++DLMALLOC_EXPORT struct mallinfo dlmallinfo(void);
++#endif /* NO_MALLINFO */
++
++/*
++ independent_calloc(size_t n_elements, size_t element_size, void* chunks[]);
++
++ independent_calloc is similar to calloc, but instead of returning a
++ single cleared space, it returns an array of pointers to n_elements
++ independent elements that can hold contents of size elem_size, each
++ of which starts out cleared, and can be independently freed,
++ realloc'ed etc. The elements are guaranteed to be adjacently
++ allocated (this is not guaranteed to occur with multiple callocs or
++ mallocs), which may also improve cache locality in some
++ applications.
++
++ The "chunks" argument is optional (i.e., may be null, which is
++ probably the most typical usage). If it is null, the returned array
++ is itself dynamically allocated and should also be freed when it is
++ no longer needed. Otherwise, the chunks array must be of at least
++ n_elements in length. It is filled in with the pointers to the
++ chunks.
++
++ In either case, independent_calloc returns this pointer array, or
++ null if the allocation failed. If n_elements is zero and "chunks"
++ is null, it returns a chunk representing an array with zero elements
++ (which should be freed if not wanted).
++
++ Each element must be freed when it is no longer needed. This can be
++ done all at once using bulk_free.
++
++ independent_calloc simplifies and speeds up implementations of many
++ kinds of pools. It may also be useful when constructing large data
++ structures that initially have a fixed number of fixed-sized nodes,
++ but the number is not known at compile time, and some of the nodes
++ may later need to be freed. For example:
++
++ struct Node { int item; struct Node* next; };
++
++ struct Node* build_list() {
++ struct Node** pool;
++ int n = read_number_of_nodes_needed();
++ if (n <= 0) return 0;
++ pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0);
++ if (pool == 0) die();
++ // organize into a linked list...
++ struct Node* first = pool[0];
++ for (i = 0; i < n-1; ++i)
++ pool[i]->next = pool[i+1];
++ free(pool); // Can now free the array (or not, if it is needed later)
++ return first;
++ }
++*/
++DLMALLOC_EXPORT void** dlindependent_calloc(size_t, size_t, void**);
++
++/*
++ independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]);
++
++ independent_comalloc allocates, all at once, a set of n_elements
++ chunks with sizes indicated in the "sizes" array. It returns
++ an array of pointers to these elements, each of which can be
++ independently freed, realloc'ed etc. The elements are guaranteed to
++ be adjacently allocated (this is not guaranteed to occur with
++ multiple callocs or mallocs), which may also improve cache locality
++ in some applications.
++
++ The "chunks" argument is optional (i.e., may be null). If it is null
++ the returned array is itself dynamically allocated and should also
++ be freed when it is no longer needed. Otherwise, the chunks array
++ must be of at least n_elements in length. It is filled in with the
++ pointers to the chunks.
++
++ In either case, independent_comalloc returns this pointer array, or
++ null if the allocation failed. If n_elements is zero and chunks is
++ null, it returns a chunk representing an array with zero elements
++ (which should be freed if not wanted).
++
++ Each element must be freed when it is no longer needed. This can be
++ done all at once using bulk_free.
++
++ independent_comallac differs from independent_calloc in that each
++ element may have a different size, and also that it does not
++ automatically clear elements.
++
++ independent_comalloc can be used to speed up allocation in cases
++ where several structs or objects must always be allocated at the
++ same time. For example:
++
++ struct Head { ... }
++ struct Foot { ... }
++
++ void send_message(char* msg) {
++ int msglen = strlen(msg);
++ size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) };
++ void* chunks[3];
++ if (independent_comalloc(3, sizes, chunks) == 0)
++ die();
++ struct Head* head = (struct Head*)(chunks[0]);
++ char* body = (char*)(chunks[1]);
++ struct Foot* foot = (struct Foot*)(chunks[2]);
++ // ...
++ }
++
++ In general though, independent_comalloc is worth using only for
++ larger values of n_elements. For small values, you probably won't
++ detect enough difference from series of malloc calls to bother.
++
++ Overuse of independent_comalloc can increase overall memory usage,
++ since it cannot reuse existing noncontiguous small chunks that
++ might be available for some of the elements.
++*/
++DLMALLOC_EXPORT void** dlindependent_comalloc(size_t, size_t*, void**);
++
++/*
++ bulk_free(void* array[], size_t n_elements)
++ Frees and clears (sets to null) each non-null pointer in the given
++ array. This is likely to be faster than freeing them one-by-one.
++ If footers are used, pointers that have been allocated in different
++ mspaces are not freed or cleared, and the count of all such pointers
++ is returned. For large arrays of pointers with poor locality, it
++ may be worthwhile to sort this array before calling bulk_free.
++*/
++DLMALLOC_EXPORT size_t dlbulk_free(void**, size_t n_elements);
++
++/*
++ pvalloc(size_t n);
++ Equivalent to valloc(minimum-page-that-holds(n)), that is,
++ round up n to nearest pagesize.
++ */
++DLMALLOC_EXPORT void* dlpvalloc(size_t);
++
++/*
++ malloc_trim(size_t pad);
++
++ If possible, gives memory back to the system (via negative arguments
++ to sbrk) if there is unused memory at the `high' end of the malloc
++ pool or in unused MMAP segments. You can call this after freeing
++ large blocks of memory to potentially reduce the system-level memory
++ requirements of a program. However, it cannot guarantee to reduce
++ memory. Under some allocation patterns, some large free blocks of
++ memory will be locked between two used chunks, so they cannot be
++ given back to the system.
++
++ The `pad' argument to malloc_trim represents the amount of free
++ trailing space to leave untrimmed. If this argument is zero, only
++ the minimum amount of memory to maintain internal data structures
++ will be left. Non-zero arguments can be supplied to maintain enough
++ trailing space to service future expected allocations without having
++ to re-obtain memory from the system.
++
++ Malloc_trim returns 1 if it actually released any memory, else 0.
++*/
++DLMALLOC_EXPORT int dlmalloc_trim(size_t);
++
++/*
++ malloc_stats();
++ Prints on stderr the amount of space obtained from the system (both
++ via sbrk and mmap), the maximum amount (which may be more than
++ current if malloc_trim and/or munmap got called), and the current
++ number of bytes allocated via malloc (or realloc, etc) but not yet
++ freed. Note that this is the number of bytes allocated, not the
++ number requested. It will be larger than the number requested
++ because of alignment and bookkeeping overhead. Because it includes
++ alignment wastage as being in use, this figure may be greater than
++ zero even when no user-level chunks are allocated.
++
++ The reported current and maximum system memory can be inaccurate if
++ a program makes other calls to system memory allocation functions
++ (normally sbrk) outside of malloc.
++
++ malloc_stats prints only the most commonly interesting statistics.
++ More information can be obtained by calling mallinfo.
++*/
++DLMALLOC_EXPORT void dlmalloc_stats(void);
++
++/*
++ malloc_usable_size(void* p);
++
++ Returns the number of bytes you can actually use in
++ an allocated chunk, which may be more than you requested (although
++ often not) due to alignment and minimum size constraints.
++ You can use this many bytes without worrying about
++ overwriting other allocated objects. This is not a particularly great
++ programming practice. malloc_usable_size can be more useful in
++ debugging and assertions, for example:
++
++ p = malloc(n);
++ assert(malloc_usable_size(p) >= 256);
++*/
++/* BEGIN android-changed: added const */
++size_t dlmalloc_usable_size(const void*);
++/* END android-change */
++
++#endif /* ONLY_MSPACES */
++
++#if MSPACES
++
++/*
++ mspace is an opaque type representing an independent
++ region of space that supports mspace_malloc, etc.
++*/
++typedef void* mspace;
++
++/*
++ create_mspace creates and returns a new independent space with the
++ given initial capacity, or, if 0, the default granularity size. It
++ returns null if there is no system memory available to create the
++ space. If argument locked is non-zero, the space uses a separate
++ lock to control access. The capacity of the space will grow
++ dynamically as needed to service mspace_malloc requests. You can
++ control the sizes of incremental increases of this space by
++ compiling with a different DEFAULT_GRANULARITY or dynamically
++ setting with mallopt(M_GRANULARITY, value).
++*/
++DLMALLOC_EXPORT mspace create_mspace(size_t capacity, int locked);
++
++/*
++ destroy_mspace destroys the given space, and attempts to return all
++ of its memory back to the system, returning the total number of
++ bytes freed. After destruction, the results of access to all memory
++ used by the space become undefined.
++*/
++DLMALLOC_EXPORT size_t destroy_mspace(mspace msp);
++
++/*
++ create_mspace_with_base uses the memory supplied as the initial base
++ of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this
++ space is used for bookkeeping, so the capacity must be at least this
++ large. (Otherwise 0 is returned.) When this initial space is
++ exhausted, additional memory will be obtained from the system.
++ Destroying this space will deallocate all additionally allocated
++ space (if possible) but not the initial base.
++*/
++DLMALLOC_EXPORT mspace create_mspace_with_base(void* base, size_t capacity, int locked);
++
++/*
++ mspace_track_large_chunks controls whether requests for large chunks
++ are allocated in their own untracked mmapped regions, separate from
++ others in this mspace. By default large chunks are not tracked,
++ which reduces fragmentation. However, such chunks are not
++ necessarily released to the system upon destroy_mspace. Enabling
++ tracking by setting to true may increase fragmentation, but avoids
++ leakage when relying on destroy_mspace to release all memory
++ allocated using this space. The function returns the previous
++ setting.
++*/
++DLMALLOC_EXPORT int mspace_track_large_chunks(mspace msp, int enable);
++
++
++/*
++ mspace_malloc behaves as malloc, but operates within
++ the given space.
++*/
++DLMALLOC_EXPORT void* mspace_malloc(mspace msp, size_t bytes);
++
++/*
++ mspace_free behaves as free, but operates within
++ the given space.
++
++ If compiled with FOOTERS==1, mspace_free is not actually needed.
++ free may be called instead of mspace_free because freed chunks from
++ any space are handled by their originating spaces.
++*/
++DLMALLOC_EXPORT void mspace_free(mspace msp, void* mem);
++
++/*
++ mspace_realloc behaves as realloc, but operates within
++ the given space.
++
++ If compiled with FOOTERS==1, mspace_realloc is not actually
++ needed. realloc may be called instead of mspace_realloc because
++ realloced chunks from any space are handled by their originating
++ spaces.
++*/
++DLMALLOC_EXPORT void* mspace_realloc(mspace msp, void* mem, size_t newsize);
++
++/*
++ mspace_calloc behaves as calloc, but operates within
++ the given space.
++*/
++DLMALLOC_EXPORT void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size);
++
++/*
++ mspace_memalign behaves as memalign, but operates within
++ the given space.
++*/
++DLMALLOC_EXPORT void* mspace_memalign(mspace msp, size_t alignment, size_t bytes);
++
++/*
++ mspace_independent_calloc behaves as independent_calloc, but
++ operates within the given space.
++*/
++DLMALLOC_EXPORT void** mspace_independent_calloc(mspace msp, size_t n_elements,
++ size_t elem_size, void* chunks[]);
++
++/*
++ mspace_independent_comalloc behaves as independent_comalloc, but
++ operates within the given space.
++*/
++DLMALLOC_EXPORT void** mspace_independent_comalloc(mspace msp, size_t n_elements,
++ size_t sizes[], void* chunks[]);
++
++/*
++ mspace_footprint() returns the number of bytes obtained from the
++ system for this space.
++*/
++DLMALLOC_EXPORT size_t mspace_footprint(mspace msp);
++
++/*
++ mspace_max_footprint() returns the peak number of bytes obtained from the
++ system for this space.
++*/
++DLMALLOC_EXPORT size_t mspace_max_footprint(mspace msp);
++
++
++#if !NO_MALLINFO
++/*
++ mspace_mallinfo behaves as mallinfo, but reports properties of
++ the given space.
++*/
++DLMALLOC_EXPORT struct mallinfo mspace_mallinfo(mspace msp);
++#endif /* NO_MALLINFO */
++
++/*
++ malloc_usable_size(void* p) behaves the same as malloc_usable_size;
++*/
++DLMALLOC_EXPORT size_t mspace_usable_size(const void* mem);
++
++/*
++ mspace_malloc_stats behaves as malloc_stats, but reports
++ properties of the given space.
++*/
++DLMALLOC_EXPORT void mspace_malloc_stats(mspace msp);
++
++/*
++ mspace_trim behaves as malloc_trim, but
++ operates within the given space.
++*/
++DLMALLOC_EXPORT int mspace_trim(mspace msp, size_t pad);
++
++/*
++ An alias for mallopt.
++*/
++DLMALLOC_EXPORT int mspace_mallopt(int, int);
++
++#endif /* MSPACES */
++
++#ifdef __cplusplus
++} /* end of extern "C" */
++#endif /* __cplusplus */
++
++/*
++ ========================================================================
++ To make a fully customizable malloc.h header file, cut everything
++ above this line, put into file malloc.h, edit to suit, and #include it
++ on the next line, as well as in programs that use this malloc.
++ ========================================================================
++*/
++
++/* #include "malloc.h" */
++
++/*------------------------------ internal #includes ---------------------- */
++
++#ifdef _MSC_VER
++#pragma warning( disable : 4146 ) /* no "unsigned" warnings */
++#endif /* _MSC_VER */
++#if !NO_MALLOC_STATS
++#include <stdio.h> /* for printing in malloc_stats */
++#endif /* NO_MALLOC_STATS */
++#ifndef LACKS_ERRNO_H
++#include <errno.h> /* for MALLOC_FAILURE_ACTION */
++#endif /* LACKS_ERRNO_H */
++#ifdef DEBUG
++#if ABORT_ON_ASSERT_FAILURE
++#undef assert
++#define assert(x) if(!(x)) ABORT
++#else /* ABORT_ON_ASSERT_FAILURE */
++#include <assert.h>
++#endif /* ABORT_ON_ASSERT_FAILURE */
++#else /* DEBUG */
++#ifndef assert
++#define assert(x)
++#endif
++#define DEBUG 0
++#endif /* DEBUG */
++#if !defined(WIN32) && !defined(LACKS_TIME_H)
++#include <time.h> /* for magic initialization */
++#endif /* WIN32 */
++#ifndef LACKS_STDLIB_H
++#include <stdlib.h> /* for abort() */
++#endif /* LACKS_STDLIB_H */
++#ifndef LACKS_STRING_H
++#include <string.h> /* for memset etc */
++#endif /* LACKS_STRING_H */
++#if USE_BUILTIN_FFS
++#ifndef LACKS_STRINGS_H
++#include <strings.h> /* for ffs */
++#endif /* LACKS_STRINGS_H */
++#endif /* USE_BUILTIN_FFS */
++#if HAVE_MMAP
++#ifndef LACKS_SYS_MMAN_H
++/* On some versions of linux, mremap decl in mman.h needs __USE_GNU set */
++#if (defined(linux) && !defined(__USE_GNU))
++#define __USE_GNU 1
++#include <sys/mman.h> /* for mmap */
++#undef __USE_GNU
++#else
++#include <sys/mman.h> /* for mmap */
++#endif /* linux */
++#endif /* LACKS_SYS_MMAN_H */
++#ifndef LACKS_FCNTL_H
++#include <fcntl.h>
++#endif /* LACKS_FCNTL_H */
++#endif /* HAVE_MMAP */
++#ifndef LACKS_UNISTD_H
++#include <unistd.h> /* for sbrk, sysconf */
++#else /* LACKS_UNISTD_H */
++#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__)
++extern void* sbrk(ptrdiff_t);
++#endif /* FreeBSD etc */
++#endif /* LACKS_UNISTD_H */
++
++/* Declarations for locking */
++#if USE_LOCKS
++#ifndef WIN32
++#if defined (__SVR4) && defined (__sun) /* solaris */
++#include <thread.h>
++#elif !defined(LACKS_SCHED_H)
++#include <sched.h>
++#endif /* solaris or LACKS_SCHED_H */
++#if (defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0) || !USE_SPIN_LOCKS
++#include <pthread.h>
++#endif /* USE_RECURSIVE_LOCKS ... */
++#elif defined(_MSC_VER)
++#ifndef _M_AMD64
++/* These are already defined on AMD64 builds */
++#ifdef __cplusplus
++extern "C" {
++#endif /* __cplusplus */
++LONG __cdecl _InterlockedCompareExchange(LONG volatile *Dest, LONG Exchange, LONG Comp);
++LONG __cdecl _InterlockedExchange(LONG volatile *Target, LONG Value);
++#ifdef __cplusplus
++}
++#endif /* __cplusplus */
++#endif /* _M_AMD64 */
++#pragma intrinsic (_InterlockedCompareExchange)
++#pragma intrinsic (_InterlockedExchange)
++#define interlockedcompareexchange _InterlockedCompareExchange
++#define interlockedexchange _InterlockedExchange
++#elif defined(WIN32) && defined(__GNUC__)
++#define interlockedcompareexchange(a, b, c) __sync_val_compare_and_swap(a, c, b)
++#define interlockedexchange __sync_lock_test_and_set
++#endif /* Win32 */
++#else /* USE_LOCKS */
++#endif /* USE_LOCKS */
++
++#ifndef LOCK_AT_FORK
++#define LOCK_AT_FORK 0
++#endif
++
++/* Declarations for bit scanning on win32 */
++#if defined(_MSC_VER) && _MSC_VER>=1300
++#ifndef BitScanForward /* Try to avoid pulling in WinNT.h */
++#ifdef __cplusplus
++extern "C" {
++#endif /* __cplusplus */
++unsigned char _BitScanForward(unsigned long *index, unsigned long mask);
++unsigned char _BitScanReverse(unsigned long *index, unsigned long mask);
++#ifdef __cplusplus
++}
++#endif /* __cplusplus */
++
++#define BitScanForward _BitScanForward
++#define BitScanReverse _BitScanReverse
++#pragma intrinsic(_BitScanForward)
++#pragma intrinsic(_BitScanReverse)
++#endif /* BitScanForward */
++#endif /* defined(_MSC_VER) && _MSC_VER>=1300 */
++
++#ifndef WIN32
++#ifndef malloc_getpagesize
++# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */
++# ifndef _SC_PAGE_SIZE
++# define _SC_PAGE_SIZE _SC_PAGESIZE
++# endif
++# endif
++# ifdef _SC_PAGE_SIZE
++# define malloc_getpagesize sysconf(_SC_PAGE_SIZE)
++# else
++# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE)
++ extern size_t getpagesize();
++# define malloc_getpagesize getpagesize()
++# else
++# ifdef WIN32 /* use supplied emulation of getpagesize */
++# define malloc_getpagesize getpagesize()
++# else
++# ifndef LACKS_SYS_PARAM_H
++# include <sys/param.h>
++# endif
++# ifdef EXEC_PAGESIZE
++# define malloc_getpagesize EXEC_PAGESIZE
++# else
++# ifdef NBPG
++# ifndef CLSIZE
++# define malloc_getpagesize NBPG
++# else
++# define malloc_getpagesize (NBPG * CLSIZE)
++# endif
++# else
++# ifdef NBPC
++# define malloc_getpagesize NBPC
++# else
++# ifdef PAGESIZE
++# define malloc_getpagesize PAGESIZE
++# else /* just guess */
++# define malloc_getpagesize ((size_t)4096U)
++# endif
++# endif
++# endif
++# endif
++# endif
++# endif
++# endif
++#endif
++#endif
++
++/* ------------------- size_t and alignment properties -------------------- */
++
++/* The byte and bit size of a size_t */
++#define SIZE_T_SIZE (sizeof(size_t))
++#define SIZE_T_BITSIZE (sizeof(size_t) << 3)
++
++/* Some constants coerced to size_t */
++/* Annoying but necessary to avoid errors on some platforms */
++#define SIZE_T_ZERO ((size_t)0)
++#define SIZE_T_ONE ((size_t)1)
++#define SIZE_T_TWO ((size_t)2)
++#define SIZE_T_FOUR ((size_t)4)
++#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1)
++#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2)
++#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES)
++#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U)
++
++/* The bit mask value corresponding to MALLOC_ALIGNMENT */
++#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE)
++
++/* True if address a has acceptable alignment */
++#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0)
++
++/* the number of bytes to offset an address to align it */
++#define align_offset(A)\
++ ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\
++ ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK))
++
++/* -------------------------- MMAP preliminaries ------------------------- */
++
++/*
++ If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and
++ checks to fail so compiler optimizer can delete code rather than
++ using so many "#if"s.
++*/
++
++
++/* MORECORE and MMAP must return MFAIL on failure */
++#define MFAIL ((void*)(MAX_SIZE_T))
++#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */
++
++#if HAVE_MMAP
++
++#ifndef WIN32
++#define MUNMAP_DEFAULT(a, s) munmap((a), (s))
++#define MMAP_PROT (PROT_READ|PROT_WRITE)
++#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON)
++#define MAP_ANONYMOUS MAP_ANON
++#endif /* MAP_ANON */
++#ifdef MAP_ANONYMOUS
++#define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS)
++#define MMAP_DEFAULT(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0)
++#else /* MAP_ANONYMOUS */
++/*
++ Nearly all versions of mmap support MAP_ANONYMOUS, so the following
++ is unlikely to be needed, but is supplied just in case.
++*/
++#define MMAP_FLAGS (MAP_PRIVATE)
++static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */
++#define MMAP_DEFAULT(s) ((dev_zero_fd < 0) ? \
++ (dev_zero_fd = open("/dev/zero", O_RDWR), \
++ mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \
++ mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0))
++#endif /* MAP_ANONYMOUS */
++
++#define DIRECT_MMAP_DEFAULT(s) MMAP_DEFAULT(s)
++
++#else /* WIN32 */
++
++/* Win32 MMAP via VirtualAlloc */
++static FORCEINLINE void* win32mmap(size_t size) {
++ void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_READWRITE);
++ return (ptr != 0)? ptr: MFAIL;
++}
++
++/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */
++static FORCEINLINE void* win32direct_mmap(size_t size) {
++ void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN,
++ PAGE_READWRITE);
++ return (ptr != 0)? ptr: MFAIL;
++}
++
++/* This function supports releasing coalesed segments */
++static FORCEINLINE int win32munmap(void* ptr, size_t size) {
++ MEMORY_BASIC_INFORMATION minfo;
++ char* cptr = (char*)ptr;
++ while (size) {
++ if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0)
++ return -1;
++ if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr ||
++ minfo.State != MEM_COMMIT || minfo.RegionSize > size)
++ return -1;
++ if (VirtualFree(cptr, 0, MEM_RELEASE) == 0)
++ return -1;
++ cptr += minfo.RegionSize;
++ size -= minfo.RegionSize;
++ }
++ return 0;
++}
++
++#define MMAP_DEFAULT(s) win32mmap(s)
++#define MUNMAP_DEFAULT(a, s) win32munmap((a), (s))
++#define DIRECT_MMAP_DEFAULT(s) win32direct_mmap(s)
++#endif /* WIN32 */
++#endif /* HAVE_MMAP */
++
++#if HAVE_MREMAP
++#ifndef WIN32
++#define MREMAP_DEFAULT(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv))
++#endif /* WIN32 */
++#endif /* HAVE_MREMAP */
++
++/**
++ * Define CALL_MORECORE
++ */
++#if HAVE_MORECORE
++ #ifdef MORECORE
++ #define CALL_MORECORE(S) MORECORE(S)
++ #else /* MORECORE */
++ #define CALL_MORECORE(S) MORECORE_DEFAULT(S)
++ #endif /* MORECORE */
++#else /* HAVE_MORECORE */
++ #define CALL_MORECORE(S) MFAIL
++#endif /* HAVE_MORECORE */
++
++/**
++ * Define CALL_MMAP/CALL_MUNMAP/CALL_DIRECT_MMAP
++ */
++#if HAVE_MMAP
++ #define USE_MMAP_BIT (SIZE_T_ONE)
++
++ #ifdef MMAP
++ #define CALL_MMAP(s) MMAP(s)
++ #else /* MMAP */
++ #define CALL_MMAP(s) MMAP_DEFAULT(s)
++ #endif /* MMAP */
++ #ifdef MUNMAP
++ #define CALL_MUNMAP(a, s) MUNMAP((a), (s))
++ #else /* MUNMAP */
++ #define CALL_MUNMAP(a, s) MUNMAP_DEFAULT((a), (s))
++ #endif /* MUNMAP */
++ #ifdef DIRECT_MMAP
++ #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s)
++ #else /* DIRECT_MMAP */
++ #define CALL_DIRECT_MMAP(s) DIRECT_MMAP_DEFAULT(s)
++ #endif /* DIRECT_MMAP */
++#else /* HAVE_MMAP */
++ #define USE_MMAP_BIT (SIZE_T_ZERO)
++
++ #define MMAP(s) MFAIL
++ #define MUNMAP(a, s) (-1)
++ #define DIRECT_MMAP(s) MFAIL
++ #define CALL_DIRECT_MMAP(s) DIRECT_MMAP(s)
++ #define CALL_MMAP(s) MMAP(s)
++ #define CALL_MUNMAP(a, s) MUNMAP((a), (s))
++#endif /* HAVE_MMAP */
++
++/**
++ * Define CALL_MREMAP
++ */
++#if HAVE_MMAP && HAVE_MREMAP
++ #ifdef MREMAP
++ #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP((addr), (osz), (nsz), (mv))
++ #else /* MREMAP */
++ #define CALL_MREMAP(addr, osz, nsz, mv) MREMAP_DEFAULT((addr), (osz), (nsz), (mv))
++ #endif /* MREMAP */
++#else /* HAVE_MMAP && HAVE_MREMAP */
++ #define CALL_MREMAP(addr, osz, nsz, mv) MFAIL
++#endif /* HAVE_MMAP && HAVE_MREMAP */
++
++/* mstate bit set if continguous morecore disabled or failed */
++#define USE_NONCONTIGUOUS_BIT (4U)
++
++/* segment bit set in create_mspace_with_base */
++#define EXTERN_BIT (8U)
++
++
++/* --------------------------- Lock preliminaries ------------------------ */
++
++/*
++ When locks are defined, there is one global lock, plus
++ one per-mspace lock.
++
++ The global lock_ensures that mparams.magic and other unique
++ mparams values are initialized only once. It also protects
++ sequences of calls to MORECORE. In many cases sys_alloc requires
++ two calls, that should not be interleaved with calls by other
++ threads. This does not protect against direct calls to MORECORE
++ by other threads not using this lock, so there is still code to
++ cope the best we can on interference.
++
++ Per-mspace locks surround calls to malloc, free, etc.
++ By default, locks are simple non-reentrant mutexes.
++
++ Because lock-protected regions generally have bounded times, it is
++ OK to use the supplied simple spinlocks. Spinlocks are likely to
++ improve performance for lightly contended applications, but worsen
++ performance under heavy contention.
++
++ If USE_LOCKS is > 1, the definitions of lock routines here are
++ bypassed, in which case you will need to define the type MLOCK_T,
++ and at least INITIAL_LOCK, DESTROY_LOCK, ACQUIRE_LOCK, RELEASE_LOCK
++ and TRY_LOCK. You must also declare a
++ static MLOCK_T malloc_global_mutex = { initialization values };.
++
++*/
++
++#if !USE_LOCKS
++#define USE_LOCK_BIT (0U)
++#define INITIAL_LOCK(l) (0)
++#define DESTROY_LOCK(l) (0)
++#define ACQUIRE_MALLOC_GLOBAL_LOCK()
++#define RELEASE_MALLOC_GLOBAL_LOCK()
++
++#else
++#if USE_LOCKS > 1
++/* ----------------------- User-defined locks ------------------------ */
++/* Define your own lock implementation here */
++/* #define INITIAL_LOCK(lk) ... */
++/* #define DESTROY_LOCK(lk) ... */
++/* #define ACQUIRE_LOCK(lk) ... */
++/* #define RELEASE_LOCK(lk) ... */
++/* #define TRY_LOCK(lk) ... */
++/* static MLOCK_T malloc_global_mutex = ... */
++
++#elif USE_SPIN_LOCKS
++
++/* First, define CAS_LOCK and CLEAR_LOCK on ints */
++/* Note CAS_LOCK defined to return 0 on success */
++
++#if defined(__GNUC__)&& (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 1))
++#define CAS_LOCK(sl) __sync_lock_test_and_set(sl, 1)
++#define CLEAR_LOCK(sl) __sync_lock_release(sl)
++
++#elif (defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)))
++/* Custom spin locks for older gcc on x86 */
++static FORCEINLINE int x86_cas_lock(int *sl) {
++ int ret;
++ int val = 1;
++ int cmp = 0;
++ __asm__ __volatile__ ("lock; cmpxchgl %1, %2"
++ : "=a" (ret)
++ : "r" (val), "m" (*(sl)), "0"(cmp)
++ : "memory", "cc");
++ return ret;
++}
++
++static FORCEINLINE void x86_clear_lock(int* sl) {
++ assert(*sl != 0);
++ int prev = 0;
++ int ret;
++ __asm__ __volatile__ ("lock; xchgl %0, %1"
++ : "=r" (ret)
++ : "m" (*(sl)), "0"(prev)
++ : "memory");
++}
++
++#define CAS_LOCK(sl) x86_cas_lock(sl)
++#define CLEAR_LOCK(sl) x86_clear_lock(sl)
++
++#else /* Win32 MSC */
++#define CAS_LOCK(sl) interlockedexchange(sl, (LONG)1)
++#define CLEAR_LOCK(sl) interlockedexchange (sl, (LONG)0)
++
++#endif /* ... gcc spins locks ... */
++
++/* How to yield for a spin lock */
++#define SPINS_PER_YIELD 63
++#if defined(_MSC_VER)
++#define SLEEP_EX_DURATION 50 /* delay for yield/sleep */
++#define SPIN_LOCK_YIELD SleepEx(SLEEP_EX_DURATION, FALSE)
++#elif defined (__SVR4) && defined (__sun) /* solaris */
++#define SPIN_LOCK_YIELD thr_yield();
++#elif !defined(LACKS_SCHED_H)
++#define SPIN_LOCK_YIELD sched_yield();
++#else
++#define SPIN_LOCK_YIELD
++#endif /* ... yield ... */
++
++#if !defined(USE_RECURSIVE_LOCKS) || USE_RECURSIVE_LOCKS == 0
++/* Plain spin locks use single word (embedded in malloc_states) */
++static int spin_acquire_lock(int *sl) {
++ int spins = 0;
++ while (*(volatile int *)sl != 0 || CAS_LOCK(sl)) {
++ if ((++spins & SPINS_PER_YIELD) == 0) {
++ SPIN_LOCK_YIELD;
++ }
++ }
++ return 0;
++}
++
++#define MLOCK_T int
++#define TRY_LOCK(sl) !CAS_LOCK(sl)
++#define RELEASE_LOCK(sl) CLEAR_LOCK(sl)
++#define ACQUIRE_LOCK(sl) (CAS_LOCK(sl)? spin_acquire_lock(sl) : 0)
++#define INITIAL_LOCK(sl) (*sl = 0)
++#define DESTROY_LOCK(sl) (0)
++static MLOCK_T malloc_global_mutex = 0;
++
++#else /* USE_RECURSIVE_LOCKS */
++/* types for lock owners */
++#ifdef WIN32
++#define THREAD_ID_T DWORD
++#define CURRENT_THREAD GetCurrentThreadId()
++#define EQ_OWNER(X,Y) ((X) == (Y))
++#else
++/*
++ Note: the following assume that pthread_t is a type that can be
++ initialized to (casted) zero. If this is not the case, you will need to
++ somehow redefine these or not use spin locks.
++*/
++#define THREAD_ID_T pthread_t
++#define CURRENT_THREAD pthread_self()
++#define EQ_OWNER(X,Y) pthread_equal(X, Y)
++#endif
++
++struct malloc_recursive_lock {
++ int sl;
++ unsigned int c;
++ THREAD_ID_T threadid;
++};
++
++#define MLOCK_T struct malloc_recursive_lock
++static MLOCK_T malloc_global_mutex = { 0, 0, (THREAD_ID_T)0};
++
++static FORCEINLINE void recursive_release_lock(MLOCK_T *lk) {
++ assert(lk->sl != 0);
++ if (--lk->c == 0) {
++ CLEAR_LOCK(&lk->sl);
++ }
++}
++
++static FORCEINLINE int recursive_acquire_lock(MLOCK_T *lk) {
++ THREAD_ID_T mythreadid = CURRENT_THREAD;
++ int spins = 0;
++ for (;;) {
++ if (*((volatile int *)(&lk->sl)) == 0) {
++ if (!CAS_LOCK(&lk->sl)) {
++ lk->threadid = mythreadid;
++ lk->c = 1;
++ return 0;
++ }
++ }
++ else if (EQ_OWNER(lk->threadid, mythreadid)) {
++ ++lk->c;
++ return 0;
++ }
++ if ((++spins & SPINS_PER_YIELD) == 0) {
++ SPIN_LOCK_YIELD;
++ }
++ }
++}
++
++static FORCEINLINE int recursive_try_lock(MLOCK_T *lk) {
++ THREAD_ID_T mythreadid = CURRENT_THREAD;
++ if (*((volatile int *)(&lk->sl)) == 0) {
++ if (!CAS_LOCK(&lk->sl)) {
++ lk->threadid = mythreadid;
++ lk->c = 1;
++ return 1;
++ }
++ }
++ else if (EQ_OWNER(lk->threadid, mythreadid)) {
++ ++lk->c;
++ return 1;
++ }
++ return 0;
++}
++
++#define RELEASE_LOCK(lk) recursive_release_lock(lk)
++#define TRY_LOCK(lk) recursive_try_lock(lk)
++#define ACQUIRE_LOCK(lk) recursive_acquire_lock(lk)
++#define INITIAL_LOCK(lk) ((lk)->threadid = (THREAD_ID_T)0, (lk)->sl = 0, (lk)->c = 0)
++#define DESTROY_LOCK(lk) (0)
++#endif /* USE_RECURSIVE_LOCKS */
++
++#elif defined(WIN32) /* Win32 critical sections */
++#define MLOCK_T CRITICAL_SECTION
++#define ACQUIRE_LOCK(lk) (EnterCriticalSection(lk), 0)
++#define RELEASE_LOCK(lk) LeaveCriticalSection(lk)
++#define TRY_LOCK(lk) TryEnterCriticalSection(lk)
++#define INITIAL_LOCK(lk) (!InitializeCriticalSectionAndSpinCount((lk), 0x80000000|4000))
++#define DESTROY_LOCK(lk) (DeleteCriticalSection(lk), 0)
++#define NEED_GLOBAL_LOCK_INIT
++
++static MLOCK_T malloc_global_mutex;
++static volatile LONG malloc_global_mutex_status;
++
++/* Use spin loop to initialize global lock */
++static void init_malloc_global_mutex() {
++ for (;;) {
++ long stat = malloc_global_mutex_status;
++ if (stat > 0)
++ return;
++ /* transition to < 0 while initializing, then to > 0) */
++ if (stat == 0 &&
++ interlockedcompareexchange(&malloc_global_mutex_status, (LONG)-1, (LONG)0) == 0) {
++ InitializeCriticalSection(&malloc_global_mutex);
++ interlockedexchange(&malloc_global_mutex_status, (LONG)1);
++ return;
++ }
++ SleepEx(0, FALSE);
++ }
++}
++
++#else /* pthreads-based locks */
++#define MLOCK_T pthread_mutex_t
++#define ACQUIRE_LOCK(lk) pthread_mutex_lock(lk)
++#define RELEASE_LOCK(lk) pthread_mutex_unlock(lk)
++#define TRY_LOCK(lk) (!pthread_mutex_trylock(lk))
++#define INITIAL_LOCK(lk) pthread_init_lock(lk)
++#define DESTROY_LOCK(lk) pthread_mutex_destroy(lk)
++
++#if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0 && defined(linux) && !defined(PTHREAD_MUTEX_RECURSIVE)
++/* Cope with old-style linux recursive lock initialization by adding */
++/* skipped internal declaration from pthread.h */
++extern int pthread_mutexattr_setkind_np __P ((pthread_mutexattr_t *__attr,
++ int __kind));
++#define PTHREAD_MUTEX_RECURSIVE PTHREAD_MUTEX_RECURSIVE_NP
++#define pthread_mutexattr_settype(x,y) pthread_mutexattr_setkind_np(x,y)
++#endif /* USE_RECURSIVE_LOCKS ... */
++
++static MLOCK_T malloc_global_mutex = PTHREAD_MUTEX_INITIALIZER;
++
++static int pthread_init_lock (MLOCK_T *lk) {
++ pthread_mutexattr_t attr;
++ if (pthread_mutexattr_init(&attr)) return 1;
++#if defined(USE_RECURSIVE_LOCKS) && USE_RECURSIVE_LOCKS != 0
++ if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE)) return 1;
++#endif
++ if (pthread_mutex_init(lk, &attr)) return 1;
++ if (pthread_mutexattr_destroy(&attr)) return 1;
++ return 0;
++}
++
++#endif /* ... lock types ... */
++
++/* Common code for all lock types */
++#define USE_LOCK_BIT (2U)
++
++#ifndef ACQUIRE_MALLOC_GLOBAL_LOCK
++#define ACQUIRE_MALLOC_GLOBAL_LOCK() ACQUIRE_LOCK(&malloc_global_mutex);
++#endif
++
++#ifndef RELEASE_MALLOC_GLOBAL_LOCK
++#define RELEASE_MALLOC_GLOBAL_LOCK() RELEASE_LOCK(&malloc_global_mutex);
++#endif
++
++#endif /* USE_LOCKS */
++
++/* ----------------------- Chunk representations ------------------------ */
++
++/*
++ (The following includes lightly edited explanations by Colin Plumb.)
++
++ The malloc_chunk declaration below is misleading (but accurate and
++ necessary). It declares a "view" into memory allowing access to
++ necessary fields at known offsets from a given base.
++
++ Chunks of memory are maintained using a `boundary tag' method as
++ originally described by Knuth. (See the paper by Paul Wilson
++ ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such
++ techniques.) Sizes of free chunks are stored both in the front of
++ each chunk and at the end. This makes consolidating fragmented
++ chunks into bigger chunks fast. The head fields also hold bits
++ representing whether chunks are free or in use.
++
++ Here are some pictures to make it clearer. They are "exploded" to
++ show that the state of a chunk can be thought of as extending from
++ the high 31 bits of the head field of its header through the
++ prev_foot and PINUSE_BIT bit of the following chunk header.
++
++ A chunk that's in use looks like:
++
++ chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++ | Size of previous chunk (if P = 0) |
++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
++ | Size of this chunk 1| +-+
++ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++ | |
++ +- -+
++ | |
++ +- -+
++ | :
++ +- size - sizeof(size_t) available payload bytes -+
++ : |
++ chunk-> +- -+
++ | |
++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1|
++ | Size of next chunk (may or may not be in use) | +-+
++ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++
++ And if it's free, it looks like this:
++
++ chunk-> +- -+
++ | User payload (must be in use, or we would have merged!) |
++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P|
++ | Size of this chunk 0| +-+
++ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++ | Next pointer |
++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++ | Prev pointer |
++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++ | :
++ +- size - sizeof(struct chunk) unused bytes -+
++ : |
++ chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++ | Size of this chunk |
++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0|
++ | Size of next chunk (must be in use, or we would have merged)| +-+
++ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++ | :
++ +- User payload -+
++ : |
++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++ |0|
++ +-+
++ Note that since we always merge adjacent free chunks, the chunks
++ adjacent to a free chunk must be in use.
++
++ Given a pointer to a chunk (which can be derived trivially from the
++ payload pointer) we can, in O(1) time, find out whether the adjacent
++ chunks are free, and if so, unlink them from the lists that they
++ are on and merge them with the current chunk.
++
++ Chunks always begin on even word boundaries, so the mem portion
++ (which is returned to the user) is also on an even word boundary, and
++ thus at least double-word aligned.
++
++ The P (PINUSE_BIT) bit, stored in the unused low-order bit of the
++ chunk size (which is always a multiple of two words), is an in-use
++ bit for the *previous* chunk. If that bit is *clear*, then the
++ word before the current chunk size contains the previous chunk
++ size, and can be used to find the front of the previous chunk.
++ The very first chunk allocated always has this bit set, preventing
++ access to non-existent (or non-owned) memory. If pinuse is set for
++ any given chunk, then you CANNOT determine the size of the
++ previous chunk, and might even get a memory addressing fault when
++ trying to do so.
++
++ The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of
++ the chunk size redundantly records whether the current chunk is
++ inuse (unless the chunk is mmapped). This redundancy enables usage
++ checks within free and realloc, and reduces indirection when freeing
++ and consolidating chunks.
++
++ Each freshly allocated chunk must have both cinuse and pinuse set.
++ That is, each allocated chunk borders either a previously allocated
++ and still in-use chunk, or the base of its memory arena. This is
++ ensured by making all allocations from the `lowest' part of any
++ found chunk. Further, no free chunk physically borders another one,
++ so each free chunk is known to be preceded and followed by either
++ inuse chunks or the ends of memory.
++
++ Note that the `foot' of the current chunk is actually represented
++ as the prev_foot of the NEXT chunk. This makes it easier to
++ deal with alignments etc but can be very confusing when trying
++ to extend or adapt this code.
++
++ The exceptions to all this are
++
++ 1. The special chunk `top' is the top-most available chunk (i.e.,
++ the one bordering the end of available memory). It is treated
++ specially. Top is never included in any bin, is used only if
++ no other chunk is available, and is released back to the
++ system if it is very large (see M_TRIM_THRESHOLD). In effect,
++ the top chunk is treated as larger (and thus less well
++ fitting) than any other available chunk. The top chunk
++ doesn't update its trailing size field since there is no next
++ contiguous chunk that would have to index off it. However,
++ space is still allocated for it (TOP_FOOT_SIZE) to enable
++ separation or merging when space is extended.
++
++ 3. Chunks allocated via mmap, have both cinuse and pinuse bits
++ cleared in their head fields. Because they are allocated
++ one-by-one, each must carry its own prev_foot field, which is
++ also used to hold the offset this chunk has within its mmapped
++ region, which is needed to preserve alignment. Each mmapped
++ chunk is trailed by the first two fields of a fake next-chunk
++ for sake of usage checks.
++
++*/
++
++struct malloc_chunk {
++ size_t prev_foot; /* Size of previous chunk (if free). */
++ size_t head; /* Size and inuse bits. */
++ struct malloc_chunk* fd; /* double links -- used only if free. */
++ struct malloc_chunk* bk;
++};
++
++typedef struct malloc_chunk mchunk;
++typedef struct malloc_chunk* mchunkptr;
++typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */
++typedef unsigned int bindex_t; /* Described below */
++typedef unsigned int binmap_t; /* Described below */
++typedef unsigned int flag_t; /* The type of various bit flag sets */
++
++/* ------------------- Chunks sizes and alignments ----------------------- */
++
++#define MCHUNK_SIZE (sizeof(mchunk))
++
++#if FOOTERS
++#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
++#else /* FOOTERS */
++#define CHUNK_OVERHEAD (SIZE_T_SIZE)
++#endif /* FOOTERS */
++
++/* MMapped chunks need a second word of overhead ... */
++#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES)
++/* ... and additional padding for fake next-chunk at foot */
++#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES)
++
++/* The smallest size we can malloc is an aligned minimal chunk */
++#define MIN_CHUNK_SIZE\
++ ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
++
++/* conversion from malloc headers to user pointers, and back */
++#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES))
++#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES))
++/* chunk associated with aligned address A */
++#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A)))
++
++/* Bounds on request (not chunk) sizes. */
++#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2)
++#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE)
++
++/* pad request bytes into a usable size */
++#define pad_request(req) \
++ (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK)
++
++/* pad request, checking for minimum (but not maximum) */
++#define request2size(req) \
++ (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req))
++
++
++/* ------------------ Operations on head and foot fields ----------------- */
++
++/*
++ The head field of a chunk is or'ed with PINUSE_BIT when previous
++ adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in
++ use, unless mmapped, in which case both bits are cleared.
++
++ FLAG4_BIT is not used by this malloc, but might be useful in extensions.
++*/
++
++#define PINUSE_BIT (SIZE_T_ONE)
++#define CINUSE_BIT (SIZE_T_TWO)
++#define FLAG4_BIT (SIZE_T_FOUR)
++#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT)
++#define FLAG_BITS (PINUSE_BIT|CINUSE_BIT|FLAG4_BIT)
++
++/* Head value for fenceposts */
++#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE)
++
++/* extraction of fields from head words */
++#define cinuse(p) ((p)->head & CINUSE_BIT)
++#define pinuse(p) ((p)->head & PINUSE_BIT)
++#define flag4inuse(p) ((p)->head & FLAG4_BIT)
++#define is_inuse(p) (((p)->head & INUSE_BITS) != PINUSE_BIT)
++#define is_mmapped(p) (((p)->head & INUSE_BITS) == 0)
++
++#define chunksize(p) ((p)->head & ~(FLAG_BITS))
++
++#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT)
++#define set_flag4(p) ((p)->head |= FLAG4_BIT)
++#define clear_flag4(p) ((p)->head &= ~FLAG4_BIT)
++
++/* Treat space at ptr +/- offset as a chunk */
++#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s)))
++#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s)))
++
++/* Ptr to next or previous physical malloc_chunk. */
++#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~FLAG_BITS)))
++#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) ))
++
++/* extract next chunk's pinuse bit */
++#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT)
++
++/* Get/set size at footer */
++#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot)
++#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s))
++
++/* Set size, pinuse bit, and foot */
++#define set_size_and_pinuse_of_free_chunk(p, s)\
++ ((p)->head = (s|PINUSE_BIT), set_foot(p, s))
++
++/* Set size, pinuse bit, foot, and clear next pinuse */
++#define set_free_with_pinuse(p, s, n)\
++ (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s))
++
++/* Get the internal overhead associated with chunk p */
++#define overhead_for(p)\
++ (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD)
++
++/* Return true if malloced space is not necessarily cleared */
++#if MMAP_CLEARS
++#define calloc_must_clear(p) (!is_mmapped(p))
++#else /* MMAP_CLEARS */
++#define calloc_must_clear(p) (1)
++#endif /* MMAP_CLEARS */
++
++/* ---------------------- Overlaid data structures ----------------------- */
++
++/*
++ When chunks are not in use, they are treated as nodes of either
++ lists or trees.
++
++ "Small" chunks are stored in circular doubly-linked lists, and look
++ like this:
++
++ chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++ | Size of previous chunk |
++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++ `head:' | Size of chunk, in bytes |P|
++ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++ | Forward pointer to next chunk in list |
++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++ | Back pointer to previous chunk in list |
++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++ | Unused space (may be 0 bytes long) .
++ . .
++ . |
++nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++ `foot:' | Size of chunk, in bytes |
++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++
++ Larger chunks are kept in a form of bitwise digital trees (aka
++ tries) keyed on chunksizes. Because malloc_tree_chunks are only for
++ free chunks greater than 256 bytes, their size doesn't impose any
++ constraints on user chunk sizes. Each node looks like:
++
++ chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++ | Size of previous chunk |
++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++ `head:' | Size of chunk, in bytes |P|
++ mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++ | Forward pointer to next chunk of same size |
++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++ | Back pointer to previous chunk of same size |
++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++ | Pointer to left child (child[0]) |
++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++ | Pointer to right child (child[1]) |
++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++ | Pointer to parent |
++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++ | bin index of this chunk |
++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++ | Unused space .
++ . |
++nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++ `foot:' | Size of chunk, in bytes |
++ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
++
++ Each tree holding treenodes is a tree of unique chunk sizes. Chunks
++ of the same size are arranged in a circularly-linked list, with only
++ the oldest chunk (the next to be used, in our FIFO ordering)
++ actually in the tree. (Tree members are distinguished by a non-null
++ parent pointer.) If a chunk with the same size an an existing node
++ is inserted, it is linked off the existing node using pointers that
++ work in the same way as fd/bk pointers of small chunks.
++
++ Each tree contains a power of 2 sized range of chunk sizes (the
++ smallest is 0x100 <= x < 0x180), which is is divided in half at each
++ tree level, with the chunks in the smaller half of the range (0x100
++ <= x < 0x140 for the top nose) in the left subtree and the larger
++ half (0x140 <= x < 0x180) in the right subtree. This is, of course,
++ done by inspecting individual bits.
++
++ Using these rules, each node's left subtree contains all smaller
++ sizes than its right subtree. However, the node at the root of each
++ subtree has no particular ordering relationship to either. (The
++ dividing line between the subtree sizes is based on trie relation.)
++ If we remove the last chunk of a given size from the interior of the
++ tree, we need to replace it with a leaf node. The tree ordering
++ rules permit a node to be replaced by any leaf below it.
++
++ The smallest chunk in a tree (a common operation in a best-fit
++ allocator) can be found by walking a path to the leftmost leaf in
++ the tree. Unlike a usual binary tree, where we follow left child
++ pointers until we reach a null, here we follow the right child
++ pointer any time the left one is null, until we reach a leaf with
++ both child pointers null. The smallest chunk in the tree will be
++ somewhere along that path.
++
++ The worst case number of steps to add, find, or remove a node is
++ bounded by the number of bits differentiating chunks within
++ bins. Under current bin calculations, this ranges from 6 up to 21
++ (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case
++ is of course much better.
++*/
++
++struct malloc_tree_chunk {
++ /* The first four fields must be compatible with malloc_chunk */
++ size_t prev_foot;
++ size_t head;
++ struct malloc_tree_chunk* fd;
++ struct malloc_tree_chunk* bk;
++
++ struct malloc_tree_chunk* child[2];
++ struct malloc_tree_chunk* parent;
++ bindex_t index;
++};
++
++typedef struct malloc_tree_chunk tchunk;
++typedef struct malloc_tree_chunk* tchunkptr;
++typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */
++
++/* A little helper macro for trees */
++#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1])
++
++/* ----------------------------- Segments -------------------------------- */
++
++/*
++ Each malloc space may include non-contiguous segments, held in a
++ list headed by an embedded malloc_segment record representing the
++ top-most space. Segments also include flags holding properties of
++ the space. Large chunks that are directly allocated by mmap are not
++ included in this list. They are instead independently created and
++ destroyed without otherwise keeping track of them.
++
++ Segment management mainly comes into play for spaces allocated by
++ MMAP. Any call to MMAP might or might not return memory that is
++ adjacent to an existing segment. MORECORE normally contiguously
++ extends the current space, so this space is almost always adjacent,
++ which is simpler and faster to deal with. (This is why MORECORE is
++ used preferentially to MMAP when both are available -- see
++ sys_alloc.) When allocating using MMAP, we don't use any of the
++ hinting mechanisms (inconsistently) supported in various
++ implementations of unix mmap, or distinguish reserving from
++ committing memory. Instead, we just ask for space, and exploit
++ contiguity when we get it. It is probably possible to do
++ better than this on some systems, but no general scheme seems
++ to be significantly better.
++
++ Management entails a simpler variant of the consolidation scheme
++ used for chunks to reduce fragmentation -- new adjacent memory is
++ normally prepended or appended to an existing segment. However,
++ there are limitations compared to chunk consolidation that mostly
++ reflect the fact that segment processing is relatively infrequent
++ (occurring only when getting memory from system) and that we
++ don't expect to have huge numbers of segments:
++
++ * Segments are not indexed, so traversal requires linear scans. (It
++ would be possible to index these, but is not worth the extra
++ overhead and complexity for most programs on most platforms.)
++ * New segments are only appended to old ones when holding top-most
++ memory; if they cannot be prepended to others, they are held in
++ different segments.
++
++ Except for the top-most segment of an mstate, each segment record
++ is kept at the tail of its segment. Segments are added by pushing
++ segment records onto the list headed by &mstate.seg for the
++ containing mstate.
++
++ Segment flags control allocation/merge/deallocation policies:
++ * If EXTERN_BIT set, then we did not allocate this segment,
++ and so should not try to deallocate or merge with others.
++ (This currently holds only for the initial segment passed
++ into create_mspace_with_base.)
++ * If USE_MMAP_BIT set, the segment may be merged with
++ other surrounding mmapped segments and trimmed/de-allocated
++ using munmap.
++ * If neither bit is set, then the segment was obtained using
++ MORECORE so can be merged with surrounding MORECORE'd segments
++ and deallocated/trimmed using MORECORE with negative arguments.
++*/
++
++struct malloc_segment {
++ char* base; /* base address */
++ size_t size; /* allocated size */
++ struct malloc_segment* next; /* ptr to next segment */
++ flag_t sflags; /* mmap and extern flag */
++};
++
++#define is_mmapped_segment(S) ((S)->sflags & USE_MMAP_BIT)
++#define is_extern_segment(S) ((S)->sflags & EXTERN_BIT)
++
++typedef struct malloc_segment msegment;
++typedef struct malloc_segment* msegmentptr;
++
++/* ---------------------------- malloc_state ----------------------------- */
++
++/*
++ A malloc_state holds all of the bookkeeping for a space.
++ The main fields are:
++
++ Top
++ The topmost chunk of the currently active segment. Its size is
++ cached in topsize. The actual size of topmost space is
++ topsize+TOP_FOOT_SIZE, which includes space reserved for adding
++ fenceposts and segment records if necessary when getting more
++ space from the system. The size at which to autotrim top is
++ cached from mparams in trim_check, except that it is disabled if
++ an autotrim fails.
++
++ Designated victim (dv)
++ This is the preferred chunk for servicing small requests that
++ don't have exact fits. It is normally the chunk split off most
++ recently to service another small request. Its size is cached in
++ dvsize. The link fields of this chunk are not maintained since it
++ is not kept in a bin.
++
++ SmallBins
++ An array of bin headers for free chunks. These bins hold chunks
++ with sizes less than MIN_LARGE_SIZE bytes. Each bin contains
++ chunks of all the same size, spaced 8 bytes apart. To simplify
++ use in double-linked lists, each bin header acts as a malloc_chunk
++ pointing to the real first node, if it exists (else pointing to
++ itself). This avoids special-casing for headers. But to avoid
++ waste, we allocate only the fd/bk pointers of bins, and then use
++ repositioning tricks to treat these as the fields of a chunk.
++
++ TreeBins
++ Treebins are pointers to the roots of trees holding a range of
++ sizes. There are 2 equally spaced treebins for each power of two
++ from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything
++ larger.
++
++ Bin maps
++ There is one bit map for small bins ("smallmap") and one for
++ treebins ("treemap). Each bin sets its bit when non-empty, and
++ clears the bit when empty. Bit operations are then used to avoid
++ bin-by-bin searching -- nearly all "search" is done without ever
++ looking at bins that won't be selected. The bit maps
++ conservatively use 32 bits per map word, even if on 64bit system.
++ For a good description of some of the bit-based techniques used
++ here, see Henry S. Warren Jr's book "Hacker's Delight" (and
++ supplement at http://hackersdelight.org/). Many of these are
++ intended to reduce the branchiness of paths through malloc etc, as
++ well as to reduce the number of memory locations read or written.
++
++ Segments
++ A list of segments headed by an embedded malloc_segment record
++ representing the initial space.
++
++ Address check support
++ The least_addr field is the least address ever obtained from
++ MORECORE or MMAP. Attempted frees and reallocs of any address less
++ than this are trapped (unless INSECURE is defined).
++
++ Magic tag
++ A cross-check field that should always hold same value as mparams.magic.
++
++ Max allowed footprint
++ The maximum allowed bytes to allocate from system (zero means no limit)
++
++ Flags
++ Bits recording whether to use MMAP, locks, or contiguous MORECORE
++
++ Statistics
++ Each space keeps track of current and maximum system memory
++ obtained via MORECORE or MMAP.
++
++ Trim support
++ Fields holding the amount of unused topmost memory that should trigger
++ trimming, and a counter to force periodic scanning to release unused
++ non-topmost segments.
++
++ Locking
++ If USE_LOCKS is defined, the "mutex" lock is acquired and released
++ around every public call using this mspace.
++
++ Extension support
++ A void* pointer and a size_t field that can be used to help implement
++ extensions to this malloc.
++*/
++
++/* Bin types, widths and sizes */
++#define NSMALLBINS (32U)
++#define NTREEBINS (32U)
++#define SMALLBIN_SHIFT (3U)
++#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT)
++#define TREEBIN_SHIFT (8U)
++#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT)
++#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE)
++#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD)
++
++struct malloc_state {
++ binmap_t smallmap;
++ binmap_t treemap;
++ size_t dvsize;
++ size_t topsize;
++ char* least_addr;
++ mchunkptr dv;
++ mchunkptr top;
++ size_t trim_check;
++ size_t release_checks;
++ size_t magic;
++ mchunkptr smallbins[(NSMALLBINS+1)*2];
++ tbinptr treebins[NTREEBINS];
++ size_t footprint;
++ size_t max_footprint;
++ size_t footprint_limit; /* zero means no limit */
++ flag_t mflags;
++#if USE_LOCKS
++ MLOCK_T mutex; /* locate lock among fields that rarely change */
++#endif /* USE_LOCKS */
++ msegment seg;
++ void* extp; /* Unused but available for extensions */
++ size_t exts;
++};
++
++typedef struct malloc_state* mstate;
++
++/* ------------- Global malloc_state and malloc_params ------------------- */
++
++/*
++ malloc_params holds global properties, including those that can be
++ dynamically set using mallopt. There is a single instance, mparams,
++ initialized in init_mparams. Note that the non-zeroness of "magic"
++ also serves as an initialization flag.
++*/
++
++struct malloc_params {
++ size_t magic;
++ size_t page_size;
++ size_t granularity;
++ size_t mmap_threshold;
++ size_t trim_threshold;
++ flag_t default_mflags;
++};
++
++static struct malloc_params mparams;
++
++/* Ensure mparams initialized */
++#define ensure_initialization() (void)(mparams.magic != 0 || init_mparams())
++
++#if !ONLY_MSPACES
++
++/* The global malloc_state used for all non-"mspace" calls */
++static struct malloc_state _gm_;
++#define gm (&_gm_)
++#define is_global(M) ((M) == &_gm_)
++
++#endif /* !ONLY_MSPACES */
++
++#define is_initialized(M) ((M)->top != 0)
++
++/* -------------------------- system alloc setup ------------------------- */
++
++/* Operations on mflags */
++
++#define use_lock(M) ((M)->mflags & USE_LOCK_BIT)
++#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT)
++#if USE_LOCKS
++#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT)
++#else
++#define disable_lock(M)
++#endif
++
++#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT)
++#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT)
++#if HAVE_MMAP
++#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT)
++#else
++#define disable_mmap(M)
++#endif
++
++#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT)
++#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT)
++
++#define set_lock(M,L)\
++ ((M)->mflags = (L)?\
++ ((M)->mflags | USE_LOCK_BIT) :\
++ ((M)->mflags & ~USE_LOCK_BIT))
++
++/* page-align a size */
++#define page_align(S)\
++ (((S) + (mparams.page_size - SIZE_T_ONE)) & ~(mparams.page_size - SIZE_T_ONE))
++
++/* granularity-align a size */
++#define granularity_align(S)\
++ (((S) + (mparams.granularity - SIZE_T_ONE))\
++ & ~(mparams.granularity - SIZE_T_ONE))
++
++
++/* For mmap, use granularity alignment on windows, else page-align */
++#ifdef WIN32
++#define mmap_align(S) granularity_align(S)
++#else
++#define mmap_align(S) page_align(S)
++#endif
++
++/* For sys_alloc, enough padding to ensure can malloc request on success */
++#define SYS_ALLOC_PADDING (TOP_FOOT_SIZE + MALLOC_ALIGNMENT)
++
++#define is_page_aligned(S)\
++ (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0)
++#define is_granularity_aligned(S)\
++ (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0)
++
++/* True if segment S holds address A */
++#define segment_holds(S, A)\
++ ((char*)(A) >= S->base && (char*)(A) < S->base + S->size)
++
++/* Return segment holding given address */
++static msegmentptr segment_holding(mstate m, char* addr) {
++ msegmentptr sp = &m->seg;
++ for (;;) {
++ if (addr >= sp->base && addr < sp->base + sp->size)
++ return sp;
++ if ((sp = sp->next) == 0)
++ return 0;
++ }
++}
++
++/* Return true if segment contains a segment link */
++static int has_segment_link(mstate m, msegmentptr ss) {
++ msegmentptr sp = &m->seg;
++ for (;;) {
++ if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size)
++ return 1;
++ if ((sp = sp->next) == 0)
++ return 0;
++ }
++}
++
++#ifndef MORECORE_CANNOT_TRIM
++#define should_trim(M,s) ((s) > (M)->trim_check)
++#else /* MORECORE_CANNOT_TRIM */
++#define should_trim(M,s) (0)
++#endif /* MORECORE_CANNOT_TRIM */
++
++/*
++ TOP_FOOT_SIZE is padding at the end of a segment, including space
++ that may be needed to place segment records and fenceposts when new
++ noncontiguous segments are added.
++*/
++#define TOP_FOOT_SIZE\
++ (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE)
++
++
++/* ------------------------------- Hooks -------------------------------- */
++
++/*
++ PREACTION should be defined to return 0 on success, and nonzero on
++ failure. If you are not using locking, you can redefine these to do
++ anything you like.
++*/
++
++#if USE_LOCKS
++#define PREACTION(M) ((use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0)
++#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); }
++#else /* USE_LOCKS */
++
++#ifndef PREACTION
++#define PREACTION(M) (0)
++#endif /* PREACTION */
++
++#ifndef POSTACTION
++#define POSTACTION(M)
++#endif /* POSTACTION */
++
++#endif /* USE_LOCKS */
++
++/*
++ CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses.
++ USAGE_ERROR_ACTION is triggered on detected bad frees and
++ reallocs. The argument p is an address that might have triggered the
++ fault. It is ignored by the two predefined actions, but might be
++ useful in custom actions that try to help diagnose errors.
++*/
++
++#if PROCEED_ON_ERROR
++
++/* A count of the number of corruption errors causing resets */
++int malloc_corruption_error_count;
++
++/* default corruption action */
++static void reset_on_error(mstate m);
++
++#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m)
++#define USAGE_ERROR_ACTION(m, p)
++
++#else /* PROCEED_ON_ERROR */
++
++#ifndef CORRUPTION_ERROR_ACTION
++#define CORRUPTION_ERROR_ACTION(m) ABORT
++#endif /* CORRUPTION_ERROR_ACTION */
++
++#ifndef USAGE_ERROR_ACTION
++#define USAGE_ERROR_ACTION(m,p) ABORT
++#endif /* USAGE_ERROR_ACTION */
++
++#endif /* PROCEED_ON_ERROR */
++
++
++/* -------------------------- Debugging setup ---------------------------- */
++
++#if ! DEBUG
++
++#define check_free_chunk(M,P)
++#define check_inuse_chunk(M,P)
++#define check_malloced_chunk(M,P,N)
++#define check_mmapped_chunk(M,P)
++#define check_malloc_state(M)
++#define check_top_chunk(M,P)
++
++#else /* DEBUG */
++#define check_free_chunk(M,P) do_check_free_chunk(M,P)
++#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P)
++#define check_top_chunk(M,P) do_check_top_chunk(M,P)
++#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N)
++#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P)
++#define check_malloc_state(M) do_check_malloc_state(M)
++
++static void do_check_any_chunk(mstate m, mchunkptr p);
++static void do_check_top_chunk(mstate m, mchunkptr p);
++static void do_check_mmapped_chunk(mstate m, mchunkptr p);
++static void do_check_inuse_chunk(mstate m, mchunkptr p);
++static void do_check_free_chunk(mstate m, mchunkptr p);
++static void do_check_malloced_chunk(mstate m, void* mem, size_t s);
++static void do_check_tree(mstate m, tchunkptr t);
++static void do_check_treebin(mstate m, bindex_t i);
++static void do_check_smallbin(mstate m, bindex_t i);
++static void do_check_malloc_state(mstate m);
++static int bin_find(mstate m, mchunkptr x);
++static size_t traverse_and_check(mstate m);
++#endif /* DEBUG */
++
++/* ---------------------------- Indexing Bins ---------------------------- */
++
++#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS)
++#define small_index(s) (bindex_t)((s) >> SMALLBIN_SHIFT)
++#define small_index2size(i) ((i) << SMALLBIN_SHIFT)
++#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE))
++
++/* addressing by index. See above about smallbin repositioning */
++/* BEGIN android-changed: strict aliasing change: char* cast to void* */
++#define smallbin_at(M, i) ((sbinptr)((void*)&((M)->smallbins[(i)<<1])))
++/* END android-changed */
++#define treebin_at(M,i) (&((M)->treebins[i]))
++
++/* assign tree index for size S to variable I. Use x86 asm if possible */
++#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
++#define compute_tree_index(S, I)\
++{\
++ unsigned int X = S >> TREEBIN_SHIFT;\
++ if (X == 0)\
++ I = 0;\
++ else if (X > 0xFFFF)\
++ I = NTREEBINS-1;\
++ else {\
++ unsigned int K = (unsigned) sizeof(X)*__CHAR_BIT__ - 1 - (unsigned) __builtin_clz(X); \
++ I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
++ }\
++}
++
++#elif defined (__INTEL_COMPILER)
++#define compute_tree_index(S, I)\
++{\
++ size_t X = S >> TREEBIN_SHIFT;\
++ if (X == 0)\
++ I = 0;\
++ else if (X > 0xFFFF)\
++ I = NTREEBINS-1;\
++ else {\
++ unsigned int K = _bit_scan_reverse (X); \
++ I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
++ }\
++}
++
++#elif defined(_MSC_VER) && _MSC_VER>=1300
++#define compute_tree_index(S, I)\
++{\
++ size_t X = S >> TREEBIN_SHIFT;\
++ if (X == 0)\
++ I = 0;\
++ else if (X > 0xFFFF)\
++ I = NTREEBINS-1;\
++ else {\
++ unsigned int K;\
++ _BitScanReverse((DWORD *) &K, (DWORD) X);\
++ I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\
++ }\
++}
++
++#else /* GNUC */
++#define compute_tree_index(S, I)\
++{\
++ size_t X = S >> TREEBIN_SHIFT;\
++ if (X == 0)\
++ I = 0;\
++ else if (X > 0xFFFF)\
++ I = NTREEBINS-1;\
++ else {\
++ unsigned int Y = (unsigned int)X;\
++ unsigned int N = ((Y - 0x100) >> 16) & 8;\
++ unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\
++ N += K;\
++ N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\
++ K = 14 - N + ((Y <<= K) >> 15);\
++ I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\
++ }\
++}
++#endif /* GNUC */
++
++/* Bit representing maximum resolved size in a treebin at i */
++#define bit_for_tree_index(i) \
++ (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2)
++
++/* Shift placing maximum resolved bit in a treebin at i as sign bit */
++#define leftshift_for_tree_index(i) \
++ ((i == NTREEBINS-1)? 0 : \
++ ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2)))
++
++/* The size of the smallest chunk held in bin with index i */
++#define minsize_for_tree_index(i) \
++ ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \
++ (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1)))
++
++
++/* ------------------------ Operations on bin maps ----------------------- */
++
++/* bit corresponding to given index */
++#define idx2bit(i) ((binmap_t)(1) << (i))
++
++/* Mark/Clear bits with given index */
++#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i))
++#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i))
++#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i))
++
++#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i))
++#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i))
++#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i))
++
++/* isolate the least set bit of a bitmap */
++#define least_bit(x) ((x) & -(x))
++
++/* mask with all bits to left of least bit of x on */
++#define left_bits(x) ((x<<1) | -(x<<1))
++
++/* mask with all bits to left of or equal to least bit of x on */
++#define same_or_left_bits(x) ((x) | -(x))
++
++/* index corresponding to given bit. Use x86 asm if possible */
++
++#if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__))
++#define compute_bit2idx(X, I)\
++{\
++ unsigned int J;\
++ J = __builtin_ctz(X); \
++ I = (bindex_t)J;\
++}
++
++#elif defined (__INTEL_COMPILER)
++#define compute_bit2idx(X, I)\
++{\
++ unsigned int J;\
++ J = _bit_scan_forward (X); \
++ I = (bindex_t)J;\
++}
++
++#elif defined(_MSC_VER) && _MSC_VER>=1300
++#define compute_bit2idx(X, I)\
++{\
++ unsigned int J;\
++ _BitScanForward((DWORD *) &J, X);\
++ I = (bindex_t)J;\
++}
++
++#elif USE_BUILTIN_FFS
++#define compute_bit2idx(X, I) I = ffs(X)-1
++
++#else
++#define compute_bit2idx(X, I)\
++{\
++ unsigned int Y = X - 1;\
++ unsigned int K = Y >> (16-4) & 16;\
++ unsigned int N = K; Y >>= K;\
++ N += K = Y >> (8-3) & 8; Y >>= K;\
++ N += K = Y >> (4-2) & 4; Y >>= K;\
++ N += K = Y >> (2-1) & 2; Y >>= K;\
++ N += K = Y >> (1-0) & 1; Y >>= K;\
++ I = (bindex_t)(N + Y);\
++}
++#endif /* GNUC */
++
++
++/* ----------------------- Runtime Check Support ------------------------- */
++
++/*
++ For security, the main invariant is that malloc/free/etc never
++ writes to a static address other than malloc_state, unless static
++ malloc_state itself has been corrupted, which cannot occur via
++ malloc (because of these checks). In essence this means that we
++ believe all pointers, sizes, maps etc held in malloc_state, but
++ check all of those linked or offsetted from other embedded data
++ structures. These checks are interspersed with main code in a way
++ that tends to minimize their run-time cost.
++
++ When FOOTERS is defined, in addition to range checking, we also
++ verify footer fields of inuse chunks, which can be used guarantee
++ that the mstate controlling malloc/free is intact. This is a
++ streamlined version of the approach described by William Robertson
++ et al in "Run-time Detection of Heap-based Overflows" LISA'03
++ http://www.usenix.org/events/lisa03/tech/robertson.html The footer
++ of an inuse chunk holds the xor of its mstate and a random seed,
++ that is checked upon calls to free() and realloc(). This is
++ (probabalistically) unguessable from outside the program, but can be
++ computed by any code successfully malloc'ing any chunk, so does not
++ itself provide protection against code that has already broken
++ security through some other means. Unlike Robertson et al, we
++ always dynamically check addresses of all offset chunks (previous,
++ next, etc). This turns out to be cheaper than relying on hashes.
++*/
++
++#if !INSECURE
++/* Check if address a is at least as high as any from MORECORE or MMAP */
++#define ok_address(M, a) ((char*)(a) >= (M)->least_addr)
++/* Check if address of next chunk n is higher than base chunk p */
++#define ok_next(p, n) ((char*)(p) < (char*)(n))
++/* Check if p has inuse status */
++#define ok_inuse(p) is_inuse(p)
++/* Check if p has its pinuse bit on */
++#define ok_pinuse(p) pinuse(p)
++
++#else /* !INSECURE */
++#define ok_address(M, a) (1)
++#define ok_next(b, n) (1)
++#define ok_inuse(p) (1)
++#define ok_pinuse(p) (1)
++#endif /* !INSECURE */
++
++#if (FOOTERS && !INSECURE)
++/* Check if (alleged) mstate m has expected magic field */
++#define ok_magic(M) ((M)->magic == mparams.magic)
++#else /* (FOOTERS && !INSECURE) */
++#define ok_magic(M) (1)
++#endif /* (FOOTERS && !INSECURE) */
++
++/* In gcc, use __builtin_expect to minimize impact of checks */
++#if !INSECURE
++#if defined(__GNUC__) && __GNUC__ >= 3
++#define RTCHECK(e) __builtin_expect(e, 1)
++#else /* GNUC */
++#define RTCHECK(e) (e)
++#endif /* GNUC */
++#else /* !INSECURE */
++#define RTCHECK(e) (1)
++#endif /* !INSECURE */
++
++/* macros to set up inuse chunks with or without footers */
++
++#if !FOOTERS
++
++#define mark_inuse_foot(M,p,s)
++
++/* Macros for setting head/foot of non-mmapped chunks */
++
++/* Set cinuse bit and pinuse bit of next chunk */
++#define set_inuse(M,p,s)\
++ ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
++ ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
++
++/* Set cinuse and pinuse of this chunk and pinuse of next chunk */
++#define set_inuse_and_pinuse(M,p,s)\
++ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
++ ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT)
++
++/* Set size, cinuse and pinuse bit of this chunk */
++#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
++ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT))
++
++#else /* FOOTERS */
++
++/* Set foot of inuse chunk to be xor of mstate and seed */
++#define mark_inuse_foot(M,p,s)\
++ (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic))
++
++#define get_mstate_for(p)\
++ ((mstate)(((mchunkptr)((char*)(p) +\
++ (chunksize(p))))->prev_foot ^ mparams.magic))
++
++#define set_inuse(M,p,s)\
++ ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\
++ (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \
++ mark_inuse_foot(M,p,s))
++
++#define set_inuse_and_pinuse(M,p,s)\
++ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
++ (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\
++ mark_inuse_foot(M,p,s))
++
++#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\
++ ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\
++ mark_inuse_foot(M, p, s))
++
++#endif /* !FOOTERS */
++
++/* ---------------------------- setting mparams -------------------------- */
++
++#if LOCK_AT_FORK
++static void pre_fork(void) { ACQUIRE_LOCK(&(gm)->mutex); }
++static void post_fork_parent(void) { RELEASE_LOCK(&(gm)->mutex); }
++static void post_fork_child(void) { INITIAL_LOCK(&(gm)->mutex); }
++#endif /* LOCK_AT_FORK */
++
++/* Initialize mparams */
++static int init_mparams(void) {
++ /* BEGIN android-added: move pthread_atfork outside of lock */
++ int first_run = 0;
++ /* END android-added */
++#ifdef NEED_GLOBAL_LOCK_INIT
++ if (malloc_global_mutex_status <= 0)
++ init_malloc_global_mutex();
++#endif
++
++ ACQUIRE_MALLOC_GLOBAL_LOCK();
++ if (mparams.magic == 0) {
++ size_t magic;
++ size_t psize;
++ size_t gsize;
++ /* BEGIN android-added: move pthread_atfork outside of lock */
++ first_run = 1;
++ /* END android-added */
++
++#ifndef WIN32
++ psize = malloc_getpagesize;
++ gsize = ((DEFAULT_GRANULARITY != 0)? DEFAULT_GRANULARITY : psize);
++#else /* WIN32 */
++ {
++ SYSTEM_INFO system_info;
++ GetSystemInfo(&system_info);
++ psize = system_info.dwPageSize;
++ gsize = ((DEFAULT_GRANULARITY != 0)?
++ DEFAULT_GRANULARITY : system_info.dwAllocationGranularity);
++ }
++#endif /* WIN32 */
++
++ /* Sanity-check configuration:
++ size_t must be unsigned and as wide as pointer type.
++ ints must be at least 4 bytes.
++ alignment must be at least 8.
++ Alignment, min chunk size, and page size must all be powers of 2.
++ */
++ if ((sizeof(size_t) != sizeof(char*)) ||
++ (MAX_SIZE_T < MIN_CHUNK_SIZE) ||
++ (sizeof(int) < 4) ||
++ (MALLOC_ALIGNMENT < (size_t)8U) ||
++ ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) ||
++ ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) ||
++ ((gsize & (gsize-SIZE_T_ONE)) != 0) ||
++ ((psize & (psize-SIZE_T_ONE)) != 0))
++ ABORT;
++ mparams.granularity = gsize;
++ mparams.page_size = psize;
++ mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD;
++ mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD;
++#if MORECORE_CONTIGUOUS
++ mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT;
++#else /* MORECORE_CONTIGUOUS */
++ mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT;
++#endif /* MORECORE_CONTIGUOUS */
++
++#if !ONLY_MSPACES
++ /* Set up lock for main malloc area */
++ gm->mflags = mparams.default_mflags;
++ (void)INITIAL_LOCK(&gm->mutex);
++#endif
++ /* BEGIN android-removed: move pthread_atfork outside of lock */
++#if 0 && LOCK_AT_FORK
++ pthread_atfork(&pre_fork, &post_fork_parent, &post_fork_child);
++#endif
++ /* END android-removed */
++
++ {
++#if USE_DEV_RANDOM
++ int fd;
++ unsigned char buf[sizeof(size_t)];
++ /* Try to use /dev/urandom, else fall back on using time */
++ if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 &&
++ read(fd, buf, sizeof(buf)) == sizeof(buf)) {
++ magic = *((size_t *) buf);
++ close(fd);
++ }
++ else
++#endif /* USE_DEV_RANDOM */
++#ifdef WIN32
++ magic = (size_t)(GetTickCount() ^ (size_t)0x55555555U);
++#elif defined(LACKS_TIME_H)
++ magic = (size_t)&magic ^ (size_t)0x55555555U;
++#else
++ magic = (size_t)(time(0) ^ (size_t)0x55555555U);
++#endif
++ magic |= (size_t)8U; /* ensure nonzero */
++ magic &= ~(size_t)7U; /* improve chances of fault for bad values */
++ /* Until memory modes commonly available, use volatile-write */
++ (*(volatile size_t *)(&(mparams.magic))) = magic;
++ }
++ }
++
++ RELEASE_MALLOC_GLOBAL_LOCK();
++ /* BEGIN android-added: move pthread_atfork outside of lock */
++ if (first_run != 0) {
++#if LOCK_AT_FORK
++ pthread_atfork(&pre_fork, &post_fork_parent, &post_fork_child);
++#endif
++ }
++ /* END android-added */
++ return 1;
++}
++
++/* support for mallopt */
++static int change_mparam(int param_number, int value) {
++ size_t val;
++ ensure_initialization();
++ val = (value == -1)? MAX_SIZE_T : (size_t)value;
++ switch(param_number) {
++ case M_TRIM_THRESHOLD:
++ mparams.trim_threshold = val;
++ return 1;
++ case M_GRANULARITY:
++ if (val >= mparams.page_size && ((val & (val-1)) == 0)) {
++ mparams.granularity = val;
++ return 1;
++ }
++ else
++ return 0;
++ case M_MMAP_THRESHOLD:
++ mparams.mmap_threshold = val;
++ return 1;
++ default:
++ return 0;
++ }
++}
++
++#if DEBUG
++/* ------------------------- Debugging Support --------------------------- */
++
++/* Check properties of any chunk, whether free, inuse, mmapped etc */
++static void do_check_any_chunk(mstate m, mchunkptr p) {
++ assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
++ assert(ok_address(m, p));
++}
++
++/* Check properties of top chunk */
++static void do_check_top_chunk(mstate m, mchunkptr p) {
++ msegmentptr sp = segment_holding(m, (char*)p);
++ size_t sz = p->head & ~INUSE_BITS; /* third-lowest bit can be set! */
++ assert(sp != 0);
++ assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
++ assert(ok_address(m, p));
++ assert(sz == m->topsize);
++ assert(sz > 0);
++ assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE);
++ assert(pinuse(p));
++ assert(!pinuse(chunk_plus_offset(p, sz)));
++}
++
++/* Check properties of (inuse) mmapped chunks */
++static void do_check_mmapped_chunk(mstate m, mchunkptr p) {
++ size_t sz = chunksize(p);
++ size_t len = (sz + (p->prev_foot) + MMAP_FOOT_PAD);
++ assert(is_mmapped(p));
++ assert(use_mmap(m));
++ assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD));
++ assert(ok_address(m, p));
++ assert(!is_small(sz));
++ assert((len & (mparams.page_size-SIZE_T_ONE)) == 0);
++ assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD);
++ assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0);
++}
++
++/* Check properties of inuse chunks */
++static void do_check_inuse_chunk(mstate m, mchunkptr p) {
++ do_check_any_chunk(m, p);
++ assert(is_inuse(p));
++ assert(next_pinuse(p));
++ /* If not pinuse and not mmapped, previous chunk has OK offset */
++ assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p);
++ if (is_mmapped(p))
++ do_check_mmapped_chunk(m, p);
++}
++
++/* Check properties of free chunks */
++static void do_check_free_chunk(mstate m, mchunkptr p) {
++ size_t sz = chunksize(p);
++ mchunkptr next = chunk_plus_offset(p, sz);
++ do_check_any_chunk(m, p);
++ assert(!is_inuse(p));
++ assert(!next_pinuse(p));
++ assert (!is_mmapped(p));
++ if (p != m->dv && p != m->top) {
++ if (sz >= MIN_CHUNK_SIZE) {
++ assert((sz & CHUNK_ALIGN_MASK) == 0);
++ assert(is_aligned(chunk2mem(p)));
++ assert(next->prev_foot == sz);
++ assert(pinuse(p));
++ assert (next == m->top || is_inuse(next));
++ assert(p->fd->bk == p);
++ assert(p->bk->fd == p);
++ }
++ else /* markers are always of size SIZE_T_SIZE */
++ assert(sz == SIZE_T_SIZE);
++ }
++}
++
++/* Check properties of malloced chunks at the point they are malloced */
++static void do_check_malloced_chunk(mstate m, void* mem, size_t s) {
++ if (mem != 0) {
++ mchunkptr p = mem2chunk(mem);
++ size_t sz = p->head & ~INUSE_BITS;
++ do_check_inuse_chunk(m, p);
++ assert((sz & CHUNK_ALIGN_MASK) == 0);
++ assert(sz >= MIN_CHUNK_SIZE);
++ assert(sz >= s);
++ /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */
++ assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE));
++ }
++}
++
++/* Check a tree and its subtrees. */
++static void do_check_tree(mstate m, tchunkptr t) {
++ tchunkptr head = 0;
++ tchunkptr u = t;
++ bindex_t tindex = t->index;
++ size_t tsize = chunksize(t);
++ bindex_t idx;
++ compute_tree_index(tsize, idx);
++ assert(tindex == idx);
++ assert(tsize >= MIN_LARGE_SIZE);
++ assert(tsize >= minsize_for_tree_index(idx));
++ assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1))));
++
++ do { /* traverse through chain of same-sized nodes */
++ do_check_any_chunk(m, ((mchunkptr)u));
++ assert(u->index == tindex);
++ assert(chunksize(u) == tsize);
++ assert(!is_inuse(u));
++ assert(!next_pinuse(u));
++ assert(u->fd->bk == u);
++ assert(u->bk->fd == u);
++ if (u->parent == 0) {
++ assert(u->child[0] == 0);
++ assert(u->child[1] == 0);
++ }
++ else {
++ assert(head == 0); /* only one node on chain has parent */
++ head = u;
++ assert(u->parent != u);
++ assert (u->parent->child[0] == u ||
++ u->parent->child[1] == u ||
++ *((tbinptr*)(u->parent)) == u);
++ if (u->child[0] != 0) {
++ assert(u->child[0]->parent == u);
++ assert(u->child[0] != u);
++ do_check_tree(m, u->child[0]);
++ }
++ if (u->child[1] != 0) {
++ assert(u->child[1]->parent == u);
++ assert(u->child[1] != u);
++ do_check_tree(m, u->child[1]);
++ }
++ if (u->child[0] != 0 && u->child[1] != 0) {
++ assert(chunksize(u->child[0]) < chunksize(u->child[1]));
++ }
++ }
++ u = u->fd;
++ } while (u != t);
++ assert(head != 0);
++}
++
++/* Check all the chunks in a treebin. */
++static void do_check_treebin(mstate m, bindex_t i) {
++ tbinptr* tb = treebin_at(m, i);
++ tchunkptr t = *tb;
++ int empty = (m->treemap & (1U << i)) == 0;
++ if (t == 0)
++ assert(empty);
++ if (!empty)
++ do_check_tree(m, t);
++}
++
++/* Check all the chunks in a smallbin. */
++static void do_check_smallbin(mstate m, bindex_t i) {
++ sbinptr b = smallbin_at(m, i);
++ mchunkptr p = b->bk;
++ unsigned int empty = (m->smallmap & (1U << i)) == 0;
++ if (p == b)
++ assert(empty);
++ if (!empty) {
++ for (; p != b; p = p->bk) {
++ size_t size = chunksize(p);
++ mchunkptr q;
++ /* each chunk claims to be free */
++ do_check_free_chunk(m, p);
++ /* chunk belongs in bin */
++ assert(small_index(size) == i);
++ assert(p->bk == b || chunksize(p->bk) == chunksize(p));
++ /* chunk is followed by an inuse chunk */
++ q = next_chunk(p);
++ if (q->head != FENCEPOST_HEAD)
++ do_check_inuse_chunk(m, q);
++ }
++ }
++}
++
++/* Find x in a bin. Used in other check functions. */
++static int bin_find(mstate m, mchunkptr x) {
++ size_t size = chunksize(x);
++ if (is_small(size)) {
++ bindex_t sidx = small_index(size);
++ sbinptr b = smallbin_at(m, sidx);
++ if (smallmap_is_marked(m, sidx)) {
++ mchunkptr p = b;
++ do {
++ if (p == x)
++ return 1;
++ } while ((p = p->fd) != b);
++ }
++ }
++ else {
++ bindex_t tidx;
++ compute_tree_index(size, tidx);
++ if (treemap_is_marked(m, tidx)) {
++ tchunkptr t = *treebin_at(m, tidx);
++ size_t sizebits = size << leftshift_for_tree_index(tidx);
++ while (t != 0 && chunksize(t) != size) {
++ t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
++ sizebits <<= 1;
++ }
++ if (t != 0) {
++ tchunkptr u = t;
++ do {
++ if (u == (tchunkptr)x)
++ return 1;
++ } while ((u = u->fd) != t);
++ }
++ }
++ }
++ return 0;
++}
++
++/* Traverse each chunk and check it; return total */
++static size_t traverse_and_check(mstate m) {
++ size_t sum = 0;
++ if (is_initialized(m)) {
++ msegmentptr s = &m->seg;
++ sum += m->topsize + TOP_FOOT_SIZE;
++ while (s != 0) {
++ mchunkptr q = align_as_chunk(s->base);
++ mchunkptr lastq = 0;
++ assert(pinuse(q));
++ while (segment_holds(s, q) &&
++ q != m->top && q->head != FENCEPOST_HEAD) {
++ sum += chunksize(q);
++ if (is_inuse(q)) {
++ assert(!bin_find(m, q));
++ do_check_inuse_chunk(m, q);
++ }
++ else {
++ assert(q == m->dv || bin_find(m, q));
++ assert(lastq == 0 || is_inuse(lastq)); /* Not 2 consecutive free */
++ do_check_free_chunk(m, q);
++ }
++ lastq = q;
++ q = next_chunk(q);
++ }
++ s = s->next;
++ }
++ }
++ return sum;
++}
++
++
++/* Check all properties of malloc_state. */
++static void do_check_malloc_state(mstate m) {
++ bindex_t i;
++ size_t total;
++ /* check bins */
++ for (i = 0; i < NSMALLBINS; ++i)
++ do_check_smallbin(m, i);
++ for (i = 0; i < NTREEBINS; ++i)
++ do_check_treebin(m, i);
++
++ if (m->dvsize != 0) { /* check dv chunk */
++ do_check_any_chunk(m, m->dv);
++ assert(m->dvsize == chunksize(m->dv));
++ assert(m->dvsize >= MIN_CHUNK_SIZE);
++ assert(bin_find(m, m->dv) == 0);
++ }
++
++ if (m->top != 0) { /* check top chunk */
++ do_check_top_chunk(m, m->top);
++ /*assert(m->topsize == chunksize(m->top)); redundant */
++ assert(m->topsize > 0);
++ assert(bin_find(m, m->top) == 0);
++ }
++
++ total = traverse_and_check(m);
++ assert(total <= m->footprint);
++ assert(m->footprint <= m->max_footprint);
++}
++#endif /* DEBUG */
++
++/* ----------------------------- statistics ------------------------------ */
++
++#if !NO_MALLINFO
++static struct mallinfo internal_mallinfo(mstate m) {
++ struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
++ ensure_initialization();
++ if (!PREACTION(m)) {
++ check_malloc_state(m);
++ if (is_initialized(m)) {
++ size_t nfree = SIZE_T_ONE; /* top always free */
++ size_t mfree = m->topsize + TOP_FOOT_SIZE;
++ size_t sum = mfree;
++ msegmentptr s = &m->seg;
++ while (s != 0) {
++ mchunkptr q = align_as_chunk(s->base);
++ while (segment_holds(s, q) &&
++ q != m->top && q->head != FENCEPOST_HEAD) {
++ size_t sz = chunksize(q);
++ sum += sz;
++ if (!is_inuse(q)) {
++ mfree += sz;
++ ++nfree;
++ }
++ q = next_chunk(q);
++ }
++ s = s->next;
++ }
++
++ nm.arena = sum;
++ nm.ordblks = nfree;
++ nm.hblkhd = m->footprint - sum;
++ /* BEGIN android-changed: usmblks set to footprint from max_footprint */
++ nm.usmblks = m->footprint;
++ /* END android-changed */
++ nm.uordblks = m->footprint - mfree;
++ nm.fordblks = mfree;
++ nm.keepcost = m->topsize;
++ }
++
++ POSTACTION(m);
++ }
++ return nm;
++}
++#endif /* !NO_MALLINFO */
++
++#if !NO_MALLOC_STATS
++static void internal_malloc_stats(mstate m) {
++ ensure_initialization();
++ if (!PREACTION(m)) {
++ size_t maxfp = 0;
++ size_t fp = 0;
++ size_t used = 0;
++ check_malloc_state(m);
++ if (is_initialized(m)) {
++ msegmentptr s = &m->seg;
++ maxfp = m->max_footprint;
++ fp = m->footprint;
++ used = fp - (m->topsize + TOP_FOOT_SIZE);
++
++ while (s != 0) {
++ mchunkptr q = align_as_chunk(s->base);
++ while (segment_holds(s, q) &&
++ q != m->top && q->head != FENCEPOST_HEAD) {
++ if (!is_inuse(q))
++ used -= chunksize(q);
++ q = next_chunk(q);
++ }
++ s = s->next;
++ }
++ }
++ POSTACTION(m); /* drop lock */
++ fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp));
++ fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp));
++ fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used));
++ }
++}
++#endif /* NO_MALLOC_STATS */
++
++/* ----------------------- Operations on smallbins ----------------------- */
++
++/*
++ Various forms of linking and unlinking are defined as macros. Even
++ the ones for trees, which are very long but have very short typical
++ paths. This is ugly but reduces reliance on inlining support of
++ compilers.
++*/
++
++/* Link a free chunk into a smallbin */
++#define insert_small_chunk(M, P, S) {\
++ bindex_t I = small_index(S);\
++ mchunkptr B = smallbin_at(M, I);\
++ mchunkptr F = B;\
++ assert(S >= MIN_CHUNK_SIZE);\
++ if (!smallmap_is_marked(M, I))\
++ mark_smallmap(M, I);\
++ else if (RTCHECK(ok_address(M, B->fd)))\
++ F = B->fd;\
++ else {\
++ CORRUPTION_ERROR_ACTION(M);\
++ }\
++ B->fd = P;\
++ F->bk = P;\
++ P->fd = F;\
++ P->bk = B;\
++}
++
++/* Unlink a chunk from a smallbin */
++#define unlink_small_chunk(M, P, S) {\
++ mchunkptr F = P->fd;\
++ mchunkptr B = P->bk;\
++ bindex_t I = small_index(S);\
++ assert(P != B);\
++ assert(P != F);\
++ assert(chunksize(P) == small_index2size(I));\
++ if (RTCHECK(F == smallbin_at(M,I) || (ok_address(M, F) && F->bk == P))) { \
++ if (B == F) {\
++ clear_smallmap(M, I);\
++ }\
++ else if (RTCHECK(B == smallbin_at(M,I) ||\
++ (ok_address(M, B) && B->fd == P))) {\
++ F->bk = B;\
++ B->fd = F;\
++ }\
++ else {\
++ CORRUPTION_ERROR_ACTION(M);\
++ }\
++ }\
++ else {\
++ CORRUPTION_ERROR_ACTION(M);\
++ }\
++}
++
++/* Unlink the first chunk from a smallbin */
++#define unlink_first_small_chunk(M, B, P, I) {\
++ mchunkptr F = P->fd;\
++ assert(P != B);\
++ assert(P != F);\
++ assert(chunksize(P) == small_index2size(I));\
++ if (B == F) {\
++ clear_smallmap(M, I);\
++ }\
++ else if (RTCHECK(ok_address(M, F) && F->bk == P)) {\
++ F->bk = B;\
++ B->fd = F;\
++ }\
++ else {\
++ CORRUPTION_ERROR_ACTION(M);\
++ }\
++}
++
++/* Replace dv node, binning the old one */
++/* Used only when dvsize known to be small */
++#define replace_dv(M, P, S) {\
++ size_t DVS = M->dvsize;\
++ assert(is_small(DVS));\
++ if (DVS != 0) {\
++ mchunkptr DV = M->dv;\
++ insert_small_chunk(M, DV, DVS);\
++ }\
++ M->dvsize = S;\
++ M->dv = P;\
++}
++
++/* ------------------------- Operations on trees ------------------------- */
++
++/* Insert chunk into tree */
++#define insert_large_chunk(M, X, S) {\
++ tbinptr* H;\
++ bindex_t I;\
++ compute_tree_index(S, I);\
++ H = treebin_at(M, I);\
++ X->index = I;\
++ X->child[0] = X->child[1] = 0;\
++ if (!treemap_is_marked(M, I)) {\
++ mark_treemap(M, I);\
++ *H = X;\
++ X->parent = (tchunkptr)H;\
++ X->fd = X->bk = X;\
++ }\
++ else {\
++ tchunkptr T = *H;\
++ size_t K = S << leftshift_for_tree_index(I);\
++ for (;;) {\
++ if (chunksize(T) != S) {\
++ tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\
++ K <<= 1;\
++ if (*C != 0)\
++ T = *C;\
++ else if (RTCHECK(ok_address(M, C))) {\
++ *C = X;\
++ X->parent = T;\
++ X->fd = X->bk = X;\
++ break;\
++ }\
++ else {\
++ CORRUPTION_ERROR_ACTION(M);\
++ break;\
++ }\
++ }\
++ else {\
++ tchunkptr F = T->fd;\
++ if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\
++ T->fd = F->bk = X;\
++ X->fd = F;\
++ X->bk = T;\
++ X->parent = 0;\
++ break;\
++ }\
++ else {\
++ CORRUPTION_ERROR_ACTION(M);\
++ break;\
++ }\
++ }\
++ }\
++ }\
++}
++
++/*
++ Unlink steps:
++
++ 1. If x is a chained node, unlink it from its same-sized fd/bk links
++ and choose its bk node as its replacement.
++ 2. If x was the last node of its size, but not a leaf node, it must
++ be replaced with a leaf node (not merely one with an open left or
++ right), to make sure that lefts and rights of descendents
++ correspond properly to bit masks. We use the rightmost descendent
++ of x. We could use any other leaf, but this is easy to locate and
++ tends to counteract removal of leftmosts elsewhere, and so keeps
++ paths shorter than minimally guaranteed. This doesn't loop much
++ because on average a node in a tree is near the bottom.
++ 3. If x is the base of a chain (i.e., has parent links) relink
++ x's parent and children to x's replacement (or null if none).
++*/
++
++#define unlink_large_chunk(M, X) {\
++ tchunkptr XP = X->parent;\
++ tchunkptr R;\
++ if (X->bk != X) {\
++ tchunkptr F = X->fd;\
++ R = X->bk;\
++ if (RTCHECK(ok_address(M, F) && F->bk == X && R->fd == X)) {\
++ F->bk = R;\
++ R->fd = F;\
++ }\
++ else {\
++ CORRUPTION_ERROR_ACTION(M);\
++ }\
++ }\
++ else {\
++ tchunkptr* RP;\
++ if (((R = *(RP = &(X->child[1]))) != 0) ||\
++ ((R = *(RP = &(X->child[0]))) != 0)) {\
++ tchunkptr* CP;\
++ while ((*(CP = &(R->child[1])) != 0) ||\
++ (*(CP = &(R->child[0])) != 0)) {\
++ R = *(RP = CP);\
++ }\
++ if (RTCHECK(ok_address(M, RP)))\
++ *RP = 0;\
++ else {\
++ CORRUPTION_ERROR_ACTION(M);\
++ }\
++ }\
++ }\
++ if (XP != 0) {\
++ tbinptr* H = treebin_at(M, X->index);\
++ if (X == *H) {\
++ if ((*H = R) == 0) \
++ clear_treemap(M, X->index);\
++ }\
++ else if (RTCHECK(ok_address(M, XP))) {\
++ if (XP->child[0] == X) \
++ XP->child[0] = R;\
++ else \
++ XP->child[1] = R;\
++ }\
++ else\
++ CORRUPTION_ERROR_ACTION(M);\
++ if (R != 0) {\
++ if (RTCHECK(ok_address(M, R))) {\
++ tchunkptr C0, C1;\
++ R->parent = XP;\
++ if ((C0 = X->child[0]) != 0) {\
++ if (RTCHECK(ok_address(M, C0))) {\
++ R->child[0] = C0;\
++ C0->parent = R;\
++ }\
++ else\
++ CORRUPTION_ERROR_ACTION(M);\
++ }\
++ if ((C1 = X->child[1]) != 0) {\
++ if (RTCHECK(ok_address(M, C1))) {\
++ R->child[1] = C1;\
++ C1->parent = R;\
++ }\
++ else\
++ CORRUPTION_ERROR_ACTION(M);\
++ }\
++ }\
++ else\
++ CORRUPTION_ERROR_ACTION(M);\
++ }\
++ }\
++}
++
++/* Relays to large vs small bin operations */
++
++#define insert_chunk(M, P, S)\
++ if (is_small(S)) insert_small_chunk(M, P, S)\
++ else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); }
++
++#define unlink_chunk(M, P, S)\
++ if (is_small(S)) unlink_small_chunk(M, P, S)\
++ else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); }
++
++
++/* Relays to internal calls to malloc/free from realloc, memalign etc */
++
++#if ONLY_MSPACES
++#define internal_malloc(m, b) mspace_malloc(m, b)
++#define internal_free(m, mem) mspace_free(m,mem);
++#else /* ONLY_MSPACES */
++#if MSPACES
++#define internal_malloc(m, b)\
++ ((m == gm)? dlmalloc(b) : mspace_malloc(m, b))
++#define internal_free(m, mem)\
++ if (m == gm) dlfree(mem); else mspace_free(m,mem);
++#else /* MSPACES */
++#define internal_malloc(m, b) dlmalloc(b)
++#define internal_free(m, mem) dlfree(mem)
++#endif /* MSPACES */
++#endif /* ONLY_MSPACES */
++
++/* ----------------------- Direct-mmapping chunks ----------------------- */
++
++/*
++ Directly mmapped chunks are set up with an offset to the start of
++ the mmapped region stored in the prev_foot field of the chunk. This
++ allows reconstruction of the required argument to MUNMAP when freed,
++ and also allows adjustment of the returned chunk to meet alignment
++ requirements (especially in memalign).
++*/
++
++/* Malloc using mmap */
++static void* mmap_alloc(mstate m, size_t nb) {
++ size_t mmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
++ if (m->footprint_limit != 0) {
++ size_t fp = m->footprint + mmsize;
++ if (fp <= m->footprint || fp > m->footprint_limit)
++ return 0;
++ }
++ if (mmsize > nb) { /* Check for wrap around 0 */
++ char* mm = (char*)(CALL_DIRECT_MMAP(mmsize));
++ if (mm != CMFAIL) {
++ size_t offset = align_offset(chunk2mem(mm));
++ size_t psize = mmsize - offset - MMAP_FOOT_PAD;
++ mchunkptr p = (mchunkptr)(mm + offset);
++ p->prev_foot = offset;
++ p->head = psize;
++ mark_inuse_foot(m, p, psize);
++ chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD;
++ chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0;
++
++ if (m->least_addr == 0 || mm < m->least_addr)
++ m->least_addr = mm;
++ if ((m->footprint += mmsize) > m->max_footprint)
++ m->max_footprint = m->footprint;
++ assert(is_aligned(chunk2mem(p)));
++ check_mmapped_chunk(m, p);
++ return chunk2mem(p);
++ }
++ }
++ return 0;
++}
++
++/* Realloc using mmap */
++static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb, int flags) {
++ size_t oldsize = chunksize(oldp);
++ (void)flags; /* placate people compiling -Wunused */
++ if (is_small(nb)) /* Can't shrink mmap regions below small size */
++ return 0;
++ /* Keep old chunk if big enough but not too big */
++ if (oldsize >= nb + SIZE_T_SIZE &&
++ (oldsize - nb) <= (mparams.granularity << 1))
++ return oldp;
++ else {
++ size_t offset = oldp->prev_foot;
++ size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
++ size_t newmmsize = mmap_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
++ char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
++ oldmmsize, newmmsize, flags);
++ if (cp != CMFAIL) {
++ mchunkptr newp = (mchunkptr)(cp + offset);
++ size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
++ newp->head = psize;
++ mark_inuse_foot(m, newp, psize);
++ chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
++ chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
++
++ if (cp < m->least_addr)
++ m->least_addr = cp;
++ if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
++ m->max_footprint = m->footprint;
++ check_mmapped_chunk(m, newp);
++ return newp;
++ }
++ }
++ return 0;
++}
++
++
++/* -------------------------- mspace management -------------------------- */
++
++/* Initialize top chunk and its size */
++static void init_top(mstate m, mchunkptr p, size_t psize) {
++ /* Ensure alignment */
++ size_t offset = align_offset(chunk2mem(p));
++ p = (mchunkptr)((char*)p + offset);
++ psize -= offset;
++
++ m->top = p;
++ m->topsize = psize;
++ p->head = psize | PINUSE_BIT;
++ /* set size of fake trailing chunk holding overhead space only once */
++ chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE;
++ m->trim_check = mparams.trim_threshold; /* reset on each update */
++}
++
++/* Initialize bins for a new mstate that is otherwise zeroed out */
++static void init_bins(mstate m) {
++ /* Establish circular links for smallbins */
++ bindex_t i;
++ for (i = 0; i < NSMALLBINS; ++i) {
++ sbinptr bin = smallbin_at(m,i);
++ bin->fd = bin->bk = bin;
++ }
++}
++
++#if PROCEED_ON_ERROR
++
++/* default corruption action */
++static void reset_on_error(mstate m) {
++ int i;
++ ++malloc_corruption_error_count;
++ /* Reinitialize fields to forget about all memory */
++ m->smallmap = m->treemap = 0;
++ m->dvsize = m->topsize = 0;
++ m->seg.base = 0;
++ m->seg.size = 0;
++ m->seg.next = 0;
++ m->top = m->dv = 0;
++ for (i = 0; i < NTREEBINS; ++i)
++ *treebin_at(m, i) = 0;
++ init_bins(m);
++}
++#endif /* PROCEED_ON_ERROR */
++
++/* Allocate chunk and prepend remainder with chunk in successor base. */
++static void* prepend_alloc(mstate m, char* newbase, char* oldbase,
++ size_t nb) {
++ mchunkptr p = align_as_chunk(newbase);
++ mchunkptr oldfirst = align_as_chunk(oldbase);
++ size_t psize = (char*)oldfirst - (char*)p;
++ mchunkptr q = chunk_plus_offset(p, nb);
++ size_t qsize = psize - nb;
++ set_size_and_pinuse_of_inuse_chunk(m, p, nb);
++
++ assert((char*)oldfirst > (char*)q);
++ assert(pinuse(oldfirst));
++ assert(qsize >= MIN_CHUNK_SIZE);
++
++ /* consolidate remainder with first chunk of old base */
++ if (oldfirst == m->top) {
++ size_t tsize = m->topsize += qsize;
++ m->top = q;
++ q->head = tsize | PINUSE_BIT;
++ check_top_chunk(m, q);
++ }
++ else if (oldfirst == m->dv) {
++ size_t dsize = m->dvsize += qsize;
++ m->dv = q;
++ set_size_and_pinuse_of_free_chunk(q, dsize);
++ }
++ else {
++ if (!is_inuse(oldfirst)) {
++ size_t nsize = chunksize(oldfirst);
++ unlink_chunk(m, oldfirst, nsize);
++ oldfirst = chunk_plus_offset(oldfirst, nsize);
++ qsize += nsize;
++ }
++ set_free_with_pinuse(q, qsize, oldfirst);
++ insert_chunk(m, q, qsize);
++ check_free_chunk(m, q);
++ }
++
++ check_malloced_chunk(m, chunk2mem(p), nb);
++ return chunk2mem(p);
++}
++
++/* Add a segment to hold a new noncontiguous region */
++static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) {
++ /* Determine locations and sizes of segment, fenceposts, old top */
++ char* old_top = (char*)m->top;
++ msegmentptr oldsp = segment_holding(m, old_top);
++ char* old_end = oldsp->base + oldsp->size;
++ size_t ssize = pad_request(sizeof(struct malloc_segment));
++ char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
++ size_t offset = align_offset(chunk2mem(rawsp));
++ char* asp = rawsp + offset;
++ char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp;
++ mchunkptr sp = (mchunkptr)csp;
++ msegmentptr ss = (msegmentptr)(chunk2mem(sp));
++ mchunkptr tnext = chunk_plus_offset(sp, ssize);
++ mchunkptr p = tnext;
++ int nfences = 0;
++
++ /* reset top to new space */
++ init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
++
++ /* Set up segment record */
++ assert(is_aligned(ss));
++ set_size_and_pinuse_of_inuse_chunk(m, sp, ssize);
++ *ss = m->seg; /* Push current record */
++ m->seg.base = tbase;
++ m->seg.size = tsize;
++ m->seg.sflags = mmapped;
++ m->seg.next = ss;
++
++ /* Insert trailing fenceposts */
++ for (;;) {
++ mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE);
++ p->head = FENCEPOST_HEAD;
++ ++nfences;
++ if ((char*)(&(nextp->head)) < old_end)
++ p = nextp;
++ else
++ break;
++ }
++ assert(nfences >= 2);
++
++ /* Insert the rest of old top into a bin as an ordinary free chunk */
++ if (csp != old_top) {
++ mchunkptr q = (mchunkptr)old_top;
++ size_t psize = csp - old_top;
++ mchunkptr tn = chunk_plus_offset(q, psize);
++ set_free_with_pinuse(q, psize, tn);
++ insert_chunk(m, q, psize);
++ }
++
++ check_top_chunk(m, m->top);
++}
++
++/* -------------------------- System allocation -------------------------- */
++
++/* Get memory from system using MORECORE or MMAP */
++static void* sys_alloc(mstate m, size_t nb) {
++ char* tbase = CMFAIL;
++ size_t tsize = 0;
++ flag_t mmap_flag = 0;
++ size_t asize; /* allocation size */
++
++ ensure_initialization();
++
++ /* Directly map large chunks, but only if already initialized */
++ if (use_mmap(m) && nb >= mparams.mmap_threshold && m->topsize != 0) {
++ void* mem = mmap_alloc(m, nb);
++ if (mem != 0)
++ return mem;
++ }
++
++ asize = granularity_align(nb + SYS_ALLOC_PADDING);
++ if (asize <= nb) {
++ /* BEGIN android-added: set errno */
++ MALLOC_FAILURE_ACTION;
++ /* END android-added */
++ return 0; /* wraparound */
++ }
++ if (m->footprint_limit != 0) {
++ size_t fp = m->footprint + asize;
++ if (fp <= m->footprint || fp > m->footprint_limit) {
++ /* BEGIN android-added: set errno */
++ MALLOC_FAILURE_ACTION;
++ /* END android-added */
++ return 0;
++ }
++ }
++
++ /*
++ Try getting memory in any of three ways (in most-preferred to
++ least-preferred order):
++ 1. A call to MORECORE that can normally contiguously extend memory.
++ (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or
++ or main space is mmapped or a previous contiguous call failed)
++ 2. A call to MMAP new space (disabled if not HAVE_MMAP).
++ Note that under the default settings, if MORECORE is unable to
++ fulfill a request, and HAVE_MMAP is true, then mmap is
++ used as a noncontiguous system allocator. This is a useful backup
++ strategy for systems with holes in address spaces -- in this case
++ sbrk cannot contiguously expand the heap, but mmap may be able to
++ find space.
++ 3. A call to MORECORE that cannot usually contiguously extend memory.
++ (disabled if not HAVE_MORECORE)
++
++ In all cases, we need to request enough bytes from system to ensure
++ we can malloc nb bytes upon success, so pad with enough space for
++ top_foot, plus alignment-pad to make sure we don't lose bytes if
++ not on boundary, and round this up to a granularity unit.
++ */
++
++ if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) {
++ char* br = CMFAIL;
++ size_t ssize = asize; /* sbrk call size */
++ msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top);
++ ACQUIRE_MALLOC_GLOBAL_LOCK();
++
++ if (ss == 0) { /* First time through or recovery */
++ char* base = (char*)CALL_MORECORE(0);
++ if (base != CMFAIL) {
++ size_t fp;
++ /* Adjust to end on a page boundary */
++ if (!is_page_aligned(base))
++ ssize += (page_align((size_t)base) - (size_t)base);
++ fp = m->footprint + ssize; /* recheck limits */
++ if (ssize > nb && ssize < HALF_MAX_SIZE_T &&
++ (m->footprint_limit == 0 ||
++ (fp > m->footprint && fp <= m->footprint_limit)) &&
++ (br = (char*)(CALL_MORECORE(ssize))) == base) {
++ tbase = base;
++ tsize = ssize;
++ }
++ }
++ }
++ else {
++ /* Subtract out existing available top space from MORECORE request. */
++ ssize = granularity_align(nb - m->topsize + SYS_ALLOC_PADDING);
++ /* Use mem here only if it did continuously extend old space */
++ if (ssize < HALF_MAX_SIZE_T &&
++ (br = (char*)(CALL_MORECORE(ssize))) == ss->base+ss->size) {
++ tbase = br;
++ tsize = ssize;
++ }
++ }
++
++ if (tbase == CMFAIL) { /* Cope with partial failure */
++ if (br != CMFAIL) { /* Try to use/extend the space we did get */
++ if (ssize < HALF_MAX_SIZE_T &&
++ ssize < nb + SYS_ALLOC_PADDING) {
++ size_t esize = granularity_align(nb + SYS_ALLOC_PADDING - ssize);
++ if (esize < HALF_MAX_SIZE_T) {
++ char* end = (char*)CALL_MORECORE(esize);
++ if (end != CMFAIL)
++ ssize += esize;
++ else { /* Can't use; try to release */
++ (void) CALL_MORECORE(-ssize);
++ br = CMFAIL;
++ }
++ }
++ }
++ }
++ if (br != CMFAIL) { /* Use the space we did get */
++ tbase = br;
++ tsize = ssize;
++ }
++ else
++ disable_contiguous(m); /* Don't try contiguous path in the future */
++ }
++
++ RELEASE_MALLOC_GLOBAL_LOCK();
++ }
++
++ if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */
++ char* mp = (char*)(CALL_MMAP(asize));
++ if (mp != CMFAIL) {
++ tbase = mp;
++ tsize = asize;
++ mmap_flag = USE_MMAP_BIT;
++ }
++ }
++
++ if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */
++ if (asize < HALF_MAX_SIZE_T) {
++ char* br = CMFAIL;
++ char* end = CMFAIL;
++ ACQUIRE_MALLOC_GLOBAL_LOCK();
++ br = (char*)(CALL_MORECORE(asize));
++ end = (char*)(CALL_MORECORE(0));
++ RELEASE_MALLOC_GLOBAL_LOCK();
++ if (br != CMFAIL && end != CMFAIL && br < end) {
++ size_t ssize = end - br;
++ if (ssize > nb + TOP_FOOT_SIZE) {
++ tbase = br;
++ tsize = ssize;
++ }
++ }
++ }
++ }
++
++ if (tbase != CMFAIL) {
++
++ if ((m->footprint += tsize) > m->max_footprint)
++ m->max_footprint = m->footprint;
++
++ if (!is_initialized(m)) { /* first-time initialization */
++ if (m->least_addr == 0 || tbase < m->least_addr)
++ m->least_addr = tbase;
++ m->seg.base = tbase;
++ m->seg.size = tsize;
++ m->seg.sflags = mmap_flag;
++ m->magic = mparams.magic;
++ m->release_checks = MAX_RELEASE_CHECK_RATE;
++ init_bins(m);
++#if !ONLY_MSPACES
++ if (is_global(m))
++ init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE);
++ else
++#endif
++ {
++ /* Offset top by embedded malloc_state */
++ mchunkptr mn = next_chunk(mem2chunk(m));
++ init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE);
++ }
++ }
++
++ else {
++ /* Try to merge with an existing segment */
++ msegmentptr sp = &m->seg;
++ /* Only consider most recent segment if traversal suppressed */
++ while (sp != 0 && tbase != sp->base + sp->size)
++ sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
++ if (sp != 0 &&
++ !is_extern_segment(sp) &&
++ (sp->sflags & USE_MMAP_BIT) == mmap_flag &&
++ segment_holds(sp, m->top)) { /* append */
++ sp->size += tsize;
++ init_top(m, m->top, m->topsize + tsize);
++ }
++ else {
++ if (tbase < m->least_addr)
++ m->least_addr = tbase;
++ sp = &m->seg;
++ while (sp != 0 && sp->base != tbase + tsize)
++ sp = (NO_SEGMENT_TRAVERSAL) ? 0 : sp->next;
++ if (sp != 0 &&
++ !is_extern_segment(sp) &&
++ (sp->sflags & USE_MMAP_BIT) == mmap_flag) {
++ char* oldbase = sp->base;
++ sp->base = tbase;
++ sp->size += tsize;
++ return prepend_alloc(m, tbase, oldbase, nb);
++ }
++ else
++ add_segment(m, tbase, tsize, mmap_flag);
++ }
++ }
++
++ if (nb < m->topsize) { /* Allocate from new or extended top space */
++ size_t rsize = m->topsize -= nb;
++ mchunkptr p = m->top;
++ mchunkptr r = m->top = chunk_plus_offset(p, nb);
++ r->head = rsize | PINUSE_BIT;
++ set_size_and_pinuse_of_inuse_chunk(m, p, nb);
++ check_top_chunk(m, m->top);
++ check_malloced_chunk(m, chunk2mem(p), nb);
++ return chunk2mem(p);
++ }
++ }
++
++ MALLOC_FAILURE_ACTION;
++ return 0;
++}
++
++/* ----------------------- system deallocation -------------------------- */
++
++/* Unmap and unlink any mmapped segments that don't contain used chunks */
++static size_t release_unused_segments(mstate m) {
++ size_t released = 0;
++ int nsegs = 0;
++ msegmentptr pred = &m->seg;
++ msegmentptr sp = pred->next;
++ while (sp != 0) {
++ char* base = sp->base;
++ size_t size = sp->size;
++ msegmentptr next = sp->next;
++ ++nsegs;
++ if (is_mmapped_segment(sp) && !is_extern_segment(sp)) {
++ mchunkptr p = align_as_chunk(base);
++ size_t psize = chunksize(p);
++ /* Can unmap if first chunk holds entire segment and not pinned */
++ if (!is_inuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) {
++ tchunkptr tp = (tchunkptr)p;
++ assert(segment_holds(sp, (char*)sp));
++ if (p == m->dv) {
++ m->dv = 0;
++ m->dvsize = 0;
++ }
++ else {
++ unlink_large_chunk(m, tp);
++ }
++ if (CALL_MUNMAP(base, size) == 0) {
++ released += size;
++ m->footprint -= size;
++ /* unlink obsoleted record */
++ sp = pred;
++ sp->next = next;
++ }
++ else { /* back out if cannot unmap */
++ insert_large_chunk(m, tp, psize);
++ }
++ }
++ }
++ if (NO_SEGMENT_TRAVERSAL) /* scan only first segment */
++ break;
++ pred = sp;
++ sp = next;
++ }
++ /* Reset check counter */
++ m->release_checks = (((size_t) nsegs > (size_t) MAX_RELEASE_CHECK_RATE)?
++ (size_t) nsegs : (size_t) MAX_RELEASE_CHECK_RATE);
++ return released;
++}
++
++static int sys_trim(mstate m, size_t pad) {
++ size_t released = 0;
++ ensure_initialization();
++ if (pad < MAX_REQUEST && is_initialized(m)) {
++ pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */
++
++ if (m->topsize > pad) {
++ /* Shrink top space in granularity-size units, keeping at least one */
++ size_t unit = mparams.granularity;
++ size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit -
++ SIZE_T_ONE) * unit;
++ msegmentptr sp = segment_holding(m, (char*)m->top);
++
++ if (!is_extern_segment(sp)) {
++ if (is_mmapped_segment(sp)) {
++ if (HAVE_MMAP &&
++ sp->size >= extra &&
++ !has_segment_link(m, sp)) { /* can't shrink if pinned */
++ size_t newsize = sp->size - extra;
++ (void)newsize; /* placate people compiling -Wunused-variable */
++ /* Prefer mremap, fall back to munmap */
++ if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) ||
++ (CALL_MUNMAP(sp->base + newsize, extra) == 0)) {
++ released = extra;
++ }
++ }
++ }
++ else if (HAVE_MORECORE) {
++ if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */
++ extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit;
++ ACQUIRE_MALLOC_GLOBAL_LOCK();
++ {
++ /* Make sure end of memory is where we last set it. */
++ char* old_br = (char*)(CALL_MORECORE(0));
++ if (old_br == sp->base + sp->size) {
++ char* rel_br = (char*)(CALL_MORECORE(-extra));
++ char* new_br = (char*)(CALL_MORECORE(0));
++ if (rel_br != CMFAIL && new_br < old_br)
++ released = old_br - new_br;
++ }
++ }
++ RELEASE_MALLOC_GLOBAL_LOCK();
++ }
++ }
++
++ if (released != 0) {
++ sp->size -= released;
++ m->footprint -= released;
++ init_top(m, m->top, m->topsize - released);
++ check_top_chunk(m, m->top);
++ }
++ }
++
++ /* Unmap any unused mmapped segments */
++ if (HAVE_MMAP)
++ released += release_unused_segments(m);
++
++ /* On failure, disable autotrim to avoid repeated failed future calls */
++ if (released == 0 && m->topsize > m->trim_check)
++ m->trim_check = MAX_SIZE_T;
++ }
++
++ return (released != 0)? 1 : 0;
++}
++
++/* Consolidate and bin a chunk. Differs from exported versions
++ of free mainly in that the chunk need not be marked as inuse.
++*/
++static void dispose_chunk(mstate m, mchunkptr p, size_t psize) {
++ mchunkptr next = chunk_plus_offset(p, psize);
++ if (!pinuse(p)) {
++ mchunkptr prev;
++ size_t prevsize = p->prev_foot;
++ if (is_mmapped(p)) {
++ psize += prevsize + MMAP_FOOT_PAD;
++ if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
++ m->footprint -= psize;
++ return;
++ }
++ prev = chunk_minus_offset(p, prevsize);
++ psize += prevsize;
++ p = prev;
++ if (RTCHECK(ok_address(m, prev))) { /* consolidate backward */
++ if (p != m->dv) {
++ unlink_chunk(m, p, prevsize);
++ }
++ else if ((next->head & INUSE_BITS) == INUSE_BITS) {
++ m->dvsize = psize;
++ set_free_with_pinuse(p, psize, next);
++ return;
++ }
++ }
++ else {
++ CORRUPTION_ERROR_ACTION(m);
++ return;
++ }
++ }
++ if (RTCHECK(ok_address(m, next))) {
++ if (!cinuse(next)) { /* consolidate forward */
++ if (next == m->top) {
++ size_t tsize = m->topsize += psize;
++ m->top = p;
++ p->head = tsize | PINUSE_BIT;
++ if (p == m->dv) {
++ m->dv = 0;
++ m->dvsize = 0;
++ }
++ return;
++ }
++ else if (next == m->dv) {
++ size_t dsize = m->dvsize += psize;
++ m->dv = p;
++ set_size_and_pinuse_of_free_chunk(p, dsize);
++ return;
++ }
++ else {
++ size_t nsize = chunksize(next);
++ psize += nsize;
++ unlink_chunk(m, next, nsize);
++ set_size_and_pinuse_of_free_chunk(p, psize);
++ if (p == m->dv) {
++ m->dvsize = psize;
++ return;
++ }
++ }
++ }
++ else {
++ set_free_with_pinuse(p, psize, next);
++ }
++ insert_chunk(m, p, psize);
++ }
++ else {
++ CORRUPTION_ERROR_ACTION(m);
++ }
++}
++
++/* ---------------------------- malloc --------------------------- */
++
++/* allocate a large request from the best fitting chunk in a treebin */
++static void* tmalloc_large(mstate m, size_t nb) {
++ tchunkptr v = 0;
++ size_t rsize = -nb; /* Unsigned negation */
++ tchunkptr t;
++ bindex_t idx;
++ compute_tree_index(nb, idx);
++ if ((t = *treebin_at(m, idx)) != 0) {
++ /* Traverse tree for this bin looking for node with size == nb */
++ size_t sizebits = nb << leftshift_for_tree_index(idx);
++ tchunkptr rst = 0; /* The deepest untaken right subtree */
++ for (;;) {
++ tchunkptr rt;
++ size_t trem = chunksize(t) - nb;
++ if (trem < rsize) {
++ v = t;
++ if ((rsize = trem) == 0)
++ break;
++ }
++ rt = t->child[1];
++ t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1];
++ if (rt != 0 && rt != t)
++ rst = rt;
++ if (t == 0) {
++ t = rst; /* set t to least subtree holding sizes > nb */
++ break;
++ }
++ sizebits <<= 1;
++ }
++ }
++ if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */
++ binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap;
++ if (leftbits != 0) {
++ bindex_t i;
++ binmap_t leastbit = least_bit(leftbits);
++ compute_bit2idx(leastbit, i);
++ t = *treebin_at(m, i);
++ }
++ }
++
++ while (t != 0) { /* find smallest of tree or subtree */
++ size_t trem = chunksize(t) - nb;
++ if (trem < rsize) {
++ rsize = trem;
++ v = t;
++ }
++ t = leftmost_child(t);
++ }
++
++ /* If dv is a better fit, return 0 so malloc will use it */
++ if (v != 0 && rsize < (size_t)(m->dvsize - nb)) {
++ if (RTCHECK(ok_address(m, v))) { /* split */
++ mchunkptr r = chunk_plus_offset(v, nb);
++ assert(chunksize(v) == rsize + nb);
++ if (RTCHECK(ok_next(v, r))) {
++ unlink_large_chunk(m, v);
++ if (rsize < MIN_CHUNK_SIZE)
++ set_inuse_and_pinuse(m, v, (rsize + nb));
++ else {
++ set_size_and_pinuse_of_inuse_chunk(m, v, nb);
++ set_size_and_pinuse_of_free_chunk(r, rsize);
++ insert_chunk(m, r, rsize);
++ }
++ return chunk2mem(v);
++ }
++ }
++ CORRUPTION_ERROR_ACTION(m);
++ }
++ return 0;
++}
++
++/* allocate a small request from the best fitting chunk in a treebin */
++static void* tmalloc_small(mstate m, size_t nb) {
++ tchunkptr t, v;
++ size_t rsize;
++ bindex_t i;
++ binmap_t leastbit = least_bit(m->treemap);
++ compute_bit2idx(leastbit, i);
++ v = t = *treebin_at(m, i);
++ rsize = chunksize(t) - nb;
++
++ while ((t = leftmost_child(t)) != 0) {
++ size_t trem = chunksize(t) - nb;
++ if (trem < rsize) {
++ rsize = trem;
++ v = t;
++ }
++ }
++
++ if (RTCHECK(ok_address(m, v))) {
++ mchunkptr r = chunk_plus_offset(v, nb);
++ assert(chunksize(v) == rsize + nb);
++ if (RTCHECK(ok_next(v, r))) {
++ unlink_large_chunk(m, v);
++ if (rsize < MIN_CHUNK_SIZE)
++ set_inuse_and_pinuse(m, v, (rsize + nb));
++ else {
++ set_size_and_pinuse_of_inuse_chunk(m, v, nb);
++ set_size_and_pinuse_of_free_chunk(r, rsize);
++ replace_dv(m, r, rsize);
++ }
++ return chunk2mem(v);
++ }
++ }
++
++ CORRUPTION_ERROR_ACTION(m);
++ return 0;
++}
++
++#if !ONLY_MSPACES
++
++void* dlmalloc(size_t bytes) {
++ /*
++ Basic algorithm:
++ If a small request (< 256 bytes minus per-chunk overhead):
++ 1. If one exists, use a remainderless chunk in associated smallbin.
++ (Remainderless means that there are too few excess bytes to
++ represent as a chunk.)
++ 2. If it is big enough, use the dv chunk, which is normally the
++ chunk adjacent to the one used for the most recent small request.
++ 3. If one exists, split the smallest available chunk in a bin,
++ saving remainder in dv.
++ 4. If it is big enough, use the top chunk.
++ 5. If available, get memory from system and use it
++ Otherwise, for a large request:
++ 1. Find the smallest available binned chunk that fits, and use it
++ if it is better fitting than dv chunk, splitting if necessary.
++ 2. If better fitting than any binned chunk, use the dv chunk.
++ 3. If it is big enough, use the top chunk.
++ 4. If request size >= mmap threshold, try to directly mmap this chunk.
++ 5. If available, get memory from system and use it
++
++ The ugly goto's here ensure that postaction occurs along all paths.
++ */
++
++#if USE_LOCKS
++ ensure_initialization(); /* initialize in sys_alloc if not using locks */
++#endif
++
++ if (!PREACTION(gm)) {
++ void* mem;
++ size_t nb;
++ if (bytes <= MAX_SMALL_REQUEST) {
++ bindex_t idx;
++ binmap_t smallbits;
++ nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
++ idx = small_index(nb);
++ smallbits = gm->smallmap >> idx;
++
++ if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
++ mchunkptr b, p;
++ idx += ~smallbits & 1; /* Uses next bin if idx empty */
++ b = smallbin_at(gm, idx);
++ p = b->fd;
++ assert(chunksize(p) == small_index2size(idx));
++ unlink_first_small_chunk(gm, b, p, idx);
++ set_inuse_and_pinuse(gm, p, small_index2size(idx));
++ mem = chunk2mem(p);
++ check_malloced_chunk(gm, mem, nb);
++ goto postaction;
++ }
++
++ else if (nb > gm->dvsize) {
++ if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
++ mchunkptr b, p, r;
++ size_t rsize;
++ bindex_t i;
++ binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
++ binmap_t leastbit = least_bit(leftbits);
++ compute_bit2idx(leastbit, i);
++ b = smallbin_at(gm, i);
++ p = b->fd;
++ assert(chunksize(p) == small_index2size(i));
++ unlink_first_small_chunk(gm, b, p, i);
++ rsize = small_index2size(i) - nb;
++ /* Fit here cannot be remainderless if 4byte sizes */
++ if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
++ set_inuse_and_pinuse(gm, p, small_index2size(i));
++ else {
++ set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
++ r = chunk_plus_offset(p, nb);
++ set_size_and_pinuse_of_free_chunk(r, rsize);
++ replace_dv(gm, r, rsize);
++ }
++ mem = chunk2mem(p);
++ check_malloced_chunk(gm, mem, nb);
++ goto postaction;
++ }
++
++ else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) {
++ check_malloced_chunk(gm, mem, nb);
++ goto postaction;
++ }
++ }
++ }
++ else if (bytes >= MAX_REQUEST)
++ nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
++ else {
++ nb = pad_request(bytes);
++ if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) {
++ check_malloced_chunk(gm, mem, nb);
++ goto postaction;
++ }
++ }
++
++ if (nb <= gm->dvsize) {
++ size_t rsize = gm->dvsize - nb;
++ mchunkptr p = gm->dv;
++ if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
++ mchunkptr r = gm->dv = chunk_plus_offset(p, nb);
++ gm->dvsize = rsize;
++ set_size_and_pinuse_of_free_chunk(r, rsize);
++ set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
++ }
++ else { /* exhaust dv */
++ size_t dvs = gm->dvsize;
++ gm->dvsize = 0;
++ gm->dv = 0;
++ set_inuse_and_pinuse(gm, p, dvs);
++ }
++ mem = chunk2mem(p);
++ check_malloced_chunk(gm, mem, nb);
++ goto postaction;
++ }
++
++ else if (nb < gm->topsize) { /* Split top */
++ size_t rsize = gm->topsize -= nb;
++ mchunkptr p = gm->top;
++ mchunkptr r = gm->top = chunk_plus_offset(p, nb);
++ r->head = rsize | PINUSE_BIT;
++ set_size_and_pinuse_of_inuse_chunk(gm, p, nb);
++ mem = chunk2mem(p);
++ check_top_chunk(gm, gm->top);
++ check_malloced_chunk(gm, mem, nb);
++ goto postaction;
++ }
++
++ mem = sys_alloc(gm, nb);
++
++ postaction:
++ POSTACTION(gm);
++ return mem;
++ }
++
++ return 0;
++}
++
++/* ---------------------------- free --------------------------- */
++
++void dlfree(void* mem) {
++ /*
++ Consolidate freed chunks with preceeding or succeeding bordering
++ free chunks, if they exist, and then place in a bin. Intermixed
++ with special cases for top, dv, mmapped chunks, and usage errors.
++ */
++
++ if (mem != 0) {
++ mchunkptr p = mem2chunk(mem);
++#if FOOTERS
++ mstate fm = get_mstate_for(p);
++ if (!ok_magic(fm)) {
++ USAGE_ERROR_ACTION(fm, p);
++ return;
++ }
++#else /* FOOTERS */
++#define fm gm
++#endif /* FOOTERS */
++ if (!PREACTION(fm)) {
++ check_inuse_chunk(fm, p);
++ if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) {
++ size_t psize = chunksize(p);
++ mchunkptr next = chunk_plus_offset(p, psize);
++ if (!pinuse(p)) {
++ size_t prevsize = p->prev_foot;
++ if (is_mmapped(p)) {
++ psize += prevsize + MMAP_FOOT_PAD;
++ if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
++ fm->footprint -= psize;
++ goto postaction;
++ }
++ else {
++ mchunkptr prev = chunk_minus_offset(p, prevsize);
++ psize += prevsize;
++ p = prev;
++ if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
++ if (p != fm->dv) {
++ unlink_chunk(fm, p, prevsize);
++ }
++ else if ((next->head & INUSE_BITS) == INUSE_BITS) {
++ fm->dvsize = psize;
++ set_free_with_pinuse(p, psize, next);
++ goto postaction;
++ }
++ }
++ else
++ goto erroraction;
++ }
++ }
++
++ if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
++ if (!cinuse(next)) { /* consolidate forward */
++ if (next == fm->top) {
++ size_t tsize = fm->topsize += psize;
++ fm->top = p;
++ p->head = tsize | PINUSE_BIT;
++ if (p == fm->dv) {
++ fm->dv = 0;
++ fm->dvsize = 0;
++ }
++ if (should_trim(fm, tsize))
++ sys_trim(fm, 0);
++ goto postaction;
++ }
++ else if (next == fm->dv) {
++ size_t dsize = fm->dvsize += psize;
++ fm->dv = p;
++ set_size_and_pinuse_of_free_chunk(p, dsize);
++ goto postaction;
++ }
++ else {
++ size_t nsize = chunksize(next);
++ psize += nsize;
++ unlink_chunk(fm, next, nsize);
++ set_size_and_pinuse_of_free_chunk(p, psize);
++ if (p == fm->dv) {
++ fm->dvsize = psize;
++ goto postaction;
++ }
++ }
++ }
++ else
++ set_free_with_pinuse(p, psize, next);
++
++ if (is_small(psize)) {
++ insert_small_chunk(fm, p, psize);
++ check_free_chunk(fm, p);
++ }
++ else {
++ tchunkptr tp = (tchunkptr)p;
++ insert_large_chunk(fm, tp, psize);
++ check_free_chunk(fm, p);
++ if (--fm->release_checks == 0)
++ release_unused_segments(fm);
++ }
++ goto postaction;
++ }
++ }
++ erroraction:
++ USAGE_ERROR_ACTION(fm, p);
++ postaction:
++ POSTACTION(fm);
++ }
++ }
++#if !FOOTERS
++#undef fm
++#endif /* FOOTERS */
++}
++
++void* dlcalloc(size_t n_elements, size_t elem_size) {
++ void* mem;
++ size_t req = 0;
++ if (n_elements != 0) {
++ req = n_elements * elem_size;
++ if (((n_elements | elem_size) & ~(size_t)0xffff) &&
++ (req / n_elements != elem_size))
++ req = MAX_SIZE_T; /* force downstream failure on overflow */
++ }
++ mem = dlmalloc(req);
++ if (mem != 0) {
++ mchunkptr p = mem2chunk(mem);
++ if (calloc_must_clear(p)) {
++ /* Make sure to clear all of the buffer, not just the requested size. */
++ memset(mem, 0, chunksize(p) - overhead_for(p));
++ }
++ }
++ return mem;
++}
++
++#endif /* !ONLY_MSPACES */
++
++/* ------------ Internal support for realloc, memalign, etc -------------- */
++
++/* Try to realloc; only in-place unless can_move true */
++static mchunkptr try_realloc_chunk(mstate m, mchunkptr p, size_t nb,
++ int can_move) {
++ mchunkptr newp = 0;
++ size_t oldsize = chunksize(p);
++ mchunkptr next = chunk_plus_offset(p, oldsize);
++ if (RTCHECK(ok_address(m, p) && ok_inuse(p) &&
++ ok_next(p, next) && ok_pinuse(next))) {
++ if (is_mmapped(p)) {
++ newp = mmap_resize(m, p, nb, can_move);
++ }
++ else if (oldsize >= nb) { /* already big enough */
++ size_t rsize = oldsize - nb;
++ if (rsize >= MIN_CHUNK_SIZE) { /* split off remainder */
++ mchunkptr r = chunk_plus_offset(p, nb);
++ set_inuse(m, p, nb);
++ set_inuse(m, r, rsize);
++ dispose_chunk(m, r, rsize);
++ }
++ newp = p;
++ }
++ else if (next == m->top) { /* extend into top */
++ if (oldsize + m->topsize > nb) {
++ size_t newsize = oldsize + m->topsize;
++ size_t newtopsize = newsize - nb;
++ mchunkptr newtop = chunk_plus_offset(p, nb);
++ set_inuse(m, p, nb);
++ newtop->head = newtopsize |PINUSE_BIT;
++ m->top = newtop;
++ m->topsize = newtopsize;
++ newp = p;
++ }
++ }
++ else if (next == m->dv) { /* extend into dv */
++ size_t dvs = m->dvsize;
++ if (oldsize + dvs >= nb) {
++ size_t dsize = oldsize + dvs - nb;
++ if (dsize >= MIN_CHUNK_SIZE) {
++ mchunkptr r = chunk_plus_offset(p, nb);
++ mchunkptr n = chunk_plus_offset(r, dsize);
++ set_inuse(m, p, nb);
++ set_size_and_pinuse_of_free_chunk(r, dsize);
++ clear_pinuse(n);
++ m->dvsize = dsize;
++ m->dv = r;
++ }
++ else { /* exhaust dv */
++ size_t newsize = oldsize + dvs;
++ set_inuse(m, p, newsize);
++ m->dvsize = 0;
++ m->dv = 0;
++ }
++ newp = p;
++ }
++ }
++ else if (!cinuse(next)) { /* extend into next free chunk */
++ size_t nextsize = chunksize(next);
++ if (oldsize + nextsize >= nb) {
++ size_t rsize = oldsize + nextsize - nb;
++ unlink_chunk(m, next, nextsize);
++ if (rsize < MIN_CHUNK_SIZE) {
++ size_t newsize = oldsize + nextsize;
++ set_inuse(m, p, newsize);
++ }
++ else {
++ mchunkptr r = chunk_plus_offset(p, nb);
++ set_inuse(m, p, nb);
++ set_inuse(m, r, rsize);
++ dispose_chunk(m, r, rsize);
++ }
++ newp = p;
++ }
++ }
++ }
++ else {
++ USAGE_ERROR_ACTION(m, chunk2mem(p));
++ }
++ return newp;
++}
++
++static void* internal_memalign(mstate m, size_t alignment, size_t bytes) {
++ void* mem = 0;
++ if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */
++ alignment = MIN_CHUNK_SIZE;
++ if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */
++ size_t a = MALLOC_ALIGNMENT << 1;
++ while (a < alignment) a <<= 1;
++ alignment = a;
++ }
++ if (bytes >= MAX_REQUEST - alignment) {
++ if (m != 0) { /* Test isn't needed but avoids compiler warning */
++ MALLOC_FAILURE_ACTION;
++ }
++ }
++ else {
++ size_t nb = request2size(bytes);
++ size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD;
++ mem = internal_malloc(m, req);
++ if (mem != 0) {
++ mchunkptr p = mem2chunk(mem);
++ if (PREACTION(m))
++ return 0;
++ if ((((size_t)(mem)) & (alignment - 1)) != 0) { /* misaligned */
++ /*
++ Find an aligned spot inside chunk. Since we need to give
++ back leading space in a chunk of at least MIN_CHUNK_SIZE, if
++ the first calculation places us at a spot with less than
++ MIN_CHUNK_SIZE leader, we can move to the next aligned spot.
++ We've allocated enough total room so that this is always
++ possible.
++ */
++ char* br = (char*)mem2chunk((size_t)(((size_t)((char*)mem + alignment -
++ SIZE_T_ONE)) &
++ -alignment));
++ char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)?
++ br : br+alignment;
++ mchunkptr newp = (mchunkptr)pos;
++ size_t leadsize = pos - (char*)(p);
++ size_t newsize = chunksize(p) - leadsize;
++
++ if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */
++ newp->prev_foot = p->prev_foot + leadsize;
++ newp->head = newsize;
++ }
++ else { /* Otherwise, give back leader, use the rest */
++ set_inuse(m, newp, newsize);
++ set_inuse(m, p, leadsize);
++ dispose_chunk(m, p, leadsize);
++ }
++ p = newp;
++ }
++
++ /* Give back spare room at the end */
++ if (!is_mmapped(p)) {
++ size_t size = chunksize(p);
++ if (size > nb + MIN_CHUNK_SIZE) {
++ size_t remainder_size = size - nb;
++ mchunkptr remainder = chunk_plus_offset(p, nb);
++ set_inuse(m, p, nb);
++ set_inuse(m, remainder, remainder_size);
++ dispose_chunk(m, remainder, remainder_size);
++ }
++ }
++
++ mem = chunk2mem(p);
++ assert (chunksize(p) >= nb);
++ assert(((size_t)mem & (alignment - 1)) == 0);
++ check_inuse_chunk(m, p);
++ POSTACTION(m);
++ }
++ }
++ return mem;
++}
++
++/*
++ Common support for independent_X routines, handling
++ all of the combinations that can result.
++ The opts arg has:
++ bit 0 set if all elements are same size (using sizes[0])
++ bit 1 set if elements should be zeroed
++*/
++static void** ialloc(mstate m,
++ size_t n_elements,
++ size_t* sizes,
++ int opts,
++ void* chunks[]) {
++
++ size_t element_size; /* chunksize of each element, if all same */
++ size_t contents_size; /* total size of elements */
++ size_t array_size; /* request size of pointer array */
++ void* mem; /* malloced aggregate space */
++ mchunkptr p; /* corresponding chunk */
++ size_t remainder_size; /* remaining bytes while splitting */
++ void** marray; /* either "chunks" or malloced ptr array */
++ mchunkptr array_chunk; /* chunk for malloced ptr array */
++ flag_t was_enabled; /* to disable mmap */
++ size_t size;
++ size_t i;
++
++ ensure_initialization();
++ /* compute array length, if needed */
++ if (chunks != 0) {
++ if (n_elements == 0)
++ return chunks; /* nothing to do */
++ marray = chunks;
++ array_size = 0;
++ }
++ else {
++ /* if empty req, must still return chunk representing empty array */
++ if (n_elements == 0)
++ return (void**)internal_malloc(m, 0);
++ marray = 0;
++ array_size = request2size(n_elements * (sizeof(void*)));
++ }
++
++ /* compute total element size */
++ if (opts & 0x1) { /* all-same-size */
++ element_size = request2size(*sizes);
++ contents_size = n_elements * element_size;
++ }
++ else { /* add up all the sizes */
++ element_size = 0;
++ contents_size = 0;
++ for (i = 0; i != n_elements; ++i)
++ contents_size += request2size(sizes[i]);
++ }
++
++ size = contents_size + array_size;
++
++ /*
++ Allocate the aggregate chunk. First disable direct-mmapping so
++ malloc won't use it, since we would not be able to later
++ free/realloc space internal to a segregated mmap region.
++ */
++ was_enabled = use_mmap(m);
++ disable_mmap(m);
++ mem = internal_malloc(m, size - CHUNK_OVERHEAD);
++ if (was_enabled)
++ enable_mmap(m);
++ if (mem == 0)
++ return 0;
++
++ if (PREACTION(m)) return 0;
++ p = mem2chunk(mem);
++ remainder_size = chunksize(p);
++
++ assert(!is_mmapped(p));
++
++ if (opts & 0x2) { /* optionally clear the elements */
++ memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size);
++ }
++
++ /* If not provided, allocate the pointer array as final part of chunk */
++ if (marray == 0) {
++ size_t array_chunk_size;
++ array_chunk = chunk_plus_offset(p, contents_size);
++ array_chunk_size = remainder_size - contents_size;
++ marray = (void**) (chunk2mem(array_chunk));
++ set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size);
++ remainder_size = contents_size;
++ }
++
++ /* split out elements */
++ for (i = 0; ; ++i) {
++ marray[i] = chunk2mem(p);
++ if (i != n_elements-1) {
++ if (element_size != 0)
++ size = element_size;
++ else
++ size = request2size(sizes[i]);
++ remainder_size -= size;
++ set_size_and_pinuse_of_inuse_chunk(m, p, size);
++ p = chunk_plus_offset(p, size);
++ }
++ else { /* the final element absorbs any overallocation slop */
++ set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
++ break;
++ }
++ }
++
++#if DEBUG
++ if (marray != chunks) {
++ /* final element must have exactly exhausted chunk */
++ if (element_size != 0) {
++ assert(remainder_size == element_size);
++ }
++ else {
++ assert(remainder_size == request2size(sizes[i]));
++ }
++ check_inuse_chunk(m, mem2chunk(marray));
++ }
++ for (i = 0; i != n_elements; ++i)
++ check_inuse_chunk(m, mem2chunk(marray[i]));
++
++#endif /* DEBUG */
++
++ POSTACTION(m);
++ return marray;
++}
++
++/* Try to free all pointers in the given array.
++ Note: this could be made faster, by delaying consolidation,
++ at the price of disabling some user integrity checks, We
++ still optimize some consolidations by combining adjacent
++ chunks before freeing, which will occur often if allocated
++ with ialloc or the array is sorted.
++*/
++static size_t internal_bulk_free(mstate m, void* array[], size_t nelem) {
++ size_t unfreed = 0;
++ if (!PREACTION(m)) {
++ void** a;
++ void** fence = &(array[nelem]);
++ for (a = array; a != fence; ++a) {
++ void* mem = *a;
++ if (mem != 0) {
++ mchunkptr p = mem2chunk(mem);
++ size_t psize = chunksize(p);
++#if FOOTERS
++ if (get_mstate_for(p) != m) {
++ ++unfreed;
++ continue;
++ }
++#endif
++ check_inuse_chunk(m, p);
++ *a = 0;
++ if (RTCHECK(ok_address(m, p) && ok_inuse(p))) {
++ void ** b = a + 1; /* try to merge with next chunk */
++ mchunkptr next = next_chunk(p);
++ if (b != fence && *b == chunk2mem(next)) {
++ size_t newsize = chunksize(next) + psize;
++ set_inuse(m, p, newsize);
++ *b = chunk2mem(p);
++ }
++ else
++ dispose_chunk(m, p, psize);
++ }
++ else {
++ CORRUPTION_ERROR_ACTION(m);
++ break;
++ }
++ }
++ }
++ if (should_trim(m, m->topsize))
++ sys_trim(m, 0);
++ POSTACTION(m);
++ }
++ return unfreed;
++}
++
++/* Traversal */
++#if MALLOC_INSPECT_ALL
++static void internal_inspect_all(mstate m,
++ void(*handler)(void *start,
++ void *end,
++ size_t used_bytes,
++ void* callback_arg),
++ void* arg) {
++ if (is_initialized(m)) {
++ mchunkptr top = m->top;
++ msegmentptr s;
++ for (s = &m->seg; s != 0; s = s->next) {
++ mchunkptr q = align_as_chunk(s->base);
++ while (segment_holds(s, q) && q->head != FENCEPOST_HEAD) {
++ mchunkptr next = next_chunk(q);
++ size_t sz = chunksize(q);
++ size_t used;
++ void* start;
++ if (is_inuse(q)) {
++ used = sz - CHUNK_OVERHEAD; /* must not be mmapped */
++ start = chunk2mem(q);
++ }
++ else {
++ used = 0;
++ if (is_small(sz)) { /* offset by possible bookkeeping */
++ start = (void*)((char*)q + sizeof(struct malloc_chunk));
++ }
++ else {
++ start = (void*)((char*)q + sizeof(struct malloc_tree_chunk));
++ }
++ }
++ if (start < (void*)next) /* skip if all space is bookkeeping */
++ handler(start, next, used, arg);
++ if (q == top)
++ break;
++ q = next;
++ }
++ }
++ }
++}
++#endif /* MALLOC_INSPECT_ALL */
++
++/* ------------------ Exported realloc, memalign, etc -------------------- */
++
++#if !ONLY_MSPACES
++
++void* dlrealloc(void* oldmem, size_t bytes) {
++ void* mem = 0;
++ if (oldmem == 0) {
++ mem = dlmalloc(bytes);
++ }
++ else if (bytes >= MAX_REQUEST) {
++ MALLOC_FAILURE_ACTION;
++ }
++#ifdef REALLOC_ZERO_BYTES_FREES
++ else if (bytes == 0) {
++ dlfree(oldmem);
++ }
++#endif /* REALLOC_ZERO_BYTES_FREES */
++ else {
++ size_t nb = request2size(bytes);
++ mchunkptr oldp = mem2chunk(oldmem);
++#if ! FOOTERS
++ mstate m = gm;
++#else /* FOOTERS */
++ mstate m = get_mstate_for(oldp);
++ if (!ok_magic(m)) {
++ USAGE_ERROR_ACTION(m, oldmem);
++ return 0;
++ }
++#endif /* FOOTERS */
++ if (!PREACTION(m)) {
++ mchunkptr newp = try_realloc_chunk(m, oldp, nb, 1);
++ POSTACTION(m);
++ if (newp != 0) {
++ check_inuse_chunk(m, newp);
++ mem = chunk2mem(newp);
++ }
++ else {
++ mem = internal_malloc(m, bytes);
++ if (mem != 0) {
++ size_t oc = chunksize(oldp) - overhead_for(oldp);
++ memcpy(mem, oldmem, (oc < bytes)? oc : bytes);
++ internal_free(m, oldmem);
++ }
++ }
++ }
++ }
++ return mem;
++}
++
++void* dlrealloc_in_place(void* oldmem, size_t bytes) {
++ void* mem = 0;
++ if (oldmem != 0) {
++ if (bytes >= MAX_REQUEST) {
++ MALLOC_FAILURE_ACTION;
++ }
++ else {
++ size_t nb = request2size(bytes);
++ mchunkptr oldp = mem2chunk(oldmem);
++#if ! FOOTERS
++ mstate m = gm;
++#else /* FOOTERS */
++ mstate m = get_mstate_for(oldp);
++ if (!ok_magic(m)) {
++ USAGE_ERROR_ACTION(m, oldmem);
++ return 0;
++ }
++#endif /* FOOTERS */
++ if (!PREACTION(m)) {
++ mchunkptr newp = try_realloc_chunk(m, oldp, nb, 0);
++ POSTACTION(m);
++ if (newp == oldp) {
++ check_inuse_chunk(m, newp);
++ mem = oldmem;
++ }
++ }
++ }
++ }
++ return mem;
++}
++
++void* dlmemalign(size_t alignment, size_t bytes) {
++ if (alignment <= MALLOC_ALIGNMENT) {
++ return dlmalloc(bytes);
++ }
++ return internal_memalign(gm, alignment, bytes);
++}
++
++int dlposix_memalign(void** pp, size_t alignment, size_t bytes) {
++ void* mem = 0;
++ if (alignment == MALLOC_ALIGNMENT)
++ mem = dlmalloc(bytes);
++ else {
++ size_t d = alignment / sizeof(void*);
++ size_t r = alignment % sizeof(void*);
++ if (r != 0 || d == 0 || (d & (d-SIZE_T_ONE)) != 0)
++ return EINVAL;
++ else if (bytes <= MAX_REQUEST - alignment) {
++ if (alignment < MIN_CHUNK_SIZE)
++ alignment = MIN_CHUNK_SIZE;
++ mem = internal_memalign(gm, alignment, bytes);
++ }
++ }
++ if (mem == 0)
++ return ENOMEM;
++ else {
++ *pp = mem;
++ return 0;
++ }
++}
++
++void* dlvalloc(size_t bytes) {
++ size_t pagesz;
++ ensure_initialization();
++ pagesz = mparams.page_size;
++ return dlmemalign(pagesz, bytes);
++}
++
++/* BEGIN android-changed: added overflow check */
++void* dlpvalloc(size_t bytes) {
++ size_t pagesz;
++ size_t size;
++ ensure_initialization();
++ pagesz = mparams.page_size;
++ size = (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE);
++ if (size < bytes) {
++ return NULL;
++ }
++ return dlmemalign(pagesz, size);
++}
++/* END android-change */
++
++void** dlindependent_calloc(size_t n_elements, size_t elem_size,
++ void* chunks[]) {
++ size_t sz = elem_size; /* serves as 1-element array */
++ return ialloc(gm, n_elements, &sz, 3, chunks);
++}
++
++void** dlindependent_comalloc(size_t n_elements, size_t sizes[],
++ void* chunks[]) {
++ return ialloc(gm, n_elements, sizes, 0, chunks);
++}
++
++size_t dlbulk_free(void* array[], size_t nelem) {
++ return internal_bulk_free(gm, array, nelem);
++}
++
++#if MALLOC_INSPECT_ALL
++void dlmalloc_inspect_all(void(*handler)(void *start,
++ void *end,
++ size_t used_bytes,
++ void* callback_arg),
++ void* arg) {
++ ensure_initialization();
++ if (!PREACTION(gm)) {
++ internal_inspect_all(gm, handler, arg);
++ POSTACTION(gm);
++ }
++}
++#endif /* MALLOC_INSPECT_ALL */
++
++int dlmalloc_trim(size_t pad) {
++ int result = 0;
++ ensure_initialization();
++ if (!PREACTION(gm)) {
++ result = sys_trim(gm, pad);
++ POSTACTION(gm);
++ }
++ return result;
++}
++
++size_t dlmalloc_footprint(void) {
++ return gm->footprint;
++}
++
++size_t dlmalloc_max_footprint(void) {
++ return gm->max_footprint;
++}
++
++size_t dlmalloc_footprint_limit(void) {
++ size_t maf = gm->footprint_limit;
++ return maf == 0 ? MAX_SIZE_T : maf;
++}
++
++size_t dlmalloc_set_footprint_limit(size_t bytes) {
++ size_t result; /* invert sense of 0 */
++ if (bytes == 0)
++ result = granularity_align(1); /* Use minimal size */
++ if (bytes == MAX_SIZE_T)
++ result = 0; /* disable */
++ else
++ result = granularity_align(bytes);
++ return gm->footprint_limit = result;
++}
++
++#if !NO_MALLINFO
++struct mallinfo dlmallinfo(void) {
++ return internal_mallinfo(gm);
++}
++#endif /* NO_MALLINFO */
++
++#if !NO_MALLOC_STATS
++void dlmalloc_stats() {
++ internal_malloc_stats(gm);
++}
++#endif /* NO_MALLOC_STATS */
++
++int dlmallopt(int param_number, int value) {
++ return change_mparam(param_number, value);
++}
++
++/* BEGIN android-changed: added const */
++size_t dlmalloc_usable_size(const void* mem) {
++/* END android-change */
++ if (mem != 0) {
++ mchunkptr p = mem2chunk(mem);
++ if (is_inuse(p))
++ return chunksize(p) - overhead_for(p);
++ }
++ return 0;
++}
++
++#endif /* !ONLY_MSPACES */
++
++/* ----------------------------- user mspaces ---------------------------- */
++
++#if MSPACES
++
++static mstate init_user_mstate(char* tbase, size_t tsize) {
++ size_t msize = pad_request(sizeof(struct malloc_state));
++ mchunkptr mn;
++ mchunkptr msp = align_as_chunk(tbase);
++ mstate m = (mstate)(chunk2mem(msp));
++ memset(m, 0, msize);
++ (void)INITIAL_LOCK(&m->mutex);
++ msp->head = (msize|INUSE_BITS);
++ m->seg.base = m->least_addr = tbase;
++ m->seg.size = m->footprint = m->max_footprint = tsize;
++ m->magic = mparams.magic;
++ m->release_checks = MAX_RELEASE_CHECK_RATE;
++ m->mflags = mparams.default_mflags;
++ m->extp = 0;
++ m->exts = 0;
++ disable_contiguous(m);
++ init_bins(m);
++ mn = next_chunk(mem2chunk(m));
++ init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE);
++ check_top_chunk(m, m->top);
++ return m;
++}
++
++mspace create_mspace(size_t capacity, int locked) {
++ mstate m = 0;
++ size_t msize;
++ ensure_initialization();
++ msize = pad_request(sizeof(struct malloc_state));
++ if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
++ size_t rs = ((capacity == 0)? mparams.granularity :
++ (capacity + TOP_FOOT_SIZE + msize));
++ size_t tsize = granularity_align(rs);
++ char* tbase = (char*)(CALL_MMAP(tsize));
++ if (tbase != CMFAIL) {
++ m = init_user_mstate(tbase, tsize);
++ m->seg.sflags = USE_MMAP_BIT;
++ set_lock(m, locked);
++ }
++ }
++ return (mspace)m;
++}
++
++mspace create_mspace_with_base(void* base, size_t capacity, int locked) {
++ mstate m = 0;
++ size_t msize;
++ ensure_initialization();
++ msize = pad_request(sizeof(struct malloc_state));
++ if (capacity > msize + TOP_FOOT_SIZE &&
++ capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) {
++ m = init_user_mstate((char*)base, capacity);
++ m->seg.sflags = EXTERN_BIT;
++ set_lock(m, locked);
++ }
++ return (mspace)m;
++}
++
++int mspace_track_large_chunks(mspace msp, int enable) {
++ int ret = 0;
++ mstate ms = (mstate)msp;
++ if (!PREACTION(ms)) {
++ if (!use_mmap(ms)) {
++ ret = 1;
++ }
++ if (!enable) {
++ enable_mmap(ms);
++ } else {
++ disable_mmap(ms);
++ }
++ POSTACTION(ms);
++ }
++ return ret;
++}
++
++size_t destroy_mspace(mspace msp) {
++ size_t freed = 0;
++ mstate ms = (mstate)msp;
++ if (ok_magic(ms)) {
++ msegmentptr sp = &ms->seg;
++ (void)DESTROY_LOCK(&ms->mutex); /* destroy before unmapped */
++ while (sp != 0) {
++ char* base = sp->base;
++ size_t size = sp->size;
++ flag_t flag = sp->sflags;
++ (void)base; /* placate people compiling -Wunused-variable */
++ sp = sp->next;
++ if ((flag & USE_MMAP_BIT) && !(flag & EXTERN_BIT) &&
++ CALL_MUNMAP(base, size) == 0)
++ freed += size;
++ }
++ }
++ else {
++ USAGE_ERROR_ACTION(ms,ms);
++ }
++ return freed;
++}
++
++/*
++ mspace versions of routines are near-clones of the global
++ versions. This is not so nice but better than the alternatives.
++*/
++
++void* mspace_malloc(mspace msp, size_t bytes) {
++ mstate ms = (mstate)msp;
++ if (!ok_magic(ms)) {
++ USAGE_ERROR_ACTION(ms,ms);
++ return 0;
++ }
++ if (!PREACTION(ms)) {
++ void* mem;
++ size_t nb;
++ if (bytes <= MAX_SMALL_REQUEST) {
++ bindex_t idx;
++ binmap_t smallbits;
++ nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
++ idx = small_index(nb);
++ smallbits = ms->smallmap >> idx;
++
++ if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
++ mchunkptr b, p;
++ idx += ~smallbits & 1; /* Uses next bin if idx empty */
++ b = smallbin_at(ms, idx);
++ p = b->fd;
++ assert(chunksize(p) == small_index2size(idx));
++ unlink_first_small_chunk(ms, b, p, idx);
++ set_inuse_and_pinuse(ms, p, small_index2size(idx));
++ mem = chunk2mem(p);
++ check_malloced_chunk(ms, mem, nb);
++ goto postaction;
++ }
++
++ else if (nb > ms->dvsize) {
++ if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
++ mchunkptr b, p, r;
++ size_t rsize;
++ bindex_t i;
++ binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
++ binmap_t leastbit = least_bit(leftbits);
++ compute_bit2idx(leastbit, i);
++ b = smallbin_at(ms, i);
++ p = b->fd;
++ assert(chunksize(p) == small_index2size(i));
++ unlink_first_small_chunk(ms, b, p, i);
++ rsize = small_index2size(i) - nb;
++ /* Fit here cannot be remainderless if 4byte sizes */
++ if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
++ set_inuse_and_pinuse(ms, p, small_index2size(i));
++ else {
++ set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
++ r = chunk_plus_offset(p, nb);
++ set_size_and_pinuse_of_free_chunk(r, rsize);
++ replace_dv(ms, r, rsize);
++ }
++ mem = chunk2mem(p);
++ check_malloced_chunk(ms, mem, nb);
++ goto postaction;
++ }
++
++ else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
++ check_malloced_chunk(ms, mem, nb);
++ goto postaction;
++ }
++ }
++ }
++ else if (bytes >= MAX_REQUEST)
++ nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
++ else {
++ nb = pad_request(bytes);
++ if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
++ check_malloced_chunk(ms, mem, nb);
++ goto postaction;
++ }
++ }
++
++ if (nb <= ms->dvsize) {
++ size_t rsize = ms->dvsize - nb;
++ mchunkptr p = ms->dv;
++ if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
++ mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
++ ms->dvsize = rsize;
++ set_size_and_pinuse_of_free_chunk(r, rsize);
++ set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
++ }
++ else { /* exhaust dv */
++ size_t dvs = ms->dvsize;
++ ms->dvsize = 0;
++ ms->dv = 0;
++ set_inuse_and_pinuse(ms, p, dvs);
++ }
++ mem = chunk2mem(p);
++ check_malloced_chunk(ms, mem, nb);
++ goto postaction;
++ }
++
++ else if (nb < ms->topsize) { /* Split top */
++ size_t rsize = ms->topsize -= nb;
++ mchunkptr p = ms->top;
++ mchunkptr r = ms->top = chunk_plus_offset(p, nb);
++ r->head = rsize | PINUSE_BIT;
++ set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
++ mem = chunk2mem(p);
++ check_top_chunk(ms, ms->top);
++ check_malloced_chunk(ms, mem, nb);
++ goto postaction;
++ }
++
++ mem = sys_alloc(ms, nb);
++
++ postaction:
++ POSTACTION(ms);
++ return mem;
++ }
++
++ return 0;
++}
++
++void mspace_free(mspace msp, void* mem) {
++ if (mem != 0) {
++ mchunkptr p = mem2chunk(mem);
++#if FOOTERS
++ mstate fm = get_mstate_for(p);
++ (void)msp; /* placate people compiling -Wunused */
++#else /* FOOTERS */
++ mstate fm = (mstate)msp;
++#endif /* FOOTERS */
++ if (!ok_magic(fm)) {
++ USAGE_ERROR_ACTION(fm, p);
++ return;
++ }
++ if (!PREACTION(fm)) {
++ check_inuse_chunk(fm, p);
++ if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) {
++ size_t psize = chunksize(p);
++ mchunkptr next = chunk_plus_offset(p, psize);
++ if (!pinuse(p)) {
++ size_t prevsize = p->prev_foot;
++ if (is_mmapped(p)) {
++ psize += prevsize + MMAP_FOOT_PAD;
++ if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
++ fm->footprint -= psize;
++ goto postaction;
++ }
++ else {
++ mchunkptr prev = chunk_minus_offset(p, prevsize);
++ psize += prevsize;
++ p = prev;
++ if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
++ if (p != fm->dv) {
++ unlink_chunk(fm, p, prevsize);
++ }
++ else if ((next->head & INUSE_BITS) == INUSE_BITS) {
++ fm->dvsize = psize;
++ set_free_with_pinuse(p, psize, next);
++ goto postaction;
++ }
++ }
++ else
++ goto erroraction;
++ }
++ }
++
++ if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
++ if (!cinuse(next)) { /* consolidate forward */
++ if (next == fm->top) {
++ size_t tsize = fm->topsize += psize;
++ fm->top = p;
++ p->head = tsize | PINUSE_BIT;
++ if (p == fm->dv) {
++ fm->dv = 0;
++ fm->dvsize = 0;
++ }
++ if (should_trim(fm, tsize))
++ sys_trim(fm, 0);
++ goto postaction;
++ }
++ else if (next == fm->dv) {
++ size_t dsize = fm->dvsize += psize;
++ fm->dv = p;
++ set_size_and_pinuse_of_free_chunk(p, dsize);
++ goto postaction;
++ }
++ else {
++ size_t nsize = chunksize(next);
++ psize += nsize;
++ unlink_chunk(fm, next, nsize);
++ set_size_and_pinuse_of_free_chunk(p, psize);
++ if (p == fm->dv) {
++ fm->dvsize = psize;
++ goto postaction;
++ }
++ }
++ }
++ else
++ set_free_with_pinuse(p, psize, next);
++
++ if (is_small(psize)) {
++ insert_small_chunk(fm, p, psize);
++ check_free_chunk(fm, p);
++ }
++ else {
++ tchunkptr tp = (tchunkptr)p;
++ insert_large_chunk(fm, tp, psize);
++ check_free_chunk(fm, p);
++ if (--fm->release_checks == 0)
++ release_unused_segments(fm);
++ }
++ goto postaction;
++ }
++ }
++ erroraction:
++ USAGE_ERROR_ACTION(fm, p);
++ postaction:
++ POSTACTION(fm);
++ }
++ }
++}
++
++void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) {
++ void* mem;
++ size_t req = 0;
++ mstate ms = (mstate)msp;
++ if (!ok_magic(ms)) {
++ USAGE_ERROR_ACTION(ms,ms);
++ return 0;
++ }
++ if (n_elements != 0) {
++ req = n_elements * elem_size;
++ if (((n_elements | elem_size) & ~(size_t)0xffff) &&
++ (req / n_elements != elem_size))
++ req = MAX_SIZE_T; /* force downstream failure on overflow */
++ }
++ mem = internal_malloc(ms, req);
++ if (mem != 0 && calloc_must_clear(mem2chunk(mem)))
++ memset(mem, 0, req);
++ return mem;
++}
++
++void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) {
++ void* mem = 0;
++ if (oldmem == 0) {
++ mem = mspace_malloc(msp, bytes);
++ }
++ else if (bytes >= MAX_REQUEST) {
++ MALLOC_FAILURE_ACTION;
++ }
++#ifdef REALLOC_ZERO_BYTES_FREES
++ else if (bytes == 0) {
++ mspace_free(msp, oldmem);
++ }
++#endif /* REALLOC_ZERO_BYTES_FREES */
++ else {
++ size_t nb = request2size(bytes);
++ mchunkptr oldp = mem2chunk(oldmem);
++#if ! FOOTERS
++ mstate m = (mstate)msp;
++#else /* FOOTERS */
++ mstate m = get_mstate_for(oldp);
++ if (!ok_magic(m)) {
++ USAGE_ERROR_ACTION(m, oldmem);
++ return 0;
++ }
++#endif /* FOOTERS */
++ if (!PREACTION(m)) {
++ mchunkptr newp = try_realloc_chunk(m, oldp, nb, 1);
++ POSTACTION(m);
++ if (newp != 0) {
++ check_inuse_chunk(m, newp);
++ mem = chunk2mem(newp);
++ }
++ else {
++ mem = mspace_malloc(m, bytes);
++ if (mem != 0) {
++ size_t oc = chunksize(oldp) - overhead_for(oldp);
++ memcpy(mem, oldmem, (oc < bytes)? oc : bytes);
++ mspace_free(m, oldmem);
++ }
++ }
++ }
++ }
++ return mem;
++}
++
++void* mspace_realloc_in_place(mspace msp, void* oldmem, size_t bytes) {
++ void* mem = 0;
++ if (oldmem != 0) {
++ if (bytes >= MAX_REQUEST) {
++ MALLOC_FAILURE_ACTION;
++ }
++ else {
++ size_t nb = request2size(bytes);
++ mchunkptr oldp = mem2chunk(oldmem);
++#if ! FOOTERS
++ mstate m = (mstate)msp;
++#else /* FOOTERS */
++ mstate m = get_mstate_for(oldp);
++ (void)msp; /* placate people compiling -Wunused */
++ if (!ok_magic(m)) {
++ USAGE_ERROR_ACTION(m, oldmem);
++ return 0;
++ }
++#endif /* FOOTERS */
++ if (!PREACTION(m)) {
++ mchunkptr newp = try_realloc_chunk(m, oldp, nb, 0);
++ POSTACTION(m);
++ if (newp == oldp) {
++ check_inuse_chunk(m, newp);
++ mem = oldmem;
++ }
++ }
++ }
++ }
++ return mem;
++}
++
++void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) {
++ mstate ms = (mstate)msp;
++ if (!ok_magic(ms)) {
++ USAGE_ERROR_ACTION(ms,ms);
++ return 0;
++ }
++ if (alignment <= MALLOC_ALIGNMENT)
++ return mspace_malloc(msp, bytes);
++ return internal_memalign(ms, alignment, bytes);
++}
++
++void** mspace_independent_calloc(mspace msp, size_t n_elements,
++ size_t elem_size, void* chunks[]) {
++ size_t sz = elem_size; /* serves as 1-element array */
++ mstate ms = (mstate)msp;
++ if (!ok_magic(ms)) {
++ USAGE_ERROR_ACTION(ms,ms);
++ return 0;
++ }
++ return ialloc(ms, n_elements, &sz, 3, chunks);
++}
++
++void** mspace_independent_comalloc(mspace msp, size_t n_elements,
++ size_t sizes[], void* chunks[]) {
++ mstate ms = (mstate)msp;
++ if (!ok_magic(ms)) {
++ USAGE_ERROR_ACTION(ms,ms);
++ return 0;
++ }
++ return ialloc(ms, n_elements, sizes, 0, chunks);
++}
++
++size_t mspace_bulk_free(mspace msp, void* array[], size_t nelem) {
++ return internal_bulk_free((mstate)msp, array, nelem);
++}
++
++#if MALLOC_INSPECT_ALL
++void mspace_inspect_all(mspace msp,
++ void(*handler)(void *start,
++ void *end,
++ size_t used_bytes,
++ void* callback_arg),
++ void* arg) {
++ mstate ms = (mstate)msp;
++ if (ok_magic(ms)) {
++ if (!PREACTION(ms)) {
++ internal_inspect_all(ms, handler, arg);
++ POSTACTION(ms);
++ }
++ }
++ else {
++ USAGE_ERROR_ACTION(ms,ms);
++ }
++}
++#endif /* MALLOC_INSPECT_ALL */
++
++int mspace_trim(mspace msp, size_t pad) {
++ int result = 0;
++ mstate ms = (mstate)msp;
++ if (ok_magic(ms)) {
++ if (!PREACTION(ms)) {
++ result = sys_trim(ms, pad);
++ POSTACTION(ms);
++ }
++ }
++ else {
++ USAGE_ERROR_ACTION(ms,ms);
++ }
++ return result;
++}
++
++#if !NO_MALLOC_STATS
++void mspace_malloc_stats(mspace msp) {
++ mstate ms = (mstate)msp;
++ if (ok_magic(ms)) {
++ internal_malloc_stats(ms);
++ }
++ else {
++ USAGE_ERROR_ACTION(ms,ms);
++ }
++}
++#endif /* NO_MALLOC_STATS */
++
++size_t mspace_footprint(mspace msp) {
++ size_t result = 0;
++ mstate ms = (mstate)msp;
++ if (ok_magic(ms)) {
++ result = ms->footprint;
++ }
++ else {
++ USAGE_ERROR_ACTION(ms,ms);
++ }
++ return result;
++}
++
++size_t mspace_max_footprint(mspace msp) {
++ size_t result = 0;
++ mstate ms = (mstate)msp;
++ if (ok_magic(ms)) {
++ result = ms->max_footprint;
++ }
++ else {
++ USAGE_ERROR_ACTION(ms,ms);
++ }
++ return result;
++}
++
++size_t mspace_footprint_limit(mspace msp) {
++ size_t result = 0;
++ mstate ms = (mstate)msp;
++ if (ok_magic(ms)) {
++ size_t maf = ms->footprint_limit;
++ result = (maf == 0) ? MAX_SIZE_T : maf;
++ }
++ else {
++ USAGE_ERROR_ACTION(ms,ms);
++ }
++ return result;
++}
++
++size_t mspace_set_footprint_limit(mspace msp, size_t bytes) {
++ size_t result = 0;
++ mstate ms = (mstate)msp;
++ if (ok_magic(ms)) {
++ if (bytes == 0)
++ result = granularity_align(1); /* Use minimal size */
++ if (bytes == MAX_SIZE_T)
++ result = 0; /* disable */
++ else
++ result = granularity_align(bytes);
++ ms->footprint_limit = result;
++ }
++ else {
++ USAGE_ERROR_ACTION(ms,ms);
++ }
++ return result;
++}
++
++#if !NO_MALLINFO
++struct mallinfo mspace_mallinfo(mspace msp) {
++ mstate ms = (mstate)msp;
++ if (!ok_magic(ms)) {
++ USAGE_ERROR_ACTION(ms,ms);
++ }
++ return internal_mallinfo(ms);
++}
++#endif /* NO_MALLINFO */
++
++size_t mspace_usable_size(const void* mem) {
++ if (mem != 0) {
++ mchunkptr p = mem2chunk(mem);
++ if (is_inuse(p))
++ return chunksize(p) - overhead_for(p);
++ }
++ return 0;
++}
++
++int mspace_mallopt(int param_number, int value) {
++ return change_mparam(param_number, value);
++}
++
++#endif /* MSPACES */
++
++
++/* -------------------- Alternative MORECORE functions ------------------- */
++
++/*
++ Guidelines for creating a custom version of MORECORE:
++
++ * For best performance, MORECORE should allocate in multiples of pagesize.
++ * MORECORE may allocate more memory than requested. (Or even less,
++ but this will usually result in a malloc failure.)
++ * MORECORE must not allocate memory when given argument zero, but
++ instead return one past the end address of memory from previous
++ nonzero call.
++ * For best performance, consecutive calls to MORECORE with positive
++ arguments should return increasing addresses, indicating that
++ space has been contiguously extended.
++ * Even though consecutive calls to MORECORE need not return contiguous
++ addresses, it must be OK for malloc'ed chunks to span multiple
++ regions in those cases where they do happen to be contiguous.
++ * MORECORE need not handle negative arguments -- it may instead
++ just return MFAIL when given negative arguments.
++ Negative arguments are always multiples of pagesize. MORECORE
++ must not misinterpret negative args as large positive unsigned
++ args. You can suppress all such calls from even occurring by defining
++ MORECORE_CANNOT_TRIM,
++
++ As an example alternative MORECORE, here is a custom allocator
++ kindly contributed for pre-OSX macOS. It uses virtually but not
++ necessarily physically contiguous non-paged memory (locked in,
++ present and won't get swapped out). You can use it by uncommenting
++ this section, adding some #includes, and setting up the appropriate
++ defines above:
++
++ #define MORECORE osMoreCore
++
++ There is also a shutdown routine that should somehow be called for
++ cleanup upon program exit.
++
++ #define MAX_POOL_ENTRIES 100
++ #define MINIMUM_MORECORE_SIZE (64 * 1024U)
++ static int next_os_pool;
++ void *our_os_pools[MAX_POOL_ENTRIES];
++
++ void *osMoreCore(int size)
++ {
++ void *ptr = 0;
++ static void *sbrk_top = 0;
++
++ if (size > 0)
++ {
++ if (size < MINIMUM_MORECORE_SIZE)
++ size = MINIMUM_MORECORE_SIZE;
++ if (CurrentExecutionLevel() == kTaskLevel)
++ ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0);
++ if (ptr == 0)
++ {
++ return (void *) MFAIL;
++ }
++ // save ptrs so they can be freed during cleanup
++ our_os_pools[next_os_pool] = ptr;
++ next_os_pool++;
++ ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK);
++ sbrk_top = (char *) ptr + size;
++ return ptr;
++ }
++ else if (size < 0)
++ {
++ // we don't currently support shrink behavior
++ return (void *) MFAIL;
++ }
++ else
++ {
++ return sbrk_top;
++ }
++ }
++
++ // cleanup any allocated memory pools
++ // called as last thing before shutting down driver
++
++ void osCleanupMem(void)
++ {
++ void **ptr;
++
++ for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++)
++ if (*ptr)
++ {
++ PoolDeallocate(*ptr);
++ *ptr = 0;
++ }
++ }
++
++*/
++
++
++/* -----------------------------------------------------------------------
++History:
++ v2.8.6 Wed Aug 29 06:57:58 2012 Doug Lea
++ * fix bad comparison in dlposix_memalign
++ * don't reuse adjusted asize in sys_alloc
++ * add LOCK_AT_FORK -- thanks to Kirill Artamonov for the suggestion
++ * reduce compiler warnings -- thanks to all who reported/suggested these
++
++ v2.8.5 Sun May 22 10:26:02 2011 Doug Lea (dl at gee)
++ * Always perform unlink checks unless INSECURE
++ * Add posix_memalign.
++ * Improve realloc to expand in more cases; expose realloc_in_place.
++ Thanks to Peter Buhr for the suggestion.
++ * Add footprint_limit, inspect_all, bulk_free. Thanks
++ to Barry Hayes and others for the suggestions.
++ * Internal refactorings to avoid calls while holding locks
++ * Use non-reentrant locks by default. Thanks to Roland McGrath
++ for the suggestion.
++ * Small fixes to mspace_destroy, reset_on_error.
++ * Various configuration extensions/changes. Thanks
++ to all who contributed these.
++
++ V2.8.4a Thu Apr 28 14:39:43 2011 (dl at gee.cs.oswego.edu)
++ * Update Creative Commons URL
++
++ V2.8.4 Wed May 27 09:56:23 2009 Doug Lea (dl at gee)
++ * Use zeros instead of prev foot for is_mmapped
++ * Add mspace_track_large_chunks; thanks to Jean Brouwers
++ * Fix set_inuse in internal_realloc; thanks to Jean Brouwers
++ * Fix insufficient sys_alloc padding when using 16byte alignment
++ * Fix bad error check in mspace_footprint
++ * Adaptations for ptmalloc; thanks to Wolfram Gloger.
++ * Reentrant spin locks; thanks to Earl Chew and others
++ * Win32 improvements; thanks to Niall Douglas and Earl Chew
++ * Add NO_SEGMENT_TRAVERSAL and MAX_RELEASE_CHECK_RATE options
++ * Extension hook in malloc_state
++ * Various small adjustments to reduce warnings on some compilers
++ * Various configuration extensions/changes for more platforms. Thanks
++ to all who contributed these.
++
++ V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee)
++ * Add max_footprint functions
++ * Ensure all appropriate literals are size_t
++ * Fix conditional compilation problem for some #define settings
++ * Avoid concatenating segments with the one provided
++ in create_mspace_with_base
++ * Rename some variables to avoid compiler shadowing warnings
++ * Use explicit lock initialization.
++ * Better handling of sbrk interference.
++ * Simplify and fix segment insertion, trimming and mspace_destroy
++ * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x
++ * Thanks especially to Dennis Flanagan for help on these.
++
++ V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee)
++ * Fix memalign brace error.
++
++ V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee)
++ * Fix improper #endif nesting in C++
++ * Add explicit casts needed for C++
++
++ V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee)
++ * Use trees for large bins
++ * Support mspaces
++ * Use segments to unify sbrk-based and mmap-based system allocation,
++ removing need for emulation on most platforms without sbrk.
++ * Default safety checks
++ * Optional footer checks. Thanks to William Robertson for the idea.
++ * Internal code refactoring
++ * Incorporate suggestions and platform-specific changes.
++ Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas,
++ Aaron Bachmann, Emery Berger, and others.
++ * Speed up non-fastbin processing enough to remove fastbins.
++ * Remove useless cfree() to avoid conflicts with other apps.
++ * Remove internal memcpy, memset. Compilers handle builtins better.
++ * Remove some options that no one ever used and rename others.
++
++ V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee)
++ * Fix malloc_state bitmap array misdeclaration
++
++ V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee)
++ * Allow tuning of FIRST_SORTED_BIN_SIZE
++ * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte.
++ * Better detection and support for non-contiguousness of MORECORE.
++ Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger
++ * Bypass most of malloc if no frees. Thanks To Emery Berger.
++ * Fix freeing of old top non-contiguous chunk im sysmalloc.
++ * Raised default trim and map thresholds to 256K.
++ * Fix mmap-related #defines. Thanks to Lubos Lunak.
++ * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield.
++ * Branch-free bin calculation
++ * Default trim and mmap thresholds now 256K.
++
++ V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee)
++ * Introduce independent_comalloc and independent_calloc.
++ Thanks to Michael Pachos for motivation and help.
++ * Make optional .h file available
++ * Allow > 2GB requests on 32bit systems.
++ * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>.
++ Thanks also to Andreas Mueller <a.mueller at paradatec.de>,
++ and Anonymous.
++ * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for
++ helping test this.)
++ * memalign: check alignment arg
++ * realloc: don't try to shift chunks backwards, since this
++ leads to more fragmentation in some programs and doesn't
++ seem to help in any others.
++ * Collect all cases in malloc requiring system memory into sysmalloc
++ * Use mmap as backup to sbrk
++ * Place all internal state in malloc_state
++ * Introduce fastbins (although similar to 2.5.1)
++ * Many minor tunings and cosmetic improvements
++ * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK
++ * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS
++ Thanks to Tony E. Bennett <tbennett@nvidia.com> and others.
++ * Include errno.h to support default failure action.
++
++ V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee)
++ * return null for negative arguments
++ * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com>
++ * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h'
++ (e.g. WIN32 platforms)
++ * Cleanup header file inclusion for WIN32 platforms
++ * Cleanup code to avoid Microsoft Visual C++ compiler complaints
++ * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing
++ memory allocation routines
++ * Set 'malloc_getpagesize' for WIN32 platforms (needs more work)
++ * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to
++ usage of 'assert' in non-WIN32 code
++ * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to
++ avoid infinite loop
++ * Always call 'fREe()' rather than 'free()'
++
++ V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee)
++ * Fixed ordering problem with boundary-stamping
++
++ V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee)
++ * Added pvalloc, as recommended by H.J. Liu
++ * Added 64bit pointer support mainly from Wolfram Gloger
++ * Added anonymously donated WIN32 sbrk emulation
++ * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen
++ * malloc_extend_top: fix mask error that caused wastage after
++ foreign sbrks
++ * Add linux mremap support code from HJ Liu
++
++ V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee)
++ * Integrated most documentation with the code.
++ * Add support for mmap, with help from
++ Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
++ * Use last_remainder in more cases.
++ * Pack bins using idea from colin@nyx10.cs.du.edu
++ * Use ordered bins instead of best-fit threshhold
++ * Eliminate block-local decls to simplify tracing and debugging.
++ * Support another case of realloc via move into top
++ * Fix error occuring when initial sbrk_base not word-aligned.
++ * Rely on page size for units instead of SBRK_UNIT to
++ avoid surprises about sbrk alignment conventions.
++ * Add mallinfo, mallopt. Thanks to Raymond Nijssen
++ (raymond@es.ele.tue.nl) for the suggestion.
++ * Add `pad' argument to malloc_trim and top_pad mallopt parameter.
++ * More precautions for cases where other routines call sbrk,
++ courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de).
++ * Added macros etc., allowing use in linux libc from
++ H.J. Lu (hjl@gnu.ai.mit.edu)
++ * Inverted this history list
++
++ V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee)
++ * Re-tuned and fixed to behave more nicely with V2.6.0 changes.
++ * Removed all preallocation code since under current scheme
++ the work required to undo bad preallocations exceeds
++ the work saved in good cases for most test programs.
++ * No longer use return list or unconsolidated bins since
++ no scheme using them consistently outperforms those that don't
++ given above changes.
++ * Use best fit for very large chunks to prevent some worst-cases.
++ * Added some support for debugging
++
++ V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee)
++ * Removed footers when chunks are in use. Thanks to
++ Paul Wilson (wilson@cs.texas.edu) for the suggestion.
++
++ V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee)
++ * Added malloc_trim, with help from Wolfram Gloger
++ (wmglo@Dent.MED.Uni-Muenchen.DE).
++
++ V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g)
++
++ V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g)
++ * realloc: try to expand in both directions
++ * malloc: swap order of clean-bin strategy;
++ * realloc: only conditionally expand backwards
++ * Try not to scavenge used bins
++ * Use bin counts as a guide to preallocation
++ * Occasionally bin return list chunks in first scan
++ * Add a few optimizations from colin@nyx10.cs.du.edu
++
++ V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g)
++ * faster bin computation & slightly different binning
++ * merged all consolidations to one part of malloc proper
++ (eliminating old malloc_find_space & malloc_clean_bin)
++ * Scan 2 returns chunks (not just 1)
++ * Propagate failure in realloc if malloc returns 0
++ * Add stuff to allow compilation on non-ANSI compilers
++ from kpv@research.att.com
++
++ V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu)
++ * removed potential for odd address access in prev_chunk
++ * removed dependency on getpagesize.h
++ * misc cosmetics and a bit more internal documentation
++ * anticosmetics: mangled names in macros to evade debugger strangeness
++ * tested on sparc, hp-700, dec-mips, rs6000
++ with gcc & native cc (hp, dec only) allowing
++ Detlefs & Zorn comparison study (in SIGPLAN Notices.)
++
++ Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu)
++ * Based loosely on libg++-1.2X malloc. (It retains some of the overall
++ structure of old version, but most details differ.)
++
++*/
--- /dev/null
--- /dev/null
++Description: hack out ubfx and sbfx which are not supported on armv6
++ I wrote a script to replace ubfx and sbfx with shift operations,
++ unfortunately these clobber the carry flag, so there is some risk,
++ hopefully it's ok.....
++Author: Peter Michael Green <plugwash@raspbian.org>
++
++---
++The information above should follow the Patch Tagging Guidelines, please
++checkout http://dep.debian.net/deps/dep3/ to learn about the format. Here
++are templates for supplementary fields that you might want to add:
++
++Origin: <vendor|upstream|other>, <url of original patch>
++Bug: <url in upstream bugtracker>
++Bug-Debian: https://bugs.debian.org/<bugnumber>
++Bug-Ubuntu: https://launchpad.net/bugs/<bugnumber>
++Forwarded: <no|not-needed|url proving that it has been forwarded>
++Reviewed-By: <name and email of someone who approved the patch>
++Last-Update: 2019-03-19
++
++Index: android-platform-art-8.1.0+r23/runtime/interpreter/mterp/out/mterp_arm.S
++===================================================================
++--- android-platform-art-8.1.0+r23.orig/runtime/interpreter/mterp/out/mterp_arm.S
+++++ android-platform-art-8.1.0+r23/runtime/interpreter/mterp/out/mterp_arm.S
++@@ -416,7 +416,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ /* for move, move-object, long-to-int */
++ /* op vA, vB */
++ mov r1, rINST, lsr #12 @ r1<- B from 15:12
++- ubfx r0, rINST, #8, #4 @ r0<- A from 11:8
+++ @ begin replacement of ubfx r0, rINST, #8, #4 @ r0<- A from 11:8
+++ lsl r0, rINST, #20
+++ lsr r0, r0, #28
+++ @ end replacement of ubfx r0, rINST, #8, #4 @ r0<- A from 11:8
++ FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
++ GET_VREG r2, r1 @ r2<- fp[B]
++ GET_INST_OPCODE ip @ ip<- opcode from rINST
++@@ -470,7 +473,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ /* move-wide vA, vB */
++ /* NOTE: regs can overlap, e.g. "move v6,v7" or "move v7,v6" */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ @ begin replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ lsl rINST, rINST, #20
+++ lsr rINST, rINST, #28
+++ @ end replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
++ VREG_INDEX_TO_ADDR r3, r3 @ r3<- &fp[B]
++ VREG_INDEX_TO_ADDR r2, rINST @ r2<- &fp[A]
++ ldmia r3, {r0-r1} @ r0/r1<- fp[B]
++@@ -522,7 +528,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ /* for move, move-object, long-to-int */
++ /* op vA, vB */
++ mov r1, rINST, lsr #12 @ r1<- B from 15:12
++- ubfx r0, rINST, #8, #4 @ r0<- A from 11:8
+++ @ begin replacement of ubfx r0, rINST, #8, #4 @ r0<- A from 11:8
+++ lsl r0, rINST, #20
+++ lsr r0, r0, #28
+++ @ end replacement of ubfx r0, rINST, #8, #4 @ r0<- A from 11:8
++ FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
++ GET_VREG r2, r1 @ r2<- fp[B]
++ GET_INST_OPCODE ip @ ip<- opcode from rINST
++@@ -723,8 +732,14 @@ artMterpAsmInstructionStart = .L_op_nop
++ .L_op_const_4: /* 0x12 */
++ /* File: arm/op_const_4.S */
++ /* const/4 vA, #+B */
++- sbfx r1, rINST, #12, #4 @ r1<- sssssssB (sign-extended)
++- ubfx r0, rINST, #8, #4 @ r0<- A
+++ @ begin replacement of sbfx r1, rINST, #12, #4 @ r1<- sssssssB (sign-extended)
+++ lsl r1, rINST, #16
+++ asr r1, r1, #28
+++ @ end replacement of sbfx r1, rINST, #12, #4 @ r1<- sssssssB (sign-extended)
+++ @ begin replacement of ubfx r0, rINST, #8, #4 @ r0<- A
+++ lsl r0, rINST, #20
+++ lsr r0, r0, #28
+++ @ end replacement of ubfx r0, rINST, #8, #4 @ r0<- A
++ FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
++ GET_INST_OPCODE ip @ ip<- opcode from rINST
++ SET_VREG r1, r0 @ fp[A]<- r1
++@@ -975,7 +990,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ mov r3, rSELF @ r3<- self
++ bl MterpInstanceOf @ (index, &obj, method, self)
++ ldr r1, [rSELF, #THREAD_EXCEPTION_OFFSET]
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ PREFETCH_INST 2
++ cmp r1, #0 @ exception pending?
++ bne MterpException
++@@ -992,7 +1010,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ * Return the length of an array.
++ */
++ mov r1, rINST, lsr #12 @ r1<- B
++- ubfx r2, rINST, #8, #4 @ r2<- A
+++ @ begin replacement of ubfx r2, rINST, #8, #4 @ r2<- A
+++ lsl r2, rINST, #20
+++ lsr r2, r2, #28
+++ @ end replacement of ubfx r2, rINST, #8, #4 @ r2<- A
++ GET_VREG r0, r1 @ r0<- vB (object ref)
++ cmp r0, #0 @ is object null?
++ beq common_errNullObject @ yup, fail
++@@ -1139,7 +1160,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ * double to get a byte offset.
++ */
++ /* goto +AA */
++- sbfx rINST, rINST, #8, #8 @ rINST<- ssssssAA (sign-extended)
+++ @ begin replacement of sbfx rINST, rINST, #8, #8 @ rINST<- ssssssAA (sign-extended)
+++ lsl rINST, rINST, #16
+++ asr rINST, rINST, #24
+++ @ end replacement of sbfx rINST, rINST, #8, #8 @ rINST<- ssssssAA (sign-extended)
++ b MterpCommonTakenBranchNoFlags
++
++ /* ------------------------------ */
++@@ -1424,7 +1448,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ */
++ /* if-cmp vA, vB, +CCCC */
++ mov r1, rINST, lsr #12 @ r1<- B
++- ubfx r0, rINST, #8, #4 @ r0<- A
+++ @ begin replacement of ubfx r0, rINST, #8, #4 @ r0<- A
+++ lsl r0, rINST, #20
+++ lsr r0, r0, #28
+++ @ end replacement of ubfx r0, rINST, #8, #4 @ r0<- A
++ GET_VREG r3, r1 @ r3<- vB
++ GET_VREG r0, r0 @ r0<- vA
++ FETCH_S rINST, 1 @ rINST<- branch offset, in code units
++@@ -1450,7 +1477,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ */
++ /* if-cmp vA, vB, +CCCC */
++ mov r1, rINST, lsr #12 @ r1<- B
++- ubfx r0, rINST, #8, #4 @ r0<- A
+++ @ begin replacement of ubfx r0, rINST, #8, #4 @ r0<- A
+++ lsl r0, rINST, #20
+++ lsr r0, r0, #28
+++ @ end replacement of ubfx r0, rINST, #8, #4 @ r0<- A
++ GET_VREG r3, r1 @ r3<- vB
++ GET_VREG r0, r0 @ r0<- vA
++ FETCH_S rINST, 1 @ rINST<- branch offset, in code units
++@@ -1476,7 +1506,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ */
++ /* if-cmp vA, vB, +CCCC */
++ mov r1, rINST, lsr #12 @ r1<- B
++- ubfx r0, rINST, #8, #4 @ r0<- A
+++ @ begin replacement of ubfx r0, rINST, #8, #4 @ r0<- A
+++ lsl r0, rINST, #20
+++ lsr r0, r0, #28
+++ @ end replacement of ubfx r0, rINST, #8, #4 @ r0<- A
++ GET_VREG r3, r1 @ r3<- vB
++ GET_VREG r0, r0 @ r0<- vA
++ FETCH_S rINST, 1 @ rINST<- branch offset, in code units
++@@ -1502,7 +1535,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ */
++ /* if-cmp vA, vB, +CCCC */
++ mov r1, rINST, lsr #12 @ r1<- B
++- ubfx r0, rINST, #8, #4 @ r0<- A
+++ @ begin replacement of ubfx r0, rINST, #8, #4 @ r0<- A
+++ lsl r0, rINST, #20
+++ lsr r0, r0, #28
+++ @ end replacement of ubfx r0, rINST, #8, #4 @ r0<- A
++ GET_VREG r3, r1 @ r3<- vB
++ GET_VREG r0, r0 @ r0<- vA
++ FETCH_S rINST, 1 @ rINST<- branch offset, in code units
++@@ -1528,7 +1564,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ */
++ /* if-cmp vA, vB, +CCCC */
++ mov r1, rINST, lsr #12 @ r1<- B
++- ubfx r0, rINST, #8, #4 @ r0<- A
+++ @ begin replacement of ubfx r0, rINST, #8, #4 @ r0<- A
+++ lsl r0, rINST, #20
+++ lsr r0, r0, #28
+++ @ end replacement of ubfx r0, rINST, #8, #4 @ r0<- A
++ GET_VREG r3, r1 @ r3<- vB
++ GET_VREG r0, r0 @ r0<- vA
++ FETCH_S rINST, 1 @ rINST<- branch offset, in code units
++@@ -1554,7 +1593,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ */
++ /* if-cmp vA, vB, +CCCC */
++ mov r1, rINST, lsr #12 @ r1<- B
++- ubfx r0, rINST, #8, #4 @ r0<- A
+++ @ begin replacement of ubfx r0, rINST, #8, #4 @ r0<- A
+++ lsl r0, rINST, #20
+++ lsr r0, r0, #28
+++ @ end replacement of ubfx r0, rINST, #8, #4 @ r0<- A
++ GET_VREG r3, r1 @ r3<- vB
++ GET_VREG r0, r0 @ r0<- vA
++ FETCH_S rINST, 1 @ rINST<- branch offset, in code units
++@@ -2244,7 +2286,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ mov r3, rSELF @ r3<- self
++ bl artGet32InstanceFromCode
++ ldr r3, [rSELF, #THREAD_EXCEPTION_OFFSET]
++- ubfx r2, rINST, #8, #4 @ r2<- A
+++ @ begin replacement of ubfx r2, rINST, #8, #4 @ r2<- A
+++ lsl r2, rINST, #20
+++ lsr r2, r2, #28
+++ @ end replacement of ubfx r2, rINST, #8, #4 @ r2<- A
++ PREFETCH_INST 2
++ cmp r3, #0
++ bne MterpPossibleException @ bail out
++@@ -2274,7 +2319,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ mov r3, rSELF @ r3<- self
++ bl artGet64InstanceFromCode
++ ldr r3, [rSELF, #THREAD_EXCEPTION_OFFSET]
++- ubfx r2, rINST, #8, #4 @ r2<- A
+++ @ begin replacement of ubfx r2, rINST, #8, #4 @ r2<- A
+++ lsl r2, rINST, #20
+++ lsr r2, r2, #28
+++ @ end replacement of ubfx r2, rINST, #8, #4 @ r2<- A
++ PREFETCH_INST 2
++ cmp r3, #0
++ bne MterpException @ bail out
++@@ -2303,7 +2351,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ mov r3, rSELF @ r3<- self
++ bl artGetObjInstanceFromCode
++ ldr r3, [rSELF, #THREAD_EXCEPTION_OFFSET]
++- ubfx r2, rINST, #8, #4 @ r2<- A
+++ @ begin replacement of ubfx r2, rINST, #8, #4 @ r2<- A
+++ lsl r2, rINST, #20
+++ lsr r2, r2, #28
+++ @ end replacement of ubfx r2, rINST, #8, #4 @ r2<- A
++ PREFETCH_INST 2
++ cmp r3, #0
++ bne MterpPossibleException @ bail out
++@@ -2335,7 +2386,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ mov r3, rSELF @ r3<- self
++ bl artGetBooleanInstanceFromCode
++ ldr r3, [rSELF, #THREAD_EXCEPTION_OFFSET]
++- ubfx r2, rINST, #8, #4 @ r2<- A
+++ @ begin replacement of ubfx r2, rINST, #8, #4 @ r2<- A
+++ lsl r2, rINST, #20
+++ lsr r2, r2, #28
+++ @ end replacement of ubfx r2, rINST, #8, #4 @ r2<- A
++ PREFETCH_INST 2
++ cmp r3, #0
++ bne MterpPossibleException @ bail out
++@@ -2367,7 +2421,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ mov r3, rSELF @ r3<- self
++ bl artGetByteInstanceFromCode
++ ldr r3, [rSELF, #THREAD_EXCEPTION_OFFSET]
++- ubfx r2, rINST, #8, #4 @ r2<- A
+++ @ begin replacement of ubfx r2, rINST, #8, #4 @ r2<- A
+++ lsl r2, rINST, #20
+++ lsr r2, r2, #28
+++ @ end replacement of ubfx r2, rINST, #8, #4 @ r2<- A
++ PREFETCH_INST 2
++ cmp r3, #0
++ bne MterpPossibleException @ bail out
++@@ -2399,7 +2456,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ mov r3, rSELF @ r3<- self
++ bl artGetCharInstanceFromCode
++ ldr r3, [rSELF, #THREAD_EXCEPTION_OFFSET]
++- ubfx r2, rINST, #8, #4 @ r2<- A
+++ @ begin replacement of ubfx r2, rINST, #8, #4 @ r2<- A
+++ lsl r2, rINST, #20
+++ lsr r2, r2, #28
+++ @ end replacement of ubfx r2, rINST, #8, #4 @ r2<- A
++ PREFETCH_INST 2
++ cmp r3, #0
++ bne MterpPossibleException @ bail out
++@@ -2431,7 +2491,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ mov r3, rSELF @ r3<- self
++ bl artGetShortInstanceFromCode
++ ldr r3, [rSELF, #THREAD_EXCEPTION_OFFSET]
++- ubfx r2, rINST, #8, #4 @ r2<- A
+++ @ begin replacement of ubfx r2, rINST, #8, #4 @ r2<- A
+++ lsl r2, rINST, #20
+++ lsr r2, r2, #28
+++ @ end replacement of ubfx r2, rINST, #8, #4 @ r2<- A
++ PREFETCH_INST 2
++ cmp r3, #0
++ bne MterpPossibleException @ bail out
++@@ -2460,7 +2523,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ FETCH r0, 1 @ r0<- field ref CCCC
++ mov r1, rINST, lsr #12 @ r1<- B
++ GET_VREG r1, r1 @ r1<- fp[B], the object pointer
++- ubfx r2, rINST, #8, #4 @ r2<- A
+++ @ begin replacement of ubfx r2, rINST, #8, #4 @ r2<- A
+++ lsl r2, rINST, #20
+++ lsr r2, r2, #28
+++ @ end replacement of ubfx r2, rINST, #8, #4 @ r2<- A
++ GET_VREG r2, r2 @ r2<- fp[A]
++ ldr r3, [rFP, #OFF_FP_METHOD] @ r3<- referrer
++ PREFETCH_INST 2
++@@ -2481,7 +2547,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ FETCH r0, 1 @ r0<- field ref CCCC
++ mov r1, rINST, lsr #12 @ r1<- B
++ GET_VREG r1, r1 @ r1<- fp[B], the object pointer
++- ubfx r2, rINST, #8, #4 @ r2<- A
+++ @ begin replacement of ubfx r2, rINST, #8, #4 @ r2<- A
+++ lsl r2, rINST, #20
+++ lsr r2, r2, #28
+++ @ end replacement of ubfx r2, rINST, #8, #4 @ r2<- A
++ VREG_INDEX_TO_ADDR r2, r2 @ r2<- &fp[A]
++ ldr r3, [rFP, #OFF_FP_METHOD] @ r3<- referrer
++ PREFETCH_INST 2
++@@ -2524,7 +2593,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ FETCH r0, 1 @ r0<- field ref CCCC
++ mov r1, rINST, lsr #12 @ r1<- B
++ GET_VREG r1, r1 @ r1<- fp[B], the object pointer
++- ubfx r2, rINST, #8, #4 @ r2<- A
+++ @ begin replacement of ubfx r2, rINST, #8, #4 @ r2<- A
+++ lsl r2, rINST, #20
+++ lsr r2, r2, #28
+++ @ end replacement of ubfx r2, rINST, #8, #4 @ r2<- A
++ GET_VREG r2, r2 @ r2<- fp[A]
++ ldr r3, [rFP, #OFF_FP_METHOD] @ r3<- referrer
++ PREFETCH_INST 2
++@@ -2552,7 +2624,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ FETCH r0, 1 @ r0<- field ref CCCC
++ mov r1, rINST, lsr #12 @ r1<- B
++ GET_VREG r1, r1 @ r1<- fp[B], the object pointer
++- ubfx r2, rINST, #8, #4 @ r2<- A
+++ @ begin replacement of ubfx r2, rINST, #8, #4 @ r2<- A
+++ lsl r2, rINST, #20
+++ lsr r2, r2, #28
+++ @ end replacement of ubfx r2, rINST, #8, #4 @ r2<- A
++ GET_VREG r2, r2 @ r2<- fp[A]
++ ldr r3, [rFP, #OFF_FP_METHOD] @ r3<- referrer
++ PREFETCH_INST 2
++@@ -2580,7 +2655,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ FETCH r0, 1 @ r0<- field ref CCCC
++ mov r1, rINST, lsr #12 @ r1<- B
++ GET_VREG r1, r1 @ r1<- fp[B], the object pointer
++- ubfx r2, rINST, #8, #4 @ r2<- A
+++ @ begin replacement of ubfx r2, rINST, #8, #4 @ r2<- A
+++ lsl r2, rINST, #20
+++ lsr r2, r2, #28
+++ @ end replacement of ubfx r2, rINST, #8, #4 @ r2<- A
++ GET_VREG r2, r2 @ r2<- fp[A]
++ ldr r3, [rFP, #OFF_FP_METHOD] @ r3<- referrer
++ PREFETCH_INST 2
++@@ -2608,7 +2686,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ FETCH r0, 1 @ r0<- field ref CCCC
++ mov r1, rINST, lsr #12 @ r1<- B
++ GET_VREG r1, r1 @ r1<- fp[B], the object pointer
++- ubfx r2, rINST, #8, #4 @ r2<- A
+++ @ begin replacement of ubfx r2, rINST, #8, #4 @ r2<- A
+++ lsl r2, rINST, #20
+++ lsr r2, r2, #28
+++ @ end replacement of ubfx r2, rINST, #8, #4 @ r2<- A
++ GET_VREG r2, r2 @ r2<- fp[A]
++ ldr r3, [rFP, #OFF_FP_METHOD] @ r3<- referrer
++ PREFETCH_INST 2
++@@ -3362,7 +3443,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ */
++ /* unop vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ GET_VREG r0, r3 @ r0<- vB
++ @ optional op; may set condition codes
++ FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
++@@ -3388,7 +3472,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ */
++ /* unop vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ GET_VREG r0, r3 @ r0<- vB
++ @ optional op; may set condition codes
++ FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
++@@ -3413,7 +3500,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ */
++ /* unop vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ @ begin replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ lsl rINST, rINST, #20
+++ lsr rINST, rINST, #28
+++ @ end replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
++ VREG_INDEX_TO_ADDR r3, r3 @ r3<- &fp[B]
++ VREG_INDEX_TO_ADDR r9, rINST @ r9<- &fp[A]
++ ldmia r3, {r0-r1} @ r0/r1<- vAA
++@@ -3441,7 +3531,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ */
++ /* unop vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ @ begin replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ lsl rINST, rINST, #20
+++ lsr rINST, rINST, #28
+++ @ end replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
++ VREG_INDEX_TO_ADDR r3, r3 @ r3<- &fp[B]
++ VREG_INDEX_TO_ADDR r9, rINST @ r9<- &fp[A]
++ ldmia r3, {r0-r1} @ r0/r1<- vAA
++@@ -3470,7 +3563,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ */
++ /* unop vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ GET_VREG r0, r3 @ r0<- vB
++ @ optional op; may set condition codes
++ FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
++@@ -3495,7 +3591,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ */
++ /* unop vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ @ begin replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ lsl rINST, rINST, #20
+++ lsr rINST, rINST, #28
+++ @ end replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
++ VREG_INDEX_TO_ADDR r3, r3 @ r3<- &fp[B]
++ VREG_INDEX_TO_ADDR r9, rINST @ r9<- &fp[A]
++ ldmia r3, {r0-r1} @ r0/r1<- vAA
++@@ -3523,7 +3622,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ */
++ /* unop vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ @ begin replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ lsl rINST, rINST, #20
+++ lsr rINST, rINST, #28
+++ @ end replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
++ GET_VREG r0, r3 @ r0<- vB
++ VREG_INDEX_TO_ADDR r9, rINST @ r9<- &fp[A]
++ @ optional op; may set condition codes
++@@ -3551,7 +3653,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ mov r3, rINST, lsr #12 @ r3<- B
++ VREG_INDEX_TO_ADDR r3, r3 @ r3<- &vB
++ flds s0, [r3] @ s0<- vB
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
++ fsitos s1, s0 @ s1<- op
++ GET_INST_OPCODE ip @ extract opcode from rINST
++@@ -3575,7 +3680,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ mov r3, rINST, lsr #12 @ r3<- B
++ VREG_INDEX_TO_ADDR r3, r3 @ r3<- &vB
++ flds s0, [r3] @ s0<- vB
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
++ fsitod d0, s0 @ d0<- op
++ CLEAR_SHADOW_PAIR r9, ip, lr @ Zero shadow regs
++@@ -3594,7 +3702,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ /* for move, move-object, long-to-int */
++ /* op vA, vB */
++ mov r1, rINST, lsr #12 @ r1<- B from 15:12
++- ubfx r0, rINST, #8, #4 @ r0<- A from 11:8
+++ @ begin replacement of ubfx r0, rINST, #8, #4 @ r0<- A from 11:8
+++ lsl r0, rINST, #20
+++ lsr r0, r0, #28
+++ @ end replacement of ubfx r0, rINST, #8, #4 @ r0<- A from 11:8
++ FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
++ GET_VREG r2, r1 @ r2<- fp[B]
++ GET_INST_OPCODE ip @ ip<- opcode from rINST
++@@ -3623,7 +3734,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ */
++ /* unop vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ VREG_INDEX_TO_ADDR r3, r3 @ r3<- &fp[B]
++ ldmia r3, {r0-r1} @ r0/r1<- vB/vB+1
++ FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
++@@ -3647,7 +3761,10 @@ artMterpAsmInstructionStart = .L_op_nop
++ * For: long-to-double
++ */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ VREG_INDEX_TO_ADDR r3, r3 @ r3<- &fp[B]
++ VREG_INDEX_TO_ADDR r9, r9 @ r9<- &fp[A]
++ vldr d0, [r3] @ d0<- vAA
++@@ -3681,7 +3798,10 @@ constvalop_long_to_double:
++ mov r3, rINST, lsr #12 @ r3<- B
++ VREG_INDEX_TO_ADDR r3, r3 @ r3<- &vB
++ flds s0, [r3] @ s0<- vB
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
++ ftosizs s1, s0 @ s1<- op
++ GET_INST_OPCODE ip @ extract opcode from rINST
++@@ -3704,7 +3824,10 @@ constvalop_long_to_double:
++ */
++ /* unop vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ @ begin replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ lsl rINST, rINST, #20
+++ lsr rINST, rINST, #28
+++ @ end replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
++ GET_VREG r0, r3 @ r0<- vB
++ VREG_INDEX_TO_ADDR r9, rINST @ r9<- &fp[A]
++ @ optional op; may set condition codes
++@@ -3733,7 +3856,10 @@ constvalop_long_to_double:
++ mov r3, rINST, lsr #12 @ r3<- B
++ VREG_INDEX_TO_ADDR r3, r3 @ r3<- &vB
++ flds s0, [r3] @ s0<- vB
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
++ vcvt.f64.f32 d0, s0 @ d0<- op
++ CLEAR_SHADOW_PAIR r9, ip, lr @ Zero shadow regs
++@@ -3758,7 +3884,10 @@ constvalop_long_to_double:
++ mov r3, rINST, lsr #12 @ r3<- B
++ VREG_INDEX_TO_ADDR r3, r3 @ r3<- &vB
++ fldd d0, [r3] @ d0<- vB
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
++ ftosizd s0, d0 @ s0<- op
++ GET_INST_OPCODE ip @ extract opcode from rINST
++@@ -3781,7 +3910,10 @@ constvalop_long_to_double:
++ */
++ /* unop vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ @ begin replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ lsl rINST, rINST, #20
+++ lsr rINST, rINST, #28
+++ @ end replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
++ VREG_INDEX_TO_ADDR r3, r3 @ r3<- &fp[B]
++ VREG_INDEX_TO_ADDR r9, rINST @ r9<- &fp[A]
++ ldmia r3, {r0-r1} @ r0/r1<- vAA
++@@ -3811,7 +3943,10 @@ constvalop_long_to_double:
++ mov r3, rINST, lsr #12 @ r3<- B
++ VREG_INDEX_TO_ADDR r3, r3 @ r3<- &vB
++ fldd d0, [r3] @ d0<- vB
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
++ vcvt.f32.f64 s0, d0 @ s0<- op
++ GET_INST_OPCODE ip @ extract opcode from rINST
++@@ -3835,7 +3970,10 @@ constvalop_long_to_double:
++ */
++ /* unop vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ GET_VREG r0, r3 @ r0<- vB
++ @ optional op; may set condition codes
++ FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
++@@ -3861,7 +3999,10 @@ constvalop_long_to_double:
++ */
++ /* unop vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ GET_VREG r0, r3 @ r0<- vB
++ @ optional op; may set condition codes
++ FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
++@@ -3887,7 +4028,10 @@ constvalop_long_to_double:
++ */
++ /* unop vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ GET_VREG r0, r3 @ r0<- vB
++ @ optional op; may set condition codes
++ FETCH_ADVANCE_INST 1 @ advance rPC, load rINST
++@@ -5133,7 +5277,10 @@ constvalop_long_to_double:
++ */
++ /* binop/2addr vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ GET_VREG r1, r3 @ r1<- vB
++ GET_VREG r0, r9 @ r0<- vA
++ .if 0
++@@ -5171,7 +5318,10 @@ constvalop_long_to_double:
++ */
++ /* binop/2addr vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ GET_VREG r1, r3 @ r1<- vB
++ GET_VREG r0, r9 @ r0<- vA
++ .if 0
++@@ -5210,7 +5360,10 @@ constvalop_long_to_double:
++ */
++ /* binop/2addr vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ GET_VREG r1, r3 @ r1<- vB
++ GET_VREG r0, r9 @ r0<- vA
++ .if 0
++@@ -5242,7 +5395,10 @@ constvalop_long_to_double:
++ *
++ */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ GET_VREG r1, r3 @ r1<- vB
++ GET_VREG r0, r9 @ r0<- vA
++ cmp r1, #0 @ is second operand zero?
++@@ -5277,7 +5433,10 @@ constvalop_long_to_double:
++ *
++ */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ GET_VREG r1, r3 @ r1<- vB
++ GET_VREG r0, r9 @ r0<- vA
++ cmp r1, #0 @ is second operand zero?
++@@ -5317,7 +5476,10 @@ constvalop_long_to_double:
++ */
++ /* binop/2addr vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ GET_VREG r1, r3 @ r1<- vB
++ GET_VREG r0, r9 @ r0<- vA
++ .if 0
++@@ -5355,7 +5517,10 @@ constvalop_long_to_double:
++ */
++ /* binop/2addr vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ GET_VREG r1, r3 @ r1<- vB
++ GET_VREG r0, r9 @ r0<- vA
++ .if 0
++@@ -5393,7 +5558,10 @@ constvalop_long_to_double:
++ */
++ /* binop/2addr vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ GET_VREG r1, r3 @ r1<- vB
++ GET_VREG r0, r9 @ r0<- vA
++ .if 0
++@@ -5431,7 +5599,10 @@ constvalop_long_to_double:
++ */
++ /* binop/2addr vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ GET_VREG r1, r3 @ r1<- vB
++ GET_VREG r0, r9 @ r0<- vA
++ .if 0
++@@ -5469,7 +5640,10 @@ constvalop_long_to_double:
++ */
++ /* binop/2addr vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ GET_VREG r1, r3 @ r1<- vB
++ GET_VREG r0, r9 @ r0<- vA
++ .if 0
++@@ -5507,7 +5681,10 @@ constvalop_long_to_double:
++ */
++ /* binop/2addr vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ GET_VREG r1, r3 @ r1<- vB
++ GET_VREG r0, r9 @ r0<- vA
++ .if 0
++@@ -5545,7 +5722,10 @@ constvalop_long_to_double:
++ */
++ /* binop/2addr vA, vB */
++ mov r1, rINST, lsr #12 @ r1<- B
++- ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ @ begin replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ lsl rINST, rINST, #20
+++ lsr rINST, rINST, #28
+++ @ end replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
++ VREG_INDEX_TO_ADDR r1, r1 @ r1<- &fp[B]
++ VREG_INDEX_TO_ADDR r9, rINST @ r9<- &fp[A]
++ ldmia r1, {r2-r3} @ r2/r3<- vBB/vBB+1
++@@ -5585,7 +5765,10 @@ constvalop_long_to_double:
++ */
++ /* binop/2addr vA, vB */
++ mov r1, rINST, lsr #12 @ r1<- B
++- ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ @ begin replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ lsl rINST, rINST, #20
+++ lsr rINST, rINST, #28
+++ @ end replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
++ VREG_INDEX_TO_ADDR r1, r1 @ r1<- &fp[B]
++ VREG_INDEX_TO_ADDR r9, rINST @ r9<- &fp[A]
++ ldmia r1, {r2-r3} @ r2/r3<- vBB/vBB+1
++@@ -5618,7 +5801,10 @@ constvalop_long_to_double:
++ */
++ /* mul-long/2addr vA, vB */
++ mov r1, rINST, lsr #12 @ r1<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ VREG_INDEX_TO_ADDR r1, r1 @ r1<- &fp[B]
++ VREG_INDEX_TO_ADDR rINST, r9 @ rINST<- &fp[A]
++ ldmia r1, {r2-r3} @ r2/r3<- vBB/vBB+1
++@@ -5654,7 +5840,10 @@ constvalop_long_to_double:
++ */
++ /* binop/2addr vA, vB */
++ mov r1, rINST, lsr #12 @ r1<- B
++- ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ @ begin replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ lsl rINST, rINST, #20
+++ lsr rINST, rINST, #28
+++ @ end replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
++ VREG_INDEX_TO_ADDR r1, r1 @ r1<- &fp[B]
++ VREG_INDEX_TO_ADDR r9, rINST @ r9<- &fp[A]
++ ldmia r1, {r2-r3} @ r2/r3<- vBB/vBB+1
++@@ -5695,7 +5884,10 @@ constvalop_long_to_double:
++ */
++ /* binop/2addr vA, vB */
++ mov r1, rINST, lsr #12 @ r1<- B
++- ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ @ begin replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ lsl rINST, rINST, #20
+++ lsr rINST, rINST, #28
+++ @ end replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
++ VREG_INDEX_TO_ADDR r1, r1 @ r1<- &fp[B]
++ VREG_INDEX_TO_ADDR r9, rINST @ r9<- &fp[A]
++ ldmia r1, {r2-r3} @ r2/r3<- vBB/vBB+1
++@@ -5735,7 +5927,10 @@ constvalop_long_to_double:
++ */
++ /* binop/2addr vA, vB */
++ mov r1, rINST, lsr #12 @ r1<- B
++- ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ @ begin replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ lsl rINST, rINST, #20
+++ lsr rINST, rINST, #28
+++ @ end replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
++ VREG_INDEX_TO_ADDR r1, r1 @ r1<- &fp[B]
++ VREG_INDEX_TO_ADDR r9, rINST @ r9<- &fp[A]
++ ldmia r1, {r2-r3} @ r2/r3<- vBB/vBB+1
++@@ -5775,7 +5970,10 @@ constvalop_long_to_double:
++ */
++ /* binop/2addr vA, vB */
++ mov r1, rINST, lsr #12 @ r1<- B
++- ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ @ begin replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ lsl rINST, rINST, #20
+++ lsr rINST, rINST, #28
+++ @ end replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
++ VREG_INDEX_TO_ADDR r1, r1 @ r1<- &fp[B]
++ VREG_INDEX_TO_ADDR r9, rINST @ r9<- &fp[A]
++ ldmia r1, {r2-r3} @ r2/r3<- vBB/vBB+1
++@@ -5815,7 +6013,10 @@ constvalop_long_to_double:
++ */
++ /* binop/2addr vA, vB */
++ mov r1, rINST, lsr #12 @ r1<- B
++- ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ @ begin replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ lsl rINST, rINST, #20
+++ lsr rINST, rINST, #28
+++ @ end replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
++ VREG_INDEX_TO_ADDR r1, r1 @ r1<- &fp[B]
++ VREG_INDEX_TO_ADDR r9, rINST @ r9<- &fp[A]
++ ldmia r1, {r2-r3} @ r2/r3<- vBB/vBB+1
++@@ -5844,7 +6045,10 @@ constvalop_long_to_double:
++ */
++ /* shl-long/2addr vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ GET_VREG r2, r3 @ r2<- vB
++ CLEAR_SHADOW_PAIR r9, lr, ip @ Zero out the shadow regs
++ VREG_INDEX_TO_ADDR r9, r9 @ r9<- &fp[A]
++@@ -5871,7 +6075,10 @@ constvalop_long_to_double:
++ */
++ /* shr-long/2addr vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ GET_VREG r2, r3 @ r2<- vB
++ CLEAR_SHADOW_PAIR r9, lr, ip @ Zero out the shadow regs
++ VREG_INDEX_TO_ADDR r9, r9 @ r9<- &fp[A]
++@@ -5898,7 +6105,10 @@ constvalop_long_to_double:
++ */
++ /* ushr-long/2addr vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ GET_VREG r2, r3 @ r2<- vB
++ CLEAR_SHADOW_PAIR r9, lr, ip @ Zero out the shadow regs
++ VREG_INDEX_TO_ADDR r9, r9 @ r9<- &fp[A]
++@@ -5929,7 +6139,10 @@ constvalop_long_to_double:
++ */
++ /* binop/2addr vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ VREG_INDEX_TO_ADDR r3, r3 @ r3<- &vB
++ VREG_INDEX_TO_ADDR r9, r9 @ r9<- &vA
++ flds s1, [r3] @ s1<- vB
++@@ -5955,7 +6168,10 @@ constvalop_long_to_double:
++ */
++ /* binop/2addr vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ VREG_INDEX_TO_ADDR r3, r3 @ r3<- &vB
++ VREG_INDEX_TO_ADDR r9, r9 @ r9<- &vA
++ flds s1, [r3] @ s1<- vB
++@@ -5981,7 +6197,10 @@ constvalop_long_to_double:
++ */
++ /* binop/2addr vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ VREG_INDEX_TO_ADDR r3, r3 @ r3<- &vB
++ VREG_INDEX_TO_ADDR r9, r9 @ r9<- &vA
++ flds s1, [r3] @ s1<- vB
++@@ -6007,7 +6226,10 @@ constvalop_long_to_double:
++ */
++ /* binop/2addr vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ VREG_INDEX_TO_ADDR r3, r3 @ r3<- &vB
++ VREG_INDEX_TO_ADDR r9, r9 @ r9<- &vA
++ flds s1, [r3] @ s1<- vB
++@@ -6041,7 +6263,10 @@ constvalop_long_to_double:
++ */
++ /* binop/2addr vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ GET_VREG r1, r3 @ r1<- vB
++ GET_VREG r0, r9 @ r0<- vA
++ .if 0
++@@ -6073,7 +6298,10 @@ constvalop_long_to_double:
++ */
++ /* binop/2addr vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ VREG_INDEX_TO_ADDR r3, r3 @ r3<- &vB
++ CLEAR_SHADOW_PAIR r9, ip, r0 @ Zero out shadow regs
++ fldd d1, [r3] @ d1<- vB
++@@ -6101,7 +6329,10 @@ constvalop_long_to_double:
++ */
++ /* binop/2addr vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ VREG_INDEX_TO_ADDR r3, r3 @ r3<- &vB
++ CLEAR_SHADOW_PAIR r9, ip, r0 @ Zero out shadow regs
++ fldd d1, [r3] @ d1<- vB
++@@ -6129,7 +6360,10 @@ constvalop_long_to_double:
++ */
++ /* binop/2addr vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ VREG_INDEX_TO_ADDR r3, r3 @ r3<- &vB
++ CLEAR_SHADOW_PAIR r9, ip, r0 @ Zero out shadow regs
++ fldd d1, [r3] @ d1<- vB
++@@ -6157,7 +6391,10 @@ constvalop_long_to_double:
++ */
++ /* binop/2addr vA, vB */
++ mov r3, rINST, lsr #12 @ r3<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ VREG_INDEX_TO_ADDR r3, r3 @ r3<- &vB
++ CLEAR_SHADOW_PAIR r9, ip, r0 @ Zero out shadow regs
++ fldd d1, [r3] @ d1<- vB
++@@ -6192,7 +6429,10 @@ constvalop_long_to_double:
++ */
++ /* binop/2addr vA, vB */
++ mov r1, rINST, lsr #12 @ r1<- B
++- ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ @ begin replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
+++ lsl rINST, rINST, #20
+++ lsr rINST, rINST, #28
+++ @ end replacement of ubfx rINST, rINST, #8, #4 @ rINST<- A
++ VREG_INDEX_TO_ADDR r1, r1 @ r1<- &fp[B]
++ VREG_INDEX_TO_ADDR r9, rINST @ r9<- &fp[A]
++ ldmia r1, {r2-r3} @ r2/r3<- vBB/vBB+1
++@@ -6231,7 +6471,10 @@ constvalop_long_to_double:
++ /* binop/lit16 vA, vB, #+CCCC */
++ FETCH_S r1, 1 @ r1<- ssssCCCC (sign-extended)
++ mov r2, rINST, lsr #12 @ r2<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ GET_VREG r0, r2 @ r0<- vB
++ .if 0
++ cmp r1, #0 @ is second operand zero?
++@@ -6267,7 +6510,10 @@ constvalop_long_to_double:
++ /* binop/lit16 vA, vB, #+CCCC */
++ FETCH_S r1, 1 @ r1<- ssssCCCC (sign-extended)
++ mov r2, rINST, lsr #12 @ r2<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ GET_VREG r0, r2 @ r0<- vB
++ .if 0
++ cmp r1, #0 @ is second operand zero?
++@@ -6303,7 +6549,10 @@ constvalop_long_to_double:
++ /* binop/lit16 vA, vB, #+CCCC */
++ FETCH_S r1, 1 @ r1<- ssssCCCC (sign-extended)
++ mov r2, rINST, lsr #12 @ r2<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ GET_VREG r0, r2 @ r0<- vB
++ .if 0
++ cmp r1, #0 @ is second operand zero?
++@@ -6334,7 +6583,10 @@ constvalop_long_to_double:
++ */
++ FETCH_S r1, 1 @ r1<- ssssCCCC (sign-extended)
++ mov r2, rINST, lsr #12 @ r2<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ GET_VREG r0, r2 @ r0<- vB
++ cmp r1, #0 @ is second operand zero?
++ beq common_errDivideByZero
++@@ -6368,7 +6620,10 @@ constvalop_long_to_double:
++ */
++ FETCH_S r1, 1 @ r1<- ssssCCCC (sign-extended)
++ mov r2, rINST, lsr #12 @ r2<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ GET_VREG r0, r2 @ r0<- vB
++ cmp r1, #0 @ is second operand zero?
++ beq common_errDivideByZero
++@@ -6405,7 +6660,10 @@ constvalop_long_to_double:
++ /* binop/lit16 vA, vB, #+CCCC */
++ FETCH_S r1, 1 @ r1<- ssssCCCC (sign-extended)
++ mov r2, rINST, lsr #12 @ r2<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ GET_VREG r0, r2 @ r0<- vB
++ .if 0
++ cmp r1, #0 @ is second operand zero?
++@@ -6440,7 +6698,10 @@ constvalop_long_to_double:
++ /* binop/lit16 vA, vB, #+CCCC */
++ FETCH_S r1, 1 @ r1<- ssssCCCC (sign-extended)
++ mov r2, rINST, lsr #12 @ r2<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ GET_VREG r0, r2 @ r0<- vB
++ .if 0
++ cmp r1, #0 @ is second operand zero?
++@@ -6475,7 +6736,10 @@ constvalop_long_to_double:
++ /* binop/lit16 vA, vB, #+CCCC */
++ FETCH_S r1, 1 @ r1<- ssssCCCC (sign-extended)
++ mov r2, rINST, lsr #12 @ r2<- B
++- ubfx r9, rINST, #8, #4 @ r9<- A
+++ @ begin replacement of ubfx r9, rINST, #8, #4 @ r9<- A
+++ lsl r9, rINST, #20
+++ lsr r9, r9, #28
+++ @ end replacement of ubfx r9, rINST, #8, #4 @ r9<- A
++ GET_VREG r0, r2 @ r0<- vB
++ .if 0
++ cmp r1, #0 @ is second operand zero?
++@@ -6833,7 +7097,10 @@ constvalop_long_to_double:
++ mov r9, rINST, lsr #8 @ r9<- AA
++ and r2, r3, #255 @ r2<- BB
++ GET_VREG r0, r2 @ r0<- vBB
++- ubfx r1, r3, #8, #5 @ optional; typically r1<- ssssssCC (sign extended)
+++ @ begin replacement of ubfx r1, r3, #8, #5 @ optional; typically r1<- ssssssCC (sign extended)
+++ lsl r1, r3, #19
+++ lsr r1, r1, #27
+++ @ end replacement of ubfx r1, r3, #8, #5 @ optional; typically r1<- ssssssCC (sign extended)
++ .if 0
++ @cmp r1, #0 @ is second operand zero?
++ beq common_errDivideByZero
++@@ -6874,7 +7141,10 @@ constvalop_long_to_double:
++ mov r9, rINST, lsr #8 @ r9<- AA
++ and r2, r3, #255 @ r2<- BB
++ GET_VREG r0, r2 @ r0<- vBB
++- ubfx r1, r3, #8, #5 @ optional; typically r1<- ssssssCC (sign extended)
+++ @ begin replacement of ubfx r1, r3, #8, #5 @ optional; typically r1<- ssssssCC (sign extended)
+++ lsl r1, r3, #19
+++ lsr r1, r1, #27
+++ @ end replacement of ubfx r1, r3, #8, #5 @ optional; typically r1<- ssssssCC (sign extended)
++ .if 0
++ @cmp r1, #0 @ is second operand zero?
++ beq common_errDivideByZero
++@@ -6915,7 +7185,10 @@ constvalop_long_to_double:
++ mov r9, rINST, lsr #8 @ r9<- AA
++ and r2, r3, #255 @ r2<- BB
++ GET_VREG r0, r2 @ r0<- vBB
++- ubfx r1, r3, #8, #5 @ optional; typically r1<- ssssssCC (sign extended)
+++ @ begin replacement of ubfx r1, r3, #8, #5 @ optional; typically r1<- ssssssCC (sign extended)
+++ lsl r1, r3, #19
+++ lsr r1, r1, #27
+++ @ end replacement of ubfx r1, r3, #8, #5 @ optional; typically r1<- ssssssCC (sign extended)
++ .if 0
++ @cmp r1, #0 @ is second operand zero?
++ beq common_errDivideByZero
++@@ -6938,7 +7211,10 @@ constvalop_long_to_double:
++ mov r2, rINST, lsr #12 @ r2<- B
++ FETCH r1, 1 @ r1<- field byte offset
++ GET_VREG r3, r2 @ r3<- object we're operating on
++- ubfx r2, rINST, #8, #4 @ r2<- A
+++ @ begin replacement of ubfx r2, rINST, #8, #4 @ r2<- A
+++ lsl r2, rINST, #20
+++ lsr r2, r2, #28
+++ @ end replacement of ubfx r2, rINST, #8, #4 @ r2<- A
++ cmp r3, #0 @ check object for null
++ beq common_errNullObject @ object was null
++ ldr r0, [r3, r1] @ r0<- obj.field
++@@ -6955,7 +7231,10 @@ constvalop_long_to_double:
++ mov r2, rINST, lsr #12 @ r2<- B
++ FETCH ip, 1 @ ip<- field byte offset
++ GET_VREG r3, r2 @ r3<- object we're operating on
++- ubfx r2, rINST, #8, #4 @ r2<- A
+++ @ begin replacement of ubfx r2, rINST, #8, #4 @ r2<- A
+++ lsl r2, rINST, #20
+++ lsr r2, r2, #28
+++ @ end replacement of ubfx r2, rINST, #8, #4 @ r2<- A
++ cmp r3, #0 @ check object for null
++ beq common_errNullObject @ object was null
++ ldrd r0, [r3, ip] @ r0<- obj.field (64 bits, aligned)
++@@ -6978,7 +7257,10 @@ constvalop_long_to_double:
++ GET_VREG r0, r2 @ r0<- object we're operating on
++ bl artIGetObjectFromMterp @ (obj, offset)
++ ldr r3, [rSELF, #THREAD_EXCEPTION_OFFSET]
++- ubfx r2, rINST, #8, #4 @ r2<- A
+++ @ begin replacement of ubfx r2, rINST, #8, #4 @ r2<- A
+++ lsl r2, rINST, #20
+++ lsr r2, r2, #28
+++ @ end replacement of ubfx r2, rINST, #8, #4 @ r2<- A
++ PREFETCH_INST 2
++ cmp r3, #0
++ bne MterpPossibleException @ bail out
++@@ -6996,7 +7278,10 @@ constvalop_long_to_double:
++ mov r2, rINST, lsr #12 @ r2<- B
++ FETCH r1, 1 @ r1<- field byte offset
++ GET_VREG r3, r2 @ r3<- fp[B], the object pointer
++- ubfx r2, rINST, #8, #4 @ r2<- A
+++ @ begin replacement of ubfx r2, rINST, #8, #4 @ r2<- A
+++ lsl r2, rINST, #20
+++ lsr r2, r2, #28
+++ @ end replacement of ubfx r2, rINST, #8, #4 @ r2<- A
++ cmp r3, #0 @ check object for null
++ beq common_errNullObject @ object was null
++ GET_VREG r0, r2 @ r0<- fp[A]
++@@ -7013,7 +7298,10 @@ constvalop_long_to_double:
++ mov r2, rINST, lsr #12 @ r2<- B
++ FETCH r3, 1 @ r3<- field byte offset
++ GET_VREG r2, r2 @ r2<- fp[B], the object pointer
++- ubfx r0, rINST, #8, #4 @ r0<- A
+++ @ begin replacement of ubfx r0, rINST, #8, #4 @ r0<- A
+++ lsl r0, rINST, #20
+++ lsr r0, r0, #28
+++ @ end replacement of ubfx r0, rINST, #8, #4 @ r0<- A
++ cmp r2, #0 @ check object for null
++ beq common_errNullObject @ object was null
++ VREG_INDEX_TO_ADDR r0, r0 @ r0<- &fp[A]
++@@ -7104,7 +7392,10 @@ constvalop_long_to_double:
++ mov r2, rINST, lsr #12 @ r2<- B
++ FETCH r1, 1 @ r1<- field byte offset
++ GET_VREG r3, r2 @ r3<- fp[B], the object pointer
++- ubfx r2, rINST, #8, #4 @ r2<- A
+++ @ begin replacement of ubfx r2, rINST, #8, #4 @ r2<- A
+++ lsl r2, rINST, #20
+++ lsr r2, r2, #28
+++ @ end replacement of ubfx r2, rINST, #8, #4 @ r2<- A
++ cmp r3, #0 @ check object for null
++ beq common_errNullObject @ object was null
++ GET_VREG r0, r2 @ r0<- fp[A]
++@@ -7124,7 +7415,10 @@ constvalop_long_to_double:
++ mov r2, rINST, lsr #12 @ r2<- B
++ FETCH r1, 1 @ r1<- field byte offset
++ GET_VREG r3, r2 @ r3<- fp[B], the object pointer
++- ubfx r2, rINST, #8, #4 @ r2<- A
+++ @ begin replacement of ubfx r2, rINST, #8, #4 @ r2<- A
+++ lsl r2, rINST, #20
+++ lsr r2, r2, #28
+++ @ end replacement of ubfx r2, rINST, #8, #4 @ r2<- A
++ cmp r3, #0 @ check object for null
++ beq common_errNullObject @ object was null
++ GET_VREG r0, r2 @ r0<- fp[A]
++@@ -7144,7 +7438,10 @@ constvalop_long_to_double:
++ mov r2, rINST, lsr #12 @ r2<- B
++ FETCH r1, 1 @ r1<- field byte offset
++ GET_VREG r3, r2 @ r3<- fp[B], the object pointer
++- ubfx r2, rINST, #8, #4 @ r2<- A
+++ @ begin replacement of ubfx r2, rINST, #8, #4 @ r2<- A
+++ lsl r2, rINST, #20
+++ lsr r2, r2, #28
+++ @ end replacement of ubfx r2, rINST, #8, #4 @ r2<- A
++ cmp r3, #0 @ check object for null
++ beq common_errNullObject @ object was null
++ GET_VREG r0, r2 @ r0<- fp[A]
++@@ -7164,7 +7461,10 @@ constvalop_long_to_double:
++ mov r2, rINST, lsr #12 @ r2<- B
++ FETCH r1, 1 @ r1<- field byte offset
++ GET_VREG r3, r2 @ r3<- fp[B], the object pointer
++- ubfx r2, rINST, #8, #4 @ r2<- A
+++ @ begin replacement of ubfx r2, rINST, #8, #4 @ r2<- A
+++ lsl r2, rINST, #20
+++ lsr r2, r2, #28
+++ @ end replacement of ubfx r2, rINST, #8, #4 @ r2<- A
++ cmp r3, #0 @ check object for null
++ beq common_errNullObject @ object was null
++ GET_VREG r0, r2 @ r0<- fp[A]
++@@ -7184,7 +7484,10 @@ constvalop_long_to_double:
++ mov r2, rINST, lsr #12 @ r2<- B
++ FETCH r1, 1 @ r1<- field byte offset
++ GET_VREG r3, r2 @ r3<- object we're operating on
++- ubfx r2, rINST, #8, #4 @ r2<- A
+++ @ begin replacement of ubfx r2, rINST, #8, #4 @ r2<- A
+++ lsl r2, rINST, #20
+++ lsr r2, r2, #28
+++ @ end replacement of ubfx r2, rINST, #8, #4 @ r2<- A
++ cmp r3, #0 @ check object for null
++ beq common_errNullObject @ object was null
++ ldrb r0, [r3, r1] @ r0<- obj.field
++@@ -7204,7 +7507,10 @@ constvalop_long_to_double:
++ mov r2, rINST, lsr #12 @ r2<- B
++ FETCH r1, 1 @ r1<- field byte offset
++ GET_VREG r3, r2 @ r3<- object we're operating on
++- ubfx r2, rINST, #8, #4 @ r2<- A
+++ @ begin replacement of ubfx r2, rINST, #8, #4 @ r2<- A
+++ lsl r2, rINST, #20
+++ lsr r2, r2, #28
+++ @ end replacement of ubfx r2, rINST, #8, #4 @ r2<- A
++ cmp r3, #0 @ check object for null
++ beq common_errNullObject @ object was null
++ ldrsb r0, [r3, r1] @ r0<- obj.field
++@@ -7224,7 +7530,10 @@ constvalop_long_to_double:
++ mov r2, rINST, lsr #12 @ r2<- B
++ FETCH r1, 1 @ r1<- field byte offset
++ GET_VREG r3, r2 @ r3<- object we're operating on
++- ubfx r2, rINST, #8, #4 @ r2<- A
+++ @ begin replacement of ubfx r2, rINST, #8, #4 @ r2<- A
+++ lsl r2, rINST, #20
+++ lsr r2, r2, #28
+++ @ end replacement of ubfx r2, rINST, #8, #4 @ r2<- A
++ cmp r3, #0 @ check object for null
++ beq common_errNullObject @ object was null
++ ldrh r0, [r3, r1] @ r0<- obj.field
++@@ -7244,7 +7553,10 @@ constvalop_long_to_double:
++ mov r2, rINST, lsr #12 @ r2<- B
++ FETCH r1, 1 @ r1<- field byte offset
++ GET_VREG r3, r2 @ r3<- object we're operating on
++- ubfx r2, rINST, #8, #4 @ r2<- A
+++ @ begin replacement of ubfx r2, rINST, #8, #4 @ r2<- A
+++ lsl r2, rINST, #20
+++ lsr r2, r2, #28
+++ @ end replacement of ubfx r2, rINST, #8, #4 @ r2<- A
++ cmp r3, #0 @ check object for null
++ beq common_errNullObject @ object was null
++ ldrsh r0, [r3, r1] @ r0<- obj.field
++@@ -7406,7 +7718,10 @@ artMterpAsmSisterStart:
++ * to modest integer. The EABI convert function isn't doing this for us.
++ */
++ f2l_doconv:
++- ubfx r2, r0, #23, #8 @ grab the exponent
+++ @ begin replacement of ubfx r2, r0, #23, #8 @ grab the exponent
+++ lsl r2, r0, #1
+++ lsr r2, r2, #24
+++ @ end replacement of ubfx r2, r0, #23, #8 @ grab the exponent
++ cmp r2, #0xbe @ MININT < x > MAXINT?
++ bhs f2l_special_cases
++ b __aeabi_f2lz @ tail call to convert float to long
++@@ -7436,7 +7751,10 @@ f2l_maybeNaN:
++ * to modest integer. The EABI convert function isn't doing this for us.
++ */
++ d2l_doconv:
++- ubfx r2, r1, #20, #11 @ grab the exponent
+++ @ begin replacement of ubfx r2, r1, #20, #11 @ grab the exponent
+++ lsl r2, r1, #1
+++ lsr r2, r2, #21
+++ @ end replacement of ubfx r2, r1, #20, #11 @ grab the exponent
++ movw r3, #0x43e
++ cmp r2, r3 @ MINLONG < x > MAXLONG?
++ bhs d2l_special_cases
++Index: android-platform-art-8.1.0+r23/runtime/interpreter/mterp/replace-ubfx.py
++===================================================================
++--- /dev/null
+++++ android-platform-art-8.1.0+r23/runtime/interpreter/mterp/replace-ubfx.py
++@@ -0,0 +1,51 @@
+++#!/usr/bin/python3
+++#script to replace ubfx with equivilent code for older arm
+++#note: these replacements will unfortunately clobber the carry
+++#flag, I hope that doesn't break anything.
+++#Copyright 2019 Peter Michael Green
+++#
+++#Permission is hereby granted, free of charge, to any person obtaining a copy of
+++#this software and associated documentation files (the "Software"), to deal in
+++#the Software without restriction, including without limitation the rights to
+++#use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
+++#of the Software, and to permit persons to whom the Software is furnished to do
+++#so, subject to the following conditions:
+++#
+++#The above copyright notice and this permission notice shall be included in all
+++#copies or substantial portions of the Software.
+++#
+++#THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+++#IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+++#FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+++#AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+++#LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+++#OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+++#SOFTWARE.
+++import sys
+++
+++f = open(sys.argv[1],"r")
+++for line in f:
+++ line = line.rstrip()
+++ linels = line.lstrip()
+++ linesplit = linels.split()
+++ if (len(linesplit) > 0) and ((linesplit[0] == 'ubfx') or (linesplit[0] == 'sbfx')):
+++ linestartwhitespace = line[:(len(line)-len(linels))]
+++ destreg = linesplit[1][:-1]
+++ sourcereg = linesplit[2][:-1]
+++ lsb = int(linesplit[3][1:-1])
+++ width = int(linesplit[4][1:])
+++ #print(linesplit)
+++ #print((destreg,sourcereg,lsb,width))
+++ print(linestartwhitespace+'@ begin replacement of '+linels)
+++ print(linestartwhitespace+'lsl '+destreg+', '+sourcereg+', #'+str(32-width-lsb))
+++ if linesplit[0] == 'ubfx':
+++ rightshift = 'lsr'
+++ else:
+++ rightshift = 'asr'
+++ print(linestartwhitespace+rightshift+' '+destreg+', '+destreg+', #'+str(32-width))
+++ print(linestartwhitespace+'@ end replacement of '+linels)
+++ else:
+++ print(line)
+++f.close()
+++
+++