data = sm.datasets.china_smoking.load()
mat = np.asarray(data.data)
- tables = [np.reshape(x, (2, 2)) for x in mat]
+ tables = [np.reshape(list(x)[1:], (2, 2)) for x in mat]
st = sm.stats.StratifiedTable(tables)
print(st.summary())
},
"outputs": [],
"source": [
- "affair_mod.predict(respondent1000)"
+ "affair_mod.predict(pd.DataFrame(respondent1000).T) # patsy requires a DataFrame, not a Series"
]
},
{
},
"outputs": [],
"source": [
- "resp25 = glm_mod.predict(means25)\n",
- "resp75 = glm_mod.predict(means75)\n",
+ "resp25 = glm_mod.predict(pd.DataFrame(means25).T) # patsy requires a DataFrame, not a Series\n",
+ "resp75 = glm_mod.predict(pd.DataFrame(means75).T)\n",
"diff = resp75 - resp25"
]
},
"outputs": [],
"source": [
"fig, ax = plt.subplots()\n",
- "pd.tools.plotting.scatter_plot(pca_model.loadings, 'comp_00', 'comp_01', ax=ax)\n",
+ "pca_model.loadings.plot.scatter(x='comp_00', y='comp_01', ax=ax)\n",
"ax.set_xlabel(\"PC 1\", size=17)\n",
"ax.set_ylabel(\"PC 2\", size=17)\n",
"dta.index[pca_model.loadings.ix[:, 1] > .2].values"
"outputs": [],
"source": [
"sidak = ols_model.outlier_test('sidak')\n",
- "sidak.sort('unadj_p', inplace=True)\n",
+ "sidak.sort_values('unadj_p', inplace=True)\n",
"print(sidak)"
]
},
"outputs": [],
"source": [
"fdr = ols_model.outlier_test('fdr_bh')\n",
- "fdr.sort('unadj_p', inplace=True)\n",
+ "fdr.sort_values('unadj_p', inplace=True)\n",
"print(fdr)"
]
},
"outputs": [],
"source": [
"from IPython.display import Image\n",
- "Image(filename='star_diagram.png')"
+ "import os.path\n",
+ "Image(filename='star_diagram.png' if os.path.exists('star_diagram.png') else '../examples/notebooks/star_diagram.png')"
]
},
{
"outputs": [],
"source": [
"sidak2 = ols_model.outlier_test('sidak')\n",
- "sidak2.sort('unadj_p', inplace=True)\n",
+ "sidak2.sort_values('unadj_p', inplace=True)\n",
"print(sidak2)"
]
},
"outputs": [],
"source": [
"fdr2 = ols_model.outlier_test('fdr_bh')\n",
- "fdr2.sort('unadj_p', inplace=True)\n",
+ "fdr2.sort_values('unadj_p', inplace=True)\n",
"print(fdr2)"
]
},