mark_tests_working_on_intel
authorDebian Science Team <debian-science-maintainers@lists.alioth.debian.org>
Sat, 4 Nov 2017 00:02:42 +0000 (00:02 +0000)
committerPeter Michael Green <plugwash@raspbian.org>
Sat, 4 Nov 2017 00:02:42 +0000 (00:02 +0000)
Last-Update Sat, 14 Oct 2017 19:42:59 +0200
Bug-Debian: https://bugs.debian.org/877419

Gbp-Pq: Name mark_tests_working_on_intel.patch

pandas/tests/dtypes/test_cast.py
pandas/tests/frame/test_constructors.py
pandas/tests/frame/test_indexing.py
pandas/tests/frame/test_operators.py
pandas/tests/groupby/test_aggregate.py
pandas/tests/io/test_stata.py
pandas/tests/series/test_constructors.py
pandas/tests/series/test_indexing.py
pandas/tests/series/test_period.py
pandas/tests/test_algos.py
pandas/tests/test_resample.py

index 767e99d98cf29f87af019ff7116016329b5b3aa0..48d875668dfc3f06f4993d8fba2f5093b5179a56 100644 (file)
@@ -67,6 +67,7 @@ class TestMaybeDowncast(object):
             tm.assert_almost_equal(result, np.array([], dtype=np.int64))
             assert result.dtype == np.int64
 
+    @pytest.mark.intel
     def test_datetimelikes_nan(self):
         arr = np.array([1, 2, np.nan])
         exp = np.array([1, 2, np.datetime64('NaT')], dtype='datetime64[ns]')
index 20538056688726a361b59be4490fa58feb9fdd93..ca5f8a838c057d34f2c260c12221df75e6ba5687 100644 (file)
@@ -1741,6 +1741,7 @@ class TestDataFrameConstructors(TestData):
     def test_from_records_sequencelike(self):
         import platform
         if platform.uname()[4].startswith('armv'):
+            import nose
             raise nose.SkipTest("Fails on Debian arm boxes due to locales or whatelse")
         df = DataFrame({'A': np.array(np.random.randn(6), dtype=np.float64),
                         'A1': np.array(np.random.randn(6), dtype=np.float64),
index f0503b60eeefa39503d88f39985bcc799204991e..215ecfe2405779cf4d50b937f732a02e3f0c2717 100644 (file)
@@ -2607,6 +2607,7 @@ class TestDataFrameIndexing(TestData):
         result = a.where(do_not_replace, b)
         assert_frame_equal(result, expected)
 
+    @pytest.mark.intel
     def test_where_datetime(self):
 
         # GH 3311
index 8ec6c6e6263d80b158146c4b34c641d81594909b..f8ecd4085bb71fbbd4d8be14c1d8ab5a9a6f15fe 100644 (file)
@@ -177,6 +177,7 @@ class TestDataFrameOperators(TestData):
             df)), 'b': date_range('20100101', periods=len(df))})
         check(df, df2)
 
+    @pytest.mark.intel
     def test_timestamp_compare(self):
         # make sure we can compare Timestamps on the right AND left hand side
         # GH4982
index d7b46e6748b99ba3f88982bf69dc499d66698686..5d42ca7523a8733d1e5b29c14719fcf841280f10 100644 (file)
@@ -131,6 +131,7 @@ class TestGroupByAggregate(object):
         grouped = df.groupby(df.index.month)
         list(grouped)
 
+    @pytest.mark.intel
     def test_agg_dict_parameter_cast_result_dtypes(self):
         # GH 12821
 
index 9358fe4d2c983c2bb95309631a1741b437093995..a701680c267f12e5ce61c71560259a862d16c9ed 100644 (file)
@@ -24,6 +24,7 @@ from pandas.core.dtypes.common import is_categorical_dtype
 
 from pandas.compat import is_platform_little_endian
 if not is_platform_little_endian():
+    import nose
     raise nose.SkipTest("known failure of test_stata on non-little endian")
 
 
index d591aa4f567a91c2906ca15582b2af37af3846ef..f3c4e6d98dcb288ce817dc2dea033bddb3f70184 100644 (file)
@@ -828,6 +828,7 @@ class TestSeriesConstructors(TestData):
         series[2] = val
         assert isnull(series[2])
 
+    @pytest.mark.intel
     def test_NaT_cast(self):
         # GH10747
         result = Series([np.nan]).astype('M8[ns]')
index 25229b261b91eac3395799d0929a9d03d3d562bc..8e4ab1472ff1edb3d91f0ea3f1d52f804c9d537a 100644 (file)
@@ -1378,6 +1378,7 @@ class TestSeriesIndexing(TestData):
         expected = Series([5, 11, 2, 5, 11, 2], index=[0, 1, 2, 0, 1, 2])
         assert_series_equal(comb, expected)
 
+    @pytest.mark.intel
     def test_where_datetime(self):
         s = Series(date_range('20130102', periods=2))
         expected = Series([10, 10], dtype='datetime64[ns]')
@@ -1407,6 +1408,7 @@ class TestSeriesIndexing(TestData):
         expected = Series([pd.NaT, s[1]])
         assert_series_equal(rs, expected)
 
+    @pytest.mark.intel
     def test_where_timedelta(self):
         s = Series([1, 2], dtype='timedelta64[ns]')
         expected = Series([10, 10], dtype='timedelta64[ns]')
index 6e8ee38d366e2f10917088f69808d91d4507ade9..d69f9a271f21e08696df4ff82db61e750d643514 100644 (file)
@@ -94,6 +94,7 @@ class TestSeriesPeriod(object):
         series[2] = val
         assert isnull(series[2])
 
+    @pytest.mark.intel
     def test_NaT_cast(self):
         result = Series([np.nan]).astype('period[D]')
         expected = Series([NaT])
index 3fa236c4ae8a441083ed50084511dc4b421d4fa4..5ad5ca9c385d060833a0d20af44f0f4c48d6abc1 100644 (file)
@@ -747,6 +747,7 @@ class TestValueCounts(object):
             expected = Series([2, 1, 1], index=[5., 10.3, np.nan])
             tm.assert_series_equal(result, expected)
 
+    @pytest.mark.intel
     def test_value_counts_normalized(self):
         # GH12558
         s = Series([1, 2, np.nan, np.nan, np.nan])
index bcc32bd73af3e34a010666064eebb49545d0c3b2..021b4abde33e160e009e3f3ac4e3456e467d43ad 100644 (file)
@@ -2152,6 +2152,7 @@ class TestDatetimeIndex(Base):
 
         assert_frame_equal(frame.resample('60s').mean(), frame_3s)
 
+    @pytest.mark.intel
     def test_resample_timedelta_values(self):
         # GH 13119
         # check that timedelta dtype is preserved when NaT values are
@@ -2169,6 +2170,7 @@ class TestDatetimeIndex(Base):
         res = df['time'].resample('2D').first()
         tm.assert_series_equal(res, exp)
 
+    @pytest.mark.intel
     def test_resample_datetime_values(self):
         # GH 13119
         # check that datetime dtype is preserved when NaT values are