)
import pandas._testing as tm
from pandas.core.reshape import reshape as reshape_lib
+from pandas.compat import IS64
@pytest.fixture(params=[True, False])
tm.assert_frame_equal(recons, df)
@pytest.mark.slow
+ @pytest.mark.xfail(condition=not IS64, reason="assumes default int is int64")
def test_unstack_number_of_levels_larger_than_int32(self, monkeypatch):
# GH#20601
# GH 26314: Change ValueError to PerformanceWarning
import numpy as np
import pytest
+from pandas.compat import IS64
from pandas.errors import (
PerformanceWarning,
SpecificationError,
tm.assert_series_equal(result, expected)
+@pytest.mark.xfail(not IS64, reason="GH#38778: fail on 32-bit system", strict=False)
@pytest.mark.parametrize(
"func, values", [("sum", [97.0, 98.0]), ("mean", [24.25, 24.5])]
)
tm.assert_frame_equal(result, expected)
+@pytest.mark.xfail(not IS64, reason="GH#38778: fail on 32-bit system", strict=False)
def test_groupby_numerical_stability_cumsum():
# GH#38934
data = [1e16, 1e16, 97, 98, -5e15, -5e15, -5e15, -5e15]
from pandas.api.types import CategoricalDtype
from pandas.core.reshape import reshape as reshape_lib
from pandas.core.reshape.pivot import pivot_table
+from pandas.compat import IS64
@pytest.fixture(params=[True, False])
tm.assert_frame_equal(result, expected)
@pytest.mark.slow
+ @pytest.mark.xfail(condition=not IS64, reason="assumes default int is int64")
def test_pivot_number_of_levels_larger_than_int32(self, monkeypatch):
# GH 20601
# GH 26314: Change ValueError to PerformanceWarning
def test_round_numpy_with_nan(self, any_float_dtype):
# See GH#14197
ser = Series([1.53, np.nan, 0.06], dtype=any_float_dtype)
- with tm.assert_produces_warning(None):
- result = ser.round()
+ result = ser.round() # on armhf, numpy warns
expected = Series([2.0, np.nan, 0.0], dtype=any_float_dtype)
tm.assert_series_equal(result, expected)
TimedeltaIndex,
)
import pandas._testing as tm
+from pandas.compat import IS64
from pandas.core.arrays import (
DatetimeArray,
TimedeltaArray,
assert name in output
+@pytest.mark.xfail(
+ condition=not IS64,
+ reason="dask has different nativesize-int vs int64 type rules",
+ strict=False,
+)
def test_frame_setitem_dask_array_into_new_col():
# GH#47128
import numpy as np
import pytest
+from pandas.compat import IS64
from pandas import (
NA,
assert result.name is None
@pytest.mark.slow
+ @pytest.mark.xfail(condition=not IS64, reason="assumes default int is int64")
@pytest.mark.parametrize("how", ["left", "right", "outer", "inner"])
def test_int64_overflow_how_merge(self, left_right, how):
left, right = left_right
tm.assert_frame_equal(out, merge(left, right, how=how, sort=True))
@pytest.mark.slow
+ @pytest.mark.xfail(condition=not IS64, reason="assumes default int is int64")
def test_int64_overflow_sort_false_order(self, left_right):
left, right = left_right
tm.assert_frame_equal(right, out[right.columns.tolist()])
@pytest.mark.slow
+ @pytest.mark.xfail(condition=not IS64, reason="assumes default int is int64", strict=False)
@pytest.mark.parametrize("how", ["left", "right", "outer", "inner"])
@pytest.mark.parametrize("sort", [True, False])
def test_int64_overflow_one_to_many_none_match(self, how, sort):