return DataFrame({"A": [1, 2, 3]})
+@pytest.mark.xfail(reason="dask https://bugs.debian.org/1068422",raises=TypeError,strict=False)
def test_dask(df):
try:
from multiprocessing.pool import ThreadPool
pd.set_option("compute.use_numexpr", olduse)
+@pytest.mark.xfail(reason="dask https://bugs.debian.org/1068422",raises=TypeError,strict=False)
def test_dask_ufunc():
# dask sets "compute.use_numexpr" to False, so catch the current value
# and ensure to reset it afterwards to avoid impacting other tests
pd.set_option("compute.use_numexpr", olduse)
+@pytest.mark.xfail(reason="dask https://bugs.debian.org/1068422",raises=TypeError,strict=False)
def test_construct_dask_float_array_int_dtype_match_ndarray():
# GH#40110 make sure we treat a float-dtype dask array with the same
# rules we would for an ndarray