--- /dev/null
+Author: A. Maitland Bottoms <bottoms@debian.org>
+Forwarded: not-needed
+Description: patch sse2neon here
+ Simply manage sse2neon.h in debian/patches.
+
+--- /dev/null
++++ b/include/volk/sse2neon/sse2neon.h
+@@ -0,0 +1,9236 @@
++#ifndef SSE2NEON_H
++#define SSE2NEON_H
++
++// This header file provides a simple API translation layer
++// between SSE intrinsics to their corresponding Arm/Aarch64 NEON versions
++//
++// Contributors to this work are:
++// John W. Ratcliff <jratcliffscarab@gmail.com>
++// Brandon Rowlett <browlett@nvidia.com>
++// Ken Fast <kfast@gdeb.com>
++// Eric van Beurden <evanbeurden@nvidia.com>
++// Alexander Potylitsin <apotylitsin@nvidia.com>
++// Hasindu Gamaarachchi <hasindu2008@gmail.com>
++// Jim Huang <jserv@ccns.ncku.edu.tw>
++// Mark Cheng <marktwtn@gmail.com>
++// Malcolm James MacLeod <malcolm@gulden.com>
++// Devin Hussey (easyaspi314) <husseydevin@gmail.com>
++// Sebastian Pop <spop@amazon.com>
++// Developer Ecosystem Engineering <DeveloperEcosystemEngineering@apple.com>
++// Danila Kutenin <danilak@google.com>
++// François Turban (JishinMaster) <francois.turban@gmail.com>
++// Pei-Hsuan Hung <afcidk@gmail.com>
++// Yang-Hao Yuan <yuanyanghau@gmail.com>
++// Syoyo Fujita <syoyo@lighttransport.com>
++// Brecht Van Lommel <brecht@blender.org>
++// Jonathan Hue <jhue@adobe.com>
++// Cuda Chen <clh960524@gmail.com>
++// Aymen Qader <aymen.qader@arm.com>
++// Anthony Roberts <anthony.roberts@linaro.org>
++
++/*
++ * sse2neon is freely redistributable under the MIT License.
++ *
++ * Permission is hereby granted, free of charge, to any person obtaining a copy
++ * of this software and associated documentation files (the "Software"), to deal
++ * in the Software without restriction, including without limitation the rights
++ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
++ * copies of the Software, and to permit persons to whom the Software is
++ * furnished to do so, subject to the following conditions:
++ *
++ * The above copyright notice and this permission notice shall be included in
++ * all copies or substantial portions of the Software.
++ *
++ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
++ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
++ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
++ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
++ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
++ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
++ * SOFTWARE.
++ */
++
++/* Tunable configurations */
++
++/* Enable precise implementation of math operations
++ * This would slow down the computation a bit, but gives consistent result with
++ * x86 SSE. (e.g. would solve a hole or NaN pixel in the rendering result)
++ */
++/* _mm_min|max_ps|ss|pd|sd */
++#ifndef SSE2NEON_PRECISE_MINMAX
++#define SSE2NEON_PRECISE_MINMAX (0)
++#endif
++/* _mm_rcp_ps and _mm_div_ps */
++#ifndef SSE2NEON_PRECISE_DIV
++#define SSE2NEON_PRECISE_DIV (0)
++#endif
++/* _mm_sqrt_ps and _mm_rsqrt_ps */
++#ifndef SSE2NEON_PRECISE_SQRT
++#define SSE2NEON_PRECISE_SQRT (0)
++#endif
++/* _mm_dp_pd */
++#ifndef SSE2NEON_PRECISE_DP
++#define SSE2NEON_PRECISE_DP (0)
++#endif
++
++/* Enable inclusion of windows.h on MSVC platforms
++ * This makes _mm_clflush functional on windows, as there is no builtin.
++ */
++#ifndef SSE2NEON_INCLUDE_WINDOWS_H
++#define SSE2NEON_INCLUDE_WINDOWS_H (0)
++#endif
++
++/* compiler specific definitions */
++#if defined(__GNUC__) || defined(__clang__)
++#pragma push_macro("FORCE_INLINE")
++#pragma push_macro("ALIGN_STRUCT")
++#define FORCE_INLINE static inline __attribute__((always_inline))
++#define ALIGN_STRUCT(x) __attribute__((aligned(x)))
++#define _sse2neon_likely(x) __builtin_expect(!!(x), 1)
++#define _sse2neon_unlikely(x) __builtin_expect(!!(x), 0)
++#elif defined(_MSC_VER)
++#if _MSVC_TRADITIONAL
++#error Using the traditional MSVC preprocessor is not supported! Use /Zc:preprocessor instead.
++#endif
++#ifndef FORCE_INLINE
++#define FORCE_INLINE static inline
++#endif
++#ifndef ALIGN_STRUCT
++#define ALIGN_STRUCT(x) __declspec(align(x))
++#endif
++#define _sse2neon_likely(x) (x)
++#define _sse2neon_unlikely(x) (x)
++#else
++#pragma message("Macro name collisions may happen with unsupported compilers.")
++#endif
++
++#if defined(__GNUC__) && __GNUC__ < 10
++#warning "GCC versions earlier than 10 are not supported."
++#endif
++
++/* C language does not allow initializing a variable with a function call. */
++#ifdef __cplusplus
++#define _sse2neon_const static const
++#else
++#define _sse2neon_const const
++#endif
++
++#include <stdint.h>
++#include <stdlib.h>
++
++#if defined(_WIN32)
++/* Definitions for _mm_{malloc,free} are provided by <malloc.h>
++ * from both MinGW-w64 and MSVC.
++ */
++#define SSE2NEON_ALLOC_DEFINED
++#endif
++
++/* If using MSVC */
++#ifdef _MSC_VER
++#include <intrin.h>
++#if SSE2NEON_INCLUDE_WINDOWS_H
++#include <processthreadsapi.h>
++#include <windows.h>
++#endif
++
++#if !defined(__cplusplus)
++#error SSE2NEON only supports C++ compilation with this compiler
++#endif
++
++#ifdef SSE2NEON_ALLOC_DEFINED
++#include <malloc.h>
++#endif
++
++#if (defined(_M_AMD64) || defined(__x86_64__)) || \
++ (defined(_M_ARM64) || defined(__arm64__))
++#define SSE2NEON_HAS_BITSCAN64
++#endif
++#endif
++
++#if defined(__GNUC__) || defined(__clang__)
++#define _sse2neon_define0(type, s, body) \
++ __extension__({ \
++ type _a = (s); \
++ body \
++ })
++#define _sse2neon_define1(type, s, body) \
++ __extension__({ \
++ type _a = (s); \
++ body \
++ })
++#define _sse2neon_define2(type, a, b, body) \
++ __extension__({ \
++ type _a = (a), _b = (b); \
++ body \
++ })
++#define _sse2neon_return(ret) (ret)
++#else
++#define _sse2neon_define0(type, a, body) [=](type _a) { body }(a)
++#define _sse2neon_define1(type, a, body) [](type _a) { body }(a)
++#define _sse2neon_define2(type, a, b, body) \
++ [](type _a, type _b) { body }((a), (b))
++#define _sse2neon_return(ret) return ret
++#endif
++
++#define _sse2neon_init(...) \
++ { \
++ __VA_ARGS__ \
++ }
++
++/* Compiler barrier */
++#if defined(_MSC_VER)
++#define SSE2NEON_BARRIER() _ReadWriteBarrier()
++#else
++#define SSE2NEON_BARRIER() \
++ do { \
++ __asm__ __volatile__("" ::: "memory"); \
++ (void) 0; \
++ } while (0)
++#endif
++
++/* Memory barriers
++ * __atomic_thread_fence does not include a compiler barrier; instead,
++ * the barrier is part of __atomic_load/__atomic_store's "volatile-like"
++ * semantics.
++ */
++#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L)
++#include <stdatomic.h>
++#endif
++
++FORCE_INLINE void _sse2neon_smp_mb(void)
++{
++ SSE2NEON_BARRIER();
++#if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201112L) && \
++ !defined(__STDC_NO_ATOMICS__)
++ atomic_thread_fence(memory_order_seq_cst);
++#elif defined(__GNUC__) || defined(__clang__)
++ __atomic_thread_fence(__ATOMIC_SEQ_CST);
++#else /* MSVC */
++ __dmb(_ARM64_BARRIER_ISH);
++#endif
++}
++
++/* Architecture-specific build options */
++/* FIXME: #pragma GCC push_options is only available on GCC */
++#if defined(__GNUC__)
++#if defined(__arm__) && __ARM_ARCH == 7
++/* According to ARM C Language Extensions Architecture specification,
++ * __ARM_NEON is defined to a value indicating the Advanced SIMD (NEON)
++ * architecture supported.
++ */
++#if !defined(__ARM_NEON) || !defined(__ARM_NEON__)
++#error "You must enable NEON instructions (e.g. -mfpu=neon) to use SSE2NEON."
++#endif
++#if !defined(__clang__)
++#pragma GCC push_options
++#pragma GCC target("fpu=neon")
++#endif
++#elif defined(__aarch64__) || defined(_M_ARM64)
++#if !defined(__clang__) && !defined(_MSC_VER)
++#pragma GCC push_options
++#pragma GCC target("+simd")
++#endif
++#elif __ARM_ARCH == 8
++#if !defined(__ARM_NEON) || !defined(__ARM_NEON__)
++#error \
++ "You must enable NEON instructions (e.g. -mfpu=neon-fp-armv8) to use SSE2NEON."
++#endif
++#if !defined(__clang__) && !defined(_MSC_VER)
++#pragma GCC push_options
++#endif
++#else
++#error "Unsupported target. Must be either ARMv7-A+NEON or ARMv8-A."
++#endif
++#endif
++
++#include <arm_neon.h>
++#if (!defined(__aarch64__) && !defined(_M_ARM64)) && (__ARM_ARCH == 8)
++#if defined __has_include && __has_include(<arm_acle.h>)
++#include <arm_acle.h>
++#endif
++#endif
++
++/* Apple Silicon cache lines are double of what is commonly used by Intel, AMD
++ * and other Arm microarchitectures use.
++ * From sysctl -a on Apple M1:
++ * hw.cachelinesize: 128
++ */
++#if defined(__APPLE__) && (defined(__aarch64__) || defined(__arm64__))
++#define SSE2NEON_CACHELINE_SIZE 128
++#else
++#define SSE2NEON_CACHELINE_SIZE 64
++#endif
++
++/* Rounding functions require either Aarch64 instructions or libm fallback */
++#if !defined(__aarch64__) && !defined(_M_ARM64)
++#include <math.h>
++#endif
++
++/* On ARMv7, some registers, such as PMUSERENR and PMCCNTR, are read-only
++ * or even not accessible in user mode.
++ * To write or access to these registers in user mode,
++ * we have to perform syscall instead.
++ */
++#if (!defined(__aarch64__) && !defined(_M_ARM64))
++#include <sys/time.h>
++#endif
++
++/* "__has_builtin" can be used to query support for built-in functions
++ * provided by gcc/clang and other compilers that support it.
++ */
++#ifndef __has_builtin /* GCC prior to 10 or non-clang compilers */
++/* Compatibility with gcc <= 9 */
++#if defined(__GNUC__) && (__GNUC__ <= 9)
++#define __has_builtin(x) HAS##x
++#define HAS__builtin_popcount 1
++#define HAS__builtin_popcountll 1
++
++// __builtin_shuffle introduced in GCC 4.7.0
++#if (__GNUC__ >= 5) || ((__GNUC__ == 4) && (__GNUC_MINOR__ >= 7))
++#define HAS__builtin_shuffle 1
++#else
++#define HAS__builtin_shuffle 0
++#endif
++
++#define HAS__builtin_shufflevector 0
++#define HAS__builtin_nontemporal_store 0
++#else
++#define __has_builtin(x) 0
++#endif
++#endif
++
++/**
++ * MACRO for shuffle parameter for _mm_shuffle_ps().
++ * Argument fp3 is a digit[0123] that represents the fp from argument "b"
++ * of mm_shuffle_ps that will be placed in fp3 of result. fp2 is the same
++ * for fp2 in result. fp1 is a digit[0123] that represents the fp from
++ * argument "a" of mm_shuffle_ps that will be places in fp1 of result.
++ * fp0 is the same for fp0 of result.
++ */
++#define _MM_SHUFFLE(fp3, fp2, fp1, fp0) \
++ (((fp3) << 6) | ((fp2) << 4) | ((fp1) << 2) | ((fp0)))
++
++#if __has_builtin(__builtin_shufflevector)
++#define _sse2neon_shuffle(type, a, b, ...) \
++ __builtin_shufflevector(a, b, __VA_ARGS__)
++#elif __has_builtin(__builtin_shuffle)
++#define _sse2neon_shuffle(type, a, b, ...) \
++ __extension__({ \
++ type tmp = {__VA_ARGS__}; \
++ __builtin_shuffle(a, b, tmp); \
++ })
++#endif
++
++#ifdef _sse2neon_shuffle
++#define vshuffle_s16(a, b, ...) _sse2neon_shuffle(int16x4_t, a, b, __VA_ARGS__)
++#define vshuffleq_s16(a, b, ...) _sse2neon_shuffle(int16x8_t, a, b, __VA_ARGS__)
++#define vshuffle_s32(a, b, ...) _sse2neon_shuffle(int32x2_t, a, b, __VA_ARGS__)
++#define vshuffleq_s32(a, b, ...) _sse2neon_shuffle(int32x4_t, a, b, __VA_ARGS__)
++#define vshuffle_s64(a, b, ...) _sse2neon_shuffle(int64x1_t, a, b, __VA_ARGS__)
++#define vshuffleq_s64(a, b, ...) _sse2neon_shuffle(int64x2_t, a, b, __VA_ARGS__)
++#endif
++
++/* Rounding mode macros. */
++#define _MM_FROUND_TO_NEAREST_INT 0x00
++#define _MM_FROUND_TO_NEG_INF 0x01
++#define _MM_FROUND_TO_POS_INF 0x02
++#define _MM_FROUND_TO_ZERO 0x03
++#define _MM_FROUND_CUR_DIRECTION 0x04
++#define _MM_FROUND_NO_EXC 0x08
++#define _MM_FROUND_RAISE_EXC 0x00
++#define _MM_FROUND_NINT (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_RAISE_EXC)
++#define _MM_FROUND_FLOOR (_MM_FROUND_TO_NEG_INF | _MM_FROUND_RAISE_EXC)
++#define _MM_FROUND_CEIL (_MM_FROUND_TO_POS_INF | _MM_FROUND_RAISE_EXC)
++#define _MM_FROUND_TRUNC (_MM_FROUND_TO_ZERO | _MM_FROUND_RAISE_EXC)
++#define _MM_FROUND_RINT (_MM_FROUND_CUR_DIRECTION | _MM_FROUND_RAISE_EXC)
++#define _MM_FROUND_NEARBYINT (_MM_FROUND_CUR_DIRECTION | _MM_FROUND_NO_EXC)
++#define _MM_ROUND_NEAREST 0x0000
++#define _MM_ROUND_DOWN 0x2000
++#define _MM_ROUND_UP 0x4000
++#define _MM_ROUND_TOWARD_ZERO 0x6000
++/* Flush zero mode macros. */
++#define _MM_FLUSH_ZERO_MASK 0x8000
++#define _MM_FLUSH_ZERO_ON 0x8000
++#define _MM_FLUSH_ZERO_OFF 0x0000
++/* Denormals are zeros mode macros. */
++#define _MM_DENORMALS_ZERO_MASK 0x0040
++#define _MM_DENORMALS_ZERO_ON 0x0040
++#define _MM_DENORMALS_ZERO_OFF 0x0000
++
++/* indicate immediate constant argument in a given range */
++#define __constrange(a, b) const
++
++/* A few intrinsics accept traditional data types like ints or floats, but
++ * most operate on data types that are specific to SSE.
++ * If a vector type ends in d, it contains doubles, and if it does not have
++ * a suffix, it contains floats. An integer vector type can contain any type
++ * of integer, from chars to shorts to unsigned long longs.
++ */
++typedef int64x1_t __m64;
++typedef float32x4_t __m128; /* 128-bit vector containing 4 floats */
++// On ARM 32-bit architecture, the float64x2_t is not supported.
++// The data type __m128d should be represented in a different way for related
++// intrinsic conversion.
++#if defined(__aarch64__) || defined(_M_ARM64)
++typedef float64x2_t __m128d; /* 128-bit vector containing 2 doubles */
++#else
++typedef float32x4_t __m128d;
++#endif
++typedef int64x2_t __m128i; /* 128-bit vector containing integers */
++
++// __int64 is defined in the Intrinsics Guide which maps to different datatype
++// in different data model
++#if !(defined(_WIN32) || defined(_WIN64) || defined(__int64))
++#if (defined(__x86_64__) || defined(__i386__))
++#define __int64 long long
++#else
++#define __int64 int64_t
++#endif
++#endif
++
++/* type-safe casting between types */
++
++#define vreinterpretq_m128_f16(x) vreinterpretq_f32_f16(x)
++#define vreinterpretq_m128_f32(x) (x)
++#define vreinterpretq_m128_f64(x) vreinterpretq_f32_f64(x)
++
++#define vreinterpretq_m128_u8(x) vreinterpretq_f32_u8(x)
++#define vreinterpretq_m128_u16(x) vreinterpretq_f32_u16(x)
++#define vreinterpretq_m128_u32(x) vreinterpretq_f32_u32(x)
++#define vreinterpretq_m128_u64(x) vreinterpretq_f32_u64(x)
++
++#define vreinterpretq_m128_s8(x) vreinterpretq_f32_s8(x)
++#define vreinterpretq_m128_s16(x) vreinterpretq_f32_s16(x)
++#define vreinterpretq_m128_s32(x) vreinterpretq_f32_s32(x)
++#define vreinterpretq_m128_s64(x) vreinterpretq_f32_s64(x)
++
++#define vreinterpretq_f16_m128(x) vreinterpretq_f16_f32(x)
++#define vreinterpretq_f32_m128(x) (x)
++#define vreinterpretq_f64_m128(x) vreinterpretq_f64_f32(x)
++
++#define vreinterpretq_u8_m128(x) vreinterpretq_u8_f32(x)
++#define vreinterpretq_u16_m128(x) vreinterpretq_u16_f32(x)
++#define vreinterpretq_u32_m128(x) vreinterpretq_u32_f32(x)
++#define vreinterpretq_u64_m128(x) vreinterpretq_u64_f32(x)
++
++#define vreinterpretq_s8_m128(x) vreinterpretq_s8_f32(x)
++#define vreinterpretq_s16_m128(x) vreinterpretq_s16_f32(x)
++#define vreinterpretq_s32_m128(x) vreinterpretq_s32_f32(x)
++#define vreinterpretq_s64_m128(x) vreinterpretq_s64_f32(x)
++
++#define vreinterpretq_m128i_s8(x) vreinterpretq_s64_s8(x)
++#define vreinterpretq_m128i_s16(x) vreinterpretq_s64_s16(x)
++#define vreinterpretq_m128i_s32(x) vreinterpretq_s64_s32(x)
++#define vreinterpretq_m128i_s64(x) (x)
++
++#define vreinterpretq_m128i_u8(x) vreinterpretq_s64_u8(x)
++#define vreinterpretq_m128i_u16(x) vreinterpretq_s64_u16(x)
++#define vreinterpretq_m128i_u32(x) vreinterpretq_s64_u32(x)
++#define vreinterpretq_m128i_u64(x) vreinterpretq_s64_u64(x)
++
++#define vreinterpretq_f32_m128i(x) vreinterpretq_f32_s64(x)
++#define vreinterpretq_f64_m128i(x) vreinterpretq_f64_s64(x)
++
++#define vreinterpretq_s8_m128i(x) vreinterpretq_s8_s64(x)
++#define vreinterpretq_s16_m128i(x) vreinterpretq_s16_s64(x)
++#define vreinterpretq_s32_m128i(x) vreinterpretq_s32_s64(x)
++#define vreinterpretq_s64_m128i(x) (x)
++
++#define vreinterpretq_u8_m128i(x) vreinterpretq_u8_s64(x)
++#define vreinterpretq_u16_m128i(x) vreinterpretq_u16_s64(x)
++#define vreinterpretq_u32_m128i(x) vreinterpretq_u32_s64(x)
++#define vreinterpretq_u64_m128i(x) vreinterpretq_u64_s64(x)
++
++#define vreinterpret_m64_s8(x) vreinterpret_s64_s8(x)
++#define vreinterpret_m64_s16(x) vreinterpret_s64_s16(x)
++#define vreinterpret_m64_s32(x) vreinterpret_s64_s32(x)
++#define vreinterpret_m64_s64(x) (x)
++
++#define vreinterpret_m64_u8(x) vreinterpret_s64_u8(x)
++#define vreinterpret_m64_u16(x) vreinterpret_s64_u16(x)
++#define vreinterpret_m64_u32(x) vreinterpret_s64_u32(x)
++#define vreinterpret_m64_u64(x) vreinterpret_s64_u64(x)
++
++#define vreinterpret_m64_f16(x) vreinterpret_s64_f16(x)
++#define vreinterpret_m64_f32(x) vreinterpret_s64_f32(x)
++#define vreinterpret_m64_f64(x) vreinterpret_s64_f64(x)
++
++#define vreinterpret_u8_m64(x) vreinterpret_u8_s64(x)
++#define vreinterpret_u16_m64(x) vreinterpret_u16_s64(x)
++#define vreinterpret_u32_m64(x) vreinterpret_u32_s64(x)
++#define vreinterpret_u64_m64(x) vreinterpret_u64_s64(x)
++
++#define vreinterpret_s8_m64(x) vreinterpret_s8_s64(x)
++#define vreinterpret_s16_m64(x) vreinterpret_s16_s64(x)
++#define vreinterpret_s32_m64(x) vreinterpret_s32_s64(x)
++#define vreinterpret_s64_m64(x) (x)
++
++#define vreinterpret_f32_m64(x) vreinterpret_f32_s64(x)
++
++#if defined(__aarch64__) || defined(_M_ARM64)
++#define vreinterpretq_m128d_s32(x) vreinterpretq_f64_s32(x)
++#define vreinterpretq_m128d_s64(x) vreinterpretq_f64_s64(x)
++
++#define vreinterpretq_m128d_u64(x) vreinterpretq_f64_u64(x)
++
++#define vreinterpretq_m128d_f32(x) vreinterpretq_f64_f32(x)
++#define vreinterpretq_m128d_f64(x) (x)
++
++#define vreinterpretq_s64_m128d(x) vreinterpretq_s64_f64(x)
++
++#define vreinterpretq_u32_m128d(x) vreinterpretq_u32_f64(x)
++#define vreinterpretq_u64_m128d(x) vreinterpretq_u64_f64(x)
++
++#define vreinterpretq_f64_m128d(x) (x)
++#define vreinterpretq_f32_m128d(x) vreinterpretq_f32_f64(x)
++#else
++#define vreinterpretq_m128d_s32(x) vreinterpretq_f32_s32(x)
++#define vreinterpretq_m128d_s64(x) vreinterpretq_f32_s64(x)
++
++#define vreinterpretq_m128d_u32(x) vreinterpretq_f32_u32(x)
++#define vreinterpretq_m128d_u64(x) vreinterpretq_f32_u64(x)
++
++#define vreinterpretq_m128d_f32(x) (x)
++
++#define vreinterpretq_s64_m128d(x) vreinterpretq_s64_f32(x)
++
++#define vreinterpretq_u32_m128d(x) vreinterpretq_u32_f32(x)
++#define vreinterpretq_u64_m128d(x) vreinterpretq_u64_f32(x)
++
++#define vreinterpretq_f32_m128d(x) (x)
++#endif
++
++// A struct is defined in this header file called 'SIMDVec' which can be used
++// by applications which attempt to access the contents of an __m128 struct
++// directly. It is important to note that accessing the __m128 struct directly
++// is bad coding practice by Microsoft: @see:
++// https://learn.microsoft.com/en-us/cpp/cpp/m128
++//
++// However, some legacy source code may try to access the contents of an __m128
++// struct directly so the developer can use the SIMDVec as an alias for it. Any
++// casting must be done manually by the developer, as you cannot cast or
++// otherwise alias the base NEON data type for intrinsic operations.
++//
++// union intended to allow direct access to an __m128 variable using the names
++// that the MSVC compiler provides. This union should really only be used when
++// trying to access the members of the vector as integer values. GCC/clang
++// allow native access to the float members through a simple array access
++// operator (in C since 4.6, in C++ since 4.8).
++//
++// Ideally direct accesses to SIMD vectors should not be used since it can cause
++// a performance hit. If it really is needed however, the original __m128
++// variable can be aliased with a pointer to this union and used to access
++// individual components. The use of this union should be hidden behind a macro
++// that is used throughout the codebase to access the members instead of always
++// declaring this type of variable.
++typedef union ALIGN_STRUCT(16) SIMDVec {
++ float m128_f32[4]; // as floats - DON'T USE. Added for convenience.
++ int8_t m128_i8[16]; // as signed 8-bit integers.
++ int16_t m128_i16[8]; // as signed 16-bit integers.
++ int32_t m128_i32[4]; // as signed 32-bit integers.
++ int64_t m128_i64[2]; // as signed 64-bit integers.
++ uint8_t m128_u8[16]; // as unsigned 8-bit integers.
++ uint16_t m128_u16[8]; // as unsigned 16-bit integers.
++ uint32_t m128_u32[4]; // as unsigned 32-bit integers.
++ uint64_t m128_u64[2]; // as unsigned 64-bit integers.
++} SIMDVec;
++
++// casting using SIMDVec
++#define vreinterpretq_nth_u64_m128i(x, n) (((SIMDVec *) &x)->m128_u64[n])
++#define vreinterpretq_nth_u32_m128i(x, n) (((SIMDVec *) &x)->m128_u32[n])
++#define vreinterpretq_nth_u8_m128i(x, n) (((SIMDVec *) &x)->m128_u8[n])
++
++/* SSE macros */
++#define _MM_GET_FLUSH_ZERO_MODE _sse2neon_mm_get_flush_zero_mode
++#define _MM_SET_FLUSH_ZERO_MODE _sse2neon_mm_set_flush_zero_mode
++#define _MM_GET_DENORMALS_ZERO_MODE _sse2neon_mm_get_denormals_zero_mode
++#define _MM_SET_DENORMALS_ZERO_MODE _sse2neon_mm_set_denormals_zero_mode
++
++// Function declaration
++// SSE
++FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE(void);
++FORCE_INLINE __m128 _mm_move_ss(__m128, __m128);
++FORCE_INLINE __m128 _mm_or_ps(__m128, __m128);
++FORCE_INLINE __m128 _mm_set_ps1(float);
++FORCE_INLINE __m128 _mm_setzero_ps(void);
++// SSE2
++FORCE_INLINE __m128i _mm_and_si128(__m128i, __m128i);
++FORCE_INLINE __m128i _mm_castps_si128(__m128);
++FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i, __m128i);
++FORCE_INLINE __m128i _mm_cvtps_epi32(__m128);
++FORCE_INLINE __m128d _mm_move_sd(__m128d, __m128d);
++FORCE_INLINE __m128i _mm_or_si128(__m128i, __m128i);
++FORCE_INLINE __m128i _mm_set_epi32(int, int, int, int);
++FORCE_INLINE __m128i _mm_set_epi64x(int64_t, int64_t);
++FORCE_INLINE __m128d _mm_set_pd(double, double);
++FORCE_INLINE __m128i _mm_set1_epi32(int);
++FORCE_INLINE __m128i _mm_setzero_si128(void);
++// SSE4.1
++FORCE_INLINE __m128d _mm_ceil_pd(__m128d);
++FORCE_INLINE __m128 _mm_ceil_ps(__m128);
++FORCE_INLINE __m128d _mm_floor_pd(__m128d);
++FORCE_INLINE __m128 _mm_floor_ps(__m128);
++FORCE_INLINE __m128d _mm_round_pd(__m128d, int);
++FORCE_INLINE __m128 _mm_round_ps(__m128, int);
++// SSE4.2
++FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t, uint8_t);
++
++/* Backwards compatibility for compilers with lack of specific type support */
++
++// Older gcc does not define vld1q_u8_x4 type
++#if defined(__GNUC__) && !defined(__clang__) && \
++ ((__GNUC__ <= 13 && defined(__arm__)) || \
++ (__GNUC__ == 10 && __GNUC_MINOR__ < 3 && defined(__aarch64__)) || \
++ (__GNUC__ <= 9 && defined(__aarch64__)))
++FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p)
++{
++ uint8x16x4_t ret;
++ ret.val[0] = vld1q_u8(p + 0);
++ ret.val[1] = vld1q_u8(p + 16);
++ ret.val[2] = vld1q_u8(p + 32);
++ ret.val[3] = vld1q_u8(p + 48);
++ return ret;
++}
++#else
++// Wraps vld1q_u8_x4
++FORCE_INLINE uint8x16x4_t _sse2neon_vld1q_u8_x4(const uint8_t *p)
++{
++ return vld1q_u8_x4(p);
++}
++#endif
++
++#if !defined(__aarch64__) && !defined(_M_ARM64)
++/* emulate vaddv u8 variant */
++FORCE_INLINE uint8_t _sse2neon_vaddv_u8(uint8x8_t v8)
++{
++ const uint64x1_t v1 = vpaddl_u32(vpaddl_u16(vpaddl_u8(v8)));
++ return vget_lane_u8(vreinterpret_u8_u64(v1), 0);
++}
++#else
++// Wraps vaddv_u8
++FORCE_INLINE uint8_t _sse2neon_vaddv_u8(uint8x8_t v8)
++{
++ return vaddv_u8(v8);
++}
++#endif
++
++#if !defined(__aarch64__) && !defined(_M_ARM64)
++/* emulate vaddvq u8 variant */
++FORCE_INLINE uint8_t _sse2neon_vaddvq_u8(uint8x16_t a)
++{
++ uint8x8_t tmp = vpadd_u8(vget_low_u8(a), vget_high_u8(a));
++ uint8_t res = 0;
++ for (int i = 0; i < 8; ++i)
++ res += tmp[i];
++ return res;
++}
++#else
++// Wraps vaddvq_u8
++FORCE_INLINE uint8_t _sse2neon_vaddvq_u8(uint8x16_t a)
++{
++ return vaddvq_u8(a);
++}
++#endif
++
++#if !defined(__aarch64__) && !defined(_M_ARM64)
++/* emulate vaddvq u16 variant */
++FORCE_INLINE uint16_t _sse2neon_vaddvq_u16(uint16x8_t a)
++{
++ uint32x4_t m = vpaddlq_u16(a);
++ uint64x2_t n = vpaddlq_u32(m);
++ uint64x1_t o = vget_low_u64(n) + vget_high_u64(n);
++
++ return vget_lane_u32((uint32x2_t) o, 0);
++}
++#else
++// Wraps vaddvq_u16
++FORCE_INLINE uint16_t _sse2neon_vaddvq_u16(uint16x8_t a)
++{
++ return vaddvq_u16(a);
++}
++#endif
++
++/* Function Naming Conventions
++ * The naming convention of SSE intrinsics is straightforward. A generic SSE
++ * intrinsic function is given as follows:
++ * _mm_<name>_<data_type>
++ *
++ * The parts of this format are given as follows:
++ * 1. <name> describes the operation performed by the intrinsic
++ * 2. <data_type> identifies the data type of the function's primary arguments
++ *
++ * This last part, <data_type>, is a little complicated. It identifies the
++ * content of the input values, and can be set to any of the following values:
++ * + ps - vectors contain floats (ps stands for packed single-precision)
++ * + pd - vectors contain doubles (pd stands for packed double-precision)
++ * + epi8/epi16/epi32/epi64 - vectors contain 8-bit/16-bit/32-bit/64-bit
++ * signed integers
++ * + epu8/epu16/epu32/epu64 - vectors contain 8-bit/16-bit/32-bit/64-bit
++ * unsigned integers
++ * + si128 - unspecified 128-bit vector or 256-bit vector
++ * + m128/m128i/m128d - identifies input vector types when they are different
++ * than the type of the returned vector
++ *
++ * For example, _mm_setzero_ps. The _mm implies that the function returns
++ * a 128-bit vector. The _ps at the end implies that the argument vectors
++ * contain floats.
++ *
++ * A complete example: Byte Shuffle - pshufb (_mm_shuffle_epi8)
++ * // Set packed 16-bit integers. 128 bits, 8 short, per 16 bits
++ * __m128i v_in = _mm_setr_epi16(1, 2, 3, 4, 5, 6, 7, 8);
++ * // Set packed 8-bit integers
++ * // 128 bits, 16 chars, per 8 bits
++ * __m128i v_perm = _mm_setr_epi8(1, 0, 2, 3, 8, 9, 10, 11,
++ * 4, 5, 12, 13, 6, 7, 14, 15);
++ * // Shuffle packed 8-bit integers
++ * __m128i v_out = _mm_shuffle_epi8(v_in, v_perm); // pshufb
++ */
++
++/* Constants for use with _mm_prefetch. */
++enum _mm_hint {
++ _MM_HINT_NTA = 0, /* load data to L1 and L2 cache, mark it as NTA */
++ _MM_HINT_T0 = 1, /* load data to L1 and L2 cache */
++ _MM_HINT_T1 = 2, /* load data to L2 cache only */
++ _MM_HINT_T2 = 3, /* load data to L2 cache only, mark it as NTA */
++};
++
++// The bit field mapping to the FPCR(floating-point control register)
++typedef struct {
++ uint16_t res0;
++ uint8_t res1 : 6;
++ uint8_t bit22 : 1;
++ uint8_t bit23 : 1;
++ uint8_t bit24 : 1;
++ uint8_t res2 : 7;
++#if defined(__aarch64__) || defined(_M_ARM64)
++ uint32_t res3;
++#endif
++} fpcr_bitfield;
++
++// Takes the upper 64 bits of a and places it in the low end of the result
++// Takes the lower 64 bits of b and places it into the high end of the result.
++FORCE_INLINE __m128 _mm_shuffle_ps_1032(__m128 a, __m128 b)
++{
++ float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
++ float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
++ return vreinterpretq_m128_f32(vcombine_f32(a32, b10));
++}
++
++// takes the lower two 32-bit values from a and swaps them and places in high
++// end of result takes the higher two 32 bit values from b and swaps them and
++// places in low end of result.
++FORCE_INLINE __m128 _mm_shuffle_ps_2301(__m128 a, __m128 b)
++{
++ float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
++ float32x2_t b23 = vrev64_f32(vget_high_f32(vreinterpretq_f32_m128(b)));
++ return vreinterpretq_m128_f32(vcombine_f32(a01, b23));
++}
++
++FORCE_INLINE __m128 _mm_shuffle_ps_0321(__m128 a, __m128 b)
++{
++ float32x2_t a21 = vget_high_f32(
++ vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3));
++ float32x2_t b03 = vget_low_f32(
++ vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3));
++ return vreinterpretq_m128_f32(vcombine_f32(a21, b03));
++}
++
++FORCE_INLINE __m128 _mm_shuffle_ps_2103(__m128 a, __m128 b)
++{
++ float32x2_t a03 = vget_low_f32(
++ vextq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 3));
++ float32x2_t b21 = vget_high_f32(
++ vextq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b), 3));
++ return vreinterpretq_m128_f32(vcombine_f32(a03, b21));
++}
++
++FORCE_INLINE __m128 _mm_shuffle_ps_1010(__m128 a, __m128 b)
++{
++ float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
++ float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
++ return vreinterpretq_m128_f32(vcombine_f32(a10, b10));
++}
++
++FORCE_INLINE __m128 _mm_shuffle_ps_1001(__m128 a, __m128 b)
++{
++ float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
++ float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
++ return vreinterpretq_m128_f32(vcombine_f32(a01, b10));
++}
++
++FORCE_INLINE __m128 _mm_shuffle_ps_0101(__m128 a, __m128 b)
++{
++ float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
++ float32x2_t b01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(b)));
++ return vreinterpretq_m128_f32(vcombine_f32(a01, b01));
++}
++
++// keeps the low 64 bits of b in the low and puts the high 64 bits of a in the
++// high
++FORCE_INLINE __m128 _mm_shuffle_ps_3210(__m128 a, __m128 b)
++{
++ float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
++ float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
++ return vreinterpretq_m128_f32(vcombine_f32(a10, b32));
++}
++
++FORCE_INLINE __m128 _mm_shuffle_ps_0011(__m128 a, __m128 b)
++{
++ float32x2_t a11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 1);
++ float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
++ return vreinterpretq_m128_f32(vcombine_f32(a11, b00));
++}
++
++FORCE_INLINE __m128 _mm_shuffle_ps_0022(__m128 a, __m128 b)
++{
++ float32x2_t a22 =
++ vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0);
++ float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
++ return vreinterpretq_m128_f32(vcombine_f32(a22, b00));
++}
++
++FORCE_INLINE __m128 _mm_shuffle_ps_2200(__m128 a, __m128 b)
++{
++ float32x2_t a00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(a)), 0);
++ float32x2_t b22 =
++ vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(b)), 0);
++ return vreinterpretq_m128_f32(vcombine_f32(a00, b22));
++}
++
++FORCE_INLINE __m128 _mm_shuffle_ps_3202(__m128 a, __m128 b)
++{
++ float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
++ float32x2_t a22 =
++ vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 0);
++ float32x2_t a02 = vset_lane_f32(a0, a22, 1); /* TODO: use vzip ?*/
++ float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
++ return vreinterpretq_m128_f32(vcombine_f32(a02, b32));
++}
++
++FORCE_INLINE __m128 _mm_shuffle_ps_1133(__m128 a, __m128 b)
++{
++ float32x2_t a33 =
++ vdup_lane_f32(vget_high_f32(vreinterpretq_f32_m128(a)), 1);
++ float32x2_t b11 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 1);
++ return vreinterpretq_m128_f32(vcombine_f32(a33, b11));
++}
++
++FORCE_INLINE __m128 _mm_shuffle_ps_2010(__m128 a, __m128 b)
++{
++ float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
++ float32_t b2 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 2);
++ float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
++ float32x2_t b20 = vset_lane_f32(b2, b00, 1);
++ return vreinterpretq_m128_f32(vcombine_f32(a10, b20));
++}
++
++FORCE_INLINE __m128 _mm_shuffle_ps_2001(__m128 a, __m128 b)
++{
++ float32x2_t a01 = vrev64_f32(vget_low_f32(vreinterpretq_f32_m128(a)));
++ float32_t b2 = vgetq_lane_f32(b, 2);
++ float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
++ float32x2_t b20 = vset_lane_f32(b2, b00, 1);
++ return vreinterpretq_m128_f32(vcombine_f32(a01, b20));
++}
++
++FORCE_INLINE __m128 _mm_shuffle_ps_2032(__m128 a, __m128 b)
++{
++ float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
++ float32_t b2 = vgetq_lane_f32(b, 2);
++ float32x2_t b00 = vdup_lane_f32(vget_low_f32(vreinterpretq_f32_m128(b)), 0);
++ float32x2_t b20 = vset_lane_f32(b2, b00, 1);
++ return vreinterpretq_m128_f32(vcombine_f32(a32, b20));
++}
++
++// For MSVC, we check only if it is ARM64, as every single ARM64 processor
++// supported by WoA has crypto extensions. If this changes in the future,
++// this can be verified via the runtime-only method of:
++// IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE)
++#if (defined(_M_ARM64) && !defined(__clang__)) || \
++ (defined(__ARM_FEATURE_CRYPTO) && \
++ (defined(__aarch64__) || __has_builtin(__builtin_arm_crypto_vmullp64)))
++// Wraps vmull_p64
++FORCE_INLINE uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b)
++{
++ poly64_t a = vget_lane_p64(vreinterpret_p64_u64(_a), 0);
++ poly64_t b = vget_lane_p64(vreinterpret_p64_u64(_b), 0);
++#if defined(_MSC_VER)
++ __n64 a1 = {a}, b1 = {b};
++ return vreinterpretq_u64_p128(vmull_p64(a1, b1));
++#else
++ return vreinterpretq_u64_p128(vmull_p64(a, b));
++#endif
++}
++#else // ARMv7 polyfill
++// ARMv7/some A64 lacks vmull_p64, but it has vmull_p8.
++//
++// vmull_p8 calculates 8 8-bit->16-bit polynomial multiplies, but we need a
++// 64-bit->128-bit polynomial multiply.
++//
++// It needs some work and is somewhat slow, but it is still faster than all
++// known scalar methods.
++//
++// Algorithm adapted to C from
++// https://www.workofard.com/2017/07/ghash-for-low-end-cores/, which is adapted
++// from "Fast Software Polynomial Multiplication on ARM Processors Using the
++// NEON Engine" by Danilo Camara, Conrado Gouvea, Julio Lopez and Ricardo Dahab
++// (https://hal.inria.fr/hal-01506572)
++static uint64x2_t _sse2neon_vmull_p64(uint64x1_t _a, uint64x1_t _b)
++{
++ poly8x8_t a = vreinterpret_p8_u64(_a);
++ poly8x8_t b = vreinterpret_p8_u64(_b);
++
++ // Masks
++ uint8x16_t k48_32 = vcombine_u8(vcreate_u8(0x0000ffffffffffff),
++ vcreate_u8(0x00000000ffffffff));
++ uint8x16_t k16_00 = vcombine_u8(vcreate_u8(0x000000000000ffff),
++ vcreate_u8(0x0000000000000000));
++
++ // Do the multiplies, rotating with vext to get all combinations
++ uint8x16_t d = vreinterpretq_u8_p16(vmull_p8(a, b)); // D = A0 * B0
++ uint8x16_t e =
++ vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 1))); // E = A0 * B1
++ uint8x16_t f =
++ vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 1), b)); // F = A1 * B0
++ uint8x16_t g =
++ vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 2))); // G = A0 * B2
++ uint8x16_t h =
++ vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 2), b)); // H = A2 * B0
++ uint8x16_t i =
++ vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 3))); // I = A0 * B3
++ uint8x16_t j =
++ vreinterpretq_u8_p16(vmull_p8(vext_p8(a, a, 3), b)); // J = A3 * B0
++ uint8x16_t k =
++ vreinterpretq_u8_p16(vmull_p8(a, vext_p8(b, b, 4))); // L = A0 * B4
++
++ // Add cross products
++ uint8x16_t l = veorq_u8(e, f); // L = E + F
++ uint8x16_t m = veorq_u8(g, h); // M = G + H
++ uint8x16_t n = veorq_u8(i, j); // N = I + J
++
++ // Interleave. Using vzip1 and vzip2 prevents Clang from emitting TBL
++ // instructions.
++#if defined(__aarch64__)
++ uint8x16_t lm_p0 = vreinterpretq_u8_u64(
++ vzip1q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
++ uint8x16_t lm_p1 = vreinterpretq_u8_u64(
++ vzip2q_u64(vreinterpretq_u64_u8(l), vreinterpretq_u64_u8(m)));
++ uint8x16_t nk_p0 = vreinterpretq_u8_u64(
++ vzip1q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
++ uint8x16_t nk_p1 = vreinterpretq_u8_u64(
++ vzip2q_u64(vreinterpretq_u64_u8(n), vreinterpretq_u64_u8(k)));
++#else
++ uint8x16_t lm_p0 = vcombine_u8(vget_low_u8(l), vget_low_u8(m));
++ uint8x16_t lm_p1 = vcombine_u8(vget_high_u8(l), vget_high_u8(m));
++ uint8x16_t nk_p0 = vcombine_u8(vget_low_u8(n), vget_low_u8(k));
++ uint8x16_t nk_p1 = vcombine_u8(vget_high_u8(n), vget_high_u8(k));
++#endif
++ // t0 = (L) (P0 + P1) << 8
++ // t1 = (M) (P2 + P3) << 16
++ uint8x16_t t0t1_tmp = veorq_u8(lm_p0, lm_p1);
++ uint8x16_t t0t1_h = vandq_u8(lm_p1, k48_32);
++ uint8x16_t t0t1_l = veorq_u8(t0t1_tmp, t0t1_h);
++
++ // t2 = (N) (P4 + P5) << 24
++ // t3 = (K) (P6 + P7) << 32
++ uint8x16_t t2t3_tmp = veorq_u8(nk_p0, nk_p1);
++ uint8x16_t t2t3_h = vandq_u8(nk_p1, k16_00);
++ uint8x16_t t2t3_l = veorq_u8(t2t3_tmp, t2t3_h);
++
++ // De-interleave
++#if defined(__aarch64__)
++ uint8x16_t t0 = vreinterpretq_u8_u64(
++ vuzp1q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
++ uint8x16_t t1 = vreinterpretq_u8_u64(
++ vuzp2q_u64(vreinterpretq_u64_u8(t0t1_l), vreinterpretq_u64_u8(t0t1_h)));
++ uint8x16_t t2 = vreinterpretq_u8_u64(
++ vuzp1q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
++ uint8x16_t t3 = vreinterpretq_u8_u64(
++ vuzp2q_u64(vreinterpretq_u64_u8(t2t3_l), vreinterpretq_u64_u8(t2t3_h)));
++#else
++ uint8x16_t t1 = vcombine_u8(vget_high_u8(t0t1_l), vget_high_u8(t0t1_h));
++ uint8x16_t t0 = vcombine_u8(vget_low_u8(t0t1_l), vget_low_u8(t0t1_h));
++ uint8x16_t t3 = vcombine_u8(vget_high_u8(t2t3_l), vget_high_u8(t2t3_h));
++ uint8x16_t t2 = vcombine_u8(vget_low_u8(t2t3_l), vget_low_u8(t2t3_h));
++#endif
++ // Shift the cross products
++ uint8x16_t t0_shift = vextq_u8(t0, t0, 15); // t0 << 8
++ uint8x16_t t1_shift = vextq_u8(t1, t1, 14); // t1 << 16
++ uint8x16_t t2_shift = vextq_u8(t2, t2, 13); // t2 << 24
++ uint8x16_t t3_shift = vextq_u8(t3, t3, 12); // t3 << 32
++
++ // Accumulate the products
++ uint8x16_t cross1 = veorq_u8(t0_shift, t1_shift);
++ uint8x16_t cross2 = veorq_u8(t2_shift, t3_shift);
++ uint8x16_t mix = veorq_u8(d, cross1);
++ uint8x16_t r = veorq_u8(mix, cross2);
++ return vreinterpretq_u64_u8(r);
++}
++#endif // ARMv7 polyfill
++
++// C equivalent:
++// __m128i _mm_shuffle_epi32_default(__m128i a,
++// __constrange(0, 255) int imm) {
++// __m128i ret;
++// ret[0] = a[imm & 0x3]; ret[1] = a[(imm >> 2) & 0x3];
++// ret[2] = a[(imm >> 4) & 0x03]; ret[3] = a[(imm >> 6) & 0x03];
++// return ret;
++// }
++#define _mm_shuffle_epi32_default(a, imm) \
++ vreinterpretq_m128i_s32(vsetq_lane_s32( \
++ vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 6) & 0x3), \
++ vsetq_lane_s32( \
++ vgetq_lane_s32(vreinterpretq_s32_m128i(a), ((imm) >> 4) & 0x3), \
++ vsetq_lane_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), \
++ ((imm) >> 2) & 0x3), \
++ vmovq_n_s32(vgetq_lane_s32( \
++ vreinterpretq_s32_m128i(a), (imm) & (0x3))), \
++ 1), \
++ 2), \
++ 3))
++
++// Takes the upper 64 bits of a and places it in the low end of the result
++// Takes the lower 64 bits of a and places it into the high end of the result.
++FORCE_INLINE __m128i _mm_shuffle_epi_1032(__m128i a)
++{
++ int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a));
++ int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
++ return vreinterpretq_m128i_s32(vcombine_s32(a32, a10));
++}
++
++// takes the lower two 32-bit values from a and swaps them and places in low end
++// of result takes the higher two 32 bit values from a and swaps them and places
++// in high end of result.
++FORCE_INLINE __m128i _mm_shuffle_epi_2301(__m128i a)
++{
++ int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
++ int32x2_t a23 = vrev64_s32(vget_high_s32(vreinterpretq_s32_m128i(a)));
++ return vreinterpretq_m128i_s32(vcombine_s32(a01, a23));
++}
++
++// rotates the least significant 32 bits into the most significant 32 bits, and
++// shifts the rest down
++FORCE_INLINE __m128i _mm_shuffle_epi_0321(__m128i a)
++{
++ return vreinterpretq_m128i_s32(
++ vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 1));
++}
++
++// rotates the most significant 32 bits into the least significant 32 bits, and
++// shifts the rest up
++FORCE_INLINE __m128i _mm_shuffle_epi_2103(__m128i a)
++{
++ return vreinterpretq_m128i_s32(
++ vextq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(a), 3));
++}
++
++// gets the lower 64 bits of a, and places it in the upper 64 bits
++// gets the lower 64 bits of a and places it in the lower 64 bits
++FORCE_INLINE __m128i _mm_shuffle_epi_1010(__m128i a)
++{
++ int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
++ return vreinterpretq_m128i_s32(vcombine_s32(a10, a10));
++}
++
++// gets the lower 64 bits of a, swaps the 0 and 1 elements, and places it in the
++// lower 64 bits gets the lower 64 bits of a, and places it in the upper 64 bits
++FORCE_INLINE __m128i _mm_shuffle_epi_1001(__m128i a)
++{
++ int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
++ int32x2_t a10 = vget_low_s32(vreinterpretq_s32_m128i(a));
++ return vreinterpretq_m128i_s32(vcombine_s32(a01, a10));
++}
++
++// gets the lower 64 bits of a, swaps the 0 and 1 elements and places it in the
++// upper 64 bits gets the lower 64 bits of a, swaps the 0 and 1 elements, and
++// places it in the lower 64 bits
++FORCE_INLINE __m128i _mm_shuffle_epi_0101(__m128i a)
++{
++ int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
++ return vreinterpretq_m128i_s32(vcombine_s32(a01, a01));
++}
++
++FORCE_INLINE __m128i _mm_shuffle_epi_2211(__m128i a)
++{
++ int32x2_t a11 = vdup_lane_s32(vget_low_s32(vreinterpretq_s32_m128i(a)), 1);
++ int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0);
++ return vreinterpretq_m128i_s32(vcombine_s32(a11, a22));
++}
++
++FORCE_INLINE __m128i _mm_shuffle_epi_0122(__m128i a)
++{
++ int32x2_t a22 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 0);
++ int32x2_t a01 = vrev64_s32(vget_low_s32(vreinterpretq_s32_m128i(a)));
++ return vreinterpretq_m128i_s32(vcombine_s32(a22, a01));
++}
++
++FORCE_INLINE __m128i _mm_shuffle_epi_3332(__m128i a)
++{
++ int32x2_t a32 = vget_high_s32(vreinterpretq_s32_m128i(a));
++ int32x2_t a33 = vdup_lane_s32(vget_high_s32(vreinterpretq_s32_m128i(a)), 1);
++ return vreinterpretq_m128i_s32(vcombine_s32(a32, a33));
++}
++
++#if defined(__aarch64__) || defined(_M_ARM64)
++#define _mm_shuffle_epi32_splat(a, imm) \
++ vreinterpretq_m128i_s32(vdupq_laneq_s32(vreinterpretq_s32_m128i(a), (imm)))
++#else
++#define _mm_shuffle_epi32_splat(a, imm) \
++ vreinterpretq_m128i_s32( \
++ vdupq_n_s32(vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm))))
++#endif
++
++// NEON does not support a general purpose permute intrinsic.
++// Shuffle single-precision (32-bit) floating-point elements in a using the
++// control in imm8, and store the results in dst.
++//
++// C equivalent:
++// __m128 _mm_shuffle_ps_default(__m128 a, __m128 b,
++// __constrange(0, 255) int imm) {
++// __m128 ret;
++// ret[0] = a[imm & 0x3]; ret[1] = a[(imm >> 2) & 0x3];
++// ret[2] = b[(imm >> 4) & 0x03]; ret[3] = b[(imm >> 6) & 0x03];
++// return ret;
++// }
++//
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_ps
++#define _mm_shuffle_ps_default(a, b, imm) \
++ vreinterpretq_m128_f32(vsetq_lane_f32( \
++ vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 6) & 0x3), \
++ vsetq_lane_f32( \
++ vgetq_lane_f32(vreinterpretq_f32_m128(b), ((imm) >> 4) & 0x3), \
++ vsetq_lane_f32( \
++ vgetq_lane_f32(vreinterpretq_f32_m128(a), ((imm) >> 2) & 0x3), \
++ vmovq_n_f32( \
++ vgetq_lane_f32(vreinterpretq_f32_m128(a), (imm) & (0x3))), \
++ 1), \
++ 2), \
++ 3))
++
++// Shuffle 16-bit integers in the low 64 bits of a using the control in imm8.
++// Store the results in the low 64 bits of dst, with the high 64 bits being
++// copied from a to dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shufflelo_epi16
++#define _mm_shufflelo_epi16_function(a, imm) \
++ _sse2neon_define1( \
++ __m128i, a, int16x8_t ret = vreinterpretq_s16_m128i(_a); \
++ int16x4_t lowBits = vget_low_s16(ret); \
++ ret = vsetq_lane_s16(vget_lane_s16(lowBits, (imm) & (0x3)), ret, 0); \
++ ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 2) & 0x3), ret, \
++ 1); \
++ ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 4) & 0x3), ret, \
++ 2); \
++ ret = vsetq_lane_s16(vget_lane_s16(lowBits, ((imm) >> 6) & 0x3), ret, \
++ 3); \
++ _sse2neon_return(vreinterpretq_m128i_s16(ret));)
++
++// Shuffle 16-bit integers in the high 64 bits of a using the control in imm8.
++// Store the results in the high 64 bits of dst, with the low 64 bits being
++// copied from a to dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shufflehi_epi16
++#define _mm_shufflehi_epi16_function(a, imm) \
++ _sse2neon_define1( \
++ __m128i, a, int16x8_t ret = vreinterpretq_s16_m128i(_a); \
++ int16x4_t highBits = vget_high_s16(ret); \
++ ret = vsetq_lane_s16(vget_lane_s16(highBits, (imm) & (0x3)), ret, 4); \
++ ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 2) & 0x3), ret, \
++ 5); \
++ ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 4) & 0x3), ret, \
++ 6); \
++ ret = vsetq_lane_s16(vget_lane_s16(highBits, ((imm) >> 6) & 0x3), ret, \
++ 7); \
++ _sse2neon_return(vreinterpretq_m128i_s16(ret));)
++
++/* MMX */
++
++//_mm_empty is a no-op on arm
++FORCE_INLINE void _mm_empty(void) {}
++
++/* SSE */
++
++// Add packed single-precision (32-bit) floating-point elements in a and b, and
++// store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_ps
++FORCE_INLINE __m128 _mm_add_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_f32(
++ vaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
++}
++
++// Add the lower single-precision (32-bit) floating-point element in a and b,
++// store the result in the lower element of dst, and copy the upper 3 packed
++// elements from a to the upper elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_ss
++FORCE_INLINE __m128 _mm_add_ss(__m128 a, __m128 b)
++{
++ float32_t b0 = vgetq_lane_f32(vreinterpretq_f32_m128(b), 0);
++ float32x4_t value = vsetq_lane_f32(b0, vdupq_n_f32(0), 0);
++ // the upper values in the result must be the remnants of <a>.
++ return vreinterpretq_m128_f32(vaddq_f32(a, value));
++}
++
++// Compute the bitwise AND of packed single-precision (32-bit) floating-point
++// elements in a and b, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_ps
++FORCE_INLINE __m128 _mm_and_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_s32(
++ vandq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
++}
++
++// Compute the bitwise NOT of packed single-precision (32-bit) floating-point
++// elements in a and then AND with b, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_ps
++FORCE_INLINE __m128 _mm_andnot_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_s32(
++ vbicq_s32(vreinterpretq_s32_m128(b),
++ vreinterpretq_s32_m128(a))); // *NOTE* argument swap
++}
++
++// Average packed unsigned 16-bit integers in a and b, and store the results in
++// dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_pu16
++FORCE_INLINE __m64 _mm_avg_pu16(__m64 a, __m64 b)
++{
++ return vreinterpret_m64_u16(
++ vrhadd_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b)));
++}
++
++// Average packed unsigned 8-bit integers in a and b, and store the results in
++// dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_pu8
++FORCE_INLINE __m64 _mm_avg_pu8(__m64 a, __m64 b)
++{
++ return vreinterpret_m64_u8(
++ vrhadd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
++}
++
++// Compare packed single-precision (32-bit) floating-point elements in a and b
++// for equality, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_ps
++FORCE_INLINE __m128 _mm_cmpeq_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_u32(
++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
++}
++
++// Compare the lower single-precision (32-bit) floating-point elements in a and
++// b for equality, store the result in the lower element of dst, and copy the
++// upper 3 packed elements from a to the upper elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_ss
++FORCE_INLINE __m128 _mm_cmpeq_ss(__m128 a, __m128 b)
++{
++ return _mm_move_ss(a, _mm_cmpeq_ps(a, b));
++}
++
++// Compare packed single-precision (32-bit) floating-point elements in a and b
++// for greater-than-or-equal, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_ps
++FORCE_INLINE __m128 _mm_cmpge_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_u32(
++ vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
++}
++
++// Compare the lower single-precision (32-bit) floating-point elements in a and
++// b for greater-than-or-equal, store the result in the lower element of dst,
++// and copy the upper 3 packed elements from a to the upper elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_ss
++FORCE_INLINE __m128 _mm_cmpge_ss(__m128 a, __m128 b)
++{
++ return _mm_move_ss(a, _mm_cmpge_ps(a, b));
++}
++
++// Compare packed single-precision (32-bit) floating-point elements in a and b
++// for greater-than, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_ps
++FORCE_INLINE __m128 _mm_cmpgt_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_u32(
++ vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
++}
++
++// Compare the lower single-precision (32-bit) floating-point elements in a and
++// b for greater-than, store the result in the lower element of dst, and copy
++// the upper 3 packed elements from a to the upper elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_ss
++FORCE_INLINE __m128 _mm_cmpgt_ss(__m128 a, __m128 b)
++{
++ return _mm_move_ss(a, _mm_cmpgt_ps(a, b));
++}
++
++// Compare packed single-precision (32-bit) floating-point elements in a and b
++// for less-than-or-equal, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_ps
++FORCE_INLINE __m128 _mm_cmple_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_u32(
++ vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
++}
++
++// Compare the lower single-precision (32-bit) floating-point elements in a and
++// b for less-than-or-equal, store the result in the lower element of dst, and
++// copy the upper 3 packed elements from a to the upper elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_ss
++FORCE_INLINE __m128 _mm_cmple_ss(__m128 a, __m128 b)
++{
++ return _mm_move_ss(a, _mm_cmple_ps(a, b));
++}
++
++// Compare packed single-precision (32-bit) floating-point elements in a and b
++// for less-than, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_ps
++FORCE_INLINE __m128 _mm_cmplt_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_u32(
++ vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
++}
++
++// Compare the lower single-precision (32-bit) floating-point elements in a and
++// b for less-than, store the result in the lower element of dst, and copy the
++// upper 3 packed elements from a to the upper elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_ss
++FORCE_INLINE __m128 _mm_cmplt_ss(__m128 a, __m128 b)
++{
++ return _mm_move_ss(a, _mm_cmplt_ps(a, b));
++}
++
++// Compare packed single-precision (32-bit) floating-point elements in a and b
++// for not-equal, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_ps
++FORCE_INLINE __m128 _mm_cmpneq_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_u32(vmvnq_u32(
++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
++}
++
++// Compare the lower single-precision (32-bit) floating-point elements in a and
++// b for not-equal, store the result in the lower element of dst, and copy the
++// upper 3 packed elements from a to the upper elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_ss
++FORCE_INLINE __m128 _mm_cmpneq_ss(__m128 a, __m128 b)
++{
++ return _mm_move_ss(a, _mm_cmpneq_ps(a, b));
++}
++
++// Compare packed single-precision (32-bit) floating-point elements in a and b
++// for not-greater-than-or-equal, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_ps
++FORCE_INLINE __m128 _mm_cmpnge_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_u32(vmvnq_u32(
++ vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
++}
++
++// Compare the lower single-precision (32-bit) floating-point elements in a and
++// b for not-greater-than-or-equal, store the result in the lower element of
++// dst, and copy the upper 3 packed elements from a to the upper elements of
++// dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_ss
++FORCE_INLINE __m128 _mm_cmpnge_ss(__m128 a, __m128 b)
++{
++ return _mm_move_ss(a, _mm_cmpnge_ps(a, b));
++}
++
++// Compare packed single-precision (32-bit) floating-point elements in a and b
++// for not-greater-than, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_ps
++FORCE_INLINE __m128 _mm_cmpngt_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_u32(vmvnq_u32(
++ vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
++}
++
++// Compare the lower single-precision (32-bit) floating-point elements in a and
++// b for not-greater-than, store the result in the lower element of dst, and
++// copy the upper 3 packed elements from a to the upper elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_ss
++FORCE_INLINE __m128 _mm_cmpngt_ss(__m128 a, __m128 b)
++{
++ return _mm_move_ss(a, _mm_cmpngt_ps(a, b));
++}
++
++// Compare packed single-precision (32-bit) floating-point elements in a and b
++// for not-less-than-or-equal, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_ps
++FORCE_INLINE __m128 _mm_cmpnle_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_u32(vmvnq_u32(
++ vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
++}
++
++// Compare the lower single-precision (32-bit) floating-point elements in a and
++// b for not-less-than-or-equal, store the result in the lower element of dst,
++// and copy the upper 3 packed elements from a to the upper elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_ss
++FORCE_INLINE __m128 _mm_cmpnle_ss(__m128 a, __m128 b)
++{
++ return _mm_move_ss(a, _mm_cmpnle_ps(a, b));
++}
++
++// Compare packed single-precision (32-bit) floating-point elements in a and b
++// for not-less-than, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_ps
++FORCE_INLINE __m128 _mm_cmpnlt_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_u32(vmvnq_u32(
++ vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b))));
++}
++
++// Compare the lower single-precision (32-bit) floating-point elements in a and
++// b for not-less-than, store the result in the lower element of dst, and copy
++// the upper 3 packed elements from a to the upper elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_ss
++FORCE_INLINE __m128 _mm_cmpnlt_ss(__m128 a, __m128 b)
++{
++ return _mm_move_ss(a, _mm_cmpnlt_ps(a, b));
++}
++
++// Compare packed single-precision (32-bit) floating-point elements in a and b
++// to see if neither is NaN, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_ps
++//
++// See also:
++// http://stackoverflow.com/questions/8627331/what-does-ordered-unordered-comparison-mean
++// http://stackoverflow.com/questions/29349621/neon-isnanval-intrinsics
++FORCE_INLINE __m128 _mm_cmpord_ps(__m128 a, __m128 b)
++{
++ // Note: NEON does not have ordered compare builtin
++ // Need to compare a eq a and b eq b to check for NaN
++ // Do AND of results to get final
++ uint32x4_t ceqaa =
++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
++ uint32x4_t ceqbb =
++ vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
++ return vreinterpretq_m128_u32(vandq_u32(ceqaa, ceqbb));
++}
++
++// Compare the lower single-precision (32-bit) floating-point elements in a and
++// b to see if neither is NaN, store the result in the lower element of dst, and
++// copy the upper 3 packed elements from a to the upper elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_ss
++FORCE_INLINE __m128 _mm_cmpord_ss(__m128 a, __m128 b)
++{
++ return _mm_move_ss(a, _mm_cmpord_ps(a, b));
++}
++
++// Compare packed single-precision (32-bit) floating-point elements in a and b
++// to see if either is NaN, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_ps
++FORCE_INLINE __m128 _mm_cmpunord_ps(__m128 a, __m128 b)
++{
++ uint32x4_t f32a =
++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a));
++ uint32x4_t f32b =
++ vceqq_f32(vreinterpretq_f32_m128(b), vreinterpretq_f32_m128(b));
++ return vreinterpretq_m128_u32(vmvnq_u32(vandq_u32(f32a, f32b)));
++}
++
++// Compare the lower single-precision (32-bit) floating-point elements in a and
++// b to see if either is NaN, store the result in the lower element of dst, and
++// copy the upper 3 packed elements from a to the upper elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_ss
++FORCE_INLINE __m128 _mm_cmpunord_ss(__m128 a, __m128 b)
++{
++ return _mm_move_ss(a, _mm_cmpunord_ps(a, b));
++}
++
++// Compare the lower single-precision (32-bit) floating-point element in a and b
++// for equality, and return the boolean result (0 or 1).
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comieq_ss
++FORCE_INLINE int _mm_comieq_ss(__m128 a, __m128 b)
++{
++ uint32x4_t a_eq_b =
++ vceqq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
++ return vgetq_lane_u32(a_eq_b, 0) & 0x1;
++}
++
++// Compare the lower single-precision (32-bit) floating-point element in a and b
++// for greater-than-or-equal, and return the boolean result (0 or 1).
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comige_ss
++FORCE_INLINE int _mm_comige_ss(__m128 a, __m128 b)
++{
++ uint32x4_t a_ge_b =
++ vcgeq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
++ return vgetq_lane_u32(a_ge_b, 0) & 0x1;
++}
++
++// Compare the lower single-precision (32-bit) floating-point element in a and b
++// for greater-than, and return the boolean result (0 or 1).
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comigt_ss
++FORCE_INLINE int _mm_comigt_ss(__m128 a, __m128 b)
++{
++ uint32x4_t a_gt_b =
++ vcgtq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
++ return vgetq_lane_u32(a_gt_b, 0) & 0x1;
++}
++
++// Compare the lower single-precision (32-bit) floating-point element in a and b
++// for less-than-or-equal, and return the boolean result (0 or 1).
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comile_ss
++FORCE_INLINE int _mm_comile_ss(__m128 a, __m128 b)
++{
++ uint32x4_t a_le_b =
++ vcleq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
++ return vgetq_lane_u32(a_le_b, 0) & 0x1;
++}
++
++// Compare the lower single-precision (32-bit) floating-point element in a and b
++// for less-than, and return the boolean result (0 or 1).
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comilt_ss
++FORCE_INLINE int _mm_comilt_ss(__m128 a, __m128 b)
++{
++ uint32x4_t a_lt_b =
++ vcltq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b));
++ return vgetq_lane_u32(a_lt_b, 0) & 0x1;
++}
++
++// Compare the lower single-precision (32-bit) floating-point element in a and b
++// for not-equal, and return the boolean result (0 or 1).
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comineq_ss
++FORCE_INLINE int _mm_comineq_ss(__m128 a, __m128 b)
++{
++ return !_mm_comieq_ss(a, b);
++}
++
++// Convert packed signed 32-bit integers in b to packed single-precision
++// (32-bit) floating-point elements, store the results in the lower 2 elements
++// of dst, and copy the upper 2 packed elements from a to the upper elements of
++// dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_pi2ps
++FORCE_INLINE __m128 _mm_cvt_pi2ps(__m128 a, __m64 b)
++{
++ return vreinterpretq_m128_f32(
++ vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)),
++ vget_high_f32(vreinterpretq_f32_m128(a))));
++}
++
++// Convert packed single-precision (32-bit) floating-point elements in a to
++// packed 32-bit integers, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_ps2pi
++FORCE_INLINE __m64 _mm_cvt_ps2pi(__m128 a)
++{
++#if (defined(__aarch64__) || defined(_M_ARM64)) || \
++ defined(__ARM_FEATURE_DIRECTED_ROUNDING)
++ return vreinterpret_m64_s32(
++ vget_low_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a)))));
++#else
++ return vreinterpret_m64_s32(vcvt_s32_f32(vget_low_f32(
++ vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION)))));
++#endif
++}
++
++// Convert the signed 32-bit integer b to a single-precision (32-bit)
++// floating-point element, store the result in the lower element of dst, and
++// copy the upper 3 packed elements from a to the upper elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_si2ss
++FORCE_INLINE __m128 _mm_cvt_si2ss(__m128 a, int b)
++{
++ return vreinterpretq_m128_f32(
++ vsetq_lane_f32((float) b, vreinterpretq_f32_m128(a), 0));
++}
++
++// Convert the lower single-precision (32-bit) floating-point element in a to a
++// 32-bit integer, and store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvt_ss2si
++FORCE_INLINE int _mm_cvt_ss2si(__m128 a)
++{
++#if (defined(__aarch64__) || defined(_M_ARM64)) || \
++ defined(__ARM_FEATURE_DIRECTED_ROUNDING)
++ return vgetq_lane_s32(vcvtnq_s32_f32(vrndiq_f32(vreinterpretq_f32_m128(a))),
++ 0);
++#else
++ float32_t data = vgetq_lane_f32(
++ vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION)), 0);
++ return (int32_t) data;
++#endif
++}
++
++// Convert packed 16-bit integers in a to packed single-precision (32-bit)
++// floating-point elements, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi16_ps
++FORCE_INLINE __m128 _mm_cvtpi16_ps(__m64 a)
++{
++ return vreinterpretq_m128_f32(
++ vcvtq_f32_s32(vmovl_s16(vreinterpret_s16_m64(a))));
++}
++
++// Convert packed 32-bit integers in b to packed single-precision (32-bit)
++// floating-point elements, store the results in the lower 2 elements of dst,
++// and copy the upper 2 packed elements from a to the upper elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32_ps
++FORCE_INLINE __m128 _mm_cvtpi32_ps(__m128 a, __m64 b)
++{
++ return vreinterpretq_m128_f32(
++ vcombine_f32(vcvt_f32_s32(vreinterpret_s32_m64(b)),
++ vget_high_f32(vreinterpretq_f32_m128(a))));
++}
++
++// Convert packed signed 32-bit integers in a to packed single-precision
++// (32-bit) floating-point elements, store the results in the lower 2 elements
++// of dst, then convert the packed signed 32-bit integers in b to
++// single-precision (32-bit) floating-point element, and store the results in
++// the upper 2 elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32x2_ps
++FORCE_INLINE __m128 _mm_cvtpi32x2_ps(__m64 a, __m64 b)
++{
++ return vreinterpretq_m128_f32(vcvtq_f32_s32(
++ vcombine_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b))));
++}
++
++// Convert the lower packed 8-bit integers in a to packed single-precision
++// (32-bit) floating-point elements, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi8_ps
++FORCE_INLINE __m128 _mm_cvtpi8_ps(__m64 a)
++{
++ return vreinterpretq_m128_f32(vcvtq_f32_s32(
++ vmovl_s16(vget_low_s16(vmovl_s8(vreinterpret_s8_m64(a))))));
++}
++
++// Convert packed single-precision (32-bit) floating-point elements in a to
++// packed 16-bit integers, and store the results in dst. Note: this intrinsic
++// will generate 0x7FFF, rather than 0x8000, for input values between 0x7FFF and
++// 0x7FFFFFFF.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi16
++FORCE_INLINE __m64 _mm_cvtps_pi16(__m128 a)
++{
++ return vreinterpret_m64_s16(
++ vqmovn_s32(vreinterpretq_s32_m128i(_mm_cvtps_epi32(a))));
++}
++
++// Convert packed single-precision (32-bit) floating-point elements in a to
++// packed 32-bit integers, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi32
++#define _mm_cvtps_pi32(a) _mm_cvt_ps2pi(a)
++
++// Convert packed single-precision (32-bit) floating-point elements in a to
++// packed 8-bit integers, and store the results in lower 4 elements of dst.
++// Note: this intrinsic will generate 0x7F, rather than 0x80, for input values
++// between 0x7F and 0x7FFFFFFF.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pi8
++FORCE_INLINE __m64 _mm_cvtps_pi8(__m128 a)
++{
++ return vreinterpret_m64_s8(vqmovn_s16(
++ vcombine_s16(vreinterpret_s16_m64(_mm_cvtps_pi16(a)), vdup_n_s16(0))));
++}
++
++// Convert packed unsigned 16-bit integers in a to packed single-precision
++// (32-bit) floating-point elements, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpu16_ps
++FORCE_INLINE __m128 _mm_cvtpu16_ps(__m64 a)
++{
++ return vreinterpretq_m128_f32(
++ vcvtq_f32_u32(vmovl_u16(vreinterpret_u16_m64(a))));
++}
++
++// Convert the lower packed unsigned 8-bit integers in a to packed
++// single-precision (32-bit) floating-point elements, and store the results in
++// dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpu8_ps
++FORCE_INLINE __m128 _mm_cvtpu8_ps(__m64 a)
++{
++ return vreinterpretq_m128_f32(vcvtq_f32_u32(
++ vmovl_u16(vget_low_u16(vmovl_u8(vreinterpret_u8_m64(a))))));
++}
++
++// Convert the signed 32-bit integer b to a single-precision (32-bit)
++// floating-point element, store the result in the lower element of dst, and
++// copy the upper 3 packed elements from a to the upper elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_ss
++#define _mm_cvtsi32_ss(a, b) _mm_cvt_si2ss(a, b)
++
++// Convert the signed 64-bit integer b to a single-precision (32-bit)
++// floating-point element, store the result in the lower element of dst, and
++// copy the upper 3 packed elements from a to the upper elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_ss
++FORCE_INLINE __m128 _mm_cvtsi64_ss(__m128 a, int64_t b)
++{
++ return vreinterpretq_m128_f32(
++ vsetq_lane_f32((float) b, vreinterpretq_f32_m128(a), 0));
++}
++
++// Copy the lower single-precision (32-bit) floating-point element of a to dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_f32
++FORCE_INLINE float _mm_cvtss_f32(__m128 a)
++{
++ return vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
++}
++
++// Convert the lower single-precision (32-bit) floating-point element in a to a
++// 32-bit integer, and store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_si32
++#define _mm_cvtss_si32(a) _mm_cvt_ss2si(a)
++
++// Convert the lower single-precision (32-bit) floating-point element in a to a
++// 64-bit integer, and store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_si64
++FORCE_INLINE int64_t _mm_cvtss_si64(__m128 a)
++{
++#if (defined(__aarch64__) || defined(_M_ARM64)) || \
++ defined(__ARM_FEATURE_DIRECTED_ROUNDING)
++ return (int64_t) vgetq_lane_f32(vrndiq_f32(vreinterpretq_f32_m128(a)), 0);
++#else
++ float32_t data = vgetq_lane_f32(
++ vreinterpretq_f32_m128(_mm_round_ps(a, _MM_FROUND_CUR_DIRECTION)), 0);
++ return (int64_t) data;
++#endif
++}
++
++// Convert packed single-precision (32-bit) floating-point elements in a to
++// packed 32-bit integers with truncation, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtt_ps2pi
++FORCE_INLINE __m64 _mm_cvtt_ps2pi(__m128 a)
++{
++ return vreinterpret_m64_s32(
++ vget_low_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a))));
++}
++
++// Convert the lower single-precision (32-bit) floating-point element in a to a
++// 32-bit integer with truncation, and store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtt_ss2si
++FORCE_INLINE int _mm_cvtt_ss2si(__m128 a)
++{
++ return vgetq_lane_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)), 0);
++}
++
++// Convert packed single-precision (32-bit) floating-point elements in a to
++// packed 32-bit integers with truncation, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttps_pi32
++#define _mm_cvttps_pi32(a) _mm_cvtt_ps2pi(a)
++
++// Convert the lower single-precision (32-bit) floating-point element in a to a
++// 32-bit integer with truncation, and store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttss_si32
++#define _mm_cvttss_si32(a) _mm_cvtt_ss2si(a)
++
++// Convert the lower single-precision (32-bit) floating-point element in a to a
++// 64-bit integer with truncation, and store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttss_si64
++FORCE_INLINE int64_t _mm_cvttss_si64(__m128 a)
++{
++ return (int64_t) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
++}
++
++// Divide packed single-precision (32-bit) floating-point elements in a by
++// packed elements in b, and store the results in dst.
++// Due to ARMv7-A NEON's lack of a precise division intrinsic, we implement
++// division by multiplying a by b's reciprocal before using the Newton-Raphson
++// method to approximate the results.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_ps
++FORCE_INLINE __m128 _mm_div_ps(__m128 a, __m128 b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128_f32(
++ vdivq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
++#else
++ float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(b));
++ recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b)));
++ // Additional Netwon-Raphson iteration for accuracy
++ recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(b)));
++ return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(a), recip));
++#endif
++}
++
++// Divide the lower single-precision (32-bit) floating-point element in a by the
++// lower single-precision (32-bit) floating-point element in b, store the result
++// in the lower element of dst, and copy the upper 3 packed elements from a to
++// the upper elements of dst.
++// Warning: ARMv7-A does not produce the same result compared to Intel and not
++// IEEE-compliant.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_ss
++FORCE_INLINE __m128 _mm_div_ss(__m128 a, __m128 b)
++{
++ float32_t value =
++ vgetq_lane_f32(vreinterpretq_f32_m128(_mm_div_ps(a, b)), 0);
++ return vreinterpretq_m128_f32(
++ vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
++}
++
++// Extract a 16-bit integer from a, selected with imm8, and store the result in
++// the lower element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_pi16
++#define _mm_extract_pi16(a, imm) \
++ (int32_t) vget_lane_u16(vreinterpret_u16_m64(a), (imm))
++
++// Free aligned memory that was allocated with _mm_malloc.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_free
++#if !defined(SSE2NEON_ALLOC_DEFINED)
++FORCE_INLINE void _mm_free(void *addr)
++{
++ free(addr);
++}
++#endif
++
++FORCE_INLINE uint64_t _sse2neon_get_fpcr(void)
++{
++ uint64_t value;
++#if defined(_MSC_VER)
++ value = _ReadStatusReg(ARM64_FPCR);
++#else
++ __asm__ __volatile__("mrs %0, FPCR" : "=r"(value)); /* read */
++#endif
++ return value;
++}
++
++FORCE_INLINE void _sse2neon_set_fpcr(uint64_t value)
++{
++#if defined(_MSC_VER)
++ _WriteStatusReg(ARM64_FPCR, value);
++#else
++ __asm__ __volatile__("msr FPCR, %0" ::"r"(value)); /* write */
++#endif
++}
++
++// Macro: Get the flush zero bits from the MXCSR control and status register.
++// The flush zero may contain any of the following flags: _MM_FLUSH_ZERO_ON or
++// _MM_FLUSH_ZERO_OFF
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_FLUSH_ZERO_MODE
++FORCE_INLINE unsigned int _sse2neon_mm_get_flush_zero_mode(void)
++{
++ union {
++ fpcr_bitfield field;
++#if defined(__aarch64__) || defined(_M_ARM64)
++ uint64_t value;
++#else
++ uint32_t value;
++#endif
++ } r;
++
++#if defined(__aarch64__) || defined(_M_ARM64)
++ r.value = _sse2neon_get_fpcr();
++#else
++ __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
++#endif
++
++ return r.field.bit24 ? _MM_FLUSH_ZERO_ON : _MM_FLUSH_ZERO_OFF;
++}
++
++// Macro: Get the rounding mode bits from the MXCSR control and status register.
++// The rounding mode may contain any of the following flags: _MM_ROUND_NEAREST,
++// _MM_ROUND_DOWN, _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_GET_ROUNDING_MODE
++FORCE_INLINE unsigned int _MM_GET_ROUNDING_MODE(void)
++{
++ union {
++ fpcr_bitfield field;
++#if defined(__aarch64__) || defined(_M_ARM64)
++ uint64_t value;
++#else
++ uint32_t value;
++#endif
++ } r;
++
++#if defined(__aarch64__) || defined(_M_ARM64)
++ r.value = _sse2neon_get_fpcr();
++#else
++ __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
++#endif
++
++ if (r.field.bit22) {
++ return r.field.bit23 ? _MM_ROUND_TOWARD_ZERO : _MM_ROUND_UP;
++ } else {
++ return r.field.bit23 ? _MM_ROUND_DOWN : _MM_ROUND_NEAREST;
++ }
++}
++
++// Copy a to dst, and insert the 16-bit integer i into dst at the location
++// specified by imm8.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_pi16
++#define _mm_insert_pi16(a, b, imm) \
++ vreinterpret_m64_s16(vset_lane_s16((b), vreinterpret_s16_m64(a), (imm)))
++
++// Load 128-bits (composed of 4 packed single-precision (32-bit) floating-point
++// elements) from memory into dst. mem_addr must be aligned on a 16-byte
++// boundary or a general-protection exception may be generated.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ps
++FORCE_INLINE __m128 _mm_load_ps(const float *p)
++{
++ return vreinterpretq_m128_f32(vld1q_f32(p));
++}
++
++// Load a single-precision (32-bit) floating-point element from memory into all
++// elements of dst.
++//
++// dst[31:0] := MEM[mem_addr+31:mem_addr]
++// dst[63:32] := MEM[mem_addr+31:mem_addr]
++// dst[95:64] := MEM[mem_addr+31:mem_addr]
++// dst[127:96] := MEM[mem_addr+31:mem_addr]
++//
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ps1
++#define _mm_load_ps1 _mm_load1_ps
++
++// Load a single-precision (32-bit) floating-point element from memory into the
++// lower of dst, and zero the upper 3 elements. mem_addr does not need to be
++// aligned on any particular boundary.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_ss
++FORCE_INLINE __m128 _mm_load_ss(const float *p)
++{
++ return vreinterpretq_m128_f32(vsetq_lane_f32(*p, vdupq_n_f32(0), 0));
++}
++
++// Load a single-precision (32-bit) floating-point element from memory into all
++// elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load1_ps
++FORCE_INLINE __m128 _mm_load1_ps(const float *p)
++{
++ return vreinterpretq_m128_f32(vld1q_dup_f32(p));
++}
++
++// Load 2 single-precision (32-bit) floating-point elements from memory into the
++// upper 2 elements of dst, and copy the lower 2 elements from a to dst.
++// mem_addr does not need to be aligned on any particular boundary.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadh_pi
++FORCE_INLINE __m128 _mm_loadh_pi(__m128 a, __m64 const *p)
++{
++ return vreinterpretq_m128_f32(
++ vcombine_f32(vget_low_f32(a), vld1_f32((const float32_t *) p)));
++}
++
++// Load 2 single-precision (32-bit) floating-point elements from memory into the
++// lower 2 elements of dst, and copy the upper 2 elements from a to dst.
++// mem_addr does not need to be aligned on any particular boundary.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_pi
++FORCE_INLINE __m128 _mm_loadl_pi(__m128 a, __m64 const *p)
++{
++ return vreinterpretq_m128_f32(
++ vcombine_f32(vld1_f32((const float32_t *) p), vget_high_f32(a)));
++}
++
++// Load 4 single-precision (32-bit) floating-point elements from memory into dst
++// in reverse order. mem_addr must be aligned on a 16-byte boundary or a
++// general-protection exception may be generated.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadr_ps
++FORCE_INLINE __m128 _mm_loadr_ps(const float *p)
++{
++ float32x4_t v = vrev64q_f32(vld1q_f32(p));
++ return vreinterpretq_m128_f32(vextq_f32(v, v, 2));
++}
++
++// Load 128-bits (composed of 4 packed single-precision (32-bit) floating-point
++// elements) from memory into dst. mem_addr does not need to be aligned on any
++// particular boundary.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_ps
++FORCE_INLINE __m128 _mm_loadu_ps(const float *p)
++{
++ // for neon, alignment doesn't matter, so _mm_load_ps and _mm_loadu_ps are
++ // equivalent for neon
++ return vreinterpretq_m128_f32(vld1q_f32(p));
++}
++
++// Load unaligned 16-bit integer from memory into the first element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si16
++FORCE_INLINE __m128i _mm_loadu_si16(const void *p)
++{
++ return vreinterpretq_m128i_s16(
++ vsetq_lane_s16(*(const int16_t *) p, vdupq_n_s16(0), 0));
++}
++
++// Load unaligned 64-bit integer from memory into the first element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si64
++FORCE_INLINE __m128i _mm_loadu_si64(const void *p)
++{
++ return vreinterpretq_m128i_s64(
++ vcombine_s64(vld1_s64((const int64_t *) p), vdup_n_s64(0)));
++}
++
++// Allocate size bytes of memory, aligned to the alignment specified in align,
++// and return a pointer to the allocated memory. _mm_free should be used to free
++// memory that is allocated with _mm_malloc.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_malloc
++#if !defined(SSE2NEON_ALLOC_DEFINED)
++FORCE_INLINE void *_mm_malloc(size_t size, size_t align)
++{
++ void *ptr;
++ if (align == 1)
++ return malloc(size);
++ if (align == 2 || (sizeof(void *) == 8 && align == 4))
++ align = sizeof(void *);
++ if (!posix_memalign(&ptr, align, size))
++ return ptr;
++ return NULL;
++}
++#endif
++
++// Conditionally store 8-bit integer elements from a into memory using mask
++// (elements are not stored when the highest bit is not set in the corresponding
++// element) and a non-temporal memory hint.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskmove_si64
++FORCE_INLINE void _mm_maskmove_si64(__m64 a, __m64 mask, char *mem_addr)
++{
++ int8x8_t shr_mask = vshr_n_s8(vreinterpret_s8_m64(mask), 7);
++ __m128 b = _mm_load_ps((const float *) mem_addr);
++ int8x8_t masked =
++ vbsl_s8(vreinterpret_u8_s8(shr_mask), vreinterpret_s8_m64(a),
++ vreinterpret_s8_u64(vget_low_u64(vreinterpretq_u64_m128(b))));
++ vst1_s8((int8_t *) mem_addr, masked);
++}
++
++// Conditionally store 8-bit integer elements from a into memory using mask
++// (elements are not stored when the highest bit is not set in the corresponding
++// element) and a non-temporal memory hint.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_maskmovq
++#define _m_maskmovq(a, mask, mem_addr) _mm_maskmove_si64(a, mask, mem_addr)
++
++// Compare packed signed 16-bit integers in a and b, and store packed maximum
++// values in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pi16
++FORCE_INLINE __m64 _mm_max_pi16(__m64 a, __m64 b)
++{
++ return vreinterpret_m64_s16(
++ vmax_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
++}
++
++// Compare packed single-precision (32-bit) floating-point elements in a and b,
++// and store packed maximum values in dst. dst does not follow the IEEE Standard
++// for Floating-Point Arithmetic (IEEE 754) maximum value when inputs are NaN or
++// signed-zero values.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_ps
++FORCE_INLINE __m128 _mm_max_ps(__m128 a, __m128 b)
++{
++#if SSE2NEON_PRECISE_MINMAX
++ float32x4_t _a = vreinterpretq_f32_m128(a);
++ float32x4_t _b = vreinterpretq_f32_m128(b);
++ return vreinterpretq_m128_f32(vbslq_f32(vcgtq_f32(_a, _b), _a, _b));
++#else
++ return vreinterpretq_m128_f32(
++ vmaxq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
++#endif
++}
++
++// Compare packed unsigned 8-bit integers in a and b, and store packed maximum
++// values in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pu8
++FORCE_INLINE __m64 _mm_max_pu8(__m64 a, __m64 b)
++{
++ return vreinterpret_m64_u8(
++ vmax_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
++}
++
++// Compare the lower single-precision (32-bit) floating-point elements in a and
++// b, store the maximum value in the lower element of dst, and copy the upper 3
++// packed elements from a to the upper element of dst. dst does not follow the
++// IEEE Standard for Floating-Point Arithmetic (IEEE 754) maximum value when
++// inputs are NaN or signed-zero values.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_ss
++FORCE_INLINE __m128 _mm_max_ss(__m128 a, __m128 b)
++{
++ float32_t value = vgetq_lane_f32(_mm_max_ps(a, b), 0);
++ return vreinterpretq_m128_f32(
++ vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
++}
++
++// Compare packed signed 16-bit integers in a and b, and store packed minimum
++// values in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pi16
++FORCE_INLINE __m64 _mm_min_pi16(__m64 a, __m64 b)
++{
++ return vreinterpret_m64_s16(
++ vmin_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
++}
++
++// Compare packed single-precision (32-bit) floating-point elements in a and b,
++// and store packed minimum values in dst. dst does not follow the IEEE Standard
++// for Floating-Point Arithmetic (IEEE 754) minimum value when inputs are NaN or
++// signed-zero values.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_ps
++FORCE_INLINE __m128 _mm_min_ps(__m128 a, __m128 b)
++{
++#if SSE2NEON_PRECISE_MINMAX
++ float32x4_t _a = vreinterpretq_f32_m128(a);
++ float32x4_t _b = vreinterpretq_f32_m128(b);
++ return vreinterpretq_m128_f32(vbslq_f32(vcltq_f32(_a, _b), _a, _b));
++#else
++ return vreinterpretq_m128_f32(
++ vminq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
++#endif
++}
++
++// Compare packed unsigned 8-bit integers in a and b, and store packed minimum
++// values in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pu8
++FORCE_INLINE __m64 _mm_min_pu8(__m64 a, __m64 b)
++{
++ return vreinterpret_m64_u8(
++ vmin_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)));
++}
++
++// Compare the lower single-precision (32-bit) floating-point elements in a and
++// b, store the minimum value in the lower element of dst, and copy the upper 3
++// packed elements from a to the upper element of dst. dst does not follow the
++// IEEE Standard for Floating-Point Arithmetic (IEEE 754) minimum value when
++// inputs are NaN or signed-zero values.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_ss
++FORCE_INLINE __m128 _mm_min_ss(__m128 a, __m128 b)
++{
++ float32_t value = vgetq_lane_f32(_mm_min_ps(a, b), 0);
++ return vreinterpretq_m128_f32(
++ vsetq_lane_f32(value, vreinterpretq_f32_m128(a), 0));
++}
++
++// Move the lower single-precision (32-bit) floating-point element from b to the
++// lower element of dst, and copy the upper 3 packed elements from a to the
++// upper elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_ss
++FORCE_INLINE __m128 _mm_move_ss(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_f32(
++ vsetq_lane_f32(vgetq_lane_f32(vreinterpretq_f32_m128(b), 0),
++ vreinterpretq_f32_m128(a), 0));
++}
++
++// Move the upper 2 single-precision (32-bit) floating-point elements from b to
++// the lower 2 elements of dst, and copy the upper 2 elements from a to the
++// upper 2 elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movehl_ps
++FORCE_INLINE __m128 _mm_movehl_ps(__m128 a, __m128 b)
++{
++#if defined(aarch64__)
++ return vreinterpretq_m128_u64(
++ vzip2q_u64(vreinterpretq_u64_m128(b), vreinterpretq_u64_m128(a)));
++#else
++ float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
++ float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
++ return vreinterpretq_m128_f32(vcombine_f32(b32, a32));
++#endif
++}
++
++// Move the lower 2 single-precision (32-bit) floating-point elements from b to
++// the upper 2 elements of dst, and copy the lower 2 elements from a to the
++// lower 2 elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movelh_ps
++FORCE_INLINE __m128 _mm_movelh_ps(__m128 __A, __m128 __B)
++{
++ float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(__A));
++ float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(__B));
++ return vreinterpretq_m128_f32(vcombine_f32(a10, b10));
++}
++
++// Create mask from the most significant bit of each 8-bit element in a, and
++// store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_pi8
++FORCE_INLINE int _mm_movemask_pi8(__m64 a)
++{
++ uint8x8_t input = vreinterpret_u8_m64(a);
++#if defined(__aarch64__) || defined(_M_ARM64)
++ static const int8_t shift[8] = {0, 1, 2, 3, 4, 5, 6, 7};
++ uint8x8_t tmp = vshr_n_u8(input, 7);
++ return vaddv_u8(vshl_u8(tmp, vld1_s8(shift)));
++#else
++ // Refer the implementation of `_mm_movemask_epi8`
++ uint16x4_t high_bits = vreinterpret_u16_u8(vshr_n_u8(input, 7));
++ uint32x2_t paired16 =
++ vreinterpret_u32_u16(vsra_n_u16(high_bits, high_bits, 7));
++ uint8x8_t paired32 =
++ vreinterpret_u8_u32(vsra_n_u32(paired16, paired16, 14));
++ return vget_lane_u8(paired32, 0) | ((int) vget_lane_u8(paired32, 4) << 4);
++#endif
++}
++
++// Set each bit of mask dst based on the most significant bit of the
++// corresponding packed single-precision (32-bit) floating-point element in a.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_ps
++FORCE_INLINE int _mm_movemask_ps(__m128 a)
++{
++ uint32x4_t input = vreinterpretq_u32_m128(a);
++#if defined(__aarch64__) || defined(_M_ARM64)
++ static const int32_t shift[4] = {0, 1, 2, 3};
++ uint32x4_t tmp = vshrq_n_u32(input, 31);
++ return vaddvq_u32(vshlq_u32(tmp, vld1q_s32(shift)));
++#else
++ // Uses the exact same method as _mm_movemask_epi8, see that for details.
++ // Shift out everything but the sign bits with a 32-bit unsigned shift
++ // right.
++ uint64x2_t high_bits = vreinterpretq_u64_u32(vshrq_n_u32(input, 31));
++ // Merge the two pairs together with a 64-bit unsigned shift right + add.
++ uint8x16_t paired =
++ vreinterpretq_u8_u64(vsraq_n_u64(high_bits, high_bits, 31));
++ // Extract the result.
++ return vgetq_lane_u8(paired, 0) | (vgetq_lane_u8(paired, 8) << 2);
++#endif
++}
++
++// Multiply packed single-precision (32-bit) floating-point elements in a and b,
++// and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_ps
++FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_f32(
++ vmulq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
++}
++
++// Multiply the lower single-precision (32-bit) floating-point element in a and
++// b, store the result in the lower element of dst, and copy the upper 3 packed
++// elements from a to the upper elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_ss
++FORCE_INLINE __m128 _mm_mul_ss(__m128 a, __m128 b)
++{
++ return _mm_move_ss(a, _mm_mul_ps(a, b));
++}
++
++// Multiply the packed unsigned 16-bit integers in a and b, producing
++// intermediate 32-bit integers, and store the high 16 bits of the intermediate
++// integers in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_pu16
++FORCE_INLINE __m64 _mm_mulhi_pu16(__m64 a, __m64 b)
++{
++ return vreinterpret_m64_u16(vshrn_n_u32(
++ vmull_u16(vreinterpret_u16_m64(a), vreinterpret_u16_m64(b)), 16));
++}
++
++// Compute the bitwise OR of packed single-precision (32-bit) floating-point
++// elements in a and b, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_or_ps
++FORCE_INLINE __m128 _mm_or_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_s32(
++ vorrq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
++}
++
++// Average packed unsigned 8-bit integers in a and b, and store the results in
++// dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pavgb
++#define _m_pavgb(a, b) _mm_avg_pu8(a, b)
++
++// Average packed unsigned 16-bit integers in a and b, and store the results in
++// dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pavgw
++#define _m_pavgw(a, b) _mm_avg_pu16(a, b)
++
++// Extract a 16-bit integer from a, selected with imm8, and store the result in
++// the lower element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pextrw
++#define _m_pextrw(a, imm) _mm_extract_pi16(a, imm)
++
++// Copy a to dst, and insert the 16-bit integer i into dst at the location
++// specified by imm8.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=m_pinsrw
++#define _m_pinsrw(a, i, imm) _mm_insert_pi16(a, i, imm)
++
++// Compare packed signed 16-bit integers in a and b, and store packed maximum
++// values in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmaxsw
++#define _m_pmaxsw(a, b) _mm_max_pi16(a, b)
++
++// Compare packed unsigned 8-bit integers in a and b, and store packed maximum
++// values in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmaxub
++#define _m_pmaxub(a, b) _mm_max_pu8(a, b)
++
++// Compare packed signed 16-bit integers in a and b, and store packed minimum
++// values in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pminsw
++#define _m_pminsw(a, b) _mm_min_pi16(a, b)
++
++// Compare packed unsigned 8-bit integers in a and b, and store packed minimum
++// values in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pminub
++#define _m_pminub(a, b) _mm_min_pu8(a, b)
++
++// Create mask from the most significant bit of each 8-bit element in a, and
++// store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmovmskb
++#define _m_pmovmskb(a) _mm_movemask_pi8(a)
++
++// Multiply the packed unsigned 16-bit integers in a and b, producing
++// intermediate 32-bit integers, and store the high 16 bits of the intermediate
++// integers in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pmulhuw
++#define _m_pmulhuw(a, b) _mm_mulhi_pu16(a, b)
++
++// Fetch the line of data from memory that contains address p to a location in
++// the cache hierarchy specified by the locality hint i.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_prefetch
++FORCE_INLINE void _mm_prefetch(char const *p, int i)
++{
++ (void) i;
++#if defined(_MSC_VER)
++ switch (i) {
++ case _MM_HINT_NTA:
++ __prefetch2(p, 1);
++ break;
++ case _MM_HINT_T0:
++ __prefetch2(p, 0);
++ break;
++ case _MM_HINT_T1:
++ __prefetch2(p, 2);
++ break;
++ case _MM_HINT_T2:
++ __prefetch2(p, 4);
++ break;
++ }
++#else
++ switch (i) {
++ case _MM_HINT_NTA:
++ __builtin_prefetch(p, 0, 0);
++ break;
++ case _MM_HINT_T0:
++ __builtin_prefetch(p, 0, 3);
++ break;
++ case _MM_HINT_T1:
++ __builtin_prefetch(p, 0, 2);
++ break;
++ case _MM_HINT_T2:
++ __builtin_prefetch(p, 0, 1);
++ break;
++ }
++#endif
++}
++
++// Compute the absolute differences of packed unsigned 8-bit integers in a and
++// b, then horizontally sum each consecutive 8 differences to produce four
++// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
++// 16 bits of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=m_psadbw
++#define _m_psadbw(a, b) _mm_sad_pu8(a, b)
++
++// Shuffle 16-bit integers in a using the control in imm8, and store the results
++// in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_m_pshufw
++#define _m_pshufw(a, imm) _mm_shuffle_pi16(a, imm)
++
++// Compute the approximate reciprocal of packed single-precision (32-bit)
++// floating-point elements in a, and store the results in dst. The maximum
++// relative error for this approximation is less than 1.5*2^-12.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rcp_ps
++FORCE_INLINE __m128 _mm_rcp_ps(__m128 in)
++{
++ float32x4_t recip = vrecpeq_f32(vreinterpretq_f32_m128(in));
++ recip = vmulq_f32(recip, vrecpsq_f32(recip, vreinterpretq_f32_m128(in)));
++ return vreinterpretq_m128_f32(recip);
++}
++
++// Compute the approximate reciprocal of the lower single-precision (32-bit)
++// floating-point element in a, store the result in the lower element of dst,
++// and copy the upper 3 packed elements from a to the upper elements of dst. The
++// maximum relative error for this approximation is less than 1.5*2^-12.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rcp_ss
++FORCE_INLINE __m128 _mm_rcp_ss(__m128 a)
++{
++ return _mm_move_ss(a, _mm_rcp_ps(a));
++}
++
++// Compute the approximate reciprocal square root of packed single-precision
++// (32-bit) floating-point elements in a, and store the results in dst. The
++// maximum relative error for this approximation is less than 1.5*2^-12.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rsqrt_ps
++FORCE_INLINE __m128 _mm_rsqrt_ps(__m128 in)
++{
++ float32x4_t out = vrsqrteq_f32(vreinterpretq_f32_m128(in));
++
++ // Generate masks for detecting whether input has any 0.0f/-0.0f
++ // (which becomes positive/negative infinity by IEEE-754 arithmetic rules).
++ const uint32x4_t pos_inf = vdupq_n_u32(0x7F800000);
++ const uint32x4_t neg_inf = vdupq_n_u32(0xFF800000);
++ const uint32x4_t has_pos_zero =
++ vceqq_u32(pos_inf, vreinterpretq_u32_f32(out));
++ const uint32x4_t has_neg_zero =
++ vceqq_u32(neg_inf, vreinterpretq_u32_f32(out));
++
++ out = vmulq_f32(
++ out, vrsqrtsq_f32(vmulq_f32(vreinterpretq_f32_m128(in), out), out));
++
++ // Set output vector element to infinity/negative-infinity if
++ // the corresponding input vector element is 0.0f/-0.0f.
++ out = vbslq_f32(has_pos_zero, (float32x4_t) pos_inf, out);
++ out = vbslq_f32(has_neg_zero, (float32x4_t) neg_inf, out);
++
++ return vreinterpretq_m128_f32(out);
++}
++
++// Compute the approximate reciprocal square root of the lower single-precision
++// (32-bit) floating-point element in a, store the result in the lower element
++// of dst, and copy the upper 3 packed elements from a to the upper elements of
++// dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_rsqrt_ss
++FORCE_INLINE __m128 _mm_rsqrt_ss(__m128 in)
++{
++ return vsetq_lane_f32(vgetq_lane_f32(_mm_rsqrt_ps(in), 0), in, 0);
++}
++
++// Compute the absolute differences of packed unsigned 8-bit integers in a and
++// b, then horizontally sum each consecutive 8 differences to produce four
++// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
++// 16 bits of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sad_pu8
++FORCE_INLINE __m64 _mm_sad_pu8(__m64 a, __m64 b)
++{
++ uint64x1_t t = vpaddl_u32(vpaddl_u16(
++ vpaddl_u8(vabd_u8(vreinterpret_u8_m64(a), vreinterpret_u8_m64(b)))));
++ return vreinterpret_m64_u16(
++ vset_lane_u16((int) vget_lane_u64(t, 0), vdup_n_u16(0), 0));
++}
++
++// Macro: Set the flush zero bits of the MXCSR control and status register to
++// the value in unsigned 32-bit integer a. The flush zero may contain any of the
++// following flags: _MM_FLUSH_ZERO_ON or _MM_FLUSH_ZERO_OFF
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_FLUSH_ZERO_MODE
++FORCE_INLINE void _sse2neon_mm_set_flush_zero_mode(unsigned int flag)
++{
++ // AArch32 Advanced SIMD arithmetic always uses the Flush-to-zero setting,
++ // regardless of the value of the FZ bit.
++ union {
++ fpcr_bitfield field;
++#if defined(__aarch64__) || defined(_M_ARM64)
++ uint64_t value;
++#else
++ uint32_t value;
++#endif
++ } r;
++
++#if defined(__aarch64__) || defined(_M_ARM64)
++ r.value = _sse2neon_get_fpcr();
++#else
++ __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
++#endif
++
++ r.field.bit24 = (flag & _MM_FLUSH_ZERO_MASK) == _MM_FLUSH_ZERO_ON;
++
++#if defined(__aarch64__) || defined(_M_ARM64)
++ _sse2neon_set_fpcr(r.value);
++#else
++ __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */
++#endif
++}
++
++// Set packed single-precision (32-bit) floating-point elements in dst with the
++// supplied values.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ps
++FORCE_INLINE __m128 _mm_set_ps(float w, float z, float y, float x)
++{
++ float ALIGN_STRUCT(16) data[4] = {x, y, z, w};
++ return vreinterpretq_m128_f32(vld1q_f32(data));
++}
++
++// Broadcast single-precision (32-bit) floating-point value a to all elements of
++// dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ps1
++FORCE_INLINE __m128 _mm_set_ps1(float _w)
++{
++ return vreinterpretq_m128_f32(vdupq_n_f32(_w));
++}
++
++// Macro: Set the rounding mode bits of the MXCSR control and status register to
++// the value in unsigned 32-bit integer a. The rounding mode may contain any of
++// the following flags: _MM_ROUND_NEAREST, _MM_ROUND_DOWN, _MM_ROUND_UP,
++// _MM_ROUND_TOWARD_ZERO
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_MM_SET_ROUNDING_MODE
++FORCE_INLINE void _MM_SET_ROUNDING_MODE(int rounding)
++{
++ union {
++ fpcr_bitfield field;
++#if defined(__aarch64__) || defined(_M_ARM64)
++ uint64_t value;
++#else
++ uint32_t value;
++#endif
++ } r;
++
++#if defined(__aarch64__) || defined(_M_ARM64)
++ r.value = _sse2neon_get_fpcr();
++#else
++ __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
++#endif
++
++ switch (rounding) {
++ case _MM_ROUND_TOWARD_ZERO:
++ r.field.bit22 = 1;
++ r.field.bit23 = 1;
++ break;
++ case _MM_ROUND_DOWN:
++ r.field.bit22 = 0;
++ r.field.bit23 = 1;
++ break;
++ case _MM_ROUND_UP:
++ r.field.bit22 = 1;
++ r.field.bit23 = 0;
++ break;
++ default: //_MM_ROUND_NEAREST
++ r.field.bit22 = 0;
++ r.field.bit23 = 0;
++ }
++
++#if defined(__aarch64__) || defined(_M_ARM64)
++ _sse2neon_set_fpcr(r.value);
++#else
++ __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */
++#endif
++}
++
++// Copy single-precision (32-bit) floating-point element a to the lower element
++// of dst, and zero the upper 3 elements.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_ss
++FORCE_INLINE __m128 _mm_set_ss(float a)
++{
++ return vreinterpretq_m128_f32(vsetq_lane_f32(a, vdupq_n_f32(0), 0));
++}
++
++// Broadcast single-precision (32-bit) floating-point value a to all elements of
++// dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_ps
++FORCE_INLINE __m128 _mm_set1_ps(float _w)
++{
++ return vreinterpretq_m128_f32(vdupq_n_f32(_w));
++}
++
++// Set the MXCSR control and status register with the value in unsigned 32-bit
++// integer a.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setcsr
++// FIXME: _mm_setcsr() implementation supports changing the rounding mode only.
++FORCE_INLINE void _mm_setcsr(unsigned int a)
++{
++ _MM_SET_ROUNDING_MODE(a);
++}
++
++// Get the unsigned 32-bit value of the MXCSR control and status register.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_getcsr
++// FIXME: _mm_getcsr() implementation supports reading the rounding mode only.
++FORCE_INLINE unsigned int _mm_getcsr(void)
++{
++ return _MM_GET_ROUNDING_MODE();
++}
++
++// Set packed single-precision (32-bit) floating-point elements in dst with the
++// supplied values in reverse order.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_ps
++FORCE_INLINE __m128 _mm_setr_ps(float w, float z, float y, float x)
++{
++ float ALIGN_STRUCT(16) data[4] = {w, z, y, x};
++ return vreinterpretq_m128_f32(vld1q_f32(data));
++}
++
++// Return vector of type __m128 with all elements set to zero.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_ps
++FORCE_INLINE __m128 _mm_setzero_ps(void)
++{
++ return vreinterpretq_m128_f32(vdupq_n_f32(0));
++}
++
++// Shuffle 16-bit integers in a using the control in imm8, and store the results
++// in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pi16
++#ifdef _sse2neon_shuffle
++#define _mm_shuffle_pi16(a, imm) \
++ vreinterpret_m64_s16(vshuffle_s16( \
++ vreinterpret_s16_m64(a), vreinterpret_s16_m64(a), (imm & 0x3), \
++ ((imm >> 2) & 0x3), ((imm >> 4) & 0x3), ((imm >> 6) & 0x3)))
++#else
++#define _mm_shuffle_pi16(a, imm) \
++ _sse2neon_define1( \
++ __m64, a, int16x4_t ret; \
++ ret = vmov_n_s16( \
++ vget_lane_s16(vreinterpret_s16_m64(_a), (imm) & (0x3))); \
++ ret = vset_lane_s16( \
++ vget_lane_s16(vreinterpret_s16_m64(_a), ((imm) >> 2) & 0x3), ret, \
++ 1); \
++ ret = vset_lane_s16( \
++ vget_lane_s16(vreinterpret_s16_m64(_a), ((imm) >> 4) & 0x3), ret, \
++ 2); \
++ ret = vset_lane_s16( \
++ vget_lane_s16(vreinterpret_s16_m64(_a), ((imm) >> 6) & 0x3), ret, \
++ 3); \
++ _sse2neon_return(vreinterpret_m64_s16(ret));)
++#endif
++
++// Perform a serializing operation on all store-to-memory instructions that were
++// issued prior to this instruction. Guarantees that every store instruction
++// that precedes, in program order, is globally visible before any store
++// instruction which follows the fence in program order.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sfence
++FORCE_INLINE void _mm_sfence(void)
++{
++ _sse2neon_smp_mb();
++}
++
++// Perform a serializing operation on all load-from-memory and store-to-memory
++// instructions that were issued prior to this instruction. Guarantees that
++// every memory access that precedes, in program order, the memory fence
++// instruction is globally visible before any memory instruction which follows
++// the fence in program order.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mfence
++FORCE_INLINE void _mm_mfence(void)
++{
++ _sse2neon_smp_mb();
++}
++
++// Perform a serializing operation on all load-from-memory instructions that
++// were issued prior to this instruction. Guarantees that every load instruction
++// that precedes, in program order, is globally visible before any load
++// instruction which follows the fence in program order.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_lfence
++FORCE_INLINE void _mm_lfence(void)
++{
++ _sse2neon_smp_mb();
++}
++
++// FORCE_INLINE __m128 _mm_shuffle_ps(__m128 a, __m128 b, __constrange(0,255)
++// int imm)
++#ifdef _sse2neon_shuffle
++#define _mm_shuffle_ps(a, b, imm) \
++ __extension__({ \
++ float32x4_t _input1 = vreinterpretq_f32_m128(a); \
++ float32x4_t _input2 = vreinterpretq_f32_m128(b); \
++ float32x4_t _shuf = \
++ vshuffleq_s32(_input1, _input2, (imm) & (0x3), ((imm) >> 2) & 0x3, \
++ (((imm) >> 4) & 0x3) + 4, (((imm) >> 6) & 0x3) + 4); \
++ vreinterpretq_m128_f32(_shuf); \
++ })
++#else // generic
++#define _mm_shuffle_ps(a, b, imm) \
++ _sse2neon_define2( \
++ __m128, a, b, __m128 ret; switch (imm) { \
++ case _MM_SHUFFLE(1, 0, 3, 2): \
++ ret = _mm_shuffle_ps_1032(_a, _b); \
++ break; \
++ case _MM_SHUFFLE(2, 3, 0, 1): \
++ ret = _mm_shuffle_ps_2301(_a, _b); \
++ break; \
++ case _MM_SHUFFLE(0, 3, 2, 1): \
++ ret = _mm_shuffle_ps_0321(_a, _b); \
++ break; \
++ case _MM_SHUFFLE(2, 1, 0, 3): \
++ ret = _mm_shuffle_ps_2103(_a, _b); \
++ break; \
++ case _MM_SHUFFLE(1, 0, 1, 0): \
++ ret = _mm_movelh_ps(_a, _b); \
++ break; \
++ case _MM_SHUFFLE(1, 0, 0, 1): \
++ ret = _mm_shuffle_ps_1001(_a, _b); \
++ break; \
++ case _MM_SHUFFLE(0, 1, 0, 1): \
++ ret = _mm_shuffle_ps_0101(_a, _b); \
++ break; \
++ case _MM_SHUFFLE(3, 2, 1, 0): \
++ ret = _mm_shuffle_ps_3210(_a, _b); \
++ break; \
++ case _MM_SHUFFLE(0, 0, 1, 1): \
++ ret = _mm_shuffle_ps_0011(_a, _b); \
++ break; \
++ case _MM_SHUFFLE(0, 0, 2, 2): \
++ ret = _mm_shuffle_ps_0022(_a, _b); \
++ break; \
++ case _MM_SHUFFLE(2, 2, 0, 0): \
++ ret = _mm_shuffle_ps_2200(_a, _b); \
++ break; \
++ case _MM_SHUFFLE(3, 2, 0, 2): \
++ ret = _mm_shuffle_ps_3202(_a, _b); \
++ break; \
++ case _MM_SHUFFLE(3, 2, 3, 2): \
++ ret = _mm_movehl_ps(_b, _a); \
++ break; \
++ case _MM_SHUFFLE(1, 1, 3, 3): \
++ ret = _mm_shuffle_ps_1133(_a, _b); \
++ break; \
++ case _MM_SHUFFLE(2, 0, 1, 0): \
++ ret = _mm_shuffle_ps_2010(_a, _b); \
++ break; \
++ case _MM_SHUFFLE(2, 0, 0, 1): \
++ ret = _mm_shuffle_ps_2001(_a, _b); \
++ break; \
++ case _MM_SHUFFLE(2, 0, 3, 2): \
++ ret = _mm_shuffle_ps_2032(_a, _b); \
++ break; \
++ default: \
++ ret = _mm_shuffle_ps_default(_a, _b, (imm)); \
++ break; \
++ } _sse2neon_return(ret);)
++#endif
++
++// Compute the square root of packed single-precision (32-bit) floating-point
++// elements in a, and store the results in dst.
++// Due to ARMv7-A NEON's lack of a precise square root intrinsic, we implement
++// square root by multiplying input in with its reciprocal square root before
++// using the Newton-Raphson method to approximate the results.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_ps
++FORCE_INLINE __m128 _mm_sqrt_ps(__m128 in)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128_f32(vsqrtq_f32(vreinterpretq_f32_m128(in)));
++#else
++ float32x4_t recip = vrsqrteq_f32(vreinterpretq_f32_m128(in));
++
++ // Test for vrsqrteq_f32(0) -> positive infinity case.
++ // Change to zero, so that s * 1/sqrt(s) result is zero too.
++ const uint32x4_t pos_inf = vdupq_n_u32(0x7F800000);
++ const uint32x4_t div_by_zero =
++ vceqq_u32(pos_inf, vreinterpretq_u32_f32(recip));
++ recip = vreinterpretq_f32_u32(
++ vandq_u32(vmvnq_u32(div_by_zero), vreinterpretq_u32_f32(recip)));
++
++ recip = vmulq_f32(
++ vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)),
++ recip);
++ // Additional Netwon-Raphson iteration for accuracy
++ recip = vmulq_f32(
++ vrsqrtsq_f32(vmulq_f32(recip, recip), vreinterpretq_f32_m128(in)),
++ recip);
++
++ // sqrt(s) = s * 1/sqrt(s)
++ return vreinterpretq_m128_f32(vmulq_f32(vreinterpretq_f32_m128(in), recip));
++#endif
++}
++
++// Compute the square root of the lower single-precision (32-bit) floating-point
++// element in a, store the result in the lower element of dst, and copy the
++// upper 3 packed elements from a to the upper elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_ss
++FORCE_INLINE __m128 _mm_sqrt_ss(__m128 in)
++{
++ float32_t value =
++ vgetq_lane_f32(vreinterpretq_f32_m128(_mm_sqrt_ps(in)), 0);
++ return vreinterpretq_m128_f32(
++ vsetq_lane_f32(value, vreinterpretq_f32_m128(in), 0));
++}
++
++// Store 128-bits (composed of 4 packed single-precision (32-bit) floating-point
++// elements) from a into memory. mem_addr must be aligned on a 16-byte boundary
++// or a general-protection exception may be generated.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ps
++FORCE_INLINE void _mm_store_ps(float *p, __m128 a)
++{
++ vst1q_f32(p, vreinterpretq_f32_m128(a));
++}
++
++// Store the lower single-precision (32-bit) floating-point element from a into
++// 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte
++// boundary or a general-protection exception may be generated.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ps1
++FORCE_INLINE void _mm_store_ps1(float *p, __m128 a)
++{
++ float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
++ vst1q_f32(p, vdupq_n_f32(a0));
++}
++
++// Store the lower single-precision (32-bit) floating-point element from a into
++// memory. mem_addr does not need to be aligned on any particular boundary.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_ss
++FORCE_INLINE void _mm_store_ss(float *p, __m128 a)
++{
++ vst1q_lane_f32(p, vreinterpretq_f32_m128(a), 0);
++}
++
++// Store the lower single-precision (32-bit) floating-point element from a into
++// 4 contiguous elements in memory. mem_addr must be aligned on a 16-byte
++// boundary or a general-protection exception may be generated.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store1_ps
++#define _mm_store1_ps _mm_store_ps1
++
++// Store the upper 2 single-precision (32-bit) floating-point elements from a
++// into memory.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeh_pi
++FORCE_INLINE void _mm_storeh_pi(__m64 *p, __m128 a)
++{
++ *p = vreinterpret_m64_f32(vget_high_f32(a));
++}
++
++// Store the lower 2 single-precision (32-bit) floating-point elements from a
++// into memory.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storel_pi
++FORCE_INLINE void _mm_storel_pi(__m64 *p, __m128 a)
++{
++ *p = vreinterpret_m64_f32(vget_low_f32(a));
++}
++
++// Store 4 single-precision (32-bit) floating-point elements from a into memory
++// in reverse order. mem_addr must be aligned on a 16-byte boundary or a
++// general-protection exception may be generated.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storer_ps
++FORCE_INLINE void _mm_storer_ps(float *p, __m128 a)
++{
++ float32x4_t tmp = vrev64q_f32(vreinterpretq_f32_m128(a));
++ float32x4_t rev = vextq_f32(tmp, tmp, 2);
++ vst1q_f32(p, rev);
++}
++
++// Store 128-bits (composed of 4 packed single-precision (32-bit) floating-point
++// elements) from a into memory. mem_addr does not need to be aligned on any
++// particular boundary.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_ps
++FORCE_INLINE void _mm_storeu_ps(float *p, __m128 a)
++{
++ vst1q_f32(p, vreinterpretq_f32_m128(a));
++}
++
++// Stores 16-bits of integer data a at the address p.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si16
++FORCE_INLINE void _mm_storeu_si16(void *p, __m128i a)
++{
++ vst1q_lane_s16((int16_t *) p, vreinterpretq_s16_m128i(a), 0);
++}
++
++// Stores 64-bits of integer data a at the address p.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si64
++FORCE_INLINE void _mm_storeu_si64(void *p, __m128i a)
++{
++ vst1q_lane_s64((int64_t *) p, vreinterpretq_s64_m128i(a), 0);
++}
++
++// Store 64-bits of integer data from a into memory using a non-temporal memory
++// hint.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_pi
++FORCE_INLINE void _mm_stream_pi(__m64 *p, __m64 a)
++{
++ vst1_s64((int64_t *) p, vreinterpret_s64_m64(a));
++}
++
++// Store 128-bits (composed of 4 packed single-precision (32-bit) floating-
++// point elements) from a into memory using a non-temporal memory hint.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_ps
++FORCE_INLINE void _mm_stream_ps(float *p, __m128 a)
++{
++#if __has_builtin(__builtin_nontemporal_store)
++ __builtin_nontemporal_store(a, (float32x4_t *) p);
++#else
++ vst1q_f32(p, vreinterpretq_f32_m128(a));
++#endif
++}
++
++// Subtract packed single-precision (32-bit) floating-point elements in b from
++// packed single-precision (32-bit) floating-point elements in a, and store the
++// results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_ps
++FORCE_INLINE __m128 _mm_sub_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_f32(
++ vsubq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
++}
++
++// Subtract the lower single-precision (32-bit) floating-point element in b from
++// the lower single-precision (32-bit) floating-point element in a, store the
++// result in the lower element of dst, and copy the upper 3 packed elements from
++// a to the upper elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_ss
++FORCE_INLINE __m128 _mm_sub_ss(__m128 a, __m128 b)
++{
++ return _mm_move_ss(a, _mm_sub_ps(a, b));
++}
++
++// Macro: Transpose the 4x4 matrix formed by the 4 rows of single-precision
++// (32-bit) floating-point elements in row0, row1, row2, and row3, and store the
++// transposed matrix in these vectors (row0 now contains column 0, etc.).
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=MM_TRANSPOSE4_PS
++#define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \
++ do { \
++ float32x4x2_t ROW01 = vtrnq_f32(row0, row1); \
++ float32x4x2_t ROW23 = vtrnq_f32(row2, row3); \
++ row0 = vcombine_f32(vget_low_f32(ROW01.val[0]), \
++ vget_low_f32(ROW23.val[0])); \
++ row1 = vcombine_f32(vget_low_f32(ROW01.val[1]), \
++ vget_low_f32(ROW23.val[1])); \
++ row2 = vcombine_f32(vget_high_f32(ROW01.val[0]), \
++ vget_high_f32(ROW23.val[0])); \
++ row3 = vcombine_f32(vget_high_f32(ROW01.val[1]), \
++ vget_high_f32(ROW23.val[1])); \
++ } while (0)
++
++// according to the documentation, these intrinsics behave the same as the
++// non-'u' versions. We'll just alias them here.
++#define _mm_ucomieq_ss _mm_comieq_ss
++#define _mm_ucomige_ss _mm_comige_ss
++#define _mm_ucomigt_ss _mm_comigt_ss
++#define _mm_ucomile_ss _mm_comile_ss
++#define _mm_ucomilt_ss _mm_comilt_ss
++#define _mm_ucomineq_ss _mm_comineq_ss
++
++// Return vector of type __m128i with undefined elements.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_undefined_si128
++FORCE_INLINE __m128i _mm_undefined_si128(void)
++{
++#if defined(__GNUC__) || defined(__clang__)
++#pragma GCC diagnostic push
++#pragma GCC diagnostic ignored "-Wuninitialized"
++#endif
++ __m128i a;
++#if defined(_MSC_VER)
++ a = _mm_setzero_si128();
++#endif
++ return a;
++#if defined(__GNUC__) || defined(__clang__)
++#pragma GCC diagnostic pop
++#endif
++}
++
++// Return vector of type __m128 with undefined elements.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_undefined_ps
++FORCE_INLINE __m128 _mm_undefined_ps(void)
++{
++#if defined(__GNUC__) || defined(__clang__)
++#pragma GCC diagnostic push
++#pragma GCC diagnostic ignored "-Wuninitialized"
++#endif
++ __m128 a;
++#if defined(_MSC_VER)
++ a = _mm_setzero_ps();
++#endif
++ return a;
++#if defined(__GNUC__) || defined(__clang__)
++#pragma GCC diagnostic pop
++#endif
++}
++
++// Unpack and interleave single-precision (32-bit) floating-point elements from
++// the high half a and b, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_ps
++FORCE_INLINE __m128 _mm_unpackhi_ps(__m128 a, __m128 b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128_f32(
++ vzip2q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
++#else
++ float32x2_t a1 = vget_high_f32(vreinterpretq_f32_m128(a));
++ float32x2_t b1 = vget_high_f32(vreinterpretq_f32_m128(b));
++ float32x2x2_t result = vzip_f32(a1, b1);
++ return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1]));
++#endif
++}
++
++// Unpack and interleave single-precision (32-bit) floating-point elements from
++// the low half of a and b, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_ps
++FORCE_INLINE __m128 _mm_unpacklo_ps(__m128 a, __m128 b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128_f32(
++ vzip1q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
++#else
++ float32x2_t a1 = vget_low_f32(vreinterpretq_f32_m128(a));
++ float32x2_t b1 = vget_low_f32(vreinterpretq_f32_m128(b));
++ float32x2x2_t result = vzip_f32(a1, b1);
++ return vreinterpretq_m128_f32(vcombine_f32(result.val[0], result.val[1]));
++#endif
++}
++
++// Compute the bitwise XOR of packed single-precision (32-bit) floating-point
++// elements in a and b, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_ps
++FORCE_INLINE __m128 _mm_xor_ps(__m128 a, __m128 b)
++{
++ return vreinterpretq_m128_s32(
++ veorq_s32(vreinterpretq_s32_m128(a), vreinterpretq_s32_m128(b)));
++}
++
++/* SSE2 */
++
++// Add packed 16-bit integers in a and b, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi16
++FORCE_INLINE __m128i _mm_add_epi16(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s16(
++ vaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
++}
++
++// Add packed 32-bit integers in a and b, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi32
++FORCE_INLINE __m128i _mm_add_epi32(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s32(
++ vaddq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
++}
++
++// Add packed 64-bit integers in a and b, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi64
++FORCE_INLINE __m128i _mm_add_epi64(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s64(
++ vaddq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
++}
++
++// Add packed 8-bit integers in a and b, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_epi8
++FORCE_INLINE __m128i _mm_add_epi8(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s8(
++ vaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
++}
++
++// Add packed double-precision (64-bit) floating-point elements in a and b, and
++// store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_pd
++FORCE_INLINE __m128d _mm_add_pd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_f64(
++ vaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
++#else
++ double *da = (double *) &a;
++ double *db = (double *) &b;
++ double c[2];
++ c[0] = da[0] + db[0];
++ c[1] = da[1] + db[1];
++ return vld1q_f32((float32_t *) c);
++#endif
++}
++
++// Add the lower double-precision (64-bit) floating-point element in a and b,
++// store the result in the lower element of dst, and copy the upper element from
++// a to the upper element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_sd
++FORCE_INLINE __m128d _mm_add_sd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return _mm_move_sd(a, _mm_add_pd(a, b));
++#else
++ double *da = (double *) &a;
++ double *db = (double *) &b;
++ double c[2];
++ c[0] = da[0] + db[0];
++ c[1] = da[1];
++ return vld1q_f32((float32_t *) c);
++#endif
++}
++
++// Add 64-bit integers a and b, and store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_add_si64
++FORCE_INLINE __m64 _mm_add_si64(__m64 a, __m64 b)
++{
++ return vreinterpret_m64_s64(
++ vadd_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b)));
++}
++
++// Add packed signed 16-bit integers in a and b using saturation, and store the
++// results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epi16
++FORCE_INLINE __m128i _mm_adds_epi16(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s16(
++ vqaddq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
++}
++
++// Add packed signed 8-bit integers in a and b using saturation, and store the
++// results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epi8
++FORCE_INLINE __m128i _mm_adds_epi8(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s8(
++ vqaddq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
++}
++
++// Add packed unsigned 16-bit integers in a and b using saturation, and store
++// the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epu16
++FORCE_INLINE __m128i _mm_adds_epu16(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u16(
++ vqaddq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
++}
++
++// Add packed unsigned 8-bit integers in a and b using saturation, and store the
++// results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_adds_epu8
++FORCE_INLINE __m128i _mm_adds_epu8(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u8(
++ vqaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
++}
++
++// Compute the bitwise AND of packed double-precision (64-bit) floating-point
++// elements in a and b, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_pd
++FORCE_INLINE __m128d _mm_and_pd(__m128d a, __m128d b)
++{
++ return vreinterpretq_m128d_s64(
++ vandq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b)));
++}
++
++// Compute the bitwise AND of 128 bits (representing integer data) in a and b,
++// and store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_and_si128
++FORCE_INLINE __m128i _mm_and_si128(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s32(
++ vandq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
++}
++
++// Compute the bitwise NOT of packed double-precision (64-bit) floating-point
++// elements in a and then AND with b, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_pd
++FORCE_INLINE __m128d _mm_andnot_pd(__m128d a, __m128d b)
++{
++ // *NOTE* argument swap
++ return vreinterpretq_m128d_s64(
++ vbicq_s64(vreinterpretq_s64_m128d(b), vreinterpretq_s64_m128d(a)));
++}
++
++// Compute the bitwise NOT of 128 bits (representing integer data) in a and then
++// AND with b, and store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_andnot_si128
++FORCE_INLINE __m128i _mm_andnot_si128(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s32(
++ vbicq_s32(vreinterpretq_s32_m128i(b),
++ vreinterpretq_s32_m128i(a))); // *NOTE* argument swap
++}
++
++// Average packed unsigned 16-bit integers in a and b, and store the results in
++// dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_epu16
++FORCE_INLINE __m128i _mm_avg_epu16(__m128i a, __m128i b)
++{
++ return (__m128i) vrhaddq_u16(vreinterpretq_u16_m128i(a),
++ vreinterpretq_u16_m128i(b));
++}
++
++// Average packed unsigned 8-bit integers in a and b, and store the results in
++// dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_avg_epu8
++FORCE_INLINE __m128i _mm_avg_epu8(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u8(
++ vrhaddq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
++}
++
++// Shift a left by imm8 bytes while shifting in zeros, and store the results in
++// dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_bslli_si128
++#define _mm_bslli_si128(a, imm) _mm_slli_si128(a, imm)
++
++// Shift a right by imm8 bytes while shifting in zeros, and store the results in
++// dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_bsrli_si128
++#define _mm_bsrli_si128(a, imm) _mm_srli_si128(a, imm)
++
++// Cast vector of type __m128d to type __m128. This intrinsic is only used for
++// compilation and does not generate any instructions, thus it has zero latency.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castpd_ps
++FORCE_INLINE __m128 _mm_castpd_ps(__m128d a)
++{
++ return vreinterpretq_m128_s64(vreinterpretq_s64_m128d(a));
++}
++
++// Cast vector of type __m128d to type __m128i. This intrinsic is only used for
++// compilation and does not generate any instructions, thus it has zero latency.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castpd_si128
++FORCE_INLINE __m128i _mm_castpd_si128(__m128d a)
++{
++ return vreinterpretq_m128i_s64(vreinterpretq_s64_m128d(a));
++}
++
++// Cast vector of type __m128 to type __m128d. This intrinsic is only used for
++// compilation and does not generate any instructions, thus it has zero latency.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castps_pd
++FORCE_INLINE __m128d _mm_castps_pd(__m128 a)
++{
++ return vreinterpretq_m128d_s32(vreinterpretq_s32_m128(a));
++}
++
++// Cast vector of type __m128 to type __m128i. This intrinsic is only used for
++// compilation and does not generate any instructions, thus it has zero latency.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castps_si128
++FORCE_INLINE __m128i _mm_castps_si128(__m128 a)
++{
++ return vreinterpretq_m128i_s32(vreinterpretq_s32_m128(a));
++}
++
++// Cast vector of type __m128i to type __m128d. This intrinsic is only used for
++// compilation and does not generate any instructions, thus it has zero latency.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castsi128_pd
++FORCE_INLINE __m128d _mm_castsi128_pd(__m128i a)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_f64(vreinterpretq_f64_m128i(a));
++#else
++ return vreinterpretq_m128d_f32(vreinterpretq_f32_m128i(a));
++#endif
++}
++
++// Cast vector of type __m128i to type __m128. This intrinsic is only used for
++// compilation and does not generate any instructions, thus it has zero latency.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_castsi128_ps
++FORCE_INLINE __m128 _mm_castsi128_ps(__m128i a)
++{
++ return vreinterpretq_m128_s32(vreinterpretq_s32_m128i(a));
++}
++
++// Invalidate and flush the cache line that contains p from all levels of the
++// cache hierarchy.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_clflush
++#if defined(__APPLE__)
++#include <libkern/OSCacheControl.h>
++#endif
++FORCE_INLINE void _mm_clflush(void const *p)
++{
++ (void) p;
++
++ /* sys_icache_invalidate is supported since macOS 10.5.
++ * However, it does not work on non-jailbroken iOS devices, although the
++ * compilation is successful.
++ */
++#if defined(__APPLE__)
++ sys_icache_invalidate((void *) (uintptr_t) p, SSE2NEON_CACHELINE_SIZE);
++#elif defined(__GNUC__) || defined(__clang__)
++ uintptr_t ptr = (uintptr_t) p;
++ __builtin___clear_cache((char *) ptr,
++ (char *) ptr + SSE2NEON_CACHELINE_SIZE);
++#elif (_MSC_VER) && SSE2NEON_INCLUDE_WINDOWS_H
++ FlushInstructionCache(GetCurrentProcess(), p, SSE2NEON_CACHELINE_SIZE);
++#endif
++}
++
++// Compare packed 16-bit integers in a and b for equality, and store the results
++// in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi16
++FORCE_INLINE __m128i _mm_cmpeq_epi16(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u16(
++ vceqq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
++}
++
++// Compare packed 32-bit integers in a and b for equality, and store the results
++// in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi32
++FORCE_INLINE __m128i _mm_cmpeq_epi32(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u32(
++ vceqq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
++}
++
++// Compare packed 8-bit integers in a and b for equality, and store the results
++// in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_epi8
++FORCE_INLINE __m128i _mm_cmpeq_epi8(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u8(
++ vceqq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
++}
++
++// Compare packed double-precision (64-bit) floating-point elements in a and b
++// for equality, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_pd
++FORCE_INLINE __m128d _mm_cmpeq_pd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_u64(
++ vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
++#else
++ // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi)
++ uint32x4_t cmp =
++ vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b));
++ uint32x4_t swapped = vrev64q_u32(cmp);
++ return vreinterpretq_m128d_u32(vandq_u32(cmp, swapped));
++#endif
++}
++
++// Compare the lower double-precision (64-bit) floating-point elements in a and
++// b for equality, store the result in the lower element of dst, and copy the
++// upper element from a to the upper element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpeq_sd
++FORCE_INLINE __m128d _mm_cmpeq_sd(__m128d a, __m128d b)
++{
++ return _mm_move_sd(a, _mm_cmpeq_pd(a, b));
++}
++
++// Compare packed double-precision (64-bit) floating-point elements in a and b
++// for greater-than-or-equal, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_pd
++FORCE_INLINE __m128d _mm_cmpge_pd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_u64(
++ vcgeq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
++#else
++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
++ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
++ uint64_t d[2];
++ d[0] = (*(double *) &a0) >= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
++ d[1] = (*(double *) &a1) >= (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0);
++
++ return vreinterpretq_m128d_u64(vld1q_u64(d));
++#endif
++}
++
++// Compare the lower double-precision (64-bit) floating-point elements in a and
++// b for greater-than-or-equal, store the result in the lower element of dst,
++// and copy the upper element from a to the upper element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpge_sd
++FORCE_INLINE __m128d _mm_cmpge_sd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return _mm_move_sd(a, _mm_cmpge_pd(a, b));
++#else
++ // expand "_mm_cmpge_pd()" to reduce unnecessary operations
++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
++ uint64_t d[2];
++ d[0] = (*(double *) &a0) >= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
++ d[1] = a1;
++
++ return vreinterpretq_m128d_u64(vld1q_u64(d));
++#endif
++}
++
++// Compare packed signed 16-bit integers in a and b for greater-than, and store
++// the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_epi16
++FORCE_INLINE __m128i _mm_cmpgt_epi16(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u16(
++ vcgtq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
++}
++
++// Compare packed signed 32-bit integers in a and b for greater-than, and store
++// the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_epi32
++FORCE_INLINE __m128i _mm_cmpgt_epi32(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u32(
++ vcgtq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
++}
++
++// Compare packed signed 8-bit integers in a and b for greater-than, and store
++// the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_epi8
++FORCE_INLINE __m128i _mm_cmpgt_epi8(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u8(
++ vcgtq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
++}
++
++// Compare packed double-precision (64-bit) floating-point elements in a and b
++// for greater-than, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_pd
++FORCE_INLINE __m128d _mm_cmpgt_pd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_u64(
++ vcgtq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
++#else
++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
++ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
++ uint64_t d[2];
++ d[0] = (*(double *) &a0) > (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
++ d[1] = (*(double *) &a1) > (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0);
++
++ return vreinterpretq_m128d_u64(vld1q_u64(d));
++#endif
++}
++
++// Compare the lower double-precision (64-bit) floating-point elements in a and
++// b for greater-than, store the result in the lower element of dst, and copy
++// the upper element from a to the upper element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpgt_sd
++FORCE_INLINE __m128d _mm_cmpgt_sd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return _mm_move_sd(a, _mm_cmpgt_pd(a, b));
++#else
++ // expand "_mm_cmpge_pd()" to reduce unnecessary operations
++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
++ uint64_t d[2];
++ d[0] = (*(double *) &a0) > (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
++ d[1] = a1;
++
++ return vreinterpretq_m128d_u64(vld1q_u64(d));
++#endif
++}
++
++// Compare packed double-precision (64-bit) floating-point elements in a and b
++// for less-than-or-equal, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_pd
++FORCE_INLINE __m128d _mm_cmple_pd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_u64(
++ vcleq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
++#else
++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
++ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
++ uint64_t d[2];
++ d[0] = (*(double *) &a0) <= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
++ d[1] = (*(double *) &a1) <= (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0);
++
++ return vreinterpretq_m128d_u64(vld1q_u64(d));
++#endif
++}
++
++// Compare the lower double-precision (64-bit) floating-point elements in a and
++// b for less-than-or-equal, store the result in the lower element of dst, and
++// copy the upper element from a to the upper element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmple_sd
++FORCE_INLINE __m128d _mm_cmple_sd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return _mm_move_sd(a, _mm_cmple_pd(a, b));
++#else
++ // expand "_mm_cmpge_pd()" to reduce unnecessary operations
++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
++ uint64_t d[2];
++ d[0] = (*(double *) &a0) <= (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
++ d[1] = a1;
++
++ return vreinterpretq_m128d_u64(vld1q_u64(d));
++#endif
++}
++
++// Compare packed signed 16-bit integers in a and b for less-than, and store the
++// results in dst. Note: This intrinsic emits the pcmpgtw instruction with the
++// order of the operands switched.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_epi16
++FORCE_INLINE __m128i _mm_cmplt_epi16(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u16(
++ vcltq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
++}
++
++// Compare packed signed 32-bit integers in a and b for less-than, and store the
++// results in dst. Note: This intrinsic emits the pcmpgtd instruction with the
++// order of the operands switched.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_epi32
++FORCE_INLINE __m128i _mm_cmplt_epi32(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u32(
++ vcltq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
++}
++
++// Compare packed signed 8-bit integers in a and b for less-than, and store the
++// results in dst. Note: This intrinsic emits the pcmpgtb instruction with the
++// order of the operands switched.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_epi8
++FORCE_INLINE __m128i _mm_cmplt_epi8(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u8(
++ vcltq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
++}
++
++// Compare packed double-precision (64-bit) floating-point elements in a and b
++// for less-than, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_pd
++FORCE_INLINE __m128d _mm_cmplt_pd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_u64(
++ vcltq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
++#else
++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
++ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
++ uint64_t d[2];
++ d[0] = (*(double *) &a0) < (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
++ d[1] = (*(double *) &a1) < (*(double *) &b1) ? ~UINT64_C(0) : UINT64_C(0);
++
++ return vreinterpretq_m128d_u64(vld1q_u64(d));
++#endif
++}
++
++// Compare the lower double-precision (64-bit) floating-point elements in a and
++// b for less-than, store the result in the lower element of dst, and copy the
++// upper element from a to the upper element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmplt_sd
++FORCE_INLINE __m128d _mm_cmplt_sd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return _mm_move_sd(a, _mm_cmplt_pd(a, b));
++#else
++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
++ uint64_t d[2];
++ d[0] = (*(double *) &a0) < (*(double *) &b0) ? ~UINT64_C(0) : UINT64_C(0);
++ d[1] = a1;
++
++ return vreinterpretq_m128d_u64(vld1q_u64(d));
++#endif
++}
++
++// Compare packed double-precision (64-bit) floating-point elements in a and b
++// for not-equal, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_pd
++FORCE_INLINE __m128d _mm_cmpneq_pd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_s32(vmvnq_s32(vreinterpretq_s32_u64(
++ vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)))));
++#else
++ // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi)
++ uint32x4_t cmp =
++ vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b));
++ uint32x4_t swapped = vrev64q_u32(cmp);
++ return vreinterpretq_m128d_u32(vmvnq_u32(vandq_u32(cmp, swapped)));
++#endif
++}
++
++// Compare the lower double-precision (64-bit) floating-point elements in a and
++// b for not-equal, store the result in the lower element of dst, and copy the
++// upper element from a to the upper element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpneq_sd
++FORCE_INLINE __m128d _mm_cmpneq_sd(__m128d a, __m128d b)
++{
++ return _mm_move_sd(a, _mm_cmpneq_pd(a, b));
++}
++
++// Compare packed double-precision (64-bit) floating-point elements in a and b
++// for not-greater-than-or-equal, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_pd
++FORCE_INLINE __m128d _mm_cmpnge_pd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_u64(veorq_u64(
++ vcgeq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)),
++ vdupq_n_u64(UINT64_MAX)));
++#else
++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
++ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
++ uint64_t d[2];
++ d[0] =
++ !((*(double *) &a0) >= (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0);
++ d[1] =
++ !((*(double *) &a1) >= (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0);
++
++ return vreinterpretq_m128d_u64(vld1q_u64(d));
++#endif
++}
++
++// Compare the lower double-precision (64-bit) floating-point elements in a and
++// b for not-greater-than-or-equal, store the result in the lower element of
++// dst, and copy the upper element from a to the upper element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnge_sd
++FORCE_INLINE __m128d _mm_cmpnge_sd(__m128d a, __m128d b)
++{
++ return _mm_move_sd(a, _mm_cmpnge_pd(a, b));
++}
++
++// Compare packed double-precision (64-bit) floating-point elements in a and b
++// for not-greater-than, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_cmpngt_pd
++FORCE_INLINE __m128d _mm_cmpngt_pd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_u64(veorq_u64(
++ vcgtq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)),
++ vdupq_n_u64(UINT64_MAX)));
++#else
++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
++ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
++ uint64_t d[2];
++ d[0] =
++ !((*(double *) &a0) > (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0);
++ d[1] =
++ !((*(double *) &a1) > (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0);
++
++ return vreinterpretq_m128d_u64(vld1q_u64(d));
++#endif
++}
++
++// Compare the lower double-precision (64-bit) floating-point elements in a and
++// b for not-greater-than, store the result in the lower element of dst, and
++// copy the upper element from a to the upper element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpngt_sd
++FORCE_INLINE __m128d _mm_cmpngt_sd(__m128d a, __m128d b)
++{
++ return _mm_move_sd(a, _mm_cmpngt_pd(a, b));
++}
++
++// Compare packed double-precision (64-bit) floating-point elements in a and b
++// for not-less-than-or-equal, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_pd
++FORCE_INLINE __m128d _mm_cmpnle_pd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_u64(veorq_u64(
++ vcleq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)),
++ vdupq_n_u64(UINT64_MAX)));
++#else
++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
++ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
++ uint64_t d[2];
++ d[0] =
++ !((*(double *) &a0) <= (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0);
++ d[1] =
++ !((*(double *) &a1) <= (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0);
++
++ return vreinterpretq_m128d_u64(vld1q_u64(d));
++#endif
++}
++
++// Compare the lower double-precision (64-bit) floating-point elements in a and
++// b for not-less-than-or-equal, store the result in the lower element of dst,
++// and copy the upper element from a to the upper element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnle_sd
++FORCE_INLINE __m128d _mm_cmpnle_sd(__m128d a, __m128d b)
++{
++ return _mm_move_sd(a, _mm_cmpnle_pd(a, b));
++}
++
++// Compare packed double-precision (64-bit) floating-point elements in a and b
++// for not-less-than, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_pd
++FORCE_INLINE __m128d _mm_cmpnlt_pd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_u64(veorq_u64(
++ vcltq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)),
++ vdupq_n_u64(UINT64_MAX)));
++#else
++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
++ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
++ uint64_t d[2];
++ d[0] =
++ !((*(double *) &a0) < (*(double *) &b0)) ? ~UINT64_C(0) : UINT64_C(0);
++ d[1] =
++ !((*(double *) &a1) < (*(double *) &b1)) ? ~UINT64_C(0) : UINT64_C(0);
++
++ return vreinterpretq_m128d_u64(vld1q_u64(d));
++#endif
++}
++
++// Compare the lower double-precision (64-bit) floating-point elements in a and
++// b for not-less-than, store the result in the lower element of dst, and copy
++// the upper element from a to the upper element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpnlt_sd
++FORCE_INLINE __m128d _mm_cmpnlt_sd(__m128d a, __m128d b)
++{
++ return _mm_move_sd(a, _mm_cmpnlt_pd(a, b));
++}
++
++// Compare packed double-precision (64-bit) floating-point elements in a and b
++// to see if neither is NaN, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_pd
++FORCE_INLINE __m128d _mm_cmpord_pd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ // Excluding NaNs, any two floating point numbers can be compared.
++ uint64x2_t not_nan_a =
++ vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(a));
++ uint64x2_t not_nan_b =
++ vceqq_f64(vreinterpretq_f64_m128d(b), vreinterpretq_f64_m128d(b));
++ return vreinterpretq_m128d_u64(vandq_u64(not_nan_a, not_nan_b));
++#else
++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
++ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
++ uint64_t d[2];
++ d[0] = ((*(double *) &a0) == (*(double *) &a0) &&
++ (*(double *) &b0) == (*(double *) &b0))
++ ? ~UINT64_C(0)
++ : UINT64_C(0);
++ d[1] = ((*(double *) &a1) == (*(double *) &a1) &&
++ (*(double *) &b1) == (*(double *) &b1))
++ ? ~UINT64_C(0)
++ : UINT64_C(0);
++
++ return vreinterpretq_m128d_u64(vld1q_u64(d));
++#endif
++}
++
++// Compare the lower double-precision (64-bit) floating-point elements in a and
++// b to see if neither is NaN, store the result in the lower element of dst, and
++// copy the upper element from a to the upper element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpord_sd
++FORCE_INLINE __m128d _mm_cmpord_sd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return _mm_move_sd(a, _mm_cmpord_pd(a, b));
++#else
++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
++ uint64_t d[2];
++ d[0] = ((*(double *) &a0) == (*(double *) &a0) &&
++ (*(double *) &b0) == (*(double *) &b0))
++ ? ~UINT64_C(0)
++ : UINT64_C(0);
++ d[1] = a1;
++
++ return vreinterpretq_m128d_u64(vld1q_u64(d));
++#endif
++}
++
++// Compare packed double-precision (64-bit) floating-point elements in a and b
++// to see if either is NaN, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_pd
++FORCE_INLINE __m128d _mm_cmpunord_pd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ // Two NaNs are not equal in comparison operation.
++ uint64x2_t not_nan_a =
++ vceqq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(a));
++ uint64x2_t not_nan_b =
++ vceqq_f64(vreinterpretq_f64_m128d(b), vreinterpretq_f64_m128d(b));
++ return vreinterpretq_m128d_s32(
++ vmvnq_s32(vreinterpretq_s32_u64(vandq_u64(not_nan_a, not_nan_b))));
++#else
++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
++ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
++ uint64_t d[2];
++ d[0] = ((*(double *) &a0) == (*(double *) &a0) &&
++ (*(double *) &b0) == (*(double *) &b0))
++ ? UINT64_C(0)
++ : ~UINT64_C(0);
++ d[1] = ((*(double *) &a1) == (*(double *) &a1) &&
++ (*(double *) &b1) == (*(double *) &b1))
++ ? UINT64_C(0)
++ : ~UINT64_C(0);
++
++ return vreinterpretq_m128d_u64(vld1q_u64(d));
++#endif
++}
++
++// Compare the lower double-precision (64-bit) floating-point elements in a and
++// b to see if either is NaN, store the result in the lower element of dst, and
++// copy the upper element from a to the upper element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpunord_sd
++FORCE_INLINE __m128d _mm_cmpunord_sd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return _mm_move_sd(a, _mm_cmpunord_pd(a, b));
++#else
++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
++ uint64_t d[2];
++ d[0] = ((*(double *) &a0) == (*(double *) &a0) &&
++ (*(double *) &b0) == (*(double *) &b0))
++ ? UINT64_C(0)
++ : ~UINT64_C(0);
++ d[1] = a1;
++
++ return vreinterpretq_m128d_u64(vld1q_u64(d));
++#endif
++}
++
++// Compare the lower double-precision (64-bit) floating-point element in a and b
++// for greater-than-or-equal, and return the boolean result (0 or 1).
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comige_sd
++FORCE_INLINE int _mm_comige_sd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vgetq_lane_u64(vcgeq_f64(a, b), 0) & 0x1;
++#else
++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
++
++ return (*(double *) &a0 >= *(double *) &b0);
++#endif
++}
++
++// Compare the lower double-precision (64-bit) floating-point element in a and b
++// for greater-than, and return the boolean result (0 or 1).
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comigt_sd
++FORCE_INLINE int _mm_comigt_sd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vgetq_lane_u64(vcgtq_f64(a, b), 0) & 0x1;
++#else
++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
++
++ return (*(double *) &a0 > *(double *) &b0);
++#endif
++}
++
++// Compare the lower double-precision (64-bit) floating-point element in a and b
++// for less-than-or-equal, and return the boolean result (0 or 1).
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comile_sd
++FORCE_INLINE int _mm_comile_sd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vgetq_lane_u64(vcleq_f64(a, b), 0) & 0x1;
++#else
++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
++
++ return (*(double *) &a0 <= *(double *) &b0);
++#endif
++}
++
++// Compare the lower double-precision (64-bit) floating-point element in a and b
++// for less-than, and return the boolean result (0 or 1).
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comilt_sd
++FORCE_INLINE int _mm_comilt_sd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vgetq_lane_u64(vcltq_f64(a, b), 0) & 0x1;
++#else
++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
++
++ return (*(double *) &a0 < *(double *) &b0);
++#endif
++}
++
++// Compare the lower double-precision (64-bit) floating-point element in a and b
++// for equality, and return the boolean result (0 or 1).
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comieq_sd
++FORCE_INLINE int _mm_comieq_sd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vgetq_lane_u64(vceqq_f64(a, b), 0) & 0x1;
++#else
++ uint32x4_t a_not_nan =
++ vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(a));
++ uint32x4_t b_not_nan =
++ vceqq_u32(vreinterpretq_u32_m128d(b), vreinterpretq_u32_m128d(b));
++ uint32x4_t a_and_b_not_nan = vandq_u32(a_not_nan, b_not_nan);
++ uint32x4_t a_eq_b =
++ vceqq_u32(vreinterpretq_u32_m128d(a), vreinterpretq_u32_m128d(b));
++ uint64x2_t and_results = vandq_u64(vreinterpretq_u64_u32(a_and_b_not_nan),
++ vreinterpretq_u64_u32(a_eq_b));
++ return vgetq_lane_u64(and_results, 0) & 0x1;
++#endif
++}
++
++// Compare the lower double-precision (64-bit) floating-point element in a and b
++// for not-equal, and return the boolean result (0 or 1).
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_comineq_sd
++FORCE_INLINE int _mm_comineq_sd(__m128d a, __m128d b)
++{
++ return !_mm_comieq_sd(a, b);
++}
++
++// Convert packed signed 32-bit integers in a to packed double-precision
++// (64-bit) floating-point elements, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_pd
++FORCE_INLINE __m128d _mm_cvtepi32_pd(__m128i a)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_f64(
++ vcvtq_f64_s64(vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a)))));
++#else
++ double a0 = (double) vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0);
++ double a1 = (double) vgetq_lane_s32(vreinterpretq_s32_m128i(a), 1);
++ return _mm_set_pd(a1, a0);
++#endif
++}
++
++// Convert packed signed 32-bit integers in a to packed single-precision
++// (32-bit) floating-point elements, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_ps
++FORCE_INLINE __m128 _mm_cvtepi32_ps(__m128i a)
++{
++ return vreinterpretq_m128_f32(vcvtq_f32_s32(vreinterpretq_s32_m128i(a)));
++}
++
++// Convert packed double-precision (64-bit) floating-point elements in a to
++// packed 32-bit integers, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_epi32
++FORCE_INLINE __m128i _mm_cvtpd_epi32(__m128d a)
++{
++// vrnd32xq_f64 not supported on clang
++#if defined(__ARM_FEATURE_FRINT) && !defined(__clang__)
++ float64x2_t rounded = vrnd32xq_f64(vreinterpretq_f64_m128d(a));
++ int64x2_t integers = vcvtq_s64_f64(rounded);
++ return vreinterpretq_m128i_s32(
++ vcombine_s32(vmovn_s64(integers), vdup_n_s32(0)));
++#else
++ __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
++ double d0 = ((double *) &rnd)[0];
++ double d1 = ((double *) &rnd)[1];
++ return _mm_set_epi32(0, 0, (int32_t) d1, (int32_t) d0);
++#endif
++}
++
++// Convert packed double-precision (64-bit) floating-point elements in a to
++// packed 32-bit integers, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_pi32
++FORCE_INLINE __m64 _mm_cvtpd_pi32(__m128d a)
++{
++ __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
++ double d0 = ((double *) &rnd)[0];
++ double d1 = ((double *) &rnd)[1];
++ int32_t ALIGN_STRUCT(16) data[2] = {(int32_t) d0, (int32_t) d1};
++ return vreinterpret_m64_s32(vld1_s32(data));
++}
++
++// Convert packed double-precision (64-bit) floating-point elements in a to
++// packed single-precision (32-bit) floating-point elements, and store the
++// results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpd_ps
++FORCE_INLINE __m128 _mm_cvtpd_ps(__m128d a)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ float32x2_t tmp = vcvt_f32_f64(vreinterpretq_f64_m128d(a));
++ return vreinterpretq_m128_f32(vcombine_f32(tmp, vdup_n_f32(0)));
++#else
++ float a0 = (float) ((double *) &a)[0];
++ float a1 = (float) ((double *) &a)[1];
++ return _mm_set_ps(0, 0, a1, a0);
++#endif
++}
++
++// Convert packed signed 32-bit integers in a to packed double-precision
++// (64-bit) floating-point elements, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtpi32_pd
++FORCE_INLINE __m128d _mm_cvtpi32_pd(__m64 a)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_f64(
++ vcvtq_f64_s64(vmovl_s32(vreinterpret_s32_m64(a))));
++#else
++ double a0 = (double) vget_lane_s32(vreinterpret_s32_m64(a), 0);
++ double a1 = (double) vget_lane_s32(vreinterpret_s32_m64(a), 1);
++ return _mm_set_pd(a1, a0);
++#endif
++}
++
++// Convert packed single-precision (32-bit) floating-point elements in a to
++// packed 32-bit integers, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_epi32
++// *NOTE*. The default rounding mode on SSE is 'round to even', which ARMv7-A
++// does not support! It is supported on ARMv8-A however.
++FORCE_INLINE __m128i _mm_cvtps_epi32(__m128 a)
++{
++#if defined(__ARM_FEATURE_FRINT)
++ return vreinterpretq_m128i_s32(vcvtq_s32_f32(vrnd32xq_f32(a)));
++#elif (defined(__aarch64__) || defined(_M_ARM64)) || \
++ defined(__ARM_FEATURE_DIRECTED_ROUNDING)
++ switch (_MM_GET_ROUNDING_MODE()) {
++ case _MM_ROUND_NEAREST:
++ return vreinterpretq_m128i_s32(vcvtnq_s32_f32(a));
++ case _MM_ROUND_DOWN:
++ return vreinterpretq_m128i_s32(vcvtmq_s32_f32(a));
++ case _MM_ROUND_UP:
++ return vreinterpretq_m128i_s32(vcvtpq_s32_f32(a));
++ default: // _MM_ROUND_TOWARD_ZERO
++ return vreinterpretq_m128i_s32(vcvtq_s32_f32(a));
++ }
++#else
++ float *f = (float *) &a;
++ switch (_MM_GET_ROUNDING_MODE()) {
++ case _MM_ROUND_NEAREST: {
++ uint32x4_t signmask = vdupq_n_u32(0x80000000);
++ float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a),
++ vdupq_n_f32(0.5f)); /* +/- 0.5 */
++ int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32(
++ vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/
++ int32x4_t r_trunc = vcvtq_s32_f32(
++ vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */
++ int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32(
++ vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */
++ int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone),
++ vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */
++ float32x4_t delta = vsubq_f32(
++ vreinterpretq_f32_m128(a),
++ vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */
++ uint32x4_t is_delta_half =
++ vceqq_f32(delta, half); /* delta == +/- 0.5 */
++ return vreinterpretq_m128i_s32(
++ vbslq_s32(is_delta_half, r_even, r_normal));
++ }
++ case _MM_ROUND_DOWN:
++ return _mm_set_epi32(floorf(f[3]), floorf(f[2]), floorf(f[1]),
++ floorf(f[0]));
++ case _MM_ROUND_UP:
++ return _mm_set_epi32(ceilf(f[3]), ceilf(f[2]), ceilf(f[1]),
++ ceilf(f[0]));
++ default: // _MM_ROUND_TOWARD_ZERO
++ return _mm_set_epi32((int32_t) f[3], (int32_t) f[2], (int32_t) f[1],
++ (int32_t) f[0]);
++ }
++#endif
++}
++
++// Convert packed single-precision (32-bit) floating-point elements in a to
++// packed double-precision (64-bit) floating-point elements, and store the
++// results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtps_pd
++FORCE_INLINE __m128d _mm_cvtps_pd(__m128 a)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_f64(
++ vcvt_f64_f32(vget_low_f32(vreinterpretq_f32_m128(a))));
++#else
++ double a0 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
++ double a1 = (double) vgetq_lane_f32(vreinterpretq_f32_m128(a), 1);
++ return _mm_set_pd(a1, a0);
++#endif
++}
++
++// Copy the lower double-precision (64-bit) floating-point element of a to dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_f64
++FORCE_INLINE double _mm_cvtsd_f64(__m128d a)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return (double) vgetq_lane_f64(vreinterpretq_f64_m128d(a), 0);
++#else
++ return ((double *) &a)[0];
++#endif
++}
++
++// Convert the lower double-precision (64-bit) floating-point element in a to a
++// 32-bit integer, and store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si32
++FORCE_INLINE int32_t _mm_cvtsd_si32(__m128d a)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return (int32_t) vgetq_lane_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)), 0);
++#else
++ __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
++ double ret = ((double *) &rnd)[0];
++ return (int32_t) ret;
++#endif
++}
++
++// Convert the lower double-precision (64-bit) floating-point element in a to a
++// 64-bit integer, and store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si64
++FORCE_INLINE int64_t _mm_cvtsd_si64(__m128d a)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return (int64_t) vgetq_lane_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)), 0);
++#else
++ __m128d rnd = _mm_round_pd(a, _MM_FROUND_CUR_DIRECTION);
++ double ret = ((double *) &rnd)[0];
++ return (int64_t) ret;
++#endif
++}
++
++// Convert the lower double-precision (64-bit) floating-point element in a to a
++// 64-bit integer, and store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_si64x
++#define _mm_cvtsd_si64x _mm_cvtsd_si64
++
++// Convert the lower double-precision (64-bit) floating-point element in b to a
++// single-precision (32-bit) floating-point element, store the result in the
++// lower element of dst, and copy the upper 3 packed elements from a to the
++// upper elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsd_ss
++FORCE_INLINE __m128 _mm_cvtsd_ss(__m128 a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128_f32(vsetq_lane_f32(
++ vget_lane_f32(vcvt_f32_f64(vreinterpretq_f64_m128d(b)), 0),
++ vreinterpretq_f32_m128(a), 0));
++#else
++ return vreinterpretq_m128_f32(vsetq_lane_f32((float) ((double *) &b)[0],
++ vreinterpretq_f32_m128(a), 0));
++#endif
++}
++
++// Copy the lower 32-bit integer in a to dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si32
++FORCE_INLINE int _mm_cvtsi128_si32(__m128i a)
++{
++ return vgetq_lane_s32(vreinterpretq_s32_m128i(a), 0);
++}
++
++// Copy the lower 64-bit integer in a to dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64
++FORCE_INLINE int64_t _mm_cvtsi128_si64(__m128i a)
++{
++ return vgetq_lane_s64(vreinterpretq_s64_m128i(a), 0);
++}
++
++// Copy the lower 64-bit integer in a to dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64x
++#define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a)
++
++// Convert the signed 32-bit integer b to a double-precision (64-bit)
++// floating-point element, store the result in the lower element of dst, and
++// copy the upper element from a to the upper element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_sd
++FORCE_INLINE __m128d _mm_cvtsi32_sd(__m128d a, int32_t b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_f64(
++ vsetq_lane_f64((double) b, vreinterpretq_f64_m128d(a), 0));
++#else
++ double bf = (double) b;
++ return vreinterpretq_m128d_s64(
++ vsetq_lane_s64(*(int64_t *) &bf, vreinterpretq_s64_m128d(a), 0));
++#endif
++}
++
++// Copy the lower 64-bit integer in a to dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi128_si64x
++#define _mm_cvtsi128_si64x(a) _mm_cvtsi128_si64(a)
++
++// Copy 32-bit integer a to the lower elements of dst, and zero the upper
++// elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi32_si128
++FORCE_INLINE __m128i _mm_cvtsi32_si128(int a)
++{
++ return vreinterpretq_m128i_s32(vsetq_lane_s32(a, vdupq_n_s32(0), 0));
++}
++
++// Convert the signed 64-bit integer b to a double-precision (64-bit)
++// floating-point element, store the result in the lower element of dst, and
++// copy the upper element from a to the upper element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_sd
++FORCE_INLINE __m128d _mm_cvtsi64_sd(__m128d a, int64_t b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_f64(
++ vsetq_lane_f64((double) b, vreinterpretq_f64_m128d(a), 0));
++#else
++ double bf = (double) b;
++ return vreinterpretq_m128d_s64(
++ vsetq_lane_s64(*(int64_t *) &bf, vreinterpretq_s64_m128d(a), 0));
++#endif
++}
++
++// Copy 64-bit integer a to the lower element of dst, and zero the upper
++// element.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64_si128
++FORCE_INLINE __m128i _mm_cvtsi64_si128(int64_t a)
++{
++ return vreinterpretq_m128i_s64(vsetq_lane_s64(a, vdupq_n_s64(0), 0));
++}
++
++// Copy 64-bit integer a to the lower element of dst, and zero the upper
++// element.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64x_si128
++#define _mm_cvtsi64x_si128(a) _mm_cvtsi64_si128(a)
++
++// Convert the signed 64-bit integer b to a double-precision (64-bit)
++// floating-point element, store the result in the lower element of dst, and
++// copy the upper element from a to the upper element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtsi64x_sd
++#define _mm_cvtsi64x_sd(a, b) _mm_cvtsi64_sd(a, b)
++
++// Convert the lower single-precision (32-bit) floating-point element in b to a
++// double-precision (64-bit) floating-point element, store the result in the
++// lower element of dst, and copy the upper element from a to the upper element
++// of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtss_sd
++FORCE_INLINE __m128d _mm_cvtss_sd(__m128d a, __m128 b)
++{
++ double d = (double) vgetq_lane_f32(vreinterpretq_f32_m128(b), 0);
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_f64(
++ vsetq_lane_f64(d, vreinterpretq_f64_m128d(a), 0));
++#else
++ return vreinterpretq_m128d_s64(
++ vsetq_lane_s64(*(int64_t *) &d, vreinterpretq_s64_m128d(a), 0));
++#endif
++}
++
++// Convert packed double-precision (64-bit) floating-point elements in a to
++// packed 32-bit integers with truncation, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttpd_epi32
++FORCE_INLINE __m128i _mm_cvttpd_epi32(__m128d a)
++{
++ double a0 = ((double *) &a)[0];
++ double a1 = ((double *) &a)[1];
++ return _mm_set_epi32(0, 0, (int32_t) a1, (int32_t) a0);
++}
++
++// Convert packed double-precision (64-bit) floating-point elements in a to
++// packed 32-bit integers with truncation, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttpd_pi32
++FORCE_INLINE __m64 _mm_cvttpd_pi32(__m128d a)
++{
++ double a0 = ((double *) &a)[0];
++ double a1 = ((double *) &a)[1];
++ int32_t ALIGN_STRUCT(16) data[2] = {(int32_t) a0, (int32_t) a1};
++ return vreinterpret_m64_s32(vld1_s32(data));
++}
++
++// Convert packed single-precision (32-bit) floating-point elements in a to
++// packed 32-bit integers with truncation, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttps_epi32
++FORCE_INLINE __m128i _mm_cvttps_epi32(__m128 a)
++{
++ return vreinterpretq_m128i_s32(vcvtq_s32_f32(vreinterpretq_f32_m128(a)));
++}
++
++// Convert the lower double-precision (64-bit) floating-point element in a to a
++// 32-bit integer with truncation, and store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si32
++FORCE_INLINE int32_t _mm_cvttsd_si32(__m128d a)
++{
++ double ret = *((double *) &a);
++ return (int32_t) ret;
++}
++
++// Convert the lower double-precision (64-bit) floating-point element in a to a
++// 64-bit integer with truncation, and store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si64
++FORCE_INLINE int64_t _mm_cvttsd_si64(__m128d a)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vgetq_lane_s64(vcvtq_s64_f64(vreinterpretq_f64_m128d(a)), 0);
++#else
++ double ret = *((double *) &a);
++ return (int64_t) ret;
++#endif
++}
++
++// Convert the lower double-precision (64-bit) floating-point element in a to a
++// 64-bit integer with truncation, and store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvttsd_si64x
++#define _mm_cvttsd_si64x(a) _mm_cvttsd_si64(a)
++
++// Divide packed double-precision (64-bit) floating-point elements in a by
++// packed elements in b, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_pd
++FORCE_INLINE __m128d _mm_div_pd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_f64(
++ vdivq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
++#else
++ double *da = (double *) &a;
++ double *db = (double *) &b;
++ double c[2];
++ c[0] = da[0] / db[0];
++ c[1] = da[1] / db[1];
++ return vld1q_f32((float32_t *) c);
++#endif
++}
++
++// Divide the lower double-precision (64-bit) floating-point element in a by the
++// lower double-precision (64-bit) floating-point element in b, store the result
++// in the lower element of dst, and copy the upper element from a to the upper
++// element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_div_sd
++FORCE_INLINE __m128d _mm_div_sd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ float64x2_t tmp =
++ vdivq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b));
++ return vreinterpretq_m128d_f64(
++ vsetq_lane_f64(vgetq_lane_f64(vreinterpretq_f64_m128d(a), 1), tmp, 1));
++#else
++ return _mm_move_sd(a, _mm_div_pd(a, b));
++#endif
++}
++
++// Extract a 16-bit integer from a, selected with imm8, and store the result in
++// the lower element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi16
++// FORCE_INLINE int _mm_extract_epi16(__m128i a, __constrange(0,8) int imm)
++#define _mm_extract_epi16(a, imm) \
++ vgetq_lane_u16(vreinterpretq_u16_m128i(a), (imm))
++
++// Copy a to dst, and insert the 16-bit integer i into dst at the location
++// specified by imm8.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi16
++// FORCE_INLINE __m128i _mm_insert_epi16(__m128i a, int b,
++// __constrange(0,8) int imm)
++#define _mm_insert_epi16(a, b, imm) \
++ vreinterpretq_m128i_s16( \
++ vsetq_lane_s16((b), vreinterpretq_s16_m128i(a), (imm)))
++
++// Load 128-bits (composed of 2 packed double-precision (64-bit) floating-point
++// elements) from memory into dst. mem_addr must be aligned on a 16-byte
++// boundary or a general-protection exception may be generated.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_pd
++FORCE_INLINE __m128d _mm_load_pd(const double *p)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_f64(vld1q_f64(p));
++#else
++ const float *fp = (const float *) p;
++ float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], fp[2], fp[3]};
++ return vreinterpretq_m128d_f32(vld1q_f32(data));
++#endif
++}
++
++// Load a double-precision (64-bit) floating-point element from memory into both
++// elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_pd1
++#define _mm_load_pd1 _mm_load1_pd
++
++// Load a double-precision (64-bit) floating-point element from memory into the
++// lower of dst, and zero the upper element. mem_addr does not need to be
++// aligned on any particular boundary.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_sd
++FORCE_INLINE __m128d _mm_load_sd(const double *p)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_f64(vsetq_lane_f64(*p, vdupq_n_f64(0), 0));
++#else
++ const float *fp = (const float *) p;
++ float ALIGN_STRUCT(16) data[4] = {fp[0], fp[1], 0, 0};
++ return vreinterpretq_m128d_f32(vld1q_f32(data));
++#endif
++}
++
++// Load 128-bits of integer data from memory into dst. mem_addr must be aligned
++// on a 16-byte boundary or a general-protection exception may be generated.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load_si128
++FORCE_INLINE __m128i _mm_load_si128(const __m128i *p)
++{
++ return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p));
++}
++
++// Load a double-precision (64-bit) floating-point element from memory into both
++// elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_load1_pd
++FORCE_INLINE __m128d _mm_load1_pd(const double *p)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_f64(vld1q_dup_f64(p));
++#else
++ return vreinterpretq_m128d_s64(vdupq_n_s64(*(const int64_t *) p));
++#endif
++}
++
++// Load a double-precision (64-bit) floating-point element from memory into the
++// upper element of dst, and copy the lower element from a to dst. mem_addr does
++// not need to be aligned on any particular boundary.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadh_pd
++FORCE_INLINE __m128d _mm_loadh_pd(__m128d a, const double *p)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_f64(
++ vcombine_f64(vget_low_f64(vreinterpretq_f64_m128d(a)), vld1_f64(p)));
++#else
++ return vreinterpretq_m128d_f32(vcombine_f32(
++ vget_low_f32(vreinterpretq_f32_m128d(a)), vld1_f32((const float *) p)));
++#endif
++}
++
++// Load 64-bit integer from memory into the first element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_epi64
++FORCE_INLINE __m128i _mm_loadl_epi64(__m128i const *p)
++{
++ /* Load the lower 64 bits of the value pointed to by p into the
++ * lower 64 bits of the result, zeroing the upper 64 bits of the result.
++ */
++ return vreinterpretq_m128i_s32(
++ vcombine_s32(vld1_s32((int32_t const *) p), vcreate_s32(0)));
++}
++
++// Load a double-precision (64-bit) floating-point element from memory into the
++// lower element of dst, and copy the upper element from a to dst. mem_addr does
++// not need to be aligned on any particular boundary.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadl_pd
++FORCE_INLINE __m128d _mm_loadl_pd(__m128d a, const double *p)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_f64(
++ vcombine_f64(vld1_f64(p), vget_high_f64(vreinterpretq_f64_m128d(a))));
++#else
++ return vreinterpretq_m128d_f32(
++ vcombine_f32(vld1_f32((const float *) p),
++ vget_high_f32(vreinterpretq_f32_m128d(a))));
++#endif
++}
++
++// Load 2 double-precision (64-bit) floating-point elements from memory into dst
++// in reverse order. mem_addr must be aligned on a 16-byte boundary or a
++// general-protection exception may be generated.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadr_pd
++FORCE_INLINE __m128d _mm_loadr_pd(const double *p)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ float64x2_t v = vld1q_f64(p);
++ return vreinterpretq_m128d_f64(vextq_f64(v, v, 1));
++#else
++ int64x2_t v = vld1q_s64((const int64_t *) p);
++ return vreinterpretq_m128d_s64(vextq_s64(v, v, 1));
++#endif
++}
++
++// Loads two double-precision from unaligned memory, floating-point values.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_pd
++FORCE_INLINE __m128d _mm_loadu_pd(const double *p)
++{
++ return _mm_load_pd(p);
++}
++
++// Load 128-bits of integer data from memory into dst. mem_addr does not need to
++// be aligned on any particular boundary.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si128
++FORCE_INLINE __m128i _mm_loadu_si128(const __m128i *p)
++{
++ return vreinterpretq_m128i_s32(vld1q_s32((const int32_t *) p));
++}
++
++// Load unaligned 32-bit integer from memory into the first element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loadu_si32
++FORCE_INLINE __m128i _mm_loadu_si32(const void *p)
++{
++ return vreinterpretq_m128i_s32(
++ vsetq_lane_s32(*(const int32_t *) p, vdupq_n_s32(0), 0));
++}
++
++// Multiply packed signed 16-bit integers in a and b, producing intermediate
++// signed 32-bit integers. Horizontally add adjacent pairs of intermediate
++// 32-bit integers, and pack the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_madd_epi16
++FORCE_INLINE __m128i _mm_madd_epi16(__m128i a, __m128i b)
++{
++ int32x4_t low = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)),
++ vget_low_s16(vreinterpretq_s16_m128i(b)));
++#if defined(__aarch64__) || defined(_M_ARM64)
++ int32x4_t high =
++ vmull_high_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b));
++
++ return vreinterpretq_m128i_s32(vpaddq_s32(low, high));
++#else
++ int32x4_t high = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)),
++ vget_high_s16(vreinterpretq_s16_m128i(b)));
++
++ int32x2_t low_sum = vpadd_s32(vget_low_s32(low), vget_high_s32(low));
++ int32x2_t high_sum = vpadd_s32(vget_low_s32(high), vget_high_s32(high));
++
++ return vreinterpretq_m128i_s32(vcombine_s32(low_sum, high_sum));
++#endif
++}
++
++// Conditionally store 8-bit integer elements from a into memory using mask
++// (elements are not stored when the highest bit is not set in the corresponding
++// element) and a non-temporal memory hint. mem_addr does not need to be aligned
++// on any particular boundary.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maskmoveu_si128
++FORCE_INLINE void _mm_maskmoveu_si128(__m128i a, __m128i mask, char *mem_addr)
++{
++ int8x16_t shr_mask = vshrq_n_s8(vreinterpretq_s8_m128i(mask), 7);
++ __m128 b = _mm_load_ps((const float *) mem_addr);
++ int8x16_t masked =
++ vbslq_s8(vreinterpretq_u8_s8(shr_mask), vreinterpretq_s8_m128i(a),
++ vreinterpretq_s8_m128(b));
++ vst1q_s8((int8_t *) mem_addr, masked);
++}
++
++// Compare packed signed 16-bit integers in a and b, and store packed maximum
++// values in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi16
++FORCE_INLINE __m128i _mm_max_epi16(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s16(
++ vmaxq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
++}
++
++// Compare packed unsigned 8-bit integers in a and b, and store packed maximum
++// values in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu8
++FORCE_INLINE __m128i _mm_max_epu8(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u8(
++ vmaxq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
++}
++
++// Compare packed double-precision (64-bit) floating-point elements in a and b,
++// and store packed maximum values in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_pd
++FORCE_INLINE __m128d _mm_max_pd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++#if SSE2NEON_PRECISE_MINMAX
++ float64x2_t _a = vreinterpretq_f64_m128d(a);
++ float64x2_t _b = vreinterpretq_f64_m128d(b);
++ return vreinterpretq_m128d_f64(vbslq_f64(vcgtq_f64(_a, _b), _a, _b));
++#else
++ return vreinterpretq_m128d_f64(
++ vmaxq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
++#endif
++#else
++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
++ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
++ uint64_t d[2];
++ d[0] = (*(double *) &a0) > (*(double *) &b0) ? a0 : b0;
++ d[1] = (*(double *) &a1) > (*(double *) &b1) ? a1 : b1;
++
++ return vreinterpretq_m128d_u64(vld1q_u64(d));
++#endif
++}
++
++// Compare the lower double-precision (64-bit) floating-point elements in a and
++// b, store the maximum value in the lower element of dst, and copy the upper
++// element from a to the upper element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_sd
++FORCE_INLINE __m128d _mm_max_sd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return _mm_move_sd(a, _mm_max_pd(a, b));
++#else
++ double *da = (double *) &a;
++ double *db = (double *) &b;
++ double c[2] = {da[0] > db[0] ? da[0] : db[0], da[1]};
++ return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) c));
++#endif
++}
++
++// Compare packed signed 16-bit integers in a and b, and store packed minimum
++// values in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi16
++FORCE_INLINE __m128i _mm_min_epi16(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s16(
++ vminq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
++}
++
++// Compare packed unsigned 8-bit integers in a and b, and store packed minimum
++// values in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epu8
++FORCE_INLINE __m128i _mm_min_epu8(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u8(
++ vminq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
++}
++
++// Compare packed double-precision (64-bit) floating-point elements in a and b,
++// and store packed minimum values in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_pd
++FORCE_INLINE __m128d _mm_min_pd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++#if SSE2NEON_PRECISE_MINMAX
++ float64x2_t _a = vreinterpretq_f64_m128d(a);
++ float64x2_t _b = vreinterpretq_f64_m128d(b);
++ return vreinterpretq_m128d_f64(vbslq_f64(vcltq_f64(_a, _b), _a, _b));
++#else
++ return vreinterpretq_m128d_f64(
++ vminq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
++#endif
++#else
++ uint64_t a0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(a));
++ uint64_t a1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(a));
++ uint64_t b0 = (uint64_t) vget_low_u64(vreinterpretq_u64_m128d(b));
++ uint64_t b1 = (uint64_t) vget_high_u64(vreinterpretq_u64_m128d(b));
++ uint64_t d[2];
++ d[0] = (*(double *) &a0) < (*(double *) &b0) ? a0 : b0;
++ d[1] = (*(double *) &a1) < (*(double *) &b1) ? a1 : b1;
++ return vreinterpretq_m128d_u64(vld1q_u64(d));
++#endif
++}
++
++// Compare the lower double-precision (64-bit) floating-point elements in a and
++// b, store the minimum value in the lower element of dst, and copy the upper
++// element from a to the upper element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_sd
++FORCE_INLINE __m128d _mm_min_sd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return _mm_move_sd(a, _mm_min_pd(a, b));
++#else
++ double *da = (double *) &a;
++ double *db = (double *) &b;
++ double c[2] = {da[0] < db[0] ? da[0] : db[0], da[1]};
++ return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) c));
++#endif
++}
++
++// Copy the lower 64-bit integer in a to the lower element of dst, and zero the
++// upper element.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_epi64
++FORCE_INLINE __m128i _mm_move_epi64(__m128i a)
++{
++ return vreinterpretq_m128i_s64(
++ vsetq_lane_s64(0, vreinterpretq_s64_m128i(a), 1));
++}
++
++// Move the lower double-precision (64-bit) floating-point element from b to the
++// lower element of dst, and copy the upper element from a to the upper element
++// of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_move_sd
++FORCE_INLINE __m128d _mm_move_sd(__m128d a, __m128d b)
++{
++ return vreinterpretq_m128d_f32(
++ vcombine_f32(vget_low_f32(vreinterpretq_f32_m128d(b)),
++ vget_high_f32(vreinterpretq_f32_m128d(a))));
++}
++
++// Create mask from the most significant bit of each 8-bit element in a, and
++// store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_epi8
++FORCE_INLINE int _mm_movemask_epi8(__m128i a)
++{
++ // Use increasingly wide shifts+adds to collect the sign bits
++ // together.
++ // Since the widening shifts would be rather confusing to follow in little
++ // endian, everything will be illustrated in big endian order instead. This
++ // has a different result - the bits would actually be reversed on a big
++ // endian machine.
++
++ // Starting input (only half the elements are shown):
++ // 89 ff 1d c0 00 10 99 33
++ uint8x16_t input = vreinterpretq_u8_m128i(a);
++
++ // Shift out everything but the sign bits with an unsigned shift right.
++ //
++ // Bytes of the vector::
++ // 89 ff 1d c0 00 10 99 33
++ // \ \ \ \ \ \ \ \ high_bits = (uint16x4_t)(input >> 7)
++ // | | | | | | | |
++ // 01 01 00 01 00 00 01 00
++ //
++ // Bits of first important lane(s):
++ // 10001001 (89)
++ // \______
++ // |
++ // 00000001 (01)
++ uint16x8_t high_bits = vreinterpretq_u16_u8(vshrq_n_u8(input, 7));
++
++ // Merge the even lanes together with a 16-bit unsigned shift right + add.
++ // 'xx' represents garbage data which will be ignored in the final result.
++ // In the important bytes, the add functions like a binary OR.
++ //
++ // 01 01 00 01 00 00 01 00
++ // \_ | \_ | \_ | \_ | paired16 = (uint32x4_t)(input + (input >> 7))
++ // \| \| \| \|
++ // xx 03 xx 01 xx 00 xx 02
++ //
++ // 00000001 00000001 (01 01)
++ // \_______ |
++ // \|
++ // xxxxxxxx xxxxxx11 (xx 03)
++ uint32x4_t paired16 =
++ vreinterpretq_u32_u16(vsraq_n_u16(high_bits, high_bits, 7));
++
++ // Repeat with a wider 32-bit shift + add.
++ // xx 03 xx 01 xx 00 xx 02
++ // \____ | \____ | paired32 = (uint64x1_t)(paired16 + (paired16 >>
++ // 14))
++ // \| \|
++ // xx xx xx 0d xx xx xx 02
++ //
++ // 00000011 00000001 (03 01)
++ // \\_____ ||
++ // '----.\||
++ // xxxxxxxx xxxx1101 (xx 0d)
++ uint64x2_t paired32 =
++ vreinterpretq_u64_u32(vsraq_n_u32(paired16, paired16, 14));
++
++ // Last, an even wider 64-bit shift + add to get our result in the low 8 bit
++ // lanes. xx xx xx 0d xx xx xx 02
++ // \_________ | paired64 = (uint8x8_t)(paired32 + (paired32 >>
++ // 28))
++ // \|
++ // xx xx xx xx xx xx xx d2
++ //
++ // 00001101 00000010 (0d 02)
++ // \ \___ | |
++ // '---. \| |
++ // xxxxxxxx 11010010 (xx d2)
++ uint8x16_t paired64 =
++ vreinterpretq_u8_u64(vsraq_n_u64(paired32, paired32, 28));
++
++ // Extract the low 8 bits from each 64-bit lane with 2 8-bit extracts.
++ // xx xx xx xx xx xx xx d2
++ // || return paired64[0]
++ // d2
++ // Note: Little endian would return the correct value 4b (01001011) instead.
++ return vgetq_lane_u8(paired64, 0) | ((int) vgetq_lane_u8(paired64, 8) << 8);
++}
++
++// Set each bit of mask dst based on the most significant bit of the
++// corresponding packed double-precision (64-bit) floating-point element in a.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movemask_pd
++FORCE_INLINE int _mm_movemask_pd(__m128d a)
++{
++ uint64x2_t input = vreinterpretq_u64_m128d(a);
++ uint64x2_t high_bits = vshrq_n_u64(input, 63);
++ return (int) (vgetq_lane_u64(high_bits, 0) |
++ (vgetq_lane_u64(high_bits, 1) << 1));
++}
++
++// Copy the lower 64-bit integer in a to dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movepi64_pi64
++FORCE_INLINE __m64 _mm_movepi64_pi64(__m128i a)
++{
++ return vreinterpret_m64_s64(vget_low_s64(vreinterpretq_s64_m128i(a)));
++}
++
++// Copy the 64-bit integer a to the lower element of dst, and zero the upper
++// element.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movpi64_epi64
++FORCE_INLINE __m128i _mm_movpi64_epi64(__m64 a)
++{
++ return vreinterpretq_m128i_s64(
++ vcombine_s64(vreinterpret_s64_m64(a), vdup_n_s64(0)));
++}
++
++// Multiply the low unsigned 32-bit integers from each packed 64-bit element in
++// a and b, and store the unsigned 64-bit results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_epu32
++FORCE_INLINE __m128i _mm_mul_epu32(__m128i a, __m128i b)
++{
++ // vmull_u32 upcasts instead of masking, so we downcast.
++ uint32x2_t a_lo = vmovn_u64(vreinterpretq_u64_m128i(a));
++ uint32x2_t b_lo = vmovn_u64(vreinterpretq_u64_m128i(b));
++ return vreinterpretq_m128i_u64(vmull_u32(a_lo, b_lo));
++}
++
++// Multiply packed double-precision (64-bit) floating-point elements in a and b,
++// and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_pd
++FORCE_INLINE __m128d _mm_mul_pd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_f64(
++ vmulq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
++#else
++ double *da = (double *) &a;
++ double *db = (double *) &b;
++ double c[2];
++ c[0] = da[0] * db[0];
++ c[1] = da[1] * db[1];
++ return vld1q_f32((float32_t *) c);
++#endif
++}
++
++// Multiply the lower double-precision (64-bit) floating-point element in a and
++// b, store the result in the lower element of dst, and copy the upper element
++// from a to the upper element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_mul_sd
++FORCE_INLINE __m128d _mm_mul_sd(__m128d a, __m128d b)
++{
++ return _mm_move_sd(a, _mm_mul_pd(a, b));
++}
++
++// Multiply the low unsigned 32-bit integers from a and b, and store the
++// unsigned 64-bit result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_su32
++FORCE_INLINE __m64 _mm_mul_su32(__m64 a, __m64 b)
++{
++ return vreinterpret_m64_u64(vget_low_u64(
++ vmull_u32(vreinterpret_u32_m64(a), vreinterpret_u32_m64(b))));
++}
++
++// Multiply the packed signed 16-bit integers in a and b, producing intermediate
++// 32-bit integers, and store the high 16 bits of the intermediate integers in
++// dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_epi16
++FORCE_INLINE __m128i _mm_mulhi_epi16(__m128i a, __m128i b)
++{
++ /* FIXME: issue with large values because of result saturation */
++ // int16x8_t ret = vqdmulhq_s16(vreinterpretq_s16_m128i(a),
++ // vreinterpretq_s16_m128i(b)); /* =2*a*b */ return
++ // vreinterpretq_m128i_s16(vshrq_n_s16(ret, 1));
++ int16x4_t a3210 = vget_low_s16(vreinterpretq_s16_m128i(a));
++ int16x4_t b3210 = vget_low_s16(vreinterpretq_s16_m128i(b));
++ int32x4_t ab3210 = vmull_s16(a3210, b3210); /* 3333222211110000 */
++ int16x4_t a7654 = vget_high_s16(vreinterpretq_s16_m128i(a));
++ int16x4_t b7654 = vget_high_s16(vreinterpretq_s16_m128i(b));
++ int32x4_t ab7654 = vmull_s16(a7654, b7654); /* 7777666655554444 */
++ uint16x8x2_t r =
++ vuzpq_u16(vreinterpretq_u16_s32(ab3210), vreinterpretq_u16_s32(ab7654));
++ return vreinterpretq_m128i_u16(r.val[1]);
++}
++
++// Multiply the packed unsigned 16-bit integers in a and b, producing
++// intermediate 32-bit integers, and store the high 16 bits of the intermediate
++// integers in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhi_epu16
++FORCE_INLINE __m128i _mm_mulhi_epu16(__m128i a, __m128i b)
++{
++ uint16x4_t a3210 = vget_low_u16(vreinterpretq_u16_m128i(a));
++ uint16x4_t b3210 = vget_low_u16(vreinterpretq_u16_m128i(b));
++ uint32x4_t ab3210 = vmull_u16(a3210, b3210);
++#if defined(__aarch64__) || defined(_M_ARM64)
++ uint32x4_t ab7654 =
++ vmull_high_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b));
++ uint16x8_t r = vuzp2q_u16(vreinterpretq_u16_u32(ab3210),
++ vreinterpretq_u16_u32(ab7654));
++ return vreinterpretq_m128i_u16(r);
++#else
++ uint16x4_t a7654 = vget_high_u16(vreinterpretq_u16_m128i(a));
++ uint16x4_t b7654 = vget_high_u16(vreinterpretq_u16_m128i(b));
++ uint32x4_t ab7654 = vmull_u16(a7654, b7654);
++ uint16x8x2_t r =
++ vuzpq_u16(vreinterpretq_u16_u32(ab3210), vreinterpretq_u16_u32(ab7654));
++ return vreinterpretq_m128i_u16(r.val[1]);
++#endif
++}
++
++// Multiply the packed 16-bit integers in a and b, producing intermediate 32-bit
++// integers, and store the low 16 bits of the intermediate integers in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mullo_epi16
++FORCE_INLINE __m128i _mm_mullo_epi16(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s16(
++ vmulq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
++}
++
++// Compute the bitwise OR of packed double-precision (64-bit) floating-point
++// elements in a and b, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_or_pd
++FORCE_INLINE __m128d _mm_or_pd(__m128d a, __m128d b)
++{
++ return vreinterpretq_m128d_s64(
++ vorrq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b)));
++}
++
++// Compute the bitwise OR of 128 bits (representing integer data) in a and b,
++// and store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_or_si128
++FORCE_INLINE __m128i _mm_or_si128(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s32(
++ vorrq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
++}
++
++// Convert packed signed 16-bit integers from a and b to packed 8-bit integers
++// using signed saturation, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packs_epi16
++FORCE_INLINE __m128i _mm_packs_epi16(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s8(
++ vcombine_s8(vqmovn_s16(vreinterpretq_s16_m128i(a)),
++ vqmovn_s16(vreinterpretq_s16_m128i(b))));
++}
++
++// Convert packed signed 32-bit integers from a and b to packed 16-bit integers
++// using signed saturation, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packs_epi32
++FORCE_INLINE __m128i _mm_packs_epi32(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s16(
++ vcombine_s16(vqmovn_s32(vreinterpretq_s32_m128i(a)),
++ vqmovn_s32(vreinterpretq_s32_m128i(b))));
++}
++
++// Convert packed signed 16-bit integers from a and b to packed 8-bit integers
++// using unsigned saturation, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packus_epi16
++FORCE_INLINE __m128i _mm_packus_epi16(const __m128i a, const __m128i b)
++{
++ return vreinterpretq_m128i_u8(
++ vcombine_u8(vqmovun_s16(vreinterpretq_s16_m128i(a)),
++ vqmovun_s16(vreinterpretq_s16_m128i(b))));
++}
++
++// Pause the processor. This is typically used in spin-wait loops and depending
++// on the x86 processor typical values are in the 40-100 cycle range. The
++// 'yield' instruction isn't a good fit because it's effectively a nop on most
++// Arm cores. Experience with several databases has shown has shown an 'isb' is
++// a reasonable approximation.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_pause
++FORCE_INLINE void _mm_pause(void)
++{
++#if defined(_MSC_VER)
++ __isb(_ARM64_BARRIER_SY);
++#else
++ __asm__ __volatile__("isb\n");
++#endif
++}
++
++// Compute the absolute differences of packed unsigned 8-bit integers in a and
++// b, then horizontally sum each consecutive 8 differences to produce two
++// unsigned 16-bit integers, and pack these unsigned 16-bit integers in the low
++// 16 bits of 64-bit elements in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sad_epu8
++FORCE_INLINE __m128i _mm_sad_epu8(__m128i a, __m128i b)
++{
++ uint16x8_t t = vpaddlq_u8(vabdq_u8((uint8x16_t) a, (uint8x16_t) b));
++ return vreinterpretq_m128i_u64(vpaddlq_u32(vpaddlq_u16(t)));
++}
++
++// Set packed 16-bit integers in dst with the supplied values.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi16
++FORCE_INLINE __m128i _mm_set_epi16(short i7,
++ short i6,
++ short i5,
++ short i4,
++ short i3,
++ short i2,
++ short i1,
++ short i0)
++{
++ int16_t ALIGN_STRUCT(16) data[8] = {i0, i1, i2, i3, i4, i5, i6, i7};
++ return vreinterpretq_m128i_s16(vld1q_s16(data));
++}
++
++// Set packed 32-bit integers in dst with the supplied values.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi32
++FORCE_INLINE __m128i _mm_set_epi32(int i3, int i2, int i1, int i0)
++{
++ int32_t ALIGN_STRUCT(16) data[4] = {i0, i1, i2, i3};
++ return vreinterpretq_m128i_s32(vld1q_s32(data));
++}
++
++// Set packed 64-bit integers in dst with the supplied values.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi64
++FORCE_INLINE __m128i _mm_set_epi64(__m64 i1, __m64 i2)
++{
++ return _mm_set_epi64x(vget_lane_s64(i1, 0), vget_lane_s64(i2, 0));
++}
++
++// Set packed 64-bit integers in dst with the supplied values.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi64x
++FORCE_INLINE __m128i _mm_set_epi64x(int64_t i1, int64_t i2)
++{
++ return vreinterpretq_m128i_s64(
++ vcombine_s64(vcreate_s64(i2), vcreate_s64(i1)));
++}
++
++// Set packed 8-bit integers in dst with the supplied values.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_epi8
++FORCE_INLINE __m128i _mm_set_epi8(signed char b15,
++ signed char b14,
++ signed char b13,
++ signed char b12,
++ signed char b11,
++ signed char b10,
++ signed char b9,
++ signed char b8,
++ signed char b7,
++ signed char b6,
++ signed char b5,
++ signed char b4,
++ signed char b3,
++ signed char b2,
++ signed char b1,
++ signed char b0)
++{
++ int8_t ALIGN_STRUCT(16)
++ data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3,
++ (int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7,
++ (int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11,
++ (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15};
++ return (__m128i) vld1q_s8(data);
++}
++
++// Set packed double-precision (64-bit) floating-point elements in dst with the
++// supplied values.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_pd
++FORCE_INLINE __m128d _mm_set_pd(double e1, double e0)
++{
++ double ALIGN_STRUCT(16) data[2] = {e0, e1};
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_f64(vld1q_f64((float64_t *) data));
++#else
++ return vreinterpretq_m128d_f32(vld1q_f32((float32_t *) data));
++#endif
++}
++
++// Broadcast double-precision (64-bit) floating-point value a to all elements of
++// dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_pd1
++#define _mm_set_pd1 _mm_set1_pd
++
++// Copy double-precision (64-bit) floating-point element a to the lower element
++// of dst, and zero the upper element.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set_sd
++FORCE_INLINE __m128d _mm_set_sd(double a)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_f64(vsetq_lane_f64(a, vdupq_n_f64(0), 0));
++#else
++ return _mm_set_pd(0, a);
++#endif
++}
++
++// Broadcast 16-bit integer a to all elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi16
++FORCE_INLINE __m128i _mm_set1_epi16(short w)
++{
++ return vreinterpretq_m128i_s16(vdupq_n_s16(w));
++}
++
++// Broadcast 32-bit integer a to all elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi32
++FORCE_INLINE __m128i _mm_set1_epi32(int _i)
++{
++ return vreinterpretq_m128i_s32(vdupq_n_s32(_i));
++}
++
++// Broadcast 64-bit integer a to all elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi64
++FORCE_INLINE __m128i _mm_set1_epi64(__m64 _i)
++{
++ return vreinterpretq_m128i_s64(vdupq_lane_s64(_i, 0));
++}
++
++// Broadcast 64-bit integer a to all elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi64x
++FORCE_INLINE __m128i _mm_set1_epi64x(int64_t _i)
++{
++ return vreinterpretq_m128i_s64(vdupq_n_s64(_i));
++}
++
++// Broadcast 8-bit integer a to all elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_epi8
++FORCE_INLINE __m128i _mm_set1_epi8(signed char w)
++{
++ return vreinterpretq_m128i_s8(vdupq_n_s8(w));
++}
++
++// Broadcast double-precision (64-bit) floating-point value a to all elements of
++// dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_set1_pd
++FORCE_INLINE __m128d _mm_set1_pd(double d)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_f64(vdupq_n_f64(d));
++#else
++ return vreinterpretq_m128d_s64(vdupq_n_s64(*(int64_t *) &d));
++#endif
++}
++
++// Set packed 16-bit integers in dst with the supplied values in reverse order.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi16
++FORCE_INLINE __m128i _mm_setr_epi16(short w0,
++ short w1,
++ short w2,
++ short w3,
++ short w4,
++ short w5,
++ short w6,
++ short w7)
++{
++ int16_t ALIGN_STRUCT(16) data[8] = {w0, w1, w2, w3, w4, w5, w6, w7};
++ return vreinterpretq_m128i_s16(vld1q_s16((int16_t *) data));
++}
++
++// Set packed 32-bit integers in dst with the supplied values in reverse order.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi32
++FORCE_INLINE __m128i _mm_setr_epi32(int i3, int i2, int i1, int i0)
++{
++ int32_t ALIGN_STRUCT(16) data[4] = {i3, i2, i1, i0};
++ return vreinterpretq_m128i_s32(vld1q_s32(data));
++}
++
++// Set packed 64-bit integers in dst with the supplied values in reverse order.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi64
++FORCE_INLINE __m128i _mm_setr_epi64(__m64 e1, __m64 e0)
++{
++ return vreinterpretq_m128i_s64(vcombine_s64(e1, e0));
++}
++
++// Set packed 8-bit integers in dst with the supplied values in reverse order.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_epi8
++FORCE_INLINE __m128i _mm_setr_epi8(signed char b0,
++ signed char b1,
++ signed char b2,
++ signed char b3,
++ signed char b4,
++ signed char b5,
++ signed char b6,
++ signed char b7,
++ signed char b8,
++ signed char b9,
++ signed char b10,
++ signed char b11,
++ signed char b12,
++ signed char b13,
++ signed char b14,
++ signed char b15)
++{
++ int8_t ALIGN_STRUCT(16)
++ data[16] = {(int8_t) b0, (int8_t) b1, (int8_t) b2, (int8_t) b3,
++ (int8_t) b4, (int8_t) b5, (int8_t) b6, (int8_t) b7,
++ (int8_t) b8, (int8_t) b9, (int8_t) b10, (int8_t) b11,
++ (int8_t) b12, (int8_t) b13, (int8_t) b14, (int8_t) b15};
++ return (__m128i) vld1q_s8(data);
++}
++
++// Set packed double-precision (64-bit) floating-point elements in dst with the
++// supplied values in reverse order.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setr_pd
++FORCE_INLINE __m128d _mm_setr_pd(double e1, double e0)
++{
++ return _mm_set_pd(e0, e1);
++}
++
++// Return vector of type __m128d with all elements set to zero.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_pd
++FORCE_INLINE __m128d _mm_setzero_pd(void)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_f64(vdupq_n_f64(0));
++#else
++ return vreinterpretq_m128d_f32(vdupq_n_f32(0));
++#endif
++}
++
++// Return vector of type __m128i with all elements set to zero.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_setzero_si128
++FORCE_INLINE __m128i _mm_setzero_si128(void)
++{
++ return vreinterpretq_m128i_s32(vdupq_n_s32(0));
++}
++
++// Shuffle 32-bit integers in a using the control in imm8, and store the results
++// in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_epi32
++// FORCE_INLINE __m128i _mm_shuffle_epi32(__m128i a,
++// __constrange(0,255) int imm)
++#if defined(_sse2neon_shuffle)
++#define _mm_shuffle_epi32(a, imm) \
++ __extension__({ \
++ int32x4_t _input = vreinterpretq_s32_m128i(a); \
++ int32x4_t _shuf = \
++ vshuffleq_s32(_input, _input, (imm) & (0x3), ((imm) >> 2) & 0x3, \
++ ((imm) >> 4) & 0x3, ((imm) >> 6) & 0x3); \
++ vreinterpretq_m128i_s32(_shuf); \
++ })
++#else // generic
++#define _mm_shuffle_epi32(a, imm) \
++ _sse2neon_define1( \
++ __m128i, a, __m128i ret; switch (imm) { \
++ case _MM_SHUFFLE(1, 0, 3, 2): \
++ ret = _mm_shuffle_epi_1032(_a); \
++ break; \
++ case _MM_SHUFFLE(2, 3, 0, 1): \
++ ret = _mm_shuffle_epi_2301(_a); \
++ break; \
++ case _MM_SHUFFLE(0, 3, 2, 1): \
++ ret = _mm_shuffle_epi_0321(_a); \
++ break; \
++ case _MM_SHUFFLE(2, 1, 0, 3): \
++ ret = _mm_shuffle_epi_2103(_a); \
++ break; \
++ case _MM_SHUFFLE(1, 0, 1, 0): \
++ ret = _mm_shuffle_epi_1010(_a); \
++ break; \
++ case _MM_SHUFFLE(1, 0, 0, 1): \
++ ret = _mm_shuffle_epi_1001(_a); \
++ break; \
++ case _MM_SHUFFLE(0, 1, 0, 1): \
++ ret = _mm_shuffle_epi_0101(_a); \
++ break; \
++ case _MM_SHUFFLE(2, 2, 1, 1): \
++ ret = _mm_shuffle_epi_2211(_a); \
++ break; \
++ case _MM_SHUFFLE(0, 1, 2, 2): \
++ ret = _mm_shuffle_epi_0122(_a); \
++ break; \
++ case _MM_SHUFFLE(3, 3, 3, 2): \
++ ret = _mm_shuffle_epi_3332(_a); \
++ break; \
++ case _MM_SHUFFLE(0, 0, 0, 0): \
++ ret = _mm_shuffle_epi32_splat(_a, 0); \
++ break; \
++ case _MM_SHUFFLE(1, 1, 1, 1): \
++ ret = _mm_shuffle_epi32_splat(_a, 1); \
++ break; \
++ case _MM_SHUFFLE(2, 2, 2, 2): \
++ ret = _mm_shuffle_epi32_splat(_a, 2); \
++ break; \
++ case _MM_SHUFFLE(3, 3, 3, 3): \
++ ret = _mm_shuffle_epi32_splat(_a, 3); \
++ break; \
++ default: \
++ ret = _mm_shuffle_epi32_default(_a, (imm)); \
++ break; \
++ } _sse2neon_return(ret);)
++#endif
++
++// Shuffle double-precision (64-bit) floating-point elements using the control
++// in imm8, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pd
++#ifdef _sse2neon_shuffle
++#define _mm_shuffle_pd(a, b, imm8) \
++ vreinterpretq_m128d_s64( \
++ vshuffleq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b), \
++ imm8 & 0x1, ((imm8 & 0x2) >> 1) + 2))
++#else
++#define _mm_shuffle_pd(a, b, imm8) \
++ _mm_castsi128_pd(_mm_set_epi64x( \
++ vgetq_lane_s64(vreinterpretq_s64_m128d(b), (imm8 & 0x2) >> 1), \
++ vgetq_lane_s64(vreinterpretq_s64_m128d(a), imm8 & 0x1)))
++#endif
++
++// FORCE_INLINE __m128i _mm_shufflehi_epi16(__m128i a,
++// __constrange(0,255) int imm)
++#if defined(_sse2neon_shuffle)
++#define _mm_shufflehi_epi16(a, imm) \
++ __extension__({ \
++ int16x8_t _input = vreinterpretq_s16_m128i(a); \
++ int16x8_t _shuf = \
++ vshuffleq_s16(_input, _input, 0, 1, 2, 3, ((imm) & (0x3)) + 4, \
++ (((imm) >> 2) & 0x3) + 4, (((imm) >> 4) & 0x3) + 4, \
++ (((imm) >> 6) & 0x3) + 4); \
++ vreinterpretq_m128i_s16(_shuf); \
++ })
++#else // generic
++#define _mm_shufflehi_epi16(a, imm) _mm_shufflehi_epi16_function((a), (imm))
++#endif
++
++// FORCE_INLINE __m128i _mm_shufflelo_epi16(__m128i a,
++// __constrange(0,255) int imm)
++#if defined(_sse2neon_shuffle)
++#define _mm_shufflelo_epi16(a, imm) \
++ __extension__({ \
++ int16x8_t _input = vreinterpretq_s16_m128i(a); \
++ int16x8_t _shuf = vshuffleq_s16( \
++ _input, _input, ((imm) & (0x3)), (((imm) >> 2) & 0x3), \
++ (((imm) >> 4) & 0x3), (((imm) >> 6) & 0x3), 4, 5, 6, 7); \
++ vreinterpretq_m128i_s16(_shuf); \
++ })
++#else // generic
++#define _mm_shufflelo_epi16(a, imm) _mm_shufflelo_epi16_function((a), (imm))
++#endif
++
++// Shift packed 16-bit integers in a left by count while shifting in zeros, and
++// store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi16
++FORCE_INLINE __m128i _mm_sll_epi16(__m128i a, __m128i count)
++{
++ uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
++ if (_sse2neon_unlikely(c & ~15))
++ return _mm_setzero_si128();
++
++ int16x8_t vc = vdupq_n_s16((int16_t) c);
++ return vreinterpretq_m128i_s16(vshlq_s16(vreinterpretq_s16_m128i(a), vc));
++}
++
++// Shift packed 32-bit integers in a left by count while shifting in zeros, and
++// store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi32
++FORCE_INLINE __m128i _mm_sll_epi32(__m128i a, __m128i count)
++{
++ uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
++ if (_sse2neon_unlikely(c & ~31))
++ return _mm_setzero_si128();
++
++ int32x4_t vc = vdupq_n_s32((int32_t) c);
++ return vreinterpretq_m128i_s32(vshlq_s32(vreinterpretq_s32_m128i(a), vc));
++}
++
++// Shift packed 64-bit integers in a left by count while shifting in zeros, and
++// store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sll_epi64
++FORCE_INLINE __m128i _mm_sll_epi64(__m128i a, __m128i count)
++{
++ uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
++ if (_sse2neon_unlikely(c & ~63))
++ return _mm_setzero_si128();
++
++ int64x2_t vc = vdupq_n_s64((int64_t) c);
++ return vreinterpretq_m128i_s64(vshlq_s64(vreinterpretq_s64_m128i(a), vc));
++}
++
++// Shift packed 16-bit integers in a left by imm8 while shifting in zeros, and
++// store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi16
++FORCE_INLINE __m128i _mm_slli_epi16(__m128i a, int imm)
++{
++ if (_sse2neon_unlikely(imm & ~15))
++ return _mm_setzero_si128();
++ return vreinterpretq_m128i_s16(
++ vshlq_s16(vreinterpretq_s16_m128i(a), vdupq_n_s16(imm)));
++}
++
++// Shift packed 32-bit integers in a left by imm8 while shifting in zeros, and
++// store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi32
++FORCE_INLINE __m128i _mm_slli_epi32(__m128i a, int imm)
++{
++ if (_sse2neon_unlikely(imm & ~31))
++ return _mm_setzero_si128();
++ return vreinterpretq_m128i_s32(
++ vshlq_s32(vreinterpretq_s32_m128i(a), vdupq_n_s32(imm)));
++}
++
++// Shift packed 64-bit integers in a left by imm8 while shifting in zeros, and
++// store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_epi64
++FORCE_INLINE __m128i _mm_slli_epi64(__m128i a, int imm)
++{
++ if (_sse2neon_unlikely(imm & ~63))
++ return _mm_setzero_si128();
++ return vreinterpretq_m128i_s64(
++ vshlq_s64(vreinterpretq_s64_m128i(a), vdupq_n_s64(imm)));
++}
++
++// Shift a left by imm8 bytes while shifting in zeros, and store the results in
++// dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_slli_si128
++#define _mm_slli_si128(a, imm) \
++ _sse2neon_define1( \
++ __m128i, a, int8x16_t ret; \
++ if (_sse2neon_unlikely(imm == 0)) ret = vreinterpretq_s8_m128i(_a); \
++ else if (_sse2neon_unlikely((imm) & ~15)) ret = vdupq_n_s8(0); \
++ else ret = vextq_s8(vdupq_n_s8(0), vreinterpretq_s8_m128i(_a), \
++ ((imm <= 0 || imm > 15) ? 0 : (16 - imm))); \
++ _sse2neon_return(vreinterpretq_m128i_s8(ret));)
++
++// Compute the square root of packed double-precision (64-bit) floating-point
++// elements in a, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_pd
++FORCE_INLINE __m128d _mm_sqrt_pd(__m128d a)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_f64(vsqrtq_f64(vreinterpretq_f64_m128d(a)));
++#else
++ double a0 = sqrt(((double *) &a)[0]);
++ double a1 = sqrt(((double *) &a)[1]);
++ return _mm_set_pd(a1, a0);
++#endif
++}
++
++// Compute the square root of the lower double-precision (64-bit) floating-point
++// element in b, store the result in the lower element of dst, and copy the
++// upper element from a to the upper element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sqrt_sd
++FORCE_INLINE __m128d _mm_sqrt_sd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return _mm_move_sd(a, _mm_sqrt_pd(b));
++#else
++ return _mm_set_pd(((double *) &a)[1], sqrt(((double *) &b)[0]));
++#endif
++}
++
++// Shift packed 16-bit integers in a right by count while shifting in sign bits,
++// and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sra_epi16
++FORCE_INLINE __m128i _mm_sra_epi16(__m128i a, __m128i count)
++{
++ int64_t c = vgetq_lane_s64(count, 0);
++ if (_sse2neon_unlikely(c & ~15))
++ return _mm_cmplt_epi16(a, _mm_setzero_si128());
++ return vreinterpretq_m128i_s16(
++ vshlq_s16((int16x8_t) a, vdupq_n_s16((int) -c)));
++}
++
++// Shift packed 32-bit integers in a right by count while shifting in sign bits,
++// and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sra_epi32
++FORCE_INLINE __m128i _mm_sra_epi32(__m128i a, __m128i count)
++{
++ int64_t c = vgetq_lane_s64(count, 0);
++ if (_sse2neon_unlikely(c & ~31))
++ return _mm_cmplt_epi32(a, _mm_setzero_si128());
++ return vreinterpretq_m128i_s32(
++ vshlq_s32((int32x4_t) a, vdupq_n_s32((int) -c)));
++}
++
++// Shift packed 16-bit integers in a right by imm8 while shifting in sign
++// bits, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srai_epi16
++FORCE_INLINE __m128i _mm_srai_epi16(__m128i a, int imm)
++{
++ const int count = (imm & ~15) ? 15 : imm;
++ return (__m128i) vshlq_s16((int16x8_t) a, vdupq_n_s16(-count));
++}
++
++// Shift packed 32-bit integers in a right by imm8 while shifting in sign bits,
++// and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srai_epi32
++// FORCE_INLINE __m128i _mm_srai_epi32(__m128i a, __constrange(0,255) int imm)
++#define _mm_srai_epi32(a, imm) \
++ _sse2neon_define0( \
++ __m128i, a, __m128i ret; if (_sse2neon_unlikely((imm) == 0)) { \
++ ret = _a; \
++ } else if (_sse2neon_likely(0 < (imm) && (imm) < 32)) { \
++ ret = vreinterpretq_m128i_s32( \
++ vshlq_s32(vreinterpretq_s32_m128i(_a), vdupq_n_s32(-(imm)))); \
++ } else { \
++ ret = vreinterpretq_m128i_s32( \
++ vshrq_n_s32(vreinterpretq_s32_m128i(_a), 31)); \
++ } _sse2neon_return(ret);)
++
++// Shift packed 16-bit integers in a right by count while shifting in zeros, and
++// store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi16
++FORCE_INLINE __m128i _mm_srl_epi16(__m128i a, __m128i count)
++{
++ uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
++ if (_sse2neon_unlikely(c & ~15))
++ return _mm_setzero_si128();
++
++ int16x8_t vc = vdupq_n_s16(-(int16_t) c);
++ return vreinterpretq_m128i_u16(vshlq_u16(vreinterpretq_u16_m128i(a), vc));
++}
++
++// Shift packed 32-bit integers in a right by count while shifting in zeros, and
++// store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi32
++FORCE_INLINE __m128i _mm_srl_epi32(__m128i a, __m128i count)
++{
++ uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
++ if (_sse2neon_unlikely(c & ~31))
++ return _mm_setzero_si128();
++
++ int32x4_t vc = vdupq_n_s32(-(int32_t) c);
++ return vreinterpretq_m128i_u32(vshlq_u32(vreinterpretq_u32_m128i(a), vc));
++}
++
++// Shift packed 64-bit integers in a right by count while shifting in zeros, and
++// store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srl_epi64
++FORCE_INLINE __m128i _mm_srl_epi64(__m128i a, __m128i count)
++{
++ uint64_t c = vreinterpretq_nth_u64_m128i(count, 0);
++ if (_sse2neon_unlikely(c & ~63))
++ return _mm_setzero_si128();
++
++ int64x2_t vc = vdupq_n_s64(-(int64_t) c);
++ return vreinterpretq_m128i_u64(vshlq_u64(vreinterpretq_u64_m128i(a), vc));
++}
++
++// Shift packed 16-bit integers in a right by imm8 while shifting in zeros, and
++// store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi16
++#define _mm_srli_epi16(a, imm) \
++ _sse2neon_define0( \
++ __m128i, a, __m128i ret; if (_sse2neon_unlikely((imm) & ~15)) { \
++ ret = _mm_setzero_si128(); \
++ } else { \
++ ret = vreinterpretq_m128i_u16( \
++ vshlq_u16(vreinterpretq_u16_m128i(_a), vdupq_n_s16(-(imm)))); \
++ } _sse2neon_return(ret);)
++
++// Shift packed 32-bit integers in a right by imm8 while shifting in zeros, and
++// store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi32
++// FORCE_INLINE __m128i _mm_srli_epi32(__m128i a, __constrange(0,255) int imm)
++#define _mm_srli_epi32(a, imm) \
++ _sse2neon_define0( \
++ __m128i, a, __m128i ret; if (_sse2neon_unlikely((imm) & ~31)) { \
++ ret = _mm_setzero_si128(); \
++ } else { \
++ ret = vreinterpretq_m128i_u32( \
++ vshlq_u32(vreinterpretq_u32_m128i(_a), vdupq_n_s32(-(imm)))); \
++ } _sse2neon_return(ret);)
++
++// Shift packed 64-bit integers in a right by imm8 while shifting in zeros, and
++// store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_epi64
++#define _mm_srli_epi64(a, imm) \
++ _sse2neon_define0( \
++ __m128i, a, __m128i ret; if (_sse2neon_unlikely((imm) & ~63)) { \
++ ret = _mm_setzero_si128(); \
++ } else { \
++ ret = vreinterpretq_m128i_u64( \
++ vshlq_u64(vreinterpretq_u64_m128i(_a), vdupq_n_s64(-(imm)))); \
++ } _sse2neon_return(ret);)
++
++// Shift a right by imm8 bytes while shifting in zeros, and store the results in
++// dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_srli_si128
++#define _mm_srli_si128(a, imm) \
++ _sse2neon_define1( \
++ __m128i, a, int8x16_t ret; \
++ if (_sse2neon_unlikely((imm) & ~15)) ret = vdupq_n_s8(0); \
++ else ret = vextq_s8(vreinterpretq_s8_m128i(_a), vdupq_n_s8(0), \
++ (imm > 15 ? 0 : imm)); \
++ _sse2neon_return(vreinterpretq_m128i_s8(ret));)
++
++// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point
++// elements) from a into memory. mem_addr must be aligned on a 16-byte boundary
++// or a general-protection exception may be generated.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_pd
++FORCE_INLINE void _mm_store_pd(double *mem_addr, __m128d a)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ vst1q_f64((float64_t *) mem_addr, vreinterpretq_f64_m128d(a));
++#else
++ vst1q_f32((float32_t *) mem_addr, vreinterpretq_f32_m128d(a));
++#endif
++}
++
++// Store the lower double-precision (64-bit) floating-point element from a into
++// 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte
++// boundary or a general-protection exception may be generated.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_pd1
++FORCE_INLINE void _mm_store_pd1(double *mem_addr, __m128d a)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ float64x1_t a_low = vget_low_f64(vreinterpretq_f64_m128d(a));
++ vst1q_f64((float64_t *) mem_addr,
++ vreinterpretq_f64_m128d(vcombine_f64(a_low, a_low)));
++#else
++ float32x2_t a_low = vget_low_f32(vreinterpretq_f32_m128d(a));
++ vst1q_f32((float32_t *) mem_addr,
++ vreinterpretq_f32_m128d(vcombine_f32(a_low, a_low)));
++#endif
++}
++
++// Store the lower double-precision (64-bit) floating-point element from a into
++// memory. mem_addr does not need to be aligned on any particular boundary.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_store_sd
++FORCE_INLINE void _mm_store_sd(double *mem_addr, __m128d a)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ vst1_f64((float64_t *) mem_addr, vget_low_f64(vreinterpretq_f64_m128d(a)));
++#else
++ vst1_u64((uint64_t *) mem_addr, vget_low_u64(vreinterpretq_u64_m128d(a)));
++#endif
++}
++
++// Store 128-bits of integer data from a into memory. mem_addr must be aligned
++// on a 16-byte boundary or a general-protection exception may be generated.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_store_si128
++FORCE_INLINE void _mm_store_si128(__m128i *p, __m128i a)
++{
++ vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a));
++}
++
++// Store the lower double-precision (64-bit) floating-point element from a into
++// 2 contiguous elements in memory. mem_addr must be aligned on a 16-byte
++// boundary or a general-protection exception may be generated.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#expand=9,526,5601&text=_mm_store1_pd
++#define _mm_store1_pd _mm_store_pd1
++
++// Store the upper double-precision (64-bit) floating-point element from a into
++// memory.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeh_pd
++FORCE_INLINE void _mm_storeh_pd(double *mem_addr, __m128d a)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ vst1_f64((float64_t *) mem_addr, vget_high_f64(vreinterpretq_f64_m128d(a)));
++#else
++ vst1_f32((float32_t *) mem_addr, vget_high_f32(vreinterpretq_f32_m128d(a)));
++#endif
++}
++
++// Store 64-bit integer from the first element of a into memory.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storel_epi64
++FORCE_INLINE void _mm_storel_epi64(__m128i *a, __m128i b)
++{
++ vst1_u64((uint64_t *) a, vget_low_u64(vreinterpretq_u64_m128i(b)));
++}
++
++// Store the lower double-precision (64-bit) floating-point element from a into
++// memory.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storel_pd
++FORCE_INLINE void _mm_storel_pd(double *mem_addr, __m128d a)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ vst1_f64((float64_t *) mem_addr, vget_low_f64(vreinterpretq_f64_m128d(a)));
++#else
++ vst1_f32((float32_t *) mem_addr, vget_low_f32(vreinterpretq_f32_m128d(a)));
++#endif
++}
++
++// Store 2 double-precision (64-bit) floating-point elements from a into memory
++// in reverse order. mem_addr must be aligned on a 16-byte boundary or a
++// general-protection exception may be generated.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storer_pd
++FORCE_INLINE void _mm_storer_pd(double *mem_addr, __m128d a)
++{
++ float32x4_t f = vreinterpretq_f32_m128d(a);
++ _mm_store_pd(mem_addr, vreinterpretq_m128d_f32(vextq_f32(f, f, 2)));
++}
++
++// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point
++// elements) from a into memory. mem_addr does not need to be aligned on any
++// particular boundary.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_pd
++FORCE_INLINE void _mm_storeu_pd(double *mem_addr, __m128d a)
++{
++ _mm_store_pd(mem_addr, a);
++}
++
++// Store 128-bits of integer data from a into memory. mem_addr does not need to
++// be aligned on any particular boundary.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si128
++FORCE_INLINE void _mm_storeu_si128(__m128i *p, __m128i a)
++{
++ vst1q_s32((int32_t *) p, vreinterpretq_s32_m128i(a));
++}
++
++// Store 32-bit integer from the first element of a into memory. mem_addr does
++// not need to be aligned on any particular boundary.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_storeu_si32
++FORCE_INLINE void _mm_storeu_si32(void *p, __m128i a)
++{
++ vst1q_lane_s32((int32_t *) p, vreinterpretq_s32_m128i(a), 0);
++}
++
++// Store 128-bits (composed of 2 packed double-precision (64-bit) floating-point
++// elements) from a into memory using a non-temporal memory hint. mem_addr must
++// be aligned on a 16-byte boundary or a general-protection exception may be
++// generated.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_pd
++FORCE_INLINE void _mm_stream_pd(double *p, __m128d a)
++{
++#if __has_builtin(__builtin_nontemporal_store)
++ __builtin_nontemporal_store(a, (__m128d *) p);
++#elif defined(__aarch64__) || defined(_M_ARM64)
++ vst1q_f64(p, vreinterpretq_f64_m128d(a));
++#else
++ vst1q_s64((int64_t *) p, vreinterpretq_s64_m128d(a));
++#endif
++}
++
++// Store 128-bits of integer data from a into memory using a non-temporal memory
++// hint. mem_addr must be aligned on a 16-byte boundary or a general-protection
++// exception may be generated.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si128
++FORCE_INLINE void _mm_stream_si128(__m128i *p, __m128i a)
++{
++#if __has_builtin(__builtin_nontemporal_store)
++ __builtin_nontemporal_store(a, p);
++#else
++ vst1q_s64((int64_t *) p, vreinterpretq_s64_m128i(a));
++#endif
++}
++
++// Store 32-bit integer a into memory using a non-temporal hint to minimize
++// cache pollution. If the cache line containing address mem_addr is already in
++// the cache, the cache will be updated.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si32
++FORCE_INLINE void _mm_stream_si32(int *p, int a)
++{
++ vst1q_lane_s32((int32_t *) p, vdupq_n_s32(a), 0);
++}
++
++// Store 64-bit integer a into memory using a non-temporal hint to minimize
++// cache pollution. If the cache line containing address mem_addr is already in
++// the cache, the cache will be updated.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_si64
++FORCE_INLINE void _mm_stream_si64(__int64 *p, __int64 a)
++{
++ vst1_s64((int64_t *) p, vdup_n_s64((int64_t) a));
++}
++
++// Subtract packed 16-bit integers in b from packed 16-bit integers in a, and
++// store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi16
++FORCE_INLINE __m128i _mm_sub_epi16(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s16(
++ vsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
++}
++
++// Subtract packed 32-bit integers in b from packed 32-bit integers in a, and
++// store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi32
++FORCE_INLINE __m128i _mm_sub_epi32(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s32(
++ vsubq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
++}
++
++// Subtract packed 64-bit integers in b from packed 64-bit integers in a, and
++// store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi64
++FORCE_INLINE __m128i _mm_sub_epi64(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s64(
++ vsubq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
++}
++
++// Subtract packed 8-bit integers in b from packed 8-bit integers in a, and
++// store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_epi8
++FORCE_INLINE __m128i _mm_sub_epi8(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s8(
++ vsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
++}
++
++// Subtract packed double-precision (64-bit) floating-point elements in b from
++// packed double-precision (64-bit) floating-point elements in a, and store the
++// results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_sub_pd
++FORCE_INLINE __m128d _mm_sub_pd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_f64(
++ vsubq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
++#else
++ double *da = (double *) &a;
++ double *db = (double *) &b;
++ double c[2];
++ c[0] = da[0] - db[0];
++ c[1] = da[1] - db[1];
++ return vld1q_f32((float32_t *) c);
++#endif
++}
++
++// Subtract the lower double-precision (64-bit) floating-point element in b from
++// the lower double-precision (64-bit) floating-point element in a, store the
++// result in the lower element of dst, and copy the upper element from a to the
++// upper element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_sd
++FORCE_INLINE __m128d _mm_sub_sd(__m128d a, __m128d b)
++{
++ return _mm_move_sd(a, _mm_sub_pd(a, b));
++}
++
++// Subtract 64-bit integer b from 64-bit integer a, and store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sub_si64
++FORCE_INLINE __m64 _mm_sub_si64(__m64 a, __m64 b)
++{
++ return vreinterpret_m64_s64(
++ vsub_s64(vreinterpret_s64_m64(a), vreinterpret_s64_m64(b)));
++}
++
++// Subtract packed signed 16-bit integers in b from packed 16-bit integers in a
++// using saturation, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epi16
++FORCE_INLINE __m128i _mm_subs_epi16(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s16(
++ vqsubq_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
++}
++
++// Subtract packed signed 8-bit integers in b from packed 8-bit integers in a
++// using saturation, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epi8
++FORCE_INLINE __m128i _mm_subs_epi8(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s8(
++ vqsubq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
++}
++
++// Subtract packed unsigned 16-bit integers in b from packed unsigned 16-bit
++// integers in a using saturation, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epu16
++FORCE_INLINE __m128i _mm_subs_epu16(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u16(
++ vqsubq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
++}
++
++// Subtract packed unsigned 8-bit integers in b from packed unsigned 8-bit
++// integers in a using saturation, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_subs_epu8
++FORCE_INLINE __m128i _mm_subs_epu8(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u8(
++ vqsubq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b)));
++}
++
++#define _mm_ucomieq_sd _mm_comieq_sd
++#define _mm_ucomige_sd _mm_comige_sd
++#define _mm_ucomigt_sd _mm_comigt_sd
++#define _mm_ucomile_sd _mm_comile_sd
++#define _mm_ucomilt_sd _mm_comilt_sd
++#define _mm_ucomineq_sd _mm_comineq_sd
++
++// Return vector of type __m128d with undefined elements.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_undefined_pd
++FORCE_INLINE __m128d _mm_undefined_pd(void)
++{
++#if defined(__GNUC__) || defined(__clang__)
++#pragma GCC diagnostic push
++#pragma GCC diagnostic ignored "-Wuninitialized"
++#endif
++ __m128d a;
++#if defined(_MSC_VER)
++ a = _mm_setzero_pd();
++#endif
++ return a;
++#if defined(__GNUC__) || defined(__clang__)
++#pragma GCC diagnostic pop
++#endif
++}
++
++// Unpack and interleave 16-bit integers from the high half of a and b, and
++// store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi16
++FORCE_INLINE __m128i _mm_unpackhi_epi16(__m128i a, __m128i b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128i_s16(
++ vzip2q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
++#else
++ int16x4_t a1 = vget_high_s16(vreinterpretq_s16_m128i(a));
++ int16x4_t b1 = vget_high_s16(vreinterpretq_s16_m128i(b));
++ int16x4x2_t result = vzip_s16(a1, b1);
++ return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1]));
++#endif
++}
++
++// Unpack and interleave 32-bit integers from the high half of a and b, and
++// store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi32
++FORCE_INLINE __m128i _mm_unpackhi_epi32(__m128i a, __m128i b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128i_s32(
++ vzip2q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
++#else
++ int32x2_t a1 = vget_high_s32(vreinterpretq_s32_m128i(a));
++ int32x2_t b1 = vget_high_s32(vreinterpretq_s32_m128i(b));
++ int32x2x2_t result = vzip_s32(a1, b1);
++ return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1]));
++#endif
++}
++
++// Unpack and interleave 64-bit integers from the high half of a and b, and
++// store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi64
++FORCE_INLINE __m128i _mm_unpackhi_epi64(__m128i a, __m128i b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128i_s64(
++ vzip2q_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
++#else
++ int64x1_t a_h = vget_high_s64(vreinterpretq_s64_m128i(a));
++ int64x1_t b_h = vget_high_s64(vreinterpretq_s64_m128i(b));
++ return vreinterpretq_m128i_s64(vcombine_s64(a_h, b_h));
++#endif
++}
++
++// Unpack and interleave 8-bit integers from the high half of a and b, and store
++// the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_epi8
++FORCE_INLINE __m128i _mm_unpackhi_epi8(__m128i a, __m128i b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128i_s8(
++ vzip2q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
++#else
++ int8x8_t a1 =
++ vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(a)));
++ int8x8_t b1 =
++ vreinterpret_s8_s16(vget_high_s16(vreinterpretq_s16_m128i(b)));
++ int8x8x2_t result = vzip_s8(a1, b1);
++ return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1]));
++#endif
++}
++
++// Unpack and interleave double-precision (64-bit) floating-point elements from
++// the high half of a and b, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpackhi_pd
++FORCE_INLINE __m128d _mm_unpackhi_pd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_f64(
++ vzip2q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
++#else
++ return vreinterpretq_m128d_s64(
++ vcombine_s64(vget_high_s64(vreinterpretq_s64_m128d(a)),
++ vget_high_s64(vreinterpretq_s64_m128d(b))));
++#endif
++}
++
++// Unpack and interleave 16-bit integers from the low half of a and b, and store
++// the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi16
++FORCE_INLINE __m128i _mm_unpacklo_epi16(__m128i a, __m128i b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128i_s16(
++ vzip1q_s16(vreinterpretq_s16_m128i(a), vreinterpretq_s16_m128i(b)));
++#else
++ int16x4_t a1 = vget_low_s16(vreinterpretq_s16_m128i(a));
++ int16x4_t b1 = vget_low_s16(vreinterpretq_s16_m128i(b));
++ int16x4x2_t result = vzip_s16(a1, b1);
++ return vreinterpretq_m128i_s16(vcombine_s16(result.val[0], result.val[1]));
++#endif
++}
++
++// Unpack and interleave 32-bit integers from the low half of a and b, and store
++// the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi32
++FORCE_INLINE __m128i _mm_unpacklo_epi32(__m128i a, __m128i b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128i_s32(
++ vzip1q_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
++#else
++ int32x2_t a1 = vget_low_s32(vreinterpretq_s32_m128i(a));
++ int32x2_t b1 = vget_low_s32(vreinterpretq_s32_m128i(b));
++ int32x2x2_t result = vzip_s32(a1, b1);
++ return vreinterpretq_m128i_s32(vcombine_s32(result.val[0], result.val[1]));
++#endif
++}
++
++// Unpack and interleave 64-bit integers from the low half of a and b, and store
++// the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi64
++FORCE_INLINE __m128i _mm_unpacklo_epi64(__m128i a, __m128i b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128i_s64(
++ vzip1q_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
++#else
++ int64x1_t a_l = vget_low_s64(vreinterpretq_s64_m128i(a));
++ int64x1_t b_l = vget_low_s64(vreinterpretq_s64_m128i(b));
++ return vreinterpretq_m128i_s64(vcombine_s64(a_l, b_l));
++#endif
++}
++
++// Unpack and interleave 8-bit integers from the low half of a and b, and store
++// the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_epi8
++FORCE_INLINE __m128i _mm_unpacklo_epi8(__m128i a, __m128i b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128i_s8(
++ vzip1q_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
++#else
++ int8x8_t a1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(a)));
++ int8x8_t b1 = vreinterpret_s8_s16(vget_low_s16(vreinterpretq_s16_m128i(b)));
++ int8x8x2_t result = vzip_s8(a1, b1);
++ return vreinterpretq_m128i_s8(vcombine_s8(result.val[0], result.val[1]));
++#endif
++}
++
++// Unpack and interleave double-precision (64-bit) floating-point elements from
++// the low half of a and b, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_unpacklo_pd
++FORCE_INLINE __m128d _mm_unpacklo_pd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_f64(
++ vzip1q_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
++#else
++ return vreinterpretq_m128d_s64(
++ vcombine_s64(vget_low_s64(vreinterpretq_s64_m128d(a)),
++ vget_low_s64(vreinterpretq_s64_m128d(b))));
++#endif
++}
++
++// Compute the bitwise XOR of packed double-precision (64-bit) floating-point
++// elements in a and b, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_pd
++FORCE_INLINE __m128d _mm_xor_pd(__m128d a, __m128d b)
++{
++ return vreinterpretq_m128d_s64(
++ veorq_s64(vreinterpretq_s64_m128d(a), vreinterpretq_s64_m128d(b)));
++}
++
++// Compute the bitwise XOR of 128 bits (representing integer data) in a and b,
++// and store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_xor_si128
++FORCE_INLINE __m128i _mm_xor_si128(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s32(
++ veorq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
++}
++
++/* SSE3 */
++
++// Alternatively add and subtract packed double-precision (64-bit)
++// floating-point elements in a to/from packed elements in b, and store the
++// results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_addsub_pd
++FORCE_INLINE __m128d _mm_addsub_pd(__m128d a, __m128d b)
++{
++ _sse2neon_const __m128d mask = _mm_set_pd(1.0f, -1.0f);
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_f64(vfmaq_f64(vreinterpretq_f64_m128d(a),
++ vreinterpretq_f64_m128d(b),
++ vreinterpretq_f64_m128d(mask)));
++#else
++ return _mm_add_pd(_mm_mul_pd(b, mask), a);
++#endif
++}
++
++// Alternatively add and subtract packed single-precision (32-bit)
++// floating-point elements in a to/from packed elements in b, and store the
++// results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=addsub_ps
++FORCE_INLINE __m128 _mm_addsub_ps(__m128 a, __m128 b)
++{
++ _sse2neon_const __m128 mask = _mm_setr_ps(-1.0f, 1.0f, -1.0f, 1.0f);
++#if (defined(__aarch64__) || defined(_M_ARM64)) || \
++ defined(__ARM_FEATURE_FMA) /* VFPv4+ */
++ return vreinterpretq_m128_f32(vfmaq_f32(vreinterpretq_f32_m128(a),
++ vreinterpretq_f32_m128(mask),
++ vreinterpretq_f32_m128(b)));
++#else
++ return _mm_add_ps(_mm_mul_ps(b, mask), a);
++#endif
++}
++
++// Horizontally add adjacent pairs of double-precision (64-bit) floating-point
++// elements in a and b, and pack the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pd
++FORCE_INLINE __m128d _mm_hadd_pd(__m128d a, __m128d b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_f64(
++ vpaddq_f64(vreinterpretq_f64_m128d(a), vreinterpretq_f64_m128d(b)));
++#else
++ double *da = (double *) &a;
++ double *db = (double *) &b;
++ double c[] = {da[0] + da[1], db[0] + db[1]};
++ return vreinterpretq_m128d_u64(vld1q_u64((uint64_t *) c));
++#endif
++}
++
++// Horizontally add adjacent pairs of single-precision (32-bit) floating-point
++// elements in a and b, and pack the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_ps
++FORCE_INLINE __m128 _mm_hadd_ps(__m128 a, __m128 b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128_f32(
++ vpaddq_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(b)));
++#else
++ float32x2_t a10 = vget_low_f32(vreinterpretq_f32_m128(a));
++ float32x2_t a32 = vget_high_f32(vreinterpretq_f32_m128(a));
++ float32x2_t b10 = vget_low_f32(vreinterpretq_f32_m128(b));
++ float32x2_t b32 = vget_high_f32(vreinterpretq_f32_m128(b));
++ return vreinterpretq_m128_f32(
++ vcombine_f32(vpadd_f32(a10, a32), vpadd_f32(b10, b32)));
++#endif
++}
++
++// Horizontally subtract adjacent pairs of double-precision (64-bit)
++// floating-point elements in a and b, and pack the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_pd
++FORCE_INLINE __m128d _mm_hsub_pd(__m128d _a, __m128d _b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ float64x2_t a = vreinterpretq_f64_m128d(_a);
++ float64x2_t b = vreinterpretq_f64_m128d(_b);
++ return vreinterpretq_m128d_f64(
++ vsubq_f64(vuzp1q_f64(a, b), vuzp2q_f64(a, b)));
++#else
++ double *da = (double *) &_a;
++ double *db = (double *) &_b;
++ double c[] = {da[0] - da[1], db[0] - db[1]};
++ return vreinterpretq_m128d_u64(vld1q_u64((uint64_t *) c));
++#endif
++}
++
++// Horizontally subtract adjacent pairs of single-precision (32-bit)
++// floating-point elements in a and b, and pack the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_ps
++FORCE_INLINE __m128 _mm_hsub_ps(__m128 _a, __m128 _b)
++{
++ float32x4_t a = vreinterpretq_f32_m128(_a);
++ float32x4_t b = vreinterpretq_f32_m128(_b);
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128_f32(
++ vsubq_f32(vuzp1q_f32(a, b), vuzp2q_f32(a, b)));
++#else
++ float32x4x2_t c = vuzpq_f32(a, b);
++ return vreinterpretq_m128_f32(vsubq_f32(c.val[0], c.val[1]));
++#endif
++}
++
++// Load 128-bits of integer data from unaligned memory into dst. This intrinsic
++// may perform better than _mm_loadu_si128 when the data crosses a cache line
++// boundary.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_lddqu_si128
++#define _mm_lddqu_si128 _mm_loadu_si128
++
++// Load a double-precision (64-bit) floating-point element from memory into both
++// elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_loaddup_pd
++#define _mm_loaddup_pd _mm_load1_pd
++
++// Duplicate the low double-precision (64-bit) floating-point element from a,
++// and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movedup_pd
++FORCE_INLINE __m128d _mm_movedup_pd(__m128d a)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_f64(
++ vdupq_laneq_f64(vreinterpretq_f64_m128d(a), 0));
++#else
++ return vreinterpretq_m128d_u64(
++ vdupq_n_u64(vgetq_lane_u64(vreinterpretq_u64_m128d(a), 0)));
++#endif
++}
++
++// Duplicate odd-indexed single-precision (32-bit) floating-point elements
++// from a, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_movehdup_ps
++FORCE_INLINE __m128 _mm_movehdup_ps(__m128 a)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128_f32(
++ vtrn2q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)));
++#elif defined(_sse2neon_shuffle)
++ return vreinterpretq_m128_f32(vshuffleq_s32(
++ vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 1, 1, 3, 3));
++#else
++ float32_t a1 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 1);
++ float32_t a3 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 3);
++ float ALIGN_STRUCT(16) data[4] = {a1, a1, a3, a3};
++ return vreinterpretq_m128_f32(vld1q_f32(data));
++#endif
++}
++
++// Duplicate even-indexed single-precision (32-bit) floating-point elements
++// from a, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_moveldup_ps
++FORCE_INLINE __m128 _mm_moveldup_ps(__m128 a)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128_f32(
++ vtrn1q_f32(vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a)));
++#elif defined(_sse2neon_shuffle)
++ return vreinterpretq_m128_f32(vshuffleq_s32(
++ vreinterpretq_f32_m128(a), vreinterpretq_f32_m128(a), 0, 0, 2, 2));
++#else
++ float32_t a0 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 0);
++ float32_t a2 = vgetq_lane_f32(vreinterpretq_f32_m128(a), 2);
++ float ALIGN_STRUCT(16) data[4] = {a0, a0, a2, a2};
++ return vreinterpretq_m128_f32(vld1q_f32(data));
++#endif
++}
++
++/* SSSE3 */
++
++// Compute the absolute value of packed signed 16-bit integers in a, and store
++// the unsigned results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi16
++FORCE_INLINE __m128i _mm_abs_epi16(__m128i a)
++{
++ return vreinterpretq_m128i_s16(vabsq_s16(vreinterpretq_s16_m128i(a)));
++}
++
++// Compute the absolute value of packed signed 32-bit integers in a, and store
++// the unsigned results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi32
++FORCE_INLINE __m128i _mm_abs_epi32(__m128i a)
++{
++ return vreinterpretq_m128i_s32(vabsq_s32(vreinterpretq_s32_m128i(a)));
++}
++
++// Compute the absolute value of packed signed 8-bit integers in a, and store
++// the unsigned results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_epi8
++FORCE_INLINE __m128i _mm_abs_epi8(__m128i a)
++{
++ return vreinterpretq_m128i_s8(vabsq_s8(vreinterpretq_s8_m128i(a)));
++}
++
++// Compute the absolute value of packed signed 16-bit integers in a, and store
++// the unsigned results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi16
++FORCE_INLINE __m64 _mm_abs_pi16(__m64 a)
++{
++ return vreinterpret_m64_s16(vabs_s16(vreinterpret_s16_m64(a)));
++}
++
++// Compute the absolute value of packed signed 32-bit integers in a, and store
++// the unsigned results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi32
++FORCE_INLINE __m64 _mm_abs_pi32(__m64 a)
++{
++ return vreinterpret_m64_s32(vabs_s32(vreinterpret_s32_m64(a)));
++}
++
++// Compute the absolute value of packed signed 8-bit integers in a, and store
++// the unsigned results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_abs_pi8
++FORCE_INLINE __m64 _mm_abs_pi8(__m64 a)
++{
++ return vreinterpret_m64_s8(vabs_s8(vreinterpret_s8_m64(a)));
++}
++
++// Concatenate 16-byte blocks in a and b into a 32-byte temporary result, shift
++// the result right by imm8 bytes, and store the low 16 bytes in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_alignr_epi8
++#if defined(__GNUC__) && !defined(__clang__)
++#define _mm_alignr_epi8(a, b, imm) \
++ __extension__({ \
++ uint8x16_t _a = vreinterpretq_u8_m128i(a); \
++ uint8x16_t _b = vreinterpretq_u8_m128i(b); \
++ __m128i ret; \
++ if (_sse2neon_unlikely((imm) & ~31)) \
++ ret = vreinterpretq_m128i_u8(vdupq_n_u8(0)); \
++ else if (imm >= 16) \
++ ret = _mm_srli_si128(a, imm >= 16 ? imm - 16 : 0); \
++ else \
++ ret = \
++ vreinterpretq_m128i_u8(vextq_u8(_b, _a, imm < 16 ? imm : 0)); \
++ ret; \
++ })
++
++#else
++#define _mm_alignr_epi8(a, b, imm) \
++ _sse2neon_define2( \
++ __m128i, a, b, uint8x16_t __a = vreinterpretq_u8_m128i(_a); \
++ uint8x16_t __b = vreinterpretq_u8_m128i(_b); __m128i ret; \
++ if (_sse2neon_unlikely((imm) & ~31)) ret = \
++ vreinterpretq_m128i_u8(vdupq_n_u8(0)); \
++ else if (imm >= 16) ret = \
++ _mm_srli_si128(_a, imm >= 16 ? imm - 16 : 0); \
++ else ret = \
++ vreinterpretq_m128i_u8(vextq_u8(__b, __a, imm < 16 ? imm : 0)); \
++ _sse2neon_return(ret);)
++
++#endif
++
++// Concatenate 8-byte blocks in a and b into a 16-byte temporary result, shift
++// the result right by imm8 bytes, and store the low 8 bytes in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_alignr_pi8
++#define _mm_alignr_pi8(a, b, imm) \
++ _sse2neon_define2( \
++ __m64, a, b, __m64 ret; if (_sse2neon_unlikely((imm) >= 16)) { \
++ ret = vreinterpret_m64_s8(vdup_n_s8(0)); \
++ } else { \
++ uint8x8_t tmp_low; \
++ uint8x8_t tmp_high; \
++ if ((imm) >= 8) { \
++ const int idx = (imm) -8; \
++ tmp_low = vreinterpret_u8_m64(_a); \
++ tmp_high = vdup_n_u8(0); \
++ ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \
++ } else { \
++ const int idx = (imm); \
++ tmp_low = vreinterpret_u8_m64(_b); \
++ tmp_high = vreinterpret_u8_m64(_a); \
++ ret = vreinterpret_m64_u8(vext_u8(tmp_low, tmp_high, idx)); \
++ } \
++ } _sse2neon_return(ret);)
++
++// Horizontally add adjacent pairs of 16-bit integers in a and b, and pack the
++// signed 16-bit results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_epi16
++FORCE_INLINE __m128i _mm_hadd_epi16(__m128i _a, __m128i _b)
++{
++ int16x8_t a = vreinterpretq_s16_m128i(_a);
++ int16x8_t b = vreinterpretq_s16_m128i(_b);
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128i_s16(vpaddq_s16(a, b));
++#else
++ return vreinterpretq_m128i_s16(
++ vcombine_s16(vpadd_s16(vget_low_s16(a), vget_high_s16(a)),
++ vpadd_s16(vget_low_s16(b), vget_high_s16(b))));
++#endif
++}
++
++// Horizontally add adjacent pairs of 32-bit integers in a and b, and pack the
++// signed 32-bit results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_epi32
++FORCE_INLINE __m128i _mm_hadd_epi32(__m128i _a, __m128i _b)
++{
++ int32x4_t a = vreinterpretq_s32_m128i(_a);
++ int32x4_t b = vreinterpretq_s32_m128i(_b);
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128i_s32(vpaddq_s32(a, b));
++#else
++ return vreinterpretq_m128i_s32(
++ vcombine_s32(vpadd_s32(vget_low_s32(a), vget_high_s32(a)),
++ vpadd_s32(vget_low_s32(b), vget_high_s32(b))));
++#endif
++}
++
++// Horizontally add adjacent pairs of 16-bit integers in a and b, and pack the
++// signed 16-bit results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pi16
++FORCE_INLINE __m64 _mm_hadd_pi16(__m64 a, __m64 b)
++{
++ return vreinterpret_m64_s16(
++ vpadd_s16(vreinterpret_s16_m64(a), vreinterpret_s16_m64(b)));
++}
++
++// Horizontally add adjacent pairs of 32-bit integers in a and b, and pack the
++// signed 32-bit results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadd_pi32
++FORCE_INLINE __m64 _mm_hadd_pi32(__m64 a, __m64 b)
++{
++ return vreinterpret_m64_s32(
++ vpadd_s32(vreinterpret_s32_m64(a), vreinterpret_s32_m64(b)));
++}
++
++// Horizontally add adjacent pairs of signed 16-bit integers in a and b using
++// saturation, and pack the signed 16-bit results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadds_epi16
++FORCE_INLINE __m128i _mm_hadds_epi16(__m128i _a, __m128i _b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ int16x8_t a = vreinterpretq_s16_m128i(_a);
++ int16x8_t b = vreinterpretq_s16_m128i(_b);
++ return vreinterpretq_s64_s16(
++ vqaddq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b)));
++#else
++ int32x4_t a = vreinterpretq_s32_m128i(_a);
++ int32x4_t b = vreinterpretq_s32_m128i(_b);
++ // Interleave using vshrn/vmovn
++ // [a0|a2|a4|a6|b0|b2|b4|b6]
++ // [a1|a3|a5|a7|b1|b3|b5|b7]
++ int16x8_t ab0246 = vcombine_s16(vmovn_s32(a), vmovn_s32(b));
++ int16x8_t ab1357 = vcombine_s16(vshrn_n_s32(a, 16), vshrn_n_s32(b, 16));
++ // Saturated add
++ return vreinterpretq_m128i_s16(vqaddq_s16(ab0246, ab1357));
++#endif
++}
++
++// Horizontally add adjacent pairs of signed 16-bit integers in a and b using
++// saturation, and pack the signed 16-bit results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hadds_pi16
++FORCE_INLINE __m64 _mm_hadds_pi16(__m64 _a, __m64 _b)
++{
++ int16x4_t a = vreinterpret_s16_m64(_a);
++ int16x4_t b = vreinterpret_s16_m64(_b);
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpret_s64_s16(vqadd_s16(vuzp1_s16(a, b), vuzp2_s16(a, b)));
++#else
++ int16x4x2_t res = vuzp_s16(a, b);
++ return vreinterpret_s64_s16(vqadd_s16(res.val[0], res.val[1]));
++#endif
++}
++
++// Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack
++// the signed 16-bit results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_epi16
++FORCE_INLINE __m128i _mm_hsub_epi16(__m128i _a, __m128i _b)
++{
++ int16x8_t a = vreinterpretq_s16_m128i(_a);
++ int16x8_t b = vreinterpretq_s16_m128i(_b);
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128i_s16(
++ vsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b)));
++#else
++ int16x8x2_t c = vuzpq_s16(a, b);
++ return vreinterpretq_m128i_s16(vsubq_s16(c.val[0], c.val[1]));
++#endif
++}
++
++// Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack
++// the signed 32-bit results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_epi32
++FORCE_INLINE __m128i _mm_hsub_epi32(__m128i _a, __m128i _b)
++{
++ int32x4_t a = vreinterpretq_s32_m128i(_a);
++ int32x4_t b = vreinterpretq_s32_m128i(_b);
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128i_s32(
++ vsubq_s32(vuzp1q_s32(a, b), vuzp2q_s32(a, b)));
++#else
++ int32x4x2_t c = vuzpq_s32(a, b);
++ return vreinterpretq_m128i_s32(vsubq_s32(c.val[0], c.val[1]));
++#endif
++}
++
++// Horizontally subtract adjacent pairs of 16-bit integers in a and b, and pack
++// the signed 16-bit results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsub_pi16
++FORCE_INLINE __m64 _mm_hsub_pi16(__m64 _a, __m64 _b)
++{
++ int16x4_t a = vreinterpret_s16_m64(_a);
++ int16x4_t b = vreinterpret_s16_m64(_b);
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpret_m64_s16(vsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b)));
++#else
++ int16x4x2_t c = vuzp_s16(a, b);
++ return vreinterpret_m64_s16(vsub_s16(c.val[0], c.val[1]));
++#endif
++}
++
++// Horizontally subtract adjacent pairs of 32-bit integers in a and b, and pack
++// the signed 32-bit results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_hsub_pi32
++FORCE_INLINE __m64 _mm_hsub_pi32(__m64 _a, __m64 _b)
++{
++ int32x2_t a = vreinterpret_s32_m64(_a);
++ int32x2_t b = vreinterpret_s32_m64(_b);
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpret_m64_s32(vsub_s32(vuzp1_s32(a, b), vuzp2_s32(a, b)));
++#else
++ int32x2x2_t c = vuzp_s32(a, b);
++ return vreinterpret_m64_s32(vsub_s32(c.val[0], c.val[1]));
++#endif
++}
++
++// Horizontally subtract adjacent pairs of signed 16-bit integers in a and b
++// using saturation, and pack the signed 16-bit results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsubs_epi16
++FORCE_INLINE __m128i _mm_hsubs_epi16(__m128i _a, __m128i _b)
++{
++ int16x8_t a = vreinterpretq_s16_m128i(_a);
++ int16x8_t b = vreinterpretq_s16_m128i(_b);
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128i_s16(
++ vqsubq_s16(vuzp1q_s16(a, b), vuzp2q_s16(a, b)));
++#else
++ int16x8x2_t c = vuzpq_s16(a, b);
++ return vreinterpretq_m128i_s16(vqsubq_s16(c.val[0], c.val[1]));
++#endif
++}
++
++// Horizontally subtract adjacent pairs of signed 16-bit integers in a and b
++// using saturation, and pack the signed 16-bit results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_hsubs_pi16
++FORCE_INLINE __m64 _mm_hsubs_pi16(__m64 _a, __m64 _b)
++{
++ int16x4_t a = vreinterpret_s16_m64(_a);
++ int16x4_t b = vreinterpret_s16_m64(_b);
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpret_m64_s16(vqsub_s16(vuzp1_s16(a, b), vuzp2_s16(a, b)));
++#else
++ int16x4x2_t c = vuzp_s16(a, b);
++ return vreinterpret_m64_s16(vqsub_s16(c.val[0], c.val[1]));
++#endif
++}
++
++// Vertically multiply each unsigned 8-bit integer from a with the corresponding
++// signed 8-bit integer from b, producing intermediate signed 16-bit integers.
++// Horizontally add adjacent pairs of intermediate signed 16-bit integers,
++// and pack the saturated results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maddubs_epi16
++FORCE_INLINE __m128i _mm_maddubs_epi16(__m128i _a, __m128i _b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ uint8x16_t a = vreinterpretq_u8_m128i(_a);
++ int8x16_t b = vreinterpretq_s8_m128i(_b);
++ int16x8_t tl = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(a))),
++ vmovl_s8(vget_low_s8(b)));
++ int16x8_t th = vmulq_s16(vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(a))),
++ vmovl_s8(vget_high_s8(b)));
++ return vreinterpretq_m128i_s16(
++ vqaddq_s16(vuzp1q_s16(tl, th), vuzp2q_s16(tl, th)));
++#else
++ // This would be much simpler if x86 would choose to zero extend OR sign
++ // extend, not both. This could probably be optimized better.
++ uint16x8_t a = vreinterpretq_u16_m128i(_a);
++ int16x8_t b = vreinterpretq_s16_m128i(_b);
++
++ // Zero extend a
++ int16x8_t a_odd = vreinterpretq_s16_u16(vshrq_n_u16(a, 8));
++ int16x8_t a_even = vreinterpretq_s16_u16(vbicq_u16(a, vdupq_n_u16(0xff00)));
++
++ // Sign extend by shifting left then shifting right.
++ int16x8_t b_even = vshrq_n_s16(vshlq_n_s16(b, 8), 8);
++ int16x8_t b_odd = vshrq_n_s16(b, 8);
++
++ // multiply
++ int16x8_t prod1 = vmulq_s16(a_even, b_even);
++ int16x8_t prod2 = vmulq_s16(a_odd, b_odd);
++
++ // saturated add
++ return vreinterpretq_m128i_s16(vqaddq_s16(prod1, prod2));
++#endif
++}
++
++// Vertically multiply each unsigned 8-bit integer from a with the corresponding
++// signed 8-bit integer from b, producing intermediate signed 16-bit integers.
++// Horizontally add adjacent pairs of intermediate signed 16-bit integers, and
++// pack the saturated results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_maddubs_pi16
++FORCE_INLINE __m64 _mm_maddubs_pi16(__m64 _a, __m64 _b)
++{
++ uint16x4_t a = vreinterpret_u16_m64(_a);
++ int16x4_t b = vreinterpret_s16_m64(_b);
++
++ // Zero extend a
++ int16x4_t a_odd = vreinterpret_s16_u16(vshr_n_u16(a, 8));
++ int16x4_t a_even = vreinterpret_s16_u16(vand_u16(a, vdup_n_u16(0xff)));
++
++ // Sign extend by shifting left then shifting right.
++ int16x4_t b_even = vshr_n_s16(vshl_n_s16(b, 8), 8);
++ int16x4_t b_odd = vshr_n_s16(b, 8);
++
++ // multiply
++ int16x4_t prod1 = vmul_s16(a_even, b_even);
++ int16x4_t prod2 = vmul_s16(a_odd, b_odd);
++
++ // saturated add
++ return vreinterpret_m64_s16(vqadd_s16(prod1, prod2));
++}
++
++// Multiply packed signed 16-bit integers in a and b, producing intermediate
++// signed 32-bit integers. Shift right by 15 bits while rounding up, and store
++// the packed 16-bit integers in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhrs_epi16
++FORCE_INLINE __m128i _mm_mulhrs_epi16(__m128i a, __m128i b)
++{
++ // Has issues due to saturation
++ // return vreinterpretq_m128i_s16(vqrdmulhq_s16(a, b));
++
++ // Multiply
++ int32x4_t mul_lo = vmull_s16(vget_low_s16(vreinterpretq_s16_m128i(a)),
++ vget_low_s16(vreinterpretq_s16_m128i(b)));
++ int32x4_t mul_hi = vmull_s16(vget_high_s16(vreinterpretq_s16_m128i(a)),
++ vget_high_s16(vreinterpretq_s16_m128i(b)));
++
++ // Rounding narrowing shift right
++ // narrow = (int16_t)((mul + 16384) >> 15);
++ int16x4_t narrow_lo = vrshrn_n_s32(mul_lo, 15);
++ int16x4_t narrow_hi = vrshrn_n_s32(mul_hi, 15);
++
++ // Join together
++ return vreinterpretq_m128i_s16(vcombine_s16(narrow_lo, narrow_hi));
++}
++
++// Multiply packed signed 16-bit integers in a and b, producing intermediate
++// signed 32-bit integers. Truncate each intermediate integer to the 18 most
++// significant bits, round by adding 1, and store bits [16:1] to dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mulhrs_pi16
++FORCE_INLINE __m64 _mm_mulhrs_pi16(__m64 a, __m64 b)
++{
++ int32x4_t mul_extend =
++ vmull_s16((vreinterpret_s16_m64(a)), (vreinterpret_s16_m64(b)));
++
++ // Rounding narrowing shift right
++ return vreinterpret_m64_s16(vrshrn_n_s32(mul_extend, 15));
++}
++
++// Shuffle packed 8-bit integers in a according to shuffle control mask in the
++// corresponding 8-bit element of b, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_epi8
++FORCE_INLINE __m128i _mm_shuffle_epi8(__m128i a, __m128i b)
++{
++ int8x16_t tbl = vreinterpretq_s8_m128i(a); // input a
++ uint8x16_t idx = vreinterpretq_u8_m128i(b); // input b
++ uint8x16_t idx_masked =
++ vandq_u8(idx, vdupq_n_u8(0x8F)); // avoid using meaningless bits
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128i_s8(vqtbl1q_s8(tbl, idx_masked));
++#elif defined(__GNUC__)
++ int8x16_t ret;
++ // %e and %f represent the even and odd D registers
++ // respectively.
++ __asm__ __volatile__(
++ "vtbl.8 %e[ret], {%e[tbl], %f[tbl]}, %e[idx]\n"
++ "vtbl.8 %f[ret], {%e[tbl], %f[tbl]}, %f[idx]\n"
++ : [ret] "=&w"(ret)
++ : [tbl] "w"(tbl), [idx] "w"(idx_masked));
++ return vreinterpretq_m128i_s8(ret);
++#else
++ // use this line if testing on aarch64
++ int8x8x2_t a_split = {vget_low_s8(tbl), vget_high_s8(tbl)};
++ return vreinterpretq_m128i_s8(
++ vcombine_s8(vtbl2_s8(a_split, vget_low_u8(idx_masked)),
++ vtbl2_s8(a_split, vget_high_u8(idx_masked))));
++#endif
++}
++
++// Shuffle packed 8-bit integers in a according to shuffle control mask in the
++// corresponding 8-bit element of b, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_shuffle_pi8
++FORCE_INLINE __m64 _mm_shuffle_pi8(__m64 a, __m64 b)
++{
++ const int8x8_t controlMask =
++ vand_s8(vreinterpret_s8_m64(b), vdup_n_s8((int8_t) (0x1 << 7 | 0x07)));
++ int8x8_t res = vtbl1_s8(vreinterpret_s8_m64(a), controlMask);
++ return vreinterpret_m64_s8(res);
++}
++
++// Negate packed 16-bit integers in a when the corresponding signed
++// 16-bit integer in b is negative, and store the results in dst.
++// Element in dst are zeroed out when the corresponding element
++// in b is zero.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_epi16
++FORCE_INLINE __m128i _mm_sign_epi16(__m128i _a, __m128i _b)
++{
++ int16x8_t a = vreinterpretq_s16_m128i(_a);
++ int16x8_t b = vreinterpretq_s16_m128i(_b);
++
++ // signed shift right: faster than vclt
++ // (b < 0) ? 0xFFFF : 0
++ uint16x8_t ltMask = vreinterpretq_u16_s16(vshrq_n_s16(b, 15));
++ // (b == 0) ? 0xFFFF : 0
++#if defined(__aarch64__) || defined(_M_ARM64)
++ int16x8_t zeroMask = vreinterpretq_s16_u16(vceqzq_s16(b));
++#else
++ int16x8_t zeroMask = vreinterpretq_s16_u16(vceqq_s16(b, vdupq_n_s16(0)));
++#endif
++
++ // bitwise select either a or negative 'a' (vnegq_s16(a) equals to negative
++ // 'a') based on ltMask
++ int16x8_t masked = vbslq_s16(ltMask, vnegq_s16(a), a);
++ // res = masked & (~zeroMask)
++ int16x8_t res = vbicq_s16(masked, zeroMask);
++ return vreinterpretq_m128i_s16(res);
++}
++
++// Negate packed 32-bit integers in a when the corresponding signed
++// 32-bit integer in b is negative, and store the results in dst.
++// Element in dst are zeroed out when the corresponding element
++// in b is zero.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_epi32
++FORCE_INLINE __m128i _mm_sign_epi32(__m128i _a, __m128i _b)
++{
++ int32x4_t a = vreinterpretq_s32_m128i(_a);
++ int32x4_t b = vreinterpretq_s32_m128i(_b);
++
++ // signed shift right: faster than vclt
++ // (b < 0) ? 0xFFFFFFFF : 0
++ uint32x4_t ltMask = vreinterpretq_u32_s32(vshrq_n_s32(b, 31));
++
++ // (b == 0) ? 0xFFFFFFFF : 0
++#if defined(__aarch64__) || defined(_M_ARM64)
++ int32x4_t zeroMask = vreinterpretq_s32_u32(vceqzq_s32(b));
++#else
++ int32x4_t zeroMask = vreinterpretq_s32_u32(vceqq_s32(b, vdupq_n_s32(0)));
++#endif
++
++ // bitwise select either a or negative 'a' (vnegq_s32(a) equals to negative
++ // 'a') based on ltMask
++ int32x4_t masked = vbslq_s32(ltMask, vnegq_s32(a), a);
++ // res = masked & (~zeroMask)
++ int32x4_t res = vbicq_s32(masked, zeroMask);
++ return vreinterpretq_m128i_s32(res);
++}
++
++// Negate packed 8-bit integers in a when the corresponding signed
++// 8-bit integer in b is negative, and store the results in dst.
++// Element in dst are zeroed out when the corresponding element
++// in b is zero.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_epi8
++FORCE_INLINE __m128i _mm_sign_epi8(__m128i _a, __m128i _b)
++{
++ int8x16_t a = vreinterpretq_s8_m128i(_a);
++ int8x16_t b = vreinterpretq_s8_m128i(_b);
++
++ // signed shift right: faster than vclt
++ // (b < 0) ? 0xFF : 0
++ uint8x16_t ltMask = vreinterpretq_u8_s8(vshrq_n_s8(b, 7));
++
++ // (b == 0) ? 0xFF : 0
++#if defined(__aarch64__) || defined(_M_ARM64)
++ int8x16_t zeroMask = vreinterpretq_s8_u8(vceqzq_s8(b));
++#else
++ int8x16_t zeroMask = vreinterpretq_s8_u8(vceqq_s8(b, vdupq_n_s8(0)));
++#endif
++
++ // bitwise select either a or negative 'a' (vnegq_s8(a) return negative 'a')
++ // based on ltMask
++ int8x16_t masked = vbslq_s8(ltMask, vnegq_s8(a), a);
++ // res = masked & (~zeroMask)
++ int8x16_t res = vbicq_s8(masked, zeroMask);
++
++ return vreinterpretq_m128i_s8(res);
++}
++
++// Negate packed 16-bit integers in a when the corresponding signed 16-bit
++// integer in b is negative, and store the results in dst. Element in dst are
++// zeroed out when the corresponding element in b is zero.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi16
++FORCE_INLINE __m64 _mm_sign_pi16(__m64 _a, __m64 _b)
++{
++ int16x4_t a = vreinterpret_s16_m64(_a);
++ int16x4_t b = vreinterpret_s16_m64(_b);
++
++ // signed shift right: faster than vclt
++ // (b < 0) ? 0xFFFF : 0
++ uint16x4_t ltMask = vreinterpret_u16_s16(vshr_n_s16(b, 15));
++
++ // (b == 0) ? 0xFFFF : 0
++#if defined(__aarch64__) || defined(_M_ARM64)
++ int16x4_t zeroMask = vreinterpret_s16_u16(vceqz_s16(b));
++#else
++ int16x4_t zeroMask = vreinterpret_s16_u16(vceq_s16(b, vdup_n_s16(0)));
++#endif
++
++ // bitwise select either a or negative 'a' (vneg_s16(a) return negative 'a')
++ // based on ltMask
++ int16x4_t masked = vbsl_s16(ltMask, vneg_s16(a), a);
++ // res = masked & (~zeroMask)
++ int16x4_t res = vbic_s16(masked, zeroMask);
++
++ return vreinterpret_m64_s16(res);
++}
++
++// Negate packed 32-bit integers in a when the corresponding signed 32-bit
++// integer in b is negative, and store the results in dst. Element in dst are
++// zeroed out when the corresponding element in b is zero.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi32
++FORCE_INLINE __m64 _mm_sign_pi32(__m64 _a, __m64 _b)
++{
++ int32x2_t a = vreinterpret_s32_m64(_a);
++ int32x2_t b = vreinterpret_s32_m64(_b);
++
++ // signed shift right: faster than vclt
++ // (b < 0) ? 0xFFFFFFFF : 0
++ uint32x2_t ltMask = vreinterpret_u32_s32(vshr_n_s32(b, 31));
++
++ // (b == 0) ? 0xFFFFFFFF : 0
++#if defined(__aarch64__) || defined(_M_ARM64)
++ int32x2_t zeroMask = vreinterpret_s32_u32(vceqz_s32(b));
++#else
++ int32x2_t zeroMask = vreinterpret_s32_u32(vceq_s32(b, vdup_n_s32(0)));
++#endif
++
++ // bitwise select either a or negative 'a' (vneg_s32(a) return negative 'a')
++ // based on ltMask
++ int32x2_t masked = vbsl_s32(ltMask, vneg_s32(a), a);
++ // res = masked & (~zeroMask)
++ int32x2_t res = vbic_s32(masked, zeroMask);
++
++ return vreinterpret_m64_s32(res);
++}
++
++// Negate packed 8-bit integers in a when the corresponding signed 8-bit integer
++// in b is negative, and store the results in dst. Element in dst are zeroed out
++// when the corresponding element in b is zero.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_sign_pi8
++FORCE_INLINE __m64 _mm_sign_pi8(__m64 _a, __m64 _b)
++{
++ int8x8_t a = vreinterpret_s8_m64(_a);
++ int8x8_t b = vreinterpret_s8_m64(_b);
++
++ // signed shift right: faster than vclt
++ // (b < 0) ? 0xFF : 0
++ uint8x8_t ltMask = vreinterpret_u8_s8(vshr_n_s8(b, 7));
++
++ // (b == 0) ? 0xFF : 0
++#if defined(__aarch64__) || defined(_M_ARM64)
++ int8x8_t zeroMask = vreinterpret_s8_u8(vceqz_s8(b));
++#else
++ int8x8_t zeroMask = vreinterpret_s8_u8(vceq_s8(b, vdup_n_s8(0)));
++#endif
++
++ // bitwise select either a or negative 'a' (vneg_s8(a) return negative 'a')
++ // based on ltMask
++ int8x8_t masked = vbsl_s8(ltMask, vneg_s8(a), a);
++ // res = masked & (~zeroMask)
++ int8x8_t res = vbic_s8(masked, zeroMask);
++
++ return vreinterpret_m64_s8(res);
++}
++
++/* SSE4.1 */
++
++// Blend packed 16-bit integers from a and b using control mask imm8, and store
++// the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_epi16
++// FORCE_INLINE __m128i _mm_blend_epi16(__m128i a, __m128i b,
++// __constrange(0,255) int imm)
++#define _mm_blend_epi16(a, b, imm) \
++ _sse2neon_define2( \
++ __m128i, a, b, \
++ const uint16_t _mask[8] = \
++ _sse2neon_init(((imm) & (1 << 0)) ? (uint16_t) -1 : 0x0, \
++ ((imm) & (1 << 1)) ? (uint16_t) -1 : 0x0, \
++ ((imm) & (1 << 2)) ? (uint16_t) -1 : 0x0, \
++ ((imm) & (1 << 3)) ? (uint16_t) -1 : 0x0, \
++ ((imm) & (1 << 4)) ? (uint16_t) -1 : 0x0, \
++ ((imm) & (1 << 5)) ? (uint16_t) -1 : 0x0, \
++ ((imm) & (1 << 6)) ? (uint16_t) -1 : 0x0, \
++ ((imm) & (1 << 7)) ? (uint16_t) -1 : 0x0); \
++ uint16x8_t _mask_vec = vld1q_u16(_mask); \
++ uint16x8_t __a = vreinterpretq_u16_m128i(_a); \
++ uint16x8_t __b = vreinterpretq_u16_m128i(_b); _sse2neon_return( \
++ vreinterpretq_m128i_u16(vbslq_u16(_mask_vec, __b, __a)));)
++
++// Blend packed double-precision (64-bit) floating-point elements from a and b
++// using control mask imm8, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_pd
++#define _mm_blend_pd(a, b, imm) \
++ _sse2neon_define2( \
++ __m128d, a, b, \
++ const uint64_t _mask[2] = \
++ _sse2neon_init(((imm) & (1 << 0)) ? ~UINT64_C(0) : UINT64_C(0), \
++ ((imm) & (1 << 1)) ? ~UINT64_C(0) : UINT64_C(0)); \
++ uint64x2_t _mask_vec = vld1q_u64(_mask); \
++ uint64x2_t __a = vreinterpretq_u64_m128d(_a); \
++ uint64x2_t __b = vreinterpretq_u64_m128d(_b); _sse2neon_return( \
++ vreinterpretq_m128d_u64(vbslq_u64(_mask_vec, __b, __a)));)
++
++// Blend packed single-precision (32-bit) floating-point elements from a and b
++// using mask, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blend_ps
++FORCE_INLINE __m128 _mm_blend_ps(__m128 _a, __m128 _b, const char imm8)
++{
++ const uint32_t ALIGN_STRUCT(16)
++ data[4] = {((imm8) & (1 << 0)) ? UINT32_MAX : 0,
++ ((imm8) & (1 << 1)) ? UINT32_MAX : 0,
++ ((imm8) & (1 << 2)) ? UINT32_MAX : 0,
++ ((imm8) & (1 << 3)) ? UINT32_MAX : 0};
++ uint32x4_t mask = vld1q_u32(data);
++ float32x4_t a = vreinterpretq_f32_m128(_a);
++ float32x4_t b = vreinterpretq_f32_m128(_b);
++ return vreinterpretq_m128_f32(vbslq_f32(mask, b, a));
++}
++
++// Blend packed 8-bit integers from a and b using mask, and store the results in
++// dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_epi8
++FORCE_INLINE __m128i _mm_blendv_epi8(__m128i _a, __m128i _b, __m128i _mask)
++{
++ // Use a signed shift right to create a mask with the sign bit
++ uint8x16_t mask =
++ vreinterpretq_u8_s8(vshrq_n_s8(vreinterpretq_s8_m128i(_mask), 7));
++ uint8x16_t a = vreinterpretq_u8_m128i(_a);
++ uint8x16_t b = vreinterpretq_u8_m128i(_b);
++ return vreinterpretq_m128i_u8(vbslq_u8(mask, b, a));
++}
++
++// Blend packed double-precision (64-bit) floating-point elements from a and b
++// using mask, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_pd
++FORCE_INLINE __m128d _mm_blendv_pd(__m128d _a, __m128d _b, __m128d _mask)
++{
++ uint64x2_t mask =
++ vreinterpretq_u64_s64(vshrq_n_s64(vreinterpretq_s64_m128d(_mask), 63));
++#if defined(__aarch64__) || defined(_M_ARM64)
++ float64x2_t a = vreinterpretq_f64_m128d(_a);
++ float64x2_t b = vreinterpretq_f64_m128d(_b);
++ return vreinterpretq_m128d_f64(vbslq_f64(mask, b, a));
++#else
++ uint64x2_t a = vreinterpretq_u64_m128d(_a);
++ uint64x2_t b = vreinterpretq_u64_m128d(_b);
++ return vreinterpretq_m128d_u64(vbslq_u64(mask, b, a));
++#endif
++}
++
++// Blend packed single-precision (32-bit) floating-point elements from a and b
++// using mask, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_blendv_ps
++FORCE_INLINE __m128 _mm_blendv_ps(__m128 _a, __m128 _b, __m128 _mask)
++{
++ // Use a signed shift right to create a mask with the sign bit
++ uint32x4_t mask =
++ vreinterpretq_u32_s32(vshrq_n_s32(vreinterpretq_s32_m128(_mask), 31));
++ float32x4_t a = vreinterpretq_f32_m128(_a);
++ float32x4_t b = vreinterpretq_f32_m128(_b);
++ return vreinterpretq_m128_f32(vbslq_f32(mask, b, a));
++}
++
++// Round the packed double-precision (64-bit) floating-point elements in a up
++// to an integer value, and store the results as packed double-precision
++// floating-point elements in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_pd
++FORCE_INLINE __m128d _mm_ceil_pd(__m128d a)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_f64(vrndpq_f64(vreinterpretq_f64_m128d(a)));
++#else
++ double *f = (double *) &a;
++ return _mm_set_pd(ceil(f[1]), ceil(f[0]));
++#endif
++}
++
++// Round the packed single-precision (32-bit) floating-point elements in a up to
++// an integer value, and store the results as packed single-precision
++// floating-point elements in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ps
++FORCE_INLINE __m128 _mm_ceil_ps(__m128 a)
++{
++#if (defined(__aarch64__) || defined(_M_ARM64)) || \
++ defined(__ARM_FEATURE_DIRECTED_ROUNDING)
++ return vreinterpretq_m128_f32(vrndpq_f32(vreinterpretq_f32_m128(a)));
++#else
++ float *f = (float *) &a;
++ return _mm_set_ps(ceilf(f[3]), ceilf(f[2]), ceilf(f[1]), ceilf(f[0]));
++#endif
++}
++
++// Round the lower double-precision (64-bit) floating-point element in b up to
++// an integer value, store the result as a double-precision floating-point
++// element in the lower element of dst, and copy the upper element from a to the
++// upper element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_sd
++FORCE_INLINE __m128d _mm_ceil_sd(__m128d a, __m128d b)
++{
++ return _mm_move_sd(a, _mm_ceil_pd(b));
++}
++
++// Round the lower single-precision (32-bit) floating-point element in b up to
++// an integer value, store the result as a single-precision floating-point
++// element in the lower element of dst, and copy the upper 3 packed elements
++// from a to the upper elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_ceil_ss
++FORCE_INLINE __m128 _mm_ceil_ss(__m128 a, __m128 b)
++{
++ return _mm_move_ss(a, _mm_ceil_ps(b));
++}
++
++// Compare packed 64-bit integers in a and b for equality, and store the results
++// in dst
++FORCE_INLINE __m128i _mm_cmpeq_epi64(__m128i a, __m128i b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128i_u64(
++ vceqq_u64(vreinterpretq_u64_m128i(a), vreinterpretq_u64_m128i(b)));
++#else
++ // ARMv7 lacks vceqq_u64
++ // (a == b) -> (a_lo == b_lo) && (a_hi == b_hi)
++ uint32x4_t cmp =
++ vceqq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b));
++ uint32x4_t swapped = vrev64q_u32(cmp);
++ return vreinterpretq_m128i_u32(vandq_u32(cmp, swapped));
++#endif
++}
++
++// Sign extend packed 16-bit integers in a to packed 32-bit integers, and store
++// the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi16_epi32
++FORCE_INLINE __m128i _mm_cvtepi16_epi32(__m128i a)
++{
++ return vreinterpretq_m128i_s32(
++ vmovl_s16(vget_low_s16(vreinterpretq_s16_m128i(a))));
++}
++
++// Sign extend packed 16-bit integers in a to packed 64-bit integers, and store
++// the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi16_epi64
++FORCE_INLINE __m128i _mm_cvtepi16_epi64(__m128i a)
++{
++ int16x8_t s16x8 = vreinterpretq_s16_m128i(a); /* xxxx xxxx xxxx 0B0A */
++ int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */
++ int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */
++ return vreinterpretq_m128i_s64(s64x2);
++}
++
++// Sign extend packed 32-bit integers in a to packed 64-bit integers, and store
++// the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi32_epi64
++FORCE_INLINE __m128i _mm_cvtepi32_epi64(__m128i a)
++{
++ return vreinterpretq_m128i_s64(
++ vmovl_s32(vget_low_s32(vreinterpretq_s32_m128i(a))));
++}
++
++// Sign extend packed 8-bit integers in a to packed 16-bit integers, and store
++// the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi16
++FORCE_INLINE __m128i _mm_cvtepi8_epi16(__m128i a)
++{
++ int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */
++ int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */
++ return vreinterpretq_m128i_s16(s16x8);
++}
++
++// Sign extend packed 8-bit integers in a to packed 32-bit integers, and store
++// the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi32
++FORCE_INLINE __m128i _mm_cvtepi8_epi32(__m128i a)
++{
++ int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx DCBA */
++ int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0D0C 0B0A */
++ int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000D 000C 000B 000A */
++ return vreinterpretq_m128i_s32(s32x4);
++}
++
++// Sign extend packed 8-bit integers in the low 8 bytes of a to packed 64-bit
++// integers, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepi8_epi64
++FORCE_INLINE __m128i _mm_cvtepi8_epi64(__m128i a)
++{
++ int8x16_t s8x16 = vreinterpretq_s8_m128i(a); /* xxxx xxxx xxxx xxBA */
++ int16x8_t s16x8 = vmovl_s8(vget_low_s8(s8x16)); /* 0x0x 0x0x 0x0x 0B0A */
++ int32x4_t s32x4 = vmovl_s16(vget_low_s16(s16x8)); /* 000x 000x 000B 000A */
++ int64x2_t s64x2 = vmovl_s32(vget_low_s32(s32x4)); /* 0000 000B 0000 000A */
++ return vreinterpretq_m128i_s64(s64x2);
++}
++
++// Zero extend packed unsigned 16-bit integers in a to packed 32-bit integers,
++// and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu16_epi32
++FORCE_INLINE __m128i _mm_cvtepu16_epi32(__m128i a)
++{
++ return vreinterpretq_m128i_u32(
++ vmovl_u16(vget_low_u16(vreinterpretq_u16_m128i(a))));
++}
++
++// Zero extend packed unsigned 16-bit integers in a to packed 64-bit integers,
++// and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu16_epi64
++FORCE_INLINE __m128i _mm_cvtepu16_epi64(__m128i a)
++{
++ uint16x8_t u16x8 = vreinterpretq_u16_m128i(a); /* xxxx xxxx xxxx 0B0A */
++ uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */
++ uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */
++ return vreinterpretq_m128i_u64(u64x2);
++}
++
++// Zero extend packed unsigned 32-bit integers in a to packed 64-bit integers,
++// and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu32_epi64
++FORCE_INLINE __m128i _mm_cvtepu32_epi64(__m128i a)
++{
++ return vreinterpretq_m128i_u64(
++ vmovl_u32(vget_low_u32(vreinterpretq_u32_m128i(a))));
++}
++
++// Zero extend packed unsigned 8-bit integers in a to packed 16-bit integers,
++// and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi16
++FORCE_INLINE __m128i _mm_cvtepu8_epi16(__m128i a)
++{
++ uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx HGFE DCBA */
++ uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0H0G 0F0E 0D0C 0B0A */
++ return vreinterpretq_m128i_u16(u16x8);
++}
++
++// Zero extend packed unsigned 8-bit integers in a to packed 32-bit integers,
++// and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi32
++FORCE_INLINE __m128i _mm_cvtepu8_epi32(__m128i a)
++{
++ uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx DCBA */
++ uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0D0C 0B0A */
++ uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000D 000C 000B 000A */
++ return vreinterpretq_m128i_u32(u32x4);
++}
++
++// Zero extend packed unsigned 8-bit integers in the low 8 bytes of a to packed
++// 64-bit integers, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cvtepu8_epi64
++FORCE_INLINE __m128i _mm_cvtepu8_epi64(__m128i a)
++{
++ uint8x16_t u8x16 = vreinterpretq_u8_m128i(a); /* xxxx xxxx xxxx xxBA */
++ uint16x8_t u16x8 = vmovl_u8(vget_low_u8(u8x16)); /* 0x0x 0x0x 0x0x 0B0A */
++ uint32x4_t u32x4 = vmovl_u16(vget_low_u16(u16x8)); /* 000x 000x 000B 000A */
++ uint64x2_t u64x2 = vmovl_u32(vget_low_u32(u32x4)); /* 0000 000B 0000 000A */
++ return vreinterpretq_m128i_u64(u64x2);
++}
++
++// Conditionally multiply the packed double-precision (64-bit) floating-point
++// elements in a and b using the high 4 bits in imm8, sum the four products, and
++// conditionally store the sum in dst using the low 4 bits of imm8.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_pd
++FORCE_INLINE __m128d _mm_dp_pd(__m128d a, __m128d b, const int imm)
++{
++ // Generate mask value from constant immediate bit value
++ const int64_t bit0Mask = imm & 0x01 ? UINT64_MAX : 0;
++ const int64_t bit1Mask = imm & 0x02 ? UINT64_MAX : 0;
++#if !SSE2NEON_PRECISE_DP
++ const int64_t bit4Mask = imm & 0x10 ? UINT64_MAX : 0;
++ const int64_t bit5Mask = imm & 0x20 ? UINT64_MAX : 0;
++#endif
++ // Conditional multiplication
++#if !SSE2NEON_PRECISE_DP
++ __m128d mul = _mm_mul_pd(a, b);
++ const __m128d mulMask =
++ _mm_castsi128_pd(_mm_set_epi64x(bit5Mask, bit4Mask));
++ __m128d tmp = _mm_and_pd(mul, mulMask);
++#else
++#if defined(__aarch64__) || defined(_M_ARM64)
++ double d0 = (imm & 0x10) ? vgetq_lane_f64(vreinterpretq_f64_m128d(a), 0) *
++ vgetq_lane_f64(vreinterpretq_f64_m128d(b), 0)
++ : 0;
++ double d1 = (imm & 0x20) ? vgetq_lane_f64(vreinterpretq_f64_m128d(a), 1) *
++ vgetq_lane_f64(vreinterpretq_f64_m128d(b), 1)
++ : 0;
++#else
++ double d0 = (imm & 0x10) ? ((double *) &a)[0] * ((double *) &b)[0] : 0;
++ double d1 = (imm & 0x20) ? ((double *) &a)[1] * ((double *) &b)[1] : 0;
++#endif
++ __m128d tmp = _mm_set_pd(d1, d0);
++#endif
++ // Sum the products
++#if defined(__aarch64__) || defined(_M_ARM64)
++ double sum = vpaddd_f64(vreinterpretq_f64_m128d(tmp));
++#else
++ double sum = *((double *) &tmp) + *(((double *) &tmp) + 1);
++#endif
++ // Conditionally store the sum
++ const __m128d sumMask =
++ _mm_castsi128_pd(_mm_set_epi64x(bit1Mask, bit0Mask));
++ __m128d res = _mm_and_pd(_mm_set_pd1(sum), sumMask);
++ return res;
++}
++
++// Conditionally multiply the packed single-precision (32-bit) floating-point
++// elements in a and b using the high 4 bits in imm8, sum the four products,
++// and conditionally store the sum in dst using the low 4 bits of imm.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_dp_ps
++FORCE_INLINE __m128 _mm_dp_ps(__m128 a, __m128 b, const int imm)
++{
++ float32x4_t elementwise_prod = _mm_mul_ps(a, b);
++
++#if defined(__aarch64__) || defined(_M_ARM64)
++ /* shortcuts */
++ if (imm == 0xFF) {
++ return _mm_set1_ps(vaddvq_f32(elementwise_prod));
++ }
++
++ if ((imm & 0x0F) == 0x0F) {
++ if (!(imm & (1 << 4)))
++ elementwise_prod = vsetq_lane_f32(0.0f, elementwise_prod, 0);
++ if (!(imm & (1 << 5)))
++ elementwise_prod = vsetq_lane_f32(0.0f, elementwise_prod, 1);
++ if (!(imm & (1 << 6)))
++ elementwise_prod = vsetq_lane_f32(0.0f, elementwise_prod, 2);
++ if (!(imm & (1 << 7)))
++ elementwise_prod = vsetq_lane_f32(0.0f, elementwise_prod, 3);
++
++ return _mm_set1_ps(vaddvq_f32(elementwise_prod));
++ }
++#endif
++
++ float s = 0.0f;
++
++ if (imm & (1 << 4))
++ s += vgetq_lane_f32(elementwise_prod, 0);
++ if (imm & (1 << 5))
++ s += vgetq_lane_f32(elementwise_prod, 1);
++ if (imm & (1 << 6))
++ s += vgetq_lane_f32(elementwise_prod, 2);
++ if (imm & (1 << 7))
++ s += vgetq_lane_f32(elementwise_prod, 3);
++
++ const float32_t res[4] = {
++ (imm & 0x1) ? s : 0.0f,
++ (imm & 0x2) ? s : 0.0f,
++ (imm & 0x4) ? s : 0.0f,
++ (imm & 0x8) ? s : 0.0f,
++ };
++ return vreinterpretq_m128_f32(vld1q_f32(res));
++}
++
++// Extract a 32-bit integer from a, selected with imm8, and store the result in
++// dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi32
++// FORCE_INLINE int _mm_extract_epi32(__m128i a, __constrange(0,4) int imm)
++#define _mm_extract_epi32(a, imm) \
++ vgetq_lane_s32(vreinterpretq_s32_m128i(a), (imm))
++
++// Extract a 64-bit integer from a, selected with imm8, and store the result in
++// dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi64
++// FORCE_INLINE __int64 _mm_extract_epi64(__m128i a, __constrange(0,2) int imm)
++#define _mm_extract_epi64(a, imm) \
++ vgetq_lane_s64(vreinterpretq_s64_m128i(a), (imm))
++
++// Extract an 8-bit integer from a, selected with imm8, and store the result in
++// the lower element of dst. FORCE_INLINE int _mm_extract_epi8(__m128i a,
++// __constrange(0,16) int imm)
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_extract_epi8
++#define _mm_extract_epi8(a, imm) vgetq_lane_u8(vreinterpretq_u8_m128i(a), (imm))
++
++// Extracts the selected single-precision (32-bit) floating-point from a.
++// FORCE_INLINE int _mm_extract_ps(__m128 a, __constrange(0,4) int imm)
++#define _mm_extract_ps(a, imm) vgetq_lane_s32(vreinterpretq_s32_m128(a), (imm))
++
++// Round the packed double-precision (64-bit) floating-point elements in a down
++// to an integer value, and store the results as packed double-precision
++// floating-point elements in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_pd
++FORCE_INLINE __m128d _mm_floor_pd(__m128d a)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128d_f64(vrndmq_f64(vreinterpretq_f64_m128d(a)));
++#else
++ double *f = (double *) &a;
++ return _mm_set_pd(floor(f[1]), floor(f[0]));
++#endif
++}
++
++// Round the packed single-precision (32-bit) floating-point elements in a down
++// to an integer value, and store the results as packed single-precision
++// floating-point elements in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ps
++FORCE_INLINE __m128 _mm_floor_ps(__m128 a)
++{
++#if (defined(__aarch64__) || defined(_M_ARM64)) || \
++ defined(__ARM_FEATURE_DIRECTED_ROUNDING)
++ return vreinterpretq_m128_f32(vrndmq_f32(vreinterpretq_f32_m128(a)));
++#else
++ float *f = (float *) &a;
++ return _mm_set_ps(floorf(f[3]), floorf(f[2]), floorf(f[1]), floorf(f[0]));
++#endif
++}
++
++// Round the lower double-precision (64-bit) floating-point element in b down to
++// an integer value, store the result as a double-precision floating-point
++// element in the lower element of dst, and copy the upper element from a to the
++// upper element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_sd
++FORCE_INLINE __m128d _mm_floor_sd(__m128d a, __m128d b)
++{
++ return _mm_move_sd(a, _mm_floor_pd(b));
++}
++
++// Round the lower single-precision (32-bit) floating-point element in b down to
++// an integer value, store the result as a single-precision floating-point
++// element in the lower element of dst, and copy the upper 3 packed elements
++// from a to the upper elements of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_floor_ss
++FORCE_INLINE __m128 _mm_floor_ss(__m128 a, __m128 b)
++{
++ return _mm_move_ss(a, _mm_floor_ps(b));
++}
++
++// Copy a to dst, and insert the 32-bit integer i into dst at the location
++// specified by imm8.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi32
++// FORCE_INLINE __m128i _mm_insert_epi32(__m128i a, int b,
++// __constrange(0,4) int imm)
++#define _mm_insert_epi32(a, b, imm) \
++ vreinterpretq_m128i_s32( \
++ vsetq_lane_s32((b), vreinterpretq_s32_m128i(a), (imm)))
++
++// Copy a to dst, and insert the 64-bit integer i into dst at the location
++// specified by imm8.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi64
++// FORCE_INLINE __m128i _mm_insert_epi64(__m128i a, __int64 b,
++// __constrange(0,2) int imm)
++#define _mm_insert_epi64(a, b, imm) \
++ vreinterpretq_m128i_s64( \
++ vsetq_lane_s64((b), vreinterpretq_s64_m128i(a), (imm)))
++
++// Copy a to dst, and insert the lower 8-bit integer from i into dst at the
++// location specified by imm8.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_insert_epi8
++// FORCE_INLINE __m128i _mm_insert_epi8(__m128i a, int b,
++// __constrange(0,16) int imm)
++#define _mm_insert_epi8(a, b, imm) \
++ vreinterpretq_m128i_s8(vsetq_lane_s8((b), vreinterpretq_s8_m128i(a), (imm)))
++
++// Copy a to tmp, then insert a single-precision (32-bit) floating-point
++// element from b into tmp using the control in imm8. Store tmp to dst using
++// the mask in imm8 (elements are zeroed out when the corresponding bit is set).
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=insert_ps
++#define _mm_insert_ps(a, b, imm8) \
++ _sse2neon_define2( \
++ __m128, a, b, \
++ float32x4_t tmp1 = \
++ vsetq_lane_f32(vgetq_lane_f32(_b, (imm8 >> 6) & 0x3), \
++ vreinterpretq_f32_m128(_a), 0); \
++ float32x4_t tmp2 = \
++ vsetq_lane_f32(vgetq_lane_f32(tmp1, 0), \
++ vreinterpretq_f32_m128(_a), ((imm8 >> 4) & 0x3)); \
++ const uint32_t data[4] = \
++ _sse2neon_init(((imm8) & (1 << 0)) ? UINT32_MAX : 0, \
++ ((imm8) & (1 << 1)) ? UINT32_MAX : 0, \
++ ((imm8) & (1 << 2)) ? UINT32_MAX : 0, \
++ ((imm8) & (1 << 3)) ? UINT32_MAX : 0); \
++ uint32x4_t mask = vld1q_u32(data); \
++ float32x4_t all_zeros = vdupq_n_f32(0); \
++ \
++ _sse2neon_return(vreinterpretq_m128_f32( \
++ vbslq_f32(mask, all_zeros, vreinterpretq_f32_m128(tmp2))));)
++
++// Compare packed signed 32-bit integers in a and b, and store packed maximum
++// values in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi32
++FORCE_INLINE __m128i _mm_max_epi32(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s32(
++ vmaxq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
++}
++
++// Compare packed signed 8-bit integers in a and b, and store packed maximum
++// values in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epi8
++FORCE_INLINE __m128i _mm_max_epi8(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s8(
++ vmaxq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
++}
++
++// Compare packed unsigned 16-bit integers in a and b, and store packed maximum
++// values in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu16
++FORCE_INLINE __m128i _mm_max_epu16(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u16(
++ vmaxq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
++}
++
++// Compare packed unsigned 32-bit integers in a and b, and store packed maximum
++// values in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu32
++FORCE_INLINE __m128i _mm_max_epu32(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u32(
++ vmaxq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b)));
++}
++
++// Compare packed signed 32-bit integers in a and b, and store packed minimum
++// values in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi32
++FORCE_INLINE __m128i _mm_min_epi32(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s32(
++ vminq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
++}
++
++// Compare packed signed 8-bit integers in a and b, and store packed minimum
++// values in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epi8
++FORCE_INLINE __m128i _mm_min_epi8(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s8(
++ vminq_s8(vreinterpretq_s8_m128i(a), vreinterpretq_s8_m128i(b)));
++}
++
++// Compare packed unsigned 16-bit integers in a and b, and store packed minimum
++// values in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_min_epu16
++FORCE_INLINE __m128i _mm_min_epu16(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u16(
++ vminq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b)));
++}
++
++// Compare packed unsigned 32-bit integers in a and b, and store packed minimum
++// values in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_max_epu32
++FORCE_INLINE __m128i _mm_min_epu32(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u32(
++ vminq_u32(vreinterpretq_u32_m128i(a), vreinterpretq_u32_m128i(b)));
++}
++
++// Horizontally compute the minimum amongst the packed unsigned 16-bit integers
++// in a, store the minimum and index in dst, and zero the remaining bits in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_minpos_epu16
++FORCE_INLINE __m128i _mm_minpos_epu16(__m128i a)
++{
++ __m128i dst;
++ uint16_t min, idx = 0;
++#if defined(__aarch64__) || defined(_M_ARM64)
++ // Find the minimum value
++ min = vminvq_u16(vreinterpretq_u16_m128i(a));
++
++ // Get the index of the minimum value
++ static const uint16_t idxv[] = {0, 1, 2, 3, 4, 5, 6, 7};
++ uint16x8_t minv = vdupq_n_u16(min);
++ uint16x8_t cmeq = vceqq_u16(minv, vreinterpretq_u16_m128i(a));
++ idx = vminvq_u16(vornq_u16(vld1q_u16(idxv), cmeq));
++#else
++ // Find the minimum value
++ __m64 tmp;
++ tmp = vreinterpret_m64_u16(
++ vmin_u16(vget_low_u16(vreinterpretq_u16_m128i(a)),
++ vget_high_u16(vreinterpretq_u16_m128i(a))));
++ tmp = vreinterpret_m64_u16(
++ vpmin_u16(vreinterpret_u16_m64(tmp), vreinterpret_u16_m64(tmp)));
++ tmp = vreinterpret_m64_u16(
++ vpmin_u16(vreinterpret_u16_m64(tmp), vreinterpret_u16_m64(tmp)));
++ min = vget_lane_u16(vreinterpret_u16_m64(tmp), 0);
++ // Get the index of the minimum value
++ int i;
++ for (i = 0; i < 8; i++) {
++ if (min == vgetq_lane_u16(vreinterpretq_u16_m128i(a), 0)) {
++ idx = (uint16_t) i;
++ break;
++ }
++ a = _mm_srli_si128(a, 2);
++ }
++#endif
++ // Generate result
++ dst = _mm_setzero_si128();
++ dst = vreinterpretq_m128i_u16(
++ vsetq_lane_u16(min, vreinterpretq_u16_m128i(dst), 0));
++ dst = vreinterpretq_m128i_u16(
++ vsetq_lane_u16(idx, vreinterpretq_u16_m128i(dst), 1));
++ return dst;
++}
++
++// Compute the sum of absolute differences (SADs) of quadruplets of unsigned
++// 8-bit integers in a compared to those in b, and store the 16-bit results in
++// dst. Eight SADs are performed using one quadruplet from b and eight
++// quadruplets from a. One quadruplet is selected from b starting at on the
++// offset specified in imm8. Eight quadruplets are formed from sequential 8-bit
++// integers selected from a starting at the offset specified in imm8.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mpsadbw_epu8
++FORCE_INLINE __m128i _mm_mpsadbw_epu8(__m128i a, __m128i b, const int imm)
++{
++ uint8x16_t _a, _b;
++
++ switch (imm & 0x4) {
++ case 0:
++ // do nothing
++ _a = vreinterpretq_u8_m128i(a);
++ break;
++ case 4:
++ _a = vreinterpretq_u8_u32(vextq_u32(vreinterpretq_u32_m128i(a),
++ vreinterpretq_u32_m128i(a), 1));
++ break;
++ default:
++#if defined(__GNUC__) || defined(__clang__)
++ __builtin_unreachable();
++#elif defined(_MSC_VER)
++ __assume(0);
++#endif
++ break;
++ }
++
++ switch (imm & 0x3) {
++ case 0:
++ _b = vreinterpretq_u8_u32(
++ vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 0)));
++ break;
++ case 1:
++ _b = vreinterpretq_u8_u32(
++ vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 1)));
++ break;
++ case 2:
++ _b = vreinterpretq_u8_u32(
++ vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 2)));
++ break;
++ case 3:
++ _b = vreinterpretq_u8_u32(
++ vdupq_n_u32(vgetq_lane_u32(vreinterpretq_u32_m128i(b), 3)));
++ break;
++ default:
++#if defined(__GNUC__) || defined(__clang__)
++ __builtin_unreachable();
++#elif defined(_MSC_VER)
++ __assume(0);
++#endif
++ break;
++ }
++
++ int16x8_t c04, c15, c26, c37;
++ uint8x8_t low_b = vget_low_u8(_b);
++ c04 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a), low_b));
++ uint8x16_t _a_1 = vextq_u8(_a, _a, 1);
++ c15 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_1), low_b));
++ uint8x16_t _a_2 = vextq_u8(_a, _a, 2);
++ c26 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_2), low_b));
++ uint8x16_t _a_3 = vextq_u8(_a, _a, 3);
++ c37 = vreinterpretq_s16_u16(vabdl_u8(vget_low_u8(_a_3), low_b));
++#if defined(__aarch64__) || defined(_M_ARM64)
++ // |0|4|2|6|
++ c04 = vpaddq_s16(c04, c26);
++ // |1|5|3|7|
++ c15 = vpaddq_s16(c15, c37);
++
++ int32x4_t trn1_c =
++ vtrn1q_s32(vreinterpretq_s32_s16(c04), vreinterpretq_s32_s16(c15));
++ int32x4_t trn2_c =
++ vtrn2q_s32(vreinterpretq_s32_s16(c04), vreinterpretq_s32_s16(c15));
++ return vreinterpretq_m128i_s16(vpaddq_s16(vreinterpretq_s16_s32(trn1_c),
++ vreinterpretq_s16_s32(trn2_c)));
++#else
++ int16x4_t c01, c23, c45, c67;
++ c01 = vpadd_s16(vget_low_s16(c04), vget_low_s16(c15));
++ c23 = vpadd_s16(vget_low_s16(c26), vget_low_s16(c37));
++ c45 = vpadd_s16(vget_high_s16(c04), vget_high_s16(c15));
++ c67 = vpadd_s16(vget_high_s16(c26), vget_high_s16(c37));
++
++ return vreinterpretq_m128i_s16(
++ vcombine_s16(vpadd_s16(c01, c23), vpadd_s16(c45, c67)));
++#endif
++}
++
++// Multiply the low signed 32-bit integers from each packed 64-bit element in
++// a and b, and store the signed 64-bit results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mul_epi32
++FORCE_INLINE __m128i _mm_mul_epi32(__m128i a, __m128i b)
++{
++ // vmull_s32 upcasts instead of masking, so we downcast.
++ int32x2_t a_lo = vmovn_s64(vreinterpretq_s64_m128i(a));
++ int32x2_t b_lo = vmovn_s64(vreinterpretq_s64_m128i(b));
++ return vreinterpretq_m128i_s64(vmull_s32(a_lo, b_lo));
++}
++
++// Multiply the packed 32-bit integers in a and b, producing intermediate 64-bit
++// integers, and store the low 32 bits of the intermediate integers in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_mullo_epi32
++FORCE_INLINE __m128i _mm_mullo_epi32(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_s32(
++ vmulq_s32(vreinterpretq_s32_m128i(a), vreinterpretq_s32_m128i(b)));
++}
++
++// Convert packed signed 32-bit integers from a and b to packed 16-bit integers
++// using unsigned saturation, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_packus_epi32
++FORCE_INLINE __m128i _mm_packus_epi32(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u16(
++ vcombine_u16(vqmovun_s32(vreinterpretq_s32_m128i(a)),
++ vqmovun_s32(vreinterpretq_s32_m128i(b))));
++}
++
++// Round the packed double-precision (64-bit) floating-point elements in a using
++// the rounding parameter, and store the results as packed double-precision
++// floating-point elements in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_pd
++FORCE_INLINE __m128d _mm_round_pd(__m128d a, int rounding)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ switch (rounding) {
++ case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC):
++ return vreinterpretq_m128d_f64(vrndnq_f64(vreinterpretq_f64_m128d(a)));
++ case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC):
++ return _mm_floor_pd(a);
++ case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC):
++ return _mm_ceil_pd(a);
++ case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC):
++ return vreinterpretq_m128d_f64(vrndq_f64(vreinterpretq_f64_m128d(a)));
++ default: //_MM_FROUND_CUR_DIRECTION
++ return vreinterpretq_m128d_f64(vrndiq_f64(vreinterpretq_f64_m128d(a)));
++ }
++#else
++ double *v_double = (double *) &a;
++
++ if (rounding == (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC) ||
++ (rounding == _MM_FROUND_CUR_DIRECTION &&
++ _MM_GET_ROUNDING_MODE() == _MM_ROUND_NEAREST)) {
++ double res[2], tmp;
++ for (int i = 0; i < 2; i++) {
++ tmp = (v_double[i] < 0) ? -v_double[i] : v_double[i];
++ double roundDown = floor(tmp); // Round down value
++ double roundUp = ceil(tmp); // Round up value
++ double diffDown = tmp - roundDown;
++ double diffUp = roundUp - tmp;
++ if (diffDown < diffUp) {
++ /* If it's closer to the round down value, then use it */
++ res[i] = roundDown;
++ } else if (diffDown > diffUp) {
++ /* If it's closer to the round up value, then use it */
++ res[i] = roundUp;
++ } else {
++ /* If it's equidistant between round up and round down value,
++ * pick the one which is an even number */
++ double half = roundDown / 2;
++ if (half != floor(half)) {
++ /* If the round down value is odd, return the round up value
++ */
++ res[i] = roundUp;
++ } else {
++ /* If the round up value is odd, return the round down value
++ */
++ res[i] = roundDown;
++ }
++ }
++ res[i] = (v_double[i] < 0) ? -res[i] : res[i];
++ }
++ return _mm_set_pd(res[1], res[0]);
++ } else if (rounding == (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC) ||
++ (rounding == _MM_FROUND_CUR_DIRECTION &&
++ _MM_GET_ROUNDING_MODE() == _MM_ROUND_DOWN)) {
++ return _mm_floor_pd(a);
++ } else if (rounding == (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC) ||
++ (rounding == _MM_FROUND_CUR_DIRECTION &&
++ _MM_GET_ROUNDING_MODE() == _MM_ROUND_UP)) {
++ return _mm_ceil_pd(a);
++ }
++ return _mm_set_pd(v_double[1] > 0 ? floor(v_double[1]) : ceil(v_double[1]),
++ v_double[0] > 0 ? floor(v_double[0]) : ceil(v_double[0]));
++#endif
++}
++
++// Round the packed single-precision (32-bit) floating-point elements in a using
++// the rounding parameter, and store the results as packed single-precision
++// floating-point elements in dst.
++// software.intel.com/sites/landingpage/IntrinsicsGuide/#text=_mm_round_ps
++FORCE_INLINE __m128 _mm_round_ps(__m128 a, int rounding)
++{
++#if (defined(__aarch64__) || defined(_M_ARM64)) || \
++ defined(__ARM_FEATURE_DIRECTED_ROUNDING)
++ switch (rounding) {
++ case (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC):
++ return vreinterpretq_m128_f32(vrndnq_f32(vreinterpretq_f32_m128(a)));
++ case (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC):
++ return _mm_floor_ps(a);
++ case (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC):
++ return _mm_ceil_ps(a);
++ case (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC):
++ return vreinterpretq_m128_f32(vrndq_f32(vreinterpretq_f32_m128(a)));
++ default: //_MM_FROUND_CUR_DIRECTION
++ return vreinterpretq_m128_f32(vrndiq_f32(vreinterpretq_f32_m128(a)));
++ }
++#else
++ float *v_float = (float *) &a;
++
++ if (rounding == (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC) ||
++ (rounding == _MM_FROUND_CUR_DIRECTION &&
++ _MM_GET_ROUNDING_MODE() == _MM_ROUND_NEAREST)) {
++ uint32x4_t signmask = vdupq_n_u32(0x80000000);
++ float32x4_t half = vbslq_f32(signmask, vreinterpretq_f32_m128(a),
++ vdupq_n_f32(0.5f)); /* +/- 0.5 */
++ int32x4_t r_normal = vcvtq_s32_f32(vaddq_f32(
++ vreinterpretq_f32_m128(a), half)); /* round to integer: [a + 0.5]*/
++ int32x4_t r_trunc = vcvtq_s32_f32(
++ vreinterpretq_f32_m128(a)); /* truncate to integer: [a] */
++ int32x4_t plusone = vreinterpretq_s32_u32(vshrq_n_u32(
++ vreinterpretq_u32_s32(vnegq_s32(r_trunc)), 31)); /* 1 or 0 */
++ int32x4_t r_even = vbicq_s32(vaddq_s32(r_trunc, plusone),
++ vdupq_n_s32(1)); /* ([a] + {0,1}) & ~1 */
++ float32x4_t delta = vsubq_f32(
++ vreinterpretq_f32_m128(a),
++ vcvtq_f32_s32(r_trunc)); /* compute delta: delta = (a - [a]) */
++ uint32x4_t is_delta_half =
++ vceqq_f32(delta, half); /* delta == +/- 0.5 */
++ return vreinterpretq_m128_f32(
++ vcvtq_f32_s32(vbslq_s32(is_delta_half, r_even, r_normal)));
++ } else if (rounding == (_MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC) ||
++ (rounding == _MM_FROUND_CUR_DIRECTION &&
++ _MM_GET_ROUNDING_MODE() == _MM_ROUND_DOWN)) {
++ return _mm_floor_ps(a);
++ } else if (rounding == (_MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC) ||
++ (rounding == _MM_FROUND_CUR_DIRECTION &&
++ _MM_GET_ROUNDING_MODE() == _MM_ROUND_UP)) {
++ return _mm_ceil_ps(a);
++ }
++ return _mm_set_ps(v_float[3] > 0 ? floorf(v_float[3]) : ceilf(v_float[3]),
++ v_float[2] > 0 ? floorf(v_float[2]) : ceilf(v_float[2]),
++ v_float[1] > 0 ? floorf(v_float[1]) : ceilf(v_float[1]),
++ v_float[0] > 0 ? floorf(v_float[0]) : ceilf(v_float[0]));
++#endif
++}
++
++// Round the lower double-precision (64-bit) floating-point element in b using
++// the rounding parameter, store the result as a double-precision floating-point
++// element in the lower element of dst, and copy the upper element from a to the
++// upper element of dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_sd
++FORCE_INLINE __m128d _mm_round_sd(__m128d a, __m128d b, int rounding)
++{
++ return _mm_move_sd(a, _mm_round_pd(b, rounding));
++}
++
++// Round the lower single-precision (32-bit) floating-point element in b using
++// the rounding parameter, store the result as a single-precision floating-point
++// element in the lower element of dst, and copy the upper 3 packed elements
++// from a to the upper elements of dst. Rounding is done according to the
++// rounding[3:0] parameter, which can be one of:
++// (_MM_FROUND_TO_NEAREST_INT |_MM_FROUND_NO_EXC) // round to nearest, and
++// suppress exceptions
++// (_MM_FROUND_TO_NEG_INF |_MM_FROUND_NO_EXC) // round down, and
++// suppress exceptions
++// (_MM_FROUND_TO_POS_INF |_MM_FROUND_NO_EXC) // round up, and suppress
++// exceptions
++// (_MM_FROUND_TO_ZERO |_MM_FROUND_NO_EXC) // truncate, and suppress
++// exceptions _MM_FROUND_CUR_DIRECTION // use MXCSR.RC; see
++// _MM_SET_ROUNDING_MODE
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_round_ss
++FORCE_INLINE __m128 _mm_round_ss(__m128 a, __m128 b, int rounding)
++{
++ return _mm_move_ss(a, _mm_round_ps(b, rounding));
++}
++
++// Load 128-bits of integer data from memory into dst using a non-temporal
++// memory hint. mem_addr must be aligned on a 16-byte boundary or a
++// general-protection exception may be generated.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_stream_load_si128
++FORCE_INLINE __m128i _mm_stream_load_si128(__m128i *p)
++{
++#if __has_builtin(__builtin_nontemporal_store)
++ return __builtin_nontemporal_load(p);
++#else
++ return vreinterpretq_m128i_s64(vld1q_s64((int64_t *) p));
++#endif
++}
++
++// Compute the bitwise NOT of a and then AND with a 128-bit vector containing
++// all 1's, and return 1 if the result is zero, otherwise return 0.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_all_ones
++FORCE_INLINE int _mm_test_all_ones(__m128i a)
++{
++ return (uint64_t) (vgetq_lane_s64(a, 0) & vgetq_lane_s64(a, 1)) ==
++ ~(uint64_t) 0;
++}
++
++// Compute the bitwise AND of 128 bits (representing integer data) in a and
++// mask, and return 1 if the result is zero, otherwise return 0.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_test_all_zeros
++FORCE_INLINE int _mm_test_all_zeros(__m128i a, __m128i mask)
++{
++ int64x2_t a_and_mask =
++ vandq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(mask));
++ return !(vgetq_lane_s64(a_and_mask, 0) | vgetq_lane_s64(a_and_mask, 1));
++}
++
++// Compute the bitwise AND of 128 bits (representing integer data) in a and
++// mask, and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute
++// the bitwise NOT of a and then AND with mask, and set CF to 1 if the result is
++// zero, otherwise set CF to 0. Return 1 if both the ZF and CF values are zero,
++// otherwise return 0.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=mm_test_mix_ones_zero
++// Note: Argument names may be wrong in the Intel intrinsics guide.
++FORCE_INLINE int _mm_test_mix_ones_zeros(__m128i a, __m128i mask)
++{
++ uint64x2_t v = vreinterpretq_u64_m128i(a);
++ uint64x2_t m = vreinterpretq_u64_m128i(mask);
++
++ // find ones (set-bits) and zeros (clear-bits) under clip mask
++ uint64x2_t ones = vandq_u64(m, v);
++ uint64x2_t zeros = vbicq_u64(m, v);
++
++ // If both 128-bit variables are populated (non-zero) then return 1.
++ // For comparision purposes, first compact each var down to 32-bits.
++ uint32x2_t reduced = vpmax_u32(vqmovn_u64(ones), vqmovn_u64(zeros));
++
++ // if folding minimum is non-zero then both vars must be non-zero
++ return (vget_lane_u32(vpmin_u32(reduced, reduced), 0) != 0);
++}
++
++// Compute the bitwise AND of 128 bits (representing integer data) in a and b,
++// and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the
++// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero,
++// otherwise set CF to 0. Return the CF value.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testc_si128
++FORCE_INLINE int _mm_testc_si128(__m128i a, __m128i b)
++{
++ int64x2_t s64 =
++ vbicq_s64(vreinterpretq_s64_m128i(b), vreinterpretq_s64_m128i(a));
++ return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1));
++}
++
++// Compute the bitwise AND of 128 bits (representing integer data) in a and b,
++// and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the
++// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero,
++// otherwise set CF to 0. Return 1 if both the ZF and CF values are zero,
++// otherwise return 0.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testnzc_si128
++#define _mm_testnzc_si128(a, b) _mm_test_mix_ones_zeros(a, b)
++
++// Compute the bitwise AND of 128 bits (representing integer data) in a and b,
++// and set ZF to 1 if the result is zero, otherwise set ZF to 0. Compute the
++// bitwise NOT of a and then AND with b, and set CF to 1 if the result is zero,
++// otherwise set CF to 0. Return the ZF value.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_testz_si128
++FORCE_INLINE int _mm_testz_si128(__m128i a, __m128i b)
++{
++ int64x2_t s64 =
++ vandq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b));
++ return !(vgetq_lane_s64(s64, 0) | vgetq_lane_s64(s64, 1));
++}
++
++/* SSE4.2 */
++
++static const uint16_t ALIGN_STRUCT(16) _sse2neon_cmpestr_mask16b[8] = {
++ 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
++};
++static const uint8_t ALIGN_STRUCT(16) _sse2neon_cmpestr_mask8b[16] = {
++ 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
++ 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
++};
++
++/* specify the source data format */
++#define _SIDD_UBYTE_OPS 0x00 /* unsigned 8-bit characters */
++#define _SIDD_UWORD_OPS 0x01 /* unsigned 16-bit characters */
++#define _SIDD_SBYTE_OPS 0x02 /* signed 8-bit characters */
++#define _SIDD_SWORD_OPS 0x03 /* signed 16-bit characters */
++
++/* specify the comparison operation */
++#define _SIDD_CMP_EQUAL_ANY 0x00 /* compare equal any: strchr */
++#define _SIDD_CMP_RANGES 0x04 /* compare ranges */
++#define _SIDD_CMP_EQUAL_EACH 0x08 /* compare equal each: strcmp */
++#define _SIDD_CMP_EQUAL_ORDERED 0x0C /* compare equal ordered */
++
++/* specify the polarity */
++#define _SIDD_POSITIVE_POLARITY 0x00
++#define _SIDD_MASKED_POSITIVE_POLARITY 0x20
++#define _SIDD_NEGATIVE_POLARITY 0x10 /* negate results */
++#define _SIDD_MASKED_NEGATIVE_POLARITY \
++ 0x30 /* negate results only before end of string */
++
++/* specify the output selection in _mm_cmpXstri */
++#define _SIDD_LEAST_SIGNIFICANT 0x00
++#define _SIDD_MOST_SIGNIFICANT 0x40
++
++/* specify the output selection in _mm_cmpXstrm */
++#define _SIDD_BIT_MASK 0x00
++#define _SIDD_UNIT_MASK 0x40
++
++/* Pattern Matching for C macros.
++ * https://github.com/pfultz2/Cloak/wiki/C-Preprocessor-tricks,-tips,-and-idioms
++ */
++
++/* catenate */
++#define SSE2NEON_PRIMITIVE_CAT(a, ...) a##__VA_ARGS__
++#define SSE2NEON_CAT(a, b) SSE2NEON_PRIMITIVE_CAT(a, b)
++
++#define SSE2NEON_IIF(c) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_IIF_, c)
++/* run the 2nd parameter */
++#define SSE2NEON_IIF_0(t, ...) __VA_ARGS__
++/* run the 1st parameter */
++#define SSE2NEON_IIF_1(t, ...) t
++
++#define SSE2NEON_COMPL(b) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_COMPL_, b)
++#define SSE2NEON_COMPL_0 1
++#define SSE2NEON_COMPL_1 0
++
++#define SSE2NEON_DEC(x) SSE2NEON_PRIMITIVE_CAT(SSE2NEON_DEC_, x)
++#define SSE2NEON_DEC_1 0
++#define SSE2NEON_DEC_2 1
++#define SSE2NEON_DEC_3 2
++#define SSE2NEON_DEC_4 3
++#define SSE2NEON_DEC_5 4
++#define SSE2NEON_DEC_6 5
++#define SSE2NEON_DEC_7 6
++#define SSE2NEON_DEC_8 7
++#define SSE2NEON_DEC_9 8
++#define SSE2NEON_DEC_10 9
++#define SSE2NEON_DEC_11 10
++#define SSE2NEON_DEC_12 11
++#define SSE2NEON_DEC_13 12
++#define SSE2NEON_DEC_14 13
++#define SSE2NEON_DEC_15 14
++#define SSE2NEON_DEC_16 15
++
++/* detection */
++#define SSE2NEON_CHECK_N(x, n, ...) n
++#define SSE2NEON_CHECK(...) SSE2NEON_CHECK_N(__VA_ARGS__, 0, )
++#define SSE2NEON_PROBE(x) x, 1,
++
++#define SSE2NEON_NOT(x) SSE2NEON_CHECK(SSE2NEON_PRIMITIVE_CAT(SSE2NEON_NOT_, x))
++#define SSE2NEON_NOT_0 SSE2NEON_PROBE(~)
++
++#define SSE2NEON_BOOL(x) SSE2NEON_COMPL(SSE2NEON_NOT(x))
++#define SSE2NEON_IF(c) SSE2NEON_IIF(SSE2NEON_BOOL(c))
++
++#define SSE2NEON_EAT(...)
++#define SSE2NEON_EXPAND(...) __VA_ARGS__
++#define SSE2NEON_WHEN(c) SSE2NEON_IF(c)(SSE2NEON_EXPAND, SSE2NEON_EAT)
++
++/* recursion */
++/* deferred expression */
++#define SSE2NEON_EMPTY()
++#define SSE2NEON_DEFER(id) id SSE2NEON_EMPTY()
++#define SSE2NEON_OBSTRUCT(...) __VA_ARGS__ SSE2NEON_DEFER(SSE2NEON_EMPTY)()
++#define SSE2NEON_EXPAND(...) __VA_ARGS__
++
++#define SSE2NEON_EVAL(...) \
++ SSE2NEON_EVAL1(SSE2NEON_EVAL1(SSE2NEON_EVAL1(__VA_ARGS__)))
++#define SSE2NEON_EVAL1(...) \
++ SSE2NEON_EVAL2(SSE2NEON_EVAL2(SSE2NEON_EVAL2(__VA_ARGS__)))
++#define SSE2NEON_EVAL2(...) \
++ SSE2NEON_EVAL3(SSE2NEON_EVAL3(SSE2NEON_EVAL3(__VA_ARGS__)))
++#define SSE2NEON_EVAL3(...) __VA_ARGS__
++
++#define SSE2NEON_REPEAT(count, macro, ...) \
++ SSE2NEON_WHEN(count) \
++ (SSE2NEON_OBSTRUCT(SSE2NEON_REPEAT_INDIRECT)()( \
++ SSE2NEON_DEC(count), macro, \
++ __VA_ARGS__) SSE2NEON_OBSTRUCT(macro)(SSE2NEON_DEC(count), \
++ __VA_ARGS__))
++#define SSE2NEON_REPEAT_INDIRECT() SSE2NEON_REPEAT
++
++#define SSE2NEON_SIZE_OF_byte 8
++#define SSE2NEON_NUMBER_OF_LANES_byte 16
++#define SSE2NEON_SIZE_OF_word 16
++#define SSE2NEON_NUMBER_OF_LANES_word 8
++
++#define SSE2NEON_COMPARE_EQUAL_THEN_FILL_LANE(i, type) \
++ mtx[i] = vreinterpretq_m128i_##type(vceqq_##type( \
++ vdupq_n_##type(vgetq_lane_##type(vreinterpretq_##type##_m128i(b), i)), \
++ vreinterpretq_##type##_m128i(a)));
++
++#define SSE2NEON_FILL_LANE(i, type) \
++ vec_b[i] = \
++ vdupq_n_##type(vgetq_lane_##type(vreinterpretq_##type##_m128i(b), i));
++
++#define PCMPSTR_RANGES(a, b, mtx, data_type_prefix, type_prefix, size, \
++ number_of_lanes, byte_or_word) \
++ do { \
++ SSE2NEON_CAT( \
++ data_type_prefix, \
++ SSE2NEON_CAT(size, \
++ SSE2NEON_CAT(x, SSE2NEON_CAT(number_of_lanes, _t)))) \
++ vec_b[number_of_lanes]; \
++ __m128i mask = SSE2NEON_IIF(byte_or_word)( \
++ vreinterpretq_m128i_u16(vdupq_n_u16(0xff)), \
++ vreinterpretq_m128i_u32(vdupq_n_u32(0xffff))); \
++ SSE2NEON_EVAL(SSE2NEON_REPEAT(number_of_lanes, SSE2NEON_FILL_LANE, \
++ SSE2NEON_CAT(type_prefix, size))) \
++ for (int i = 0; i < number_of_lanes; i++) { \
++ mtx[i] = SSE2NEON_CAT(vreinterpretq_m128i_u, \
++ size)(SSE2NEON_CAT(vbslq_u, size)( \
++ SSE2NEON_CAT(vreinterpretq_u, \
++ SSE2NEON_CAT(size, _m128i))(mask), \
++ SSE2NEON_CAT(vcgeq_, SSE2NEON_CAT(type_prefix, size))( \
++ vec_b[i], \
++ SSE2NEON_CAT( \
++ vreinterpretq_, \
++ SSE2NEON_CAT(type_prefix, \
++ SSE2NEON_CAT(size, _m128i(a))))), \
++ SSE2NEON_CAT(vcleq_, SSE2NEON_CAT(type_prefix, size))( \
++ vec_b[i], \
++ SSE2NEON_CAT( \
++ vreinterpretq_, \
++ SSE2NEON_CAT(type_prefix, \
++ SSE2NEON_CAT(size, _m128i(a))))))); \
++ } \
++ } while (0)
++
++#define PCMPSTR_EQ(a, b, mtx, size, number_of_lanes) \
++ do { \
++ SSE2NEON_EVAL(SSE2NEON_REPEAT(number_of_lanes, \
++ SSE2NEON_COMPARE_EQUAL_THEN_FILL_LANE, \
++ SSE2NEON_CAT(u, size))) \
++ } while (0)
++
++#define SSE2NEON_CMP_EQUAL_ANY_IMPL(type) \
++ static int _sse2neon_cmp_##type##_equal_any(__m128i a, int la, __m128i b, \
++ int lb) \
++ { \
++ __m128i mtx[16]; \
++ PCMPSTR_EQ(a, b, mtx, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \
++ SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type)); \
++ return SSE2NEON_CAT( \
++ _sse2neon_aggregate_equal_any_, \
++ SSE2NEON_CAT( \
++ SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \
++ SSE2NEON_CAT(x, SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, \
++ type))))(la, lb, mtx); \
++ }
++
++#define SSE2NEON_CMP_RANGES_IMPL(type, data_type, us, byte_or_word) \
++ static int _sse2neon_cmp_##us##type##_ranges(__m128i a, int la, __m128i b, \
++ int lb) \
++ { \
++ __m128i mtx[16]; \
++ PCMPSTR_RANGES( \
++ a, b, mtx, data_type, us, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \
++ SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type), byte_or_word); \
++ return SSE2NEON_CAT( \
++ _sse2neon_aggregate_ranges_, \
++ SSE2NEON_CAT( \
++ SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \
++ SSE2NEON_CAT(x, SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, \
++ type))))(la, lb, mtx); \
++ }
++
++#define SSE2NEON_CMP_EQUAL_ORDERED_IMPL(type) \
++ static int _sse2neon_cmp_##type##_equal_ordered(__m128i a, int la, \
++ __m128i b, int lb) \
++ { \
++ __m128i mtx[16]; \
++ PCMPSTR_EQ(a, b, mtx, SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \
++ SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type)); \
++ return SSE2NEON_CAT( \
++ _sse2neon_aggregate_equal_ordered_, \
++ SSE2NEON_CAT( \
++ SSE2NEON_CAT(SSE2NEON_SIZE_OF_, type), \
++ SSE2NEON_CAT(x, \
++ SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type))))( \
++ SSE2NEON_CAT(SSE2NEON_NUMBER_OF_LANES_, type), la, lb, mtx); \
++ }
++
++static int _sse2neon_aggregate_equal_any_8x16(int la, int lb, __m128i mtx[16])
++{
++ int res = 0;
++ int m = (1 << la) - 1;
++ uint8x8_t vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b);
++ uint8x8_t t_lo = vtst_u8(vdup_n_u8(m & 0xff), vec_mask);
++ uint8x8_t t_hi = vtst_u8(vdup_n_u8(m >> 8), vec_mask);
++ uint8x16_t vec = vcombine_u8(t_lo, t_hi);
++ for (int j = 0; j < lb; j++) {
++ mtx[j] = vreinterpretq_m128i_u8(
++ vandq_u8(vec, vreinterpretq_u8_m128i(mtx[j])));
++ mtx[j] = vreinterpretq_m128i_u8(
++ vshrq_n_u8(vreinterpretq_u8_m128i(mtx[j]), 7));
++ int tmp = _sse2neon_vaddvq_u8(vreinterpretq_u8_m128i(mtx[j])) ? 1 : 0;
++ res |= (tmp << j);
++ }
++ return res;
++}
++
++static int _sse2neon_aggregate_equal_any_16x8(int la, int lb, __m128i mtx[16])
++{
++ int res = 0;
++ int m = (1 << la) - 1;
++ uint16x8_t vec =
++ vtstq_u16(vdupq_n_u16(m), vld1q_u16(_sse2neon_cmpestr_mask16b));
++ for (int j = 0; j < lb; j++) {
++ mtx[j] = vreinterpretq_m128i_u16(
++ vandq_u16(vec, vreinterpretq_u16_m128i(mtx[j])));
++ mtx[j] = vreinterpretq_m128i_u16(
++ vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 15));
++ int tmp = _sse2neon_vaddvq_u16(vreinterpretq_u16_m128i(mtx[j])) ? 1 : 0;
++ res |= (tmp << j);
++ }
++ return res;
++}
++
++/* clang-format off */
++#define SSE2NEON_GENERATE_CMP_EQUAL_ANY(prefix) \
++ prefix##IMPL(byte) \
++ prefix##IMPL(word)
++/* clang-format on */
++
++SSE2NEON_GENERATE_CMP_EQUAL_ANY(SSE2NEON_CMP_EQUAL_ANY_)
++
++static int _sse2neon_aggregate_ranges_16x8(int la, int lb, __m128i mtx[16])
++{
++ int res = 0;
++ int m = (1 << la) - 1;
++ uint16x8_t vec =
++ vtstq_u16(vdupq_n_u16(m), vld1q_u16(_sse2neon_cmpestr_mask16b));
++ for (int j = 0; j < lb; j++) {
++ mtx[j] = vreinterpretq_m128i_u16(
++ vandq_u16(vec, vreinterpretq_u16_m128i(mtx[j])));
++ mtx[j] = vreinterpretq_m128i_u16(
++ vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 15));
++ __m128i tmp = vreinterpretq_m128i_u32(
++ vshrq_n_u32(vreinterpretq_u32_m128i(mtx[j]), 16));
++ uint32x4_t vec_res = vandq_u32(vreinterpretq_u32_m128i(mtx[j]),
++ vreinterpretq_u32_m128i(tmp));
++#if defined(__aarch64__) || defined(_M_ARM64)
++ int t = vaddvq_u32(vec_res) ? 1 : 0;
++#else
++ uint64x2_t sumh = vpaddlq_u32(vec_res);
++ int t = vgetq_lane_u64(sumh, 0) + vgetq_lane_u64(sumh, 1);
++#endif
++ res |= (t << j);
++ }
++ return res;
++}
++
++static int _sse2neon_aggregate_ranges_8x16(int la, int lb, __m128i mtx[16])
++{
++ int res = 0;
++ int m = (1 << la) - 1;
++ uint8x8_t vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b);
++ uint8x8_t t_lo = vtst_u8(vdup_n_u8(m & 0xff), vec_mask);
++ uint8x8_t t_hi = vtst_u8(vdup_n_u8(m >> 8), vec_mask);
++ uint8x16_t vec = vcombine_u8(t_lo, t_hi);
++ for (int j = 0; j < lb; j++) {
++ mtx[j] = vreinterpretq_m128i_u8(
++ vandq_u8(vec, vreinterpretq_u8_m128i(mtx[j])));
++ mtx[j] = vreinterpretq_m128i_u8(
++ vshrq_n_u8(vreinterpretq_u8_m128i(mtx[j]), 7));
++ __m128i tmp = vreinterpretq_m128i_u16(
++ vshrq_n_u16(vreinterpretq_u16_m128i(mtx[j]), 8));
++ uint16x8_t vec_res = vandq_u16(vreinterpretq_u16_m128i(mtx[j]),
++ vreinterpretq_u16_m128i(tmp));
++ int t = _sse2neon_vaddvq_u16(vec_res) ? 1 : 0;
++ res |= (t << j);
++ }
++ return res;
++}
++
++#define SSE2NEON_CMP_RANGES_IS_BYTE 1
++#define SSE2NEON_CMP_RANGES_IS_WORD 0
++
++/* clang-format off */
++#define SSE2NEON_GENERATE_CMP_RANGES(prefix) \
++ prefix##IMPL(byte, uint, u, prefix##IS_BYTE) \
++ prefix##IMPL(byte, int, s, prefix##IS_BYTE) \
++ prefix##IMPL(word, uint, u, prefix##IS_WORD) \
++ prefix##IMPL(word, int, s, prefix##IS_WORD)
++/* clang-format on */
++
++SSE2NEON_GENERATE_CMP_RANGES(SSE2NEON_CMP_RANGES_)
++
++#undef SSE2NEON_CMP_RANGES_IS_BYTE
++#undef SSE2NEON_CMP_RANGES_IS_WORD
++
++static int _sse2neon_cmp_byte_equal_each(__m128i a, int la, __m128i b, int lb)
++{
++ uint8x16_t mtx =
++ vceqq_u8(vreinterpretq_u8_m128i(a), vreinterpretq_u8_m128i(b));
++ int m0 = (la < lb) ? 0 : ((1 << la) - (1 << lb));
++ int m1 = 0x10000 - (1 << la);
++ int tb = 0x10000 - (1 << lb);
++ uint8x8_t vec_mask, vec0_lo, vec0_hi, vec1_lo, vec1_hi;
++ uint8x8_t tmp_lo, tmp_hi, res_lo, res_hi;
++ vec_mask = vld1_u8(_sse2neon_cmpestr_mask8b);
++ vec0_lo = vtst_u8(vdup_n_u8(m0), vec_mask);
++ vec0_hi = vtst_u8(vdup_n_u8(m0 >> 8), vec_mask);
++ vec1_lo = vtst_u8(vdup_n_u8(m1), vec_mask);
++ vec1_hi = vtst_u8(vdup_n_u8(m1 >> 8), vec_mask);
++ tmp_lo = vtst_u8(vdup_n_u8(tb), vec_mask);
++ tmp_hi = vtst_u8(vdup_n_u8(tb >> 8), vec_mask);
++
++ res_lo = vbsl_u8(vec0_lo, vdup_n_u8(0), vget_low_u8(mtx));
++ res_hi = vbsl_u8(vec0_hi, vdup_n_u8(0), vget_high_u8(mtx));
++ res_lo = vbsl_u8(vec1_lo, tmp_lo, res_lo);
++ res_hi = vbsl_u8(vec1_hi, tmp_hi, res_hi);
++ res_lo = vand_u8(res_lo, vec_mask);
++ res_hi = vand_u8(res_hi, vec_mask);
++
++ int res = _sse2neon_vaddv_u8(res_lo) + (_sse2neon_vaddv_u8(res_hi) << 8);
++ return res;
++}
++
++static int _sse2neon_cmp_word_equal_each(__m128i a, int la, __m128i b, int lb)
++{
++ uint16x8_t mtx =
++ vceqq_u16(vreinterpretq_u16_m128i(a), vreinterpretq_u16_m128i(b));
++ int m0 = (la < lb) ? 0 : ((1 << la) - (1 << lb));
++ int m1 = 0x100 - (1 << la);
++ int tb = 0x100 - (1 << lb);
++ uint16x8_t vec_mask = vld1q_u16(_sse2neon_cmpestr_mask16b);
++ uint16x8_t vec0 = vtstq_u16(vdupq_n_u16(m0), vec_mask);
++ uint16x8_t vec1 = vtstq_u16(vdupq_n_u16(m1), vec_mask);
++ uint16x8_t tmp = vtstq_u16(vdupq_n_u16(tb), vec_mask);
++ mtx = vbslq_u16(vec0, vdupq_n_u16(0), mtx);
++ mtx = vbslq_u16(vec1, tmp, mtx);
++ mtx = vandq_u16(mtx, vec_mask);
++ return _sse2neon_vaddvq_u16(mtx);
++}
++
++#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UBYTE 1
++#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UWORD 0
++
++#define SSE2NEON_AGGREGATE_EQUAL_ORDER_IMPL(size, number_of_lanes, data_type) \
++ static int _sse2neon_aggregate_equal_ordered_##size##x##number_of_lanes( \
++ int bound, int la, int lb, __m128i mtx[16]) \
++ { \
++ int res = 0; \
++ int m1 = SSE2NEON_IIF(data_type)(0x10000, 0x100) - (1 << la); \
++ uint##size##x8_t vec_mask = SSE2NEON_IIF(data_type)( \
++ vld1_u##size(_sse2neon_cmpestr_mask##size##b), \
++ vld1q_u##size(_sse2neon_cmpestr_mask##size##b)); \
++ uint##size##x##number_of_lanes##_t vec1 = SSE2NEON_IIF(data_type)( \
++ vcombine_u##size(vtst_u##size(vdup_n_u##size(m1), vec_mask), \
++ vtst_u##size(vdup_n_u##size(m1 >> 8), vec_mask)), \
++ vtstq_u##size(vdupq_n_u##size(m1), vec_mask)); \
++ uint##size##x##number_of_lanes##_t vec_minusone = vdupq_n_u##size(-1); \
++ uint##size##x##number_of_lanes##_t vec_zero = vdupq_n_u##size(0); \
++ for (int j = 0; j < lb; j++) { \
++ mtx[j] = vreinterpretq_m128i_u##size(vbslq_u##size( \
++ vec1, vec_minusone, vreinterpretq_u##size##_m128i(mtx[j]))); \
++ } \
++ for (int j = lb; j < bound; j++) { \
++ mtx[j] = vreinterpretq_m128i_u##size( \
++ vbslq_u##size(vec1, vec_minusone, vec_zero)); \
++ } \
++ unsigned SSE2NEON_IIF(data_type)(char, short) *ptr = \
++ (unsigned SSE2NEON_IIF(data_type)(char, short) *) mtx; \
++ for (int i = 0; i < bound; i++) { \
++ int val = 1; \
++ for (int j = 0, k = i; j < bound - i && k < bound; j++, k++) \
++ val &= ptr[k * bound + j]; \
++ res += val << i; \
++ } \
++ return res; \
++ }
++
++/* clang-format off */
++#define SSE2NEON_GENERATE_AGGREGATE_EQUAL_ORDER(prefix) \
++ prefix##IMPL(8, 16, prefix##IS_UBYTE) \
++ prefix##IMPL(16, 8, prefix##IS_UWORD)
++/* clang-format on */
++
++SSE2NEON_GENERATE_AGGREGATE_EQUAL_ORDER(SSE2NEON_AGGREGATE_EQUAL_ORDER_)
++
++#undef SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UBYTE
++#undef SSE2NEON_AGGREGATE_EQUAL_ORDER_IS_UWORD
++
++/* clang-format off */
++#define SSE2NEON_GENERATE_CMP_EQUAL_ORDERED(prefix) \
++ prefix##IMPL(byte) \
++ prefix##IMPL(word)
++/* clang-format on */
++
++SSE2NEON_GENERATE_CMP_EQUAL_ORDERED(SSE2NEON_CMP_EQUAL_ORDERED_)
++
++#define SSE2NEON_CMPESTR_LIST \
++ _(CMP_UBYTE_EQUAL_ANY, cmp_byte_equal_any) \
++ _(CMP_UWORD_EQUAL_ANY, cmp_word_equal_any) \
++ _(CMP_SBYTE_EQUAL_ANY, cmp_byte_equal_any) \
++ _(CMP_SWORD_EQUAL_ANY, cmp_word_equal_any) \
++ _(CMP_UBYTE_RANGES, cmp_ubyte_ranges) \
++ _(CMP_UWORD_RANGES, cmp_uword_ranges) \
++ _(CMP_SBYTE_RANGES, cmp_sbyte_ranges) \
++ _(CMP_SWORD_RANGES, cmp_sword_ranges) \
++ _(CMP_UBYTE_EQUAL_EACH, cmp_byte_equal_each) \
++ _(CMP_UWORD_EQUAL_EACH, cmp_word_equal_each) \
++ _(CMP_SBYTE_EQUAL_EACH, cmp_byte_equal_each) \
++ _(CMP_SWORD_EQUAL_EACH, cmp_word_equal_each) \
++ _(CMP_UBYTE_EQUAL_ORDERED, cmp_byte_equal_ordered) \
++ _(CMP_UWORD_EQUAL_ORDERED, cmp_word_equal_ordered) \
++ _(CMP_SBYTE_EQUAL_ORDERED, cmp_byte_equal_ordered) \
++ _(CMP_SWORD_EQUAL_ORDERED, cmp_word_equal_ordered)
++
++enum {
++#define _(name, func_suffix) name,
++ SSE2NEON_CMPESTR_LIST
++#undef _
++};
++typedef int (*cmpestr_func_t)(__m128i a, int la, __m128i b, int lb);
++static cmpestr_func_t _sse2neon_cmpfunc_table[] = {
++#define _(name, func_suffix) _sse2neon_##func_suffix,
++ SSE2NEON_CMPESTR_LIST
++#undef _
++};
++
++FORCE_INLINE int _sse2neon_sido_negative(int res, int lb, int imm8, int bound)
++{
++ switch (imm8 & 0x30) {
++ case _SIDD_NEGATIVE_POLARITY:
++ res ^= 0xffffffff;
++ break;
++ case _SIDD_MASKED_NEGATIVE_POLARITY:
++ res ^= (1 << lb) - 1;
++ break;
++ default:
++ break;
++ }
++
++ return res & ((bound == 8) ? 0xFF : 0xFFFF);
++}
++
++FORCE_INLINE int _sse2neon_clz(unsigned int x)
++{
++#ifdef _MSC_VER
++ unsigned long cnt = 0;
++ if (_BitScanReverse(&cnt, x))
++ return 31 - cnt;
++ return 32;
++#else
++ return x != 0 ? __builtin_clz(x) : 32;
++#endif
++}
++
++FORCE_INLINE int _sse2neon_ctz(unsigned int x)
++{
++#ifdef _MSC_VER
++ unsigned long cnt = 0;
++ if (_BitScanForward(&cnt, x))
++ return cnt;
++ return 32;
++#else
++ return x != 0 ? __builtin_ctz(x) : 32;
++#endif
++}
++
++FORCE_INLINE int _sse2neon_ctzll(unsigned long long x)
++{
++#ifdef _MSC_VER
++ unsigned long cnt;
++#if defined(SSE2NEON_HAS_BITSCAN64)
++ if (_BitScanForward64(&cnt, x))
++ return (int) (cnt);
++#else
++ if (_BitScanForward(&cnt, (unsigned long) (x)))
++ return (int) cnt;
++ if (_BitScanForward(&cnt, (unsigned long) (x >> 32)))
++ return (int) (cnt + 32);
++#endif /* SSE2NEON_HAS_BITSCAN64 */
++ return 64;
++#else /* assume GNU compatible compilers */
++ return x != 0 ? __builtin_ctzll(x) : 64;
++#endif
++}
++
++#define SSE2NEON_MIN(x, y) (x) < (y) ? (x) : (y)
++
++#define SSE2NEON_CMPSTR_SET_UPPER(var, imm) \
++ const int var = (imm & 0x01) ? 8 : 16
++
++#define SSE2NEON_CMPESTRX_LEN_PAIR(a, b, la, lb) \
++ int tmp1 = la ^ (la >> 31); \
++ la = tmp1 - (la >> 31); \
++ int tmp2 = lb ^ (lb >> 31); \
++ lb = tmp2 - (lb >> 31); \
++ la = SSE2NEON_MIN(la, bound); \
++ lb = SSE2NEON_MIN(lb, bound)
++
++// Compare all pairs of character in string a and b,
++// then aggregate the result.
++// As the only difference of PCMPESTR* and PCMPISTR* is the way to calculate the
++// length of string, we use SSE2NEON_CMP{I,E}STRX_GET_LEN to get the length of
++// string a and b.
++#define SSE2NEON_COMP_AGG(a, b, la, lb, imm8, IE) \
++ SSE2NEON_CMPSTR_SET_UPPER(bound, imm8); \
++ SSE2NEON_##IE##_LEN_PAIR(a, b, la, lb); \
++ int r2 = (_sse2neon_cmpfunc_table[imm8 & 0x0f])(a, la, b, lb); \
++ r2 = _sse2neon_sido_negative(r2, lb, imm8, bound)
++
++#define SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8) \
++ return (r2 == 0) ? bound \
++ : ((imm8 & 0x40) ? (31 - _sse2neon_clz(r2)) \
++ : _sse2neon_ctz(r2))
++
++#define SSE2NEON_CMPSTR_GENERATE_MASK(dst) \
++ __m128i dst = vreinterpretq_m128i_u8(vdupq_n_u8(0)); \
++ if (imm8 & 0x40) { \
++ if (bound == 8) { \
++ uint16x8_t tmp = vtstq_u16(vdupq_n_u16(r2), \
++ vld1q_u16(_sse2neon_cmpestr_mask16b)); \
++ dst = vreinterpretq_m128i_u16(vbslq_u16( \
++ tmp, vdupq_n_u16(-1), vreinterpretq_u16_m128i(dst))); \
++ } else { \
++ uint8x16_t vec_r2 = \
++ vcombine_u8(vdup_n_u8(r2), vdup_n_u8(r2 >> 8)); \
++ uint8x16_t tmp = \
++ vtstq_u8(vec_r2, vld1q_u8(_sse2neon_cmpestr_mask8b)); \
++ dst = vreinterpretq_m128i_u8( \
++ vbslq_u8(tmp, vdupq_n_u8(-1), vreinterpretq_u8_m128i(dst))); \
++ } \
++ } else { \
++ if (bound == 16) { \
++ dst = vreinterpretq_m128i_u16( \
++ vsetq_lane_u16(r2 & 0xffff, vreinterpretq_u16_m128i(dst), 0)); \
++ } else { \
++ dst = vreinterpretq_m128i_u8( \
++ vsetq_lane_u8(r2 & 0xff, vreinterpretq_u8_m128i(dst), 0)); \
++ } \
++ } \
++ return dst
++
++// Compare packed strings in a and b with lengths la and lb using the control
++// in imm8, and returns 1 if b did not contain a null character and the
++// resulting mask was zero, and 0 otherwise.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestra
++FORCE_INLINE int _mm_cmpestra(__m128i a,
++ int la,
++ __m128i b,
++ int lb,
++ const int imm8)
++{
++ int lb_cpy = lb;
++ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX);
++ return !r2 & (lb_cpy > bound);
++}
++
++// Compare packed strings in a and b with lengths la and lb using the control in
++// imm8, and returns 1 if the resulting mask was non-zero, and 0 otherwise.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrc
++FORCE_INLINE int _mm_cmpestrc(__m128i a,
++ int la,
++ __m128i b,
++ int lb,
++ const int imm8)
++{
++ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX);
++ return r2 != 0;
++}
++
++// Compare packed strings in a and b with lengths la and lb using the control
++// in imm8, and store the generated index in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestri
++FORCE_INLINE int _mm_cmpestri(__m128i a,
++ int la,
++ __m128i b,
++ int lb,
++ const int imm8)
++{
++ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX);
++ SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8);
++}
++
++// Compare packed strings in a and b with lengths la and lb using the control
++// in imm8, and store the generated mask in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrm
++FORCE_INLINE __m128i
++_mm_cmpestrm(__m128i a, int la, __m128i b, int lb, const int imm8)
++{
++ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX);
++ SSE2NEON_CMPSTR_GENERATE_MASK(dst);
++}
++
++// Compare packed strings in a and b with lengths la and lb using the control in
++// imm8, and returns bit 0 of the resulting bit mask.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestro
++FORCE_INLINE int _mm_cmpestro(__m128i a,
++ int la,
++ __m128i b,
++ int lb,
++ const int imm8)
++{
++ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPESTRX);
++ return r2 & 1;
++}
++
++// Compare packed strings in a and b with lengths la and lb using the control in
++// imm8, and returns 1 if any character in a was null, and 0 otherwise.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrs
++FORCE_INLINE int _mm_cmpestrs(__m128i a,
++ int la,
++ __m128i b,
++ int lb,
++ const int imm8)
++{
++ (void) a;
++ (void) b;
++ (void) lb;
++ SSE2NEON_CMPSTR_SET_UPPER(bound, imm8);
++ return la <= (bound - 1);
++}
++
++// Compare packed strings in a and b with lengths la and lb using the control in
++// imm8, and returns 1 if any character in b was null, and 0 otherwise.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpestrz
++FORCE_INLINE int _mm_cmpestrz(__m128i a,
++ int la,
++ __m128i b,
++ int lb,
++ const int imm8)
++{
++ (void) a;
++ (void) b;
++ (void) la;
++ SSE2NEON_CMPSTR_SET_UPPER(bound, imm8);
++ return lb <= (bound - 1);
++}
++
++#define SSE2NEON_CMPISTRX_LENGTH(str, len, imm8) \
++ do { \
++ if (imm8 & 0x01) { \
++ uint16x8_t equal_mask_##str = \
++ vceqq_u16(vreinterpretq_u16_m128i(str), vdupq_n_u16(0)); \
++ uint8x8_t res_##str = vshrn_n_u16(equal_mask_##str, 4); \
++ uint64_t matches_##str = \
++ vget_lane_u64(vreinterpret_u64_u8(res_##str), 0); \
++ len = _sse2neon_ctzll(matches_##str) >> 3; \
++ } else { \
++ uint16x8_t equal_mask_##str = vreinterpretq_u16_u8( \
++ vceqq_u8(vreinterpretq_u8_m128i(str), vdupq_n_u8(0))); \
++ uint8x8_t res_##str = vshrn_n_u16(equal_mask_##str, 4); \
++ uint64_t matches_##str = \
++ vget_lane_u64(vreinterpret_u64_u8(res_##str), 0); \
++ len = _sse2neon_ctzll(matches_##str) >> 2; \
++ } \
++ } while (0)
++
++#define SSE2NEON_CMPISTRX_LEN_PAIR(a, b, la, lb) \
++ int la, lb; \
++ do { \
++ SSE2NEON_CMPISTRX_LENGTH(a, la, imm8); \
++ SSE2NEON_CMPISTRX_LENGTH(b, lb, imm8); \
++ } while (0)
++
++// Compare packed strings with implicit lengths in a and b using the control in
++// imm8, and returns 1 if b did not contain a null character and the resulting
++// mask was zero, and 0 otherwise.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistra
++FORCE_INLINE int _mm_cmpistra(__m128i a, __m128i b, const int imm8)
++{
++ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX);
++ return !r2 & (lb >= bound);
++}
++
++// Compare packed strings with implicit lengths in a and b using the control in
++// imm8, and returns 1 if the resulting mask was non-zero, and 0 otherwise.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrc
++FORCE_INLINE int _mm_cmpistrc(__m128i a, __m128i b, const int imm8)
++{
++ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX);
++ return r2 != 0;
++}
++
++// Compare packed strings with implicit lengths in a and b using the control in
++// imm8, and store the generated index in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistri
++FORCE_INLINE int _mm_cmpistri(__m128i a, __m128i b, const int imm8)
++{
++ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX);
++ SSE2NEON_CMPSTR_GENERATE_INDEX(r2, bound, imm8);
++}
++
++// Compare packed strings with implicit lengths in a and b using the control in
++// imm8, and store the generated mask in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrm
++FORCE_INLINE __m128i _mm_cmpistrm(__m128i a, __m128i b, const int imm8)
++{
++ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX);
++ SSE2NEON_CMPSTR_GENERATE_MASK(dst);
++}
++
++// Compare packed strings with implicit lengths in a and b using the control in
++// imm8, and returns bit 0 of the resulting bit mask.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistro
++FORCE_INLINE int _mm_cmpistro(__m128i a, __m128i b, const int imm8)
++{
++ SSE2NEON_COMP_AGG(a, b, la, lb, imm8, CMPISTRX);
++ return r2 & 1;
++}
++
++// Compare packed strings with implicit lengths in a and b using the control in
++// imm8, and returns 1 if any character in a was null, and 0 otherwise.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrs
++FORCE_INLINE int _mm_cmpistrs(__m128i a, __m128i b, const int imm8)
++{
++ (void) b;
++ SSE2NEON_CMPSTR_SET_UPPER(bound, imm8);
++ int la;
++ SSE2NEON_CMPISTRX_LENGTH(a, la, imm8);
++ return la <= (bound - 1);
++}
++
++// Compare packed strings with implicit lengths in a and b using the control in
++// imm8, and returns 1 if any character in b was null, and 0 otherwise.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_cmpistrz
++FORCE_INLINE int _mm_cmpistrz(__m128i a, __m128i b, const int imm8)
++{
++ (void) a;
++ SSE2NEON_CMPSTR_SET_UPPER(bound, imm8);
++ int lb;
++ SSE2NEON_CMPISTRX_LENGTH(b, lb, imm8);
++ return lb <= (bound - 1);
++}
++
++// Compares the 2 signed 64-bit integers in a and the 2 signed 64-bit integers
++// in b for greater than.
++FORCE_INLINE __m128i _mm_cmpgt_epi64(__m128i a, __m128i b)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ return vreinterpretq_m128i_u64(
++ vcgtq_s64(vreinterpretq_s64_m128i(a), vreinterpretq_s64_m128i(b)));
++#else
++ return vreinterpretq_m128i_s64(vshrq_n_s64(
++ vqsubq_s64(vreinterpretq_s64_m128i(b), vreinterpretq_s64_m128i(a)),
++ 63));
++#endif
++}
++
++// Starting with the initial value in crc, accumulates a CRC32 value for
++// unsigned 16-bit integer v, and stores the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u16
++FORCE_INLINE uint32_t _mm_crc32_u16(uint32_t crc, uint16_t v)
++{
++#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
++ __asm__ __volatile__("crc32ch %w[c], %w[c], %w[v]\n\t"
++ : [c] "+r"(crc)
++ : [v] "r"(v));
++#elif ((__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32)) || \
++ (defined(_M_ARM64) && !defined(__clang__))
++ crc = __crc32ch(crc, v);
++#else
++ crc = _mm_crc32_u8(crc, v & 0xff);
++ crc = _mm_crc32_u8(crc, (v >> 8) & 0xff);
++#endif
++ return crc;
++}
++
++// Starting with the initial value in crc, accumulates a CRC32 value for
++// unsigned 32-bit integer v, and stores the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u32
++FORCE_INLINE uint32_t _mm_crc32_u32(uint32_t crc, uint32_t v)
++{
++#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
++ __asm__ __volatile__("crc32cw %w[c], %w[c], %w[v]\n\t"
++ : [c] "+r"(crc)
++ : [v] "r"(v));
++#elif ((__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32)) || \
++ (defined(_M_ARM64) && !defined(__clang__))
++ crc = __crc32cw(crc, v);
++#else
++ crc = _mm_crc32_u16(crc, v & 0xffff);
++ crc = _mm_crc32_u16(crc, (v >> 16) & 0xffff);
++#endif
++ return crc;
++}
++
++// Starting with the initial value in crc, accumulates a CRC32 value for
++// unsigned 64-bit integer v, and stores the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u64
++FORCE_INLINE uint64_t _mm_crc32_u64(uint64_t crc, uint64_t v)
++{
++#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
++ __asm__ __volatile__("crc32cx %w[c], %w[c], %x[v]\n\t"
++ : [c] "+r"(crc)
++ : [v] "r"(v));
++#elif (defined(_M_ARM64) && !defined(__clang__))
++ crc = __crc32cd((uint32_t) crc, v);
++#else
++ crc = _mm_crc32_u32((uint32_t) (crc), v & 0xffffffff);
++ crc = _mm_crc32_u32((uint32_t) (crc), (v >> 32) & 0xffffffff);
++#endif
++ return crc;
++}
++
++// Starting with the initial value in crc, accumulates a CRC32 value for
++// unsigned 8-bit integer v, and stores the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_crc32_u8
++FORCE_INLINE uint32_t _mm_crc32_u8(uint32_t crc, uint8_t v)
++{
++#if defined(__aarch64__) && defined(__ARM_FEATURE_CRC32)
++ __asm__ __volatile__("crc32cb %w[c], %w[c], %w[v]\n\t"
++ : [c] "+r"(crc)
++ : [v] "r"(v));
++#elif ((__ARM_ARCH == 8) && defined(__ARM_FEATURE_CRC32)) || \
++ (defined(_M_ARM64) && !defined(__clang__))
++ crc = __crc32cb(crc, v);
++#else
++ crc ^= v;
++ for (int bit = 0; bit < 8; bit++) {
++ if (crc & 1)
++ crc = (crc >> 1) ^ UINT32_C(0x82f63b78);
++ else
++ crc = (crc >> 1);
++ }
++#endif
++ return crc;
++}
++
++/* AES */
++
++#if !defined(__ARM_FEATURE_CRYPTO) && (!defined(_M_ARM64) || defined(__clang__))
++/* clang-format off */
++#define SSE2NEON_AES_SBOX(w) \
++ { \
++ w(0x63), w(0x7c), w(0x77), w(0x7b), w(0xf2), w(0x6b), w(0x6f), \
++ w(0xc5), w(0x30), w(0x01), w(0x67), w(0x2b), w(0xfe), w(0xd7), \
++ w(0xab), w(0x76), w(0xca), w(0x82), w(0xc9), w(0x7d), w(0xfa), \
++ w(0x59), w(0x47), w(0xf0), w(0xad), w(0xd4), w(0xa2), w(0xaf), \
++ w(0x9c), w(0xa4), w(0x72), w(0xc0), w(0xb7), w(0xfd), w(0x93), \
++ w(0x26), w(0x36), w(0x3f), w(0xf7), w(0xcc), w(0x34), w(0xa5), \
++ w(0xe5), w(0xf1), w(0x71), w(0xd8), w(0x31), w(0x15), w(0x04), \
++ w(0xc7), w(0x23), w(0xc3), w(0x18), w(0x96), w(0x05), w(0x9a), \
++ w(0x07), w(0x12), w(0x80), w(0xe2), w(0xeb), w(0x27), w(0xb2), \
++ w(0x75), w(0x09), w(0x83), w(0x2c), w(0x1a), w(0x1b), w(0x6e), \
++ w(0x5a), w(0xa0), w(0x52), w(0x3b), w(0xd6), w(0xb3), w(0x29), \
++ w(0xe3), w(0x2f), w(0x84), w(0x53), w(0xd1), w(0x00), w(0xed), \
++ w(0x20), w(0xfc), w(0xb1), w(0x5b), w(0x6a), w(0xcb), w(0xbe), \
++ w(0x39), w(0x4a), w(0x4c), w(0x58), w(0xcf), w(0xd0), w(0xef), \
++ w(0xaa), w(0xfb), w(0x43), w(0x4d), w(0x33), w(0x85), w(0x45), \
++ w(0xf9), w(0x02), w(0x7f), w(0x50), w(0x3c), w(0x9f), w(0xa8), \
++ w(0x51), w(0xa3), w(0x40), w(0x8f), w(0x92), w(0x9d), w(0x38), \
++ w(0xf5), w(0xbc), w(0xb6), w(0xda), w(0x21), w(0x10), w(0xff), \
++ w(0xf3), w(0xd2), w(0xcd), w(0x0c), w(0x13), w(0xec), w(0x5f), \
++ w(0x97), w(0x44), w(0x17), w(0xc4), w(0xa7), w(0x7e), w(0x3d), \
++ w(0x64), w(0x5d), w(0x19), w(0x73), w(0x60), w(0x81), w(0x4f), \
++ w(0xdc), w(0x22), w(0x2a), w(0x90), w(0x88), w(0x46), w(0xee), \
++ w(0xb8), w(0x14), w(0xde), w(0x5e), w(0x0b), w(0xdb), w(0xe0), \
++ w(0x32), w(0x3a), w(0x0a), w(0x49), w(0x06), w(0x24), w(0x5c), \
++ w(0xc2), w(0xd3), w(0xac), w(0x62), w(0x91), w(0x95), w(0xe4), \
++ w(0x79), w(0xe7), w(0xc8), w(0x37), w(0x6d), w(0x8d), w(0xd5), \
++ w(0x4e), w(0xa9), w(0x6c), w(0x56), w(0xf4), w(0xea), w(0x65), \
++ w(0x7a), w(0xae), w(0x08), w(0xba), w(0x78), w(0x25), w(0x2e), \
++ w(0x1c), w(0xa6), w(0xb4), w(0xc6), w(0xe8), w(0xdd), w(0x74), \
++ w(0x1f), w(0x4b), w(0xbd), w(0x8b), w(0x8a), w(0x70), w(0x3e), \
++ w(0xb5), w(0x66), w(0x48), w(0x03), w(0xf6), w(0x0e), w(0x61), \
++ w(0x35), w(0x57), w(0xb9), w(0x86), w(0xc1), w(0x1d), w(0x9e), \
++ w(0xe1), w(0xf8), w(0x98), w(0x11), w(0x69), w(0xd9), w(0x8e), \
++ w(0x94), w(0x9b), w(0x1e), w(0x87), w(0xe9), w(0xce), w(0x55), \
++ w(0x28), w(0xdf), w(0x8c), w(0xa1), w(0x89), w(0x0d), w(0xbf), \
++ w(0xe6), w(0x42), w(0x68), w(0x41), w(0x99), w(0x2d), w(0x0f), \
++ w(0xb0), w(0x54), w(0xbb), w(0x16) \
++ }
++#define SSE2NEON_AES_RSBOX(w) \
++ { \
++ w(0x52), w(0x09), w(0x6a), w(0xd5), w(0x30), w(0x36), w(0xa5), \
++ w(0x38), w(0xbf), w(0x40), w(0xa3), w(0x9e), w(0x81), w(0xf3), \
++ w(0xd7), w(0xfb), w(0x7c), w(0xe3), w(0x39), w(0x82), w(0x9b), \
++ w(0x2f), w(0xff), w(0x87), w(0x34), w(0x8e), w(0x43), w(0x44), \
++ w(0xc4), w(0xde), w(0xe9), w(0xcb), w(0x54), w(0x7b), w(0x94), \
++ w(0x32), w(0xa6), w(0xc2), w(0x23), w(0x3d), w(0xee), w(0x4c), \
++ w(0x95), w(0x0b), w(0x42), w(0xfa), w(0xc3), w(0x4e), w(0x08), \
++ w(0x2e), w(0xa1), w(0x66), w(0x28), w(0xd9), w(0x24), w(0xb2), \
++ w(0x76), w(0x5b), w(0xa2), w(0x49), w(0x6d), w(0x8b), w(0xd1), \
++ w(0x25), w(0x72), w(0xf8), w(0xf6), w(0x64), w(0x86), w(0x68), \
++ w(0x98), w(0x16), w(0xd4), w(0xa4), w(0x5c), w(0xcc), w(0x5d), \
++ w(0x65), w(0xb6), w(0x92), w(0x6c), w(0x70), w(0x48), w(0x50), \
++ w(0xfd), w(0xed), w(0xb9), w(0xda), w(0x5e), w(0x15), w(0x46), \
++ w(0x57), w(0xa7), w(0x8d), w(0x9d), w(0x84), w(0x90), w(0xd8), \
++ w(0xab), w(0x00), w(0x8c), w(0xbc), w(0xd3), w(0x0a), w(0xf7), \
++ w(0xe4), w(0x58), w(0x05), w(0xb8), w(0xb3), w(0x45), w(0x06), \
++ w(0xd0), w(0x2c), w(0x1e), w(0x8f), w(0xca), w(0x3f), w(0x0f), \
++ w(0x02), w(0xc1), w(0xaf), w(0xbd), w(0x03), w(0x01), w(0x13), \
++ w(0x8a), w(0x6b), w(0x3a), w(0x91), w(0x11), w(0x41), w(0x4f), \
++ w(0x67), w(0xdc), w(0xea), w(0x97), w(0xf2), w(0xcf), w(0xce), \
++ w(0xf0), w(0xb4), w(0xe6), w(0x73), w(0x96), w(0xac), w(0x74), \
++ w(0x22), w(0xe7), w(0xad), w(0x35), w(0x85), w(0xe2), w(0xf9), \
++ w(0x37), w(0xe8), w(0x1c), w(0x75), w(0xdf), w(0x6e), w(0x47), \
++ w(0xf1), w(0x1a), w(0x71), w(0x1d), w(0x29), w(0xc5), w(0x89), \
++ w(0x6f), w(0xb7), w(0x62), w(0x0e), w(0xaa), w(0x18), w(0xbe), \
++ w(0x1b), w(0xfc), w(0x56), w(0x3e), w(0x4b), w(0xc6), w(0xd2), \
++ w(0x79), w(0x20), w(0x9a), w(0xdb), w(0xc0), w(0xfe), w(0x78), \
++ w(0xcd), w(0x5a), w(0xf4), w(0x1f), w(0xdd), w(0xa8), w(0x33), \
++ w(0x88), w(0x07), w(0xc7), w(0x31), w(0xb1), w(0x12), w(0x10), \
++ w(0x59), w(0x27), w(0x80), w(0xec), w(0x5f), w(0x60), w(0x51), \
++ w(0x7f), w(0xa9), w(0x19), w(0xb5), w(0x4a), w(0x0d), w(0x2d), \
++ w(0xe5), w(0x7a), w(0x9f), w(0x93), w(0xc9), w(0x9c), w(0xef), \
++ w(0xa0), w(0xe0), w(0x3b), w(0x4d), w(0xae), w(0x2a), w(0xf5), \
++ w(0xb0), w(0xc8), w(0xeb), w(0xbb), w(0x3c), w(0x83), w(0x53), \
++ w(0x99), w(0x61), w(0x17), w(0x2b), w(0x04), w(0x7e), w(0xba), \
++ w(0x77), w(0xd6), w(0x26), w(0xe1), w(0x69), w(0x14), w(0x63), \
++ w(0x55), w(0x21), w(0x0c), w(0x7d) \
++ }
++/* clang-format on */
++
++/* X Macro trick. See https://en.wikipedia.org/wiki/X_Macro */
++#define SSE2NEON_AES_H0(x) (x)
++static const uint8_t _sse2neon_sbox[256] = SSE2NEON_AES_SBOX(SSE2NEON_AES_H0);
++static const uint8_t _sse2neon_rsbox[256] = SSE2NEON_AES_RSBOX(SSE2NEON_AES_H0);
++#undef SSE2NEON_AES_H0
++
++/* x_time function and matrix multiply function */
++#if !defined(__aarch64__) && !defined(_M_ARM64)
++#define SSE2NEON_XT(x) (((x) << 1) ^ ((((x) >> 7) & 1) * 0x1b))
++#define SSE2NEON_MULTIPLY(x, y) \
++ (((y & 1) * x) ^ ((y >> 1 & 1) * SSE2NEON_XT(x)) ^ \
++ ((y >> 2 & 1) * SSE2NEON_XT(SSE2NEON_XT(x))) ^ \
++ ((y >> 3 & 1) * SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(x)))) ^ \
++ ((y >> 4 & 1) * SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(SSE2NEON_XT(x))))))
++#endif
++
++// In the absence of crypto extensions, implement aesenc using regular NEON
++// intrinsics instead. See:
++// https://www.workofard.com/2017/01/accelerated-aes-for-the-arm64-linux-kernel/
++// https://www.workofard.com/2017/07/ghash-for-low-end-cores/ and
++// for more information.
++FORCE_INLINE __m128i _mm_aesenc_si128(__m128i a, __m128i RoundKey)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ static const uint8_t shift_rows[] = {
++ 0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3,
++ 0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb,
++ };
++ static const uint8_t ror32by8[] = {
++ 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4,
++ 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc,
++ };
++
++ uint8x16_t v;
++ uint8x16_t w = vreinterpretq_u8_m128i(a);
++
++ /* shift rows */
++ w = vqtbl1q_u8(w, vld1q_u8(shift_rows));
++
++ /* sub bytes */
++ // Here, we separate the whole 256-bytes table into 4 64-bytes tables, and
++ // look up each of the table. After each lookup, we load the next table
++ // which locates at the next 64-bytes. In the meantime, the index in the
++ // table would be smaller than it was, so the index parameters of
++ // `vqtbx4q_u8()` need to be added the same constant as the loaded tables.
++ v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), w);
++ // 'w-0x40' equals to 'vsubq_u8(w, vdupq_n_u8(0x40))'
++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), w - 0x40);
++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), w - 0x80);
++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), w - 0xc0);
++
++ /* mix columns */
++ w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b);
++ w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v);
++ w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8));
++
++ /* add round key */
++ return vreinterpretq_m128i_u8(w) ^ RoundKey;
++
++#else /* ARMv7-A implementation for a table-based AES */
++#define SSE2NEON_AES_B2W(b0, b1, b2, b3) \
++ (((uint32_t) (b3) << 24) | ((uint32_t) (b2) << 16) | \
++ ((uint32_t) (b1) << 8) | (uint32_t) (b0))
++// muliplying 'x' by 2 in GF(2^8)
++#define SSE2NEON_AES_F2(x) ((x << 1) ^ (((x >> 7) & 1) * 0x011b /* WPOLY */))
++// muliplying 'x' by 3 in GF(2^8)
++#define SSE2NEON_AES_F3(x) (SSE2NEON_AES_F2(x) ^ x)
++#define SSE2NEON_AES_U0(p) \
++ SSE2NEON_AES_B2W(SSE2NEON_AES_F2(p), p, p, SSE2NEON_AES_F3(p))
++#define SSE2NEON_AES_U1(p) \
++ SSE2NEON_AES_B2W(SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p), p, p)
++#define SSE2NEON_AES_U2(p) \
++ SSE2NEON_AES_B2W(p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p), p)
++#define SSE2NEON_AES_U3(p) \
++ SSE2NEON_AES_B2W(p, p, SSE2NEON_AES_F3(p), SSE2NEON_AES_F2(p))
++
++ // this generates a table containing every possible permutation of
++ // shift_rows() and sub_bytes() with mix_columns().
++ static const uint32_t ALIGN_STRUCT(16) aes_table[4][256] = {
++ SSE2NEON_AES_SBOX(SSE2NEON_AES_U0),
++ SSE2NEON_AES_SBOX(SSE2NEON_AES_U1),
++ SSE2NEON_AES_SBOX(SSE2NEON_AES_U2),
++ SSE2NEON_AES_SBOX(SSE2NEON_AES_U3),
++ };
++#undef SSE2NEON_AES_B2W
++#undef SSE2NEON_AES_F2
++#undef SSE2NEON_AES_F3
++#undef SSE2NEON_AES_U0
++#undef SSE2NEON_AES_U1
++#undef SSE2NEON_AES_U2
++#undef SSE2NEON_AES_U3
++
++ uint32_t x0 = _mm_cvtsi128_si32(a); // get a[31:0]
++ uint32_t x1 =
++ _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0x55)); // get a[63:32]
++ uint32_t x2 =
++ _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xAA)); // get a[95:64]
++ uint32_t x3 =
++ _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xFF)); // get a[127:96]
++
++ // finish the modulo addition step in mix_columns()
++ __m128i out = _mm_set_epi32(
++ (aes_table[0][x3 & 0xff] ^ aes_table[1][(x0 >> 8) & 0xff] ^
++ aes_table[2][(x1 >> 16) & 0xff] ^ aes_table[3][x2 >> 24]),
++ (aes_table[0][x2 & 0xff] ^ aes_table[1][(x3 >> 8) & 0xff] ^
++ aes_table[2][(x0 >> 16) & 0xff] ^ aes_table[3][x1 >> 24]),
++ (aes_table[0][x1 & 0xff] ^ aes_table[1][(x2 >> 8) & 0xff] ^
++ aes_table[2][(x3 >> 16) & 0xff] ^ aes_table[3][x0 >> 24]),
++ (aes_table[0][x0 & 0xff] ^ aes_table[1][(x1 >> 8) & 0xff] ^
++ aes_table[2][(x2 >> 16) & 0xff] ^ aes_table[3][x3 >> 24]));
++
++ return _mm_xor_si128(out, RoundKey);
++#endif
++}
++
++// Perform one round of an AES decryption flow on data (state) in a using the
++// round key in RoundKey, and store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdec_si128
++FORCE_INLINE __m128i _mm_aesdec_si128(__m128i a, __m128i RoundKey)
++{
++#if defined(__aarch64__)
++ static const uint8_t inv_shift_rows[] = {
++ 0x0, 0xd, 0xa, 0x7, 0x4, 0x1, 0xe, 0xb,
++ 0x8, 0x5, 0x2, 0xf, 0xc, 0x9, 0x6, 0x3,
++ };
++ static const uint8_t ror32by8[] = {
++ 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4,
++ 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc,
++ };
++
++ uint8x16_t v;
++ uint8x16_t w = vreinterpretq_u8_m128i(a);
++
++ // inverse shift rows
++ w = vqtbl1q_u8(w, vld1q_u8(inv_shift_rows));
++
++ // inverse sub bytes
++ v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_rsbox), w);
++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x40), w - 0x40);
++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x80), w - 0x80);
++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0xc0), w - 0xc0);
++
++ // inverse mix columns
++ // multiplying 'v' by 4 in GF(2^8)
++ w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b);
++ w = (w << 1) ^ (uint8x16_t) (((int8x16_t) w >> 7) & 0x1b);
++ v ^= w;
++ v ^= (uint8x16_t) vrev32q_u16((uint16x8_t) w);
++
++ w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) &
++ 0x1b); // muliplying 'v' by 2 in GF(2^8)
++ w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v);
++ w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8));
++
++ // add round key
++ return vreinterpretq_m128i_u8(w) ^ RoundKey;
++
++#else /* ARMv7-A NEON implementation */
++ /* FIXME: optimized for NEON */
++ uint8_t i, e, f, g, h, v[4][4];
++ uint8_t *_a = (uint8_t *) &a;
++ for (i = 0; i < 16; ++i) {
++ v[((i / 4) + (i % 4)) % 4][i % 4] = _sse2neon_rsbox[_a[i]];
++ }
++
++ // inverse mix columns
++ for (i = 0; i < 4; ++i) {
++ e = v[i][0];
++ f = v[i][1];
++ g = v[i][2];
++ h = v[i][3];
++
++ v[i][0] = SSE2NEON_MULTIPLY(e, 0x0e) ^ SSE2NEON_MULTIPLY(f, 0x0b) ^
++ SSE2NEON_MULTIPLY(g, 0x0d) ^ SSE2NEON_MULTIPLY(h, 0x09);
++ v[i][1] = SSE2NEON_MULTIPLY(e, 0x09) ^ SSE2NEON_MULTIPLY(f, 0x0e) ^
++ SSE2NEON_MULTIPLY(g, 0x0b) ^ SSE2NEON_MULTIPLY(h, 0x0d);
++ v[i][2] = SSE2NEON_MULTIPLY(e, 0x0d) ^ SSE2NEON_MULTIPLY(f, 0x09) ^
++ SSE2NEON_MULTIPLY(g, 0x0e) ^ SSE2NEON_MULTIPLY(h, 0x0b);
++ v[i][3] = SSE2NEON_MULTIPLY(e, 0x0b) ^ SSE2NEON_MULTIPLY(f, 0x0d) ^
++ SSE2NEON_MULTIPLY(g, 0x09) ^ SSE2NEON_MULTIPLY(h, 0x0e);
++ }
++
++ return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)) ^ RoundKey;
++#endif
++}
++
++// Perform the last round of an AES encryption flow on data (state) in a using
++// the round key in RoundKey, and store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesenclast_si128
++FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey)
++{
++#if defined(__aarch64__)
++ static const uint8_t shift_rows[] = {
++ 0x0, 0x5, 0xa, 0xf, 0x4, 0x9, 0xe, 0x3,
++ 0x8, 0xd, 0x2, 0x7, 0xc, 0x1, 0x6, 0xb,
++ };
++
++ uint8x16_t v;
++ uint8x16_t w = vreinterpretq_u8_m128i(a);
++
++ // shift rows
++ w = vqtbl1q_u8(w, vld1q_u8(shift_rows));
++
++ // sub bytes
++ v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), w);
++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), w - 0x40);
++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), w - 0x80);
++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), w - 0xc0);
++
++ // add round key
++ return vreinterpretq_m128i_u8(v) ^ RoundKey;
++
++#else /* ARMv7-A implementation */
++ uint8_t v[16] = {
++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 0)],
++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 5)],
++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 10)],
++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 15)],
++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 4)],
++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 9)],
++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 14)],
++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 3)],
++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 8)],
++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 13)],
++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 2)],
++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 7)],
++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 12)],
++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 1)],
++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 6)],
++ _sse2neon_sbox[vgetq_lane_u8(vreinterpretq_u8_m128i(a), 11)],
++ };
++
++ return vreinterpretq_m128i_u8(vld1q_u8(v)) ^ RoundKey;
++#endif
++}
++
++// Perform the last round of an AES decryption flow on data (state) in a using
++// the round key in RoundKey, and store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdeclast_si128
++FORCE_INLINE __m128i _mm_aesdeclast_si128(__m128i a, __m128i RoundKey)
++{
++#if defined(__aarch64__)
++ static const uint8_t inv_shift_rows[] = {
++ 0x0, 0xd, 0xa, 0x7, 0x4, 0x1, 0xe, 0xb,
++ 0x8, 0x5, 0x2, 0xf, 0xc, 0x9, 0x6, 0x3,
++ };
++
++ uint8x16_t v;
++ uint8x16_t w = vreinterpretq_u8_m128i(a);
++
++ // inverse shift rows
++ w = vqtbl1q_u8(w, vld1q_u8(inv_shift_rows));
++
++ // inverse sub bytes
++ v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_rsbox), w);
++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x40), w - 0x40);
++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0x80), w - 0x80);
++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_rsbox + 0xc0), w - 0xc0);
++
++ // add round key
++ return vreinterpretq_m128i_u8(v) ^ RoundKey;
++
++#else /* ARMv7-A NEON implementation */
++ /* FIXME: optimized for NEON */
++ uint8_t v[4][4];
++ uint8_t *_a = (uint8_t *) &a;
++ for (int i = 0; i < 16; ++i) {
++ v[((i / 4) + (i % 4)) % 4][i % 4] = _sse2neon_rsbox[_a[i]];
++ }
++
++ return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v)) ^ RoundKey;
++#endif
++}
++
++// Perform the InvMixColumns transformation on a and store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesimc_si128
++FORCE_INLINE __m128i _mm_aesimc_si128(__m128i a)
++{
++#if defined(__aarch64__)
++ static const uint8_t ror32by8[] = {
++ 0x1, 0x2, 0x3, 0x0, 0x5, 0x6, 0x7, 0x4,
++ 0x9, 0xa, 0xb, 0x8, 0xd, 0xe, 0xf, 0xc,
++ };
++ uint8x16_t v = vreinterpretq_u8_m128i(a);
++ uint8x16_t w;
++
++ // multiplying 'v' by 4 in GF(2^8)
++ w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b);
++ w = (w << 1) ^ (uint8x16_t) (((int8x16_t) w >> 7) & 0x1b);
++ v ^= w;
++ v ^= (uint8x16_t) vrev32q_u16((uint16x8_t) w);
++
++ // multiplying 'v' by 2 in GF(2^8)
++ w = (v << 1) ^ (uint8x16_t) (((int8x16_t) v >> 7) & 0x1b);
++ w ^= (uint8x16_t) vrev32q_u16((uint16x8_t) v);
++ w ^= vqtbl1q_u8(v ^ w, vld1q_u8(ror32by8));
++ return vreinterpretq_m128i_u8(w);
++
++#else /* ARMv7-A NEON implementation */
++ uint8_t i, e, f, g, h, v[4][4];
++ vst1q_u8((uint8_t *) v, vreinterpretq_u8_m128i(a));
++ for (i = 0; i < 4; ++i) {
++ e = v[i][0];
++ f = v[i][1];
++ g = v[i][2];
++ h = v[i][3];
++
++ v[i][0] = SSE2NEON_MULTIPLY(e, 0x0e) ^ SSE2NEON_MULTIPLY(f, 0x0b) ^
++ SSE2NEON_MULTIPLY(g, 0x0d) ^ SSE2NEON_MULTIPLY(h, 0x09);
++ v[i][1] = SSE2NEON_MULTIPLY(e, 0x09) ^ SSE2NEON_MULTIPLY(f, 0x0e) ^
++ SSE2NEON_MULTIPLY(g, 0x0b) ^ SSE2NEON_MULTIPLY(h, 0x0d);
++ v[i][2] = SSE2NEON_MULTIPLY(e, 0x0d) ^ SSE2NEON_MULTIPLY(f, 0x09) ^
++ SSE2NEON_MULTIPLY(g, 0x0e) ^ SSE2NEON_MULTIPLY(h, 0x0b);
++ v[i][3] = SSE2NEON_MULTIPLY(e, 0x0b) ^ SSE2NEON_MULTIPLY(f, 0x0d) ^
++ SSE2NEON_MULTIPLY(g, 0x09) ^ SSE2NEON_MULTIPLY(h, 0x0e);
++ }
++
++ return vreinterpretq_m128i_u8(vld1q_u8((uint8_t *) v));
++#endif
++}
++
++// Assist in expanding the AES cipher key by computing steps towards generating
++// a round key for encryption cipher using data from a and an 8-bit round
++// constant specified in imm8, and store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aeskeygenassist_si128
++//
++// Emits the Advanced Encryption Standard (AES) instruction aeskeygenassist.
++// This instruction generates a round key for AES encryption. See
++// https://kazakov.life/2017/11/01/cryptocurrency-mining-on-ios-devices/
++// for details.
++FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon)
++{
++#if defined(__aarch64__)
++ uint8x16_t _a = vreinterpretq_u8_m128i(a);
++ uint8x16_t v = vqtbl4q_u8(_sse2neon_vld1q_u8_x4(_sse2neon_sbox), _a);
++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x40), _a - 0x40);
++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0x80), _a - 0x80);
++ v = vqtbx4q_u8(v, _sse2neon_vld1q_u8_x4(_sse2neon_sbox + 0xc0), _a - 0xc0);
++
++ uint32x4_t v_u32 = vreinterpretq_u32_u8(v);
++ uint32x4_t ror_v = vorrq_u32(vshrq_n_u32(v_u32, 8), vshlq_n_u32(v_u32, 24));
++ uint32x4_t ror_xor_v = veorq_u32(ror_v, vdupq_n_u32(rcon));
++
++ return vreinterpretq_m128i_u32(vtrn2q_u32(v_u32, ror_xor_v));
++
++#else /* ARMv7-A NEON implementation */
++ uint32_t X1 = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0x55));
++ uint32_t X3 = _mm_cvtsi128_si32(_mm_shuffle_epi32(a, 0xFF));
++ for (int i = 0; i < 4; ++i) {
++ ((uint8_t *) &X1)[i] = _sse2neon_sbox[((uint8_t *) &X1)[i]];
++ ((uint8_t *) &X3)[i] = _sse2neon_sbox[((uint8_t *) &X3)[i]];
++ }
++ return _mm_set_epi32(((X3 >> 8) | (X3 << 24)) ^ rcon, X3,
++ ((X1 >> 8) | (X1 << 24)) ^ rcon, X1);
++#endif
++}
++#undef SSE2NEON_AES_SBOX
++#undef SSE2NEON_AES_RSBOX
++
++#if defined(__aarch64__)
++#undef SSE2NEON_XT
++#undef SSE2NEON_MULTIPLY
++#endif
++
++#else /* __ARM_FEATURE_CRYPTO */
++// Implements equivalent of 'aesenc' by combining AESE (with an empty key) and
++// AESMC and then manually applying the real key as an xor operation. This
++// unfortunately means an additional xor op; the compiler should be able to
++// optimize this away for repeated calls however. See
++// https://blog.michaelbrase.com/2018/05/08/emulating-x86-aes-intrinsics-on-armv8-a
++// for more details.
++FORCE_INLINE __m128i _mm_aesenc_si128(__m128i a, __m128i b)
++{
++ return vreinterpretq_m128i_u8(veorq_u8(
++ vaesmcq_u8(vaeseq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))),
++ vreinterpretq_u8_m128i(b)));
++}
++
++// Perform one round of an AES decryption flow on data (state) in a using the
++// round key in RoundKey, and store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdec_si128
++FORCE_INLINE __m128i _mm_aesdec_si128(__m128i a, __m128i RoundKey)
++{
++ return vreinterpretq_m128i_u8(veorq_u8(
++ vaesimcq_u8(vaesdq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0))),
++ vreinterpretq_u8_m128i(RoundKey)));
++}
++
++// Perform the last round of an AES encryption flow on data (state) in a using
++// the round key in RoundKey, and store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesenclast_si128
++FORCE_INLINE __m128i _mm_aesenclast_si128(__m128i a, __m128i RoundKey)
++{
++ return _mm_xor_si128(vreinterpretq_m128i_u8(vaeseq_u8(
++ vreinterpretq_u8_m128i(a), vdupq_n_u8(0))),
++ RoundKey);
++}
++
++// Perform the last round of an AES decryption flow on data (state) in a using
++// the round key in RoundKey, and store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesdeclast_si128
++FORCE_INLINE __m128i _mm_aesdeclast_si128(__m128i a, __m128i RoundKey)
++{
++ return vreinterpretq_m128i_u8(
++ veorq_u8(vaesdq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0)),
++ vreinterpretq_u8_m128i(RoundKey)));
++}
++
++// Perform the InvMixColumns transformation on a and store the result in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aesimc_si128
++FORCE_INLINE __m128i _mm_aesimc_si128(__m128i a)
++{
++ return vreinterpretq_m128i_u8(vaesimcq_u8(vreinterpretq_u8_m128i(a)));
++}
++
++// Assist in expanding the AES cipher key by computing steps towards generating
++// a round key for encryption cipher using data from a and an 8-bit round
++// constant specified in imm8, and store the result in dst."
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_aeskeygenassist_si128
++FORCE_INLINE __m128i _mm_aeskeygenassist_si128(__m128i a, const int rcon)
++{
++ // AESE does ShiftRows and SubBytes on A
++ uint8x16_t u8 = vaeseq_u8(vreinterpretq_u8_m128i(a), vdupq_n_u8(0));
++
++#ifndef _MSC_VER
++ uint8x16_t dest = {
++ // Undo ShiftRows step from AESE and extract X1 and X3
++ u8[0x4], u8[0x1], u8[0xE], u8[0xB], // SubBytes(X1)
++ u8[0x1], u8[0xE], u8[0xB], u8[0x4], // ROT(SubBytes(X1))
++ u8[0xC], u8[0x9], u8[0x6], u8[0x3], // SubBytes(X3)
++ u8[0x9], u8[0x6], u8[0x3], u8[0xC], // ROT(SubBytes(X3))
++ };
++ uint32x4_t r = {0, (unsigned) rcon, 0, (unsigned) rcon};
++ return vreinterpretq_m128i_u8(dest) ^ vreinterpretq_m128i_u32(r);
++#else
++ // We have to do this hack because MSVC is strictly adhering to the CPP
++ // standard, in particular C++03 8.5.1 sub-section 15, which states that
++ // unions must be initialized by their first member type.
++
++ // As per the Windows ARM64 ABI, it is always little endian, so this works
++ __n128 dest{
++ ((uint64_t) u8.n128_u8[0x4] << 0) | ((uint64_t) u8.n128_u8[0x1] << 8) |
++ ((uint64_t) u8.n128_u8[0xE] << 16) |
++ ((uint64_t) u8.n128_u8[0xB] << 24) |
++ ((uint64_t) u8.n128_u8[0x1] << 32) |
++ ((uint64_t) u8.n128_u8[0xE] << 40) |
++ ((uint64_t) u8.n128_u8[0xB] << 48) |
++ ((uint64_t) u8.n128_u8[0x4] << 56),
++ ((uint64_t) u8.n128_u8[0xC] << 0) | ((uint64_t) u8.n128_u8[0x9] << 8) |
++ ((uint64_t) u8.n128_u8[0x6] << 16) |
++ ((uint64_t) u8.n128_u8[0x3] << 24) |
++ ((uint64_t) u8.n128_u8[0x9] << 32) |
++ ((uint64_t) u8.n128_u8[0x6] << 40) |
++ ((uint64_t) u8.n128_u8[0x3] << 48) |
++ ((uint64_t) u8.n128_u8[0xC] << 56)};
++
++ dest.n128_u32[1] = dest.n128_u32[1] ^ rcon;
++ dest.n128_u32[3] = dest.n128_u32[3] ^ rcon;
++
++ return dest;
++#endif
++}
++#endif
++
++/* Others */
++
++// Perform a carry-less multiplication of two 64-bit integers, selected from a
++// and b according to imm8, and store the results in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_clmulepi64_si128
++FORCE_INLINE __m128i _mm_clmulepi64_si128(__m128i _a, __m128i _b, const int imm)
++{
++ uint64x2_t a = vreinterpretq_u64_m128i(_a);
++ uint64x2_t b = vreinterpretq_u64_m128i(_b);
++ switch (imm & 0x11) {
++ case 0x00:
++ return vreinterpretq_m128i_u64(
++ _sse2neon_vmull_p64(vget_low_u64(a), vget_low_u64(b)));
++ case 0x01:
++ return vreinterpretq_m128i_u64(
++ _sse2neon_vmull_p64(vget_high_u64(a), vget_low_u64(b)));
++ case 0x10:
++ return vreinterpretq_m128i_u64(
++ _sse2neon_vmull_p64(vget_low_u64(a), vget_high_u64(b)));
++ case 0x11:
++ return vreinterpretq_m128i_u64(
++ _sse2neon_vmull_p64(vget_high_u64(a), vget_high_u64(b)));
++ default:
++ abort();
++ }
++}
++
++FORCE_INLINE unsigned int _sse2neon_mm_get_denormals_zero_mode(void)
++{
++ union {
++ fpcr_bitfield field;
++#if defined(__aarch64__) || defined(_M_ARM64)
++ uint64_t value;
++#else
++ uint32_t value;
++#endif
++ } r;
++
++#if defined(__aarch64__) || defined(_M_ARM64)
++ r.value = _sse2neon_get_fpcr();
++#else
++ __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
++#endif
++
++ return r.field.bit24 ? _MM_DENORMALS_ZERO_ON : _MM_DENORMALS_ZERO_OFF;
++}
++
++// Count the number of bits set to 1 in unsigned 32-bit integer a, and
++// return that count in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_popcnt_u32
++FORCE_INLINE int _mm_popcnt_u32(unsigned int a)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++#if __has_builtin(__builtin_popcount)
++ return __builtin_popcount(a);
++#elif defined(_MSC_VER)
++ return _CountOneBits(a);
++#else
++ return (int) vaddlv_u8(vcnt_u8(vcreate_u8((uint64_t) a)));
++#endif
++#else
++ uint32_t count = 0;
++ uint8x8_t input_val, count8x8_val;
++ uint16x4_t count16x4_val;
++ uint32x2_t count32x2_val;
++
++ input_val = vld1_u8((uint8_t *) &a);
++ count8x8_val = vcnt_u8(input_val);
++ count16x4_val = vpaddl_u8(count8x8_val);
++ count32x2_val = vpaddl_u16(count16x4_val);
++
++ vst1_u32(&count, count32x2_val);
++ return count;
++#endif
++}
++
++// Count the number of bits set to 1 in unsigned 64-bit integer a, and
++// return that count in dst.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=_mm_popcnt_u64
++FORCE_INLINE int64_t _mm_popcnt_u64(uint64_t a)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++#if __has_builtin(__builtin_popcountll)
++ return __builtin_popcountll(a);
++#elif defined(_MSC_VER)
++ return _CountOneBits64(a);
++#else
++ return (int64_t) vaddlv_u8(vcnt_u8(vcreate_u8(a)));
++#endif
++#else
++ uint64_t count = 0;
++ uint8x8_t input_val, count8x8_val;
++ uint16x4_t count16x4_val;
++ uint32x2_t count32x2_val;
++ uint64x1_t count64x1_val;
++
++ input_val = vld1_u8((uint8_t *) &a);
++ count8x8_val = vcnt_u8(input_val);
++ count16x4_val = vpaddl_u8(count8x8_val);
++ count32x2_val = vpaddl_u16(count16x4_val);
++ count64x1_val = vpaddl_u32(count32x2_val);
++ vst1_u64(&count, count64x1_val);
++ return count;
++#endif
++}
++
++FORCE_INLINE void _sse2neon_mm_set_denormals_zero_mode(unsigned int flag)
++{
++ // AArch32 Advanced SIMD arithmetic always uses the Flush-to-zero setting,
++ // regardless of the value of the FZ bit.
++ union {
++ fpcr_bitfield field;
++#if defined(__aarch64__) || defined(_M_ARM64)
++ uint64_t value;
++#else
++ uint32_t value;
++#endif
++ } r;
++
++#if defined(__aarch64__) || defined(_M_ARM64)
++ r.value = _sse2neon_get_fpcr();
++#else
++ __asm__ __volatile__("vmrs %0, FPSCR" : "=r"(r.value)); /* read */
++#endif
++
++ r.field.bit24 = (flag & _MM_DENORMALS_ZERO_MASK) == _MM_DENORMALS_ZERO_ON;
++
++#if defined(__aarch64__) || defined(_M_ARM64)
++ _sse2neon_set_fpcr(r.value);
++#else
++ __asm__ __volatile__("vmsr FPSCR, %0" ::"r"(r)); /* write */
++#endif
++}
++
++// Return the current 64-bit value of the processor's time-stamp counter.
++// https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=rdtsc
++FORCE_INLINE uint64_t _rdtsc(void)
++{
++#if defined(__aarch64__) || defined(_M_ARM64)
++ uint64_t val;
++
++ /* According to ARM DDI 0487F.c, from Armv8.0 to Armv8.5 inclusive, the
++ * system counter is at least 56 bits wide; from Armv8.6, the counter
++ * must be 64 bits wide. So the system counter could be less than 64
++ * bits wide and it is attributed with the flag 'cap_user_time_short'
++ * is true.
++ */
++#if defined(_MSC_VER)
++ val = _ReadStatusReg(ARM64_SYSREG(3, 3, 14, 0, 2));
++#else
++ __asm__ __volatile__("mrs %0, cntvct_el0" : "=r"(val));
++#endif
++
++ return val;
++#else
++ uint32_t pmccntr, pmuseren, pmcntenset;
++ // Read the user mode Performance Monitoring Unit (PMU)
++ // User Enable Register (PMUSERENR) access permissions.
++ __asm__ __volatile__("mrc p15, 0, %0, c9, c14, 0" : "=r"(pmuseren));
++ if (pmuseren & 1) { // Allows reading PMUSERENR for user mode code.
++ __asm__ __volatile__("mrc p15, 0, %0, c9, c12, 1" : "=r"(pmcntenset));
++ if (pmcntenset & 0x80000000UL) { // Is it counting?
++ __asm__ __volatile__("mrc p15, 0, %0, c9, c13, 0" : "=r"(pmccntr));
++ // The counter is set up to count every 64th cycle
++ return (uint64_t) (pmccntr) << 6;
++ }
++ }
++
++ // Fallback to syscall as we can't enable PMUSERENR in user mode.
++ struct timeval tv;
++ gettimeofday(&tv, NULL);
++ return (uint64_t) (tv.tv_sec) * 1000000 + tv.tv_usec;
++#endif
++}
++
++#if defined(__GNUC__) || defined(__clang__)
++#pragma pop_macro("ALIGN_STRUCT")
++#pragma pop_macro("FORCE_INLINE")
++#endif
++
++#if defined(__GNUC__) && !defined(__clang__)
++#pragma GCC pop_options
++#endif
++
++#endif
--- /dev/null
+Author: A. Maitland Bottoms <bottoms@debian.org>
+Forwarded: not-needed
+Description: update doxygen
+ For Debian version of Doxygen.
+
+--- a/docs/Doxyfile.in
++++ b/docs/Doxyfile.in
+@@ -1,4 +1,4 @@
+-# Doxyfile 1.8.6
++# Doxyfile 1.9.4
+
+ # This file describes the settings to be used by the documentation system
+ # doxygen (www.doxygen.org) for a project.
+@@ -12,16 +12,25 @@
+ # For lists, items can also be appended using:
+ # TAG += value [value, ...]
+ # Values that contain spaces should be placed between quotes (\" \").
++#
++# Note:
++#
++# Use doxygen to compare the used configuration file with the template
++# configuration file:
++# doxygen -x [configFile]
++# Use doxygen to compare the used configuration file with the template
++# configuration file without replacing the environment variables:
++# doxygen -x_noenv [configFile]
+
+ #---------------------------------------------------------------------------
+ # Project related configuration options
+ #---------------------------------------------------------------------------
+
+-# This tag specifies the encoding used for all characters in the config file
+-# that follow. The default is UTF-8 which is also the encoding used for all text
+-# before the first occurrence of this tag. Doxygen uses libiconv (or the iconv
+-# built into libc) for the transcoding. See http://www.gnu.org/software/libiconv
+-# for the list of possible encodings.
++# This tag specifies the encoding used for all characters in the configuration
++# file that follow. The default is UTF-8 which is also the encoding used for all
++# text before the first occurrence of this tag. Doxygen uses libiconv (or the
++# iconv built into libc) for the transcoding. See
++# https://www.gnu.org/software/libiconv/ for the list of possible encodings.
+ # The default value is: UTF-8.
+
+ DOXYFILE_ENCODING = UTF-8
+@@ -46,10 +55,10 @@
+
+ PROJECT_BRIEF = "Architecture-tuned implementations of math kernels"
+
+-# With the PROJECT_LOGO tag one can specify an logo or icon that is included in
+-# the documentation. The maximum height of the logo should not exceed 55 pixels
+-# and the maximum width should not exceed 200 pixels. Doxygen will copy the logo
+-# to the output directory.
++# With the PROJECT_LOGO tag one can specify a logo or an icon that is included
++# in the documentation. The maximum height of the logo should not exceed 55
++# pixels and the maximum width should not exceed 200 pixels. Doxygen will copy
++# the logo to the output directory.
+
+ PROJECT_LOGO = @CMAKE_SOURCE_DIR@/docs/volk_logo_small.png
+
+@@ -58,44 +67,61 @@
+ # entered, it will be relative to the location where doxygen was started. If
+ # left blank the current directory will be used.
+
+-# TODO: configure this to be a special docs directory. nw tried, but running
+-# make doc won' create the directory, but with doxygen it will. why?
+-
+ OUTPUT_DIRECTORY =
+
+-# If the CREATE_SUBDIRS tag is set to YES, then doxygen will create 4096 sub-
+-# directories (in 2 levels) under the output directory of each output format and
+-# will distribute the generated files over these directories. Enabling this
++# If the CREATE_SUBDIRS tag is set to YES then doxygen will create up to 4096
++# sub-directories (in 2 levels) under the output directory of each output format
++# and will distribute the generated files over these directories. Enabling this
+ # option can be useful when feeding doxygen a huge amount of source files, where
+ # putting all generated files in the same directory would otherwise causes
+-# performance problems for the file system.
++# performance problems for the file system. Adapt CREATE_SUBDIRS_LEVEL to
++# control the number of sub-directories.
+ # The default value is: NO.
+
+ CREATE_SUBDIRS = NO
+
++# Controls the number of sub-directories that will be created when
++# CREATE_SUBDIRS tag is set to YES. Level 0 represents 16 directories, and every
++# level increment doubles the number of directories, resulting in 4096
++# directories at level 8 which is the default and also the maximum value. The
++# sub-directories are organized in 2 levels, the first level always has a fixed
++# numer of 16 directories.
++# Minimum value: 0, maximum value: 8, default value: 8.
++# This tag requires that the tag CREATE_SUBDIRS is set to YES.
++
++CREATE_SUBDIRS_LEVEL = 8
++
++# If the ALLOW_UNICODE_NAMES tag is set to YES, doxygen will allow non-ASCII
++# characters to appear in the names of generated files. If set to NO, non-ASCII
++# characters will be escaped, for example _xE3_x81_x84 will be used for Unicode
++# U+3044.
++# The default value is: NO.
++
++ALLOW_UNICODE_NAMES = NO
++
+ # The OUTPUT_LANGUAGE tag is used to specify the language in which all
+ # documentation generated by doxygen is written. Doxygen will use this
+ # information to generate all constant output in the proper language.
+-# Possible values are: Afrikaans, Arabic, Armenian, Brazilian, Catalan, Chinese,
+-# Chinese-Traditional, Croatian, Czech, Danish, Dutch, English (United States),
+-# Esperanto, Farsi (Persian), Finnish, French, German, Greek, Hungarian,
+-# Indonesian, Italian, Japanese, Japanese-en (Japanese with English messages),
+-# Korean, Korean-en (Korean with English messages), Latvian, Lithuanian,
+-# Macedonian, Norwegian, Persian (Farsi), Polish, Portuguese, Romanian, Russian,
+-# Serbian, Serbian-Cyrillic, Slovak, Slovene, Spanish, Swedish, Turkish,
+-# Ukrainian and Vietnamese.
++# Possible values are: Afrikaans, Arabic, Armenian, Brazilian, Bulgarian,
++# Catalan, Chinese, Chinese-Traditional, Croatian, Czech, Danish, Dutch, English
++# (United States), Esperanto, Farsi (Persian), Finnish, French, German, Greek,
++# Hindi, Hungarian, Indonesian, Italian, Japanese, Japanese-en (Japanese with
++# English messages), Korean, Korean-en (Korean with English messages), Latvian,
++# Lithuanian, Macedonian, Norwegian, Persian (Farsi), Polish, Portuguese,
++# Romanian, Russian, Serbian, Serbian-Cyrillic, Slovak, Slovene, Spanish,
++# Swedish, Turkish, Ukrainian and Vietnamese.
+ # The default value is: English.
+
+ OUTPUT_LANGUAGE = English
+
+-# If the BRIEF_MEMBER_DESC tag is set to YES doxygen will include brief member
++# If the BRIEF_MEMBER_DESC tag is set to YES, doxygen will include brief member
+ # descriptions after the members that are listed in the file and class
+ # documentation (similar to Javadoc). Set to NO to disable this.
+ # The default value is: YES.
+
+ BRIEF_MEMBER_DESC = YES
+
+-# If the REPEAT_BRIEF tag is set to YES doxygen will prepend the brief
++# If the REPEAT_BRIEF tag is set to YES, doxygen will prepend the brief
+ # description of a member or function before the detailed description
+ #
+ # Note: If both HIDE_UNDOC_MEMBERS and BRIEF_MEMBER_DESC are set to NO, the
+@@ -140,7 +166,7 @@
+
+ INLINE_INHERITED_MEMB = NO
+
+-# If the FULL_PATH_NAMES tag is set to YES doxygen will prepend the full path
++# If the FULL_PATH_NAMES tag is set to YES, doxygen will prepend the full path
+ # before files name in the file list and in the header files. If set to NO the
+ # shortest path that makes the file name unique will be used
+ # The default value is: YES.
+@@ -157,7 +183,8 @@
+ # will be relative from the directory where doxygen is started.
+ # This tag requires that the tag FULL_PATH_NAMES is set to YES.
+
+-STRIP_FROM_PATH = @CMAKE_BINARY_DIR@ @CMAKE_SOURCE_DIR@
++STRIP_FROM_PATH = @CMAKE_BINARY_DIR@ \
++ @CMAKE_SOURCE_DIR@
+
+ # The STRIP_FROM_INC_PATH tag can be used to strip a user-defined part of the
+ # path mentioned in the documentation of a class, which tells the reader which
+@@ -166,7 +193,8 @@
+ # specify the list of include paths that are normally passed to the compiler
+ # using the -I flag.
+
+-STRIP_FROM_INC_PATH = @CMAKE_SOURCE_DIR@ @CMAKE_BINARY_DIR@
++STRIP_FROM_INC_PATH = @CMAKE_SOURCE_DIR@ \
++ @CMAKE_BINARY_DIR@
+
+ # If the SHORT_NAMES tag is set to YES, doxygen will generate much shorter (but
+ # less readable) file names. This can be useful is your file systems doesn't
+@@ -184,6 +212,16 @@
+
+ JAVADOC_AUTOBRIEF = NO
+
++# If the JAVADOC_BANNER tag is set to YES then doxygen will interpret a line
++# such as
++# /***************
++# as being the beginning of a Javadoc-style comment "banner". If set to NO, the
++# Javadoc-style will behave just like regular comments and it will not be
++# interpreted by doxygen.
++# The default value is: NO.
++
++JAVADOC_BANNER = NO
++
+ # If the QT_AUTOBRIEF tag is set to YES then doxygen will interpret the first
+ # line (until the first dot) of a Qt-style comment as the brief description. If
+ # set to NO, the Qt-style will behave just like regular Qt-style comments (thus
+@@ -204,15 +242,23 @@
+
+ MULTILINE_CPP_IS_BRIEF = NO
+
++# By default Python docstrings are displayed as preformatted text and doxygen's
++# special commands cannot be used. By setting PYTHON_DOCSTRING to NO the
++# doxygen's special commands can be used and the contents of the docstring
++# documentation blocks is shown as doxygen documentation.
++# The default value is: YES.
++
++PYTHON_DOCSTRING = YES
++
+ # If the INHERIT_DOCS tag is set to YES then an undocumented member inherits the
+ # documentation from any documented member that it re-implements.
+ # The default value is: YES.
+
+ INHERIT_DOCS = YES
+
+-# If the SEPARATE_MEMBER_PAGES tag is set to YES, then doxygen will produce a
+-# new page for each member. If set to NO, the documentation of a member will be
+-# part of the file/class/namespace that contains it.
++# If the SEPARATE_MEMBER_PAGES tag is set to YES then doxygen will produce a new
++# page for each member. If set to NO, the documentation of a member will be part
++# of the file/class/namespace that contains it.
+ # The default value is: NO.
+
+ SEPARATE_MEMBER_PAGES = NO
+@@ -227,20 +273,19 @@
+ # the documentation. An alias has the form:
+ # name=value
+ # For example adding
+-# "sideeffect=@par Side Effects:\n"
++# "sideeffect=@par Side Effects:^^"
+ # will allow you to put the command \sideeffect (or @sideeffect) in the
+ # documentation, which will result in a user-defined paragraph with heading
+-# "Side Effects:". You can put \n's in the value part of an alias to insert
+-# newlines.
++# "Side Effects:". Note that you cannot put \n's in the value part of an alias
++# to insert newlines (in the resulting output). You can put ^^ in the value part
++# of an alias to insert a newline as if a physical newline was in the original
++# file. When you need a literal { or } or , in the value part of an alias you
++# have to escape them by means of a backslash (\), this can lead to conflicts
++# with the commands \{ and \} for these it is advised to use the version @{ and
++# @} or use a double escape (\\{ and \\})
+
+ ALIASES =
+
+-# This tag can be used to specify a number of word-keyword mappings (TCL only).
+-# A mapping has the form "name=value". For example adding "class=itcl::class"
+-# will allow you to use the command class in the itcl::class meaning.
+-
+-TCL_SUBST =
+-
+ # Set the OPTIMIZE_OUTPUT_FOR_C tag to YES if your project consists of C sources
+ # only. Doxygen will then generate output that is more tailored for C. For
+ # instance, some of the names that are used will be different. The list of all
+@@ -269,25 +314,40 @@
+
+ OPTIMIZE_OUTPUT_VHDL = NO
+
++# Set the OPTIMIZE_OUTPUT_SLICE tag to YES if your project consists of Slice
++# sources only. Doxygen will then generate output that is more tailored for that
++# language. For instance, namespaces will be presented as modules, types will be
++# separated into more groups, etc.
++# The default value is: NO.
++
++OPTIMIZE_OUTPUT_SLICE = NO
++
+ # Doxygen selects the parser to use depending on the extension of the files it
+ # parses. With this tag you can assign which parser to use for a given
+ # extension. Doxygen has a built-in mapping, but you can override or extend it
+ # using this tag. The format is ext=language, where ext is a file extension, and
+-# language is one of the parsers supported by doxygen: IDL, Java, Javascript,
+-# C#, C, C++, D, PHP, Objective-C, Python, Fortran, VHDL. For instance to make
+-# doxygen treat .inc files as Fortran files (default is PHP), and .f files as C
+-# (default is Fortran), use: inc=Fortran f=C.
++# language is one of the parsers supported by doxygen: IDL, Java, JavaScript,
++# Csharp (C#), C, C++, Lex, D, PHP, md (Markdown), Objective-C, Python, Slice,
++# VHDL, Fortran (fixed format Fortran: FortranFixed, free formatted Fortran:
++# FortranFree, unknown formatted Fortran: Fortran. In the later case the parser
++# tries to guess whether the code is fixed or free formatted code, this is the
++# default for Fortran type files). For instance to make doxygen treat .inc files
++# as Fortran files (default is PHP), and .f files as C (default is Fortran),
++# use: inc=Fortran f=C.
+ #
+-# Note For files without extension you can use no_extension as a placeholder.
++# Note: For files without extension you can use no_extension as a placeholder.
+ #
+ # Note that for custom extensions you also need to set FILE_PATTERNS otherwise
+-# the files are not read by doxygen.
++# the files are not read by doxygen. When specifying no_extension you should add
++# * to the FILE_PATTERNS.
++#
++# Note see also the list of default file extension mappings.
+
+ EXTENSION_MAPPING =
+
+ # If the MARKDOWN_SUPPORT tag is enabled then doxygen pre-processes all comments
+ # according to the Markdown format, which allows for more readable
+-# documentation. See http://daringfireball.net/projects/markdown/ for details.
++# documentation. See https://daringfireball.net/projects/markdown/ for details.
+ # The output of markdown processing is further processed by doxygen, so you can
+ # mix doxygen, HTML, and XML commands with Markdown formatting. Disable only in
+ # case of backward compatibilities issues.
+@@ -295,10 +355,19 @@
+
+ MARKDOWN_SUPPORT = YES
+
++# When the TOC_INCLUDE_HEADINGS tag is set to a non-zero value, all headings up
++# to that level are automatically included in the table of contents, even if
++# they do not have an id attribute.
++# Note: This feature currently applies only to Markdown headings.
++# Minimum value: 0, maximum value: 99, default value: 5.
++# This tag requires that the tag MARKDOWN_SUPPORT is set to YES.
++
++TOC_INCLUDE_HEADINGS = 5
++
+ # When enabled doxygen tries to link words that correspond to documented
+ # classes, or namespaces to their corresponding documentation. Such a link can
+-# be prevented in individual cases by by putting a % sign in front of the word
+-# or globally by setting AUTOLINK_SUPPORT to NO.
++# be prevented in individual cases by putting a % sign in front of the word or
++# globally by setting AUTOLINK_SUPPORT to NO.
+ # The default value is: YES.
+
+ AUTOLINK_SUPPORT = YES
+@@ -320,7 +389,7 @@
+ CPP_CLI_SUPPORT = NO
+
+ # Set the SIP_SUPPORT tag to YES if your project consists of sip (see:
+-# http://www.riverbankcomputing.co.uk/software/sip/intro) sources only. Doxygen
++# https://www.riverbankcomputing.com/software/sip/intro) sources only. Doxygen
+ # will parse them like normal C++ but will assume all classes use public instead
+ # of private inheritance when no explicit protection keyword is present.
+ # The default value is: NO.
+@@ -338,13 +407,20 @@
+ IDL_PROPERTY_SUPPORT = YES
+
+ # If member grouping is used in the documentation and the DISTRIBUTE_GROUP_DOC
+-# tag is set to YES, then doxygen will reuse the documentation of the first
++# tag is set to YES then doxygen will reuse the documentation of the first
+ # member in the group (if any) for the other members of the group. By default
+ # all members of a group must be documented explicitly.
+ # The default value is: NO.
+
+ DISTRIBUTE_GROUP_DOC = NO
+
++# If one adds a struct or class to a group and this option is enabled, then also
++# any nested class or struct is added to the same group. By default this option
++# is disabled and one has to add nested compounds explicitly via \ingroup.
++# The default value is: NO.
++
++GROUP_NESTED_COMPOUNDS = NO
++
+ # Set the SUBGROUPING tag to YES to allow class member groups of the same type
+ # (for instance a group of public functions) to be put as a subgroup of that
+ # type (e.g. under the Public Functions section). Set it to NO to prevent
+@@ -399,11 +475,24 @@
+
+ LOOKUP_CACHE_SIZE = 0
+
++# The NUM_PROC_THREADS specifies the number of threads doxygen is allowed to use
++# during processing. When set to 0 doxygen will based this on the number of
++# cores available in the system. You can set it explicitly to a value larger
++# than 0 to get more control over the balance between CPU load and processing
++# speed. At this moment only the input processing can be done using multiple
++# threads. Since this is still an experimental feature the default is set to 1,
++# which effectively disables parallel processing. Please report any issues you
++# encounter. Generating dot graphs in parallel is controlled by the
++# DOT_NUM_THREADS setting.
++# Minimum value: 0, maximum value: 32, default value: 1.
++
++NUM_PROC_THREADS = 1
++
+ #---------------------------------------------------------------------------
+ # Build related configuration options
+ #---------------------------------------------------------------------------
+
+-# If the EXTRACT_ALL tag is set to YES doxygen will assume all entities in
++# If the EXTRACT_ALL tag is set to YES, doxygen will assume all entities in
+ # documentation are documented, even if no documentation was available. Private
+ # class members and static file members will be hidden unless the
+ # EXTRACT_PRIVATE respectively EXTRACT_STATIC tags are set to YES.
+@@ -413,35 +502,41 @@
+
+ EXTRACT_ALL = YES
+
+-# If the EXTRACT_PRIVATE tag is set to YES all private members of a class will
++# If the EXTRACT_PRIVATE tag is set to YES, all private members of a class will
+ # be included in the documentation.
+ # The default value is: NO.
+
+ EXTRACT_PRIVATE = NO
+
+-# If the EXTRACT_PACKAGE tag is set to YES all members with package or internal
++# If the EXTRACT_PRIV_VIRTUAL tag is set to YES, documented private virtual
++# methods of a class will be included in the documentation.
++# The default value is: NO.
++
++EXTRACT_PRIV_VIRTUAL = NO
++
++# If the EXTRACT_PACKAGE tag is set to YES, all members with package or internal
+ # scope will be included in the documentation.
+ # The default value is: NO.
+
+ EXTRACT_PACKAGE = NO
+
+-# If the EXTRACT_STATIC tag is set to YES all static members of a file will be
++# If the EXTRACT_STATIC tag is set to YES, all static members of a file will be
+ # included in the documentation.
+ # The default value is: NO.
+
+ EXTRACT_STATIC = YES
+
+-# If the EXTRACT_LOCAL_CLASSES tag is set to YES classes (and structs) defined
+-# locally in source files will be included in the documentation. If set to NO
++# If the EXTRACT_LOCAL_CLASSES tag is set to YES, classes (and structs) defined
++# locally in source files will be included in the documentation. If set to NO,
+ # only classes defined in header files are included. Does not have any effect
+ # for Java sources.
+ # The default value is: YES.
+
+ EXTRACT_LOCAL_CLASSES = YES
+
+-# This flag is only useful for Objective-C code. When set to YES local methods,
++# This flag is only useful for Objective-C code. If set to YES, local methods,
+ # which are defined in the implementation section but not in the interface are
+-# included in the documentation. If set to NO only methods in the interface are
++# included in the documentation. If set to NO, only methods in the interface are
+ # included.
+ # The default value is: NO.
+
+@@ -456,6 +551,13 @@
+
+ EXTRACT_ANON_NSPACES = NO
+
++# If this flag is set to YES, the name of an unnamed parameter in a declaration
++# will be determined by the corresponding definition. By default unnamed
++# parameters remain unnamed in the output.
++# The default value is: YES.
++
++RESOLVE_UNNAMED_PARAMS = YES
++
+ # If the HIDE_UNDOC_MEMBERS tag is set to YES, doxygen will hide all
+ # undocumented members inside documented classes or files. If set to NO these
+ # members will be included in the various overviews, but no documentation
+@@ -466,21 +568,21 @@
+
+ # If the HIDE_UNDOC_CLASSES tag is set to YES, doxygen will hide all
+ # undocumented classes that are normally visible in the class hierarchy. If set
+-# to NO these classes will be included in the various overviews. This option has
+-# no effect if EXTRACT_ALL is enabled.
++# to NO, these classes will be included in the various overviews. This option
++# has no effect if EXTRACT_ALL is enabled.
+ # The default value is: NO.
+
+ HIDE_UNDOC_CLASSES = YES
+
+ # If the HIDE_FRIEND_COMPOUNDS tag is set to YES, doxygen will hide all friend
+-# (class|struct|union) declarations. If set to NO these declarations will be
+-# included in the documentation.
++# declarations. If set to NO, these declarations will be included in the
++# documentation.
+ # The default value is: NO.
+
+ HIDE_FRIEND_COMPOUNDS = NO
+
+ # If the HIDE_IN_BODY_DOCS tag is set to YES, doxygen will hide any
+-# documentation blocks found inside the body of a function. If set to NO these
++# documentation blocks found inside the body of a function. If set to NO, these
+ # blocks will be appended to the function's detailed documentation block.
+ # The default value is: NO.
+
+@@ -493,22 +595,42 @@
+
+ INTERNAL_DOCS = NO
+
+-# If the CASE_SENSE_NAMES tag is set to NO then doxygen will only generate file
+-# names in lower-case letters. If set to YES upper-case letters are also
+-# allowed. This is useful if you have classes or files whose names only differ
+-# in case and if your file system supports case sensitive file names. Windows
+-# and Mac users are advised to set this option to NO.
++# With the correct setting of option CASE_SENSE_NAMES doxygen will better be
++# able to match the capabilities of the underlying filesystem. In case the
++# filesystem is case sensitive (i.e. it supports files in the same directory
++# whose names only differ in casing), the option must be set to YES to properly
++# deal with such files in case they appear in the input. For filesystems that
++# are not case sensitive the option should be set to NO to properly deal with
++# output files written for symbols that only differ in casing, such as for two
++# classes, one named CLASS and the other named Class, and to also support
++# references to files without having to specify the exact matching casing. On
++# Windows (including Cygwin) and MacOS, users should typically set this option
++# to NO, whereas on Linux or other Unix flavors it should typically be set to
++# YES.
+ # The default value is: system dependent.
+
+ CASE_SENSE_NAMES = NO
+
+ # If the HIDE_SCOPE_NAMES tag is set to NO then doxygen will show members with
+-# their full class and namespace scopes in the documentation. If set to YES the
++# their full class and namespace scopes in the documentation. If set to YES, the
+ # scope will be hidden.
+ # The default value is: NO.
+
+ HIDE_SCOPE_NAMES = NO
+
++# If the HIDE_COMPOUND_REFERENCE tag is set to NO (default) then doxygen will
++# append additional text to a page's title, such as Class Reference. If set to
++# YES the compound reference will be hidden.
++# The default value is: NO.
++
++HIDE_COMPOUND_REFERENCE= NO
++
++# If the SHOW_HEADERFILE tag is set to YES then the documentation for a class
++# will show which file needs to be included to use the class.
++# The default value is: YES.
++
++SHOW_HEADERFILE = YES
++
+ # If the SHOW_INCLUDE_FILES tag is set to YES then doxygen will put a list of
+ # the files that are included by a file in the documentation of that file.
+ # The default value is: YES.
+@@ -536,14 +658,14 @@
+
+ # If the SORT_MEMBER_DOCS tag is set to YES then doxygen will sort the
+ # (detailed) documentation of file and class members alphabetically by member
+-# name. If set to NO the members will appear in declaration order.
++# name. If set to NO, the members will appear in declaration order.
+ # The default value is: YES.
+
+ SORT_MEMBER_DOCS = YES
+
+ # If the SORT_BRIEF_DOCS tag is set to YES then doxygen will sort the brief
+ # descriptions of file, namespace and class members alphabetically by member
+-# name. If set to NO the members will appear in declaration order. Note that
++# name. If set to NO, the members will appear in declaration order. Note that
+ # this will also influence the order of the classes in the class list.
+ # The default value is: NO.
+
+@@ -588,27 +710,25 @@
+
+ STRICT_PROTO_MATCHING = NO
+
+-# The GENERATE_TODOLIST tag can be used to enable ( YES) or disable ( NO) the
+-# todo list. This list is created by putting \todo commands in the
+-# documentation.
++# The GENERATE_TODOLIST tag can be used to enable (YES) or disable (NO) the todo
++# list. This list is created by putting \todo commands in the documentation.
+ # The default value is: YES.
+
+ GENERATE_TODOLIST = YES
+
+-# The GENERATE_TESTLIST tag can be used to enable ( YES) or disable ( NO) the
+-# test list. This list is created by putting \test commands in the
+-# documentation.
++# The GENERATE_TESTLIST tag can be used to enable (YES) or disable (NO) the test
++# list. This list is created by putting \test commands in the documentation.
+ # The default value is: YES.
+
+ GENERATE_TESTLIST = YES
+
+-# The GENERATE_BUGLIST tag can be used to enable ( YES) or disable ( NO) the bug
++# The GENERATE_BUGLIST tag can be used to enable (YES) or disable (NO) the bug
+ # list. This list is created by putting \bug commands in the documentation.
+ # The default value is: YES.
+
+ GENERATE_BUGLIST = YES
+
+-# The GENERATE_DEPRECATEDLIST tag can be used to enable ( YES) or disable ( NO)
++# The GENERATE_DEPRECATEDLIST tag can be used to enable (YES) or disable (NO)
+ # the deprecated list. This list is created by putting \deprecated commands in
+ # the documentation.
+ # The default value is: YES.
+@@ -633,8 +753,8 @@
+ MAX_INITIALIZER_LINES = 30
+
+ # Set the SHOW_USED_FILES tag to NO to disable the list of files generated at
+-# the bottom of the documentation of classes and structs. If set to YES the list
+-# will mention the files that were used to generate the documentation.
++# the bottom of the documentation of classes and structs. If set to YES, the
++# list will mention the files that were used to generate the documentation.
+ # The default value is: YES.
+
+ SHOW_USED_FILES = NO
+@@ -668,7 +788,8 @@
+ # output files in an output format independent way. To create the layout file
+ # that represents doxygen's defaults, run doxygen with the -l option. You can
+ # optionally specify a file name after the option, if omitted DoxygenLayout.xml
+-# will be used as the name of the layout file.
++# will be used as the name of the layout file. See also section "Changing the
++# layout of pages" for information.
+ #
+ # Note that if you run doxygen from a directory containing a file called
+ # DoxygenLayout.xml, doxygen will parse it automatically even if the LAYOUT_FILE
+@@ -679,11 +800,10 @@
+ # The CITE_BIB_FILES tag can be used to specify one or more bib files containing
+ # the reference definitions. This must be a list of .bib files. The .bib
+ # extension is automatically appended if omitted. This requires the bibtex tool
+-# to be installed. See also http://en.wikipedia.org/wiki/BibTeX for more info.
++# to be installed. See also https://en.wikipedia.org/wiki/BibTeX for more info.
+ # For LaTeX the style of the bibliography can be controlled using
+ # LATEX_BIB_STYLE. To use this feature you need bibtex and perl available in the
+-# search path. Do not use file names with spaces, bibtex cannot handle them. See
+-# also \cite for info how to create references.
++# search path. See also \cite for info how to create references.
+
+ CITE_BIB_FILES =
+
+@@ -699,7 +819,7 @@
+ QUIET = NO
+
+ # The WARNINGS tag can be used to turn on/off the warning messages that are
+-# generated to standard error ( stderr) by doxygen. If WARNINGS is set to YES
++# generated to standard error (stderr) by doxygen. If WARNINGS is set to YES
+ # this implies that the warnings are on.
+ #
+ # Tip: Turn warnings on while writing the documentation.
+@@ -707,7 +827,7 @@
+
+ WARNINGS = YES
+
+-# If the WARN_IF_UNDOCUMENTED tag is set to YES, then doxygen will generate
++# If the WARN_IF_UNDOCUMENTED tag is set to YES then doxygen will generate
+ # warnings for undocumented members. If EXTRACT_ALL is set to YES then this flag
+ # will automatically be disabled.
+ # The default value is: YES.
+@@ -715,34 +835,66 @@
+ WARN_IF_UNDOCUMENTED = YES
+
+ # If the WARN_IF_DOC_ERROR tag is set to YES, doxygen will generate warnings for
+-# potential errors in the documentation, such as not documenting some parameters
+-# in a documented function, or documenting parameters that don't exist or using
+-# markup commands wrongly.
++# potential errors in the documentation, such as documenting some parameters in
++# a documented function twice, or documenting parameters that don't exist or
++# using markup commands wrongly.
+ # The default value is: YES.
+
+ WARN_IF_DOC_ERROR = YES
+
++# If WARN_IF_INCOMPLETE_DOC is set to YES, doxygen will warn about incomplete
++# function parameter documentation. If set to NO, doxygen will accept that some
++# parameters have no documentation without warning.
++# The default value is: YES.
++
++WARN_IF_INCOMPLETE_DOC = YES
++
+ # This WARN_NO_PARAMDOC option can be enabled to get warnings for functions that
+ # are documented, but have no documentation for their parameters or return
+-# value. If set to NO doxygen will only warn about wrong or incomplete parameter
+-# documentation, but not about the absence of documentation.
++# value. If set to NO, doxygen will only warn about wrong parameter
++# documentation, but not about the absence of documentation. If EXTRACT_ALL is
++# set to YES then this flag will automatically be disabled. See also
++# WARN_IF_INCOMPLETE_DOC
+ # The default value is: NO.
+
+ WARN_NO_PARAMDOC = NO
+
++# If the WARN_AS_ERROR tag is set to YES then doxygen will immediately stop when
++# a warning is encountered. If the WARN_AS_ERROR tag is set to FAIL_ON_WARNINGS
++# then doxygen will continue running as if WARN_AS_ERROR tag is set to NO, but
++# at the end of the doxygen process doxygen will return with a non-zero status.
++# Possible values are: NO, YES and FAIL_ON_WARNINGS.
++# The default value is: NO.
++
++WARN_AS_ERROR = NO
++
+ # The WARN_FORMAT tag determines the format of the warning messages that doxygen
+ # can produce. The string should contain the $file, $line, and $text tags, which
+ # will be replaced by the file and line number from which the warning originated
+ # and the warning text. Optionally the format may contain $version, which will
+ # be replaced by the version of the file (if it could be obtained via
+ # FILE_VERSION_FILTER)
++# See also: WARN_LINE_FORMAT
+ # The default value is: $file:$line: $text.
+
+ WARN_FORMAT = "$file:$line: $text"
+
++# In the $text part of the WARN_FORMAT command it is possible that a reference
++# to a more specific place is given. To make it easier to jump to this place
++# (outside of doxygen) the user can define a custom "cut" / "paste" string.
++# Example:
++# WARN_LINE_FORMAT = "'vi $file +$line'"
++# See also: WARN_FORMAT
++# The default value is: at line $line of file $file.
++
++WARN_LINE_FORMAT = "at line $line of file $file"
++
+ # The WARN_LOGFILE tag can be used to specify a file to which warning and error
+ # messages should be written. If left blank the output is written to standard
+-# error (stderr).
++# error (stderr). In case the file specified cannot be opened for writing the
++# warning and error messages are written to standard error. When as file - is
++# specified the warning and error messages are written to standard output
++# (stdout).
+
+ WARN_LOGFILE =
+
+@@ -753,7 +905,7 @@
+ # The INPUT tag is used to specify the files and/or directories that contain
+ # documented source files. You may enter file names like myfile.cpp or
+ # directories like /usr/src/myproject. Separate the files or directories with
+-# spaces.
++# spaces. See also FILE_PATTERNS and EXTENSION_MAPPING
+ # Note: If this tag is empty the current directory is searched.
+
+ INPUT = @CMAKE_SOURCE_DIR@
+@@ -761,20 +913,29 @@
+ # This tag can be used to specify the character encoding of the source files
+ # that doxygen parses. Internally doxygen uses the UTF-8 encoding. Doxygen uses
+ # libiconv (or the iconv built into libc) for the transcoding. See the libiconv
+-# documentation (see: http://www.gnu.org/software/libiconv) for the list of
+-# possible encodings.
++# documentation (see:
++# https://www.gnu.org/software/libiconv/) for the list of possible encodings.
+ # The default value is: UTF-8.
+
+ INPUT_ENCODING = UTF-8
+
+ # If the value of the INPUT tag contains directories, you can use the
+ # FILE_PATTERNS tag to specify one or more wildcard patterns (like *.cpp and
+-# *.h) to filter out the source-files in the directories. If left blank the
+-# following patterns are tested:*.c, *.cc, *.cxx, *.cpp, *.c++, *.java, *.ii,
+-# *.ixx, *.ipp, *.i++, *.inl, *.idl, *.ddl, *.odl, *.h, *.hh, *.hxx, *.hpp,
+-# *.h++, *.cs, *.d, *.php, *.php4, *.php5, *.phtml, *.inc, *.m, *.markdown,
+-# *.md, *.mm, *.dox, *.py, *.f90, *.f, *.for, *.tcl, *.vhd, *.vhdl, *.ucf,
+-# *.qsf, *.as and *.js.
++# *.h) to filter out the source-files in the directories.
++#
++# Note that for custom extensions or not directly supported extensions you also
++# need to set EXTENSION_MAPPING for the extension otherwise the files are not
++# read by doxygen.
++#
++# Note the list of default checked file patterns might differ from the list of
++# default file extension mappings.
++#
++# If left blank the following patterns are tested:*.c, *.cc, *.cxx, *.cpp,
++# *.c++, *.java, *.ii, *.ixx, *.ipp, *.i++, *.inl, *.idl, *.ddl, *.odl, *.h,
++# *.hh, *.hxx, *.hpp, *.h++, *.l, *.cs, *.d, *.php, *.php4, *.php5, *.phtml,
++# *.inc, *.m, *.markdown, *.md, *.mm, *.dox (to be provided as doxygen C
++# comment), *.py, *.pyw, *.f90, *.f95, *.f03, *.f08, *.f18, *.f, *.for, *.vhd,
++# *.vhdl, *.ucf, *.qsf and *.ice.
+
+ FILE_PATTERNS = *.c \
+ *.cc \
+@@ -832,7 +993,14 @@
+ # Note that relative paths are relative to the directory from which doxygen is
+ # run.
+
+-EXCLUDE = @CMAKE_BINARY_DIR@ @CMAKE_SOURCE_DIR@/cpu_features @CMAKE_SOURCE_DIR@/README.md @CMAKE_SOURCE_DIR@/cmake @CMAKE_SOURCE_DIR@/docs/AUTHORS_RESUBMITTING_UNDER_LGPL_LICENSE.md @CMAKE_SOURCE_DIR@/apps @CMAKE_SOURCE_DIR@/lib/*qa* @CMAKE_SOURCE_DIR@/tmpl
++EXCLUDE = @CMAKE_BINARY_DIR@ \
++ @CMAKE_SOURCE_DIR@/cpu_features \
++ @CMAKE_SOURCE_DIR@/README.md \
++ @CMAKE_SOURCE_DIR@/cmake \
++ @CMAKE_SOURCE_DIR@/docs/AUTHORS_RESUBMITTING_UNDER_LGPL_LICENSE.md \
++ @CMAKE_SOURCE_DIR@/apps \
++ @CMAKE_SOURCE_DIR@/lib/*qa* \
++ @CMAKE_SOURCE_DIR@/tmpl
+
+ # The EXCLUDE_SYMLINKS tag can be used to select whether or not files or
+ # directories that are symbolic links (a Unix file system feature) are excluded
+@@ -854,7 +1022,7 @@
+ # (namespaces, classes, functions, etc.) that should be excluded from the
+ # output. The symbol name can be a fully qualified name, a word, or if the
+ # wildcard * is used, a substring. Examples: ANamespace, AClass,
+-# AClass::ANamespace, ANamespace::*Test
++# ANamespace::AClass, ANamespace::*Test
+ #
+ # Note that the wildcards are matched against the file with absolute path, so to
+ # exclude all test directories use the pattern */test/*
+@@ -901,6 +1069,10 @@
+ # Note that the filter must not add or remove lines; it is applied before the
+ # code is scanned, but not when the output code is generated. If lines are added
+ # or removed, the anchors will not be placed correctly.
++#
++# Note that for custom extensions or not directly supported extensions you also
++# need to set EXTENSION_MAPPING for the extension otherwise the files are not
++# properly processed by doxygen.
+
+ INPUT_FILTER =
+
+@@ -910,11 +1082,15 @@
+ # (like *.cpp=my_cpp_filter). See INPUT_FILTER for further information on how
+ # filters are used. If the FILTER_PATTERNS tag is empty or if none of the
+ # patterns match the file name, INPUT_FILTER is applied.
++#
++# Note that for custom extensions or not directly supported extensions you also
++# need to set EXTENSION_MAPPING for the extension otherwise the files are not
++# properly processed by doxygen.
+
+ FILTER_PATTERNS =
+
+ # If the FILTER_SOURCE_FILES tag is set to YES, the input filter (if set using
+-# INPUT_FILTER ) will also be used to filter the input files that are used for
++# INPUT_FILTER) will also be used to filter the input files that are used for
+ # producing the source files to browse (i.e. when SOURCE_BROWSER is set to YES).
+ # The default value is: NO.
+
+@@ -962,7 +1138,7 @@
+ STRIP_CODE_COMMENTS = YES
+
+ # If the REFERENCED_BY_RELATION tag is set to YES then for each documented
+-# function all documented functions referencing it will be listed.
++# entity all documented functions referencing it will be listed.
+ # The default value is: NO.
+
+ REFERENCED_BY_RELATION = NO
+@@ -974,7 +1150,7 @@
+ REFERENCES_RELATION = NO
+
+ # If the REFERENCES_LINK_SOURCE tag is set to YES and SOURCE_BROWSER tag is set
+-# to YES, then the hyperlinks from functions in REFERENCES_RELATION and
++# to YES then the hyperlinks from functions in REFERENCES_RELATION and
+ # REFERENCED_BY_RELATION lists will link to the source code. Otherwise they will
+ # link to the documentation.
+ # The default value is: YES.
+@@ -994,12 +1170,12 @@
+ # If the USE_HTAGS tag is set to YES then the references to source code will
+ # point to the HTML generated by the htags(1) tool instead of doxygen built-in
+ # source browser. The htags tool is part of GNU's global source tagging system
+-# (see http://www.gnu.org/software/global/global.html). You will need version
++# (see https://www.gnu.org/software/global/global.html). You will need version
+ # 4.8.6 or higher.
+ #
+ # To use it do the following:
+ # - Install the latest version of global
+-# - Enable SOURCE_BROWSER and USE_HTAGS in the config file
++# - Enable SOURCE_BROWSER and USE_HTAGS in the configuration file
+ # - Make sure the INPUT points to the root of the source tree
+ # - Run doxygen as normal
+ #
+@@ -1021,6 +1197,46 @@
+
+ VERBATIM_HEADERS = YES
+
++# If the CLANG_ASSISTED_PARSING tag is set to YES then doxygen will use the
++# clang parser (see:
++# http://clang.llvm.org/) for more accurate parsing at the cost of reduced
++# performance. This can be particularly helpful with template rich C++ code for
++# which doxygen's built-in parser lacks the necessary type information.
++# Note: The availability of this option depends on whether or not doxygen was
++# generated with the -Duse_libclang=ON option for CMake.
++# The default value is: NO.
++
++CLANG_ASSISTED_PARSING = NO
++
++# If the CLANG_ASSISTED_PARSING tag is set to YES and the CLANG_ADD_INC_PATHS
++# tag is set to YES then doxygen will add the directory of each input to the
++# include path.
++# The default value is: YES.
++# This tag requires that the tag CLANG_ASSISTED_PARSING is set to YES.
++
++CLANG_ADD_INC_PATHS = YES
++
++# If clang assisted parsing is enabled you can provide the compiler with command
++# line options that you would normally use when invoking the compiler. Note that
++# the include paths will already be set by doxygen for the files and directories
++# specified with INPUT and INCLUDE_PATH.
++# This tag requires that the tag CLANG_ASSISTED_PARSING is set to YES.
++
++CLANG_OPTIONS =
++
++# If clang assisted parsing is enabled you can provide the clang parser with the
++# path to the directory containing a file called compile_commands.json. This
++# file is the compilation database (see:
++# http://clang.llvm.org/docs/HowToSetupToolingForLLVM.html) containing the
++# options used when the source files were built. This is equivalent to
++# specifying the -p option to a clang tool, such as clang-check. These options
++# will then be passed to the parser. Any options specified with CLANG_OPTIONS
++# will be added as well.
++# Note: The availability of this option depends on whether or not doxygen was
++# generated with the -Duse_libclang=ON option for CMake.
++
++CLANG_DATABASE_PATH =
++
+ #---------------------------------------------------------------------------
+ # Configuration options related to the alphabetical class index
+ #---------------------------------------------------------------------------
+@@ -1032,13 +1248,6 @@
+
+ ALPHABETICAL_INDEX = YES
+
+-# The COLS_IN_ALPHA_INDEX tag can be used to specify the number of columns in
+-# which the alphabetical index list will be split.
+-# Minimum value: 1, maximum value: 20, default value: 5.
+-# This tag requires that the tag ALPHABETICAL_INDEX is set to YES.
+-
+-COLS_IN_ALPHA_INDEX = 5
+-
+ # In case all classes in a project start with a common prefix, all classes will
+ # be put under the same header in the alphabetical index. The IGNORE_PREFIX tag
+ # can be used to specify a prefix (or a list of prefixes) that should be ignored
+@@ -1051,7 +1260,7 @@
+ # Configuration options related to the HTML output
+ #---------------------------------------------------------------------------
+
+-# If the GENERATE_HTML tag is set to YES doxygen will generate HTML output
++# If the GENERATE_HTML tag is set to YES, doxygen will generate HTML output
+ # The default value is: YES.
+
+ GENERATE_HTML = YES
+@@ -1099,7 +1308,7 @@
+ # that doxygen normally uses.
+ # This tag requires that the tag GENERATE_HTML is set to YES.
+
+-HTML_FOOTER = ""
++HTML_FOOTER =
+
+ # The HTML_STYLESHEET tag can be used to specify a user-defined cascading style
+ # sheet that is used by each HTML page. It can be used to fine-tune the look of
+@@ -1113,13 +1322,15 @@
+
+ HTML_STYLESHEET =
+
+-# The HTML_EXTRA_STYLESHEET tag can be used to specify an additional user-
+-# defined cascading style sheet that is included after the standard style sheets
++# The HTML_EXTRA_STYLESHEET tag can be used to specify additional user-defined
++# cascading style sheets that are included after the standard style sheets
+ # created by doxygen. Using this option one can overrule certain style aspects.
+ # This is preferred over using HTML_STYLESHEET since it does not replace the
+ # standard style sheet and is therefore more robust against future updates.
+-# Doxygen will copy the style sheet file to the output directory. For an example
+-# see the documentation.
++# Doxygen will copy the style sheet files to the output directory.
++# Note: The order of the extra style sheet files is of importance (e.g. the last
++# style sheet in the list overrules the setting of the previous ones in the
++# list). For an example see the documentation.
+ # This tag requires that the tag GENERATE_HTML is set to YES.
+
+ HTML_EXTRA_STYLESHEET =
+@@ -1135,9 +1346,9 @@
+ HTML_EXTRA_FILES =
+
+ # The HTML_COLORSTYLE_HUE tag controls the color of the HTML output. Doxygen
+-# will adjust the colors in the stylesheet and background images according to
+-# this color. Hue is specified as an angle on a colorwheel, see
+-# http://en.wikipedia.org/wiki/Hue for more information. For instance the value
++# will adjust the colors in the style sheet and background images according to
++# this color. Hue is specified as an angle on a color-wheel, see
++# https://en.wikipedia.org/wiki/Hue for more information. For instance the value
+ # 0 represents red, 60 is yellow, 120 is green, 180 is cyan, 240 is blue, 300
+ # purple, and 360 is red again.
+ # Minimum value: 0, maximum value: 359, default value: 220.
+@@ -1146,7 +1357,7 @@
+ HTML_COLORSTYLE_HUE = 220
+
+ # The HTML_COLORSTYLE_SAT tag controls the purity (or saturation) of the colors
+-# in the HTML output. For a value of 0 the output will use grayscales only. A
++# in the HTML output. For a value of 0 the output will use gray-scales only. A
+ # value of 255 will produce the most vivid colors.
+ # Minimum value: 0, maximum value: 255, default value: 100.
+ # This tag requires that the tag GENERATE_HTML is set to YES.
+@@ -1166,12 +1377,24 @@
+
+ # If the HTML_TIMESTAMP tag is set to YES then the footer of each generated HTML
+ # page will contain the date and time when the page was generated. Setting this
+-# to NO can help when comparing the output of multiple runs.
+-# The default value is: YES.
++# to YES can help to show when doxygen was last run and thus if the
++# documentation is up to date.
++# The default value is: NO.
+ # This tag requires that the tag GENERATE_HTML is set to YES.
+
+ HTML_TIMESTAMP = NO
+
++# If the HTML_DYNAMIC_MENUS tag is set to YES then the generated HTML
++# documentation will contain a main index with vertical navigation menus that
++# are dynamically created via JavaScript. If disabled, the navigation index will
++# consists of multiple levels of tabs that are statically embedded in every HTML
++# page. Disable this option to support browsers that do not have JavaScript,
++# like the Qt help browser.
++# The default value is: YES.
++# This tag requires that the tag GENERATE_HTML is set to YES.
++
++HTML_DYNAMIC_MENUS = YES
++
+ # If the HTML_DYNAMIC_SECTIONS tag is set to YES then the generated HTML
+ # documentation will contain sections that can be hidden and shown after the
+ # page has loaded.
+@@ -1195,13 +1418,14 @@
+
+ # If the GENERATE_DOCSET tag is set to YES, additional index files will be
+ # generated that can be used as input for Apple's Xcode 3 integrated development
+-# environment (see: http://developer.apple.com/tools/xcode/), introduced with
+-# OSX 10.5 (Leopard). To create a documentation set, doxygen will generate a
+-# Makefile in the HTML output directory. Running make will produce the docset in
+-# that directory and running make install will install the docset in
++# environment (see:
++# https://developer.apple.com/xcode/), introduced with OSX 10.5 (Leopard). To
++# create a documentation set, doxygen will generate a Makefile in the HTML
++# output directory. Running make will produce the docset in that directory and
++# running make install will install the docset in
+ # ~/Library/Developer/Shared/Documentation/DocSets so that Xcode will find it at
+-# startup. See http://developer.apple.com/tools/creatingdocsetswithdoxygen.html
+-# for more information.
++# startup. See https://developer.apple.com/library/archive/featuredarticles/Doxy
++# genXcode/_index.html for more information.
+ # The default value is: NO.
+ # This tag requires that the tag GENERATE_HTML is set to YES.
+
+@@ -1215,6 +1439,13 @@
+
+ DOCSET_FEEDNAME = "Doxygen generated docs"
+
++# This tag determines the URL of the docset feed. A documentation feed provides
++# an umbrella under which multiple documentation sets from a single provider
++# (such as a company or product suite) can be grouped.
++# This tag requires that the tag GENERATE_DOCSET is set to YES.
++
++DOCSET_FEEDURL =
++
+ # This tag specifies a string that should uniquely identify the documentation
+ # set bundle. This should be a reverse domain-name style string, e.g.
+ # com.mycompany.MyDocSet. Doxygen will append .docset to the name.
+@@ -1240,8 +1471,12 @@
+ # If the GENERATE_HTMLHELP tag is set to YES then doxygen generates three
+ # additional HTML index files: index.hhp, index.hhc, and index.hhk. The
+ # index.hhp is a project file that can be read by Microsoft's HTML Help Workshop
+-# (see: http://www.microsoft.com/en-us/download/details.aspx?id=21138) on
+-# Windows.
++# on Windows. In the beginning of 2021 Microsoft took the original page, with
++# a.o. the download links, offline the HTML help workshop was already many years
++# in maintenance mode). You can download the HTML help workshop from the web
++# archives at Installation executable (see:
++# http://web.archive.org/web/20160201063255/http://download.microsoft.com/downlo
++# ad/0/A/9/0A939EF6-E31C-430F-A3DF-DFAE7960D564/htmlhelp.exe).
+ #
+ # The HTML Help Workshop contains a compiler that can convert all HTML output
+ # generated by doxygen into a single compiled HTML file (.chm). Compiled HTML
+@@ -1263,28 +1498,29 @@
+ CHM_FILE =
+
+ # The HHC_LOCATION tag can be used to specify the location (absolute path
+-# including file name) of the HTML help compiler ( hhc.exe). If non-empty
++# including file name) of the HTML help compiler (hhc.exe). If non-empty,
+ # doxygen will try to run the HTML help compiler on the generated index.hhp.
+ # The file has to be specified with full path.
+ # This tag requires that the tag GENERATE_HTMLHELP is set to YES.
+
+ HHC_LOCATION =
+
+-# The GENERATE_CHI flag controls if a separate .chi index file is generated (
+-# YES) or that it should be included in the master .chm file ( NO).
++# The GENERATE_CHI flag controls if a separate .chi index file is generated
++# (YES) or that it should be included in the main .chm file (NO).
+ # The default value is: NO.
+ # This tag requires that the tag GENERATE_HTMLHELP is set to YES.
+
+ GENERATE_CHI = NO
+
+-# The CHM_INDEX_ENCODING is used to encode HtmlHelp index ( hhk), content ( hhc)
++# The CHM_INDEX_ENCODING is used to encode HtmlHelp index (hhk), content (hhc)
+ # and project file content.
+ # This tag requires that the tag GENERATE_HTMLHELP is set to YES.
+
+ CHM_INDEX_ENCODING =
+
+-# The BINARY_TOC flag controls whether a binary table of contents is generated (
+-# YES) or a normal table of contents ( NO) in the .chm file.
++# The BINARY_TOC flag controls whether a binary table of contents is generated
++# (YES) or a normal table of contents (NO) in the .chm file. Furthermore it
++# enables the Previous and Next buttons.
+ # The default value is: NO.
+ # This tag requires that the tag GENERATE_HTMLHELP is set to YES.
+
+@@ -1315,7 +1551,8 @@
+
+ # The QHP_NAMESPACE tag specifies the namespace to use when generating Qt Help
+ # Project output. For more information please see Qt Help Project / Namespace
+-# (see: http://qt-project.org/doc/qt-4.8/qthelpproject.html#namespace).
++# (see:
++# https://doc.qt.io/archives/qt-4.8/qthelpproject.html#namespace).
+ # The default value is: org.doxygen.Project.
+ # This tag requires that the tag GENERATE_QHP is set to YES.
+
+@@ -1323,8 +1560,8 @@
+
+ # The QHP_VIRTUAL_FOLDER tag specifies the namespace to use when generating Qt
+ # Help Project output. For more information please see Qt Help Project / Virtual
+-# Folders (see: http://qt-project.org/doc/qt-4.8/qthelpproject.html#virtual-
+-# folders).
++# Folders (see:
++# https://doc.qt.io/archives/qt-4.8/qthelpproject.html#virtual-folders).
+ # The default value is: doc.
+ # This tag requires that the tag GENERATE_QHP is set to YES.
+
+@@ -1332,30 +1569,30 @@
+
+ # If the QHP_CUST_FILTER_NAME tag is set, it specifies the name of a custom
+ # filter to add. For more information please see Qt Help Project / Custom
+-# Filters (see: http://qt-project.org/doc/qt-4.8/qthelpproject.html#custom-
+-# filters).
++# Filters (see:
++# https://doc.qt.io/archives/qt-4.8/qthelpproject.html#custom-filters).
+ # This tag requires that the tag GENERATE_QHP is set to YES.
+
+ QHP_CUST_FILTER_NAME =
+
+ # The QHP_CUST_FILTER_ATTRS tag specifies the list of the attributes of the
+ # custom filter to add. For more information please see Qt Help Project / Custom
+-# Filters (see: http://qt-project.org/doc/qt-4.8/qthelpproject.html#custom-
+-# filters).
++# Filters (see:
++# https://doc.qt.io/archives/qt-4.8/qthelpproject.html#custom-filters).
+ # This tag requires that the tag GENERATE_QHP is set to YES.
+
+ QHP_CUST_FILTER_ATTRS =
+
+ # The QHP_SECT_FILTER_ATTRS tag specifies the list of the attributes this
+ # project's filter section matches. Qt Help Project / Filter Attributes (see:
+-# http://qt-project.org/doc/qt-4.8/qthelpproject.html#filter-attributes).
++# https://doc.qt.io/archives/qt-4.8/qthelpproject.html#filter-attributes).
+ # This tag requires that the tag GENERATE_QHP is set to YES.
+
+ QHP_SECT_FILTER_ATTRS =
+
+-# The QHG_LOCATION tag can be used to specify the location of Qt's
+-# qhelpgenerator. If non-empty doxygen will try to run qhelpgenerator on the
+-# generated .qhp file.
++# The QHG_LOCATION tag can be used to specify the location (absolute path
++# including file name) of Qt's qhelpgenerator. If non-empty doxygen will try to
++# run qhelpgenerator on the generated .qhp file.
+ # This tag requires that the tag GENERATE_QHP is set to YES.
+
+ QHG_LOCATION =
+@@ -1397,17 +1634,29 @@
+ # index structure (just like the one that is generated for HTML Help). For this
+ # to work a browser that supports JavaScript, DHTML, CSS and frames is required
+ # (i.e. any modern browser). Windows users are probably better off using the
+-# HTML help feature. Via custom stylesheets (see HTML_EXTRA_STYLESHEET) one can
+-# further fine-tune the look of the index. As an example, the default style
+-# sheet generated by doxygen has an example that shows how to put an image at
+-# the root of the tree instead of the PROJECT_NAME. Since the tree basically has
+-# the same information as the tab index, you could consider setting
+-# DISABLE_INDEX to YES when enabling this option.
++# HTML help feature. Via custom style sheets (see HTML_EXTRA_STYLESHEET) one can
++# further fine tune the look of the index (see "Fine-tuning the output"). As an
++# example, the default style sheet generated by doxygen has an example that
++# shows how to put an image at the root of the tree instead of the PROJECT_NAME.
++# Since the tree basically has the same information as the tab index, you could
++# consider setting DISABLE_INDEX to YES when enabling this option.
+ # The default value is: NO.
+ # This tag requires that the tag GENERATE_HTML is set to YES.
+
+ GENERATE_TREEVIEW = YES
+
++# When both GENERATE_TREEVIEW and DISABLE_INDEX are set to YES, then the
++# FULL_SIDEBAR option determines if the side bar is limited to only the treeview
++# area (value NO) or if it should extend to the full height of the window (value
++# YES). Setting this to YES gives a layout similar to
++# https://docs.readthedocs.io with more room for contents, but less room for the
++# project logo, title, and description. If either GENERATE_TREEVIEW or
++# DISABLE_INDEX is set to NO, this option has no effect.
++# The default value is: NO.
++# This tag requires that the tag GENERATE_HTML is set to YES.
++
++FULL_SIDEBAR = NO
++
+ # The ENUM_VALUES_PER_LINE tag can be used to set the number of enum values that
+ # doxygen will group on one line in the generated HTML documentation.
+ #
+@@ -1425,13 +1674,31 @@
+
+ TREEVIEW_WIDTH = 250
+
+-# When the EXT_LINKS_IN_WINDOW option is set to YES doxygen will open links to
++# If the EXT_LINKS_IN_WINDOW option is set to YES, doxygen will open links to
+ # external symbols imported via tag files in a separate window.
+ # The default value is: NO.
+ # This tag requires that the tag GENERATE_HTML is set to YES.
+
+ EXT_LINKS_IN_WINDOW = NO
+
++# If the OBFUSCATE_EMAILS tag is set to YES, doxygen will obfuscate email
++# addresses.
++# The default value is: YES.
++# This tag requires that the tag GENERATE_HTML is set to YES.
++
++OBFUSCATE_EMAILS = YES
++
++# If the HTML_FORMULA_FORMAT option is set to svg, doxygen will use the pdf2svg
++# tool (see https://github.com/dawbarton/pdf2svg) or inkscape (see
++# https://inkscape.org) to generate formulas as SVG images instead of PNGs for
++# the HTML output. These images will generally look nicer at scaled resolutions.
++# Possible values are: png (the default) and svg (looks nicer but requires the
++# pdf2svg or inkscape tool).
++# The default value is: png.
++# This tag requires that the tag GENERATE_HTML is set to YES.
++
++HTML_FORMULA_FORMAT = png
++
+ # Use this tag to change the font size of LaTeX formulas included as images in
+ # the HTML documentation. When you change the font size after a successful
+ # doxygen run you need to manually remove any form_*.png images from the HTML
+@@ -1441,7 +1708,7 @@
+
+ FORMULA_FONTSIZE = 10
+
+-# Use the FORMULA_TRANPARENT tag to determine whether or not the images
++# Use the FORMULA_TRANSPARENT tag to determine whether or not the images
+ # generated for formulas are transparent PNGs. Transparent PNGs are not
+ # supported properly for IE 6.0, but are supported on all modern browsers.
+ #
+@@ -1452,9 +1719,15 @@
+
+ FORMULA_TRANSPARENT = YES
+
++# The FORMULA_MACROFILE can contain LaTeX \newcommand and \renewcommand commands
++# to create new LaTeX commands to be used in formulas as building blocks. See
++# the section "Including formulas" for details.
++
++FORMULA_MACROFILE =
++
+ # Enable the USE_MATHJAX option to render LaTeX formulas using MathJax (see
+-# http://www.mathjax.org) which uses client side Javascript for the rendering
+-# instead of using prerendered bitmaps. Use this if you do not have LaTeX
++# https://www.mathjax.org) which uses client side JavaScript for the rendering
++# instead of using pre-rendered bitmaps. Use this if you do not have LaTeX
+ # installed or if you want to formulas look prettier in the HTML output. When
+ # enabled you may also need to install MathJax separately and configure the path
+ # to it using the MATHJAX_RELPATH option.
+@@ -1463,11 +1736,29 @@
+
+ USE_MATHJAX = NO
+
++# With MATHJAX_VERSION it is possible to specify the MathJax version to be used.
++# Note that the different versions of MathJax have different requirements with
++# regards to the different settings, so it is possible that also other MathJax
++# settings have to be changed when switching between the different MathJax
++# versions.
++# Possible values are: MathJax_2 and MathJax_3.
++# The default value is: MathJax_2.
++# This tag requires that the tag USE_MATHJAX is set to YES.
++
++MATHJAX_VERSION = MathJax_2
++
+ # When MathJax is enabled you can set the default output format to be used for
+-# the MathJax output. See the MathJax site (see:
+-# http://docs.mathjax.org/en/latest/output.html) for more details.
++# the MathJax output. For more details about the output format see MathJax
++# version 2 (see:
++# http://docs.mathjax.org/en/v2.7-latest/output.html) and MathJax version 3
++# (see:
++# http://docs.mathjax.org/en/latest/web/components/output.html).
+ # Possible values are: HTML-CSS (which is slower, but has the best
+-# compatibility), NativeMML (i.e. MathML) and SVG.
++# compatibility. This is the name for Mathjax version 2, for MathJax version 3
++# this will be translated into chtml), NativeMML (i.e. MathML. Only supported
++# for NathJax 2. For MathJax version 3 chtml will be used instead.), chtml (This
++# is the name for Mathjax version 3, for MathJax version 2 this will be
++# translated into HTML-CSS) and SVG.
+ # The default value is: HTML-CSS.
+ # This tag requires that the tag USE_MATHJAX is set to YES.
+
+@@ -1480,22 +1771,29 @@
+ # MATHJAX_RELPATH should be ../mathjax. The default value points to the MathJax
+ # Content Delivery Network so you can quickly see the result without installing
+ # MathJax. However, it is strongly recommended to install a local copy of
+-# MathJax from http://www.mathjax.org before deployment.
+-# The default value is: http://cdn.mathjax.org/mathjax/latest.
++# MathJax from https://www.mathjax.org before deployment. The default value is:
++# - in case of MathJax version 2: https://cdn.jsdelivr.net/npm/mathjax@2
++# - in case of MathJax version 3: https://cdn.jsdelivr.net/npm/mathjax@3
+ # This tag requires that the tag USE_MATHJAX is set to YES.
+
+ MATHJAX_RELPATH = http://cdn.mathjax.org/mathjax/latest
+
+ # The MATHJAX_EXTENSIONS tag can be used to specify one or more MathJax
+ # extension names that should be enabled during MathJax rendering. For example
++# for MathJax version 2 (see
++# https://docs.mathjax.org/en/v2.7-latest/tex.html#tex-and-latex-extensions):
+ # MATHJAX_EXTENSIONS = TeX/AMSmath TeX/AMSsymbols
++# For example for MathJax version 3 (see
++# http://docs.mathjax.org/en/latest/input/tex/extensions/index.html):
++# MATHJAX_EXTENSIONS = ams
+ # This tag requires that the tag USE_MATHJAX is set to YES.
+
+ MATHJAX_EXTENSIONS =
+
+ # The MATHJAX_CODEFILE tag can be used to specify a file with javascript pieces
+ # of code that will be used on startup of the MathJax code. See the MathJax site
+-# (see: http://docs.mathjax.org/en/latest/output.html) for more details. For an
++# (see:
++# http://docs.mathjax.org/en/v2.7-latest/output.html) for more details. For an
+ # example see the documentation.
+ # This tag requires that the tag USE_MATHJAX is set to YES.
+
+@@ -1523,12 +1821,12 @@
+ SEARCHENGINE = YES
+
+ # When the SERVER_BASED_SEARCH tag is enabled the search engine will be
+-# implemented using a web server instead of a web client using Javascript. There
+-# are two flavours of web server based searching depending on the
+-# EXTERNAL_SEARCH setting. When disabled, doxygen will generate a PHP script for
+-# searching and an index file used by the script. When EXTERNAL_SEARCH is
+-# enabled the indexing and searching needs to be provided by external tools. See
+-# the section "External Indexing and Searching" for details.
++# implemented using a web server instead of a web client using JavaScript. There
++# are two flavors of web server based searching depending on the EXTERNAL_SEARCH
++# setting. When disabled, doxygen will generate a PHP script for searching and
++# an index file used by the script. When EXTERNAL_SEARCH is enabled the indexing
++# and searching needs to be provided by external tools. See the section
++# "External Indexing and Searching" for details.
+ # The default value is: NO.
+ # This tag requires that the tag SEARCHENGINE is set to YES.
+
+@@ -1540,9 +1838,10 @@
+ # external search engine pointed to by the SEARCHENGINE_URL option to obtain the
+ # search results.
+ #
+-# Doxygen ships with an example indexer ( doxyindexer) and search engine
++# Doxygen ships with an example indexer (doxyindexer) and search engine
+ # (doxysearch.cgi) which are based on the open source search engine library
+-# Xapian (see: http://xapian.org/).
++# Xapian (see:
++# https://xapian.org/).
+ #
+ # See the section "External Indexing and Searching" for details.
+ # The default value is: NO.
+@@ -1553,10 +1852,11 @@
+ # The SEARCHENGINE_URL should point to a search engine hosted by a web server
+ # which will return the search results when EXTERNAL_SEARCH is enabled.
+ #
+-# Doxygen ships with an example indexer ( doxyindexer) and search engine
++# Doxygen ships with an example indexer (doxyindexer) and search engine
+ # (doxysearch.cgi) which are based on the open source search engine library
+-# Xapian (see: http://xapian.org/). See the section "External Indexing and
+-# Searching" for details.
++# Xapian (see:
++# https://xapian.org/). See the section "External Indexing and Searching" for
++# details.
+ # This tag requires that the tag SEARCHENGINE is set to YES.
+
+ SEARCHENGINE_URL =
+@@ -1591,7 +1891,7 @@
+ # Configuration options related to the LaTeX output
+ #---------------------------------------------------------------------------
+
+-# If the GENERATE_LATEX tag is set to YES doxygen will generate LaTeX output.
++# If the GENERATE_LATEX tag is set to YES, doxygen will generate LaTeX output.
+ # The default value is: YES.
+
+ GENERATE_LATEX = NO
+@@ -1607,22 +1907,36 @@
+ # The LATEX_CMD_NAME tag can be used to specify the LaTeX command name to be
+ # invoked.
+ #
+-# Note that when enabling USE_PDFLATEX this option is only used for generating
+-# bitmaps for formulas in the HTML output, but not in the Makefile that is
+-# written to the output directory.
+-# The default file is: latex.
++# Note that when not enabling USE_PDFLATEX the default is latex when enabling
++# USE_PDFLATEX the default is pdflatex and when in the later case latex is
++# chosen this is overwritten by pdflatex. For specific output languages the
++# default can have been set differently, this depends on the implementation of
++# the output language.
+ # This tag requires that the tag GENERATE_LATEX is set to YES.
+
+ LATEX_CMD_NAME = latex
+
+ # The MAKEINDEX_CMD_NAME tag can be used to specify the command name to generate
+ # index for LaTeX.
++# Note: This tag is used in the Makefile / make.bat.
++# See also: LATEX_MAKEINDEX_CMD for the part in the generated output file
++# (.tex).
+ # The default file is: makeindex.
+ # This tag requires that the tag GENERATE_LATEX is set to YES.
+
+ MAKEINDEX_CMD_NAME = makeindex
+
+-# If the COMPACT_LATEX tag is set to YES doxygen generates more compact LaTeX
++# The LATEX_MAKEINDEX_CMD tag can be used to specify the command name to
++# generate index for LaTeX. In case there is no backslash (\) as first character
++# it will be automatically added in the LaTeX code.
++# Note: This tag is used in the generated output file (.tex).
++# See also: MAKEINDEX_CMD_NAME for the part in the Makefile / make.bat.
++# The default value is: makeindex.
++# This tag requires that the tag GENERATE_LATEX is set to YES.
++
++LATEX_MAKEINDEX_CMD = makeindex
++
++# If the COMPACT_LATEX tag is set to YES, doxygen generates more compact LaTeX
+ # documents. This may be useful for small projects and may help to save some
+ # trees in general.
+ # The default value is: NO.
+@@ -1640,39 +1954,57 @@
+ PAPER_TYPE = a4
+
+ # The EXTRA_PACKAGES tag can be used to specify one or more LaTeX package names
+-# that should be included in the LaTeX output. To get the times font for
+-# instance you can specify
+-# EXTRA_PACKAGES=times
++# that should be included in the LaTeX output. The package can be specified just
++# by its name or with the correct syntax as to be used with the LaTeX
++# \usepackage command. To get the times font for instance you can specify :
++# EXTRA_PACKAGES=times or EXTRA_PACKAGES={times}
++# To use the option intlimits with the amsmath package you can specify:
++# EXTRA_PACKAGES=[intlimits]{amsmath}
+ # If left blank no extra packages will be included.
+ # This tag requires that the tag GENERATE_LATEX is set to YES.
+
+ EXTRA_PACKAGES =
+
+-# The LATEX_HEADER tag can be used to specify a personal LaTeX header for the
+-# generated LaTeX document. The header should contain everything until the first
+-# chapter. If it is left blank doxygen will generate a standard header. See
+-# section "Doxygen usage" for information on how to let doxygen write the
+-# default header to a separate file.
+-#
+-# Note: Only use a user-defined header if you know what you are doing! The
+-# following commands have a special meaning inside the header: $title,
+-# $datetime, $date, $doxygenversion, $projectname, $projectnumber. Doxygen will
+-# replace them by respectively the title of the page, the current date and time,
+-# only the current date, the version number of doxygen, the project name (see
+-# PROJECT_NAME), or the project number (see PROJECT_NUMBER).
++# The LATEX_HEADER tag can be used to specify a user-defined LaTeX header for
++# the generated LaTeX document. The header should contain everything until the
++# first chapter. If it is left blank doxygen will generate a standard header. It
++# is highly recommended to start with a default header using
++# doxygen -w latex new_header.tex new_footer.tex new_stylesheet.sty
++# and then modify the file new_header.tex. See also section "Doxygen usage" for
++# information on how to generate the default header that doxygen normally uses.
++#
++# Note: Only use a user-defined header if you know what you are doing!
++# Note: The header is subject to change so you typically have to regenerate the
++# default header when upgrading to a newer version of doxygen. The following
++# commands have a special meaning inside the header (and footer): For a
++# description of the possible markers and block names see the documentation.
+ # This tag requires that the tag GENERATE_LATEX is set to YES.
+
+ LATEX_HEADER =
+
+-# The LATEX_FOOTER tag can be used to specify a personal LaTeX footer for the
+-# generated LaTeX document. The footer should contain everything after the last
+-# chapter. If it is left blank doxygen will generate a standard footer.
+-#
+-# Note: Only use a user-defined footer if you know what you are doing!
++# The LATEX_FOOTER tag can be used to specify a user-defined LaTeX footer for
++# the generated LaTeX document. The footer should contain everything after the
++# last chapter. If it is left blank doxygen will generate a standard footer. See
++# LATEX_HEADER for more information on how to generate a default footer and what
++# special commands can be used inside the footer. See also section "Doxygen
++# usage" for information on how to generate the default footer that doxygen
++# normally uses. Note: Only use a user-defined footer if you know what you are
++# doing!
+ # This tag requires that the tag GENERATE_LATEX is set to YES.
+
+ LATEX_FOOTER =
+
++# The LATEX_EXTRA_STYLESHEET tag can be used to specify additional user-defined
++# LaTeX style sheets that are included after the standard style sheets created
++# by doxygen. Using this option one can overrule certain style aspects. Doxygen
++# will copy the style sheet files to the output directory.
++# Note: The order of the extra style sheet files is of importance (e.g. the last
++# style sheet in the list overrules the setting of the previous ones in the
++# list).
++# This tag requires that the tag GENERATE_LATEX is set to YES.
++
++LATEX_EXTRA_STYLESHEET =
++
+ # The LATEX_EXTRA_FILES tag can be used to specify one or more extra images or
+ # other source files which should be copied to the LATEX_OUTPUT output
+ # directory. Note that the files will be copied as-is; there are no commands or
+@@ -1690,9 +2022,11 @@
+
+ PDF_HYPERLINKS = YES
+
+-# If the LATEX_PDFLATEX tag is set to YES, doxygen will use pdflatex to generate
+-# the PDF file directly from the LaTeX files. Set this option to YES to get a
+-# higher quality PDF documentation.
++# If the USE_PDFLATEX tag is set to YES, doxygen will use the engine as
++# specified with LATEX_CMD_NAME to generate the PDF file directly from the LaTeX
++# files. Set this option to YES, to get a higher quality PDF documentation.
++#
++# See also section LATEX_CMD_NAME for selecting the engine.
+ # The default value is: YES.
+ # This tag requires that the tag GENERATE_LATEX is set to YES.
+
+@@ -1700,8 +2034,7 @@
+
+ # If the LATEX_BATCHMODE tag is set to YES, doxygen will add the \batchmode
+ # command to the generated LaTeX files. This will instruct LaTeX to keep running
+-# if errors occur, instead of asking the user for help. This option is also used
+-# when generating formulas in HTML.
++# if errors occur, instead of asking the user for help.
+ # The default value is: NO.
+ # This tag requires that the tag GENERATE_LATEX is set to YES.
+
+@@ -1714,29 +2047,35 @@
+
+ LATEX_HIDE_INDICES = NO
+
+-# If the LATEX_SOURCE_CODE tag is set to YES then doxygen will include source
+-# code with syntax highlighting in the LaTeX output.
+-#
+-# Note that which sources are shown also depends on other settings such as
+-# SOURCE_BROWSER.
+-# The default value is: NO.
+-# This tag requires that the tag GENERATE_LATEX is set to YES.
+-
+-LATEX_SOURCE_CODE = NO
+-
+ # The LATEX_BIB_STYLE tag can be used to specify the style to use for the
+ # bibliography, e.g. plainnat, or ieeetr. See
+-# http://en.wikipedia.org/wiki/BibTeX and \cite for more info.
++# https://en.wikipedia.org/wiki/BibTeX and \cite for more info.
+ # The default value is: plain.
+ # This tag requires that the tag GENERATE_LATEX is set to YES.
+
+ LATEX_BIB_STYLE = plain
+
++# If the LATEX_TIMESTAMP tag is set to YES then the footer of each generated
++# page will contain the date and time when the page was generated. Setting this
++# to NO can help when comparing the output of multiple runs.
++# The default value is: NO.
++# This tag requires that the tag GENERATE_LATEX is set to YES.
++
++LATEX_TIMESTAMP = NO
++
++# The LATEX_EMOJI_DIRECTORY tag is used to specify the (relative or absolute)
++# path from which the emoji images will be read. If a relative path is entered,
++# it will be relative to the LATEX_OUTPUT directory. If left blank the
++# LATEX_OUTPUT directory will be used.
++# This tag requires that the tag GENERATE_LATEX is set to YES.
++
++LATEX_EMOJI_DIRECTORY =
++
+ #---------------------------------------------------------------------------
+ # Configuration options related to the RTF output
+ #---------------------------------------------------------------------------
+
+-# If the GENERATE_RTF tag is set to YES doxygen will generate RTF output. The
++# If the GENERATE_RTF tag is set to YES, doxygen will generate RTF output. The
+ # RTF output is optimized for Word 97 and may not look too pretty with other RTF
+ # readers/editors.
+ # The default value is: NO.
+@@ -1751,7 +2090,7 @@
+
+ RTF_OUTPUT = rtf
+
+-# If the COMPACT_RTF tag is set to YES doxygen generates more compact RTF
++# If the COMPACT_RTF tag is set to YES, doxygen generates more compact RTF
+ # documents. This may be useful for small projects and may help to save some
+ # trees in general.
+ # The default value is: NO.
+@@ -1771,9 +2110,9 @@
+
+ RTF_HYPERLINKS = NO
+
+-# Load stylesheet definitions from file. Syntax is similar to doxygen's config
+-# file, i.e. a series of assignments. You only have to provide replacements,
+-# missing definitions are set to their default value.
++# Load stylesheet definitions from file. Syntax is similar to doxygen's
++# configuration file, i.e. a series of assignments. You only have to provide
++# replacements, missing definitions are set to their default value.
+ #
+ # See also section "Doxygen usage" for information on how to generate the
+ # default style sheet that doxygen normally uses.
+@@ -1782,8 +2121,8 @@
+ RTF_STYLESHEET_FILE =
+
+ # Set optional variables used in the generation of an RTF document. Syntax is
+-# similar to doxygen's config file. A template extensions file can be generated
+-# using doxygen -e rtf extensionFile.
++# similar to doxygen's configuration file. A template extensions file can be
++# generated using doxygen -e rtf extensionFile.
+ # This tag requires that the tag GENERATE_RTF is set to YES.
+
+ RTF_EXTENSIONS_FILE =
+@@ -1792,7 +2131,7 @@
+ # Configuration options related to the man page output
+ #---------------------------------------------------------------------------
+
+-# If the GENERATE_MAN tag is set to YES doxygen will generate man pages for
++# If the GENERATE_MAN tag is set to YES, doxygen will generate man pages for
+ # classes and files.
+ # The default value is: NO.
+
+@@ -1816,6 +2155,13 @@
+
+ MAN_EXTENSION = .3
+
++# The MAN_SUBDIR tag determines the name of the directory created within
++# MAN_OUTPUT in which the man pages are placed. If defaults to man followed by
++# MAN_EXTENSION with the initial . removed.
++# This tag requires that the tag GENERATE_MAN is set to YES.
++
++MAN_SUBDIR =
++
+ # If the MAN_LINKS tag is set to YES and doxygen generates man output, then it
+ # will generate one additional man file for each entity documented in the real
+ # man page(s). These additional files only source the real man page, but without
+@@ -1829,7 +2175,7 @@
+ # Configuration options related to the XML output
+ #---------------------------------------------------------------------------
+
+-# If the GENERATE_XML tag is set to YES doxygen will generate an XML file that
++# If the GENERATE_XML tag is set to YES, doxygen will generate an XML file that
+ # captures the structure of the code including all documentation.
+ # The default value is: NO.
+
+@@ -1843,19 +2189,7 @@
+
+ XML_OUTPUT = xml
+
+-# The XML_SCHEMA tag can be used to specify a XML schema, which can be used by a
+-# validating XML parser to check the syntax of the XML files.
+-# This tag requires that the tag GENERATE_XML is set to YES.
+-
+-XML_SCHEMA =
+-
+-# The XML_DTD tag can be used to specify a XML DTD, which can be used by a
+-# validating XML parser to check the syntax of the XML files.
+-# This tag requires that the tag GENERATE_XML is set to YES.
+-
+-XML_DTD =
+-
+-# If the XML_PROGRAMLISTING tag is set to YES doxygen will dump the program
++# If the XML_PROGRAMLISTING tag is set to YES, doxygen will dump the program
+ # listings (including syntax highlighting and cross-referencing information) to
+ # the XML output. Note that enabling this will significantly increase the size
+ # of the XML output.
+@@ -1864,11 +2198,18 @@
+
+ XML_PROGRAMLISTING = YES
+
++# If the XML_NS_MEMB_FILE_SCOPE tag is set to YES, doxygen will include
++# namespace members in file scope as well, matching the HTML output.
++# The default value is: NO.
++# This tag requires that the tag GENERATE_XML is set to YES.
++
++XML_NS_MEMB_FILE_SCOPE = NO
++
+ #---------------------------------------------------------------------------
+ # Configuration options related to the DOCBOOK output
+ #---------------------------------------------------------------------------
+
+-# If the GENERATE_DOCBOOK tag is set to YES doxygen will generate Docbook files
++# If the GENERATE_DOCBOOK tag is set to YES, doxygen will generate Docbook files
+ # that can be used to generate PDF.
+ # The default value is: NO.
+
+@@ -1886,10 +2227,10 @@
+ # Configuration options for the AutoGen Definitions output
+ #---------------------------------------------------------------------------
+
+-# If the GENERATE_AUTOGEN_DEF tag is set to YES doxygen will generate an AutoGen
+-# Definitions (see http://autogen.sf.net) file that captures the structure of
+-# the code including all documentation. Note that this feature is still
+-# experimental and incomplete at the moment.
++# If the GENERATE_AUTOGEN_DEF tag is set to YES, doxygen will generate an
++# AutoGen Definitions (see http://autogen.sourceforge.net/) file that captures
++# the structure of the code including all documentation. Note that this feature
++# is still experimental and incomplete at the moment.
+ # The default value is: NO.
+
+ GENERATE_AUTOGEN_DEF = NO
+@@ -1898,7 +2239,7 @@
+ # Configuration options related to the Perl module output
+ #---------------------------------------------------------------------------
+
+-# If the GENERATE_PERLMOD tag is set to YES doxygen will generate a Perl module
++# If the GENERATE_PERLMOD tag is set to YES, doxygen will generate a Perl module
+ # file that captures the structure of the code including all documentation.
+ #
+ # Note that this feature is still experimental and incomplete at the moment.
+@@ -1906,7 +2247,7 @@
+
+ GENERATE_PERLMOD = NO
+
+-# If the PERLMOD_LATEX tag is set to YES doxygen will generate the necessary
++# If the PERLMOD_LATEX tag is set to YES, doxygen will generate the necessary
+ # Makefile rules, Perl scripts and LaTeX code to be able to generate PDF and DVI
+ # output from the Perl module output.
+ # The default value is: NO.
+@@ -1914,9 +2255,9 @@
+
+ PERLMOD_LATEX = NO
+
+-# If the PERLMOD_PRETTY tag is set to YES the Perl module output will be nicely
++# If the PERLMOD_PRETTY tag is set to YES, the Perl module output will be nicely
+ # formatted so it can be parsed by a human reader. This is useful if you want to
+-# understand what is going on. On the other hand, if this tag is set to NO the
++# understand what is going on. On the other hand, if this tag is set to NO, the
+ # size of the Perl module output will be much smaller and Perl will parse it
+ # just the same.
+ # The default value is: YES.
+@@ -1936,14 +2277,14 @@
+ # Configuration options related to the preprocessor
+ #---------------------------------------------------------------------------
+
+-# If the ENABLE_PREPROCESSING tag is set to YES doxygen will evaluate all
++# If the ENABLE_PREPROCESSING tag is set to YES, doxygen will evaluate all
+ # C-preprocessor directives found in the sources and include files.
+ # The default value is: YES.
+
+ ENABLE_PREPROCESSING = YES
+
+-# If the MACRO_EXPANSION tag is set to YES doxygen will expand all macro names
+-# in the source code. If set to NO only conditional compilation will be
++# If the MACRO_EXPANSION tag is set to YES, doxygen will expand all macro names
++# in the source code. If set to NO, only conditional compilation will be
+ # performed. Macro expansion can be done in a controlled way by setting
+ # EXPAND_ONLY_PREDEF to YES.
+ # The default value is: NO.
+@@ -1959,7 +2300,7 @@
+
+ EXPAND_ONLY_PREDEF = NO
+
+-# If the SEARCH_INCLUDES tag is set to YES the includes files in the
++# If the SEARCH_INCLUDES tag is set to YES, the include files in the
+ # INCLUDE_PATH will be searched if a #include is found.
+ # The default value is: YES.
+ # This tag requires that the tag ENABLE_PREPROCESSING is set to YES.
+@@ -1968,7 +2309,8 @@
+
+ # The INCLUDE_PATH tag can be used to specify one or more directories that
+ # contain include files that are not input files but should be processed by the
+-# preprocessor.
++# preprocessor. Note that the INCLUDE_PATH is not recursive, so the setting of
++# RECURSIVE has no effect here.
+ # This tag requires that the tag SEARCH_INCLUDES is set to YES.
+
+ INCLUDE_PATH =
+@@ -2008,9 +2350,9 @@
+ EXPAND_AS_DEFINED =
+
+ # If the SKIP_FUNCTION_MACROS tag is set to YES then doxygen's preprocessor will
+-# remove all references to function-like macros that are alone on a line, have an
+-# all uppercase name, and do not end with a semicolon. Such function macros are
+-# typically used for boiler-plate code, and will confuse the parser if not
++# remove all references to function-like macros that are alone on a line, have
++# an all uppercase name, and do not end with a semicolon. Such function macros
++# are typically used for boiler-plate code, and will confuse the parser if not
+ # removed.
+ # The default value is: YES.
+ # This tag requires that the tag ENABLE_PREPROCESSING is set to YES.
+@@ -2030,7 +2372,7 @@
+ # where loc1 and loc2 can be relative or absolute paths or URLs. See the
+ # section "Linking to external documentation" for more information about the use
+ # of tag files.
+-# Note: Each tag file must have an unique name (where the name does NOT include
++# Note: Each tag file must have a unique name (where the name does NOT include
+ # the path). If a tag file is not located in the directory in which doxygen is
+ # run, you must also specify the path to the tagfile here.
+
+@@ -2042,54 +2384,31 @@
+
+ GENERATE_TAGFILE =
+
+-# If the ALLEXTERNALS tag is set to YES all external class will be listed in the
+-# class index. If set to NO only the inherited external classes will be listed.
++# If the ALLEXTERNALS tag is set to YES, all external class will be listed in
++# the class index. If set to NO, only the inherited external classes will be
++# listed.
+ # The default value is: NO.
+
+ ALLEXTERNALS = NO
+
+-# If the EXTERNAL_GROUPS tag is set to YES all external groups will be listed in
+-# the modules index. If set to NO, only the current project's groups will be
++# If the EXTERNAL_GROUPS tag is set to YES, all external groups will be listed
++# in the modules index. If set to NO, only the current project's groups will be
+ # listed.
+ # The default value is: YES.
+
+ EXTERNAL_GROUPS = YES
+
+-# If the EXTERNAL_PAGES tag is set to YES all external pages will be listed in
++# If the EXTERNAL_PAGES tag is set to YES, all external pages will be listed in
+ # the related pages index. If set to NO, only the current project's pages will
+ # be listed.
+ # The default value is: YES.
+
+ EXTERNAL_PAGES = YES
+
+-# The PERL_PATH should be the absolute path and name of the perl script
+-# interpreter (i.e. the result of 'which perl').
+-# The default file (with absolute path) is: /usr/bin/perl.
+-
+-PERL_PATH = /usr/bin/perl
+-
+ #---------------------------------------------------------------------------
+ # Configuration options related to the dot tool
+ #---------------------------------------------------------------------------
+
+-# If the CLASS_DIAGRAMS tag is set to YES doxygen will generate a class diagram
+-# (in HTML and LaTeX) for classes with base or super classes. Setting the tag to
+-# NO turns the diagrams off. Note that this option also works with HAVE_DOT
+-# disabled, but it is recommended to install and use dot, since it yields more
+-# powerful graphs.
+-# The default value is: YES.
+-
+-CLASS_DIAGRAMS = NO
+-
+-# You can define message sequence charts within doxygen comments using the \msc
+-# command. Doxygen will then run the mscgen tool (see:
+-# http://www.mcternan.me.uk/mscgen/)) to produce the chart and insert it in the
+-# documentation. The MSCGEN_PATH tag allows you to specify the directory where
+-# the mscgen tool resides. If left empty the tool is assumed to be found in the
+-# default search path.
+-
+-MSCGEN_PATH =
+-
+ # You can include diagrams made with dia in doxygen documentation. Doxygen will
+ # then run dia to produce the diagram and insert it in the documentation. The
+ # DIA_PATH tag allows you to specify the directory where the dia binary resides.
+@@ -2097,7 +2416,7 @@
+
+ DIA_PATH =
+
+-# If set to YES, the inheritance and collaboration graphs will hide inheritance
++# If set to YES the inheritance and collaboration graphs will hide inheritance
+ # and usage relations if the target is undocumented or is not a class.
+ # The default value is: YES.
+
+@@ -2108,7 +2427,7 @@
+ # http://www.graphviz.org/), a graph visualization toolkit from AT&T and Lucent
+ # Bell Labs. The other options in this section have no effect if this option is
+ # set to NO
+-# The default value is: NO.
++# The default value is: YES.
+
+ HAVE_DOT = NO
+
+@@ -2122,7 +2441,7 @@
+
+ DOT_NUM_THREADS = 0
+
+-# When you want a differently looking font n the dot files that doxygen
++# When you want a differently looking font in the dot files that doxygen
+ # generates you can specify the font name using DOT_FONTNAME. You need to make
+ # sure dot is able to find the font, which can be done by putting it in a
+ # standard location or by setting the DOTFONTPATH environment variable or by
+@@ -2146,13 +2465,16 @@
+
+ DOT_FONTPATH =
+
+-# If the CLASS_GRAPH tag is set to YES then doxygen will generate a graph for
+-# each documented class showing the direct and indirect inheritance relations.
+-# Setting this tag to YES will force the CLASS_DIAGRAMS tag to NO.
++# If the CLASS_GRAPH tag is set to YES (or GRAPH) then doxygen will generate a
++# graph for each documented class showing the direct and indirect inheritance
++# relations. In case HAVE_DOT is set as well dot will be used to draw the graph,
++# otherwise the built-in generator will be used. If the CLASS_GRAPH tag is set
++# to TEXT the direct and indirect inheritance relations will be shown as texts /
++# links.
++# Possible values are: NO, YES, TEXT and GRAPH.
+ # The default value is: YES.
+-# This tag requires that the tag HAVE_DOT is set to YES.
+
+-CLASS_GRAPH = YES
++CLASS_GRAPH = TEXT
+
+ # If the COLLABORATION_GRAPH tag is set to YES then doxygen will generate a
+ # graph for each documented class showing the direct and indirect implementation
+@@ -2164,13 +2486,14 @@
+ COLLABORATION_GRAPH = YES
+
+ # If the GROUP_GRAPHS tag is set to YES then doxygen will generate a graph for
+-# groups, showing the direct groups dependencies.
++# groups, showing the direct groups dependencies. See also the chapter Grouping
++# in the manual.
+ # The default value is: YES.
+ # This tag requires that the tag HAVE_DOT is set to YES.
+
+ GROUP_GRAPHS = YES
+
+-# If the UML_LOOK tag is set to YES doxygen will generate inheritance and
++# If the UML_LOOK tag is set to YES, doxygen will generate inheritance and
+ # collaboration diagrams in a style similar to the OMG's Unified Modeling
+ # Language.
+ # The default value is: NO.
+@@ -2187,10 +2510,32 @@
+ # but if the number exceeds 15, the total amount of fields shown is limited to
+ # 10.
+ # Minimum value: 0, maximum value: 100, default value: 10.
+-# This tag requires that the tag HAVE_DOT is set to YES.
++# This tag requires that the tag UML_LOOK is set to YES.
+
+ UML_LIMIT_NUM_FIELDS = 10
+
++# If the DOT_UML_DETAILS tag is set to NO, doxygen will show attributes and
++# methods without types and arguments in the UML graphs. If the DOT_UML_DETAILS
++# tag is set to YES, doxygen will add type and arguments for attributes and
++# methods in the UML graphs. If the DOT_UML_DETAILS tag is set to NONE, doxygen
++# will not generate fields with class member information in the UML graphs. The
++# class diagrams will look similar to the default class diagrams but using UML
++# notation for the relationships.
++# Possible values are: NO, YES and NONE.
++# The default value is: NO.
++# This tag requires that the tag UML_LOOK is set to YES.
++
++DOT_UML_DETAILS = NO
++
++# The DOT_WRAP_THRESHOLD tag can be used to set the maximum number of characters
++# to display on a single line. If the actual line length exceeds this threshold
++# significantly it will wrapped across multiple lines. Some heuristics are apply
++# to avoid ugly line breaks.
++# Minimum value: 0, maximum value: 1000, default value: 17.
++# This tag requires that the tag HAVE_DOT is set to YES.
++
++DOT_WRAP_THRESHOLD = 17
++
+ # If the TEMPLATE_RELATIONS tag is set to YES then the inheritance and
+ # collaboration graphs will show the relations between templates and their
+ # instances.
+@@ -2222,7 +2567,8 @@
+ #
+ # Note that enabling this option will significantly increase the time of a run.
+ # So in most cases it will be better to enable call graphs for selected
+-# functions only using the \callgraph command.
++# functions only using the \callgraph command. Disabling a call graph can be
++# accomplished by means of the command \hidecallgraph.
+ # The default value is: NO.
+ # This tag requires that the tag HAVE_DOT is set to YES.
+
+@@ -2233,7 +2579,8 @@
+ #
+ # Note that enabling this option will significantly increase the time of a run.
+ # So in most cases it will be better to enable caller graphs for selected
+-# functions only using the \callergraph command.
++# functions only using the \callergraph command. Disabling a caller graph can be
++# accomplished by means of the command \hidecallergraph.
+ # The default value is: NO.
+ # This tag requires that the tag HAVE_DOT is set to YES.
+
+@@ -2255,12 +2602,24 @@
+
+ DIRECTORY_GRAPH = YES
+
++# The DIR_GRAPH_MAX_DEPTH tag can be used to limit the maximum number of levels
++# of child directories generated in directory dependency graphs by dot.
++# Minimum value: 1, maximum value: 25, default value: 1.
++# This tag requires that the tag DIRECTORY_GRAPH is set to YES.
++
++DIR_GRAPH_MAX_DEPTH = 1
++
+ # The DOT_IMAGE_FORMAT tag can be used to set the image format of the images
+-# generated by dot.
++# generated by dot. For an explanation of the image formats see the section
++# output formats in the documentation of the dot tool (Graphviz (see:
++# http://www.graphviz.org/)).
+ # Note: If you choose svg you need to set HTML_FILE_EXTENSION to xhtml in order
+ # to make the SVG files visible in IE 9+ (other browsers do not have this
+ # requirement).
+-# Possible values are: png, jpg, gif and svg.
++# Possible values are: png, jpg, jpg:cairo, jpg:cairo:gd, jpg:gd, jpg:gd:gd,
++# gif, gif:cairo, gif:cairo:gd, gif:gd, gif:gd:gd, svg, png:gd, png:gd:gd,
++# png:cairo, png:cairo:gd, png:cairo:cairo, png:cairo:gdiplus, png:gdiplus and
++# png:gdiplus:gdiplus.
+ # The default value is: png.
+ # This tag requires that the tag HAVE_DOT is set to YES.
+
+@@ -2303,6 +2662,24 @@
+
+ DIAFILE_DIRS =
+
++# When using plantuml, the PLANTUML_JAR_PATH tag should be used to specify the
++# path where java can find the plantuml.jar file or to the filename of jar file
++# to be used. If left blank, it is assumed PlantUML is not used or called during
++# a preprocessing step. Doxygen will generate a warning when it encounters a
++# \startuml command in this case and will not generate output for the diagram.
++
++PLANTUML_JAR_PATH =
++
++# When using plantuml, the PLANTUML_CFG_FILE tag can be used to specify a
++# configuration file for plantuml.
++
++PLANTUML_CFG_FILE =
++
++# When using plantuml, the specified paths are searched for files specified by
++# the !include statement in a plantuml block.
++
++PLANTUML_INCLUDE_PATH =
++
+ # The DOT_GRAPH_MAX_NODES tag can be used to set the maximum number of nodes
+ # that will be shown in the graph. If the number of nodes in a graph becomes
+ # larger than this value, doxygen will truncate the graph, which is visualized
+@@ -2339,7 +2716,7 @@
+
+ DOT_TRANSPARENT = NO
+
+-# Set the DOT_MULTI_TARGETS tag to YES allow dot to generate multiple output
++# Set the DOT_MULTI_TARGETS tag to YES to allow dot to generate multiple output
+ # files in one run (i.e. multiple -o and -T options on the command line). This
+ # makes dot run faster, but since only newer versions of dot (>1.8.10) support
+ # this, this feature is disabled by default.
+@@ -2351,14 +2728,18 @@
+ # If the GENERATE_LEGEND tag is set to YES doxygen will generate a legend page
+ # explaining the meaning of the various boxes and arrows in the dot generated
+ # graphs.
++# Note: This tag requires that UML_LOOK isn't set, i.e. the doxygen internal
++# graphical representation for inheritance and collaboration diagrams is used.
+ # The default value is: YES.
+ # This tag requires that the tag HAVE_DOT is set to YES.
+
+ GENERATE_LEGEND = YES
+
+-# If the DOT_CLEANUP tag is set to YES doxygen will remove the intermediate dot
++# If the DOT_CLEANUP tag is set to YES, doxygen will remove the intermediate
+ # files that are used to generate the various graphs.
++#
++# Note: This setting is not only used for dot files but also for msc temporary
++# files.
+ # The default value is: YES.
+-# This tag requires that the tag HAVE_DOT is set to YES.
+
+ DOT_CLEANUP = YES
+--- a/docs/DoxygenLayout.xml
++++ b/docs/DoxygenLayout.xml
+@@ -1,22 +1,36 @@
+ <doxygenlayout version="1.0">
+- <!-- Generated by doxygen 1.8.6 -->
++ <!-- Generated by doxygen 1.9.4 -->
+ <!-- Navigation index tabs for HTML output -->
+ <navindex>
+ <tab type="mainpage" visible="yes" title=""/>
+ <tab type="pages" visible="yes" title="" intro=""/>
+ <tab type="modules" visible="yes" title="" intro=""/>
+- <!--
+ <tab type="namespaces" visible="yes" title="">
+ <tab type="namespacelist" visible="yes" title="" intro=""/>
+ <tab type="namespacemembers" visible="yes" title="" intro=""/>
+ </tab>
++ <tab type="concepts" visible="yes" title="">
++ </tab>
++ <tab type="interfaces" visible="yes" title="">
++ <tab type="interfacelist" visible="yes" title="" intro=""/>
++ <tab type="interfaceindex" visible="$ALPHABETICAL_INDEX" title=""/>
++ <tab type="interfacehierarchy" visible="yes" title="" intro=""/>
++ </tab>
+ <tab type="classes" visible="yes" title="">
+ <tab type="classlist" visible="yes" title="" intro=""/>
+ <tab type="classindex" visible="$ALPHABETICAL_INDEX" title=""/>
+ <tab type="hierarchy" visible="yes" title="" intro=""/>
+ <tab type="classmembers" visible="yes" title="" intro=""/>
+ </tab>
+- -->
++ <tab type="structs" visible="yes" title="">
++ <tab type="structlist" visible="yes" title="" intro=""/>
++ <tab type="structindex" visible="$ALPHABETICAL_INDEX" title=""/>
++ </tab>
++ <tab type="exceptions" visible="yes" title="">
++ <tab type="exceptionlist" visible="yes" title="" intro=""/>
++ <tab type="exceptionindex" visible="$ALPHABETICAL_INDEX" title=""/>
++ <tab type="exceptionhierarchy" visible="yes" title="" intro=""/>
++ </tab>
+ <tab type="files" visible="yes" title="">
+ <tab type="filelist" visible="yes" title="" intro=""/>
+ <tab type="globals" visible="yes" title="" intro=""/>
+@@ -27,7 +41,7 @@
+ <!-- Layout definition for a class page -->
+ <class>
+ <briefdescription visible="yes"/>
+- <includes visible="$SHOW_INCLUDE_FILES"/>
++ <includes visible="$SHOW_HEADERFILE"/>
+ <inheritancegraph visible="$CLASS_GRAPH"/>
+ <collaborationgraph visible="$COLLABORATION_GRAPH"/>
+ <memberdecl>
+@@ -89,8 +103,14 @@
+ <memberdecl>
+ <nestednamespaces visible="yes" title=""/>
+ <constantgroups visible="yes" title=""/>
++ <interfaces visible="yes" title=""/>
+ <classes visible="yes" title=""/>
++ <concepts visible="yes" title=""/>
++ <structs visible="yes" title=""/>
++ <exceptions visible="yes" title=""/>
+ <typedefs title=""/>
++ <sequences title=""/>
++ <dictionaries title=""/>
+ <enums title=""/>
+ <functions title=""/>
+ <variables title=""/>
+@@ -100,6 +120,8 @@
+ <memberdef>
+ <inlineclasses title=""/>
+ <typedefs title=""/>
++ <sequences title=""/>
++ <dictionaries title=""/>
+ <enums title=""/>
+ <functions title=""/>
+ <variables title=""/>
+@@ -107,6 +129,15 @@
+ <authorsection visible="yes"/>
+ </namespace>
+
++ <!-- Layout definition for a concept page -->
++ <concept>
++ <briefdescription visible="yes"/>
++ <includes visible="$SHOW_HEADERFILE"/>
++ <definition visible="yes" title=""/>
++ <detaileddescription title=""/>
++ <authorsection visible="yes"/>
++ </concept>
++
+ <!-- Layout definition for a file page -->
+ <file>
+ <briefdescription visible="yes"/>
+@@ -115,11 +146,17 @@
+ <includedbygraph visible="$INCLUDED_BY_GRAPH"/>
+ <sourcelink visible="yes"/>
+ <memberdecl>
++ <interfaces visible="yes" title=""/>
+ <classes visible="yes" title=""/>
++ <structs visible="yes" title=""/>
++ <exceptions visible="yes" title=""/>
+ <namespaces visible="yes" title=""/>
++ <concepts visible="yes" title=""/>
+ <constantgroups visible="yes" title=""/>
+ <defines title=""/>
+ <typedefs title=""/>
++ <sequences title=""/>
++ <dictionaries title=""/>
+ <enums title=""/>
+ <functions title=""/>
+ <variables title=""/>
+@@ -130,6 +167,8 @@
+ <inlineclasses title=""/>
+ <defines title=""/>
+ <typedefs title=""/>
++ <sequences title=""/>
++ <dictionaries title=""/>
+ <enums title=""/>
+ <functions title=""/>
+ <variables title=""/>
+@@ -146,9 +185,12 @@
+ <dirs visible="yes" title=""/>
+ <files visible="yes" title=""/>
+ <namespaces visible="yes" title=""/>
++ <concepts visible="yes" title=""/>
+ <classes visible="yes" title=""/>
+ <defines title=""/>
+ <typedefs title=""/>
++ <sequences title=""/>
++ <dictionaries title=""/>
+ <enums title=""/>
+ <enumvalues title=""/>
+ <functions title=""/>
+@@ -168,6 +210,8 @@
+ <inlineclasses title=""/>
+ <defines title=""/>
+ <typedefs title=""/>
++ <sequences title=""/>
++ <dictionaries title=""/>
+ <enums title=""/>
+ <enumvalues title=""/>
+ <functions title=""/>