Import volk_2.2.1-2.debian.tar.xz
authorA. Maitland Bottoms <bottoms@debian.org>
Sat, 28 Mar 2020 01:48:10 +0000 (01:48 +0000)
committerA. Maitland Bottoms <bottoms@debian.org>
Sat, 28 Mar 2020 01:48:10 +0000 (01:48 +0000)
[dgit import tarball volk 2.2.1-2 volk_2.2.1-2.debian.tar.xz]

36 files changed:
1.3_to_1.4_compat_report.html [new file with mode: 0644]
1.4_to_2.0_compat_report.html [new file with mode: 0644]
2.2.0_to_2.2.1_compat_report.html [new file with mode: 0644]
changelog [new file with mode: 0644]
compat [new file with mode: 0644]
control [new file with mode: 0644]
copyright [new file with mode: 0644]
libvolk2-bin.install [new file with mode: 0644]
libvolk2-bin.manpages [new file with mode: 0644]
libvolk2-dev.abi.tar.gz.amd64 [new file with mode: 0644]
libvolk2-dev.acc [new file with mode: 0644]
libvolk2-dev.docs [new file with mode: 0644]
libvolk2-dev.install [new file with mode: 0644]
libvolk2-doc.doc-base [new file with mode: 0644]
libvolk2-doc.docs [new file with mode: 0644]
libvolk2.2.install [new file with mode: 0644]
patches/0001-volk-accurate-exp-kernel.patch [new file with mode: 0644]
patches/0002-exp-Rename-SSE4.1-to-SSE2-kernel.patch [new file with mode: 0644]
patches/0003-clang-format-Apply-clang-format.patch [new file with mode: 0644]
patches/0004-clang-format-Update-PR-with-GitHub-Action.patch [new file with mode: 0644]
patches/0005-clang-format-Rebase-onto-current-master.patch [new file with mode: 0644]
patches/0006-Fix-the-broken-index-max-kernels.patch [new file with mode: 0644]
patches/0007-cmake-Remove-the-ORC-from-the-VOLK-public-link-inter.patch [new file with mode: 0644]
patches/avoid-unnecessary-soversion-bump [new file with mode: 0644]
patches/make-acc-happy [new file with mode: 0644]
patches/optional-static-apps [new file with mode: 0644]
patches/remove-external-HTML-resources [new file with mode: 0644]
patches/series [new file with mode: 0644]
rules [new file with mode: 0755]
source/format [new file with mode: 0644]
source/include-binaries [new file with mode: 0644]
upstream/signing-key.asc [new file with mode: 0644]
volk-config-info.1 [new file with mode: 0644]
volk_modtool.1 [new file with mode: 0644]
volk_profile.1 [new file with mode: 0644]
watch [new file with mode: 0644]

diff --git a/1.3_to_1.4_compat_report.html b/1.3_to_1.4_compat_report.html
new file mode 100644 (file)
index 0000000..f9614d6
--- /dev/null
@@ -0,0 +1,1069 @@
+<!-- kind:binary;verdict:incompatible;affected:0.2;added:45;removed:0;type_problems_high:0;type_problems_medium:0;type_problems_low:1;interface_problems_high:1;interface_problems_medium:0;interface_problems_low:0;changed_constants:1;tool_version:2.2 -->
+<!-- kind:source;verdict:incompatible;affected:0.9;added:46;removed:5;type_problems_high:0;type_problems_medium:0;type_problems_low:1;interface_problems_high:1;interface_problems_medium:0;interface_problems_low:0;changed_constants:1;constant_changes_other:2;tool_version:2.2 -->
+<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
+<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
+<head>
+<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
+<meta name="keywords" content="libvolk1-dev, compatibility, API, ABI, report" />
+<meta name="description" content="API/ABI compatibility report for the libvolk1-dev library between 1.3-3 and 1.4-1 versions" />
+<title>libvolk1-dev: 1.3-3 to 1.4-1 compatibility report</title>
+<style type="text/css">
+body {
+    font-family:Arial, sans-serif;
+    background-color:White;
+    color:Black;
+}
+hr {
+    color:Black;
+    background-color:Black;
+    height:1px;
+    border:0;
+}
+h1 {
+    margin-bottom:0px;
+    padding-bottom:0px;
+    font-size:1.625em;
+}
+h2 {
+    margin-bottom:0px;
+    padding-bottom:0px;
+    font-size:1.25em;
+    white-space:nowrap;
+}
+span.section {
+    font-weight:bold;
+    cursor:pointer;
+    color:#003E69;
+    white-space:nowrap;
+    margin-left:0.3125em;
+}
+span.new_sign {
+    font-weight:bold;
+    margin-left:1.65em;
+    color:#003E69;
+}
+span.new_sign_lbl {
+    margin-left:3em;
+    font-size:1em;
+    color:Black;
+}
+span:hover.section {
+    color:#336699;
+}
+span.sect_aff {
+    cursor:pointer;
+    padding-left:1.55em;
+    font-size:0.875em;
+    color:#cc3300;
+}
+span.sect_info {
+    cursor:pointer;
+    padding-left:1.55em;
+    font-size:0.875em;
+    color:Black;
+}
+span.ext {
+    font-weight:normal;
+}
+span.h_name {
+    color:#cc3300;
+    font-size:0.875em;
+    font-weight:bold;
+}
+div.h_list, div.lib_list {
+    font-size:0.94em;
+    padding-left:0.4em;
+}
+span.ns {
+    color:#408080;
+    font-size:0.94em;
+}
+span.lib_name {
+    color:Green;
+    font-size:0.875em;
+    font-weight:bold;
+}
+span.iname {
+    font-weight:bold;
+    color:#003E69;
+    margin-left:0.3125em;
+}
+span.iname_b {
+    font-weight:bold;
+}
+span.iname_a {
+    color:#333333;
+    font-weight:bold;
+    font-size:0.94em;
+}
+span.sym_p {
+    font-weight:normal;
+    white-space:normal;
+}
+span.sym_pd {
+    white-space:normal;
+}
+span.sym_p span, span.sym_pd span {
+    white-space:nowrap;
+}
+div.affect {
+    padding-left:1em;
+    padding-bottom:10px;
+    font-size:0.87em;
+    font-style:italic;
+    line-height:0.9em;
+}
+div.affected {
+    padding-left:1.9em;
+    padding-top:10px;
+}
+table.ptable {
+    border-collapse:collapse;
+    border:1px outset black;
+    margin-left:0.95em;
+    margin-top:3px;
+    margin-bottom:3px;
+    width:56.25em;
+}
+table.ptable td {
+    border:1px solid gray;
+    padding:3px;
+    font-size:0.875em;
+    text-align:left;
+    vertical-align:top;
+    max-width:28em;
+    word-wrap:break-word;
+}
+table.ptable th.pn {
+    width:2%;
+}
+table.ptable th.chg {
+    width:47%;
+}
+table.vtable {
+    border-collapse:collapse;
+    border:1px outset black;
+    margin-left:1.9em;
+    margin-top:0.7em;
+}
+table.vtable td {
+    border:1px solid gray;
+    padding:3px;
+    font-size:0.875em;
+    vertical-align:top;
+    max-width:450px;
+    word-wrap:break-word;
+}
+table.ptable th, table.vtable th {
+    background-color:#eeeeee;
+    font-weight:bold;
+    color:#333333;
+    font-family:Verdana, Arial;
+    font-size:0.875em;
+    border:1px solid gray;
+    text-align:center;
+    vertical-align:top;
+    white-space:nowrap;
+    padding:3px;
+}
+table.summary {
+    border-collapse:collapse;
+    border:1px outset black;
+}
+table.summary th {
+    background-color:#eeeeee;
+    font-weight:normal;
+    text-align:left;
+    font-size:0.94em;
+    white-space:nowrap;
+    border:1px inset gray;
+    padding:3px;
+}
+table.summary td {
+    text-align:right;
+    white-space:nowrap;
+    border:1px inset gray;
+    padding:3px 5px 3px 10px;
+}
+span.mngl {
+    padding-left:1em;
+    font-size:0.875em;
+    cursor:text;
+    color:#444444;
+    font-weight:bold;
+}
+span.pleft {
+    padding-left:2.5em;
+}
+span.sym_ver {
+    color:#333333;
+    white-space:nowrap;
+    font-family:"DejaVu Sans Mono", Monospace;
+}
+span.attr {
+    color:#333333;
+    font-weight:normal;
+}
+span.color_p {
+    font-style:italic;
+    color:Brown;
+}
+span.p {
+    font-style:italic;
+}
+span.fp {
+    font-style:italic;
+    background-color:#DCDCDC;
+}
+span.ttype {
+    font-weight:normal;
+}
+span.nowrap {
+    white-space:nowrap;
+}
+span.value {
+    font-weight:bold;
+}
+.passed {
+    background-color:#CCFFCC;
+    font-weight:normal;
+}
+.warning {
+    background-color:#F4F4AF;
+    font-weight:normal;
+}
+.failed {
+    background-color:#FFCCCC;
+    font-weight:normal;
+}
+.new {
+    background-color:#C6DEFF;
+    font-weight:normal;
+}
+.compatible {
+    background-color:#CCFFCC;
+    font-weight:normal;
+}
+.almost_compatible {
+    background-color:#FFDAA3;
+    font-weight:normal;
+}
+.incompatible {
+    background-color:#FFCCCC;
+    font-weight:normal;
+}
+.gray {
+    background-color:#DCDCDC;
+    font-weight:normal;
+}
+.top_ref {
+    font-size:0.69em;
+}
+.footer {
+    font-size:0.75em;
+}
+
+.tabset {
+    float:left;
+}
+a.tab {
+    border:1px solid Black;
+    float:left;
+    margin:0px 5px -1px 0px;
+    padding:3px 5px 3px 5px;
+    position:relative;
+    font-size:0.875em;
+    background-color:#DDD;
+    text-decoration:none;
+    color:Black;
+}
+a.disabled:hover
+{
+    color:Black;
+    background:#EEE;
+}
+a.active:hover
+{
+    color:Black;
+    background:White;
+}
+a.active {
+    border-bottom-color:White;
+    background-color:White;
+}
+div.tab {
+    border-top:1px solid Black;
+    padding:0px;
+    width:100%;
+    clear:both;
+}
+</style>
+<script type="text/javascript" language="JavaScript">
+<!--
+function showContent(header, id)
+{
+    e = document.getElementById(id);
+    if(e.style.display == 'none')
+    {
+        e.style.display = 'block';
+        e.style.visibility = 'visible';
+        header.innerHTML = header.innerHTML.replace(/\[[^0-9 ]\]/gi,"[&minus;]");
+    }
+    else
+    {
+        e.style.display = 'none';
+        e.style.visibility = 'hidden';
+        header.innerHTML = header.innerHTML.replace(/\[[^0-9 ]\]/gi,"[+]");
+    }
+}
+function initTabs()
+{
+    var url = window.location.href;
+    if(url.indexOf('_Source_')!=-1 || url.indexOf('#Source')!=-1)
+    {
+        var tab1 = document.getElementById('BinaryID');
+        var tab2 = document.getElementById('SourceID');
+        tab1.className='tab disabled';
+        tab2.className='tab active';
+    }
+    var sets = document.getElementsByTagName('div');
+    for (var i = 0; i < sets.length; i++)
+    {
+        if (sets[i].className.indexOf('tabset') != -1)
+        {
+            var tabs = [];
+            var links = sets[i].getElementsByTagName('a');
+            for (var j = 0; j < links.length; j++)
+            {
+                if (links[j].className.indexOf('tab') != -1)
+                {
+                    tabs.push(links[j]);
+                    links[j].tabs = tabs;
+                    var tab = document.getElementById(links[j].href.substr(links[j].href.indexOf('#') + 1));
+                    //reset all tabs on start
+                    if (tab)
+                    {
+                        if (links[j].className.indexOf('active')!=-1) {
+                            tab.style.display = 'block';
+                        }
+                        else {
+                            tab.style.display = 'none';
+                        }
+                    }
+                    links[j].onclick = function()
+                    {
+                        var tab = document.getElementById(this.href.substr(this.href.indexOf('#') + 1));
+                        if (tab)
+                        {
+                            //reset all tabs before change
+                            for (var k = 0; k < this.tabs.length; k++)
+                            {
+                                document.getElementById(this.tabs[k].href.substr(this.tabs[k].href.indexOf('#') + 1)).style.display = 'none';
+                                this.tabs[k].className = this.tabs[k].className.replace('active', 'disabled');
+                            }
+                            this.className = 'tab active';
+                            tab.style.display = 'block';
+                            // window.location.hash = this.id.replace('ID', '');
+                            return false;
+                        }
+                    }
+                }
+            }
+        }
+    }
+    if(url.indexOf('#')!=-1) {
+        location.href=location.href;
+    }
+}
+if (window.addEventListener) window.addEventListener('load', initTabs, false);
+else if (window.attachEvent) window.attachEvent('onload', initTabs);
+-->
+</script>
+</head>
+<body><a name='Source'></a><a name='Binary'></a><a name='Top'></a><h1>API compatibility report for the <span style='color:Blue;'>libvolk1-dev</span> library between <span style='color:Red;'>1.3-3</span> and <span style='color:Red;'>1.4-1</span> versions on <span style='color:Blue;'>x86_64</span></h1>
+
+            <br/>
+            <div class='tabset'>
+            <a id='BinaryID' href='#BinaryTab' class='tab active'>Binary<br/>Compatibility</a>
+            <a id='SourceID' href='#SourceTab' style='margin-left:3px' class='tab disabled'>Source<br/>Compatibility</a>
+            </div><div id='BinaryTab' class='tab'>
+<h2>Test Info</h2><hr/>
+<table class='summary'>
+<tr><th>Library Name</th><td>libvolk1-dev</td></tr>
+<tr><th>Version #1</th><td>1.3-3</td></tr>
+<tr><th>Version #2</th><td>1.4-1</td></tr>
+<tr><th>Arch</th><td>x86_64</td></tr>
+<tr><th>GCC Version</th><td>7</td></tr>
+<tr><th>Subject</th><td width='150px'>Binary Compatibility</td></tr>
+</table>
+<h2>Test Results</h2><hr/>
+<table class='summary'><tr><th>Total Header Files</th><td><a href='#Headers' style='color:Blue;'>135</a></td></tr>
+<tr><th>Total Libraries</th><td><a href='#Libs' style='color:Blue;'>1</a></td></tr>
+<tr><th>Total Symbols / Types</th><td>614 / 233</td></tr>
+<tr><th>Compatibility</th>
+<td class='warning'>99.8%</td>
+</tr>
+</table>
+<h2>Problem Summary</h2><hr/>
+<table class='summary'><tr><th></th><th style='text-align:center;'>Severity</th><th style='text-align:center;'>Count</th></tr><tr><th>Added Symbols</th><td>-</td><td class='new'><a href='#Binary_Added' style='color:Blue;'>45</a></td></tr>
+<tr><th>Removed Symbols</th><td>High</td><td>0</td></tr>
+<tr><th rowspan='3'>Problems with<br/>Data Types</th><td>High</td><td>0</td></tr>
+<tr><td>Medium</td><td>0</td></tr>
+<tr><td>Low</td><td class='warning'><a href='#Type_Binary_Problems_Low' style='color:Blue;'>1</a></td></tr>
+<tr><th rowspan='3'>Problems with<br/>Symbols</th><td>High</td><td class='failed'><a href='#Symbol_Binary_Problems_High' style='color:Blue;'>1</a></td></tr>
+<tr><td>Medium</td><td>0</td></tr>
+<tr><td>Low</td><td>0</td></tr>
+<tr><th>Problems with<br/>Constants</th><td>Low</td><td class='warning'><a href='#Constant_Binary_Problems_Low' style='color:Blue;'>1</a></td></tr>
+</table>
+
+<a name='Binary_Added'></a><h2>Added Symbols <span class='new'>&nbsp;45&nbsp;</span></h2><hr/>
+<span class='h_name'>volk.h</span>, <span class='lib_name'>libvolk.so.1.4</span><br/>
+<span class="iname">volk_32f_64f_add_64f <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32f_64f_add_64f_a <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32f_64f_add_64f_get_func_desc&#160;<span class='sym_p'>(&#160;)</span></span><br/>
+<span class="iname">volk_32f_64f_add_64f_manual&#160;<span class='sym_p'><span>(&#160;double* <span class='color_p'>cVector</span></span>, <span>float const* <span class='color_p'>aVector</span></span>, <span>double const* <span class='color_p'>bVector</span></span>, <span>unsigned int <span class='color_p'>num_points</span></span>, <span>char const* <span class='color_p'>impl_name</span></span>&#160;)</span></span><br/>
+<span class="iname">volk_32f_64f_add_64f_u <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32f_64f_multiply_64f <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32f_64f_multiply_64f_a <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32f_64f_multiply_64f_get_func_desc&#160;<span class='sym_p'>(&#160;)</span></span><br/>
+<span class="iname">volk_32f_64f_multiply_64f_manual&#160;<span class='sym_p'><span>(&#160;double* <span class='color_p'>cVector</span></span>, <span>float const* <span class='color_p'>aVector</span></span>, <span>double const* <span class='color_p'>bVector</span></span>, <span>unsigned int <span class='color_p'>num_points</span></span>, <span>char const* <span class='color_p'>impl_name</span></span>&#160;)</span></span><br/>
+<span class="iname">volk_32f_64f_multiply_64f_u <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32f_s32f_mod_rangepuppet_32f <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32f_s32f_mod_rangepuppet_32f_a <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32f_s32f_mod_rangepuppet_32f_get_func_desc&#160;<span class='sym_p'>(&#160;)</span></span><br/>
+<span class="iname">volk_32f_s32f_mod_rangepuppet_32f_manual&#160;<span class='sym_p'><span>(&#160;float* <span class='color_p'>output</span></span>, <span>float const* <span class='color_p'>input</span></span>, <span>float <span class='color_p'>bound</span></span>, <span>unsigned int <span class='color_p'>num_points</span></span>, <span>char const* <span class='color_p'>impl_name</span></span>&#160;)</span></span><br/>
+<span class="iname">volk_32f_s32f_mod_rangepuppet_32f_u <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32f_s32f_s32f_mod_range_32f <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32f_s32f_s32f_mod_range_32f_a <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32f_s32f_s32f_mod_range_32f_get_func_desc&#160;<span class='sym_p'>(&#160;)</span></span><br/>
+<span class="iname">volk_32f_s32f_s32f_mod_range_32f_manual&#160;<span class='sym_p'><span>(&#160;float* <span class='color_p'>outputVector</span></span>, <span>float const* <span class='color_p'>inputVector</span></span>, <span>float const <span class='color_p'>lower_bound</span></span>, <span>float const <span class='color_p'>upper_bound</span></span>, <span>unsigned int <span class='color_p'>num_points</span></span>, <span>char const* <span class='color_p'>impl_name</span></span>&#160;)</span></span><br/>
+<span class="iname">volk_32f_s32f_s32f_mod_range_32f_u <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32fc_32f_add_32fc <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32fc_32f_add_32fc_a <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32fc_32f_add_32fc_get_func_desc&#160;<span class='sym_p'>(&#160;)</span></span><br/>
+<span class="iname">volk_32fc_32f_add_32fc_manual&#160;<span class='sym_p'><span>(&#160;lv_32fc_t* <span class='color_p'>cVector</span></span>, <span>lv_32fc_t const* <span class='color_p'>aVector</span></span>, <span>float const* <span class='color_p'>bVector</span></span>, <span>unsigned int <span class='color_p'>num_points</span></span>, <span>char const* <span class='color_p'>impl_name</span></span>&#160;)</span></span><br/>
+<span class="iname">volk_32fc_32f_add_32fc_u <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32fc_x2_add_32fc <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32fc_x2_add_32fc_a <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32fc_x2_add_32fc_get_func_desc&#160;<span class='sym_p'>(&#160;)</span></span><br/>
+<span class="iname">volk_32fc_x2_add_32fc_manual&#160;<span class='sym_p'><span>(&#160;lv_32fc_t* <span class='color_p'>cVector</span></span>, <span>lv_32fc_t const* <span class='color_p'>aVector</span></span>, <span>lv_32fc_t const* <span class='color_p'>bVector</span></span>, <span>unsigned int <span class='color_p'>num_points</span></span>, <span>char const* <span class='color_p'>impl_name</span></span>&#160;)</span></span><br/>
+<span class="iname">volk_32fc_x2_add_32fc_u <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32u_reverse_32u <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32u_reverse_32u_a <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32u_reverse_32u_get_func_desc&#160;<span class='sym_p'>(&#160;)</span></span><br/>
+<span class="iname">volk_32u_reverse_32u_manual&#160;<span class='sym_p'><span>(&#160;uint32_t* <span class='color_p'>out</span></span>, <span>uint32_t const* <span class='color_p'>in</span></span>, <span>unsigned int <span class='color_p'>num_points</span></span>, <span>char const* <span class='color_p'>impl_name</span></span>&#160;)</span></span><br/>
+<span class="iname">volk_32u_reverse_32u_u <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_64f_x2_add_64f <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_64f_x2_add_64f_a <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_64f_x2_add_64f_get_func_desc&#160;<span class='sym_p'>(&#160;)</span></span><br/>
+<span class="iname">volk_64f_x2_add_64f_manual&#160;<span class='sym_p'><span>(&#160;double* <span class='color_p'>cVector</span></span>, <span>double const* <span class='color_p'>aVector</span></span>, <span>double const* <span class='color_p'>bVector</span></span>, <span>unsigned int <span class='color_p'>num_points</span></span>, <span>char const* <span class='color_p'>impl_name</span></span>&#160;)</span></span><br/>
+<span class="iname">volk_64f_x2_add_64f_u <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_64f_x2_multiply_64f <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_64f_x2_multiply_64f_a <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_64f_x2_multiply_64f_get_func_desc&#160;<span class='sym_p'>(&#160;)</span></span><br/>
+<span class="iname">volk_64f_x2_multiply_64f_manual&#160;<span class='sym_p'><span>(&#160;double* <span class='color_p'>cVector</span></span>, <span>double const* <span class='color_p'>aVector</span></span>, <span>double const* <span class='color_p'>bVector</span></span>, <span>unsigned int <span class='color_p'>num_points</span></span>, <span>char const* <span class='color_p'>impl_name</span></span>&#160;)</span></span><br/>
+<span class="iname">volk_64f_x2_multiply_64f_u <span class='attr'>[data]</span></span><br/>
+<br/>
+<a class='top_ref' href='#Top'>to the top</a><br/>
+<a name='High_Risk_Binary_Problems'></a><a name='Symbol_Binary_Problems_High'></a><a name='Interface_Binary_Problems_High'></a>
+<h2>Problems with Symbols, High Severity <span class='failed'>&nbsp;1&nbsp;</span></h2><hr/>
+<span class='h_name'>volk.h</span>, <span class='lib_name'>libvolk.so.1.3</span><br/>
+<span class="section" onclick="javascript:showContent(this, 'c_1')">
+<span class='ext'>[+]</span> volk_32f_8u_polarbutterfly_32f_manual&#160;<span class='sym_p'><span>(&#160;float* <span class='color_p'>llrs</span></span>, <span>unsigned char* <span class='color_p'>u</span></span>, <span>int const <span class='color_p'>frame_size</span></span>, <span>int const <span class='color_p'>frame_exp</span></span>, <span>int const <span class='color_p'>stage</span></span>, <span>int const <span class='color_p'>u_num</span></span>, <span>int const <span class='color_p'>row</span></span>, <span>char const* <span class='color_p'>impl_name</span></span>&#160;)</span> <span class='failed'>&nbsp;1&nbsp;</span></span>
+<br/>
+<div id="c_1" style="display:none;">
+
+
+<span class='new_sign_lbl'>&#8675;</span>
+<br/>
+<span class='new_sign'>volk_32f_8u_polarbutterfly_32f_manual&#160;<span class='sym_p'><span>(&#160;float* <span class='color_p'>llrs</span></span>, <span>unsigned char* <span class='color_p'>u</span></span>, <span>int const <span class='color_p'>frame_exp</span></span>, <span>int const <span class='color_p'>stage</span></span>, <span>int const <span class='color_p'>u_num</span></span>, <span>int const <span class='color_p'>row</span></span>, <span>char const* <span class='color_p'>impl_name</span></span>&#160;)</span></span><br/>
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td><b>3rd</b> middle parameter <b>frame_size</b> has been removed from the calling stack.</td>
+<td>Layout of parameter's stack has been changed and therefore parameters at higher positions in the stack may be incorrectly initialized by applications.</td>
+</tr>
+</table>
+<br/>
+</div>
+<br/>
+<a class='top_ref' href='#Top'>to the top</a><br/>
+<a name='Low_Risk_Binary_Problems'></a><a name='Type_Binary_Problems_Low'></a>
+<h2>Problems with Data Types, Low Severity <span class='warning'>&nbsp;1&nbsp;</span></h2><hr/>
+<span class='h_name'>volk_typedefs.h</span><br/>
+<span class="section" onclick="javascript:showContent(this, 'c_2')">
+<span class='ext'>[+]</span> <span class='ttype'>typedef</span> p_32f_8u_polarbutterfly_32f <span class='warning'>&nbsp;1&nbsp;</span></span>
+<br/>
+<div id="c_2" style="display:none;">
+<table class='ptable'><tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th></tr><tr>
+<th>1</th>
+<td>Base type has been changed from <span class='value'>void(*)(float*, unsigned char*, int, int, int, int, int)</span> to <span class='value'>void(*)(float*, unsigned char*, int, int, int, int)</span>.</td>
+<td>Replacement of the base data type may indicate a change in its semantic meaning.</td>
+</tr>
+</table>
+<span class="sect_aff" onclick="javascript:showContent(this, 'c_3')">
+[+] affected symbols: 3 (0.5%)</span>
+<div id="c_3" style="display:none;">
+<div class='affected'><span class='iname_a'>volk_32f_8u_polarbutterfly_32f <span class='attr'>[data]</span></span><br/>
+<div class='affect'>Return value is of type &#39;p_32f_8u_polarbutterfly_32f&#39;.</div>
+<span class='iname_a'>volk_32f_8u_polarbutterfly_32f_a <span class='attr'>[data]</span></span><br/>
+<div class='affect'>Return value is of type &#39;p_32f_8u_polarbutterfly_32f&#39;.</div>
+<span class='iname_a'>volk_32f_8u_polarbutterfly_32f_u <span class='attr'>[data]</span></span><br/>
+<div class='affect'>Return value is of type &#39;p_32f_8u_polarbutterfly_32f&#39;.</div>
+</div>
+</div>
+<br/><br/></div>
+
+<br/>
+<a class='top_ref' href='#Top'>to the top</a><br/>
+<a name='Constant_Binary_Problems_Low'></a>
+<h2>Problems with Constants, Low Severity <span class='warning'>&nbsp;1&nbsp;</span></h2><hr/>
+<span class='h_name'>volk_32f_log2_32f.h</span><br/>
+<span class="section" onclick="javascript:showContent(this, 'c_4')">
+<span class='ext'>[+]</span> LOG_POLY_DEGREE</span>
+<br/>
+<div id="c_4" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The constant <b>LOG_POLY_DEGREE</b> with value <b>6</b> has been removed.</td>
+<td>The value of this constant may no longer be properly handled by new-version library functions.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<br/>
+<a class='top_ref' href='#Top'>to the top</a><br/>
+<a name='Headers'></a><h2>Header Files <span class='gray'>&nbsp;135&nbsp;</span></h2><hr/>
+<div class='h_list'>
+constants.h<br/>
+saturation_arithmetic.h<br/>
+volk.h<br/>
+volk_16i_32fc_dot_prod_32fc.h<br/>
+volk_16i_branch_4_state_8.h<br/>
+volk_16i_convert_8i.h<br/>
+volk_16i_max_star_16i.h<br/>
+volk_16i_max_star_horizontal_16i.h<br/>
+volk_16i_permute_and_scalar_add.h<br/>
+volk_16i_s32f_convert_32f.h<br/>
+volk_16i_x4_quad_max_star_16i.h<br/>
+volk_16i_x5_add_quad_16i_x4.h<br/>
+volk_16ic_convert_32fc.h<br/>
+volk_16ic_deinterleave_16i_x2.h<br/>
+volk_16ic_deinterleave_real_16i.h<br/>
+volk_16ic_deinterleave_real_8i.h<br/>
+volk_16ic_magnitude_16i.h<br/>
+volk_16ic_s32f_deinterleave_32f_x2.h<br/>
+volk_16ic_s32f_deinterleave_real_32f.h<br/>
+volk_16ic_s32f_magnitude_32f.h<br/>
+volk_16ic_x2_dot_prod_16ic.h<br/>
+volk_16ic_x2_multiply_16ic.h<br/>
+volk_16u_byteswap.h<br/>
+volk_16u_byteswappuppet_16u.h<br/>
+volk_32f_8u_polarbutterfly_32f.h<br/>
+volk_32f_8u_polarbutterflypuppet_32f.h<br/>
+volk_32f_accumulator_s32f.h<br/>
+volk_32f_acos_32f.h<br/>
+volk_32f_asin_32f.h<br/>
+volk_32f_atan_32f.h<br/>
+volk_32f_binary_slicer_32i.h<br/>
+volk_32f_binary_slicer_8i.h<br/>
+volk_32f_convert_64f.h<br/>
+volk_32f_cos_32f.h<br/>
+volk_32f_expfast_32f.h<br/>
+volk_32f_index_max_16u.h<br/>
+volk_32f_index_max_32u.h<br/>
+volk_32f_invsqrt_32f.h<br/>
+volk_32f_log2_32f.h<br/>
+volk_32f_null_32f.h<br/>
+volk_32f_s32f_32f_fm_detect_32f.h<br/>
+volk_32f_s32f_calc_spectral_noise_floor_32f.h<br/>
+volk_32f_s32f_convert_16i.h<br/>
+volk_32f_s32f_convert_32i.h<br/>
+volk_32f_s32f_convert_8i.h<br/>
+volk_32f_s32f_multiply_32f.h<br/>
+volk_32f_s32f_normalize.h<br/>
+volk_32f_s32f_power_32f.h<br/>
+volk_32f_s32f_stddev_32f.h<br/>
+volk_32f_sin_32f.h<br/>
+volk_32f_sqrt_32f.h<br/>
+volk_32f_stddev_and_mean_32f_x2.h<br/>
+volk_32f_tan_32f.h<br/>
+volk_32f_tanh_32f.h<br/>
+volk_32f_x2_add_32f.h<br/>
+volk_32f_x2_divide_32f.h<br/>
+volk_32f_x2_dot_prod_16i.h<br/>
+volk_32f_x2_dot_prod_32f.h<br/>
+volk_32f_x2_fm_detectpuppet_32f.h<br/>
+volk_32f_x2_interleave_32fc.h<br/>
+volk_32f_x2_max_32f.h<br/>
+volk_32f_x2_min_32f.h<br/>
+volk_32f_x2_multiply_32f.h<br/>
+volk_32f_x2_pow_32f.h<br/>
+volk_32f_x2_s32f_interleave_16ic.h<br/>
+volk_32f_x2_subtract_32f.h<br/>
+volk_32f_x3_sum_of_poly_32f.h<br/>
+volk_32fc_32f_dot_prod_32fc.h<br/>
+volk_32fc_32f_multiply_32fc.h<br/>
+volk_32fc_conjugate_32fc.h<br/>
+volk_32fc_convert_16ic.h<br/>
+volk_32fc_deinterleave_32f_x2.h<br/>
+volk_32fc_deinterleave_64f_x2.h<br/>
+volk_32fc_deinterleave_imag_32f.h<br/>
+volk_32fc_deinterleave_real_32f.h<br/>
+volk_32fc_deinterleave_real_64f.h<br/>
+volk_32fc_index_max_16u.h<br/>
+volk_32fc_index_max_32u.h<br/>
+volk_32fc_magnitude_32f.h<br/>
+volk_32fc_magnitude_squared_32f.h<br/>
+volk_32fc_s32f_atan2_32f.h<br/>
+volk_32fc_s32f_deinterleave_real_16i.h<br/>
+volk_32fc_s32f_magnitude_16i.h<br/>
+volk_32fc_s32f_power_32fc.h<br/>
+volk_32fc_s32f_power_spectrum_32f.h<br/>
+volk_32fc_s32f_x2_power_spectral_density_32f.h<br/>
+volk_32fc_s32fc_multiply_32fc.h<br/>
+volk_32fc_s32fc_rotatorpuppet_32fc.h<br/>
+volk_32fc_s32fc_x2_rotator_32fc.h<br/>
+volk_32fc_x2_conjugate_dot_prod_32fc.h<br/>
+volk_32fc_x2_divide_32fc.h<br/>
+volk_32fc_x2_dot_prod_32fc.h<br/>
+volk_32fc_x2_multiply_32fc.h<br/>
+volk_32fc_x2_multiply_conjugate_32fc.h<br/>
+volk_32fc_x2_s32f_square_dist_scalar_mult_32f.h<br/>
+volk_32fc_x2_square_dist_32f.h<br/>
+volk_32i_s32f_convert_32f.h<br/>
+volk_32i_x2_and_32i.h<br/>
+volk_32i_x2_or_32i.h<br/>
+volk_32u_byteswap.h<br/>
+volk_32u_byteswappuppet_32u.h<br/>
+volk_32u_popcnt.h<br/>
+volk_32u_popcntpuppet_32u.h<br/>
+volk_64f_convert_32f.h<br/>
+volk_64f_x2_max_64f.h<br/>
+volk_64f_x2_min_64f.h<br/>
+volk_64u_byteswap.h<br/>
+volk_64u_byteswappuppet_64u.h<br/>
+volk_64u_popcnt.h<br/>
+volk_64u_popcntpuppet_64u.h<br/>
+volk_8i_convert_16i.h<br/>
+volk_8i_s32f_convert_32f.h<br/>
+volk_8ic_deinterleave_16i_x2.h<br/>
+volk_8ic_deinterleave_real_16i.h<br/>
+volk_8ic_deinterleave_real_8i.h<br/>
+volk_8ic_s32f_deinterleave_32f_x2.h<br/>
+volk_8ic_s32f_deinterleave_real_32f.h<br/>
+volk_8ic_x2_multiply_conjugate_16ic.h<br/>
+volk_8ic_x2_s32f_multiply_conjugate_32fc.h<br/>
+volk_8u_conv_k7_r2puppet_8u.h<br/>
+volk_8u_x2_encodeframepolar_8u.h<br/>
+volk_8u_x3_encodepolar_8u_x2.h<br/>
+volk_8u_x3_encodepolarpuppet_8u.h<br/>
+volk_8u_x4_conv_k7_r2_8u.h<br/>
+volk_avx_intrinsics.h<br/>
+volk_common.h<br/>
+volk_complex.h<br/>
+volk_config_fixed.h<br/>
+volk_cpu.h<br/>
+volk_malloc.h<br/>
+volk_neon_intrinsics.h<br/>
+volk_prefs.h<br/>
+volk_sse3_intrinsics.h<br/>
+volk_sse_intrinsics.h<br/>
+volk_typedefs.h<br/>
+</div>
+<br/><a class='top_ref' href='#Top'>to the top</a><br/>
+<a name='Libs'></a><h2>Libraries <span class='gray'>&nbsp;1&nbsp;</span></h2><hr/>
+<div class='lib_list'>
+libvolk.so.1.3<br/>
+</div>
+<br/><a class='top_ref' href='#Top'>to the top</a><br/>
+<br/><br/><br/></div><div id='SourceTab' class='tab'>
+<h2>Test Info</h2><hr/>
+<table class='summary'>
+<tr><th>Library Name</th><td>libvolk1-dev</td></tr>
+<tr><th>Version #1</th><td>1.3-3</td></tr>
+<tr><th>Version #2</th><td>1.4-1</td></tr>
+<tr><th>Arch</th><td>x86_64</td></tr>
+<tr><th>Subject</th><td width='150px'>Source Compatibility</td></tr>
+</table>
+<h2>Test Results</h2><hr/>
+<table class='summary'><tr><th>Total Header Files</th><td><a href='#Headers' style='color:Blue;'>135</a></td></tr>
+<tr><th>Total Libraries</th><td><a href='#Libs' style='color:Blue;'>1</a></td></tr>
+<tr><th>Total Symbols / Types</th><td>660 / 235</td></tr>
+<tr><th>Compatibility</th>
+<td class='warning'>99.1%</td>
+</tr>
+</table>
+<h2>Problem Summary</h2><hr/>
+<table class='summary'><tr><th></th><th style='text-align:center;'>Severity</th><th style='text-align:center;'>Count</th></tr><tr><th>Added Symbols</th><td>-</td><td class='new'><a href='#Source_Added' style='color:Blue;'>46</a></td></tr>
+<tr><th>Removed Symbols</th><td>High</td><td class='failed'><a href='#Source_Removed' style='color:Blue;'>5</a></td></tr>
+<tr><th rowspan='3'>Problems with<br/>Data Types</th><td>High</td><td>0</td></tr>
+<tr><td>Medium</td><td>0</td></tr>
+<tr><td>Low</td><td class='warning'><a href='#Type_Source_Problems_Low' style='color:Blue;'>1</a></td></tr>
+<tr><th rowspan='3'>Problems with<br/>Symbols</th><td>High</td><td class='failed'><a href='#Symbol_Source_Problems_High' style='color:Blue;'>1</a></td></tr>
+<tr><td>Medium</td><td>0</td></tr>
+<tr><td>Low</td><td>0</td></tr>
+<tr><th>Problems with<br/>Constants</th><td>Low</td><td class='warning'><a href='#Constant_Source_Problems_Low' style='color:Blue;'>1</a></td></tr>
+<tr><th>Other Changes<br/>in Constants</th><td>-</td><td class='passed'><a href='#Other_Source_Changes_In_Constants' style='color:Blue;'>2</a></td></tr>
+</table>
+
+<a name='Source_Added'></a><h2>Added Symbols <span class='new'>&nbsp;46&nbsp;</span></h2><hr/>
+<span class='h_name'>volk.h</span><br/>
+<span class="iname">volk_32f_64f_add_64f <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32f_64f_add_64f_a <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32f_64f_add_64f_get_func_desc&#160;<span class='sym_p'>(&#160;)</span></span><br/>
+<span class="iname">volk_32f_64f_add_64f_manual&#160;<span class='sym_p'><span>(&#160;double* <span class='color_p'>cVector</span></span>, <span>float const* <span class='color_p'>aVector</span></span>, <span>double const* <span class='color_p'>bVector</span></span>, <span>unsigned int <span class='color_p'>num_points</span></span>, <span>char const* <span class='color_p'>impl_name</span></span>&#160;)</span></span><br/>
+<span class="iname">volk_32f_64f_add_64f_u <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32f_64f_multiply_64f <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32f_64f_multiply_64f_a <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32f_64f_multiply_64f_get_func_desc&#160;<span class='sym_p'>(&#160;)</span></span><br/>
+<span class="iname">volk_32f_64f_multiply_64f_manual&#160;<span class='sym_p'><span>(&#160;double* <span class='color_p'>cVector</span></span>, <span>float const* <span class='color_p'>aVector</span></span>, <span>double const* <span class='color_p'>bVector</span></span>, <span>unsigned int <span class='color_p'>num_points</span></span>, <span>char const* <span class='color_p'>impl_name</span></span>&#160;)</span></span><br/>
+<span class="iname">volk_32f_64f_multiply_64f_u <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32f_s32f_mod_rangepuppet_32f <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32f_s32f_mod_rangepuppet_32f_a <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32f_s32f_mod_rangepuppet_32f_get_func_desc&#160;<span class='sym_p'>(&#160;)</span></span><br/>
+<span class="iname">volk_32f_s32f_mod_rangepuppet_32f_manual&#160;<span class='sym_p'><span>(&#160;float* <span class='color_p'>output</span></span>, <span>float const* <span class='color_p'>input</span></span>, <span>float <span class='color_p'>bound</span></span>, <span>unsigned int <span class='color_p'>num_points</span></span>, <span>char const* <span class='color_p'>impl_name</span></span>&#160;)</span></span><br/>
+<span class="iname">volk_32f_s32f_mod_rangepuppet_32f_u <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32f_s32f_s32f_mod_range_32f <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32f_s32f_s32f_mod_range_32f_a <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32f_s32f_s32f_mod_range_32f_get_func_desc&#160;<span class='sym_p'>(&#160;)</span></span><br/>
+<span class="iname">volk_32f_s32f_s32f_mod_range_32f_manual&#160;<span class='sym_p'><span>(&#160;float* <span class='color_p'>outputVector</span></span>, <span>float const* <span class='color_p'>inputVector</span></span>, <span>float const <span class='color_p'>lower_bound</span></span>, <span>float const <span class='color_p'>upper_bound</span></span>, <span>unsigned int <span class='color_p'>num_points</span></span>, <span>char const* <span class='color_p'>impl_name</span></span>&#160;)</span></span><br/>
+<span class="iname">volk_32f_s32f_s32f_mod_range_32f_u <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32fc_32f_add_32fc <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32fc_32f_add_32fc_a <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32fc_32f_add_32fc_get_func_desc&#160;<span class='sym_p'>(&#160;)</span></span><br/>
+<span class="iname">volk_32fc_32f_add_32fc_manual&#160;<span class='sym_p'><span>(&#160;lv_32fc_t* <span class='color_p'>cVector</span></span>, <span>lv_32fc_t const* <span class='color_p'>aVector</span></span>, <span>float const* <span class='color_p'>bVector</span></span>, <span>unsigned int <span class='color_p'>num_points</span></span>, <span>char const* <span class='color_p'>impl_name</span></span>&#160;)</span></span><br/>
+<span class="iname">volk_32fc_32f_add_32fc_u <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32fc_x2_add_32fc <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32fc_x2_add_32fc_a <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32fc_x2_add_32fc_get_func_desc&#160;<span class='sym_p'>(&#160;)</span></span><br/>
+<span class="iname">volk_32fc_x2_add_32fc_manual&#160;<span class='sym_p'><span>(&#160;lv_32fc_t* <span class='color_p'>cVector</span></span>, <span>lv_32fc_t const* <span class='color_p'>aVector</span></span>, <span>lv_32fc_t const* <span class='color_p'>bVector</span></span>, <span>unsigned int <span class='color_p'>num_points</span></span>, <span>char const* <span class='color_p'>impl_name</span></span>&#160;)</span></span><br/>
+<span class="iname">volk_32fc_x2_add_32fc_u <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32u_reverse_32u <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32u_reverse_32u_a <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_32u_reverse_32u_get_func_desc&#160;<span class='sym_p'>(&#160;)</span></span><br/>
+<span class="iname">volk_32u_reverse_32u_manual&#160;<span class='sym_p'><span>(&#160;uint32_t* <span class='color_p'>out</span></span>, <span>uint32_t const* <span class='color_p'>in</span></span>, <span>unsigned int <span class='color_p'>num_points</span></span>, <span>char const* <span class='color_p'>impl_name</span></span>&#160;)</span></span><br/>
+<span class="iname">volk_32u_reverse_32u_u <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_64f_x2_add_64f <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_64f_x2_add_64f_a <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_64f_x2_add_64f_get_func_desc&#160;<span class='sym_p'>(&#160;)</span></span><br/>
+<span class="iname">volk_64f_x2_add_64f_manual&#160;<span class='sym_p'><span>(&#160;double* <span class='color_p'>cVector</span></span>, <span>double const* <span class='color_p'>aVector</span></span>, <span>double const* <span class='color_p'>bVector</span></span>, <span>unsigned int <span class='color_p'>num_points</span></span>, <span>char const* <span class='color_p'>impl_name</span></span>&#160;)</span></span><br/>
+<span class="iname">volk_64f_x2_add_64f_u <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_64f_x2_multiply_64f <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_64f_x2_multiply_64f_a <span class='attr'>[data]</span></span><br/>
+<span class="iname">volk_64f_x2_multiply_64f_get_func_desc&#160;<span class='sym_p'>(&#160;)</span></span><br/>
+<span class="iname">volk_64f_x2_multiply_64f_manual&#160;<span class='sym_p'><span>(&#160;double* <span class='color_p'>cVector</span></span>, <span>double const* <span class='color_p'>aVector</span></span>, <span>double const* <span class='color_p'>bVector</span></span>, <span>unsigned int <span class='color_p'>num_points</span></span>, <span>char const* <span class='color_p'>impl_name</span></span>&#160;)</span></span><br/>
+<span class="iname">volk_64f_x2_multiply_64f_u <span class='attr'>[data]</span></span><br/>
+<br/>
+<span class='h_name'>volk_32u_reverse_32u.h</span><br/>
+<span class="section" onclick="javascript:showContent(this, 'c_5')">
+BitReverseTable256 <span class='attr'>[data]</span></span>
+<br/>
+<div id="c_5" style="display:none;">
+<span class='mngl'>_ZL18BitReverseTable256</span>
+<br/>
+<br/>
+</div>
+
+<br/>
+<a class='top_ref' href='#Top'>to the top</a><br/>
+<a name='Source_Removed'></a><a name='Source_Withdrawn'></a><h2>Removed Symbols <span class='failed'>&nbsp;5&nbsp;</span></h2><hr/>
+<span class='h_name'>constants.h</span><br/>
+<span class="iname">volk_available_machines&#160;<span class='sym_p'>(&#160;)</span></span><br/>
+<span class="iname">volk_c_compiler&#160;<span class='sym_p'>(&#160;)</span></span><br/>
+<span class="iname">volk_compiler_flags&#160;<span class='sym_p'>(&#160;)</span></span><br/>
+<span class="iname">volk_prefix&#160;<span class='sym_p'>(&#160;)</span></span><br/>
+<span class="iname">volk_version&#160;<span class='sym_p'>(&#160;)</span></span><br/>
+<br/>
+<a class='top_ref' href='#Top'>to the top</a><br/>
+<a name='High_Risk_Source_Problems'></a><a name='Symbol_Source_Problems_High'></a><a name='Interface_Source_Problems_High'></a>
+<h2>Problems with Symbols, High Severity <span class='failed'>&nbsp;1&nbsp;</span></h2><hr/>
+<span class='h_name'>volk.h</span><br/>
+<span class="section" onclick="javascript:showContent(this, 'c_6')">
+<span class='ext'>[+]</span> volk_32f_8u_polarbutterfly_32f_manual&#160;<span class='sym_p'><span>(&#160;float* <span class='color_p'>llrs</span></span>, <span>unsigned char* <span class='color_p'>u</span></span>, <span>int const <span class='color_p'>frame_size</span></span>, <span>int const <span class='color_p'>frame_exp</span></span>, <span>int const <span class='color_p'>stage</span></span>, <span>int const <span class='color_p'>u_num</span></span>, <span>int const <span class='color_p'>row</span></span>, <span>char const* <span class='color_p'>impl_name</span></span>&#160;)</span> <span class='failed'>&nbsp;1&nbsp;</span></span>
+<br/>
+<div id="c_6" style="display:none;">
+
+
+<span class='new_sign_lbl'>&#8675;</span>
+<br/>
+<span class='new_sign'>volk_32f_8u_polarbutterfly_32f_manual&#160;<span class='sym_p'><span>(&#160;float* <span class='color_p'>llrs</span></span>, <span>unsigned char* <span class='color_p'>u</span></span>, <span>int const <span class='color_p'>frame_exp</span></span>, <span>int const <span class='color_p'>stage</span></span>, <span>int const <span class='color_p'>u_num</span></span>, <span>int const <span class='color_p'>row</span></span>, <span>char const* <span class='color_p'>impl_name</span></span>&#160;)</span></span><br/>
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td><b>3rd</b> middle parameter <b>frame_size</b> has been removed from the calling stack.</td>
+<td>Recompilation of a client program may be broken.</td>
+</tr>
+</table>
+<br/>
+</div>
+<br/>
+<a class='top_ref' href='#Top'>to the top</a><br/>
+<a name='Low_Risk_Source_Problems'></a><a name='Type_Source_Problems_Low'></a>
+<h2>Problems with Data Types, Low Severity <span class='warning'>&nbsp;1&nbsp;</span></h2><hr/>
+<span class='h_name'>volk_typedefs.h</span><br/>
+<span class="section" onclick="javascript:showContent(this, 'c_7')">
+<span class='ext'>[+]</span> <span class='ttype'>typedef</span> p_32f_8u_polarbutterfly_32f <span class='warning'>&nbsp;1&nbsp;</span></span>
+<br/>
+<div id="c_7" style="display:none;">
+<table class='ptable'><tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th></tr><tr>
+<th>1</th>
+<td>Base type has been changed from <span class='value'>void(*)(float*, unsigned char*, int, int, int, int, int)</span> to <span class='value'>void(*)(float*, unsigned char*, int, int, int, int)</span>.</td>
+<td>Recompilation of a client program may be broken.</td>
+</tr>
+</table>
+<span class="sect_aff" onclick="javascript:showContent(this, 'c_8')">
+[+] affected symbols: 3 (0.5%)</span>
+<div id="c_8" style="display:none;">
+<div class='affected'><span class='iname_a'>volk_32f_8u_polarbutterfly_32f <span class='attr'>[data]</span></span><br/>
+<div class='affect'>Return value is of type &#39;p_32f_8u_polarbutterfly_32f&#39;.</div>
+<span class='iname_a'>volk_32f_8u_polarbutterfly_32f_a <span class='attr'>[data]</span></span><br/>
+<div class='affect'>Return value is of type &#39;p_32f_8u_polarbutterfly_32f&#39;.</div>
+<span class='iname_a'>volk_32f_8u_polarbutterfly_32f_u <span class='attr'>[data]</span></span><br/>
+<div class='affect'>Return value is of type &#39;p_32f_8u_polarbutterfly_32f&#39;.</div>
+</div>
+</div>
+<br/><br/></div>
+
+<br/>
+<a class='top_ref' href='#Top'>to the top</a><br/>
+<a name='Constant_Source_Problems_Low'></a>
+<h2>Problems with Constants, Low Severity <span class='warning'>&nbsp;1&nbsp;</span></h2><hr/>
+<span class='h_name'>volk_32f_log2_32f.h</span><br/>
+<span class="section" onclick="javascript:showContent(this, 'c_9')">
+<span class='ext'>[+]</span> LOG_POLY_DEGREE</span>
+<br/>
+<div id="c_9" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The constant <b>LOG_POLY_DEGREE</b> with value <b>6</b> has been removed.</td>
+<td>Recompilation of a client program may be broken.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<br/>
+<a class='top_ref' href='#Top'>to the top</a><br/>
+<a name='Other_Source_Changes'></a><a name='Other_Source_Changes_In_Constants'></a>
+<h2>Other Changes in Constants <span class='passed'>&nbsp;2&nbsp;</span></h2><hr/>
+<span class='h_name'>volk_common.h</span><br/>
+<span class="section" onclick="javascript:showContent(this, 'c_10')">
+<span class='ext'>[+]</span> __VOLK_ASM</span>
+<br/>
+<div id="c_10" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The constant <b>__VOLK_ASM</b> with value <b>__asm__</b> has been added.</td>
+<td>No effect.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_11')">
+<span class='ext'>[+]</span> __VOLK_VOLATILE</span>
+<br/>
+<div id="c_11" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The constant <b>__VOLK_VOLATILE</b> with value <b>__volatile__</b> has been added.</td>
+<td>No effect.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<br/>
+<a class='top_ref' href='#Top'>to the top</a><br/>
+<a name='Headers'></a><h2>Header Files <span class='gray'>&nbsp;135&nbsp;</span></h2><hr/>
+<div class='h_list'>
+constants.h<br/>
+saturation_arithmetic.h<br/>
+volk.h<br/>
+volk_16i_32fc_dot_prod_32fc.h<br/>
+volk_16i_branch_4_state_8.h<br/>
+volk_16i_convert_8i.h<br/>
+volk_16i_max_star_16i.h<br/>
+volk_16i_max_star_horizontal_16i.h<br/>
+volk_16i_permute_and_scalar_add.h<br/>
+volk_16i_s32f_convert_32f.h<br/>
+volk_16i_x4_quad_max_star_16i.h<br/>
+volk_16i_x5_add_quad_16i_x4.h<br/>
+volk_16ic_convert_32fc.h<br/>
+volk_16ic_deinterleave_16i_x2.h<br/>
+volk_16ic_deinterleave_real_16i.h<br/>
+volk_16ic_deinterleave_real_8i.h<br/>
+volk_16ic_magnitude_16i.h<br/>
+volk_16ic_s32f_deinterleave_32f_x2.h<br/>
+volk_16ic_s32f_deinterleave_real_32f.h<br/>
+volk_16ic_s32f_magnitude_32f.h<br/>
+volk_16ic_x2_dot_prod_16ic.h<br/>
+volk_16ic_x2_multiply_16ic.h<br/>
+volk_16u_byteswap.h<br/>
+volk_16u_byteswappuppet_16u.h<br/>
+volk_32f_8u_polarbutterfly_32f.h<br/>
+volk_32f_8u_polarbutterflypuppet_32f.h<br/>
+volk_32f_accumulator_s32f.h<br/>
+volk_32f_acos_32f.h<br/>
+volk_32f_asin_32f.h<br/>
+volk_32f_atan_32f.h<br/>
+volk_32f_binary_slicer_32i.h<br/>
+volk_32f_binary_slicer_8i.h<br/>
+volk_32f_convert_64f.h<br/>
+volk_32f_cos_32f.h<br/>
+volk_32f_expfast_32f.h<br/>
+volk_32f_index_max_16u.h<br/>
+volk_32f_index_max_32u.h<br/>
+volk_32f_invsqrt_32f.h<br/>
+volk_32f_log2_32f.h<br/>
+volk_32f_null_32f.h<br/>
+volk_32f_s32f_32f_fm_detect_32f.h<br/>
+volk_32f_s32f_calc_spectral_noise_floor_32f.h<br/>
+volk_32f_s32f_convert_16i.h<br/>
+volk_32f_s32f_convert_32i.h<br/>
+volk_32f_s32f_convert_8i.h<br/>
+volk_32f_s32f_multiply_32f.h<br/>
+volk_32f_s32f_normalize.h<br/>
+volk_32f_s32f_power_32f.h<br/>
+volk_32f_s32f_stddev_32f.h<br/>
+volk_32f_sin_32f.h<br/>
+volk_32f_sqrt_32f.h<br/>
+volk_32f_stddev_and_mean_32f_x2.h<br/>
+volk_32f_tan_32f.h<br/>
+volk_32f_tanh_32f.h<br/>
+volk_32f_x2_add_32f.h<br/>
+volk_32f_x2_divide_32f.h<br/>
+volk_32f_x2_dot_prod_16i.h<br/>
+volk_32f_x2_dot_prod_32f.h<br/>
+volk_32f_x2_fm_detectpuppet_32f.h<br/>
+volk_32f_x2_interleave_32fc.h<br/>
+volk_32f_x2_max_32f.h<br/>
+volk_32f_x2_min_32f.h<br/>
+volk_32f_x2_multiply_32f.h<br/>
+volk_32f_x2_pow_32f.h<br/>
+volk_32f_x2_s32f_interleave_16ic.h<br/>
+volk_32f_x2_subtract_32f.h<br/>
+volk_32f_x3_sum_of_poly_32f.h<br/>
+volk_32fc_32f_dot_prod_32fc.h<br/>
+volk_32fc_32f_multiply_32fc.h<br/>
+volk_32fc_conjugate_32fc.h<br/>
+volk_32fc_convert_16ic.h<br/>
+volk_32fc_deinterleave_32f_x2.h<br/>
+volk_32fc_deinterleave_64f_x2.h<br/>
+volk_32fc_deinterleave_imag_32f.h<br/>
+volk_32fc_deinterleave_real_32f.h<br/>
+volk_32fc_deinterleave_real_64f.h<br/>
+volk_32fc_index_max_16u.h<br/>
+volk_32fc_index_max_32u.h<br/>
+volk_32fc_magnitude_32f.h<br/>
+volk_32fc_magnitude_squared_32f.h<br/>
+volk_32fc_s32f_atan2_32f.h<br/>
+volk_32fc_s32f_deinterleave_real_16i.h<br/>
+volk_32fc_s32f_magnitude_16i.h<br/>
+volk_32fc_s32f_power_32fc.h<br/>
+volk_32fc_s32f_power_spectrum_32f.h<br/>
+volk_32fc_s32f_x2_power_spectral_density_32f.h<br/>
+volk_32fc_s32fc_multiply_32fc.h<br/>
+volk_32fc_s32fc_rotatorpuppet_32fc.h<br/>
+volk_32fc_s32fc_x2_rotator_32fc.h<br/>
+volk_32fc_x2_conjugate_dot_prod_32fc.h<br/>
+volk_32fc_x2_divide_32fc.h<br/>
+volk_32fc_x2_dot_prod_32fc.h<br/>
+volk_32fc_x2_multiply_32fc.h<br/>
+volk_32fc_x2_multiply_conjugate_32fc.h<br/>
+volk_32fc_x2_s32f_square_dist_scalar_mult_32f.h<br/>
+volk_32fc_x2_square_dist_32f.h<br/>
+volk_32i_s32f_convert_32f.h<br/>
+volk_32i_x2_and_32i.h<br/>
+volk_32i_x2_or_32i.h<br/>
+volk_32u_byteswap.h<br/>
+volk_32u_byteswappuppet_32u.h<br/>
+volk_32u_popcnt.h<br/>
+volk_32u_popcntpuppet_32u.h<br/>
+volk_64f_convert_32f.h<br/>
+volk_64f_x2_max_64f.h<br/>
+volk_64f_x2_min_64f.h<br/>
+volk_64u_byteswap.h<br/>
+volk_64u_byteswappuppet_64u.h<br/>
+volk_64u_popcnt.h<br/>
+volk_64u_popcntpuppet_64u.h<br/>
+volk_8i_convert_16i.h<br/>
+volk_8i_s32f_convert_32f.h<br/>
+volk_8ic_deinterleave_16i_x2.h<br/>
+volk_8ic_deinterleave_real_16i.h<br/>
+volk_8ic_deinterleave_real_8i.h<br/>
+volk_8ic_s32f_deinterleave_32f_x2.h<br/>
+volk_8ic_s32f_deinterleave_real_32f.h<br/>
+volk_8ic_x2_multiply_conjugate_16ic.h<br/>
+volk_8ic_x2_s32f_multiply_conjugate_32fc.h<br/>
+volk_8u_conv_k7_r2puppet_8u.h<br/>
+volk_8u_x2_encodeframepolar_8u.h<br/>
+volk_8u_x3_encodepolar_8u_x2.h<br/>
+volk_8u_x3_encodepolarpuppet_8u.h<br/>
+volk_8u_x4_conv_k7_r2_8u.h<br/>
+volk_avx_intrinsics.h<br/>
+volk_common.h<br/>
+volk_complex.h<br/>
+volk_config_fixed.h<br/>
+volk_cpu.h<br/>
+volk_malloc.h<br/>
+volk_neon_intrinsics.h<br/>
+volk_prefs.h<br/>
+volk_sse3_intrinsics.h<br/>
+volk_sse_intrinsics.h<br/>
+volk_typedefs.h<br/>
+</div>
+<br/><a class='top_ref' href='#Top'>to the top</a><br/>
+<a name='Libs'></a><h2>Libraries <span class='gray'>&nbsp;1&nbsp;</span></h2><hr/>
+<div class='lib_list'>
+libvolk.so.1.3<br/>
+</div>
+<br/><a class='top_ref' href='#Top'>to the top</a><br/>
+<br/><br/><br/></div><hr/>
+<div class='footer' align='right'><i>Generated by <a href='https://github.com/lvc/abi-compliance-checker'>ABI Compliance Checker</a> 2.2 &#160;</i>
+</div>
+<br/>
+
+</body></html>
diff --git a/1.4_to_2.0_compat_report.html b/1.4_to_2.0_compat_report.html
new file mode 100644 (file)
index 0000000..0bb6275
--- /dev/null
@@ -0,0 +1,1855 @@
+<!-- kind:binary;verdict:incompatible;affected:0.2;added:0;removed:0;type_problems_high:0;type_problems_medium:2;type_problems_low:3;interface_problems_high:0;interface_problems_medium:2;interface_problems_low:0;changed_constants:18;constant_changes_other:5;tool_version:2.3 -->
+<!-- kind:source;verdict:incompatible;affected:0.1;added:5;removed:0;type_problems_high:0;type_problems_medium:0;type_problems_low:4;interface_problems_high:0;interface_problems_medium:1;interface_problems_low:0;changed_constants:18;constant_changes_other:5;tool_version:2.3 -->
+<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
+<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
+<head>
+<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
+<meta name="viewport" content="width=device-width,initial-scale=1" />
+<meta name="keywords" content="volk, compatibility, API, ABI, report" />
+<meta name="description" content="API/ABI compatibility report for the volk library between 1.4 and 2.0 versions" />
+<title>volk: 1.4 to 2.0 compatibility report</title>
+<style type="text/css">
+body {
+    font-family:Arial, sans-serif;
+    background-color:White;
+    color:Black;
+}
+hr {
+    color:Black;
+    background-color:Black;
+    height:1px;
+    border:0;
+}
+h1 {
+    margin-bottom:0px;
+    padding-bottom:0px;
+    font-size:1.625em;
+}
+h2 {
+    margin-bottom:0px;
+    padding-bottom:0px;
+    font-size:1.25em;
+    white-space:nowrap;
+}
+span.section {
+    font-weight:bold;
+    cursor:pointer;
+    color:#003E69;
+    white-space:nowrap;
+    margin-left:0.3125em;
+}
+span.new_sign {
+    font-weight:bold;
+    margin-left:1.65em;
+    color:#003E69;
+}
+span.new_sign_lbl {
+    margin-left:3em;
+    font-size:1em;
+    color:Black;
+}
+span:hover.section {
+    color:#336699;
+}
+span.sect_aff {
+    cursor:pointer;
+    padding-left:1.55em;
+    font-size:0.875em;
+    color:#cc3300;
+}
+span.sect_info {
+    cursor:pointer;
+    padding-left:1.55em;
+    font-size:0.875em;
+    color:Black;
+}
+span.ext {
+    font-weight:normal;
+}
+span.h_name {
+    color:#cc3300;
+    font-size:0.875em;
+    font-weight:bold;
+}
+div.h_list, div.lib_list {
+    font-size:0.94em;
+    padding-left:0.4em;
+}
+span.ns {
+    color:#408080;
+    font-size:0.94em;
+}
+span.lib_name {
+    color:Green;
+    font-size:0.875em;
+    font-weight:bold;
+}
+span.iname {
+    font-weight:bold;
+    color:#003E69;
+    margin-left:0.3125em;
+}
+span.iname_b {
+    font-weight:bold;
+}
+span.iname_a {
+    color:#333333;
+    font-weight:bold;
+    font-size:0.94em;
+}
+span.sym_p {
+    font-weight:normal;
+    white-space:normal;
+}
+span.sym_pd {
+    white-space:normal;
+}
+span.sym_p span, span.sym_pd span {
+    white-space:nowrap;
+}
+div.affect {
+    padding-left:1em;
+    padding-bottom:10px;
+    font-size:0.87em;
+    font-style:italic;
+    line-height:0.9em;
+}
+div.affected {
+    padding-left:1.9em;
+    padding-top:10px;
+}
+table.ptable {
+    border-collapse:collapse;
+    border:1px outset black;
+    margin-left:0.95em;
+    margin-top:3px;
+    margin-bottom:3px;
+    width:56.25em;
+}
+table.ptable td {
+    border:1px solid gray;
+    padding:3px;
+    font-size:0.875em;
+    text-align:left;
+    vertical-align:top;
+    max-width:28em;
+    word-wrap:break-word;
+}
+table.ptable th.pn {
+    width:2%;
+}
+table.ptable th.chg {
+    width:47%;
+}
+table.vtable {
+    border-collapse:collapse;
+    border:1px outset black;
+    margin-left:1.9em;
+    margin-top:0.7em;
+}
+table.vtable td {
+    border:1px solid gray;
+    padding:3px;
+    font-size:0.875em;
+    vertical-align:top;
+    max-width:450px;
+    word-wrap:break-word;
+}
+table.ptable th, table.vtable th {
+    background-color:#eeeeee;
+    font-weight:bold;
+    color:#333333;
+    font-family:Verdana, Arial;
+    font-size:0.875em;
+    border:1px solid gray;
+    text-align:center;
+    vertical-align:top;
+    white-space:nowrap;
+    padding:3px;
+}
+table.summary {
+    border-collapse:collapse;
+    border:1px outset black;
+}
+table.summary th {
+    background-color:#eeeeee;
+    font-weight:normal;
+    text-align:left;
+    font-size:0.94em;
+    white-space:nowrap;
+    border:1px inset gray;
+    padding:3px;
+}
+table.summary td {
+    text-align:right;
+    white-space:nowrap;
+    border:1px inset gray;
+    padding:3px 5px 3px 10px;
+}
+span.mngl {
+    padding-left:1em;
+    font-size:0.875em;
+    cursor:text;
+    color:#444444;
+    font-weight:bold;
+}
+span.pleft {
+    padding-left:2.5em;
+}
+span.sym_ver {
+    color:#333333;
+    white-space:nowrap;
+    font-family:"DejaVu Sans Mono", Monospace;
+}
+span.attr {
+    color:#333333;
+    font-weight:normal;
+}
+span.color_p {
+    font-style:italic;
+    color:Brown;
+}
+span.p {
+    font-style:italic;
+}
+span.fp {
+    font-style:italic;
+    background-color:#DCDCDC;
+}
+span.ttype {
+    font-weight:normal;
+}
+span.nowrap {
+    white-space:nowrap;
+}
+span.value {
+    font-weight:bold;
+}
+.passed {
+    background-color:#CCFFCC;
+    font-weight:normal;
+}
+.warning {
+    background-color:#F4F4AF;
+    font-weight:normal;
+}
+.failed {
+    background-color:#FFCCCC;
+    font-weight:normal;
+}
+.new {
+    background-color:#C6DEFF;
+    font-weight:normal;
+}
+.compatible {
+    background-color:#CCFFCC;
+    font-weight:normal;
+}
+.almost_compatible {
+    background-color:#FFDAA3;
+    font-weight:normal;
+}
+.incompatible {
+    background-color:#FFCCCC;
+    font-weight:normal;
+}
+.gray {
+    background-color:#DCDCDC;
+    font-weight:normal;
+}
+.top_ref {
+    font-size:0.69em;
+}
+.footer {
+    font-size:0.75em;
+}
+
+.tabset {
+    float:left;
+}
+a.tab {
+    border:1px solid Black;
+    float:left;
+    margin:0px 5px -1px 0px;
+    padding:3px 5px 3px 5px;
+    position:relative;
+    font-size:0.875em;
+    background-color:#DDD;
+    text-decoration:none;
+    color:Black;
+}
+a.disabled:hover
+{
+    color:Black;
+    background:#EEE;
+}
+a.active:hover
+{
+    color:Black;
+    background:White;
+}
+a.active {
+    border-bottom-color:White;
+    background-color:White;
+}
+div.tab {
+    border-top:1px solid Black;
+    padding:0px;
+    width:100%;
+    clear:both;
+}
+</style>
+<script type="text/javascript" language="JavaScript">
+<!--
+function showContent(header, id)
+{
+    e = document.getElementById(id);
+    if(e.style.display == 'none')
+    {
+        e.style.display = 'block';
+        e.style.visibility = 'visible';
+        header.innerHTML = header.innerHTML.replace(/\[[^0-9 ]\]/gi,"[&minus;]");
+    }
+    else
+    {
+        e.style.display = 'none';
+        e.style.visibility = 'hidden';
+        header.innerHTML = header.innerHTML.replace(/\[[^0-9 ]\]/gi,"[+]");
+    }
+}
+function initTabs()
+{
+    var url = window.location.href;
+    if(url.indexOf('_Source_')!=-1 || url.indexOf('#Source')!=-1)
+    {
+        var tab1 = document.getElementById('BinaryID');
+        var tab2 = document.getElementById('SourceID');
+        tab1.className='tab disabled';
+        tab2.className='tab active';
+    }
+    var sets = document.getElementsByTagName('div');
+    for (var i = 0; i < sets.length; i++)
+    {
+        if (sets[i].className.indexOf('tabset') != -1)
+        {
+            var tabs = [];
+            var links = sets[i].getElementsByTagName('a');
+            for (var j = 0; j < links.length; j++)
+            {
+                if (links[j].className.indexOf('tab') != -1)
+                {
+                    tabs.push(links[j]);
+                    links[j].tabs = tabs;
+                    var tab = document.getElementById(links[j].href.substr(links[j].href.indexOf('#') + 1));
+                    //reset all tabs on start
+                    if (tab)
+                    {
+                        if (links[j].className.indexOf('active')!=-1) {
+                            tab.style.display = 'block';
+                        }
+                        else {
+                            tab.style.display = 'none';
+                        }
+                    }
+                    links[j].onclick = function()
+                    {
+                        var tab = document.getElementById(this.href.substr(this.href.indexOf('#') + 1));
+                        if (tab)
+                        {
+                            //reset all tabs before change
+                            for (var k = 0; k < this.tabs.length; k++)
+                            {
+                                document.getElementById(this.tabs[k].href.substr(this.tabs[k].href.indexOf('#') + 1)).style.display = 'none';
+                                this.tabs[k].className = this.tabs[k].className.replace('active', 'disabled');
+                            }
+                            this.className = 'tab active';
+                            tab.style.display = 'block';
+                            // window.location.hash = this.id.replace('ID', '');
+                            return false;
+                        }
+                    }
+                }
+            }
+        }
+    }
+    if(url.indexOf('#')!=-1) {
+        location.href=location.href;
+    }
+}
+if (window.addEventListener) window.addEventListener('load', initTabs, false);
+else if (window.attachEvent) window.attachEvent('onload', initTabs);
+-->
+</script>
+</head>
+<body><a name='Source'></a><a name='Binary'></a><a name='Top'></a><h1>API compatibility report for the <span style='color:Blue;'>volk</span> library between <span style='color:Red;'>1.4</span> and <span style='color:Red;'>2.0</span> versions on <span style='color:Blue;'>x86_64</span></h1>
+
+            <br/>
+            <div class='tabset'>
+            <a id='BinaryID' href='#BinaryTab' class='tab active'>Binary<br/>Compatibility</a>
+            <a id='SourceID' href='#SourceTab' style='margin-left:3px' class='tab disabled'>Source<br/>Compatibility</a>
+            </div><div id='BinaryTab' class='tab'>
+<h2>Test Info</h2><hr/>
+<table class='summary'>
+<tr><th>Library Name</th><td>volk</td></tr>
+<tr><th>Version #1</th><td>1.4</td></tr>
+<tr><th>Version #2</th><td>2.0</td></tr>
+<tr><th>Arch</th><td>x86_64</td></tr>
+<tr><th>GCC Version</th><td>8</td></tr>
+<tr><th>Subject</th><td width='150px'>Binary Compatibility</td></tr>
+</table>
+<h2>Test Results</h2><hr/>
+<table class='summary'><tr><th>Total Header Files</th><td><a href='#Headers' style='color:Blue;'>143</a></td></tr>
+<tr><th>Total Libraries</th><td><a href='#Libs' style='color:Blue;'>1</a></td></tr>
+<tr><th>Total Symbols / Types</th><td>660 / 244</td></tr>
+<tr><th>Compatibility</th>
+<td class='warning'>99.8%</td>
+</tr>
+</table>
+<h2>Problem Summary</h2><hr/>
+<table class='summary'><tr><th></th><th style='text-align:center;'>Severity</th><th style='text-align:center;'>Count</th></tr><tr><th>Added Symbols</th><td>-</td><td>0</td></tr>
+<tr><th>Removed Symbols</th><td>High</td><td>0</td></tr>
+<tr><th rowspan='3'>Problems with<br/>Data Types</th><td>High</td><td>0</td></tr>
+<tr><td>Medium</td><td class='failed'><a href='#Type_Binary_Problems_Medium' style='color:Blue;'>2</a></td></tr>
+<tr><td>Low</td><td class='warning'><a href='#Type_Binary_Problems_Low' style='color:Blue;'>3</a></td></tr>
+<tr><th rowspan='3'>Problems with<br/>Symbols</th><td>High</td><td>0</td></tr>
+<tr><td>Medium</td><td class='failed'><a href='#Symbol_Binary_Problems_Medium' style='color:Blue;'>2</a></td></tr>
+<tr><td>Low</td><td>0</td></tr>
+<tr><th>Problems with<br/>Constants</th><td>Low</td><td class='warning'><a href='#Constant_Binary_Problems_Low' style='color:Blue;'>18</a></td></tr>
+<tr><th>Other Changes<br/>in Constants</th><td>-</td><td class='passed'><a href='#Other_Binary_Changes_In_Constants' style='color:Blue;'>5</a></td></tr>
+</table>
+
+<a name='Medium_Risk_Binary_Problems'></a><a name='Type_Binary_Problems_Medium'></a>
+<h2>Problems with Data Types, Medium Severity <span class='failed'>&nbsp;2&nbsp;</span></h2><hr/>
+<span class='h_name'>volk_cpu.h</span><br/>
+<span class="section" onclick="javascript:showContent(this, 'c_1')">
+<span class='ext'>[+]</span> <span class='ttype'>struct</span> VOLK_CPU <span class='failed'>&nbsp;2&nbsp;</span></span>
+<br/>
+<div id="c_1" style="display:none;">
+<table class='ptable'><tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th></tr><tr>
+<th>1</th>
+<td>Field <b>has_neonv7</b> has been added at the middle position of this structural type.</td>
+<td>1) Size of the inclusive type has been changed.<br/>2) Layout of structure fields has been changed and therefore fields at higher positions of the structure definition may be incorrectly accessed by applications.</td>
+</tr>
+<tr>
+<th>2</th>
+<td>Field <b>has_neonv8</b> has been added at the middle position of this structural type.</td>
+<td>1) Size of the inclusive type has been changed.<br/>2) Layout of structure fields has been changed and therefore fields at higher positions of the structure definition may be incorrectly accessed by applications.</td>
+</tr>
+</table>
+<span class="sect_aff" onclick="javascript:showContent(this, 'c_2')">
+[+] affected symbols: 1 (0.2%)</span>
+<div id="c_2" style="display:none;">
+<div class='affected'><span class='iname_a'>volk_cpu <span class='attr'>[data]</span></span><br/>
+<div class='affect'>Return value is of type &#39;struct VOLK_CPU&#39;.</div>
+</div>
+</div>
+<br/><br/></div>
+
+<br/>
+<a class='top_ref' href='#Top'>to the top</a><br/>
+<a name='Symbol_Binary_Problems_Medium'></a><a name='Interface_Binary_Problems_Medium'></a>
+<h2>Problems with Symbols, Medium Severity <span class='failed'>&nbsp;2&nbsp;</span></h2><hr/>
+<span class='h_name'>volk_cpu.h</span><br/>
+<span class="section" onclick="javascript:showContent(this, 'c_3')">
+<span class='ext'>[+]</span> volk_cpu <span class='attr'>[data]</span> <span class='failed'>&nbsp;1&nbsp;</span></span>
+<br/>
+<div id="c_3" style="display:none;">
+
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>Size of this global data has been changed from <b>176</b> bytes to <b>208</b> bytes.</td>
+<td>Applications will obtain a different value and execution may change.</td>
+</tr>
+</table>
+<br/>
+</div>
+<br/>
+<span class='h_name'>volk_prefs.h</span>, <span class='lib_name'>libvolk.so.1.4</span><br/>
+<span class="section" onclick="javascript:showContent(this, 'c_4')">
+<span class='ext'>[+]</span> volk_get_config_path&#160;<span class='sym_p'><span>(&#160;char* <span class='color_p'>p1</span></span>&#160;)</span> <span class='failed'>&nbsp;1&nbsp;</span></span>
+<br/>
+<div id="c_4" style="display:none;">
+
+
+<span class='new_sign_lbl'>&#8675;</span>
+<br/>
+<span class='new_sign'>volk_get_config_path&#160;<span class='sym_p'><span>(&#160;char* <span class='color_p'>p1</span></span>, <span>bool <span class='color_p'>p2</span></span>&#160;)</span></span><br/>
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td><b>2nd</b> parameter <b>p2</b> has been added to the calling stack.</td>
+<td>This parameter will not be initialized by old clients.</td>
+</tr>
+</table>
+<br/>
+</div>
+<br/>
+<a class='top_ref' href='#Top'>to the top</a><br/>
+<a name='Low_Risk_Binary_Problems'></a><a name='Type_Binary_Problems_Low'></a>
+<h2>Problems with Data Types, Low Severity <span class='warning'>&nbsp;3&nbsp;</span></h2><hr/>
+<span class='h_name'>volk_cpu.h</span><br/>
+<span class="section" onclick="javascript:showContent(this, 'c_5')">
+<span class='ext'>[+]</span> <span class='ttype'>struct</span> VOLK_CPU <span class='warning'>&nbsp;3&nbsp;</span></span>
+<br/>
+<div id="c_5" style="display:none;">
+<table class='ptable'><tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th></tr><tr>
+<th>1</th>
+<td>Field <b>has_avx512cd</b> has been added to this type.</td>
+<td>1) This field will not be initialized by old clients.<br/>2) Size of the inclusive type has been changed.<br/><br/><b>NOTE</b>: this field should be accessed only from the new library functions, otherwise it may result in crash or incorrect behavior of applications.</td>
+</tr>
+<tr>
+<th>2</th>
+<td>Field <b>has_avx512f</b> has been added to this type.</td>
+<td>1) This field will not be initialized by old clients.<br/>2) Size of the inclusive type has been changed.<br/><br/><b>NOTE</b>: this field should be accessed only from the new library functions, otherwise it may result in crash or incorrect behavior of applications.</td>
+</tr>
+<tr>
+<th>3</th>
+<td>Size of this type has been changed from <b>176</b> bytes to <b>208</b> bytes.</td>
+<td>The fields or parameters of such data type may be incorrectly initialized or accessed by old client applications.</td>
+</tr>
+</table>
+<span class="sect_aff" onclick="javascript:showContent(this, 'c_6')">
+[+] affected symbols: 1 (0.2%)</span>
+<div id="c_6" style="display:none;">
+<div class='affected'><span class='iname_a'>volk_cpu <span class='attr'>[data]</span></span><br/>
+<div class='affect'>Return value is of type &#39;struct VOLK_CPU&#39;.</div>
+</div>
+</div>
+<br/><br/></div>
+
+<br/>
+<a class='top_ref' href='#Top'>to the top</a><br/>
+<a name='Constant_Binary_Problems_Low'></a>
+<h2>Problems with Constants, Low Severity <span class='warning'>&nbsp;18&nbsp;</span></h2><hr/>
+<span class='h_name'>volk_config_fixed.h</span><br/>
+<span class="section" onclick="javascript:showContent(this, 'c_7')">
+<span class='ext'>[+]</span> LV_32</span>
+<br/>
+<div id="c_7" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_32</b> has been changed from <b>4</b> to <b>6</b>.</td>
+<td>Applications will pass an old value of this constant as the parameter to the new-version library functions, that expect a new one. This may result in crash of incorrect behavior of applications.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_8')">
+<span class='ext'>[+]</span> LV_3DNOW</span>
+<br/>
+<div id="c_8" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_3DNOW</b> has been changed from <b>6</b> to <b>8</b>.</td>
+<td>Applications will pass an old value of this constant as the parameter to the new-version library functions, that expect a new one. This may result in crash of incorrect behavior of applications.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_9')">
+<span class='ext'>[+]</span> LV_64</span>
+<br/>
+<div id="c_9" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_64</b> has been changed from <b>5</b> to <b>7</b>.</td>
+<td>Applications will pass an old value of this constant as the parameter to the new-version library functions, that expect a new one. This may result in crash of incorrect behavior of applications.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_10')">
+<span class='ext'>[+]</span> LV_ABM</span>
+<br/>
+<div id="c_10" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_ABM</b> has been changed from <b>7</b> to <b>9</b>.</td>
+<td>Applications will pass an old value of this constant as the parameter to the new-version library functions, that expect a new one. This may result in crash of incorrect behavior of applications.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_11')">
+<span class='ext'>[+]</span> LV_AVX</span>
+<br/>
+<div id="c_11" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_AVX</b> has been changed from <b>20</b> to <b>22</b>.</td>
+<td>Applications will pass an old value of this constant as the parameter to the new-version library functions, that expect a new one. This may result in crash of incorrect behavior of applications.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_12')">
+<span class='ext'>[+]</span> LV_AVX2</span>
+<br/>
+<div id="c_12" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_AVX2</b> has been changed from <b>21</b> to <b>23</b>.</td>
+<td>Applications will pass an old value of this constant as the parameter to the new-version library functions, that expect a new one. This may result in crash of incorrect behavior of applications.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_13')">
+<span class='ext'>[+]</span> LV_FMA</span>
+<br/>
+<div id="c_13" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_FMA</b> has been changed from <b>10</b> to <b>12</b>.</td>
+<td>Applications will pass an old value of this constant as the parameter to the new-version library functions, that expect a new one. This may result in crash of incorrect behavior of applications.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_14')">
+<span class='ext'>[+]</span> LV_MMX</span>
+<br/>
+<div id="c_14" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_MMX</b> has been changed from <b>9</b> to <b>11</b>.</td>
+<td>Applications will pass an old value of this constant as the parameter to the new-version library functions, that expect a new one. This may result in crash of incorrect behavior of applications.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_15')">
+<span class='ext'>[+]</span> LV_NORC</span>
+<br/>
+<div id="c_15" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_NORC</b> has been changed from <b>14</b> to <b>16</b>.</td>
+<td>Applications will pass an old value of this constant as the parameter to the new-version library functions, that expect a new one. This may result in crash of incorrect behavior of applications.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_16')">
+<span class='ext'>[+]</span> LV_ORC</span>
+<br/>
+<div id="c_16" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_ORC</b> has been changed from <b>13</b> to <b>15</b>.</td>
+<td>Applications will pass an old value of this constant as the parameter to the new-version library functions, that expect a new one. This may result in crash of incorrect behavior of applications.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_17')">
+<span class='ext'>[+]</span> LV_POPCOUNT</span>
+<br/>
+<div id="c_17" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_POPCOUNT</b> has been changed from <b>8</b> to <b>10</b>.</td>
+<td>Applications will pass an old value of this constant as the parameter to the new-version library functions, that expect a new one. This may result in crash of incorrect behavior of applications.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_18')">
+<span class='ext'>[+]</span> LV_SSE</span>
+<br/>
+<div id="c_18" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_SSE</b> has been changed from <b>11</b> to <b>13</b>.</td>
+<td>Applications will pass an old value of this constant as the parameter to the new-version library functions, that expect a new one. This may result in crash of incorrect behavior of applications.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_19')">
+<span class='ext'>[+]</span> LV_SSE2</span>
+<br/>
+<div id="c_19" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_SSE2</b> has been changed from <b>12</b> to <b>14</b>.</td>
+<td>Applications will pass an old value of this constant as the parameter to the new-version library functions, that expect a new one. This may result in crash of incorrect behavior of applications.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_20')">
+<span class='ext'>[+]</span> LV_SSE3</span>
+<br/>
+<div id="c_20" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_SSE3</b> has been changed from <b>15</b> to <b>17</b>.</td>
+<td>Applications will pass an old value of this constant as the parameter to the new-version library functions, that expect a new one. This may result in crash of incorrect behavior of applications.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_21')">
+<span class='ext'>[+]</span> LV_SSE4_1</span>
+<br/>
+<div id="c_21" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_SSE4_1</b> has been changed from <b>18</b> to <b>20</b>.</td>
+<td>Applications will pass an old value of this constant as the parameter to the new-version library functions, that expect a new one. This may result in crash of incorrect behavior of applications.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_22')">
+<span class='ext'>[+]</span> LV_SSE4_2</span>
+<br/>
+<div id="c_22" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_SSE4_2</b> has been changed from <b>19</b> to <b>21</b>.</td>
+<td>Applications will pass an old value of this constant as the parameter to the new-version library functions, that expect a new one. This may result in crash of incorrect behavior of applications.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_23')">
+<span class='ext'>[+]</span> LV_SSE4_A</span>
+<br/>
+<div id="c_23" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_SSE4_A</b> has been changed from <b>17</b> to <b>19</b>.</td>
+<td>Applications will pass an old value of this constant as the parameter to the new-version library functions, that expect a new one. This may result in crash of incorrect behavior of applications.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_24')">
+<span class='ext'>[+]</span> LV_SSSE3</span>
+<br/>
+<div id="c_24" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_SSSE3</b> has been changed from <b>16</b> to <b>18</b>.</td>
+<td>Applications will pass an old value of this constant as the parameter to the new-version library functions, that expect a new one. This may result in crash of incorrect behavior of applications.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<br/>
+<a class='top_ref' href='#Top'>to the top</a><br/>
+<a name='Other_Binary_Changes'></a><a name='Other_Binary_Changes_In_Constants'></a>
+<h2>Other Changes in Constants <span class='passed'>&nbsp;5&nbsp;</span></h2><hr/>
+<span class='h_name'>volk_32f_log2_32f.h</span><br/>
+<span class="section" onclick="javascript:showContent(this, 'c_25')">
+<span class='ext'>[+]</span> LOG_POLY_DEGREE</span>
+<br/>
+<div id="c_25" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The constant <b>LOG_POLY_DEGREE</b> with value <b>6</b> has been added.</td>
+<td>No effect.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<br/>
+<span class='h_name'>volk_config_fixed.h</span><br/>
+<span class="section" onclick="javascript:showContent(this, 'c_26')">
+<span class='ext'>[+]</span> LV_AVX512CD</span>
+<br/>
+<div id="c_26" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The constant <b>LV_AVX512CD</b> with value <b>25</b> has been added.</td>
+<td>No effect.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_27')">
+<span class='ext'>[+]</span> LV_AVX512F</span>
+<br/>
+<div id="c_27" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The constant <b>LV_AVX512F</b> with value <b>24</b> has been added.</td>
+<td>No effect.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_28')">
+<span class='ext'>[+]</span> LV_NEONV7</span>
+<br/>
+<div id="c_28" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The constant <b>LV_NEONV7</b> with value <b>4</b> has been added.</td>
+<td>No effect.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_29')">
+<span class='ext'>[+]</span> LV_NEONV8</span>
+<br/>
+<div id="c_29" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The constant <b>LV_NEONV8</b> with value <b>5</b> has been added.</td>
+<td>No effect.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<br/>
+<a class='top_ref' href='#Top'>to the top</a><br/>
+<a name='Headers'></a><h2>Header Files <span class='gray'>&nbsp;143&nbsp;</span></h2><hr/>
+<div class='h_list'>
+saturation_arithmetic.h<br/>
+volk.h<br/>
+volk_16i_32fc_dot_prod_32fc.h<br/>
+volk_16i_branch_4_state_8.h<br/>
+volk_16i_convert_8i.h<br/>
+volk_16i_max_star_16i.h<br/>
+volk_16i_max_star_horizontal_16i.h<br/>
+volk_16i_permute_and_scalar_add.h<br/>
+volk_16i_s32f_convert_32f.h<br/>
+volk_16i_x4_quad_max_star_16i.h<br/>
+volk_16i_x5_add_quad_16i_x4.h<br/>
+volk_16ic_convert_32fc.h<br/>
+volk_16ic_deinterleave_16i_x2.h<br/>
+volk_16ic_deinterleave_real_16i.h<br/>
+volk_16ic_deinterleave_real_8i.h<br/>
+volk_16ic_magnitude_16i.h<br/>
+volk_16ic_s32f_deinterleave_32f_x2.h<br/>
+volk_16ic_s32f_deinterleave_real_32f.h<br/>
+volk_16ic_s32f_magnitude_32f.h<br/>
+volk_16ic_x2_dot_prod_16ic.h<br/>
+volk_16ic_x2_multiply_16ic.h<br/>
+volk_16u_byteswap.h<br/>
+volk_16u_byteswappuppet_16u.h<br/>
+volk_32f_64f_add_64f.h<br/>
+volk_32f_64f_multiply_64f.h<br/>
+volk_32f_8u_polarbutterfly_32f.h<br/>
+volk_32f_8u_polarbutterflypuppet_32f.h<br/>
+volk_32f_accumulator_s32f.h<br/>
+volk_32f_acos_32f.h<br/>
+volk_32f_asin_32f.h<br/>
+volk_32f_atan_32f.h<br/>
+volk_32f_binary_slicer_32i.h<br/>
+volk_32f_binary_slicer_8i.h<br/>
+volk_32f_convert_64f.h<br/>
+volk_32f_cos_32f.h<br/>
+volk_32f_expfast_32f.h<br/>
+volk_32f_index_max_16u.h<br/>
+volk_32f_index_max_32u.h<br/>
+volk_32f_invsqrt_32f.h<br/>
+volk_32f_log2_32f.h<br/>
+volk_32f_null_32f.h<br/>
+volk_32f_s32f_32f_fm_detect_32f.h<br/>
+volk_32f_s32f_calc_spectral_noise_floor_32f.h<br/>
+volk_32f_s32f_convert_16i.h<br/>
+volk_32f_s32f_convert_32i.h<br/>
+volk_32f_s32f_convert_8i.h<br/>
+volk_32f_s32f_mod_rangepuppet_32f.h<br/>
+volk_32f_s32f_multiply_32f.h<br/>
+volk_32f_s32f_normalize.h<br/>
+volk_32f_s32f_power_32f.h<br/>
+volk_32f_s32f_s32f_mod_range_32f.h<br/>
+volk_32f_s32f_stddev_32f.h<br/>
+volk_32f_sin_32f.h<br/>
+volk_32f_sqrt_32f.h<br/>
+volk_32f_stddev_and_mean_32f_x2.h<br/>
+volk_32f_tan_32f.h<br/>
+volk_32f_tanh_32f.h<br/>
+volk_32f_x2_add_32f.h<br/>
+volk_32f_x2_divide_32f.h<br/>
+volk_32f_x2_dot_prod_16i.h<br/>
+volk_32f_x2_dot_prod_32f.h<br/>
+volk_32f_x2_fm_detectpuppet_32f.h<br/>
+volk_32f_x2_interleave_32fc.h<br/>
+volk_32f_x2_max_32f.h<br/>
+volk_32f_x2_min_32f.h<br/>
+volk_32f_x2_multiply_32f.h<br/>
+volk_32f_x2_pow_32f.h<br/>
+volk_32f_x2_s32f_interleave_16ic.h<br/>
+volk_32f_x2_subtract_32f.h<br/>
+volk_32f_x3_sum_of_poly_32f.h<br/>
+volk_32fc_32f_add_32fc.h<br/>
+volk_32fc_32f_dot_prod_32fc.h<br/>
+volk_32fc_32f_multiply_32fc.h<br/>
+volk_32fc_conjugate_32fc.h<br/>
+volk_32fc_convert_16ic.h<br/>
+volk_32fc_deinterleave_32f_x2.h<br/>
+volk_32fc_deinterleave_64f_x2.h<br/>
+volk_32fc_deinterleave_imag_32f.h<br/>
+volk_32fc_deinterleave_real_32f.h<br/>
+volk_32fc_deinterleave_real_64f.h<br/>
+volk_32fc_index_max_16u.h<br/>
+volk_32fc_index_max_32u.h<br/>
+volk_32fc_magnitude_32f.h<br/>
+volk_32fc_magnitude_squared_32f.h<br/>
+volk_32fc_s32f_atan2_32f.h<br/>
+volk_32fc_s32f_deinterleave_real_16i.h<br/>
+volk_32fc_s32f_magnitude_16i.h<br/>
+volk_32fc_s32f_power_32fc.h<br/>
+volk_32fc_s32f_power_spectrum_32f.h<br/>
+volk_32fc_s32f_x2_power_spectral_density_32f.h<br/>
+volk_32fc_s32fc_multiply_32fc.h<br/>
+volk_32fc_s32fc_rotatorpuppet_32fc.h<br/>
+volk_32fc_s32fc_x2_rotator_32fc.h<br/>
+volk_32fc_x2_add_32fc.h<br/>
+volk_32fc_x2_conjugate_dot_prod_32fc.h<br/>
+volk_32fc_x2_divide_32fc.h<br/>
+volk_32fc_x2_dot_prod_32fc.h<br/>
+volk_32fc_x2_multiply_32fc.h<br/>
+volk_32fc_x2_multiply_conjugate_32fc.h<br/>
+volk_32fc_x2_s32f_square_dist_scalar_mult_32f.h<br/>
+volk_32fc_x2_square_dist_32f.h<br/>
+volk_32i_s32f_convert_32f.h<br/>
+volk_32i_x2_and_32i.h<br/>
+volk_32i_x2_or_32i.h<br/>
+volk_32u_byteswap.h<br/>
+volk_32u_byteswappuppet_32u.h<br/>
+volk_32u_popcnt.h<br/>
+volk_32u_popcntpuppet_32u.h<br/>
+volk_32u_reverse_32u.h<br/>
+volk_64f_convert_32f.h<br/>
+volk_64f_x2_add_64f.h<br/>
+volk_64f_x2_max_64f.h<br/>
+volk_64f_x2_min_64f.h<br/>
+volk_64f_x2_multiply_64f.h<br/>
+volk_64u_byteswap.h<br/>
+volk_64u_byteswappuppet_64u.h<br/>
+volk_64u_popcnt.h<br/>
+volk_64u_popcntpuppet_64u.h<br/>
+volk_8i_convert_16i.h<br/>
+volk_8i_s32f_convert_32f.h<br/>
+volk_8ic_deinterleave_16i_x2.h<br/>
+volk_8ic_deinterleave_real_16i.h<br/>
+volk_8ic_deinterleave_real_8i.h<br/>
+volk_8ic_s32f_deinterleave_32f_x2.h<br/>
+volk_8ic_s32f_deinterleave_real_32f.h<br/>
+volk_8ic_x2_multiply_conjugate_16ic.h<br/>
+volk_8ic_x2_s32f_multiply_conjugate_32fc.h<br/>
+volk_8u_conv_k7_r2puppet_8u.h<br/>
+volk_8u_x2_encodeframepolar_8u.h<br/>
+volk_8u_x3_encodepolar_8u_x2.h<br/>
+volk_8u_x3_encodepolarpuppet_8u.h<br/>
+volk_8u_x4_conv_k7_r2_8u.h<br/>
+volk_avx_intrinsics.h<br/>
+volk_common.h<br/>
+volk_complex.h<br/>
+volk_config_fixed.h<br/>
+volk_cpu.h<br/>
+volk_malloc.h<br/>
+volk_neon_intrinsics.h<br/>
+volk_prefs.h<br/>
+volk_sse3_intrinsics.h<br/>
+volk_sse_intrinsics.h<br/>
+volk_typedefs.h<br/>
+</div>
+<br/><a class='top_ref' href='#Top'>to the top</a><br/>
+<a name='Libs'></a><h2>Libraries <span class='gray'>&nbsp;1&nbsp;</span></h2><hr/>
+<div class='lib_list'>
+libvolk.so.1.4<br/>
+</div>
+<br/><a class='top_ref' href='#Top'>to the top</a><br/>
+<br/><br/><br/></div><div id='SourceTab' class='tab'>
+<h2>Test Info</h2><hr/>
+<table class='summary'>
+<tr><th>Library Name</th><td>volk</td></tr>
+<tr><th>Version #1</th><td>1.4</td></tr>
+<tr><th>Version #2</th><td>2.0</td></tr>
+<tr><th>Arch</th><td>x86_64</td></tr>
+<tr><th>Subject</th><td width='150px'>Source Compatibility</td></tr>
+</table>
+<h2>Test Results</h2><hr/>
+<table class='summary'><tr><th>Total Header Files</th><td><a href='#Headers' style='color:Blue;'>143</a></td></tr>
+<tr><th>Total Libraries</th><td><a href='#Libs' style='color:Blue;'>1</a></td></tr>
+<tr><th>Total Symbols / Types</th><td>705 / 246</td></tr>
+<tr><th>Compatibility</th>
+<td class='warning'>99.9%</td>
+</tr>
+</table>
+<h2>Problem Summary</h2><hr/>
+<table class='summary'><tr><th></th><th style='text-align:center;'>Severity</th><th style='text-align:center;'>Count</th></tr><tr><th>Added Symbols</th><td>-</td><td class='new'><a href='#Source_Added' style='color:Blue;'>5</a></td></tr>
+<tr><th>Removed Symbols</th><td>High</td><td>0</td></tr>
+<tr><th rowspan='3'>Problems with<br/>Data Types</th><td>High</td><td>0</td></tr>
+<tr><td>Medium</td><td>0</td></tr>
+<tr><td>Low</td><td class='warning'><a href='#Type_Source_Problems_Low' style='color:Blue;'>4</a></td></tr>
+<tr><th rowspan='3'>Problems with<br/>Symbols</th><td>High</td><td>0</td></tr>
+<tr><td>Medium</td><td class='failed'><a href='#Symbol_Source_Problems_Medium' style='color:Blue;'>1</a></td></tr>
+<tr><td>Low</td><td>0</td></tr>
+<tr><th>Problems with<br/>Constants</th><td>Low</td><td class='warning'><a href='#Constant_Source_Problems_Low' style='color:Blue;'>18</a></td></tr>
+<tr><th>Other Changes<br/>in Constants</th><td>-</td><td class='passed'><a href='#Other_Source_Changes_In_Constants' style='color:Blue;'>5</a></td></tr>
+</table>
+
+<a name='Source_Added'></a><h2>Added Symbols <span class='new'>&nbsp;5&nbsp;</span></h2><hr/>
+<span class='h_name'>constants.h</span><br/>
+<span class="iname">volk_available_machines&#160;<span class='sym_p'>(&#160;)</span></span><br/>
+<span class="iname">volk_c_compiler&#160;<span class='sym_p'>(&#160;)</span></span><br/>
+<span class="iname">volk_compiler_flags&#160;<span class='sym_p'>(&#160;)</span></span><br/>
+<span class="iname">volk_prefix&#160;<span class='sym_p'>(&#160;)</span></span><br/>
+<span class="iname">volk_version&#160;<span class='sym_p'>(&#160;)</span></span><br/>
+<br/>
+<a class='top_ref' href='#Top'>to the top</a><br/>
+<a name='Medium_Risk_Source_Problems'></a><a name='Symbol_Source_Problems_Medium'></a><a name='Interface_Source_Problems_Medium'></a>
+<h2>Problems with Symbols, Medium Severity <span class='failed'>&nbsp;1&nbsp;</span></h2><hr/>
+<span class='h_name'>volk_prefs.h</span><br/>
+<span class="section" onclick="javascript:showContent(this, 'c_30')">
+<span class='ext'>[+]</span> volk_get_config_path&#160;<span class='sym_p'><span>(&#160;char* <span class='color_p'>p1</span></span>&#160;)</span> <span class='failed'>&nbsp;1&nbsp;</span></span>
+<br/>
+<div id="c_30" style="display:none;">
+
+
+<span class='new_sign_lbl'>&#8675;</span>
+<br/>
+<span class='new_sign'>volk_get_config_path&#160;<span class='sym_p'><span>(&#160;char* <span class='color_p'>p1</span></span>, <span>bool <span class='color_p'>p2</span></span>&#160;)</span></span><br/>
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td><b>2nd</b> parameter <b>p2</b> has been added to the calling stack.</td>
+<td>Recompilation of a client program may be broken.</td>
+</tr>
+</table>
+<br/>
+</div>
+<br/>
+<a class='top_ref' href='#Top'>to the top</a><br/>
+<a name='Low_Risk_Source_Problems'></a><a name='Type_Source_Problems_Low'></a>
+<h2>Problems with Data Types, Low Severity <span class='warning'>&nbsp;4&nbsp;</span></h2><hr/>
+<span class='h_name'>volk_cpu.h</span><br/>
+<span class="section" onclick="javascript:showContent(this, 'c_31')">
+<span class='ext'>[+]</span> <span class='ttype'>struct</span> VOLK_CPU <span class='warning'>&nbsp;4&nbsp;</span></span>
+<br/>
+<div id="c_31" style="display:none;">
+<table class='ptable'><tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th></tr><tr>
+<th>1</th>
+<td>Field <b>has_avx512cd</b> has been added to this type.</td>
+<td>This field will not be initialized or used by old client applications.</td>
+</tr>
+<tr>
+<th>2</th>
+<td>Field <b>has_avx512f</b> has been added to this type.</td>
+<td>This field will not be initialized or used by old client applications.</td>
+</tr>
+<tr>
+<th>3</th>
+<td>Field <b>has_neonv7</b> has been added to this type.</td>
+<td>This field will not be initialized or used by old client applications.</td>
+</tr>
+<tr>
+<th>4</th>
+<td>Field <b>has_neonv8</b> has been added to this type.</td>
+<td>This field will not be initialized or used by old client applications.</td>
+</tr>
+</table>
+<span class="sect_aff" onclick="javascript:showContent(this, 'c_32')">
+[+] affected symbols: 1 (0.1%)</span>
+<div id="c_32" style="display:none;">
+<div class='affected'><span class='iname_a'>volk_cpu <span class='attr'>[data]</span></span><br/>
+<div class='affect'>Return value is of type &#39;struct VOLK_CPU&#39;.</div>
+</div>
+</div>
+<br/><br/></div>
+
+<br/>
+<a class='top_ref' href='#Top'>to the top</a><br/>
+<a name='Constant_Source_Problems_Low'></a>
+<h2>Problems with Constants, Low Severity <span class='warning'>&nbsp;18&nbsp;</span></h2><hr/>
+<span class='h_name'>volk_config_fixed.h</span><br/>
+<span class="section" onclick="javascript:showContent(this, 'c_33')">
+<span class='ext'>[+]</span> LV_32</span>
+<br/>
+<div id="c_33" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_32</b> has been changed from <b>4</b> to <b>6</b>.</td>
+<td>Recompilation of a client program may be broken.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_34')">
+<span class='ext'>[+]</span> LV_3DNOW</span>
+<br/>
+<div id="c_34" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_3DNOW</b> has been changed from <b>6</b> to <b>8</b>.</td>
+<td>Recompilation of a client program may be broken.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_35')">
+<span class='ext'>[+]</span> LV_64</span>
+<br/>
+<div id="c_35" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_64</b> has been changed from <b>5</b> to <b>7</b>.</td>
+<td>Recompilation of a client program may be broken.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_36')">
+<span class='ext'>[+]</span> LV_ABM</span>
+<br/>
+<div id="c_36" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_ABM</b> has been changed from <b>7</b> to <b>9</b>.</td>
+<td>Recompilation of a client program may be broken.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_37')">
+<span class='ext'>[+]</span> LV_AVX</span>
+<br/>
+<div id="c_37" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_AVX</b> has been changed from <b>20</b> to <b>22</b>.</td>
+<td>Recompilation of a client program may be broken.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_38')">
+<span class='ext'>[+]</span> LV_AVX2</span>
+<br/>
+<div id="c_38" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_AVX2</b> has been changed from <b>21</b> to <b>23</b>.</td>
+<td>Recompilation of a client program may be broken.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_39')">
+<span class='ext'>[+]</span> LV_FMA</span>
+<br/>
+<div id="c_39" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_FMA</b> has been changed from <b>10</b> to <b>12</b>.</td>
+<td>Recompilation of a client program may be broken.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_40')">
+<span class='ext'>[+]</span> LV_MMX</span>
+<br/>
+<div id="c_40" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_MMX</b> has been changed from <b>9</b> to <b>11</b>.</td>
+<td>Recompilation of a client program may be broken.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_41')">
+<span class='ext'>[+]</span> LV_NORC</span>
+<br/>
+<div id="c_41" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_NORC</b> has been changed from <b>14</b> to <b>16</b>.</td>
+<td>Recompilation of a client program may be broken.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_42')">
+<span class='ext'>[+]</span> LV_ORC</span>
+<br/>
+<div id="c_42" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_ORC</b> has been changed from <b>13</b> to <b>15</b>.</td>
+<td>Recompilation of a client program may be broken.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_43')">
+<span class='ext'>[+]</span> LV_POPCOUNT</span>
+<br/>
+<div id="c_43" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_POPCOUNT</b> has been changed from <b>8</b> to <b>10</b>.</td>
+<td>Recompilation of a client program may be broken.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_44')">
+<span class='ext'>[+]</span> LV_SSE</span>
+<br/>
+<div id="c_44" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_SSE</b> has been changed from <b>11</b> to <b>13</b>.</td>
+<td>Recompilation of a client program may be broken.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_45')">
+<span class='ext'>[+]</span> LV_SSE2</span>
+<br/>
+<div id="c_45" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_SSE2</b> has been changed from <b>12</b> to <b>14</b>.</td>
+<td>Recompilation of a client program may be broken.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_46')">
+<span class='ext'>[+]</span> LV_SSE3</span>
+<br/>
+<div id="c_46" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_SSE3</b> has been changed from <b>15</b> to <b>17</b>.</td>
+<td>Recompilation of a client program may be broken.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_47')">
+<span class='ext'>[+]</span> LV_SSE4_1</span>
+<br/>
+<div id="c_47" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_SSE4_1</b> has been changed from <b>18</b> to <b>20</b>.</td>
+<td>Recompilation of a client program may be broken.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_48')">
+<span class='ext'>[+]</span> LV_SSE4_2</span>
+<br/>
+<div id="c_48" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_SSE4_2</b> has been changed from <b>19</b> to <b>21</b>.</td>
+<td>Recompilation of a client program may be broken.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_49')">
+<span class='ext'>[+]</span> LV_SSE4_A</span>
+<br/>
+<div id="c_49" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_SSE4_A</b> has been changed from <b>17</b> to <b>19</b>.</td>
+<td>Recompilation of a client program may be broken.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_50')">
+<span class='ext'>[+]</span> LV_SSSE3</span>
+<br/>
+<div id="c_50" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The value of constant <b>LV_SSSE3</b> has been changed from <b>16</b> to <b>18</b>.</td>
+<td>Recompilation of a client program may be broken.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<br/>
+<a class='top_ref' href='#Top'>to the top</a><br/>
+<a name='Other_Source_Changes'></a><a name='Other_Source_Changes_In_Constants'></a>
+<h2>Other Changes in Constants <span class='passed'>&nbsp;5&nbsp;</span></h2><hr/>
+<span class='h_name'>volk_32f_log2_32f.h</span><br/>
+<span class="section" onclick="javascript:showContent(this, 'c_51')">
+<span class='ext'>[+]</span> LOG_POLY_DEGREE</span>
+<br/>
+<div id="c_51" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The constant <b>LOG_POLY_DEGREE</b> with value <b>6</b> has been added.</td>
+<td>No effect.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<br/>
+<span class='h_name'>volk_config_fixed.h</span><br/>
+<span class="section" onclick="javascript:showContent(this, 'c_52')">
+<span class='ext'>[+]</span> LV_AVX512CD</span>
+<br/>
+<div id="c_52" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The constant <b>LV_AVX512CD</b> with value <b>25</b> has been added.</td>
+<td>No effect.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_53')">
+<span class='ext'>[+]</span> LV_AVX512F</span>
+<br/>
+<div id="c_53" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The constant <b>LV_AVX512F</b> with value <b>24</b> has been added.</td>
+<td>No effect.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_54')">
+<span class='ext'>[+]</span> LV_NEONV7</span>
+<br/>
+<div id="c_54" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The constant <b>LV_NEONV7</b> with value <b>4</b> has been added.</td>
+<td>No effect.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<span class="section" onclick="javascript:showContent(this, 'c_55')">
+<span class='ext'>[+]</span> LV_NEONV8</span>
+<br/>
+<div id="c_55" style="display:none;">
+<table class='ptable'>
+<tr>
+<th class='pn'></th>
+<th class='chg'>Change</th>
+<th>Effect</th>
+</tr>
+<tr>
+<th>1</th>
+<td>The constant <b>LV_NEONV8</b> with value <b>5</b> has been added.</td>
+<td>No effect.</td>
+</tr>
+</table>
+<br/>
+</div>
+
+<br/>
+<a class='top_ref' href='#Top'>to the top</a><br/>
+<a name='Headers'></a><h2>Header Files <span class='gray'>&nbsp;143&nbsp;</span></h2><hr/>
+<div class='h_list'>
+saturation_arithmetic.h<br/>
+volk.h<br/>
+volk_16i_32fc_dot_prod_32fc.h<br/>
+volk_16i_branch_4_state_8.h<br/>
+volk_16i_convert_8i.h<br/>
+volk_16i_max_star_16i.h<br/>
+volk_16i_max_star_horizontal_16i.h<br/>
+volk_16i_permute_and_scalar_add.h<br/>
+volk_16i_s32f_convert_32f.h<br/>
+volk_16i_x4_quad_max_star_16i.h<br/>
+volk_16i_x5_add_quad_16i_x4.h<br/>
+volk_16ic_convert_32fc.h<br/>
+volk_16ic_deinterleave_16i_x2.h<br/>
+volk_16ic_deinterleave_real_16i.h<br/>
+volk_16ic_deinterleave_real_8i.h<br/>
+volk_16ic_magnitude_16i.h<br/>
+volk_16ic_s32f_deinterleave_32f_x2.h<br/>
+volk_16ic_s32f_deinterleave_real_32f.h<br/>
+volk_16ic_s32f_magnitude_32f.h<br/>
+volk_16ic_x2_dot_prod_16ic.h<br/>
+volk_16ic_x2_multiply_16ic.h<br/>
+volk_16u_byteswap.h<br/>
+volk_16u_byteswappuppet_16u.h<br/>
+volk_32f_64f_add_64f.h<br/>
+volk_32f_64f_multiply_64f.h<br/>
+volk_32f_8u_polarbutterfly_32f.h<br/>
+volk_32f_8u_polarbutterflypuppet_32f.h<br/>
+volk_32f_accumulator_s32f.h<br/>
+volk_32f_acos_32f.h<br/>
+volk_32f_asin_32f.h<br/>
+volk_32f_atan_32f.h<br/>
+volk_32f_binary_slicer_32i.h<br/>
+volk_32f_binary_slicer_8i.h<br/>
+volk_32f_convert_64f.h<br/>
+volk_32f_cos_32f.h<br/>
+volk_32f_expfast_32f.h<br/>
+volk_32f_index_max_16u.h<br/>
+volk_32f_index_max_32u.h<br/>
+volk_32f_invsqrt_32f.h<br/>
+volk_32f_log2_32f.h<br/>
+volk_32f_null_32f.h<br/>
+volk_32f_s32f_32f_fm_detect_32f.h<br/>
+volk_32f_s32f_calc_spectral_noise_floor_32f.h<br/>
+volk_32f_s32f_convert_16i.h<br/>
+volk_32f_s32f_convert_32i.h<br/>
+volk_32f_s32f_convert_8i.h<br/>
+volk_32f_s32f_mod_rangepuppet_32f.h<br/>
+volk_32f_s32f_multiply_32f.h<br/>
+volk_32f_s32f_normalize.h<br/>
+volk_32f_s32f_power_32f.h<br/>
+volk_32f_s32f_s32f_mod_range_32f.h<br/>
+volk_32f_s32f_stddev_32f.h<br/>
+volk_32f_sin_32f.h<br/>
+volk_32f_sqrt_32f.h<br/>
+volk_32f_stddev_and_mean_32f_x2.h<br/>
+volk_32f_tan_32f.h<br/>
+volk_32f_tanh_32f.h<br/>
+volk_32f_x2_add_32f.h<br/>
+volk_32f_x2_divide_32f.h<br/>
+volk_32f_x2_dot_prod_16i.h<br/>
+volk_32f_x2_dot_prod_32f.h<br/>
+volk_32f_x2_fm_detectpuppet_32f.h<br/>
+volk_32f_x2_interleave_32fc.h<br/>
+volk_32f_x2_max_32f.h<br/>
+volk_32f_x2_min_32f.h<br/>
+volk_32f_x2_multiply_32f.h<br/>
+volk_32f_x2_pow_32f.h<br/>
+volk_32f_x2_s32f_interleave_16ic.h<br/>
+volk_32f_x2_subtract_32f.h<br/>
+volk_32f_x3_sum_of_poly_32f.h<br/>
+volk_32fc_32f_add_32fc.h<br/>
+volk_32fc_32f_dot_prod_32fc.h<br/>
+volk_32fc_32f_multiply_32fc.h<br/>
+volk_32fc_conjugate_32fc.h<br/>
+volk_32fc_convert_16ic.h<br/>
+volk_32fc_deinterleave_32f_x2.h<br/>
+volk_32fc_deinterleave_64f_x2.h<br/>
+volk_32fc_deinterleave_imag_32f.h<br/>
+volk_32fc_deinterleave_real_32f.h<br/>
+volk_32fc_deinterleave_real_64f.h<br/>
+volk_32fc_index_max_16u.h<br/>
+volk_32fc_index_max_32u.h<br/>
+volk_32fc_magnitude_32f.h<br/>
+volk_32fc_magnitude_squared_32f.h<br/>
+volk_32fc_s32f_atan2_32f.h<br/>
+volk_32fc_s32f_deinterleave_real_16i.h<br/>
+volk_32fc_s32f_magnitude_16i.h<br/>
+volk_32fc_s32f_power_32fc.h<br/>
+volk_32fc_s32f_power_spectrum_32f.h<br/>
+volk_32fc_s32f_x2_power_spectral_density_32f.h<br/>
+volk_32fc_s32fc_multiply_32fc.h<br/>
+volk_32fc_s32fc_rotatorpuppet_32fc.h<br/>
+volk_32fc_s32fc_x2_rotator_32fc.h<br/>
+volk_32fc_x2_add_32fc.h<br/>
+volk_32fc_x2_conjugate_dot_prod_32fc.h<br/>
+volk_32fc_x2_divide_32fc.h<br/>
+volk_32fc_x2_dot_prod_32fc.h<br/>
+volk_32fc_x2_multiply_32fc.h<br/>
+volk_32fc_x2_multiply_conjugate_32fc.h<br/>
+volk_32fc_x2_s32f_square_dist_scalar_mult_32f.h<br/>
+volk_32fc_x2_square_dist_32f.h<br/>
+volk_32i_s32f_convert_32f.h<br/>
+volk_32i_x2_and_32i.h<br/>
+volk_32i_x2_or_32i.h<br/>
+volk_32u_byteswap.h<br/>
+volk_32u_byteswappuppet_32u.h<br/>
+volk_32u_popcnt.h<br/>
+volk_32u_popcntpuppet_32u.h<br/>
+volk_32u_reverse_32u.h<br/>
+volk_64f_convert_32f.h<br/>
+volk_64f_x2_add_64f.h<br/>
+volk_64f_x2_max_64f.h<br/>
+volk_64f_x2_min_64f.h<br/>
+volk_64f_x2_multiply_64f.h<br/>
+volk_64u_byteswap.h<br/>
+volk_64u_byteswappuppet_64u.h<br/>
+volk_64u_popcnt.h<br/>
+volk_64u_popcntpuppet_64u.h<br/>
+volk_8i_convert_16i.h<br/>
+volk_8i_s32f_convert_32f.h<br/>
+volk_8ic_deinterleave_16i_x2.h<br/>
+volk_8ic_deinterleave_real_16i.h<br/>
+volk_8ic_deinterleave_real_8i.h<br/>
+volk_8ic_s32f_deinterleave_32f_x2.h<br/>
+volk_8ic_s32f_deinterleave_real_32f.h<br/>
+volk_8ic_x2_multiply_conjugate_16ic.h<br/>
+volk_8ic_x2_s32f_multiply_conjugate_32fc.h<br/>
+volk_8u_conv_k7_r2puppet_8u.h<br/>
+volk_8u_x2_encodeframepolar_8u.h<br/>
+volk_8u_x3_encodepolar_8u_x2.h<br/>
+volk_8u_x3_encodepolarpuppet_8u.h<br/>
+volk_8u_x4_conv_k7_r2_8u.h<br/>
+volk_avx_intrinsics.h<br/>
+volk_common.h<br/>
+volk_complex.h<br/>
+volk_config_fixed.h<br/>
+volk_cpu.h<br/>
+volk_malloc.h<br/>
+volk_neon_intrinsics.h<br/>
+volk_prefs.h<br/>
+volk_sse3_intrinsics.h<br/>
+volk_sse_intrinsics.h<br/>
+volk_typedefs.h<br/>
+</div>
+<br/><a class='top_ref' href='#Top'>to the top</a><br/>
+<a name='Libs'></a><h2>Libraries <span class='gray'>&nbsp;1&nbsp;</span></h2><hr/>
+<div class='lib_list'>
+libvolk.so.1.4<br/>
+</div>
+<br/><a class='top_ref' href='#Top'>to the top</a><br/>
+<br/><br/><br/></div><hr/>
+<div class='footer' align='right'><i>Generated by <a href='https://github.com/lvc/abi-compliance-checker'>ABI Compliance Checker</a> 2.3 &#160;</i>
+</div>
+<br/>
+
+</body></html>
diff --git a/2.2.0_to_2.2.1_compat_report.html b/2.2.0_to_2.2.1_compat_report.html
new file mode 100644 (file)
index 0000000..3c8e2f0
--- /dev/null
@@ -0,0 +1,769 @@
+<!-- kind:binary;verdict:compatible;affected:0;added:0;removed:0;type_problems_high:0;type_problems_medium:0;type_problems_low:0;interface_problems_high:0;interface_problems_medium:0;interface_problems_low:0;changed_constants:0;tool_version:2.3 -->
+<!-- kind:source;verdict:compatible;affected:0;added:0;removed:0;type_problems_high:0;type_problems_medium:0;type_problems_low:0;interface_problems_high:0;interface_problems_medium:0;interface_problems_low:0;changed_constants:0;tool_version:2.3 -->
+<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
+<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
+<head>
+<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
+<meta name="viewport" content="width=device-width,initial-scale=1" />
+<meta name="keywords" content="volk, compatibility, API, ABI, report" />
+<meta name="description" content="API/ABI compatibility report for the volk library between 2.2.0-3 and 2.2.1-1 versions" />
+<meta name="robots" content="noindex" />
+<title>volk: 2.2.0-3 to 2.2.1-1 compatibility report</title>
+<style type="text/css">
+body {
+    font-family:Arial, sans-serif;
+    background-color:White;
+    color:Black;
+}
+hr {
+    color:Black;
+    background-color:Black;
+    height:1px;
+    border:0;
+}
+h1 {
+    margin-bottom:0px;
+    padding-bottom:0px;
+    font-size:1.625em;
+}
+h2 {
+    margin-bottom:0px;
+    padding-bottom:0px;
+    font-size:1.25em;
+    white-space:nowrap;
+}
+span.section {
+    font-weight:bold;
+    cursor:pointer;
+    color:#003E69;
+    white-space:nowrap;
+    margin-left:0.3125em;
+}
+span.new_sign {
+    font-weight:bold;
+    margin-left:1.65em;
+    color:#003E69;
+}
+span.new_sign_lbl {
+    margin-left:3em;
+    font-size:1em;
+    color:Black;
+}
+span:hover.section {
+    color:#336699;
+}
+span.sect_aff {
+    cursor:pointer;
+    padding-left:1.55em;
+    font-size:0.875em;
+    color:#cc3300;
+}
+span.sect_info {
+    cursor:pointer;
+    padding-left:1.55em;
+    font-size:0.875em;
+    color:Black;
+}
+span.ext {
+    font-weight:normal;
+}
+span.h_name {
+    color:#cc3300;
+    font-size:0.875em;
+    font-weight:bold;
+}
+div.h_list, div.lib_list {
+    font-size:0.94em;
+    padding-left:0.4em;
+}
+span.ns {
+    color:#408080;
+    font-size:0.94em;
+}
+span.lib_name {
+    color:Green;
+    font-size:0.875em;
+    font-weight:bold;
+}
+span.iname {
+    font-weight:bold;
+    color:#003E69;
+    margin-left:0.3125em;
+}
+span.iname_b {
+    font-weight:bold;
+}
+span.iname_a {
+    color:#333333;
+    font-weight:bold;
+    font-size:0.94em;
+}
+span.sym_p {
+    font-weight:normal;
+    white-space:normal;
+}
+span.sym_pd {
+    white-space:normal;
+}
+span.sym_p span, span.sym_pd span {
+    white-space:nowrap;
+}
+div.affect {
+    padding-left:1em;
+    padding-bottom:10px;
+    font-size:0.87em;
+    font-style:italic;
+    line-height:0.9em;
+}
+div.affected {
+    padding-left:1.9em;
+    padding-top:10px;
+}
+table.ptable {
+    border-collapse:collapse;
+    border:1px outset black;
+    margin-left:0.95em;
+    margin-top:3px;
+    margin-bottom:3px;
+    width:56.25em;
+}
+table.ptable td {
+    border:1px solid gray;
+    padding:3px;
+    font-size:0.875em;
+    text-align:left;
+    vertical-align:top;
+    max-width:28em;
+    word-wrap:break-word;
+}
+table.ptable th.pn {
+    width:2%;
+}
+table.ptable th.chg {
+    width:47%;
+}
+table.vtable {
+    border-collapse:collapse;
+    border:1px outset black;
+    margin-left:1.9em;
+    margin-top:0.7em;
+}
+table.vtable td {
+    border:1px solid gray;
+    padding:3px;
+    font-size:0.875em;
+    vertical-align:top;
+    max-width:450px;
+    word-wrap:break-word;
+}
+table.ptable th, table.vtable th {
+    background-color:#eeeeee;
+    font-weight:bold;
+    color:#333333;
+    font-family:Verdana, Arial;
+    font-size:0.875em;
+    border:1px solid gray;
+    text-align:center;
+    vertical-align:top;
+    white-space:nowrap;
+    padding:3px;
+}
+table.summary {
+    border-collapse:collapse;
+    border:1px outset black;
+}
+table.summary th {
+    background-color:#eeeeee;
+    font-weight:normal;
+    text-align:left;
+    font-size:0.94em;
+    white-space:nowrap;
+    border:1px inset gray;
+    padding:3px;
+}
+table.summary td {
+    text-align:right;
+    white-space:nowrap;
+    border:1px inset gray;
+    padding:3px 5px 3px 10px;
+}
+span.mngl {
+    padding-left:1em;
+    font-size:0.875em;
+    cursor:text;
+    color:#444444;
+    font-weight:bold;
+}
+span.pleft {
+    padding-left:2.5em;
+}
+span.sym_ver {
+    color:#333333;
+    white-space:nowrap;
+    font-family:"DejaVu Sans Mono", Monospace;
+}
+span.attr {
+    color:#333333;
+    font-weight:normal;
+}
+span.color_p {
+    font-style:italic;
+    color:Brown;
+}
+span.p {
+    font-style:italic;
+}
+span.fp {
+    font-style:italic;
+    background-color:#DCDCDC;
+}
+span.ttype {
+    font-weight:normal;
+}
+span.nowrap {
+    white-space:nowrap;
+}
+span.value {
+    font-weight:bold;
+}
+.passed {
+    background-color:#CCFFCC;
+    font-weight:normal;
+}
+.warning {
+    background-color:#F4F4AF;
+    font-weight:normal;
+}
+.failed {
+    background-color:#FFCCCC;
+    font-weight:normal;
+}
+.new {
+    background-color:#C6DEFF;
+    font-weight:normal;
+}
+.compatible {
+    background-color:#CCFFCC;
+    font-weight:normal;
+}
+.almost_compatible {
+    background-color:#FFDAA3;
+    font-weight:normal;
+}
+.incompatible {
+    background-color:#FFCCCC;
+    font-weight:normal;
+}
+.gray {
+    background-color:#DCDCDC;
+    font-weight:normal;
+}
+.top_ref {
+    font-size:0.69em;
+}
+.footer {
+    font-size:0.75em;
+}
+
+.tabset {
+    float:left;
+}
+a.tab {
+    border:1px solid Black;
+    float:left;
+    margin:0px 5px -1px 0px;
+    padding:3px 5px 3px 5px;
+    position:relative;
+    font-size:0.875em;
+    background-color:#DDD;
+    text-decoration:none;
+    color:Black;
+}
+a.disabled:hover
+{
+    color:Black;
+    background:#EEE;
+}
+a.active:hover
+{
+    color:Black;
+    background:White;
+}
+a.active {
+    border-bottom-color:White;
+    background-color:White;
+}
+div.tab {
+    border-top:1px solid Black;
+    padding:0px;
+    width:100%;
+    clear:both;
+}
+</style>
+<script type="text/javascript" language="JavaScript">
+<!--
+function showContent(header, id)
+{
+    e = document.getElementById(id);
+    if(e.style.display == 'none')
+    {
+        e.style.display = 'block';
+        e.style.visibility = 'visible';
+        header.innerHTML = header.innerHTML.replace(/\[[^0-9 ]\]/gi,"[&minus;]");
+    }
+    else
+    {
+        e.style.display = 'none';
+        e.style.visibility = 'hidden';
+        header.innerHTML = header.innerHTML.replace(/\[[^0-9 ]\]/gi,"[+]");
+    }
+}
+function initTabs()
+{
+    var url = window.location.href;
+    if(url.indexOf('_Source_')!=-1 || url.indexOf('#Source')!=-1)
+    {
+        var tab1 = document.getElementById('BinaryID');
+        var tab2 = document.getElementById('SourceID');
+        tab1.className='tab disabled';
+        tab2.className='tab active';
+    }
+    var sets = document.getElementsByTagName('div');
+    for (var i = 0; i < sets.length; i++)
+    {
+        if (sets[i].className.indexOf('tabset') != -1)
+        {
+            var tabs = [];
+            var links = sets[i].getElementsByTagName('a');
+            for (var j = 0; j < links.length; j++)
+            {
+                if (links[j].className.indexOf('tab') != -1)
+                {
+                    tabs.push(links[j]);
+                    links[j].tabs = tabs;
+                    var tab = document.getElementById(links[j].href.substr(links[j].href.indexOf('#') + 1));
+                    //reset all tabs on start
+                    if (tab)
+                    {
+                        if (links[j].className.indexOf('active')!=-1) {
+                            tab.style.display = 'block';
+                        }
+                        else {
+                            tab.style.display = 'none';
+                        }
+                    }
+                    links[j].onclick = function()
+                    {
+                        var tab = document.getElementById(this.href.substr(this.href.indexOf('#') + 1));
+                        if (tab)
+                        {
+                            //reset all tabs before change
+                            for (var k = 0; k < this.tabs.length; k++)
+                            {
+                                document.getElementById(this.tabs[k].href.substr(this.tabs[k].href.indexOf('#') + 1)).style.display = 'none';
+                                this.tabs[k].className = this.tabs[k].className.replace('active', 'disabled');
+                            }
+                            this.className = 'tab active';
+                            tab.style.display = 'block';
+                            // window.location.hash = this.id.replace('ID', '');
+                            return false;
+                        }
+                    }
+                }
+            }
+        }
+    }
+    if(url.indexOf('#')!=-1) {
+        location.href=location.href;
+    }
+}
+if (window.addEventListener) window.addEventListener('load', initTabs, false);
+else if (window.attachEvent) window.attachEvent('onload', initTabs);
+-->
+</script>
+</head>
+<body><a name='Source'></a><a name='Binary'></a><a name='Top'></a><h1>API compatibility report for the <span style='color:Blue;'>volk</span> library between <span style='color:Red;'>2.2.0-3</span> and <span style='color:Red;'>2.2.1-1</span> versions on <span style='color:Blue;'>x86_64</span></h1>
+
+            <br/>
+            <div class='tabset'>
+            <a id='BinaryID' href='#BinaryTab' class='tab active'>Binary<br/>Compatibility</a>
+            <a id='SourceID' href='#SourceTab' style='margin-left:3px' class='tab disabled'>Source<br/>Compatibility</a>
+            </div><div id='BinaryTab' class='tab'>
+<h2>Test Info</h2><hr/>
+<table class='summary'>
+<tr><th>Library Name</th><td>volk</td></tr>
+<tr><th>Version #1</th><td>2.2.0-3</td></tr>
+<tr><th>Version #2</th><td>2.2.1-1</td></tr>
+<tr><th>Arch</th><td>x86_64</td></tr>
+<tr><th>GCC Version</th><td>8</td></tr>
+<tr><th>Subject</th><td width='150px'>Binary Compatibility</td></tr>
+</table>
+<h2>Test Results</h2><hr/>
+<table class='summary'><tr><th>Total Header Files</th><td><a href='#Headers' style='color:Blue;'>148</a></td></tr>
+<tr><th>Total Libraries</th><td><a href='#Libs' style='color:Blue;'>1</a></td></tr>
+<tr><th>Total Symbols / Types</th><td>670 / 246</td></tr>
+<tr><th>Compatibility</th>
+<td class='compatible'>100%</td>
+</tr>
+</table>
+<h2>Problem Summary</h2><hr/>
+<table class='summary'><tr><th></th><th style='text-align:center;'>Severity</th><th style='text-align:center;'>Count</th></tr><tr><th>Added Symbols</th><td>-</td><td>0</td></tr>
+<tr><th>Removed Symbols</th><td>High</td><td>0</td></tr>
+<tr><th rowspan='3'>Problems with<br/>Data Types</th><td>High</td><td>0</td></tr>
+<tr><td>Medium</td><td>0</td></tr>
+<tr><td>Low</td><td>0</td></tr>
+<tr><th rowspan='3'>Problems with<br/>Symbols</th><td>High</td><td>0</td></tr>
+<tr><td>Medium</td><td>0</td></tr>
+<tr><td>Low</td><td>0</td></tr>
+<tr><th>Problems with<br/>Constants</th><td>Low</td><td>0</td></tr>
+</table>
+
+<a name='Headers'></a><h2>Header Files <span class='gray'>&nbsp;148&nbsp;</span></h2><hr/>
+<div class='h_list'>
+constants.h<br/>
+saturation_arithmetic.h<br/>
+volk.h<br/>
+volk_16i_32fc_dot_prod_32fc.h<br/>
+volk_16i_branch_4_state_8.h<br/>
+volk_16i_convert_8i.h<br/>
+volk_16i_max_star_16i.h<br/>
+volk_16i_max_star_horizontal_16i.h<br/>
+volk_16i_permute_and_scalar_add.h<br/>
+volk_16i_s32f_convert_32f.h<br/>
+volk_16i_x4_quad_max_star_16i.h<br/>
+volk_16i_x5_add_quad_16i_x4.h<br/>
+volk_16ic_convert_32fc.h<br/>
+volk_16ic_deinterleave_16i_x2.h<br/>
+volk_16ic_deinterleave_real_16i.h<br/>
+volk_16ic_deinterleave_real_8i.h<br/>
+volk_16ic_magnitude_16i.h<br/>
+volk_16ic_s32f_deinterleave_32f_x2.h<br/>
+volk_16ic_s32f_deinterleave_real_32f.h<br/>
+volk_16ic_s32f_magnitude_32f.h<br/>
+volk_16ic_x2_dot_prod_16ic.h<br/>
+volk_16ic_x2_multiply_16ic.h<br/>
+volk_16u_byteswap.h<br/>
+volk_16u_byteswappuppet_16u.h<br/>
+volk_32f_64f_add_64f.h<br/>
+volk_32f_64f_multiply_64f.h<br/>
+volk_32f_8u_polarbutterfly_32f.h<br/>
+volk_32f_8u_polarbutterflypuppet_32f.h<br/>
+volk_32f_accumulator_s32f.h<br/>
+volk_32f_acos_32f.h<br/>
+volk_32f_asin_32f.h<br/>
+volk_32f_atan_32f.h<br/>
+volk_32f_binary_slicer_32i.h<br/>
+volk_32f_binary_slicer_8i.h<br/>
+volk_32f_convert_64f.h<br/>
+volk_32f_cos_32f.h<br/>
+volk_32f_expfast_32f.h<br/>
+volk_32f_index_max_16u.h<br/>
+volk_32f_index_max_32u.h<br/>
+volk_32f_invsqrt_32f.h<br/>
+volk_32f_log2_32f.h<br/>
+volk_32f_null_32f.h<br/>
+volk_32f_s32f_32f_fm_detect_32f.h<br/>
+volk_32f_s32f_calc_spectral_noise_floor_32f.h<br/>
+volk_32f_s32f_convert_16i.h<br/>
+volk_32f_s32f_convert_32i.h<br/>
+volk_32f_s32f_convert_8i.h<br/>
+volk_32f_s32f_mod_rangepuppet_32f.h<br/>
+volk_32f_s32f_multiply_32f.h<br/>
+volk_32f_s32f_normalize.h<br/>
+volk_32f_s32f_power_32f.h<br/>
+volk_32f_s32f_s32f_mod_range_32f.h<br/>
+volk_32f_s32f_stddev_32f.h<br/>
+volk_32f_sin_32f.h<br/>
+volk_32f_sqrt_32f.h<br/>
+volk_32f_stddev_and_mean_32f_x2.h<br/>
+volk_32f_tan_32f.h<br/>
+volk_32f_tanh_32f.h<br/>
+volk_32f_x2_add_32f.h<br/>
+volk_32f_x2_divide_32f.h<br/>
+volk_32f_x2_dot_prod_16i.h<br/>
+volk_32f_x2_dot_prod_32f.h<br/>
+volk_32f_x2_fm_detectpuppet_32f.h<br/>
+volk_32f_x2_interleave_32fc.h<br/>
+volk_32f_x2_max_32f.h<br/>
+volk_32f_x2_min_32f.h<br/>
+volk_32f_x2_multiply_32f.h<br/>
+volk_32f_x2_pow_32f.h<br/>
+volk_32f_x2_s32f_interleave_16ic.h<br/>
+volk_32f_x2_subtract_32f.h<br/>
+volk_32f_x3_sum_of_poly_32f.h<br/>
+volk_32fc_32f_add_32fc.h<br/>
+volk_32fc_32f_dot_prod_32fc.h<br/>
+volk_32fc_32f_multiply_32fc.h<br/>
+volk_32fc_conjugate_32fc.h<br/>
+volk_32fc_convert_16ic.h<br/>
+volk_32fc_deinterleave_32f_x2.h<br/>
+volk_32fc_deinterleave_64f_x2.h<br/>
+volk_32fc_deinterleave_imag_32f.h<br/>
+volk_32fc_deinterleave_real_32f.h<br/>
+volk_32fc_deinterleave_real_64f.h<br/>
+volk_32fc_index_max_16u.h<br/>
+volk_32fc_index_max_32u.h<br/>
+volk_32fc_magnitude_32f.h<br/>
+volk_32fc_magnitude_squared_32f.h<br/>
+volk_32fc_s32f_atan2_32f.h<br/>
+volk_32fc_s32f_deinterleave_real_16i.h<br/>
+volk_32fc_s32f_magnitude_16i.h<br/>
+volk_32fc_s32f_power_32fc.h<br/>
+volk_32fc_s32f_power_spectrum_32f.h<br/>
+volk_32fc_s32f_x2_power_spectral_density_32f.h<br/>
+volk_32fc_s32fc_multiply_32fc.h<br/>
+volk_32fc_s32fc_rotatorpuppet_32fc.h<br/>
+volk_32fc_s32fc_x2_rotator_32fc.h<br/>
+volk_32fc_x2_add_32fc.h<br/>
+volk_32fc_x2_conjugate_dot_prod_32fc.h<br/>
+volk_32fc_x2_divide_32fc.h<br/>
+volk_32fc_x2_dot_prod_32fc.h<br/>
+volk_32fc_x2_multiply_32fc.h<br/>
+volk_32fc_x2_multiply_conjugate_32fc.h<br/>
+volk_32fc_x2_s32f_square_dist_scalar_mult_32f.h<br/>
+volk_32fc_x2_s32fc_multiply_conjugate_add_32fc.h<br/>
+volk_32fc_x2_square_dist_32f.h<br/>
+volk_32i_s32f_convert_32f.h<br/>
+volk_32i_x2_and_32i.h<br/>
+volk_32i_x2_or_32i.h<br/>
+volk_32u_byteswap.h<br/>
+volk_32u_byteswappuppet_32u.h<br/>
+volk_32u_popcnt.h<br/>
+volk_32u_popcntpuppet_32u.h<br/>
+volk_32u_reverse_32u.h<br/>
+volk_64f_convert_32f.h<br/>
+volk_64f_x2_add_64f.h<br/>
+volk_64f_x2_max_64f.h<br/>
+volk_64f_x2_min_64f.h<br/>
+volk_64f_x2_multiply_64f.h<br/>
+volk_64u_byteswap.h<br/>
+volk_64u_byteswappuppet_64u.h<br/>
+volk_64u_popcnt.h<br/>
+volk_64u_popcntpuppet_64u.h<br/>
+volk_8i_convert_16i.h<br/>
+volk_8i_s32f_convert_32f.h<br/>
+volk_8ic_deinterleave_16i_x2.h<br/>
+volk_8ic_deinterleave_real_16i.h<br/>
+volk_8ic_deinterleave_real_8i.h<br/>
+volk_8ic_s32f_deinterleave_32f_x2.h<br/>
+volk_8ic_s32f_deinterleave_real_32f.h<br/>
+volk_8ic_x2_multiply_conjugate_16ic.h<br/>
+volk_8ic_x2_s32f_multiply_conjugate_32fc.h<br/>
+volk_8u_conv_k7_r2puppet_8u.h<br/>
+volk_8u_x2_encodeframepolar_8u.h<br/>
+volk_8u_x3_encodepolar_8u_x2.h<br/>
+volk_8u_x3_encodepolarpuppet_8u.h<br/>
+volk_8u_x4_conv_k7_r2_8u.h<br/>
+volk_alloc.hh<br/>
+volk_avx2_intrinsics.h<br/>
+volk_avx_intrinsics.h<br/>
+volk_common.h<br/>
+volk_complex.h<br/>
+volk_config_fixed.h<br/>
+volk_cpu.h<br/>
+volk_malloc.h<br/>
+volk_neon_intrinsics.h<br/>
+volk_prefs.h<br/>
+volk_sse3_intrinsics.h<br/>
+volk_sse_intrinsics.h<br/>
+volk_typedefs.h<br/>
+volk_version.h<br/>
+</div>
+<br/><a class='top_ref' href='#Top'>to the top</a><br/>
+<a name='Libs'></a><h2>Libraries <span class='gray'>&nbsp;1&nbsp;</span></h2><hr/>
+<div class='lib_list'>
+libvolk.so.2.2<br/>
+</div>
+<br/><a class='top_ref' href='#Top'>to the top</a><br/>
+<br/><br/><br/></div><div id='SourceTab' class='tab'>
+<h2>Test Info</h2><hr/>
+<table class='summary'>
+<tr><th>Library Name</th><td>volk</td></tr>
+<tr><th>Version #1</th><td>2.2.0-3</td></tr>
+<tr><th>Version #2</th><td>2.2.1-1</td></tr>
+<tr><th>Arch</th><td>x86_64</td></tr>
+<tr><th>Subject</th><td width='150px'>Source Compatibility</td></tr>
+</table>
+<h2>Test Results</h2><hr/>
+<table class='summary'><tr><th>Total Header Files</th><td><a href='#Headers' style='color:Blue;'>148</a></td></tr>
+<tr><th>Total Libraries</th><td><a href='#Libs' style='color:Blue;'>1</a></td></tr>
+<tr><th>Total Symbols / Types</th><td>730 / 249</td></tr>
+<tr><th>Compatibility</th>
+<td class='compatible'>100%</td>
+</tr>
+</table>
+<h2>Problem Summary</h2><hr/>
+<table class='summary'><tr><th></th><th style='text-align:center;'>Severity</th><th style='text-align:center;'>Count</th></tr><tr><th>Added Symbols</th><td>-</td><td>0</td></tr>
+<tr><th>Removed Symbols</th><td>High</td><td>0</td></tr>
+<tr><th rowspan='3'>Problems with<br/>Data Types</th><td>High</td><td>0</td></tr>
+<tr><td>Medium</td><td>0</td></tr>
+<tr><td>Low</td><td>0</td></tr>
+<tr><th rowspan='3'>Problems with<br/>Symbols</th><td>High</td><td>0</td></tr>
+<tr><td>Medium</td><td>0</td></tr>
+<tr><td>Low</td><td>0</td></tr>
+<tr><th>Problems with<br/>Constants</th><td>Low</td><td>0</td></tr>
+</table>
+
+<a name='Headers'></a><h2>Header Files <span class='gray'>&nbsp;148&nbsp;</span></h2><hr/>
+<div class='h_list'>
+constants.h<br/>
+saturation_arithmetic.h<br/>
+volk.h<br/>
+volk_16i_32fc_dot_prod_32fc.h<br/>
+volk_16i_branch_4_state_8.h<br/>
+volk_16i_convert_8i.h<br/>
+volk_16i_max_star_16i.h<br/>
+volk_16i_max_star_horizontal_16i.h<br/>
+volk_16i_permute_and_scalar_add.h<br/>
+volk_16i_s32f_convert_32f.h<br/>
+volk_16i_x4_quad_max_star_16i.h<br/>
+volk_16i_x5_add_quad_16i_x4.h<br/>
+volk_16ic_convert_32fc.h<br/>
+volk_16ic_deinterleave_16i_x2.h<br/>
+volk_16ic_deinterleave_real_16i.h<br/>
+volk_16ic_deinterleave_real_8i.h<br/>
+volk_16ic_magnitude_16i.h<br/>
+volk_16ic_s32f_deinterleave_32f_x2.h<br/>
+volk_16ic_s32f_deinterleave_real_32f.h<br/>
+volk_16ic_s32f_magnitude_32f.h<br/>
+volk_16ic_x2_dot_prod_16ic.h<br/>
+volk_16ic_x2_multiply_16ic.h<br/>
+volk_16u_byteswap.h<br/>
+volk_16u_byteswappuppet_16u.h<br/>
+volk_32f_64f_add_64f.h<br/>
+volk_32f_64f_multiply_64f.h<br/>
+volk_32f_8u_polarbutterfly_32f.h<br/>
+volk_32f_8u_polarbutterflypuppet_32f.h<br/>
+volk_32f_accumulator_s32f.h<br/>
+volk_32f_acos_32f.h<br/>
+volk_32f_asin_32f.h<br/>
+volk_32f_atan_32f.h<br/>
+volk_32f_binary_slicer_32i.h<br/>
+volk_32f_binary_slicer_8i.h<br/>
+volk_32f_convert_64f.h<br/>
+volk_32f_cos_32f.h<br/>
+volk_32f_expfast_32f.h<br/>
+volk_32f_index_max_16u.h<br/>
+volk_32f_index_max_32u.h<br/>
+volk_32f_invsqrt_32f.h<br/>
+volk_32f_log2_32f.h<br/>
+volk_32f_null_32f.h<br/>
+volk_32f_s32f_32f_fm_detect_32f.h<br/>
+volk_32f_s32f_calc_spectral_noise_floor_32f.h<br/>
+volk_32f_s32f_convert_16i.h<br/>
+volk_32f_s32f_convert_32i.h<br/>
+volk_32f_s32f_convert_8i.h<br/>
+volk_32f_s32f_mod_rangepuppet_32f.h<br/>
+volk_32f_s32f_multiply_32f.h<br/>
+volk_32f_s32f_normalize.h<br/>
+volk_32f_s32f_power_32f.h<br/>
+volk_32f_s32f_s32f_mod_range_32f.h<br/>
+volk_32f_s32f_stddev_32f.h<br/>
+volk_32f_sin_32f.h<br/>
+volk_32f_sqrt_32f.h<br/>
+volk_32f_stddev_and_mean_32f_x2.h<br/>
+volk_32f_tan_32f.h<br/>
+volk_32f_tanh_32f.h<br/>
+volk_32f_x2_add_32f.h<br/>
+volk_32f_x2_divide_32f.h<br/>
+volk_32f_x2_dot_prod_16i.h<br/>
+volk_32f_x2_dot_prod_32f.h<br/>
+volk_32f_x2_fm_detectpuppet_32f.h<br/>
+volk_32f_x2_interleave_32fc.h<br/>
+volk_32f_x2_max_32f.h<br/>
+volk_32f_x2_min_32f.h<br/>
+volk_32f_x2_multiply_32f.h<br/>
+volk_32f_x2_pow_32f.h<br/>
+volk_32f_x2_s32f_interleave_16ic.h<br/>
+volk_32f_x2_subtract_32f.h<br/>
+volk_32f_x3_sum_of_poly_32f.h<br/>
+volk_32fc_32f_add_32fc.h<br/>
+volk_32fc_32f_dot_prod_32fc.h<br/>
+volk_32fc_32f_multiply_32fc.h<br/>
+volk_32fc_conjugate_32fc.h<br/>
+volk_32fc_convert_16ic.h<br/>
+volk_32fc_deinterleave_32f_x2.h<br/>
+volk_32fc_deinterleave_64f_x2.h<br/>
+volk_32fc_deinterleave_imag_32f.h<br/>
+volk_32fc_deinterleave_real_32f.h<br/>
+volk_32fc_deinterleave_real_64f.h<br/>
+volk_32fc_index_max_16u.h<br/>
+volk_32fc_index_max_32u.h<br/>
+volk_32fc_magnitude_32f.h<br/>
+volk_32fc_magnitude_squared_32f.h<br/>
+volk_32fc_s32f_atan2_32f.h<br/>
+volk_32fc_s32f_deinterleave_real_16i.h<br/>
+volk_32fc_s32f_magnitude_16i.h<br/>
+volk_32fc_s32f_power_32fc.h<br/>
+volk_32fc_s32f_power_spectrum_32f.h<br/>
+volk_32fc_s32f_x2_power_spectral_density_32f.h<br/>
+volk_32fc_s32fc_multiply_32fc.h<br/>
+volk_32fc_s32fc_rotatorpuppet_32fc.h<br/>
+volk_32fc_s32fc_x2_rotator_32fc.h<br/>
+volk_32fc_x2_add_32fc.h<br/>
+volk_32fc_x2_conjugate_dot_prod_32fc.h<br/>
+volk_32fc_x2_divide_32fc.h<br/>
+volk_32fc_x2_dot_prod_32fc.h<br/>
+volk_32fc_x2_multiply_32fc.h<br/>
+volk_32fc_x2_multiply_conjugate_32fc.h<br/>
+volk_32fc_x2_s32f_square_dist_scalar_mult_32f.h<br/>
+volk_32fc_x2_s32fc_multiply_conjugate_add_32fc.h<br/>
+volk_32fc_x2_square_dist_32f.h<br/>
+volk_32i_s32f_convert_32f.h<br/>
+volk_32i_x2_and_32i.h<br/>
+volk_32i_x2_or_32i.h<br/>
+volk_32u_byteswap.h<br/>
+volk_32u_byteswappuppet_32u.h<br/>
+volk_32u_popcnt.h<br/>
+volk_32u_popcntpuppet_32u.h<br/>
+volk_32u_reverse_32u.h<br/>
+volk_64f_convert_32f.h<br/>
+volk_64f_x2_add_64f.h<br/>
+volk_64f_x2_max_64f.h<br/>
+volk_64f_x2_min_64f.h<br/>
+volk_64f_x2_multiply_64f.h<br/>
+volk_64u_byteswap.h<br/>
+volk_64u_byteswappuppet_64u.h<br/>
+volk_64u_popcnt.h<br/>
+volk_64u_popcntpuppet_64u.h<br/>
+volk_8i_convert_16i.h<br/>
+volk_8i_s32f_convert_32f.h<br/>
+volk_8ic_deinterleave_16i_x2.h<br/>
+volk_8ic_deinterleave_real_16i.h<br/>
+volk_8ic_deinterleave_real_8i.h<br/>
+volk_8ic_s32f_deinterleave_32f_x2.h<br/>
+volk_8ic_s32f_deinterleave_real_32f.h<br/>
+volk_8ic_x2_multiply_conjugate_16ic.h<br/>
+volk_8ic_x2_s32f_multiply_conjugate_32fc.h<br/>
+volk_8u_conv_k7_r2puppet_8u.h<br/>
+volk_8u_x2_encodeframepolar_8u.h<br/>
+volk_8u_x3_encodepolar_8u_x2.h<br/>
+volk_8u_x3_encodepolarpuppet_8u.h<br/>
+volk_8u_x4_conv_k7_r2_8u.h<br/>
+volk_alloc.hh<br/>
+volk_avx2_intrinsics.h<br/>
+volk_avx_intrinsics.h<br/>
+volk_common.h<br/>
+volk_complex.h<br/>
+volk_config_fixed.h<br/>
+volk_cpu.h<br/>
+volk_malloc.h<br/>
+volk_neon_intrinsics.h<br/>
+volk_prefs.h<br/>
+volk_sse3_intrinsics.h<br/>
+volk_sse_intrinsics.h<br/>
+volk_typedefs.h<br/>
+volk_version.h<br/>
+</div>
+<br/><a class='top_ref' href='#Top'>to the top</a><br/>
+<a name='Libs'></a><h2>Libraries <span class='gray'>&nbsp;1&nbsp;</span></h2><hr/>
+<div class='lib_list'>
+libvolk.so.2.2<br/>
+</div>
+<br/><a class='top_ref' href='#Top'>to the top</a><br/>
+<br/><br/><br/></div><hr/>
+<div class='footer' align='right'><i>Generated by <a href='https://github.com/lvc/abi-compliance-checker'>ABI Compliance Checker</a> 2.3 &#160;</i>
+</div>
+<br/>
+
+</body></html>
diff --git a/changelog b/changelog
new file mode 100644 (file)
index 0000000..2553b1e
--- /dev/null
+++ b/changelog
@@ -0,0 +1,434 @@
+volk (2.2.1-2) unstable; urgency=medium
+
+  * update to v2.2.1-11-gfaf230e
+  * cmake: Remove the ORC from the VOLK public link interface
+  * Fix the broken index max kernels
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Fri, 27 Mar 2020 21:48:10 -0400
+
+volk (2.2.1-1) unstable; urgency=high
+
+  * New upstream bugfix release
+    reason for high urgency:
+    - Fix loop bound in AVX rotator (only one fixed in 2.2.0-3)
+    - Fix out-of-bounds read in AVX2 square dist kernel
+    - Fix length checks in AVX2 index max kernels
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Mon, 24 Feb 2020 18:08:05 -0500
+
+volk (2.2.0-3) unstable; urgency=high
+
+  * Update to v2.2.0-6-g5701f8f
+    reason for high urgency:
+    - Fix loop bound in AVX rotator
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Sun, 23 Feb 2020 23:49:18 -0500
+
+volk (2.2.0-2) unstable; urgency=medium
+
+  * Upload to unstable
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Tue, 18 Feb 2020 17:56:58 -0500
+
+volk (2.2.0-1) experimental; urgency=medium
+
+  * New upstream release
+    - Remove build dependency on python six
+    - Fixup VolkConfigVersion
+    - add volk_version.h
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Sun, 16 Feb 2020 18:25:20 -0500
+
+volk (2.1.0-2) unstable; urgency=medium
+
+  * Upload to unstable
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Sun, 05 Jan 2020 23:17:57 -0500
+
+volk (2.1.0-1) experimental; urgency=medium
+
+  * New upstream release
+    - The AVX FMA rotator bug is fixed
+    - VOLK offers `volk::vector<>` for C++ to follow RAII
+    - Use C++17 `std::filesystem`
+        - This enables VOLK to be built without Boost if available!
+    - lots of bugfixes
+    - more optimized kernels, especially more NEON versions
+  * Upload to experimental for new ABI library package libvolk2.1
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Sun, 22 Dec 2019 10:27:36 -0500
+
+volk (2.0.0-3) unstable; urgency=medium
+
+  * update to v2.0.0-4-gf04a46f
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Thu, 14 Nov 2019 22:47:23 -0500
+
+volk (2.0.0-2) unstable; urgency=medium
+
+  * Upload to unstable
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Mon, 12 Aug 2019 22:49:11 -0400
+
+volk (2.0.0-1) experimental; urgency=medium
+
+  * New upstream release
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Wed, 07 Aug 2019 23:31:20 -0400
+
+volk (1.4-4) unstable; urgency=medium
+
+  * working volk_modtool with Python 3
+  * build and install libvolk.a
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Mon, 29 Oct 2018 01:32:05 -0400
+
+volk (1.4-3) unstable; urgency=medium
+
+  * update to v1.4-9-g297fefd
+    Added an AVX protokernel for volk_32fc_x2_32f_square_dist_scalar_mult_32f
+    fixed a buffer over-read and over-write in
+     volk_32fc_x2_s32f_square_dist_scalar_mult_32f_a_avx
+    Fix 32u_reverse_32u for ARM
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Sat, 12 May 2018 15:25:04 -0400
+
+volk (1.4-2) unstable; urgency=medium
+
+  * Upload to unstable, needed by gnuradio (>= 3.7.12.0)
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Tue, 03 Apr 2018 01:03:19 -0400
+
+volk (1.4-1) experimental; urgency=medium
+
+  * New upstream release
+    upstream changelog http://libvolk.org/release-v14.html
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Tue, 27 Mar 2018 22:57:42 -0400
+
+volk (1.3.1-1) unstable; urgency=medium
+
+  * New upstream bugfix release
+  * Refresh all debian patches for use with git am
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Tue, 27 Mar 2018 21:54:29 -0400
+
+volk (1.3-3) unstable; urgency=medium
+
+  * update to v1.3-23-g0109b2e
+  * update debian/libvolk1-dev.abi.tar.gz.amd64
+  * Add breaks/replaces gnuradio (<=3.7.2.1) (LP: #1614235)
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Sun, 04 Feb 2018 13:12:21 -0500
+
+volk (1.3-2) unstable; urgency=medium
+
+  * update to v1.3-16-g28b03a9
+    apps: fix profile update reading end of lines
+    qa: lower tolerance for 32fc_mag to fix issue #96
+  * include upstream master patch to sort input files
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Sun, 27 Aug 2017 13:44:55 -0400
+
+volk (1.3-1) unstable; urgency=medium
+
+  * New upstream release
+  * The index_max kernels were named with the wrong output datatype. To
+    fix this there are new kernels that return a 32u (int32_t) and the
+    existing kernels had their signatures changed to return 16u (int16_t).
+  * The output to stdout and stderr has been shuffled around. There is no
+    longer a message that prints what VOLK machine is being used and the
+    warning messages go to stderr rather than stdout.
+  * The 32fc_index_max kernels previously were only accurate to the SSE
+    register width (4 points). This was a pretty serious and long-lived
+    bug that's been fixed and the QA updated appropriately.
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Sat, 02 Jul 2016 16:30:47 -0400
+
+volk (1.2.2-2) unstable; urgency=medium
+
+  * update to v1.2.2-11-g78c8bc4 (to follow gnuradio maint branch)
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Sun, 19 Jun 2016 14:44:15 -0400
+
+volk (1.2.2-1) unstable; urgency=medium
+
+  * New upstream release
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Fri, 08 Apr 2016 00:12:10 -0400
+
+volk (1.2.1-2) unstable; urgency=medium
+
+  * Upstream patches:
+    Fix some CMake complaints
+    The fix for compilation with cmake 3.5
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Wed, 23 Mar 2016 17:47:54 -0400
+
+volk (1.2.1-1) unstable; urgency=medium
+
+  * New upstream release
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Sun, 07 Feb 2016 19:38:32 -0500
+
+volk (1.2-1) unstable; urgency=medium
+
+  * New upstream release
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Thu, 24 Dec 2015 20:28:13 -0500
+
+volk (1.1.1-5) experimental; urgency=medium
+
+  * update to v1.1.1-22-gef53547 to support gnuradio 3.7.9
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Fri, 11 Dec 2015 13:12:55 -0500
+
+volk (1.1.1-4) unstable; urgency=medium
+
+  * more lintian fixes
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Wed, 25 Nov 2015 21:49:58 -0500
+
+volk (1.1.1-3) unstable; urgency=medium
+
+  * Lintian fixes Pre-Depends
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Thu, 19 Nov 2015 21:24:27 -0500
+
+volk (1.1.1-2) unstable; urgency=medium
+
+  * Note that libvolk1-dev replaces files in gnuradio-dev versions <<3.7.8
+    (Closes: #802646) again. Thanks Andreas Beckmann.
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Fri, 13 Nov 2015 18:45:49 -0500
+
+volk (1.1.1-1) unstable; urgency=medium
+
+  * New upstream release
+  * New architectures exist for the AVX2 and FMA ISAs.
+  * The profiler now generates buffers that are vlen + a tiny amount and
+    generates random data to fill buffers. This is intended to catch bugs
+    in protokernels that write beyond num_points.
+  * Note that libvolk1-dev replaces files in earlier gnuradio-dev versions
+    (Closes: #802646)
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Sun, 01 Nov 2015 18:45:43 -0500
+
+volk (1.1-4) unstable; urgency=medium
+
+  * update to v1.1-12-g264addc
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Tue, 29 Sep 2015 23:41:50 -0400
+
+volk (1.1-3) unstable; urgency=low
+
+  * drop dh_acc to get reproducible builds
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Fri, 11 Sep 2015 22:57:06 -0400
+
+volk (1.1-2) unstable; urgency=low
+
+  * use dh-acc
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Mon, 07 Sep 2015 15:45:20 -0400
+
+volk (1.1-1) unstable; urgency=medium
+
+  * re-organize package naming convention
+  * New upstream release tag v1.1
+  New architectures exist for the AVX2 and FMA ISAs. Along
+  with the build-system support the following kernels have
+  no proto-kernels taking advantage of these architectures:
+  
+  * 32f_x2_dot_prod_32f
+  * 32fc_x2_multiply_32fc
+  * 64_byteswap
+  * 32f_binary_slicer_8i
+  * 16u_byteswap
+  * 32u_byteswap
+  
+  QA/profiler
+  -----------
+  
+  The profiler now generates buffers that are vlen + a tiny
+  amount and generates random data to fill buffers. This is
+  intended to catch bugs in protokernels that write beyond
+  num_points.
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Wed, 26 Aug 2015 09:22:48 -0400
+
+volk (1.0.2-2) unstable; urgency=low
+
+  * Use SOURCE_DATE_EPOCH from the environment, if defined,
+    rather than current date and time to implement volk_build_date()
+    (embedding build date in a library does not help reproducible builds)
+  * add watch file
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Sat, 15 Aug 2015 17:43:15 -0400
+
+volk (1.0.2-1) unstable; urgency=medium
+
+  * Maintenance release 24 Jul 2015 by Nathan West
+  * The major change is the CMake logic to add ASM protokernels. Rather
+    than depending on CFLAGS and ASMFLAGS we use the results of VOLK's
+    built in has_ARCH tests. All configurations should work the same as
+    before, but manually specifying CFLAGS and ASMFLAGS on the cmake call
+    for ARM native builds should no longer be necessary.
+  * The 32fc_s32fc_x2_rotator_32fc generic protokernel now includes a
+    previously implied header.
+  * Finally, there is a fix to return the "best" protokernel to the
+    dispatcher when no volk_config exists. Thanks to Alexandre Raymond for
+    pointing this out.
+  * with maint branch patch:
+      kernels-add-missing-include-arm_neon.h
+  * removed unused build-dependency on liboil0.3-dev (closes: #793626)
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Wed, 05 Aug 2015 00:43:40 -0400
+
+volk (1.0.1-1) unstable; urgency=low
+
+  * Maintenance Release v1.0.1 08 Jul 2015 by Nathan West
+    This is a maintenance release with bug fixes since the initial release of
+    v1.0 in April.
+    
+  * Contributors
+   
+    The following authors have contributed code to this release:
+    
+    Doug Geiger doug.geiger@bioradiation.net
+    Elliot Briggs elliot.briggs@gmail.com
+    Marcus Mueller marcus@hostalia.de
+    Nathan West nathan.west@okstate.edu
+    Tom Rondeau tom@trondeau.com
+   
+  * Kernels
+   
+    Several bug fixes in different kernels. The NEON implementations of the
+    following kernels have been fixed:
+   
+      32f_x2_add_32f
+      32f_x2_dot_prod_32f
+      32fc_s32fc_multiply_32fc
+      32fc_x2_multiply_32fc
+   
+   Additionally the NEON asm based 32f_x2_add_32f protokernels were not being
+   used and are now included and available for use via the dispatcher.
+   
+   The 32f_s32f_x2_fm_detect_32f kernel now has a puppet. This solves QA seg
+   faults on 32-bit machines and provide a better test for this kernel.
+   
+   The 32fc_s32fc_x2_rotator_32fc generic protokernel replaced cabsf with
+   hypotf for better Android support.
+
+  * Building
+   
+    Static builds now trigger the applications (volk_profile and
+    volk-config-info) to be statically linked.
+    
+    The file gcc_x86_cpuid.h has been removed since it was no longer being
+    used. Previously it provided cpuid functionality for ancient compilers
+    that we do not support.
+    
+    All build types now use -Wall.
+
+  * QA and Testing
+   
+   The documentation around the --update option to volk_profile now makes it
+   clear that the option will only profile kernels without entries in
+   volk_profile. The signature of run_volk_tests with expanded args changed
+   signed types to unsigned types to reflect the actual input.
+   
+   The remaining changes are all non-functional changes to address issues
+   from Coverity.
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Fri, 10 Jul 2015 17:57:42 -0400
+
+volk (1.0-5) unstable; urgency=medium
+
+  * native-armv7-build-support skips neon on Debian armel (Closes: #789972)
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Sat, 04 Jul 2015 12:36:36 -0400
+
+volk (1.0-4) unstable; urgency=low
+
+  * update native-armv7-build-support patch from gnuradio volk package
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Thu, 25 Jun 2015 16:38:49 -0400
+
+volk (1.0-3) unstable; urgency=medium
+
+  * Add Breaks/Replaces (Closes: #789893, #789894)
+  * Allow failing tests
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Thu, 25 Jun 2015 12:46:06 -0400
+
+volk (1.0-2) unstable; urgency=medium
+
+  * kernels-add-missing-math.h-include-to-rotator
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Wed, 24 Jun 2015 21:09:32 -0400
+
+volk (1.0-1) unstable; urgency=low
+
+  * Initial package (Closes: #782417)
+  Initial Release 11 Apr 2015 by Nathan West
+  
+  VOLK 1.0 is available. This is the first release of VOLK as an independently
+  tracked sub-project of GNU Radio.
+
+  * Contributors
+  
+  VOLK has been tracked separately from GNU Radio since 2014 Dec 23.
+  Contributors between the split and the initial release are
+
+  Albert Holguin aholguin_77@yahoo.com
+  Doug Geiger doug.geiger@bioradiation.net
+  Elliot Briggs elliot.briggs@gmail.com
+  Julien Olivain julien.olivain@lsv.ens-cachan.fr
+  Michael Dickens michael.dickens@ettus.com
+  Nathan West nathan.west@okstate.edu
+  Tom Rondeau tom@trondeau.com
+  
+  * QA
+  
+  The test and profiler have significantly changed. The profiler supports
+  run-time changes to vlen and iters to help kernel development and provide
+  more flexibility on embedded systems. Additionally there is a new option
+  to update an existing volk_profile results file with only new kernels which
+  will save time when updating to newer versions of VOLK
+  
+  The QA system creates a static list of kernels and test cases. The QA
+  testing and profiler iterate over this static list rather than each source
+  file keeping its own list. The QA also emits XML results to
+  lib/.unittest/kernels.xml which is formatted similarly to JUnit results.
+  
+  * Modtool
+  
+  Modtool was updated to support the QA and profiler changes.
+
+  * Kernels
+  
+  New proto-kernels:
+  
+  16ic_deinterleave_real_8i_neon
+  16ic_s32f_deinterleave_32f_neon
+  fix preprocessor errors for some compilers on byteswap and popcount puppets
+  
+  ORC was moved to the asm kernels directory.
+  volk_malloc
+  
+  The posix_memalign implementation of Volk_malloc now falls back to a standard
+  malloc if alignment is 1.
+  
+  * Miscellaneous
+  
+  Several build system and cmake changes have made it possible to build VOLK
+  both independently with proper soname versions and in-tree for projects
+  such as GNU Radio.
+  
+  The static builds take advantage of cmake object libraries to speed up builds.
+  
+  Finally, there are a number of changes to satisfy compiler warnings and make
+  QA work on multiple machines.
+
+ -- A. Maitland Bottoms <bottoms@debian.org>  Sun, 12 Apr 2015 23:20:41 -0400
diff --git a/compat b/compat
new file mode 100644 (file)
index 0000000..48082f7
--- /dev/null
+++ b/compat
@@ -0,0 +1 @@
+12
diff --git a/control b/control
new file mode 100644 (file)
index 0000000..d53a4a2
--- /dev/null
+++ b/control
@@ -0,0 +1,80 @@
+
+Source: volk
+Section: libdevel
+Priority: optional
+Maintainer: A. Maitland Bottoms <bottoms@debian.org>
+Build-Depends: cmake,
+               debhelper (>= 12~),
+               dh-python,
+               liborc-0.4-dev,
+              python3-dev,
+              python3-mako
+Build-Depends-Indep: doxygen
+Standards-Version: 4.5.0
+Homepage: http://libvolk.org
+Vcs-Browser: https://salsa.debian.org/bottoms/pkg-volk
+Vcs-Git: https://salsa.debian.org/bottoms/pkg-volk.git
+
+Package: libvolk2.2
+Section: libs
+Architecture: any
+Pre-Depends: ${misc:Pre-Depends}
+Depends: ${misc:Depends}, ${shlibs:Depends}
+Multi-Arch: same
+Recommends: libvolk2-bin
+Suggests: libvolk2-dev
+Description: vector optimized functions
+ Vector-Optimized Library of Kernels is designed to help
+ applications work with the processor's SIMD instruction sets. These are
+ very powerful vector operations that can give signal processing a
+ huge boost in performance.
+
+Package: libvolk2-dev
+Architecture: any
+Pre-Depends: ${misc:Pre-Depends}
+Depends: libvolk2.2 (=${binary:Version}), ${misc:Depends}
+Breaks: gnuradio-dev (<<3.7.8), libvolk-dev, libvolk1.0-dev, libvolk1-dev
+Replaces: gnuradio-dev (<<3.7.8), libvolk-dev, libvolk1.0-dev, libvolk1-dev
+Suggests: libvolk2-doc
+Multi-Arch: same
+Description: vector optimized function headers
+ Vector-Optimized Library of Kernels is designed to help
+ applications work with the processor's SIMD instruction sets. These are
+ very powerful vector operations that can give signal processing a
+ huge boost in performance.
+ .
+ This package contains the header files.
+ For documentation, see libvolk-doc.
+
+Package: libvolk2-bin
+Section: libs
+Architecture: any
+Pre-Depends: ${misc:Pre-Depends}
+Depends: libvolk2.2 (=${binary:Version}),
+         ${misc:Depends},
+         ${python3:Depends},
+         ${shlibs:Depends}
+Breaks: libvolk1-bin, libvolk-bin, libvolk1.0-bin, gnuradio (<=3.7.2.1)
+Replaces: libvolk1-bin, libvolk-bin, libvolk1.0-bin, gnuradio (<=3.7.2.1)
+Description: vector optimized runtime tools
+ Vector-Optimized Library of Kernels is designed to help
+ applications work with the processor's SIMD instruction sets. These are
+ very powerful vector operations that can give signal processing a
+ huge boost in performance.
+ .
+ This package includes the volk_profile tool.
+
+Package: libvolk2-doc
+Section: doc
+Architecture: all
+Multi-Arch: foreign
+Depends: ${misc:Depends}
+Recommends: lynx | www-browser
+Description: vector optimized library documentation
+ Vector-Optimized Library of Kernels is designed to help
+ applications work with the processor's SIMD instruction sets. These are
+ very powerful vector operations that can give signal processing a
+ huge boost in performance.
+ .
+ This package includes the Doxygen generated documentation in
+ /usr/share/doc/libvolk2-dev/html/index.html
diff --git a/copyright b/copyright
new file mode 100644 (file)
index 0000000..0dc7d72
--- /dev/null
+++ b/copyright
@@ -0,0 +1,187 @@
+Format: https://www.debian.org/doc/packaging-manuals/copyright-format/1.0/
+Upstream-Name: volk
+Upstream-Contact: http://libvolk.org/
+Source:
+ https://github.com/gnuradio/volk
+Comment:
+ Debian packages by A. Maitland Bottoms <bottoms@debian.org>
+ git archive --format=tar --prefix=volk-2.1.0/  v2.1.0  | xz > ../volk_2.1.0.orig.tar.xz
+ .
+ Upstream Maintainers:
+  Johannes Demel <demel@uni-bremen.de>
+  Michael Dickens <michael.dickens@ettus.com>
+Copyright: 2014-2019 Free Software Foundation, Inc.
+License: GPL-3+
+
+Files: *
+Copyright: 2006, 2009-2020, Free Software Foundation, Inc.
+License: GPL-3+
+
+Files: Doxyfile.in
+  DoxygenLayout.xml
+  volk.pc.in
+Copyright: 2014-2020 Free Software Foundation, Inc.
+License: GPL-3+
+
+Files: apps/volk_profile.h
+Copyright: 2014-2020 Free Software Foundation, Inc.
+License: GPL-3+
+
+Files: appveyor.yml
+Copyright: 2016 Paul Cercueil <paul.cercueil@analog.com>
+License: GPL-3+
+
+Files: cmake/*
+Copyright: 2014-2020 Free Software Foundation, Inc.
+License: GPL-3+
+
+Files: cmake/Modules/*
+Copyright: 2006, 2009-2020, Free Software Foundation, Inc.
+License: GPL-3+
+
+Files: cmake/Modules/CMakeParseArgumentsCopy.cmake
+Copyright: 2010 Alexander Neundorf <neundorf@kde.org>
+License: Kitware-BSD
+ All rights reserved.
+ .
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions
+ are met:
+ .
+ * Redistributions of source code must retain the above copyright
+   notice, this list of conditions and the following disclaimer.
+ .
+ * Redistributions in binary form must reproduce the above copyright
+   notice, this list of conditions and the following disclaimer in the
+   documentation and/or other materials provided with the distribution.
+ .
+ * Neither the names of Kitware, Inc., the Insight Software Consortium,
+   nor the names of their contributors may be used to endorse or promote
+   products derived from this software without specific prior written
+   permission.
+ .
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+Files: cmake/Modules/FindORC.cmake
+  cmake/Modules/VolkConfig.cmake.in
+Copyright: 2014-2015 Free Software Foundation, Inc.
+License: GPL-3+
+
+Files: cmake/msvc/*
+Copyright: 2006-2008, Alexander Chemeris
+License: BSD-2-clause
+ Redistribution and use in source and binary forms, with or without
+ modification, are permitted provided that the following conditions are met:
+ .
+   1. Redistributions of source code must retain the above copyright notice,
+      this list of conditions and the following disclaimer.
+ .
+   2. Redistributions in binary form must reproduce the above copyright
+      notice, this list of conditions and the following disclaimer in the
+      documentation and/or other materials provided with the distribution.
+ .
+   3. The name of the author may be used to endorse or promote products
+      derived from this software without specific prior written permission.
+ .
+ THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
+ WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
+ MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
+ EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
+ OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
+ OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
+ ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+Files: cmake/msvc/config.h
+Copyright: 2005, 2006 Apple Computer, Inc.
+License: LGPL-2+
+
+Files: cmake/msvc/stdbool.h
+Copyright: 2005, 2006, Apple Computer, Inc.
+License: LGPL-2+
+
+Files: debian/*
+Copyright: 2015-2020 Free Software Foundation, Inc
+License: GPL-3+
+Comment: assigned by A. Maitland Bottoms <bottoms@debian.org>
+
+Files: debian/libvolk2-dev.abi.tar.gz.amd64
+Copyright: 2019 Free Software Foundation, Inc
+License: GPL-3+
+
+Files: docs/*
+Copyright: 2014-2015 Free Software Foundation, Inc.
+License: GPL-3+
+
+Files: gen/archs.xml
+  gen/machines.xml
+Copyright: 2014-2015 Free Software Foundation, Inc.
+License: GPL-3+
+
+Files: include/volk/volk_common.h
+  include/volk/volk_complex.h
+  include/volk/volk_prefs.h
+Copyright: 2014-2015 Free Software Foundation, Inc.
+License: GPL-3+
+
+Files: kernels/volk/asm/*
+Copyright: 2014-2015 Free Software Foundation, Inc.
+License: GPL-3+
+
+Files: kernels/volk/volk_16u_byteswappuppet_16u.h
+  kernels/volk/volk_32u_byteswappuppet_32u.h
+  kernels/volk/volk_64u_byteswappuppet_64u.h
+Copyright: 2014-2015 Free Software Foundation, Inc.
+License: GPL-3+
+
+Files: lib/kernel_tests.h
+  lib/qa_utils.cc
+  lib/qa_utils.h
+  lib/volk_prefs.c
+Copyright: 2014-2015 Free Software Foundation, Inc.
+License: GPL-3+
+
+License: LGPL-2+
+ This library is free software; you can redistribute it and/or
+ modify it under the terms of the GNU Library General Public
+ License as published by the Free Software Foundation; either
+ version 2 of the License, or (at your option) any later version.
+ .
+ This library is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ Library General Public License for more details.
+ .
+ You should have received a copy of the GNU Library General Public License
+ along with this library; see the file COPYING.LIB.  If not, write to
+ the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
+ Boston, MA 02110-1301, USA.
+
+License: GPL-3+
+ This program is free software: you can redistribute it and/or modify
+ it under the terms of the GNU General Public License as published by
+ the Free Software Foundation; either version 3 of the License, or
+ (at your option) any later version.
+ .
+ This program is distributed in the hope that it will be useful,
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ GNU General Public License for more details.
+ .
+ You should have received a copy of the GNU General Public License
+ along with this program.  If not, see <http://www.gnu.org/licenses/>.
+ .
+ On Debian systems, the complete text of the GNU General
+ Public License version 3 can be found in "/usr/share/common-licenses/GPL-3".
diff --git a/libvolk2-bin.install b/libvolk2-bin.install
new file mode 100644 (file)
index 0000000..7221b71
--- /dev/null
@@ -0,0 +1,2 @@
+usr/bin/volk*
+usr/lib/python3/dist-packages
diff --git a/libvolk2-bin.manpages b/libvolk2-bin.manpages
new file mode 100644 (file)
index 0000000..95bae9e
--- /dev/null
@@ -0,0 +1,3 @@
+debian/volk-config-info.1
+debian/volk_modtool.1
+debian/volk_profile.1
diff --git a/libvolk2-dev.abi.tar.gz.amd64 b/libvolk2-dev.abi.tar.gz.amd64
new file mode 100644 (file)
index 0000000..ff8acb1
Binary files /dev/null and b/libvolk2-dev.abi.tar.gz.amd64 differ
diff --git a/libvolk2-dev.acc b/libvolk2-dev.acc
new file mode 100644 (file)
index 0000000..37f5a79
--- /dev/null
@@ -0,0 +1,50 @@
+<?xml version="1.0" encoding="utf-8"?>
+<descriptor>
+
+  <gcc_options>
+    -DHAVE_CPUID_H
+    -DHAVE_DLFCN_H
+    -DHAVE_FENV_H
+    -DHAVE_POSIX_MEMALIGN
+    -DHAVE_XGETBV
+    -D_GLIBCXX_USE_CXX11_ABI=1
+    -I/usr/include/orc-0.4
+    -DNDEBUG
+    -std=gnu11
+    -m64
+    -mmmx
+    -msse
+    -msse2
+    -msse3
+    -mssse3
+    -msse4.1
+    -msse4.2
+    -mpopcnt
+    -mavx
+    -mfma
+    -mavx2
+    -mavx512f
+    -mavx512cd
+    -fPIC
+    -g
+    -O2
+    -fstack-protector-strong
+    -Wformat
+    -Werror=format-security
+    -Wdate-time
+    -D_FORTIFY_SOURCE=2
+    -fvisibility=hidden
+    -Wsign-compare
+    -Wall
+    -Wno-uninitialized
+</gcc_options>
+
+<headers>
+debian/libvolk2-dev/usr/include/volk/
+</headers>
+
+<libs>
+debian/libvolk2.0/usr/lib/
+</libs>
+
+</descriptor>
diff --git a/libvolk2-dev.docs b/libvolk2-dev.docs
new file mode 100644 (file)
index 0000000..47699cc
--- /dev/null
@@ -0,0 +1,3 @@
+debian/1.3_to_1.4_compat_report.html
+debian/1.4_to_2.0_compat_report.html
+debian/2.2.0_to_2.2.1_compat_report.html
diff --git a/libvolk2-dev.install b/libvolk2-dev.install
new file mode 100644 (file)
index 0000000..8b14c56
--- /dev/null
@@ -0,0 +1,5 @@
+usr/include/*
+usr/lib/*/*volk.a
+usr/lib/*/*volk*so
+usr/lib/*/cmake/volk
+usr/lib/*/pkgconfig/*volk*
diff --git a/libvolk2-doc.doc-base b/libvolk2-doc.doc-base
new file mode 100644 (file)
index 0000000..3d5fdc8
--- /dev/null
@@ -0,0 +1,19 @@
+Document: libvolk2-doc
+Title: Vector-Optimized Library of Kernels Reference Manual
+Author: GNU Radio Developers
+Abstract: VOLK is the Vector-Optimized Library of Kernels.
+ It is a library that contains kernels of hand-written SIMD code for
+ different mathematical operations. Since each SIMD architecture can
+ be very different and no compiler has yet come along to handle
+ vectorization properly or highly efficiently, VOLK approaches the
+ problem differently. For each architecture or platform that a
+ developer wishes to vectorize for, a new proto-kernel is added to
+ VOLK. At runtime, VOLK will select the correct proto-kernel. In this
+ way, the users of VOLK call a kernel for performing the operation
+ that is platform/architecture agnostic. This allows us to write
+ portable SIMD code.
+Section: Programming/C++
+
+Format: HTML
+Index: /usr/share/doc/libvolk2-dev/html/index.html
+Files: /usr/share/doc/libvolk2-dev/html/*.html
diff --git a/libvolk2-doc.docs b/libvolk2-doc.docs
new file mode 100644 (file)
index 0000000..87dd314
--- /dev/null
@@ -0,0 +1 @@
+obj-*/html
diff --git a/libvolk2.2.install b/libvolk2.2.install
new file mode 100644 (file)
index 0000000..e4252f4
--- /dev/null
@@ -0,0 +1 @@
+usr/lib/*/libvolk.so.*
diff --git a/patches/0001-volk-accurate-exp-kernel.patch b/patches/0001-volk-accurate-exp-kernel.patch
new file mode 100644 (file)
index 0000000..53df58a
--- /dev/null
@@ -0,0 +1,333 @@
+From 9b5abaa62ce3b5d5379899d30afe1964eb63d86d Mon Sep 17 00:00:00 2001
+From: Tom Rondeau <tom@trondeau.com>
+Date: Tue, 7 Apr 2015 14:37:28 -0400
+Subject: [PATCH 1/7] volk: accurate exp kernel.
+
+A more accurate exp VOLK kernel than volk_32f_expfast_32f.Taken from
+code licensed with zlib.
+---
+ kernels/volk/volk_32f_exp_32f.h | 298 ++++++++++++++++++++++++++++++++
+ lib/kernel_tests.h              |   2 +
+ 2 files changed, 300 insertions(+)
+ create mode 100644 kernels/volk/volk_32f_exp_32f.h
+
+diff --git a/kernels/volk/volk_32f_exp_32f.h b/kernels/volk/volk_32f_exp_32f.h
+new file mode 100644
+index 0000000..19c3d9d
+--- /dev/null
++++ b/kernels/volk/volk_32f_exp_32f.h
+@@ -0,0 +1,298 @@
++/* -*- c++ -*- */
++/*
++ * Copyright 2015-2020 Free Software Foundation, Inc.
++ *
++ * This file is part of GNU Radio
++ *
++ * GNU Radio is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 3, or (at your option)
++ * any later version.
++ *
++ * GNU Radio is distributed in the hope that it will be useful,
++ * but WITHOUT ANY WARRANTY; without even the implied warranty of
++ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
++ * GNU General Public License for more details.
++ *
++ * You should have received a copy of the GNU General Public License
++ * along with GNU Radio; see the file COPYING.  If not, write to
++ * the Free Software Foundation, Inc., 51 Franklin Street,
++ * Boston, MA 02110-1301, USA.
++ */
++
++/* SIMD (SSE4) implementation of exp
++   Inspired by Intel Approximate Math library, and based on the
++   corresponding algorithms of the cephes math library
++*/
++
++/* Copyright (C) 2007  Julien Pommier
++
++  This software is provided 'as-is', without any express or implied
++  warranty.  In no event will the authors be held liable for any damages
++  arising from the use of this software.
++
++  Permission is granted to anyone to use this software for any purpose,
++  including commercial applications, and to alter it and redistribute it
++  freely, subject to the following restrictions:
++
++  1. The origin of this software must not be misrepresented; you must not
++     claim that you wrote the original software. If you use this software
++     in a product, an acknowledgment in the product documentation would be
++     appreciated but is not required.
++  2. Altered source versions must be plainly marked as such, and must not be
++     misrepresented as being the original software.
++  3. This notice may not be removed or altered from any source distribution.
++
++  (this is the zlib license)
++*/
++
++/*!
++ * \page volk_32f_exp_32f
++ *
++ * \b Overview
++ *
++ * Computes exponential of input vector and stores results in output vector.
++ *
++ * <b>Dispatcher Prototype</b>
++ * \code
++ * void volk_32f_exp_32f(float* bVector, const float* aVector, unsigned int num_points)
++ * \endcode
++ *
++ * \b Inputs
++ * \li aVector: The input vector of floats.
++ * \li num_points: The number of data points.
++ *
++ * \b Outputs
++ * \li bVector: The vector where results will be stored.
++ *
++ * \b Example
++ * \code
++ *   int N = 10;
++ *   unsigned int alignment = volk_get_alignment();
++ *   float* in = (float*)volk_malloc(sizeof(float)*N, alignment);
++ *   float* out = (float*)volk_malloc(sizeof(float)*N, alignment);
++ *
++ *   in[0] = 0;
++ *   in[1] = 0.5;
++ *   in[2] = std::sqrt(2.f)/2.f;
++ *   in[3] = std::sqrt(3.f)/2.f;
++ *   in[4] = in[5] = 1;
++ *   for(unsigned int ii = 6; ii < N; ++ii){
++ *       in[ii] = - in[N-ii-1];
++ *   }
++ *
++ *   volk_32f_exp_32f(out, in, N);
++ *
++ *   for(unsigned int ii = 0; ii < N; ++ii){
++ *       printf("exp(%1.3f) = %1.3f\n", in[ii], out[ii]);
++ *   }
++ *
++ *   volk_free(in);
++ *   volk_free(out);
++ * \endcode
++ */
++
++#include <stdio.h>
++#include <math.h>
++#include <inttypes.h>
++
++#ifndef INCLUDED_volk_32f_exp_32f_a_H
++#define INCLUDED_volk_32f_exp_32f_a_H
++
++#ifdef LV_HAVE_SSE4_1
++#include <smmintrin.h>
++
++static inline void
++volk_32f_exp_32f_a_sse4_1(float* bVector, const float* aVector, unsigned int num_points)
++{
++  float* bPtr = bVector;
++  const float* aPtr = aVector;
++
++  unsigned int number = 0;
++  unsigned int quarterPoints = num_points / 4;
++
++  // Declare variables and constants
++  __m128 aVal, bVal, tmp, fx, mask, pow2n, z, y;
++  __m128 one, exp_hi, exp_lo, log2EF, half, exp_C1, exp_C2;
++  __m128 exp_p0, exp_p1, exp_p2, exp_p3, exp_p4, exp_p5;
++  __m128i emm0, pi32_0x7f;
++
++  one = _mm_set1_ps(1.0);
++  exp_hi = _mm_set1_ps(88.3762626647949);
++  exp_lo = _mm_set1_ps(-88.3762626647949);
++  log2EF = _mm_set1_ps(1.44269504088896341);
++  half = _mm_set1_ps(0.5);
++  exp_C1 = _mm_set1_ps(0.693359375);
++  exp_C2 = _mm_set1_ps(-2.12194440e-4);
++  pi32_0x7f = _mm_set1_epi32(0x7f);
++
++  exp_p0 = _mm_set1_ps(1.9875691500e-4);
++  exp_p1 = _mm_set1_ps(1.3981999507e-3);
++  exp_p2 = _mm_set1_ps(8.3334519073e-3);
++  exp_p3 = _mm_set1_ps(4.1665795894e-2);
++  exp_p4 = _mm_set1_ps(1.6666665459e-1);
++  exp_p5 = _mm_set1_ps(5.0000001201e-1);
++
++  for(;number < quarterPoints; number++) {
++    aVal = _mm_load_ps(aPtr);
++    tmp = _mm_setzero_ps();
++
++    aVal = _mm_max_ps(_mm_min_ps(aVal, exp_hi), exp_lo);
++
++    /* express exp(x) as exp(g + n*log(2)) */
++    fx = _mm_add_ps(_mm_mul_ps(aVal, log2EF), half);
++
++    emm0 = _mm_cvttps_epi32(fx);
++    tmp = _mm_cvtepi32_ps(emm0);
++
++    mask = _mm_and_ps(_mm_cmpgt_ps(tmp, fx), one);
++    fx = _mm_sub_ps(tmp, mask);
++
++    tmp = _mm_mul_ps(fx, exp_C1);
++    z = _mm_mul_ps(fx, exp_C2);
++    aVal = _mm_sub_ps(_mm_sub_ps(aVal, tmp), z);
++    z = _mm_mul_ps(aVal, aVal);
++
++    y = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(exp_p0, aVal), exp_p1), aVal);
++    y = _mm_add_ps(_mm_mul_ps(_mm_add_ps(y, exp_p2), aVal), exp_p3);
++    y = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(y, aVal), exp_p4), aVal);
++    y = _mm_add_ps(_mm_mul_ps(_mm_add_ps(y, exp_p5), z), aVal);
++    y = _mm_add_ps(y, one);
++
++    emm0 = _mm_slli_epi32(_mm_add_epi32(_mm_cvttps_epi32(fx), pi32_0x7f), 23);
++
++    pow2n = _mm_castsi128_ps(emm0);
++    bVal = _mm_mul_ps(y, pow2n);
++
++    _mm_store_ps(bPtr, bVal);
++    aPtr += 4;
++    bPtr += 4;
++  }
++
++  number = quarterPoints * 4;
++  for(;number < num_points; number++) {
++    *bPtr++ = expf(*aPtr++);
++  }
++}
++
++#endif /* LV_HAVE_SSE4_1 for aligned */
++
++
++#ifdef LV_HAVE_GENERIC
++
++static inline void
++volk_32f_exp_32f_a_generic(float* bVector, const float* aVector, unsigned int num_points)
++{
++  float* bPtr = bVector;
++  const float* aPtr = aVector;
++  unsigned int number = 0;
++
++  for(number = 0; number < num_points; number++) {
++    *bPtr++ = expf(*aPtr++);
++  }
++}
++
++#endif /* LV_HAVE_GENERIC */
++
++#endif /* INCLUDED_volk_32f_exp_32f_a_H */
++
++#ifndef INCLUDED_volk_32f_exp_32f_u_H
++#define INCLUDED_volk_32f_exp_32f_u_H
++
++#ifdef LV_HAVE_SSE4_1
++#include <smmintrin.h>
++
++static inline void
++volk_32f_exp_32f_u_sse4_1(float* bVector, const float* aVector, unsigned int num_points)
++{
++  float* bPtr = bVector;
++  const float* aPtr = aVector;
++
++  unsigned int number = 0;
++  unsigned int quarterPoints = num_points / 4;
++
++  // Declare variables and constants
++  __m128 aVal, bVal, tmp, fx, mask, pow2n, z, y;
++  __m128 one, exp_hi, exp_lo, log2EF, half, exp_C1, exp_C2;
++  __m128 exp_p0, exp_p1, exp_p2, exp_p3, exp_p4, exp_p5;
++  __m128i emm0, pi32_0x7f;
++
++  one = _mm_set1_ps(1.0);
++  exp_hi = _mm_set1_ps(88.3762626647949);
++  exp_lo = _mm_set1_ps(-88.3762626647949);
++  log2EF = _mm_set1_ps(1.44269504088896341);
++  half = _mm_set1_ps(0.5);
++  exp_C1 = _mm_set1_ps(0.693359375);
++  exp_C2 = _mm_set1_ps(-2.12194440e-4);
++  pi32_0x7f = _mm_set1_epi32(0x7f);
++
++  exp_p0 = _mm_set1_ps(1.9875691500e-4);
++  exp_p1 = _mm_set1_ps(1.3981999507e-3);
++  exp_p2 = _mm_set1_ps(8.3334519073e-3);
++  exp_p3 = _mm_set1_ps(4.1665795894e-2);
++  exp_p4 = _mm_set1_ps(1.6666665459e-1);
++  exp_p5 = _mm_set1_ps(5.0000001201e-1);
++
++
++  for(;number < quarterPoints; number++) {
++    aVal = _mm_loadu_ps(aPtr);
++    tmp = _mm_setzero_ps();
++
++    aVal = _mm_max_ps(_mm_min_ps(aVal, exp_hi), exp_lo);
++
++    /* express exp(x) as exp(g + n*log(2)) */
++    fx = _mm_add_ps(_mm_mul_ps(aVal, log2EF), half);
++
++    emm0 = _mm_cvttps_epi32(fx);
++    tmp = _mm_cvtepi32_ps(emm0);
++
++    mask = _mm_and_ps(_mm_cmpgt_ps(tmp, fx), one);
++    fx = _mm_sub_ps(tmp, mask);
++
++    tmp = _mm_mul_ps(fx, exp_C1);
++    z = _mm_mul_ps(fx, exp_C2);
++    aVal = _mm_sub_ps(_mm_sub_ps(aVal, tmp), z);
++    z = _mm_mul_ps(aVal, aVal);
++
++    y = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(exp_p0, aVal), exp_p1), aVal);
++    y = _mm_add_ps(_mm_mul_ps(_mm_add_ps(y, exp_p2), aVal), exp_p3);
++    y = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(y, aVal), exp_p4), aVal);
++    y = _mm_add_ps(_mm_mul_ps(_mm_add_ps(y, exp_p5), z), aVal);
++    y = _mm_add_ps(y, one);
++
++    emm0 = _mm_slli_epi32(_mm_add_epi32(_mm_cvttps_epi32(fx), pi32_0x7f), 23);
++
++    pow2n = _mm_castsi128_ps(emm0);
++    bVal = _mm_mul_ps(y, pow2n);
++
++    _mm_storeu_ps(bPtr, bVal);
++    aPtr += 4;
++    bPtr += 4;
++  }
++
++  number = quarterPoints * 4;
++  for(;number < num_points; number++){
++    *bPtr++ = expf(*aPtr++);
++  }
++}
++
++#endif /* LV_HAVE_SSE4_1 for unaligned */
++
++
++#ifdef LV_HAVE_GENERIC
++
++static inline void
++volk_32f_exp_32f_u_generic(float* bVector, const float* aVector, unsigned int num_points)
++{
++  float* bPtr = bVector;
++  const float* aPtr = aVector;
++  unsigned int number = 0;
++
++  for(number = 0; number < num_points; number++){
++    *bPtr++ = expf(*aPtr++);
++  }
++}
++
++#endif /* LV_HAVE_GENERIC */
++
++#endif /* INCLUDED_volk_32f_exp_32f_u_H */
+diff --git a/lib/kernel_tests.h b/lib/kernel_tests.h
+index c009c3f..8552488 100644
+--- a/lib/kernel_tests.h
++++ b/lib/kernel_tests.h
+@@ -144,6 +144,8 @@ std::vector<volk_test_case_t> init_test_list(volk_test_params_t test_params)
+     QA(VOLK_INIT_TEST(volk_32fc_x2_s32fc_multiply_conjugate_add_32fc, test_params))
+     QA(VOLK_INIT_PUPP(volk_8u_x3_encodepolarpuppet_8u, volk_8u_x3_encodepolar_8u_x2, test_params))
+     QA(VOLK_INIT_PUPP(volk_32f_8u_polarbutterflypuppet_32f, volk_32f_8u_polarbutterfly_32f, test_params))
++    QA(VOLK_INIT_TEST(volk_32f_exp_32f,                               test_params))
++
+     // no one uses these, so don't test them
+     //VOLK_PROFILE(volk_16i_x5_add_quad_16i_x4, 1e-4, 2046, 10000, &results, benchmark_mode, kernel_regex);
+     //VOLK_PROFILE(volk_16i_branch_4_state_8, 1e-4, 2046, 10000, &results, benchmark_mode, kernel_regex);
+-- 
+2.20.1
+
diff --git a/patches/0002-exp-Rename-SSE4.1-to-SSE2-kernel.patch b/patches/0002-exp-Rename-SSE4.1-to-SSE2-kernel.patch
new file mode 100644 (file)
index 0000000..94d3281
--- /dev/null
@@ -0,0 +1,66 @@
+From 52bfb2f049b534aca5b6d3e7475c9b2dd97c55a3 Mon Sep 17 00:00:00 2001
+From: Johannes Demel <demel@uni-bremen.de>
+Date: Tue, 17 Mar 2020 21:20:51 +0100
+Subject: [PATCH 2/7] exp: Rename SSE4.1 to SSE2 kernel
+
+The SSE kernel only requires SSE2 instructions. Thus, we can just use
+this instruction level.
+---
+ kernels/volk/volk_32f_exp_32f.h | 16 ++++++++--------
+ 1 file changed, 8 insertions(+), 8 deletions(-)
+
+diff --git a/kernels/volk/volk_32f_exp_32f.h b/kernels/volk/volk_32f_exp_32f.h
+index 19c3d9d..26fdf02 100644
+--- a/kernels/volk/volk_32f_exp_32f.h
++++ b/kernels/volk/volk_32f_exp_32f.h
+@@ -99,11 +99,11 @@
+ #ifndef INCLUDED_volk_32f_exp_32f_a_H
+ #define INCLUDED_volk_32f_exp_32f_a_H
+-#ifdef LV_HAVE_SSE4_1
+-#include <smmintrin.h>
++#ifdef LV_HAVE_SSE2
++#include <emmintrin.h>
+ static inline void
+-volk_32f_exp_32f_a_sse4_1(float* bVector, const float* aVector, unsigned int num_points)
++volk_32f_exp_32f_a_sse2(float* bVector, const float* aVector, unsigned int num_points)
+ {
+   float* bPtr = bVector;
+   const float* aPtr = aVector;
+@@ -175,7 +175,7 @@ volk_32f_exp_32f_a_sse4_1(float* bVector, const float* aVector, unsigned int num
+   }
+ }
+-#endif /* LV_HAVE_SSE4_1 for aligned */
++#endif /* LV_HAVE_SSE2 for aligned */
+ #ifdef LV_HAVE_GENERIC
+@@ -199,11 +199,11 @@ volk_32f_exp_32f_a_generic(float* bVector, const float* aVector, unsigned int nu
+ #ifndef INCLUDED_volk_32f_exp_32f_u_H
+ #define INCLUDED_volk_32f_exp_32f_u_H
+-#ifdef LV_HAVE_SSE4_1
+-#include <smmintrin.h>
++#ifdef LV_HAVE_SSE2
++#include <emmintrin.h>
+ static inline void
+-volk_32f_exp_32f_u_sse4_1(float* bVector, const float* aVector, unsigned int num_points)
++volk_32f_exp_32f_u_sse2(float* bVector, const float* aVector, unsigned int num_points)
+ {
+   float* bPtr = bVector;
+   const float* aPtr = aVector;
+@@ -276,7 +276,7 @@ volk_32f_exp_32f_u_sse4_1(float* bVector, const float* aVector, unsigned int num
+   }
+ }
+-#endif /* LV_HAVE_SSE4_1 for unaligned */
++#endif /* LV_HAVE_SSE2 for unaligned */
+ #ifdef LV_HAVE_GENERIC
+-- 
+2.20.1
+
diff --git a/patches/0003-clang-format-Apply-clang-format.patch b/patches/0003-clang-format-Apply-clang-format.patch
new file mode 100644 (file)
index 0000000..1873202
--- /dev/null
@@ -0,0 +1,74061 @@
+From 092a59997a1e1d5f421a0a5f87ee655ad173b93f Mon Sep 17 00:00:00 2001
+From: Johannes Demel <demel@uni-bremen.de>
+Date: Sun, 23 Feb 2020 15:03:47 +0100
+Subject: [PATCH 3/7] clang-format: Apply clang-format
+
+This commit adds `.clang-format` from GNU Radio and apply clang-format.
+
+Run:
+`find . -regex '.*\.\(c\|cc\|cpp\|cxx\|h\|hh\)' -exec clang-format \
+-style=file -i {} \;`
+in `.`.
+---
+ .clang-format                                 |  106 ++
+ apps/volk-config-info.cc                      |   77 +-
+ apps/volk_option_helpers.cc                   |  268 +--
+ apps/volk_option_helpers.h                    |   84 +-
+ apps/volk_profile.cc                          |  205 ++-
+ apps/volk_profile.h                           |   20 +-
+ cmake/msvc/config.h                           |   27 +-
+ cmake/msvc/sys/time.h                         |   77 +-
+ include/volk/saturation_arithmetic.h          |   16 +-
+ include/volk/volk_alloc.hh                    |   42 +-
+ include/volk/volk_avx2_intrinsics.h           |  114 +-
+ include/volk/volk_avx_intrinsics.h            |  193 +-
+ include/volk/volk_common.h                    |  148 +-
+ include/volk/volk_complex.h                   |   41 +-
+ include/volk/volk_malloc.h                    |   12 +-
+ include/volk/volk_neon_intrinsics.h           |  115 +-
+ include/volk/volk_prefs.h                     |   17 +-
+ include/volk/volk_sse3_intrinsics.h           |   79 +-
+ include/volk/volk_sse_intrinsics.h            |   53 +-
+ kernels/volk/volk_16i_32fc_dot_prod_32fc.h    | 1118 ++++++------
+ kernels/volk/volk_16i_branch_4_state_8.h      |  219 ++-
+ kernels/volk/volk_16i_convert_8i.h            |  301 ++--
+ kernels/volk/volk_16i_max_star_16i.h          |  158 +-
+ .../volk/volk_16i_max_star_horizontal_16i.h   |  214 +--
+ .../volk/volk_16i_permute_and_scalar_add.h    |  187 +-
+ kernels/volk/volk_16i_s32f_convert_32f.h      |  609 +++----
+ kernels/volk/volk_16i_x4_quad_max_star_16i.h  |  357 ++--
+ kernels/volk/volk_16i_x5_add_quad_16i_x4.h    |  336 ++--
+ kernels/volk/volk_16ic_convert_32fc.h         |  241 +--
+ kernels/volk/volk_16ic_deinterleave_16i_x2.h  |  431 +++--
+ .../volk/volk_16ic_deinterleave_real_16i.h    |  397 +++--
+ kernels/volk/volk_16ic_deinterleave_real_8i.h |  469 +++--
+ kernels/volk/volk_16ic_magnitude_16i.h        |  506 +++---
+ .../volk/volk_16ic_s32f_deinterleave_32f_x2.h |  418 ++---
+ .../volk_16ic_s32f_deinterleave_real_32f.h    |  372 ++--
+ kernels/volk/volk_16ic_s32f_magnitude_32f.h   |  381 ++--
+ kernels/volk/volk_16ic_x2_dot_prod_16ic.h     |  750 ++++----
+ kernels/volk/volk_16ic_x2_multiply_16ic.h     |  504 ++++--
+ kernels/volk/volk_16u_byteswap.h              |  378 ++--
+ kernels/volk/volk_16u_byteswappuppet_16u.h    |   44 +-
+ kernels/volk/volk_32f_64f_add_64f.h           |  270 +--
+ kernels/volk/volk_32f_64f_multiply_64f.h      |  154 +-
+ kernels/volk/volk_32f_8u_polarbutterfly_32f.h |  478 ++---
+ .../volk_32f_8u_polarbutterflypuppet_32f.h    |  155 +-
+ kernels/volk/volk_32f_accumulator_s32f.h      |  287 +--
+ kernels/volk/volk_32f_acos_32f.h              |  700 ++++----
+ kernels/volk/volk_32f_asin_32f.h              |  647 +++----
+ kernels/volk/volk_32f_atan_32f.h              |  625 +++----
+ kernels/volk/volk_32f_binary_slicer_32i.h     |  259 +--
+ kernels/volk/volk_32f_binary_slicer_8i.h      |  706 ++++----
+ kernels/volk/volk_32f_convert_64f.h           |  214 ++-
+ kernels/volk/volk_32f_cos_32f.h               | 1159 ++++++------
+ kernels/volk/volk_32f_expfast_32f.h           |  347 ++--
+ kernels/volk/volk_32f_index_max_16u.h         |  370 ++--
+ kernels/volk/volk_32f_index_max_32u.h         |  770 ++++----
+ kernels/volk/volk_32f_invsqrt_32f.h           |  189 +-
+ kernels/volk/volk_32f_log2_32f.h              |  719 +++++---
+ kernels/volk/volk_32f_null_32f.h              |   16 +-
+ .../volk/volk_32f_s32f_32f_fm_detect_32f.h    |  457 ++---
+ ...k_32f_s32f_calc_spectral_noise_floor_32f.h |  683 +++----
+ kernels/volk/volk_32f_s32f_convert_16i.h      |  815 ++++-----
+ kernels/volk/volk_32f_s32f_convert_32i.h      |  579 +++---
+ kernels/volk/volk_32f_s32f_convert_8i.h       |  642 +++----
+ .../volk/volk_32f_s32f_mod_rangepuppet_32f.h  |   63 +-
+ kernels/volk/volk_32f_s32f_multiply_32f.h     |  271 +--
+ kernels/volk/volk_32f_s32f_normalize.h        |  150 +-
+ kernels/volk/volk_32f_s32f_power_32f.h        |  166 +-
+ .../volk/volk_32f_s32f_s32f_mod_range_32f.h   |  718 ++++----
+ kernels/volk/volk_32f_s32f_stddev_32f.h       |  449 ++---
+ kernels/volk/volk_32f_sin_32f.h               |  945 +++++-----
+ kernels/volk/volk_32f_sqrt_32f.h              |  153 +-
+ .../volk/volk_32f_stddev_and_mean_32f_x2.h    |  583 +++---
+ kernels/volk/volk_32f_tan_32f.h               | 1023 ++++++-----
+ kernels/volk/volk_32f_tanh_32f.h              |  631 ++++---
+ kernels/volk/volk_32f_x2_add_32f.h            |  412 +++--
+ kernels/volk/volk_32f_x2_divide_32f.h         |  364 ++--
+ kernels/volk/volk_32f_x2_dot_prod_16i.h       | 1092 ++++++------
+ kernels/volk/volk_32f_x2_dot_prod_32f.h       | 1186 +++++++------
+ .../volk/volk_32f_x2_fm_detectpuppet_32f.h    |   40 +-
+ kernels/volk/volk_32f_x2_interleave_32fc.h    |  292 +--
+ kernels/volk/volk_32f_x2_max_32f.h            |  345 ++--
+ kernels/volk/volk_32f_x2_min_32f.h            |  347 ++--
+ kernels/volk/volk_32f_x2_multiply_32f.h       |  375 ++--
+ kernels/volk/volk_32f_x2_pow_32f.h            | 1175 ++++++------
+ .../volk/volk_32f_x2_s32f_interleave_16ic.h   |  324 ++--
+ kernels/volk/volk_32f_x2_subtract_32f.h       |  319 ++--
+ kernels/volk/volk_32f_x3_sum_of_poly_32f.h    | 1026 +++++------
+ kernels/volk/volk_32fc_32f_add_32fc.h         |  281 +--
+ kernels/volk/volk_32fc_32f_dot_prod_32fc.h    | 1205 +++++++------
+ kernels/volk/volk_32fc_32f_multiply_32fc.h    |  226 +--
+ kernels/volk/volk_32fc_conjugate_32fc.h       |  233 +--
+ kernels/volk/volk_32fc_convert_16ic.h         |  439 ++---
+ kernels/volk/volk_32fc_deinterleave_32f_x2.h  |  297 ++--
+ kernels/volk/volk_32fc_deinterleave_64f_x2.h  |  439 ++---
+ .../volk/volk_32fc_deinterleave_imag_32f.h    |  210 +--
+ .../volk/volk_32fc_deinterleave_real_32f.h    |  214 +--
+ .../volk/volk_32fc_deinterleave_real_64f.h    |  262 +--
+ kernels/volk/volk_32fc_index_max_16u.h        |  639 +++----
+ kernels/volk/volk_32fc_index_max_32u.h        |  630 +++----
+ kernels/volk/volk_32fc_magnitude_32f.h        |  556 +++---
+ .../volk/volk_32fc_magnitude_squared_32f.h    |  443 ++---
+ kernels/volk/volk_32fc_s32f_atan2_32f.h       |  208 +--
+ .../volk_32fc_s32f_deinterleave_real_16i.h    |  226 +--
+ kernels/volk/volk_32fc_s32f_magnitude_16i.h   |  297 ++--
+ kernels/volk/volk_32fc_s32f_power_32fc.h      |  121 +-
+ .../volk/volk_32fc_s32f_power_spectrum_32f.h  |  176 +-
+ ..._32fc_s32f_x2_power_spectral_density_32f.h |  297 ++--
+ kernels/volk/volk_32fc_s32fc_multiply_32fc.h  |  250 +--
+ .../volk/volk_32fc_s32fc_rotatorpuppet_32fc.h |  118 +-
+ .../volk/volk_32fc_s32fc_x2_rotator_32fc.h    |  260 +--
+ kernels/volk/volk_32fc_x2_add_32fc.h          |  274 +--
+ .../volk_32fc_x2_conjugate_dot_prod_32fc.h    | 1017 ++++++-----
+ kernels/volk/volk_32fc_x2_divide_32fc.h       |  372 ++--
+ kernels/volk/volk_32fc_x2_dot_prod_32fc.h     | 1334 +++++++-------
+ kernels/volk/volk_32fc_x2_multiply_32fc.h     |  575 +++---
+ .../volk_32fc_x2_multiply_conjugate_32fc.h    |  347 ++--
+ ...32fc_x2_s32f_square_dist_scalar_mult_32f.h |  657 +++----
+ ...2fc_x2_s32fc_multiply_conjugate_add_32fc.h |   98 +-
+ kernels/volk/volk_32fc_x2_square_dist_32f.h   |  426 ++---
+ kernels/volk/volk_32i_s32f_convert_32f.h      |  347 ++--
+ kernels/volk/volk_32i_x2_and_32i.h            |  320 ++--
+ kernels/volk/volk_32i_x2_or_32i.h             |  321 ++--
+ kernels/volk/volk_32u_byteswap.h              |  433 ++---
+ kernels/volk/volk_32u_byteswappuppet_32u.h    |   44 +-
+ kernels/volk/volk_32u_popcnt.h                |   26 +-
+ kernels/volk/volk_32u_popcntpuppet_32u.h      |   18 +-
+ kernels/volk/volk_32u_reverse_32u.h           |  598 ++++---
+ kernels/volk/volk_64f_convert_32f.h           |  324 ++--
+ kernels/volk/volk_64f_x2_add_64f.h            |  207 +--
+ kernels/volk/volk_64f_x2_max_64f.h            |  276 +--
+ kernels/volk/volk_64f_x2_min_64f.h            |  275 +--
+ kernels/volk/volk_64f_x2_multiply_64f.h       |  207 +--
+ kernels/volk/volk_64u_byteswap.h              |  599 ++++---
+ kernels/volk/volk_64u_byteswappuppet_64u.h    |   56 +-
+ kernels/volk/volk_64u_popcnt.h                |   79 +-
+ kernels/volk/volk_64u_popcntpuppet_64u.h      |   29 +-
+ kernels/volk/volk_8i_convert_16i.h            |  315 ++--
+ kernels/volk/volk_8i_s32f_convert_32f.h       |  528 +++---
+ kernels/volk/volk_8ic_deinterleave_16i_x2.h   |  493 ++++--
+ kernels/volk/volk_8ic_deinterleave_real_16i.h |  346 ++--
+ kernels/volk/volk_8ic_deinterleave_real_8i.h  |  482 +++--
+ .../volk/volk_8ic_s32f_deinterleave_32f_x2.h  |  571 +++---
+ .../volk_8ic_s32f_deinterleave_real_32f.h     |  395 +++--
+ .../volk_8ic_x2_multiply_conjugate_16ic.h     |  413 +++--
+ ...volk_8ic_x2_s32f_multiply_conjugate_32fc.h |  496 +++---
+ kernels/volk/volk_8u_conv_k7_r2puppet_8u.h    |  494 +++---
+ kernels/volk/volk_8u_x2_encodeframepolar_8u.h | 1569 +++++++++++------
+ kernels/volk/volk_8u_x3_encodepolar_8u_x2.h   |  110 +-
+ .../volk/volk_8u_x3_encodepolarpuppet_8u.h    |  137 +-
+ kernels/volk/volk_8u_x4_conv_k7_r2_8u.h       | 1067 +++++------
+ lib/kernel_tests.h                            |  257 +--
+ lib/qa_utils.cc                               |  751 +++++---
+ lib/qa_utils.h                                |  288 +--
+ lib/testqa.cc                                 |   96 +-
+ lib/volk_malloc.c                             |   55 +-
+ lib/volk_prefs.c                              |   74 +-
+ lib/volk_rank_archs.c                         |   73 +-
+ lib/volk_rank_archs.h                         |   22 +-
+ 158 files changed, 32509 insertions(+), 27583 deletions(-)
+ create mode 100644 .clang-format
+
+diff --git a/.clang-format b/.clang-format
+new file mode 100644
+index 0000000..285b68d
+--- /dev/null
++++ b/.clang-format
+@@ -0,0 +1,106 @@
++---
++Language: Cpp
++# BasedOnStyle: LLVM
++AccessModifierOffset: -4
++AlignAfterOpenBracket: Align
++AlignConsecutiveAssignments: false
++AlignConsecutiveDeclarations: false
++AlignEscapedNewlinesLeft: true
++AlignOperands:   true
++AlignTrailingComments: true
++AllowAllParametersOfDeclarationOnNextLine: true
++AllowShortBlocksOnASingleLine: false
++AllowShortCaseLabelsOnASingleLine: false
++AllowShortFunctionsOnASingleLine: All
++AllowShortIfStatementsOnASingleLine: false
++AllowShortLoopsOnASingleLine: false
++AlwaysBreakAfterDefinitionReturnType: None
++AlwaysBreakAfterReturnType: None
++AlwaysBreakBeforeMultilineStrings: false
++AlwaysBreakTemplateDeclarations: true
++BinPackArguments: false
++BinPackParameters: false
++BreakBeforeBraces: Custom
++BraceWrapping:
++  AfterClass:      true
++  AfterControlStatement: false
++  AfterEnum:       false
++  AfterFunction:   true
++  AfterNamespace:  false
++  AfterObjCDeclaration: false
++  AfterStruct:     false
++  AfterUnion:      false
++  BeforeCatch:     false
++  BeforeElse:      false
++  IndentBraces:    false
++BreakBeforeBinaryOperators: None
++BreakBeforeTernaryOperators: true
++BreakConstructorInitializersBeforeComma: false
++BreakAfterJavaFieldAnnotations: false
++BreakStringLiterals: true
++ColumnLimit:     90
++CommentPragmas:  '^ IWYU pragma:'
++ConstructorInitializerAllOnOneLineOrOnePerLine: true
++ConstructorInitializerIndentWidth: 4
++ContinuationIndentWidth: 4
++Cpp11BracedListStyle: false
++DerivePointerAlignment: false
++DisableFormat:   false
++ExperimentalAutoDetectBinPacking: false
++ForEachMacros:
++  - foreach
++  - Q_FOREACH
++  - BOOST_FOREACH
++IncludeCategories:
++  - Regex:           '^"(gnuradio)/'
++    Priority:        1
++  - Regex:           '^<(gnuradio)/'
++    Priority:        2
++  - Regex:           '^<(boost)/'
++    Priority:        98
++  - Regex:           '^<[a-z]*>$'
++    Priority:        99
++  - Regex:           '^".*"$'
++    Priority:        0
++  - Regex:           '.*'
++    Priority:        10
++
++IncludeIsMainRegex: '(Test)?$'
++IndentCaseLabels: false
++IndentWidth: 4
++IndentWrappedFunctionNames: false
++JavaScriptQuotes: Leave
++JavaScriptWrapImports: true
++KeepEmptyLinesAtTheStartOfBlocks: true
++MacroBlockBegin: ''
++MacroBlockEnd:   ''
++MaxEmptyLinesToKeep: 2
++NamespaceIndentation: None
++ObjCBlockIndentWidth: 2
++ObjCSpaceAfterProperty: false
++ObjCSpaceBeforeProtocolList: true
++PenaltyBreakBeforeFirstCallParameter: 19
++PenaltyBreakComment: 300
++PenaltyBreakFirstLessLess: 120
++PenaltyBreakString: 1000
++PenaltyExcessCharacter: 1000000
++PenaltyReturnTypeOnItsOwnLine: 60
++PointerAlignment: Left
++ReflowComments:  true
++SortIncludes:    true
++SpaceAfterCStyleCast: false
++SpaceAfterTemplateKeyword: true
++SpaceBeforeAssignmentOperators: true
++SpaceBeforeParens: ControlStatements
++SpaceInEmptyParentheses: false
++SpacesBeforeTrailingComments: 1
++SpacesInAngles:  false
++SpacesInContainerLiterals: true
++SpacesInCStyleCastParentheses: false
++SpacesInParentheses: false
++SpacesInSquareBrackets: false
++Standard:        Cpp11
++TabWidth:        8
++UseTab:          Never
++
++
+diff --git a/apps/volk-config-info.cc b/apps/volk-config-info.cc
+index 4eedcb7..2521993 100644
+--- a/apps/volk-config-info.cc
++++ b/apps/volk-config-info.cc
+@@ -24,52 +24,63 @@
+ #include <config.h>
+ #endif
+-#include <volk/constants.h>       // for volk_available_machines, volk_c_com...
+-#include <iostream>               // for operator<<, endl, cout, ostream
+-#include <string>                 // for string
++#include <volk/constants.h> // for volk_available_machines, volk_c_com...
++#include <iostream>         // for operator<<, endl, cout, ostream
++#include <string>           // for string
+-#include "volk/volk.h"            // for volk_get_alignment, volk_get_machine
+-#include "volk_option_helpers.h"  // for option_list, option_t
++#include "volk/volk.h"           // for volk_get_alignment, volk_get_machine
++#include "volk_option_helpers.h" // for option_list, option_t
+ void print_alignment()
+ {
+-  std::cout << "Alignment in bytes: " << volk_get_alignment() << std::endl;
++    std::cout << "Alignment in bytes: " << volk_get_alignment() << std::endl;
+ }
+ void print_malloc()
+ {
+-  // You don't want to change the volk_malloc code, so just copy the if/else
+-  // structure from there and give an explanation for the implementations
+-  std::cout << "Used malloc implementation: ";
+-  #if HAVE_POSIX_MEMALIGN
+-  std::cout << "posix_memalign" << std::endl;
+-  #elif defined(_MSC_VER)
+-  std::cout << "_aligned_malloc" << std::endl;
+-  #else
+-  std::cout << "C11 aligned_alloc" << std::endl;
+-  #endif
++    // You don't want to change the volk_malloc code, so just copy the if/else
++    // structure from there and give an explanation for the implementations
++    std::cout << "Used malloc implementation: ";
++#if HAVE_POSIX_MEMALIGN
++    std::cout << "posix_memalign" << std::endl;
++#elif defined(_MSC_VER)
++    std::cout << "_aligned_malloc" << std::endl;
++#else
++    std::cout << "C11 aligned_alloc" << std::endl;
++#endif
+ }
+-int
+-main(int argc, char **argv)
++int main(int argc, char** argv)
+ {
+-  option_list our_options("volk-config-info");
+-  our_options.add(option_t("prefix", "", "print the VOLK installation prefix", volk_prefix()));
+-  our_options.add(option_t("cc", "", "print the VOLK C compiler version", volk_c_compiler()));
+-  our_options.add(option_t("cflags", "", "print the VOLK CFLAGS", volk_compiler_flags()));
+-  our_options.add(option_t("all-machines", "", "print VOLK machines built", volk_available_machines()));
+-  our_options.add(option_t("avail-machines", "", "print VOLK machines on the current "
+-      "platform", volk_list_machines));
+-  our_options.add(option_t("machine", "", "print the current VOLK machine that will be used",
+-                           volk_get_machine()));
+-  our_options.add(option_t("alignment", "", "print the memory alignment", print_alignment));
+-  our_options.add(option_t("malloc", "", "print the malloc implementation used in volk_malloc",
+-                           print_malloc));
+-  our_options.add(option_t("version", "v", "print the VOLK version", volk_version()));
++    option_list our_options("volk-config-info");
++    our_options.add(
++        option_t("prefix", "", "print the VOLK installation prefix", volk_prefix()));
++    our_options.add(
++        option_t("cc", "", "print the VOLK C compiler version", volk_c_compiler()));
++    our_options.add(
++        option_t("cflags", "", "print the VOLK CFLAGS", volk_compiler_flags()));
++    our_options.add(option_t(
++        "all-machines", "", "print VOLK machines built", volk_available_machines()));
++    our_options.add(option_t("avail-machines",
++                             "",
++                             "print VOLK machines on the current "
++                             "platform",
++                             volk_list_machines));
++    our_options.add(option_t("machine",
++                             "",
++                             "print the current VOLK machine that will be used",
++                             volk_get_machine()));
++    our_options.add(
++        option_t("alignment", "", "print the memory alignment", print_alignment));
++    our_options.add(option_t("malloc",
++                             "",
++                             "print the malloc implementation used in volk_malloc",
++                             print_malloc));
++    our_options.add(option_t("version", "v", "print the VOLK version", volk_version()));
+-  our_options.parse(argc, argv);
++    our_options.parse(argc, argv);
+-  return 0;
++    return 0;
+ }
+diff --git a/apps/volk_option_helpers.cc b/apps/volk_option_helpers.cc
+index 4299709..73d51da 100644
+--- a/apps/volk_option_helpers.cc
++++ b/apps/volk_option_helpers.cc
+@@ -4,66 +4,97 @@
+ #include "volk_option_helpers.h"
+-#include <exception>  // for exception
+-#include <iostream>   // for operator<<, endl, basic_ostream, cout, ostream
+-#include <utility>    // for pair
+-#include <limits.h>   // IWYU pragma: keep
+-#include <cstring>    // IWYU pragma: keep
+-#include <cstdlib>      // IWYU pragma: keep
++#include <limits.h>  // IWYU pragma: keep
++#include <cstdlib>   // IWYU pragma: keep
++#include <cstring>   // IWYU pragma: keep
++#include <exception> // for exception
++#include <iostream>  // for operator<<, endl, basic_ostream, cout, ostream
++#include <utility>   // for pair
+ /*
+  * Option type
+  */
+-option_t::option_t(std::string longform, std::string shortform, std::string msg, void (*callback)())
+-        : longform("--" + longform),
+-          shortform("-" + shortform),
+-          msg(msg),
+-          callback(callback) { option_type = VOID_CALLBACK; }
+-
+-option_t::option_t(std::string longform, std::string shortform, std::string msg, void (*callback)(int))
+-        : longform("--" + longform),
+-          shortform("-" + shortform),
+-          msg(msg),
+-          callback((void (*)()) callback) { option_type = INT_CALLBACK; }
+-
+-option_t::option_t(std::string longform, std::string shortform, std::string msg, void (*callback)(float))
+-        : longform("--" + longform),
+-          shortform("-" + shortform),
+-          msg(msg),
+-          callback((void (*)()) callback) { option_type = FLOAT_CALLBACK; }
+-
+-option_t::option_t(std::string longform, std::string shortform, std::string msg, void (*callback)(bool))
+-        : longform("--" + longform),
+-          shortform("-" + shortform),
+-          msg(msg),
+-          callback((void (*)()) callback) { option_type = BOOL_CALLBACK; }
+-
+-option_t::option_t(std::string longform, std::string shortform, std::string msg, void (*callback)(std::string))
+-        : longform("--" + longform),
+-          shortform("-" + shortform),
+-          msg(msg),
+-          callback((void (*)()) callback) { option_type = STRING_CALLBACK; }
+-
+-option_t::option_t(std::string longform, std::string shortform, std::string msg, std::string printval)
+-        : longform("--" + longform),
+-          shortform("-" + shortform),
+-          msg(msg),
+-          printval(printval) { option_type = STRING; }
++option_t::option_t(std::string longform,
++                   std::string shortform,
++                   std::string msg,
++                   void (*callback)())
++    : longform("--" + longform), shortform("-" + shortform), msg(msg), callback(callback)
++{
++    option_type = VOID_CALLBACK;
++}
++
++option_t::option_t(std::string longform,
++                   std::string shortform,
++                   std::string msg,
++                   void (*callback)(int))
++    : longform("--" + longform),
++      shortform("-" + shortform),
++      msg(msg),
++      callback((void (*)())callback)
++{
++    option_type = INT_CALLBACK;
++}
++
++option_t::option_t(std::string longform,
++                   std::string shortform,
++                   std::string msg,
++                   void (*callback)(float))
++    : longform("--" + longform),
++      shortform("-" + shortform),
++      msg(msg),
++      callback((void (*)())callback)
++{
++    option_type = FLOAT_CALLBACK;
++}
++
++option_t::option_t(std::string longform,
++                   std::string shortform,
++                   std::string msg,
++                   void (*callback)(bool))
++    : longform("--" + longform),
++      shortform("-" + shortform),
++      msg(msg),
++      callback((void (*)())callback)
++{
++    option_type = BOOL_CALLBACK;
++}
++
++option_t::option_t(std::string longform,
++                   std::string shortform,
++                   std::string msg,
++                   void (*callback)(std::string))
++    : longform("--" + longform),
++      shortform("-" + shortform),
++      msg(msg),
++      callback((void (*)())callback)
++{
++    option_type = STRING_CALLBACK;
++}
++
++option_t::option_t(std::string longform,
++                   std::string shortform,
++                   std::string msg,
++                   std::string printval)
++    : longform("--" + longform), shortform("-" + shortform), msg(msg), printval(printval)
++{
++    option_type = STRING;
++}
+ /*
+  * Option List
+  */
+-option_list::option_list(std::string program_name) :
+-        program_name(program_name) {
++option_list::option_list(std::string program_name) : program_name(program_name)
++{
+     internal_list = std::vector<option_t>();
+ }
+ void option_list::add(option_t opt) { internal_list.push_back(opt); }
+-void option_list::parse(int argc, char **argv) {
++void option_list::parse(int argc, char** argv)
++{
+     for (int arg_number = 0; arg_number < argc; ++arg_number) {
+         for (std::vector<option_t>::iterator this_option = internal_list.begin();
+              this_option != internal_list.end();
+@@ -73,74 +104,83 @@ void option_list::parse(int argc, char **argv) {
+                 this_option->shortform == std::string(argv[arg_number])) {
+                 if (present_options.count(this_option->longform) == 0) {
+-                    present_options.insert(std::pair<std::string, int>(this_option->longform, 1));
++                    present_options.insert(
++                        std::pair<std::string, int>(this_option->longform, 1));
+                 } else {
+                     present_options[this_option->longform] += 1;
+                 }
+                 switch (this_option->option_type) {
+-                    case VOID_CALLBACK:
+-                        this_option->callback();
+-                        break;
+-                    case INT_CALLBACK:
+-                        try {
+-                            int_val = atoi(argv[++arg_number]);
+-                            ((void (*)(int)) this_option->callback)(int_val);
+-                        } catch (std::exception &exc) {
+-                            std::cout << "An int option can only receive a number" << std::endl;
+-                            throw std::exception();
+-                        };
+-                        break;
+-                    case FLOAT_CALLBACK:
+-                        try {
+-                            double double_val = atof(argv[++arg_number]);
+-                            ((void (*)(float)) this_option->callback)(double_val);
+-                        } catch (std::exception &exc) {
+-                            std::cout << "A float option can only receive a number" << std::endl;
+-                            throw std::exception();
+-                        };
+-                        break;
+-                    case BOOL_CALLBACK:
+-                        try {
+-                            if (arg_number == (argc - 1)) { // this is the last arg
++                case VOID_CALLBACK:
++                    this_option->callback();
++                    break;
++                case INT_CALLBACK:
++                    try {
++                        int_val = atoi(argv[++arg_number]);
++                        ((void (*)(int))this_option->callback)(int_val);
++                    } catch (std::exception& exc) {
++                        std::cout << "An int option can only receive a number"
++                                  << std::endl;
++                        throw std::exception();
++                    };
++                    break;
++                case FLOAT_CALLBACK:
++                    try {
++                        double double_val = atof(argv[++arg_number]);
++                        ((void (*)(float))this_option->callback)(double_val);
++                    } catch (std::exception& exc) {
++                        std::cout << "A float option can only receive a number"
++                                  << std::endl;
++                        throw std::exception();
++                    };
++                    break;
++                case BOOL_CALLBACK:
++                    try {
++                        if (arg_number == (argc - 1)) { // this is the last arg
++                            int_val = 1;
++                        } else { // sneak a look at the next arg since it's present
++                            char* next_arg = argv[arg_number + 1];
++                            if ((strncmp(next_arg, "-", 1) == 0) ||
++                                (strncmp(next_arg, "--", 2) == 0)) {
++                                // the next arg is actually an arg, the bool is just
++                                // present, set to true
++                                int_val = 1;
++                            } else if (strncmp(next_arg, "true", 4) == 0) {
+                                 int_val = 1;
+-                            } else { // sneak a look at the next arg since it's present
+-                                char *next_arg = argv[arg_number + 1];
+-                                if ((strncmp(next_arg, "-", 1) == 0) || (strncmp(next_arg, "--", 2) == 0)) {
+-                                    // the next arg is actually an arg, the bool is just present, set to true
+-                                    int_val = 1;
+-                                } else if (strncmp(next_arg, "true", 4) == 0) {
+-                                    int_val = 1;
+-                                } else if (strncmp(next_arg, "false", 5) == 0) {
+-                                    int_val = 0;
+-                                } else {
+-                                    // we got a number or a string.
+-                                    // convert it to a number and depend on the catch to report an error condition
+-                                    int_val = (bool) atoi(argv[++arg_number]);
+-                                }
++                            } else if (strncmp(next_arg, "false", 5) == 0) {
++                                int_val = 0;
++                            } else {
++                                // we got a number or a string.
++                                // convert it to a number and depend on the catch to
++                                // report an error condition
++                                int_val = (bool)atoi(argv[++arg_number]);
+                             }
+-                        } catch (std::exception &e) {
+-                            int_val = INT_MIN;
+-                        };
+-                        if (int_val == INT_MIN) {
+-                            std::cout << "option: '" << argv[arg_number - 1] << "' -> received an unknown value. Boolean "
+-                                    "options should receive one of '0', '1', 'true', 'false'." << std::endl;
+-                            throw std::exception();
+-                        } else if (int_val) {
+-                            ((void (*)(bool)) this_option->callback)(int_val);
+                         }
+-                        break;
+-                    case STRING_CALLBACK:
+-                        try {
+-                            ((void (*)(std::string)) this_option->callback)(argv[++arg_number]);
+-                        } catch (std::exception &exc) {
+-                            throw std::exception();
+-                        };
+-                    case STRING:
+-                        std::cout << this_option->printval << std::endl;
+-                        break;
++                    } catch (std::exception& e) {
++                        int_val = INT_MIN;
++                    };
++                    if (int_val == INT_MIN) {
++                        std::cout
++                            << "option: '" << argv[arg_number - 1]
++                            << "' -> received an unknown value. Boolean "
++                               "options should receive one of '0', '1', 'true', 'false'."
++                            << std::endl;
++                        throw std::exception();
++                    } else if (int_val) {
++                        ((void (*)(bool))this_option->callback)(int_val);
++                    }
++                    break;
++                case STRING_CALLBACK:
++                    try {
++                        ((void (*)(std::string))this_option->callback)(
++                            argv[++arg_number]);
++                    } catch (std::exception& exc) {
++                        throw std::exception();
++                    };
++                case STRING:
++                    std::cout << this_option->printval << std::endl;
++                    break;
+                 }
+             }
+-
+         }
+         if (std::string("--help") == std::string(argv[arg_number]) ||
+             std::string("-h") == std::string(argv[arg_number])) {
+@@ -150,7 +190,8 @@ void option_list::parse(int argc, char **argv) {
+     }
+ }
+-bool option_list::present(std::string option_name) {
++bool option_list::present(std::string option_name)
++{
+     if (present_options.count("--" + option_name)) {
+         return true;
+     } else {
+@@ -158,7 +199,8 @@ bool option_list::present(std::string option_name) {
+     }
+ }
+-void option_list::help() {
++void option_list::help()
++{
+     std::cout << program_name << std::endl;
+     std::cout << "  -h [ --help ] \t\tdisplay this help message" << std::endl;
+     for (std::vector<option_t>::iterator this_option = internal_list.begin();
+@@ -172,14 +214,14 @@ void option_list::help() {
+         }
+         switch (help_line.size() / 8) {
+-            case 0:
+-                help_line += "\t";
+-            case 1:
+-                help_line += "\t";
+-            case 2:
+-                help_line += "\t";
+-            case 3:
+-                help_line += "\t";
++        case 0:
++            help_line += "\t";
++        case 1:
++            help_line += "\t";
++        case 2:
++            help_line += "\t";
++        case 3:
++            help_line += "\t";
+         }
+         help_line += this_option->msg;
+         std::cout << help_line << std::endl;
+diff --git a/apps/volk_option_helpers.h b/apps/volk_option_helpers.h
+index 8a71547..0756caf 100644
+--- a/apps/volk_option_helpers.h
++++ b/apps/volk_option_helpers.h
+@@ -5,56 +5,74 @@
+ #ifndef VOLK_VOLK_OPTION_HELPERS_H
+ #define VOLK_VOLK_OPTION_HELPERS_H
+-#include <string>
+-#include <cstring>
+ #include <limits.h>
+-#include <vector>
++#include <cstring>
+ #include <map>
++#include <string>
++#include <vector>
+-typedef enum
+-{
+-  VOID_CALLBACK,
++typedef enum {
++    VOID_CALLBACK,
+     INT_CALLBACK,
+     BOOL_CALLBACK,
+     STRING_CALLBACK,
+     FLOAT_CALLBACK,
+-  STRING,
++    STRING,
+ } VOLK_OPTYPE;
+-class option_t {
+-  public:
+-  option_t(std::string longform, std::string shortform, std::string msg, void (*callback)());
+-    option_t(std::string longform, std::string shortform, std::string msg, void (*callback)(int));
+-    option_t(std::string longform, std::string shortform, std::string msg, void (*callback)(float));
+-    option_t(std::string longform, std::string shortform, std::string msg, void (*callback)(bool));
+-    option_t(std::string longform, std::string shortform, std::string msg, void (*callback)(std::string));
+-  option_t(std::string longform, std::string shortform, std::string msg, std::string printval);
+-
+-  std::string longform;
+-  std::string shortform;
+-  std::string msg;
+-  VOLK_OPTYPE option_type;
+-  std::string printval;
+-  void (*callback)();
++class option_t
++{
++public:
++    option_t(std::string longform,
++             std::string shortform,
++             std::string msg,
++             void (*callback)());
++    option_t(std::string longform,
++             std::string shortform,
++             std::string msg,
++             void (*callback)(int));
++    option_t(std::string longform,
++             std::string shortform,
++             std::string msg,
++             void (*callback)(float));
++    option_t(std::string longform,
++             std::string shortform,
++             std::string msg,
++             void (*callback)(bool));
++    option_t(std::string longform,
++             std::string shortform,
++             std::string msg,
++             void (*callback)(std::string));
++    option_t(std::string longform,
++             std::string shortform,
++             std::string msg,
++             std::string printval);
++    std::string longform;
++    std::string shortform;
++    std::string msg;
++    VOLK_OPTYPE option_type;
++    std::string printval;
++    void (*callback)();
+ };
+ class option_list
+ {
+-  public:
+-  option_list(std::string program_name);
+-  bool present(std::string option_name);
++public:
++    option_list(std::string program_name);
++    bool present(std::string option_name);
++
++    void add(option_t opt);
+-  void add(option_t opt);
++    void parse(int argc, char** argv);
+-  void parse(int argc, char **argv);
++    void help();
+-  void help();
+-  private:
+-  std::string program_name;
+-  std::vector<option_t> internal_list;
+-  std::map<std::string, int> present_options;
++private:
++    std::string program_name;
++    std::vector<option_t> internal_list;
++    std::map<std::string, int> present_options;
+ };
+-#endif //VOLK_VOLK_OPTION_HELPERS_H
++#endif // VOLK_VOLK_OPTION_HELPERS_H
+diff --git a/apps/volk_profile.cc b/apps/volk_profile.cc
+index 4ef5aeb..3c2e324 100644
+--- a/apps/volk_profile.cc
++++ b/apps/volk_profile.cc
+@@ -27,23 +27,23 @@
+ #include <filesystem>
+ #endif
+ #else
+-#include <boost/filesystem/operations.hpp>   // for create_directories, exists
+-#include <boost/filesystem/path.hpp>         // for path, operator<<
+-#include <boost/filesystem/path_traits.hpp>  // for filesystem
++#include <boost/filesystem/operations.hpp>  // for create_directories, exists
++#include <boost/filesystem/path.hpp>        // for path, operator<<
++#include <boost/filesystem/path_traits.hpp> // for filesystem
+ #endif
+-#include <stddef.h>                          // for size_t
+-#include <sys/stat.h>                        // for stat
+-#include <volk/volk_prefs.h>                 // for volk_get_config_path
+-#include <iostream>                          // for operator<<, basic_ostream
+-#include <fstream>                           // IWYU pragma: keep
+-#include <map>                               // for map, map<>::iterator
+-#include <utility>                           // for pair
+-#include <vector>                            // for vector, vector<>::const_...
+-
+-#include "kernel_tests.h"                    // for init_test_list
+-#include "qa_utils.h"                        // for volk_test_results_t, vol...
+-#include "volk/volk_complex.h"               // for lv_32fc_t
+-#include "volk_option_helpers.h"             // for option_list, option_t
++#include <stddef.h>          // for size_t
++#include <sys/stat.h>        // for stat
++#include <volk/volk_prefs.h> // for volk_get_config_path
++#include <fstream>           // IWYU pragma: keep
++#include <iostream>          // for operator<<, basic_ostream
++#include <map>               // for map, map<>::iterator
++#include <utility>           // for pair
++#include <vector>            // for vector, vector<>::const_...
++
++#include "kernel_tests.h"        // for init_test_list
++#include "qa_utils.h"            // for volk_test_results_t, vol...
++#include "volk/volk_complex.h"   // for lv_32fc_t
++#include "volk_option_helpers.h" // for option_list, option_t
+ #include "volk_profile.h"
+ #if HAS_STD_FILESYSTEM
+@@ -72,45 +72,61 @@ void set_json(std::string val) { json_filename = val; }
+ std::string volk_config_path("");
+ void set_volk_config(std::string val) { volk_config_path = val; }
+-int main(int argc, char *argv[]) {
++int main(int argc, char* argv[])
++{
+     option_list profile_options("volk_profile");
+-    profile_options.add(option_t("benchmark", "b", "Run all kernels (benchmark mode)", set_benchmark));
+-    profile_options.add(option_t("tol", "t", "Set the default tolerance for all tests", set_tolerance));
+-    profile_options.add(option_t("vlen", "v", "Set the default vector length for tests", set_vlen));
+-    profile_options.add((option_t("iter", "i", "Set the default number of test iterations per kernel", set_iter)));
+-    profile_options.add((option_t("tests-substr", "R", "Run tests matching substring", set_substr)));
+-    profile_options.add((option_t("update", "u", "Run only kernels missing from config", set_update)));
+-    profile_options.add((option_t("dry-run", "n", "Dry run. Respect other options, but don't write to file", set_dryrun)));
+-    profile_options.add((option_t("json", "j", "Write results to JSON file named as argument value", set_json)));
+-    profile_options.add((option_t("path", "p", "Specify the volk_config path", set_volk_config)));
++    profile_options.add(
++        option_t("benchmark", "b", "Run all kernels (benchmark mode)", set_benchmark));
++    profile_options.add(
++        option_t("tol", "t", "Set the default tolerance for all tests", set_tolerance));
++    profile_options.add(
++        option_t("vlen", "v", "Set the default vector length for tests", set_vlen));
++    profile_options.add((option_t(
++        "iter", "i", "Set the default number of test iterations per kernel", set_iter)));
++    profile_options.add(
++        (option_t("tests-substr", "R", "Run tests matching substring", set_substr)));
++    profile_options.add(
++        (option_t("update", "u", "Run only kernels missing from config", set_update)));
++    profile_options.add(
++        (option_t("dry-run",
++                  "n",
++                  "Dry run. Respect other options, but don't write to file",
++                  set_dryrun)));
++    profile_options.add((option_t(
++        "json", "j", "Write results to JSON file named as argument value", set_json)));
++    profile_options.add(
++        (option_t("path", "p", "Specify the volk_config path", set_volk_config)));
+     profile_options.parse(argc, argv);
+     if (profile_options.present("help")) {
+         return 0;
+     }
+-    if(dry_run) {
+-        std::cout << "Warning: this IS a dry-run. Config will not be written!" << std::endl;
++    if (dry_run) {
++        std::cout << "Warning: this IS a dry-run. Config will not be written!"
++                  << std::endl;
+     }
+     // Adding program options
+     std::ofstream json_file;
+     std::string config_file;
+-    if ( json_filename != "" ) {
+-        json_file.open( json_filename.c_str() );
++    if (json_filename != "") {
++        json_file.open(json_filename.c_str());
+     }
+-    if ( volk_config_path != "" ) {
++    if (volk_config_path != "") {
+         config_file = volk_config_path + "/volk_config";
+     }
+     // Run tests
+     std::vector<volk_test_results_t> results;
+-    if(update_mode) {
+-        if( config_file != "" ) read_results(&results, config_file);
+-        else read_results(&results);
++    if (update_mode) {
++        if (config_file != "")
++            read_results(&results, config_file);
++        else
++            read_results(&results);
+     }
+     // Initialize the list of tests
+@@ -118,22 +134,22 @@ int main(int argc, char *argv[]) {
+     // Iterate through list of tests running each one
+     std::string substr_to_match(test_params.kernel_regex());
+-    for(unsigned int ii = 0; ii < test_cases.size(); ++ii) {
++    for (unsigned int ii = 0; ii < test_cases.size(); ++ii) {
+         bool regex_match = true;
+         volk_test_case_t test_case = test_cases[ii];
+         // if the kernel name matches regex then do the test
+         std::string test_case_name = test_case.name();
+-        if(test_case_name.find(substr_to_match) == std::string::npos) {
++        if (test_case_name.find(substr_to_match) == std::string::npos) {
+             regex_match = false;
+         }
+         // if we are in update mode check if we've already got results
+         // if we have any, then no need to test that kernel
+         bool update = true;
+-        if(update_mode) {
+-            for(unsigned int jj=0; jj < results.size(); ++jj) {
+-                if(results[jj].name == test_case.name() ||
++        if (update_mode) {
++            for (unsigned int jj = 0; jj < results.size(); ++jj) {
++                if (results[jj].name == test_case.name() ||
+                     results[jj].name == test_case.puppet_master_name()) {
+                     update = false;
+                     break;
+@@ -141,39 +157,44 @@ int main(int argc, char *argv[]) {
+             }
+         }
+-        if( regex_match && update ) {
++        if (regex_match && update) {
+             try {
+-            run_volk_tests(test_case.desc(), test_case.kernel_ptr(), test_case.name(),
+-                test_case.test_parameters(), &results, test_case.puppet_master_name());
+-            }
+-            catch (std::string &error) {
+-                std::cerr << "Caught Exception in 'run_volk_tests': " << error << std::endl;
++                run_volk_tests(test_case.desc(),
++                               test_case.kernel_ptr(),
++                               test_case.name(),
++                               test_case.test_parameters(),
++                               &results,
++                               test_case.puppet_master_name());
++            } catch (std::string& error) {
++                std::cerr << "Caught Exception in 'run_volk_tests': " << error
++                          << std::endl;
+             }
+         }
+     }
+     // Output results according to provided options
+-    if(json_filename != "") {
++    if (json_filename != "") {
+         write_json(json_file, results);
+         json_file.close();
+     }
+-    if(!dry_run) {
+-        if(config_file != "") write_results(&results, false, config_file);
+-        else write_results(&results, false);
+-    }
+-    else {
++    if (!dry_run) {
++        if (config_file != "")
++            write_results(&results, false, config_file);
++        else
++            write_results(&results, false);
++    } else {
+         std::cout << "Warning: this was a dry-run. Config not generated" << std::endl;
+     }
+     return 0;
+ }
+-void read_results(std::vector<volk_test_results_t> *results)
++void read_results(std::vector<volk_test_results_t>* results)
+ {
+     char path[1024];
+     volk_get_config_path(path, true);
+-    if(path[0] == 0){
++    if (path[0] == 0) {
+         std::cout << "No prior test results found ..." << std::endl;
+         return;
+     }
+@@ -181,16 +202,16 @@ void read_results(std::vector<volk_test_results_t> *results)
+     read_results(results, std::string(path));
+ }
+-void read_results(std::vector<volk_test_results_t> *results, std::string path)
++void read_results(std::vector<volk_test_results_t>* results, std::string path)
+ {
+     struct stat buffer;
+-    bool config_status = (stat (path.c_str(), &buffer) == 0);
++    bool config_status = (stat(path.c_str(), &buffer) == 0);
+-    if( config_status ) {
++    if (config_status) {
+         // a config exists and we are reading results from it
+         std::ifstream config(path.c_str());
+         char config_line[256];
+-        while(config.getline(config_line, 255)) {
++        while (config.getline(config_line, 255)) {
+             // tokenize the input line by kernel_name unaligned aligned
+             // then push back in the results vector with fields filled in
+@@ -198,26 +219,26 @@ void read_results(std::vector<volk_test_results_t> *results, std::string path)
+             std::string config_str(config_line);
+             std::size_t str_size = config_str.size();
+             std::size_t found = config_str.find(' ');
+-            
++
+             // Split line by spaces
+-            while(found && found < str_size) {
++            while (found && found < str_size) {
+                 found = config_str.find(' ');
+                 // kernel names MUST be less than 128 chars, which is
+                 // a length restricted by volk/volk_prefs.c
+                 // on the last token in the parsed string we won't find a space
+                 // so make sure we copy at most 128 chars.
+-                if(found > 127) {
++                if (found > 127) {
+                     found = 127;
+                 }
+                 str_size = config_str.size();
+-                char buffer[128] = {'\0'};
++                char buffer[128] = { '\0' };
+                 config_str.copy(buffer, found + 1, 0);
+                 buffer[found] = '\0';
+                 single_kernel_result.push_back(std::string(buffer));
+-                config_str.erase(0, found+1);
++                config_str.erase(0, found + 1);
+             }
+-            if(single_kernel_result.size() == 3) {
++            if (single_kernel_result.size() == 3) {
+                 volk_test_results_t kernel_result;
+                 kernel_result.name = std::string(single_kernel_result[0]);
+                 kernel_result.config_name = std::string(single_kernel_result[0]);
+@@ -229,45 +250,47 @@ void read_results(std::vector<volk_test_results_t> *results, std::string path)
+     }
+ }
+-void write_results(const std::vector<volk_test_results_t> *results, bool update_result)
++void write_results(const std::vector<volk_test_results_t>* results, bool update_result)
+ {
+     char path[1024];
+     volk_get_config_path(path, false);
+-    if(path[0] == 0){
++    if (path[0] == 0) {
+         std::cout << "Aborting 'No config save path found' ..." << std::endl;
+         return;
+     }
+-    write_results( results, update_result, std::string(path));
++    write_results(results, update_result, std::string(path));
+ }
+-void write_results(const std::vector<volk_test_results_t> *results, bool update_result, const std::string path)
++void write_results(const std::vector<volk_test_results_t>* results,
++                   bool update_result,
++                   const std::string path)
+ {
+-//    struct stat buffer;
+-//    bool config_status = (stat (path.c_str(), &buffer) == 0);
++    //    struct stat buffer;
++    //    bool config_status = (stat (path.c_str(), &buffer) == 0);
+     /*
+      * These
+      */
+     const fs::path config_path(path);
+-    if (! fs::exists(config_path.parent_path()))
+-    {
++    if (!fs::exists(config_path.parent_path())) {
+         std::cout << "Creating " << config_path.parent_path() << "..." << std::endl;
+         fs::create_directories(config_path.parent_path());
+     }
+     std::ofstream config;
+-    if(update_result) {
++    if (update_result) {
+         std::cout << "Updating " << path << "..." << std::endl;
+         config.open(path.c_str(), std::ofstream::app);
+-        if (!config.is_open()) { //either we don't have write access or we don't have the dir yet
++        if (!config.is_open()) { // either we don't have write access or we don't have the
++                                 // dir yet
+             std::cout << "Error opening file " << path << std::endl;
+         }
+-    }
+-    else {
++    } else {
+         std::cout << "Writing " << path << "..." << std::endl;
+         config.open(path.c_str());
+-        if (!config.is_open()) { //either we don't have write access or we don't have the dir yet
++        if (!config.is_open()) { // either we don't have write access or we don't have the
++                                 // dir yet
+             std::cout << "Error opening file " << path << std::endl;
+         }
+@@ -278,43 +301,45 @@ void write_results(const std::vector<volk_test_results_t> *results, bool update_
+     }
+     std::vector<volk_test_results_t>::const_iterator profile_results;
+-    for(profile_results = results->begin(); profile_results != results->end(); ++profile_results) {
+-        config << profile_results->config_name << " "
+-            << profile_results->best_arch_a << " "
+-            << profile_results->best_arch_u << std::endl;
++    for (profile_results = results->begin(); profile_results != results->end();
++         ++profile_results) {
++        config << profile_results->config_name << " " << profile_results->best_arch_a
++               << " " << profile_results->best_arch_u << std::endl;
+     }
+     config.close();
+ }
+-void write_json(std::ofstream &json_file, std::vector<volk_test_results_t> results)
++void write_json(std::ofstream& json_file, std::vector<volk_test_results_t> results)
+ {
+     json_file << "{" << std::endl;
+     json_file << " \"volk_tests\": [" << std::endl;
+     size_t len = results.size();
+     size_t i = 0;
+     std::vector<volk_test_results_t>::iterator result;
+-    for(result = results.begin(); result != results.end(); ++result) {
++    for (result = results.begin(); result != results.end(); ++result) {
+         json_file << "  {" << std::endl;
+         json_file << "   \"name\": \"" << result->name << "\"," << std::endl;
+         json_file << "   \"vlen\": " << (int)(result->vlen) << "," << std::endl;
+         json_file << "   \"iter\": " << result->iter << "," << std::endl;
+-        json_file << "   \"best_arch_a\": \"" << result->best_arch_a
+-            << "\"," << std::endl;
+-        json_file << "   \"best_arch_u\": \"" << result->best_arch_u
+-            << "\"," << std::endl;
++        json_file << "   \"best_arch_a\": \"" << result->best_arch_a << "\","
++                  << std::endl;
++        json_file << "   \"best_arch_u\": \"" << result->best_arch_u << "\","
++                  << std::endl;
+         json_file << "   \"results\": {" << std::endl;
+         size_t results_len = result->results.size();
+         size_t ri = 0;
+         std::map<std::string, volk_test_time_t>::iterator kernel_time_pair;
+-        for(kernel_time_pair = result->results.begin(); kernel_time_pair != result->results.end(); ++kernel_time_pair) {
++        for (kernel_time_pair = result->results.begin();
++             kernel_time_pair != result->results.end();
++             ++kernel_time_pair) {
+             volk_test_time_t time = kernel_time_pair->second;
+             json_file << "    \"" << time.name << "\": {" << std::endl;
+             json_file << "     \"name\": \"" << time.name << "\"," << std::endl;
+             json_file << "     \"time\": " << time.time << "," << std::endl;
+             json_file << "     \"units\": \"" << time.units << "\"" << std::endl;
+-            json_file << "    }" ;
+-            if(ri+1 != results_len) {
++            json_file << "    }";
++            if (ri + 1 != results_len) {
+                 json_file << ",";
+             }
+             json_file << std::endl;
+@@ -322,7 +347,7 @@ void write_json(std::ofstream &json_file, std::vector<volk_test_results_t> resul
+         }
+         json_file << "   }" << std::endl;
+         json_file << "  }";
+-        if(i+1 != len) {
++        if (i + 1 != len) {
+             json_file << ",";
+         }
+         json_file << std::endl;
+diff --git a/apps/volk_profile.h b/apps/volk_profile.h
+index 51629ab..ae3b474 100644
+--- a/apps/volk_profile.h
++++ b/apps/volk_profile.h
+@@ -1,14 +1,16 @@
+-#include <stdbool.h>  // for bool
+-#include <iosfwd>     // for ofstream
+-#include <string>     // for string
+-#include <vector>     // for vector
++#include <stdbool.h> // for bool
++#include <iosfwd>    // for ofstream
++#include <string>    // for string
++#include <vector>    // for vector
+ class volk_test_results_t;
+-void read_results(std::vector<volk_test_results_t> *results);
+-void read_results(std::vector<volk_test_results_t> *results, std::string path);
+-void write_results(const std::vector<volk_test_results_t> *results, bool update_result);
+-void write_results(const std::vector<volk_test_results_t> *results, bool update_result, const std::string path);
+-void write_json(std::ofstream &json_file, std::vector<volk_test_results_t> results);
++void read_results(std::vector<volk_test_results_t>* results);
++void read_results(std::vector<volk_test_results_t>* results, std::string path);
++void write_results(const std::vector<volk_test_results_t>* results, bool update_result);
++void write_results(const std::vector<volk_test_results_t>* results,
++                   bool update_result,
++                   const std::string path);
++void write_json(std::ofstream& json_file, std::vector<volk_test_results_t> results);
+diff --git a/cmake/msvc/config.h b/cmake/msvc/config.h
+index 8b12c2a..68f716e 100644
+--- a/cmake/msvc/config.h
++++ b/cmake/msvc/config.h
+@@ -9,7 +9,7 @@
+ // enable inline functions for C code
+ ////////////////////////////////////////////////////////////////////////
+ #ifndef __cplusplus
+-#  define inline __inline
++#define inline __inline
+ #endif
+ ////////////////////////////////////////////////////////////////////////
+@@ -23,12 +23,21 @@ typedef ptrdiff_t ssize_t;
+ ////////////////////////////////////////////////////////////////////////
+ #if _MSC_VER < 1800
+ #include <math.h>
+-static inline long lrint(double x){return (long)(x > 0.0 ? x + 0.5 : x - 0.5);}
+-static inline long lrintf(float x){return (long)(x > 0.0f ? x + 0.5f : x - 0.5f);}
+-static inline long long llrint(double x){return (long long)(x > 0.0 ? x + 0.5 : x - 0.5);}
+-static inline long long llrintf(float x){return (long long)(x > 0.0f ? x + 0.5f : x - 0.5f);}
+-static inline double rint(double x){return (x > 0.0)? floor(x + 0.5) : ceil(x - 0.5);}
+-static inline float rintf(float x){return (x > 0.0f)? floorf(x + 0.5f) : ceilf(x - 0.5f);}
++static inline long lrint(double x) { return (long)(x > 0.0 ? x + 0.5 : x - 0.5); }
++static inline long lrintf(float x) { return (long)(x > 0.0f ? x + 0.5f : x - 0.5f); }
++static inline long long llrint(double x)
++{
++    return (long long)(x > 0.0 ? x + 0.5 : x - 0.5);
++}
++static inline long long llrintf(float x)
++{
++    return (long long)(x > 0.0f ? x + 0.5f : x - 0.5f);
++}
++static inline double rint(double x) { return (x > 0.0) ? floor(x + 0.5) : ceil(x - 0.5); }
++static inline float rintf(float x)
++{
++    return (x > 0.0f) ? floorf(x + 0.5f) : ceilf(x - 0.5f);
++}
+ #endif
+ ////////////////////////////////////////////////////////////////////////
+@@ -43,7 +52,7 @@ static inline float rintf(float x){return (x > 0.0f)? floorf(x + 0.5f) : ceilf(x
+ // random and srandom
+ ////////////////////////////////////////////////////////////////////////
+ #include <stdlib.h>
+-static inline long int random (void) { return rand(); }
+-static inline void srandom (unsigned int seed) { srand(seed); }
++static inline long int random(void) { return rand(); }
++static inline void srandom(unsigned int seed) { srand(seed); }
+ #endif // _MSC_CONFIG_H_ ]
+diff --git a/cmake/msvc/sys/time.h b/cmake/msvc/sys/time.h
+index aa0f5dc..4bda1ba 100644
+--- a/cmake/msvc/sys/time.h
++++ b/cmake/msvc/sys/time.h
+@@ -10,67 +10,62 @@
+ #define NOMINMAX
+ #endif
+-//http://social.msdn.microsoft.com/Forums/en/vcgeneral/thread/430449b3-f6dd-4e18-84de-eebd26a8d668
++// http://social.msdn.microsoft.com/Forums/en/vcgeneral/thread/430449b3-f6dd-4e18-84de-eebd26a8d668
+ #include < time.h >
+ #include <windows.h> //I've omitted this line.
+ #if defined(_MSC_VER) || defined(_MSC_EXTENSIONS)
+-  #define DELTA_EPOCH_IN_MICROSECS  11644473600000000Ui64
++#define DELTA_EPOCH_IN_MICROSECS 11644473600000000Ui64
+ #else
+-  #define DELTA_EPOCH_IN_MICROSECS  11644473600000000ULL
++#define DELTA_EPOCH_IN_MICROSECS 11644473600000000ULL
+ #endif
+ #if _MSC_VER < 1900
+ struct timespec {
+-time_t tv_sec; /* Seconds since 00:00:00 GMT, */
++    time_t tv_sec; /* Seconds since 00:00:00 GMT, */
+-/* 1 January 1970 */
++    /* 1 January 1970 */
+-long tv_nsec; /* Additional nanoseconds since */
+-
+-/* tv_sec */
++    long tv_nsec; /* Additional nanoseconds since */
++    /* tv_sec */
+ };
+ #endif
+-struct timezone
+-{
+-  int  tz_minuteswest; /* minutes W of Greenwich */
+-  int  tz_dsttime;     /* type of dst correction */
++struct timezone {
++    int tz_minuteswest; /* minutes W of Greenwich */
++    int tz_dsttime;     /* type of dst correction */
+ };
+-static inline int gettimeofday(struct timeval *tv, struct timezone *tz)
++static inline int gettimeofday(struct timeval* tv, struct timezone* tz)
+ {
+-  FILETIME ft;
+-  unsigned __int64 tmpres = 0;
+-  static int tzflag;
+-
+-  if (NULL != tv)
+-  {
+-    GetSystemTimeAsFileTime(&ft);
+-
+-    tmpres |= ft.dwHighDateTime;
+-    tmpres <<= 32;
+-    tmpres |= ft.dwLowDateTime;
+-
+-    /*converting file time to unix epoch*/
+-    tmpres -= DELTA_EPOCH_IN_MICROSECS;
+-    tv->tv_sec = (long)(tmpres / 1000000UL);
+-    tv->tv_usec = (long)(tmpres % 1000000UL);
+-  }
+-
+-  if (NULL != tz)
+-  {
+-    if (!tzflag)
+-    {
+-      _tzset();
+-      tzflag++;
++    FILETIME ft;
++    unsigned __int64 tmpres = 0;
++    static int tzflag;
++
++    if (NULL != tv) {
++        GetSystemTimeAsFileTime(&ft);
++
++        tmpres |= ft.dwHighDateTime;
++        tmpres <<= 32;
++        tmpres |= ft.dwLowDateTime;
++
++        /*converting file time to unix epoch*/
++        tmpres -= DELTA_EPOCH_IN_MICROSECS;
++        tv->tv_sec = (long)(tmpres / 1000000UL);
++        tv->tv_usec = (long)(tmpres % 1000000UL);
++    }
++
++    if (NULL != tz) {
++        if (!tzflag) {
++            _tzset();
++            tzflag++;
++        }
++        tz->tz_minuteswest = _timezone / 60;
++        tz->tz_dsttime = _daylight;
+     }
+-    tz->tz_minuteswest = _timezone / 60;
+-    tz->tz_dsttime = _daylight;
+-  }
+-  return 0;
++    return 0;
+ }
+ #endif //_MSC_SYS_TIME_H_
+diff --git a/include/volk/saturation_arithmetic.h b/include/volk/saturation_arithmetic.h
+index 0886844..7b95ba2 100644
+--- a/include/volk/saturation_arithmetic.h
++++ b/include/volk/saturation_arithmetic.h
+@@ -28,20 +28,24 @@
+ static inline int16_t sat_adds16i(int16_t x, int16_t y)
+ {
+-    int32_t res = (int32_t) x + (int32_t) y;
++    int32_t res = (int32_t)x + (int32_t)y;
+-    if (res < SHRT_MIN) res = SHRT_MIN;
+-    if (res > SHRT_MAX) res = SHRT_MAX;
++    if (res < SHRT_MIN)
++        res = SHRT_MIN;
++    if (res > SHRT_MAX)
++        res = SHRT_MAX;
+     return res;
+ }
+ static inline int16_t sat_muls16i(int16_t x, int16_t y)
+ {
+-    int32_t res = (int32_t) x * (int32_t) y;
++    int32_t res = (int32_t)x * (int32_t)y;
+-    if (res < SHRT_MIN) res = SHRT_MIN;
+-    if (res > SHRT_MAX) res = SHRT_MAX;
++    if (res < SHRT_MIN)
++        res = SHRT_MIN;
++    if (res > SHRT_MAX)
++        res = SHRT_MAX;
+     return res;
+ }
+diff --git a/include/volk/volk_alloc.hh b/include/volk/volk_alloc.hh
+index a2975da..44bcfaf 100644
+--- a/include/volk/volk_alloc.hh
++++ b/include/volk/volk_alloc.hh
+@@ -40,30 +40,40 @@ namespace volk {
+  */
+ template <class T>
+ struct alloc {
+-  typedef T value_type;
++    typedef T value_type;
+-  alloc() = default;
++    alloc() = default;
+-  template <class U> constexpr alloc(alloc<U> const&) noexcept {}
++    template <class U>
++    constexpr alloc(alloc<U> const&) noexcept
++    {
++    }
+-  T* allocate(std::size_t n) {
+-    if (n > std::numeric_limits<std::size_t>::max() / sizeof(T)) throw std::bad_alloc();
++    T* allocate(std::size_t n)
++    {
++        if (n > std::numeric_limits<std::size_t>::max() / sizeof(T))
++            throw std::bad_alloc();
+-    if (auto p = static_cast<T*>(volk_malloc(n*sizeof(T), volk_get_alignment())))
+-      return p;
++        if (auto p = static_cast<T*>(volk_malloc(n * sizeof(T), volk_get_alignment())))
++            return p;
+-    throw std::bad_alloc();
+-  }
++        throw std::bad_alloc();
++    }
+-  void deallocate(T* p, std::size_t) noexcept { volk_free(p); }
+-
+-} ;
++    void deallocate(T* p, std::size_t) noexcept { volk_free(p); }
++};
+ template <class T, class U>
+-bool operator==(alloc<T> const&, alloc<U> const&) { return true; }
++bool operator==(alloc<T> const&, alloc<U> const&)
++{
++    return true;
++}
+ template <class T, class U>
+-bool operator!=(alloc<T> const&, alloc<U> const&) { return false; }
++bool operator!=(alloc<T> const&, alloc<U> const&)
++{
++    return false;
++}
+ /*!
+@@ -73,8 +83,8 @@ bool operator!=(alloc<T> const&, alloc<U> const&) { return false; }
+  * example code:
+  *   volk::vector<float> v(100); // vector using volk_malloc, volk_free
+  */
+-template<class T>
+-using vector = std::vector<T, alloc<T> >;
++template <class T>
++using vector = std::vector<T, alloc<T>>;
+ } // namespace volk
+ #endif // INCLUDED_VOLK_ALLOC_H
+diff --git a/include/volk/volk_avx2_intrinsics.h b/include/volk/volk_avx2_intrinsics.h
+index 17badc4..00f3b52 100644
+--- a/include/volk/volk_avx2_intrinsics.h
++++ b/include/volk/volk_avx2_intrinsics.h
+@@ -1,19 +1,19 @@
+ /* -*- c++ -*- */
+-/* 
++/*
+  * Copyright 2015 Free Software Foundation, Inc.
+- * 
++ *
+  * This file is part of GNU Radio
+- * 
++ *
+  * GNU Radio is free software; you can redistribute it and/or modify
+  * it under the terms of the GNU General Public License as published by
+  * the Free Software Foundation; either version 3, or (at your option)
+  * any later version.
+- * 
++ *
+  * GNU Radio is distributed in the hope that it will be useful,
+  * but WITHOUT ANY WARRANTY; without even the implied warranty of
+  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+  * GNU General Public License for more details.
+- * 
++ *
+  * You should have received a copy of the GNU General Public License
+  * along with GNU Radio; see the file COPYING.  If not, write to
+  * the Free Software Foundation, Inc., 51 Franklin Street,
+@@ -27,28 +27,59 @@
+ #ifndef INCLUDE_VOLK_VOLK_AVX2_INTRINSICS_H_
+ #define INCLUDE_VOLK_VOLK_AVX2_INTRINSICS_H_
+-#include <immintrin.h>
+ #include "volk/volk_avx_intrinsics.h"
++#include <immintrin.h>
+-static inline __m256
+-_mm256_polar_sign_mask_avx2(__m128i fbits){
+-  const __m128i zeros = _mm_set1_epi8(0x00);
+-  const __m128i sign_extract = _mm_set1_epi8(0x80);
+-  const __m256i shuffle_mask = _mm256_setr_epi8(0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x01, 0xff, 0xff, 0xff, 0x02, 0xff, 0xff, 0xff, 0x03,
+-                                                 0xff, 0xff, 0xff, 0x04, 0xff, 0xff, 0xff, 0x05, 0xff, 0xff, 0xff, 0x06, 0xff, 0xff, 0xff, 0x07);
+-  __m256i sign_bits = _mm256_setzero_si256();
+-  
+-  fbits = _mm_cmpgt_epi8(fbits, zeros);
+-  fbits = _mm_and_si128(fbits, sign_extract);
+-  sign_bits = _mm256_insertf128_si256(sign_bits,fbits,0);
+-  sign_bits = _mm256_insertf128_si256(sign_bits,fbits,1);
+-  sign_bits = _mm256_shuffle_epi8(sign_bits, shuffle_mask);
++static inline __m256 _mm256_polar_sign_mask_avx2(__m128i fbits)
++{
++    const __m128i zeros = _mm_set1_epi8(0x00);
++    const __m128i sign_extract = _mm_set1_epi8(0x80);
++    const __m256i shuffle_mask = _mm256_setr_epi8(0xff,
++                                                  0xff,
++                                                  0xff,
++                                                  0x00,
++                                                  0xff,
++                                                  0xff,
++                                                  0xff,
++                                                  0x01,
++                                                  0xff,
++                                                  0xff,
++                                                  0xff,
++                                                  0x02,
++                                                  0xff,
++                                                  0xff,
++                                                  0xff,
++                                                  0x03,
++                                                  0xff,
++                                                  0xff,
++                                                  0xff,
++                                                  0x04,
++                                                  0xff,
++                                                  0xff,
++                                                  0xff,
++                                                  0x05,
++                                                  0xff,
++                                                  0xff,
++                                                  0xff,
++                                                  0x06,
++                                                  0xff,
++                                                  0xff,
++                                                  0xff,
++                                                  0x07);
++    __m256i sign_bits = _mm256_setzero_si256();
+-  return _mm256_castsi256_ps(sign_bits);
++    fbits = _mm_cmpgt_epi8(fbits, zeros);
++    fbits = _mm_and_si128(fbits, sign_extract);
++    sign_bits = _mm256_insertf128_si256(sign_bits, fbits, 0);
++    sign_bits = _mm256_insertf128_si256(sign_bits, fbits, 1);
++    sign_bits = _mm256_shuffle_epi8(sign_bits, shuffle_mask);
++
++    return _mm256_castsi256_ps(sign_bits);
+ }
+ static inline __m256
+-_mm256_polar_fsign_add_llrs_avx2(__m256 src0, __m256 src1, __m128i fbits){
++_mm256_polar_fsign_add_llrs_avx2(__m256 src0, __m256 src1, __m128i fbits)
++{
+     // prepare sign mask for correct +-
+     __m256 sign_mask = _mm256_polar_sign_mask_avx2(fbits);
+@@ -61,26 +92,31 @@ _mm256_polar_fsign_add_llrs_avx2(__m256 src0, __m256 src1, __m128i fbits){
+     return dst;
+ }
+-static inline __m256
+-_mm256_magnitudesquared_ps_avx2(const __m256 cplxValue0, const __m256 cplxValue1){
+-  const __m256i idx = _mm256_set_epi32(7,6,3,2,5,4,1,0);
+-  const __m256 squared0 = _mm256_mul_ps(cplxValue0, cplxValue0); // Square the values
+-  const __m256 squared1 = _mm256_mul_ps(cplxValue1, cplxValue1); // Square the Values
+-  const __m256 complex_result = _mm256_hadd_ps(squared0, squared1);
+-  return _mm256_permutevar8x32_ps(complex_result, idx);
++static inline __m256 _mm256_magnitudesquared_ps_avx2(const __m256 cplxValue0,
++                                                     const __m256 cplxValue1)
++{
++    const __m256i idx = _mm256_set_epi32(7, 6, 3, 2, 5, 4, 1, 0);
++    const __m256 squared0 = _mm256_mul_ps(cplxValue0, cplxValue0); // Square the values
++    const __m256 squared1 = _mm256_mul_ps(cplxValue1, cplxValue1); // Square the Values
++    const __m256 complex_result = _mm256_hadd_ps(squared0, squared1);
++    return _mm256_permutevar8x32_ps(complex_result, idx);
+ }
+-static inline __m256
+-_mm256_scaled_norm_dist_ps_avx2(const __m256 symbols0, const __m256 symbols1, const __m256 points0, const __m256 points1, const __m256 scalar){
+-  /*
+-   * Calculate: |y - x|^2 * SNR_lin
+-   * Consider 'symbolsX' and 'pointsX' to be complex float
+-   * 'symbolsX' are 'y' and 'pointsX' are 'x'
+-   */
+-  const __m256 diff0 = _mm256_sub_ps(symbols0, points0);
+-  const __m256 diff1 = _mm256_sub_ps(symbols1, points1);
+-  const __m256 norms = _mm256_magnitudesquared_ps_avx2(diff0, diff1);
+-  return _mm256_mul_ps(norms, scalar);
++static inline __m256 _mm256_scaled_norm_dist_ps_avx2(const __m256 symbols0,
++                                                     const __m256 symbols1,
++                                                     const __m256 points0,
++                                                     const __m256 points1,
++                                                     const __m256 scalar)
++{
++    /*
++     * Calculate: |y - x|^2 * SNR_lin
++     * Consider 'symbolsX' and 'pointsX' to be complex float
++     * 'symbolsX' are 'y' and 'pointsX' are 'x'
++     */
++    const __m256 diff0 = _mm256_sub_ps(symbols0, points0);
++    const __m256 diff1 = _mm256_sub_ps(symbols1, points1);
++    const __m256 norms = _mm256_magnitudesquared_ps_avx2(diff0, diff1);
++    return _mm256_mul_ps(norms, scalar);
+ }
+ #endif /* INCLUDE_VOLK_VOLK_AVX2_INTRINSICS_H_ */
+diff --git a/include/volk/volk_avx_intrinsics.h b/include/volk/volk_avx_intrinsics.h
+index 808799f..bec846d 100644
+--- a/include/volk/volk_avx_intrinsics.h
++++ b/include/volk/volk_avx_intrinsics.h
+@@ -1,19 +1,19 @@
+ /* -*- c++ -*- */
+-/* 
++/*
+  * Copyright 2015 Free Software Foundation, Inc.
+- * 
++ *
+  * This file is part of GNU Radio
+- * 
++ *
+  * GNU Radio is free software; you can redistribute it and/or modify
+  * it under the terms of the GNU General Public License as published by
+  * the Free Software Foundation; either version 3, or (at your option)
+  * any later version.
+- * 
++ *
+  * GNU Radio is distributed in the hope that it will be useful,
+  * but WITHOUT ANY WARRANTY; without even the implied warranty of
+  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+  * GNU General Public License for more details.
+- * 
++ *
+  * You should have received a copy of the GNU General Public License
+  * along with GNU Radio; see the file COPYING.  If not, write to
+  * the Free Software Foundation, Inc., 51 Franklin Street,
+@@ -29,90 +29,126 @@
+ #define INCLUDE_VOLK_VOLK_AVX_INTRINSICS_H_
+ #include <immintrin.h>
+-static inline __m256
+-_mm256_complexmul_ps(__m256 x, __m256 y)
++static inline __m256 _mm256_complexmul_ps(__m256 x, __m256 y)
+ {
+-  __m256 yl, yh, tmp1, tmp2;
+-  yl = _mm256_moveldup_ps(y); // Load yl with cr,cr,dr,dr ...
+-  yh = _mm256_movehdup_ps(y); // Load yh with ci,ci,di,di ...
+-  tmp1 = _mm256_mul_ps(x, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr ...
+-  x = _mm256_shuffle_ps(x, x, 0xB1); // Re-arrange x to be ai,ar,bi,br ...
+-  tmp2 = _mm256_mul_ps(x, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+-  return _mm256_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
++    __m256 yl, yh, tmp1, tmp2;
++    yl = _mm256_moveldup_ps(y);        // Load yl with cr,cr,dr,dr ...
++    yh = _mm256_movehdup_ps(y);        // Load yh with ci,ci,di,di ...
++    tmp1 = _mm256_mul_ps(x, yl);       // tmp1 = ar*cr,ai*cr,br*dr,bi*dr ...
++    x = _mm256_shuffle_ps(x, x, 0xB1); // Re-arrange x to be ai,ar,bi,br ...
++    tmp2 = _mm256_mul_ps(x, yh);       // tmp2 = ai*ci,ar*ci,bi*di,br*di
++    return _mm256_addsub_ps(tmp1,
++                            tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+ }
+-static inline __m256
+-_mm256_conjugate_ps(__m256 x){
+-  const __m256 conjugator = _mm256_setr_ps(0, -0.f, 0, -0.f, 0, -0.f, 0, -0.f);
+-  return _mm256_xor_ps(x, conjugator); // conjugate y
++static inline __m256 _mm256_conjugate_ps(__m256 x)
++{
++    const __m256 conjugator = _mm256_setr_ps(0, -0.f, 0, -0.f, 0, -0.f, 0, -0.f);
++    return _mm256_xor_ps(x, conjugator); // conjugate y
+ }
+-static inline __m256
+-_mm256_complexconjugatemul_ps(__m256 x, __m256 y){
+-  y = _mm256_conjugate_ps(y);
+-  return _mm256_complexmul_ps(x, y);
++static inline __m256 _mm256_complexconjugatemul_ps(__m256 x, __m256 y)
++{
++    y = _mm256_conjugate_ps(y);
++    return _mm256_complexmul_ps(x, y);
+ }
+-static inline __m256
+-_mm256_normalize_ps(__m256 val)
++static inline __m256 _mm256_normalize_ps(__m256 val)
+ {
+-  __m256 tmp1 = _mm256_mul_ps(val, val);
+-  tmp1 = _mm256_hadd_ps(tmp1, tmp1);
+-  tmp1 = _mm256_shuffle_ps(tmp1, tmp1, _MM_SHUFFLE(3, 1, 2, 0)); // equals 0xD8
+-  tmp1 = _mm256_sqrt_ps(tmp1);
+-  return _mm256_div_ps(val, tmp1);
++    __m256 tmp1 = _mm256_mul_ps(val, val);
++    tmp1 = _mm256_hadd_ps(tmp1, tmp1);
++    tmp1 = _mm256_shuffle_ps(tmp1, tmp1, _MM_SHUFFLE(3, 1, 2, 0)); // equals 0xD8
++    tmp1 = _mm256_sqrt_ps(tmp1);
++    return _mm256_div_ps(val, tmp1);
+ }
+-static inline __m256
+-_mm256_magnitudesquared_ps(__m256 cplxValue1, __m256 cplxValue2){
+-  __m256 complex1, complex2;
+-  cplxValue1 = _mm256_mul_ps(cplxValue1, cplxValue1); // Square the values
+-  cplxValue2 = _mm256_mul_ps(cplxValue2, cplxValue2); // Square the Values
+-  complex1 = _mm256_permute2f128_ps(cplxValue1, cplxValue2, 0x20);
+-  complex2 = _mm256_permute2f128_ps(cplxValue1, cplxValue2, 0x31);
+-  return _mm256_hadd_ps(complex1, complex2); // Add the I2 and Q2 values
++static inline __m256 _mm256_magnitudesquared_ps(__m256 cplxValue1, __m256 cplxValue2)
++{
++    __m256 complex1, complex2;
++    cplxValue1 = _mm256_mul_ps(cplxValue1, cplxValue1); // Square the values
++    cplxValue2 = _mm256_mul_ps(cplxValue2, cplxValue2); // Square the Values
++    complex1 = _mm256_permute2f128_ps(cplxValue1, cplxValue2, 0x20);
++    complex2 = _mm256_permute2f128_ps(cplxValue1, cplxValue2, 0x31);
++    return _mm256_hadd_ps(complex1, complex2); // Add the I2 and Q2 values
+ }
+-static inline __m256
+-_mm256_magnitude_ps(__m256 cplxValue1, __m256 cplxValue2){
+-  return _mm256_sqrt_ps(_mm256_magnitudesquared_ps(cplxValue1, cplxValue2));
++static inline __m256 _mm256_magnitude_ps(__m256 cplxValue1, __m256 cplxValue2)
++{
++    return _mm256_sqrt_ps(_mm256_magnitudesquared_ps(cplxValue1, cplxValue2));
+ }
+-static inline __m256
+-_mm256_scaled_norm_dist_ps(const __m256 symbols0, const __m256 symbols1, const __m256 points0, const __m256 points1, const __m256 scalar){
+-  /*
+-   * Calculate: |y - x|^2 * SNR_lin
+-   * Consider 'symbolsX' and 'pointsX' to be complex float
+-   * 'symbolsX' are 'y' and 'pointsX' are 'x'
+-   */
+-  const __m256 diff0 = _mm256_sub_ps(symbols0, points0);
+-  const __m256 diff1 = _mm256_sub_ps(symbols1, points1);
+-  const __m256 norms = _mm256_magnitudesquared_ps(diff0, diff1);
+-  return _mm256_mul_ps(norms, scalar);
++static inline __m256 _mm256_scaled_norm_dist_ps(const __m256 symbols0,
++                                                const __m256 symbols1,
++                                                const __m256 points0,
++                                                const __m256 points1,
++                                                const __m256 scalar)
++{
++    /*
++     * Calculate: |y - x|^2 * SNR_lin
++     * Consider 'symbolsX' and 'pointsX' to be complex float
++     * 'symbolsX' are 'y' and 'pointsX' are 'x'
++     */
++    const __m256 diff0 = _mm256_sub_ps(symbols0, points0);
++    const __m256 diff1 = _mm256_sub_ps(symbols1, points1);
++    const __m256 norms = _mm256_magnitudesquared_ps(diff0, diff1);
++    return _mm256_mul_ps(norms, scalar);
+ }
+-static inline __m256
+-_mm256_polar_sign_mask(__m128i fbits){
+-  __m256 sign_mask_dummy = _mm256_setzero_ps();
+-  const __m128i zeros = _mm_set1_epi8(0x00);
+-  const __m128i sign_extract = _mm_set1_epi8(0x80);
+-  const __m128i shuffle_mask0 = _mm_setr_epi8(0xff, 0xff, 0xff, 0x00, 0xff, 0xff, 0xff, 0x01, 0xff, 0xff, 0xff, 0x02, 0xff, 0xff, 0xff, 0x03);
+-  const __m128i shuffle_mask1 = _mm_setr_epi8(0xff, 0xff, 0xff, 0x04, 0xff, 0xff, 0xff, 0x05, 0xff, 0xff, 0xff, 0x06, 0xff, 0xff, 0xff, 0x07);
+-
+-  fbits = _mm_cmpgt_epi8(fbits, zeros);
+-  fbits = _mm_and_si128(fbits, sign_extract);
+-  __m128i sign_bits0 = _mm_shuffle_epi8(fbits, shuffle_mask0);
+-  __m128i sign_bits1 = _mm_shuffle_epi8(fbits, shuffle_mask1);
+-
+-  __m256 sign_mask = _mm256_insertf128_ps(sign_mask_dummy, _mm_castsi128_ps(sign_bits0), 0x0);
+-  return _mm256_insertf128_ps(sign_mask, _mm_castsi128_ps(sign_bits1), 0x1);
+-//  // This is the desired function call. Though it seems to be missing in GCC.
+-//  // Compare: https://software.intel.com/sites/landingpage/IntrinsicsGuide/#
+-//  return _mm256_set_m128(_mm_castsi128_ps(sign_bits1), _mm_castsi128_ps(sign_bits0));
++static inline __m256 _mm256_polar_sign_mask(__m128i fbits)
++{
++    __m256 sign_mask_dummy = _mm256_setzero_ps();
++    const __m128i zeros = _mm_set1_epi8(0x00);
++    const __m128i sign_extract = _mm_set1_epi8(0x80);
++    const __m128i shuffle_mask0 = _mm_setr_epi8(0xff,
++                                                0xff,
++                                                0xff,
++                                                0x00,
++                                                0xff,
++                                                0xff,
++                                                0xff,
++                                                0x01,
++                                                0xff,
++                                                0xff,
++                                                0xff,
++                                                0x02,
++                                                0xff,
++                                                0xff,
++                                                0xff,
++                                                0x03);
++    const __m128i shuffle_mask1 = _mm_setr_epi8(0xff,
++                                                0xff,
++                                                0xff,
++                                                0x04,
++                                                0xff,
++                                                0xff,
++                                                0xff,
++                                                0x05,
++                                                0xff,
++                                                0xff,
++                                                0xff,
++                                                0x06,
++                                                0xff,
++                                                0xff,
++                                                0xff,
++                                                0x07);
++
++    fbits = _mm_cmpgt_epi8(fbits, zeros);
++    fbits = _mm_and_si128(fbits, sign_extract);
++    __m128i sign_bits0 = _mm_shuffle_epi8(fbits, shuffle_mask0);
++    __m128i sign_bits1 = _mm_shuffle_epi8(fbits, shuffle_mask1);
++
++    __m256 sign_mask =
++        _mm256_insertf128_ps(sign_mask_dummy, _mm_castsi128_ps(sign_bits0), 0x0);
++    return _mm256_insertf128_ps(sign_mask, _mm_castsi128_ps(sign_bits1), 0x1);
++    //  // This is the desired function call. Though it seems to be missing in GCC.
++    //  // Compare: https://software.intel.com/sites/landingpage/IntrinsicsGuide/#
++    //  return _mm256_set_m128(_mm_castsi128_ps(sign_bits1),
++    //  _mm_castsi128_ps(sign_bits0));
+ }
+ static inline void
+-_mm256_polar_deinterleave(__m256 *llr0, __m256 *llr1, __m256 src0, __m256 src1){
++_mm256_polar_deinterleave(__m256* llr0, __m256* llr1, __m256 src0, __m256 src1)
++{
+     // deinterleave values
+     __m256 part0 = _mm256_permute2f128_ps(src0, src1, 0x20);
+     __m256 part1 = _mm256_permute2f128_ps(src0, src1, 0x31);
+@@ -120,22 +156,25 @@ _mm256_polar_deinterleave(__m256 *llr0, __m256 *llr1, __m256 src0, __m256 src1){
+     *llr1 = _mm256_shuffle_ps(part0, part1, 0xdd);
+ }
+-static inline __m256
+-_mm256_polar_minsum_llrs(__m256 src0, __m256 src1){
++static inline __m256 _mm256_polar_minsum_llrs(__m256 src0, __m256 src1)
++{
+     const __m256 sign_mask = _mm256_set1_ps(-0.0f);
+-    const __m256 abs_mask = _mm256_andnot_ps(sign_mask, _mm256_castsi256_ps(_mm256_set1_epi8(0xff)));
++    const __m256 abs_mask =
++        _mm256_andnot_ps(sign_mask, _mm256_castsi256_ps(_mm256_set1_epi8(0xff)));
+     __m256 llr0, llr1;
+     _mm256_polar_deinterleave(&llr0, &llr1, src0, src1);
+     // calculate result
+-    __m256 sign = _mm256_xor_ps(_mm256_and_ps(llr0, sign_mask), _mm256_and_ps(llr1, sign_mask));
+-    __m256 dst = _mm256_min_ps(_mm256_and_ps(llr0, abs_mask), _mm256_and_ps(llr1, abs_mask));
++    __m256 sign =
++        _mm256_xor_ps(_mm256_and_ps(llr0, sign_mask), _mm256_and_ps(llr1, sign_mask));
++    __m256 dst =
++        _mm256_min_ps(_mm256_and_ps(llr0, abs_mask), _mm256_and_ps(llr1, abs_mask));
+     return _mm256_or_ps(dst, sign);
+ }
+-static inline __m256
+-_mm256_polar_fsign_add_llrs(__m256 src0, __m256 src1, __m128i fbits){
++static inline __m256 _mm256_polar_fsign_add_llrs(__m256 src0, __m256 src1, __m128i fbits)
++{
+     // prepare sign mask for correct +-
+     __m256 sign_mask = _mm256_polar_sign_mask(fbits);
+diff --git a/include/volk/volk_common.h b/include/volk/volk_common.h
+index 50ea07b..8167d23 100644
+--- a/include/volk/volk_common.h
++++ b/include/volk/volk_common.h
+@@ -18,61 +18,71 @@
+ // AppleClang also defines __GNUC__, so do this check first.  These
+ // will probably be the same as for __GNUC__, but let's keep them
+ // separate just to be safe.
+-#  define __VOLK_ATTR_ALIGNED(x) __attribute__((aligned(x)))
+-#  define __VOLK_ATTR_UNUSED     __attribute__((unused))
+-#  define __VOLK_ATTR_INLINE     __attribute__((always_inline))
+-#  define __VOLK_ATTR_DEPRECATED __attribute__((deprecated))
+-#  define __VOLK_ASM             __asm__
+-#  define __VOLK_VOLATILE        __volatile__
+-#  define __VOLK_ATTR_EXPORT     __attribute__((visibility("default")))
+-#  define __VOLK_ATTR_IMPORT     __attribute__((visibility("default")))
+-#  define __VOLK_PREFETCH(addr)  __builtin_prefetch(addr)
+-#elif defined(__GNUC__)
+-#  define __VOLK_ATTR_ALIGNED(x) __attribute__((aligned(x)))
+-#  define __VOLK_ATTR_UNUSED     __attribute__((unused))
+-#  define __VOLK_ATTR_INLINE     __attribute__((always_inline))
+-#  define __VOLK_ATTR_DEPRECATED __attribute__((deprecated))
+-#  define __VOLK_ASM __asm__
+-#  define __VOLK_VOLATILE __volatile__
+-#  if __GNUC__ >= 4
+-#    define __VOLK_ATTR_EXPORT   __attribute__((visibility("default")))
+-#    define __VOLK_ATTR_IMPORT   __attribute__((visibility("default")))
+-#  else
+-#    define __VOLK_ATTR_EXPORT
+-#    define __VOLK_ATTR_IMPORT
+-#  endif
+-#  define __VOLK_PREFETCH(addr)  __builtin_prefetch(addr)
++#define __VOLK_ATTR_ALIGNED(x) __attribute__((aligned(x)))
++#define __VOLK_ATTR_UNUSED __attribute__((unused))
++#define __VOLK_ATTR_INLINE __attribute__((always_inline))
++#define __VOLK_ATTR_DEPRECATED __attribute__((deprecated))
++#define __VOLK_ASM __asm__
++#define __VOLK_VOLATILE __volatile__
++#define __VOLK_ATTR_EXPORT __attribute__((visibility("default")))
++#define __VOLK_ATTR_IMPORT __attribute__((visibility("default")))
++#define __VOLK_PREFETCH(addr) __builtin_prefetch(addr)
++#elif defined __GNUC__
++#define __VOLK_ATTR_ALIGNED(x) __attribute__((aligned(x)))
++#define __VOLK_ATTR_UNUSED __attribute__((unused))
++#define __VOLK_ATTR_INLINE __attribute__((always_inline))
++#define __VOLK_ATTR_DEPRECATED __attribute__((deprecated))
++#define __VOLK_ASM __asm__
++#define __VOLK_VOLATILE __volatile__
++#if __GNUC__ >= 4
++#define __VOLK_ATTR_EXPORT __attribute__((visibility("default")))
++#define __VOLK_ATTR_IMPORT __attribute__((visibility("default")))
+ #else
+-#  warning "Unknown compiler. Using default VOLK macros, which may or not work."
+-#  define __VOLK_ATTR_ALIGNED(x)
+-#  define __VOLK_ATTR_UNUSED
+-#  define __VOLK_ATTR_INLINE
+-#  define __VOLK_ATTR_DEPRECATED
+-#  define __VOLK_ATTR_EXPORT
+-#  define __VOLK_ATTR_IMPORT
+-#  define __VOLK_PREFETCH(addr)
+-#  define __VOLK_ASM __asm__
+-#  define __VOLK_VOLATILE __volatile__
++#define __VOLK_ATTR_EXPORT
++#define __VOLK_ATTR_IMPORT
++#endif
++#define __VOLK_PREFETCH(addr) __builtin_prefetch(addr)
++#elif _MSC_VER
++#define __VOLK_ATTR_ALIGNED(x) __declspec(align(x))
++#define __VOLK_ATTR_UNUSED
++#define __VOLK_ATTR_INLINE __forceinline
++#define __VOLK_ATTR_DEPRECATED __declspec(deprecated)
++#define __VOLK_ATTR_EXPORT __declspec(dllexport)
++#define __VOLK_ATTR_IMPORT __declspec(dllimport)
++#define __VOLK_PREFETCH(addr)
++#define __VOLK_ASM __asm
++#define __VOLK_VOLATILE
++#else
++#define __VOLK_ATTR_ALIGNED(x)
++#define __VOLK_ATTR_UNUSED
++#define __VOLK_ATTR_INLINE
++#define __VOLK_ATTR_DEPRECATED
++#define __VOLK_ATTR_EXPORT
++#define __VOLK_ATTR_IMPORT
++#define __VOLK_PREFETCH(addr)
++#define __VOLK_ASM __asm__
++#define __VOLK_VOLATILE __volatile__
+ #endif
+ ////////////////////////////////////////////////////////////////////////
+ // Ignore annoying warnings in MSVC
+ ////////////////////////////////////////////////////////////////////////
+ #if defined(_MSC_VER)
+-#  pragma warning(disable: 4244) //'conversion' conversion from 'type1' to 'type2', possible loss of data
+-#  pragma warning(disable: 4305) //'identifier' : truncation from 'type1' to 'type2'
++#pragma warning(disable : 4244) //'conversion' conversion from 'type1' to 'type2',
++                                //possible loss of data
++#pragma warning(disable : 4305) //'identifier' : truncation from 'type1' to 'type2'
+ #endif
+ ////////////////////////////////////////////////////////////////////////
+ // C-linkage declaration macros
+ // FIXME: due to the usage of complex.h, require gcc for c-linkage
+ ////////////////////////////////////////////////////////////////////////
+-#if defined(__cplusplus) && (defined(__GNUC__) || defined(__clang__))
+-#  define __VOLK_DECL_BEGIN extern "C" {
+-#  define __VOLK_DECL_END }
++#if defined(__cplusplus) && (__GNUC__)
++#define __VOLK_DECL_BEGIN extern "C" {
++#define __VOLK_DECL_END }
+ #else
+-#  define __VOLK_DECL_BEGIN
+-#  define __VOLK_DECL_END
++#define __VOLK_DECL_BEGIN
++#define __VOLK_DECL_END
+ #endif
+ ////////////////////////////////////////////////////////////////////////
+@@ -80,9 +90,9 @@
+ // http://gcc.gnu.org/wiki/Visibility
+ ////////////////////////////////////////////////////////////////////////
+ #ifdef volk_EXPORTS
+-#  define VOLK_API __VOLK_ATTR_EXPORT
++#define VOLK_API __VOLK_ATTR_EXPORT
+ #else
+-#  define VOLK_API __VOLK_ATTR_IMPORT
++#define VOLK_API __VOLK_ATTR_IMPORT
+ #endif
+ ////////////////////////////////////////////////////////////////////////
+@@ -98,38 +108,38 @@
+ #endif
+ #endif
+-union bit128{
+-  uint8_t i8[16];
+-  uint16_t i16[8];
+-  uint32_t i[4];
+-  float f[4];
+-  double d[2];
++union bit128 {
++    uint8_t i8[16];
++    uint16_t i16[8];
++    uint32_t i[4];
++    float f[4];
++    double d[2];
+-  #ifdef LV_HAVE_SSE
+-  __m128 float_vec;
+-  #endif
++#ifdef LV_HAVE_SSE
++    __m128 float_vec;
++#endif
+-  #ifdef LV_HAVE_SSE2
+-  __m128i int_vec;
+-  __m128d double_vec;
+-  #endif
++#ifdef LV_HAVE_SSE2
++    __m128i int_vec;
++    __m128d double_vec;
++#endif
+ };
+-union bit256{
+-  uint8_t i8[32];
+-  uint16_t i16[16];
+-  uint32_t i[8];
+-  float f[8];
+-  double d[4];
++union bit256 {
++    uint8_t i8[32];
++    uint16_t i16[16];
++    uint32_t i[8];
++    float f[8];
++    double d[4];
+-  #ifdef LV_HAVE_AVX
+-  __m256 float_vec;
+-  __m256i int_vec;
+-  __m256d double_vec;
+-  #endif
++#ifdef LV_HAVE_AVX
++    __m256 float_vec;
++    __m256i int_vec;
++    __m256d double_vec;
++#endif
+ };
+-#define bit128_p(x) ((union bit128 *)(x))
+-#define bit256_p(x) ((union bit256 *)(x))
++#define bit128_p(x) ((union bit128*)(x))
++#define bit256_p(x) ((union bit256*)(x))
+ #endif /*INCLUDED_LIBVOLK_COMMON_H*/
+diff --git a/include/volk/volk_complex.h b/include/volk/volk_complex.h
+index 1d61d78..ae78873 100644
+--- a/include/volk/volk_complex.h
++++ b/include/volk/volk_complex.h
+@@ -19,49 +19,58 @@
+ #ifdef __cplusplus
+-#include <complex>
+ #include <stdint.h>
++#include <complex>
+-typedef std::complex<int8_t>  lv_8sc_t;
++typedef std::complex<int8_t> lv_8sc_t;
+ typedef std::complex<int16_t> lv_16sc_t;
+ typedef std::complex<int32_t> lv_32sc_t;
+ typedef std::complex<int64_t> lv_64sc_t;
+-typedef std::complex<float>   lv_32fc_t;
+-typedef std::complex<double>  lv_64fc_t;
++typedef std::complex<float> lv_32fc_t;
++typedef std::complex<double> lv_64fc_t;
+-template <typename T> inline std::complex<T> lv_cmake(const T &r, const T &i){
++template <typename T>
++inline std::complex<T> lv_cmake(const T& r, const T& i)
++{
+     return std::complex<T>(r, i);
+ }
+-template <typename T> inline typename T::value_type lv_creal(const T &x){
++template <typename T>
++inline typename T::value_type lv_creal(const T& x)
++{
+     return x.real();
+ }
+-template <typename T> inline typename T::value_type lv_cimag(const T &x){
++template <typename T>
++inline typename T::value_type lv_cimag(const T& x)
++{
+     return x.imag();
+ }
+-template <typename T> inline T lv_conj(const T &x){
++template <typename T>
++inline T lv_conj(const T& x)
++{
+     return std::conj(x);
+ }
+ #else /* __cplusplus */
+ #if __STDC_VERSION__ >= 199901L /* C99 check */
+-/* this allows us to conj in lv_conj without the double detour for single-precision floats */
++/* this allows us to conj in lv_conj without the double detour for single-precision floats
++ */
+ #include <tgmath.h>
+ #endif /* C99 check */
+ #include <complex.h>
+-typedef char complex         lv_8sc_t;
+-typedef short complex        lv_16sc_t;
+-typedef long complex         lv_32sc_t;
+-typedef long long complex    lv_64sc_t;
+-typedef float complex        lv_32fc_t;
+-typedef double complex       lv_64fc_t;
++typedef char complex lv_8sc_t;
++typedef short complex lv_16sc_t;
++typedef long complex lv_32sc_t;
++typedef long long complex lv_64sc_t;
++typedef float complex lv_32fc_t;
++typedef double complex lv_64fc_t;
+-#define lv_cmake(r, i) ((r) + _Complex_I*(i))
++#define lv_cmake(r, i) ((r) + _Complex_I * (i))
+ // When GNUC is available, use the complex extensions.
+ // The extensions always return the correct value type.
+diff --git a/include/volk/volk_malloc.h b/include/volk/volk_malloc.h
+index 3477b27..42ca2b0 100644
+--- a/include/volk/volk_malloc.h
++++ b/include/volk/volk_malloc.h
+@@ -23,8 +23,8 @@
+ #ifndef INCLUDED_VOLK_MALLOC_H
+ #define INCLUDED_VOLK_MALLOC_H
+-#include <volk/volk_common.h>
+ #include <stdlib.h>
++#include <volk/volk_common.h>
+ __VOLK_DECL_BEGIN
+@@ -40,7 +40,8 @@ __VOLK_DECL_BEGIN
+  * For Apple Clang, we fall back to `posix_memalign`.
+  * see: https://linux.die.net/man/3/aligned_alloc
+  * For MSVC, we fall back to `_aligned_malloc`.
+- * see: https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/aligned-malloc?view=vs-2019
++ * see:
++ * https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/aligned-malloc?view=vs-2019
+  *
+  * Because of the ways in which volk_malloc may allocate memory, it is
+  * important to always free volk_malloc pointers using volk_free.
+@@ -51,7 +52,7 @@ __VOLK_DECL_BEGIN
+  * \param alignment The byte alignment of the allocated memory.
+  * \return pointer to aligned memory.
+  */
+-VOLK_API void *volk_malloc(size_t size, size_t alignment);
++VOLK_API void* volk_malloc(size_t size, size_t alignment);
+ /*!
+  * \brief Free's memory allocated by volk_malloc.
+@@ -62,11 +63,12 @@ VOLK_API void *volk_malloc(size_t size, size_t alignment);
+  * Thus, in this case `volk_free` inherits the same behavior `free` exhibits.
+  * see: https://en.cppreference.com/w/c/memory/free
+  * In case `_aligned_malloc` was used, we call `_aligned_free`.
+- * see: https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/aligned-free?view=vs-2019
++ * see:
++ * https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/aligned-free?view=vs-2019
+  *
+  * \param aptr The aligned pointer allocated by volk_malloc.
+  */
+-VOLK_API void volk_free(void *aptr);
++VOLK_API void volk_free(void* aptr);
+ __VOLK_DECL_END
+diff --git a/include/volk/volk_neon_intrinsics.h b/include/volk/volk_neon_intrinsics.h
+index 90e7b54..302bd30 100644
+--- a/include/volk/volk_neon_intrinsics.h
++++ b/include/volk/volk_neon_intrinsics.h
+@@ -67,9 +67,9 @@
+   3. This notice may not be removed or altered from any source distribution.
+   (this is the zlib license)
+- 
++
+   _vsincosq_f32
+- 
++
+ */
+ /*
+@@ -83,13 +83,12 @@
+ /* Magnitude squared for float32x4x2_t */
+-static inline float32x4_t
+-_vmagnitudesquaredq_f32(float32x4x2_t cmplxValue)
++static inline float32x4_t _vmagnitudesquaredq_f32(float32x4x2_t cmplxValue)
+ {
+     float32x4_t iValue, qValue, result;
+     iValue = vmulq_f32(cmplxValue.val[0], cmplxValue.val[0]); // Square the values
+     qValue = vmulq_f32(cmplxValue.val[1], cmplxValue.val[1]); // Square the values
+-    result = vaddq_f32(iValue, qValue); // Add the I2 and Q2 values
++    result = vaddq_f32(iValue, qValue);                       // Add the I2 and Q2 values
+     return result;
+ }
+@@ -97,9 +96,11 @@ _vmagnitudesquaredq_f32(float32x4x2_t cmplxValue)
+ static inline float32x4_t _vinvsqrtq_f32(float32x4_t x)
+ {
+     float32x4_t sqrt_reciprocal = vrsqrteq_f32(x);
+-    sqrt_reciprocal = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
+-    sqrt_reciprocal = vmulq_f32(vrsqrtsq_f32(vmulq_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
+-    
++    sqrt_reciprocal = vmulq_f32(
++        vrsqrtsq_f32(vmulq_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
++    sqrt_reciprocal = vmulq_f32(
++        vrsqrtsq_f32(vmulq_f32(x, sqrt_reciprocal), sqrt_reciprocal), sqrt_reciprocal);
++
+     return sqrt_reciprocal;
+ }
+@@ -108,19 +109,19 @@ static inline float32x4_t _vinvq_f32(float32x4_t x)
+ {
+     // Newton's method
+     float32x4_t recip = vrecpeq_f32(x);
+-    recip             = vmulq_f32(vrecpsq_f32(x, recip), recip);
+-    recip             = vmulq_f32(vrecpsq_f32(x, recip), recip);
++    recip = vmulq_f32(vrecpsq_f32(x, recip), recip);
++    recip = vmulq_f32(vrecpsq_f32(x, recip), recip);
+     return recip;
+ }
+ /* Complex multiplication for float32x4x2_t */
+-static inline float32x4x2_t
+-_vmultiply_complexq_f32(float32x4x2_t a_val, float32x4x2_t b_val)
++static inline float32x4x2_t _vmultiply_complexq_f32(float32x4x2_t a_val,
++                                                    float32x4x2_t b_val)
+ {
+     float32x4x2_t tmp_real;
+     float32x4x2_t tmp_imag;
+     float32x4x2_t c_val;
+-    
++
+     // multiply the real*real and imag*imag to get real result
+     // a0r*b0r|a1r*b1r|a2r*b2r|a3r*b3r
+     tmp_real.val[0] = vmulq_f32(a_val.val[0], b_val.val[0]);
+@@ -140,12 +141,12 @@ _vmultiply_complexq_f32(float32x4x2_t a_val, float32x4x2_t b_val)
+ /* From ARM Compute Library, MIT license */
+ static inline float32x4_t _vtaylor_polyq_f32(float32x4_t x, const float32x4_t coeffs[8])
+ {
+-    float32x4_t cA   = vmlaq_f32(coeffs[0], coeffs[4], x);
+-    float32x4_t cB   = vmlaq_f32(coeffs[2], coeffs[6], x);
+-    float32x4_t cC   = vmlaq_f32(coeffs[1], coeffs[5], x);
+-    float32x4_t cD   = vmlaq_f32(coeffs[3], coeffs[7], x);
+-    float32x4_t x2  = vmulq_f32(x, x);
+-    float32x4_t x4  = vmulq_f32(x2, x2);
++    float32x4_t cA = vmlaq_f32(coeffs[0], coeffs[4], x);
++    float32x4_t cB = vmlaq_f32(coeffs[2], coeffs[6], x);
++    float32x4_t cC = vmlaq_f32(coeffs[1], coeffs[5], x);
++    float32x4_t cD = vmlaq_f32(coeffs[3], coeffs[7], x);
++    float32x4_t x2 = vmulq_f32(x, x);
++    float32x4_t x4 = vmulq_f32(x2, x2);
+     float32x4_t res = vmlaq_f32(vmlaq_f32(cA, cB, x2), vmlaq_f32(cC, cD, x2), x4);
+     return res;
+ }
+@@ -155,121 +156,123 @@ static inline float32x4_t _vtaylor_polyq_f32(float32x4_t x, const float32x4_t co
+ static inline float32x4_t _vlogq_f32(float32x4_t x)
+ {
+     const float32x4_t log_tab[8] = {
+-        vdupq_n_f32(-2.29561495781f),
+-        vdupq_n_f32(-2.47071170807f),
+-        vdupq_n_f32(-5.68692588806f),
+-        vdupq_n_f32(-0.165253549814f),
+-        vdupq_n_f32(5.17591238022f),
+-        vdupq_n_f32(0.844007015228f),
+-        vdupq_n_f32(4.58445882797f),
+-        vdupq_n_f32(0.0141278216615f),
++        vdupq_n_f32(-2.29561495781f), vdupq_n_f32(-2.47071170807f),
++        vdupq_n_f32(-5.68692588806f), vdupq_n_f32(-0.165253549814f),
++        vdupq_n_f32(5.17591238022f),  vdupq_n_f32(0.844007015228f),
++        vdupq_n_f32(4.58445882797f),  vdupq_n_f32(0.0141278216615f),
+     };
+-    
+-    const int32x4_t   CONST_127 = vdupq_n_s32(127);           // 127
++
++    const int32x4_t CONST_127 = vdupq_n_s32(127);             // 127
+     const float32x4_t CONST_LN2 = vdupq_n_f32(0.6931471805f); // ln(2)
+-    
++
+     // Extract exponent
+-    int32x4_t m = vsubq_s32(vreinterpretq_s32_u32(vshrq_n_u32(vreinterpretq_u32_f32(x), 23)), CONST_127);
+-    float32x4_t val = vreinterpretq_f32_s32(vsubq_s32(vreinterpretq_s32_f32(x), vshlq_n_s32(m, 23)));
+-    
++    int32x4_t m = vsubq_s32(
++        vreinterpretq_s32_u32(vshrq_n_u32(vreinterpretq_u32_f32(x), 23)), CONST_127);
++    float32x4_t val =
++        vreinterpretq_f32_s32(vsubq_s32(vreinterpretq_s32_f32(x), vshlq_n_s32(m, 23)));
++
+     // Polynomial Approximation
+     float32x4_t poly = _vtaylor_polyq_f32(val, log_tab);
+-    
++
+     // Reconstruct
+     poly = vmlaq_f32(poly, vcvtq_f32_s32(m), CONST_LN2);
+-    
++
+     return poly;
+ }
+ /* Evaluation of 4 sines & cosines at once.
+  * Optimized from here (zlib license)
+  * http://gruntthepeon.free.fr/ssemath/ */
+-static inline float32x4x2_t _vsincosq_f32(float32x4_t x) {
++static inline float32x4x2_t _vsincosq_f32(float32x4_t x)
++{
+     const float32x4_t c_minus_cephes_DP1 = vdupq_n_f32(-0.78515625);
+     const float32x4_t c_minus_cephes_DP2 = vdupq_n_f32(-2.4187564849853515625e-4);
+     const float32x4_t c_minus_cephes_DP3 = vdupq_n_f32(-3.77489497744594108e-8);
+     const float32x4_t c_sincof_p0 = vdupq_n_f32(-1.9515295891e-4);
+-    const float32x4_t c_sincof_p1  = vdupq_n_f32(8.3321608736e-3);
++    const float32x4_t c_sincof_p1 = vdupq_n_f32(8.3321608736e-3);
+     const float32x4_t c_sincof_p2 = vdupq_n_f32(-1.6666654611e-1);
+     const float32x4_t c_coscof_p0 = vdupq_n_f32(2.443315711809948e-005);
+     const float32x4_t c_coscof_p1 = vdupq_n_f32(-1.388731625493765e-003);
+     const float32x4_t c_coscof_p2 = vdupq_n_f32(4.166664568298827e-002);
+     const float32x4_t c_cephes_FOPI = vdupq_n_f32(1.27323954473516); // 4 / M_PI
+-    
++
+     const float32x4_t CONST_1 = vdupq_n_f32(1.f);
+     const float32x4_t CONST_1_2 = vdupq_n_f32(0.5f);
+     const float32x4_t CONST_0 = vdupq_n_f32(0.f);
+-    const uint32x4_t  CONST_2 = vdupq_n_u32(2);
+-    const uint32x4_t  CONST_4 = vdupq_n_u32(4);
+-    
++    const uint32x4_t CONST_2 = vdupq_n_u32(2);
++    const uint32x4_t CONST_4 = vdupq_n_u32(4);
++
+     uint32x4_t emm2;
+-    
++
+     uint32x4_t sign_mask_sin, sign_mask_cos;
+     sign_mask_sin = vcltq_f32(x, CONST_0);
+     x = vabsq_f32(x);
+     // scale by 4/pi
+     float32x4_t y = vmulq_f32(x, c_cephes_FOPI);
+-    
++
+     // store the integer part of y in mm0
+     emm2 = vcvtq_u32_f32(y);
+     /* j=(j+1) & (~1) (see the cephes sources) */
+     emm2 = vaddq_u32(emm2, vdupq_n_u32(1));
+     emm2 = vandq_u32(emm2, vdupq_n_u32(~1));
+     y = vcvtq_f32_u32(emm2);
+-    
++
+     /* get the polynom selection mask
+      there is one polynom for 0 <= x <= Pi/4
+      and another one for Pi/4<x<=Pi/2
+      Both branches will be computed. */
+     const uint32x4_t poly_mask = vtstq_u32(emm2, CONST_2);
+-    
++
+     // The magic pass: "Extended precision modular arithmetic"
+     x = vmlaq_f32(x, y, c_minus_cephes_DP1);
+     x = vmlaq_f32(x, y, c_minus_cephes_DP2);
+     x = vmlaq_f32(x, y, c_minus_cephes_DP3);
+-    
++
+     sign_mask_sin = veorq_u32(sign_mask_sin, vtstq_u32(emm2, CONST_4));
+     sign_mask_cos = vtstq_u32(vsubq_u32(emm2, CONST_2), CONST_4);
+-    
++
+     /* Evaluate the first polynom  (0 <= x <= Pi/4) in y1,
+      and the second polynom      (Pi/4 <= x <= 0) in y2 */
+     float32x4_t y1, y2;
+-    float32x4_t z = vmulq_f32(x,x);
+-    
++    float32x4_t z = vmulq_f32(x, x);
++
+     y1 = vmlaq_f32(c_coscof_p1, z, c_coscof_p0);
+     y1 = vmlaq_f32(c_coscof_p2, z, y1);
+     y1 = vmulq_f32(y1, z);
+     y1 = vmulq_f32(y1, z);
+     y1 = vmlsq_f32(y1, z, CONST_1_2);
+     y1 = vaddq_f32(y1, CONST_1);
+-    
++
+     y2 = vmlaq_f32(c_sincof_p1, z, c_sincof_p0);
+     y2 = vmlaq_f32(c_sincof_p2, z, y2);
+     y2 = vmulq_f32(y2, z);
+     y2 = vmlaq_f32(x, x, y2);
+-    
++
+     /* select the correct result from the two polynoms */
+     const float32x4_t ys = vbslq_f32(poly_mask, y1, y2);
+     const float32x4_t yc = vbslq_f32(poly_mask, y2, y1);
+-    
++
+     float32x4x2_t sincos;
+     sincos.val[0] = vbslq_f32(sign_mask_sin, vnegq_f32(ys), ys);
+     sincos.val[1] = vbslq_f32(sign_mask_cos, yc, vnegq_f32(yc));
+-    
++
+     return sincos;
+ }
+-static inline float32x4_t _vsinq_f32(float32x4_t x) {
++static inline float32x4_t _vsinq_f32(float32x4_t x)
++{
+     const float32x4x2_t sincos = _vsincosq_f32(x);
+     return sincos.val[0];
+ }
+-static inline float32x4_t _vcosq_f32(float32x4_t x) {
++static inline float32x4_t _vcosq_f32(float32x4_t x)
++{
+     const float32x4x2_t sincos = _vsincosq_f32(x);
+     return sincos.val[1];
+ }
+-static inline float32x4_t _vtanq_f32(float32x4_t x) {
++static inline float32x4_t _vtanq_f32(float32x4_t x)
++{
+     const float32x4x2_t sincos = _vsincosq_f32(x);
+     return vmulq_f32(sincos.val[0], _vinvq_f32(sincos.val[1]));
+ }
+diff --git a/include/volk/volk_prefs.h b/include/volk/volk_prefs.h
+index cfa3806..96b7f1c 100644
+--- a/include/volk/volk_prefs.h
++++ b/include/volk/volk_prefs.h
+@@ -1,17 +1,16 @@
+ #ifndef INCLUDED_VOLK_PREFS_H
+ #define INCLUDED_VOLK_PREFS_H
+-#include <volk/volk_common.h>
+ #include <stdbool.h>
+ #include <stdlib.h>
++#include <volk/volk_common.h>
+ __VOLK_DECL_BEGIN
+-typedef struct volk_arch_pref
+-{
+-    char name[128];   //name of the kernel
+-    char impl_a[128]; //best aligned impl
+-    char impl_u[128]; //best unaligned impl
++typedef struct volk_arch_pref {
++    char name[128];   // name of the kernel
++    char impl_a[128]; // best aligned impl
++    char impl_u[128]; // best unaligned impl
+ } volk_arch_pref_t;
+ ////////////////////////////////////////////////////////////////////////
+@@ -19,13 +18,13 @@ typedef struct volk_arch_pref
+ // if config file should be tested on existence for reading.
+ // returns \0 in the argument on failure.
+ ////////////////////////////////////////////////////////////////////////
+-VOLK_API void volk_get_config_path(char *, bool);
++VOLK_API void volk_get_config_path(char*, bool);
+ ////////////////////////////////////////////////////////////////////////
+ // load prefs into global prefs struct
+ ////////////////////////////////////////////////////////////////////////
+-VOLK_API size_t volk_load_preferences(volk_arch_pref_t **);
++VOLK_API size_t volk_load_preferences(volk_arch_pref_t**);
+ __VOLK_DECL_END
+-#endif //INCLUDED_VOLK_PREFS_H
++#endif // INCLUDED_VOLK_PREFS_H
+diff --git a/include/volk/volk_sse3_intrinsics.h b/include/volk/volk_sse3_intrinsics.h
+index 6b53a2a..6bdc8d8 100644
+--- a/include/volk/volk_sse3_intrinsics.h
++++ b/include/volk/volk_sse3_intrinsics.h
+@@ -1,19 +1,19 @@
+ /* -*- c++ -*- */
+-/* 
++/*
+  * Copyright 2015 Free Software Foundation, Inc.
+- * 
++ *
+  * This file is part of GNU Radio
+- * 
++ *
+  * GNU Radio is free software; you can redistribute it and/or modify
+  * it under the terms of the GNU General Public License as published by
+  * the Free Software Foundation; either version 3, or (at your option)
+  * any later version.
+- * 
++ *
+  * GNU Radio is distributed in the hope that it will be useful,
+  * but WITHOUT ANY WARRANTY; without even the implied warranty of
+  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+  * GNU General Public License for more details.
+- * 
++ *
+  * You should have received a copy of the GNU General Public License
+  * along with GNU Radio; see the file COPYING.  If not, write to
+  * the Free Software Foundation, Inc., 51 Franklin Street,
+@@ -29,49 +29,52 @@
+ #define INCLUDE_VOLK_VOLK_SSE3_INTRINSICS_H_
+ #include <pmmintrin.h>
+-static inline __m128
+-_mm_complexmul_ps(__m128 x, __m128 y)
++static inline __m128 _mm_complexmul_ps(__m128 x, __m128 y)
+ {
+-  __m128 yl, yh, tmp1, tmp2;
+-  yl = _mm_moveldup_ps(y); // Load yl with cr,cr,dr,dr
+-  yh = _mm_movehdup_ps(y); // Load yh with ci,ci,di,di
+-  tmp1 = _mm_mul_ps(x, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+-  x = _mm_shuffle_ps(x, x, 0xB1); // Re-arrange x to be ai,ar,bi,br
+-  tmp2 = _mm_mul_ps(x, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+-  return _mm_addsub_ps(tmp1, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
++    __m128 yl, yh, tmp1, tmp2;
++    yl = _mm_moveldup_ps(y);        // Load yl with cr,cr,dr,dr
++    yh = _mm_movehdup_ps(y);        // Load yh with ci,ci,di,di
++    tmp1 = _mm_mul_ps(x, yl);       // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
++    x = _mm_shuffle_ps(x, x, 0xB1); // Re-arrange x to be ai,ar,bi,br
++    tmp2 = _mm_mul_ps(x, yh);       // tmp2 = ai*ci,ar*ci,bi*di,br*di
++    return _mm_addsub_ps(tmp1,
++                         tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+ }
+-static inline __m128
+-_mm_complexconjugatemul_ps(__m128 x, __m128 y)
++static inline __m128 _mm_complexconjugatemul_ps(__m128 x, __m128 y)
+ {
+-  const __m128 conjugator = _mm_setr_ps(0, -0.f, 0, -0.f);
+-  y = _mm_xor_ps(y, conjugator); // conjugate y
+-  return _mm_complexmul_ps(x, y);
++    const __m128 conjugator = _mm_setr_ps(0, -0.f, 0, -0.f);
++    y = _mm_xor_ps(y, conjugator); // conjugate y
++    return _mm_complexmul_ps(x, y);
+ }
+-static inline __m128
+-_mm_magnitudesquared_ps_sse3(__m128 cplxValue1, __m128 cplxValue2){
+-  cplxValue1 = _mm_mul_ps(cplxValue1, cplxValue1); // Square the values
+-  cplxValue2 = _mm_mul_ps(cplxValue2, cplxValue2); // Square the Values
+-  return _mm_hadd_ps(cplxValue1, cplxValue2); // Add the I2 and Q2 values
++static inline __m128 _mm_magnitudesquared_ps_sse3(__m128 cplxValue1, __m128 cplxValue2)
++{
++    cplxValue1 = _mm_mul_ps(cplxValue1, cplxValue1); // Square the values
++    cplxValue2 = _mm_mul_ps(cplxValue2, cplxValue2); // Square the Values
++    return _mm_hadd_ps(cplxValue1, cplxValue2);      // Add the I2 and Q2 values
+ }
+-static inline __m128
+-_mm_magnitude_ps_sse3(__m128 cplxValue1, __m128 cplxValue2){
+-  return _mm_sqrt_ps(_mm_magnitudesquared_ps_sse3(cplxValue1, cplxValue2));
++static inline __m128 _mm_magnitude_ps_sse3(__m128 cplxValue1, __m128 cplxValue2)
++{
++    return _mm_sqrt_ps(_mm_magnitudesquared_ps_sse3(cplxValue1, cplxValue2));
+ }
+-static inline __m128
+-_mm_scaled_norm_dist_ps_sse3(const __m128 symbols0, const __m128 symbols1, const __m128 points0, const __m128 points1, const __m128 scalar){
+-  /*
+-   * Calculate: |y - x|^2 * SNR_lin
+-   * Consider 'symbolsX' and 'pointsX' to be complex float
+-   * 'symbolsX' are 'y' and 'pointsX' are 'x'
+-   */
+-  const __m128 diff0 = _mm_sub_ps(symbols0, points0);
+-  const __m128 diff1 = _mm_sub_ps(symbols1, points1);
+-  const __m128 norms = _mm_magnitudesquared_ps_sse3(diff0, diff1);
+-  return _mm_mul_ps(norms, scalar);
++static inline __m128 _mm_scaled_norm_dist_ps_sse3(const __m128 symbols0,
++                                                  const __m128 symbols1,
++                                                  const __m128 points0,
++                                                  const __m128 points1,
++                                                  const __m128 scalar)
++{
++    /*
++     * Calculate: |y - x|^2 * SNR_lin
++     * Consider 'symbolsX' and 'pointsX' to be complex float
++     * 'symbolsX' are 'y' and 'pointsX' are 'x'
++     */
++    const __m128 diff0 = _mm_sub_ps(symbols0, points0);
++    const __m128 diff1 = _mm_sub_ps(symbols1, points1);
++    const __m128 norms = _mm_magnitudesquared_ps_sse3(diff0, diff1);
++    return _mm_mul_ps(norms, scalar);
+ }
+ #endif /* INCLUDE_VOLK_VOLK_SSE3_INTRINSICS_H_ */
+diff --git a/include/volk/volk_sse_intrinsics.h b/include/volk/volk_sse_intrinsics.h
+index 57318e2..24fe7c1 100644
+--- a/include/volk/volk_sse_intrinsics.h
++++ b/include/volk/volk_sse_intrinsics.h
+@@ -1,19 +1,19 @@
+ /* -*- c++ -*- */
+-/* 
++/*
+  * Copyright 2015 Free Software Foundation, Inc.
+- * 
++ *
+  * This file is part of GNU Radio
+- * 
++ *
+  * GNU Radio is free software; you can redistribute it and/or modify
+  * it under the terms of the GNU General Public License as published by
+  * the Free Software Foundation; either version 3, or (at your option)
+  * any later version.
+- * 
++ *
+  * GNU Radio is distributed in the hope that it will be useful,
+  * but WITHOUT ANY WARRANTY; without even the implied warranty of
+  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+  * GNU General Public License for more details.
+- * 
++ *
+  * You should have received a copy of the GNU General Public License
+  * along with GNU Radio; see the file COPYING.  If not, write to
+  * the Free Software Foundation, Inc., 51 Franklin Street,
+@@ -29,31 +29,34 @@
+ #define INCLUDE_VOLK_VOLK_SSE_INTRINSICS_H_
+ #include <xmmintrin.h>
+-static inline __m128
+-_mm_magnitudesquared_ps(__m128 cplxValue1, __m128 cplxValue2){
+-  __m128 iValue, qValue;
+-  // Arrange in i1i2i3i4 format
+-  iValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2,0,2,0));
+-  // Arrange in q1q2q3q4 format
+-  qValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(3,1,3,1));
+-  iValue = _mm_mul_ps(iValue, iValue); // Square the I values
+-  qValue = _mm_mul_ps(qValue, qValue); // Square the Q Values
+-  return _mm_add_ps(iValue, qValue); // Add the I2 and Q2 values
++static inline __m128 _mm_magnitudesquared_ps(__m128 cplxValue1, __m128 cplxValue2)
++{
++    __m128 iValue, qValue;
++    // Arrange in i1i2i3i4 format
++    iValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2, 0, 2, 0));
++    // Arrange in q1q2q3q4 format
++    qValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(3, 1, 3, 1));
++    iValue = _mm_mul_ps(iValue, iValue); // Square the I values
++    qValue = _mm_mul_ps(qValue, qValue); // Square the Q Values
++    return _mm_add_ps(iValue, qValue);   // Add the I2 and Q2 values
+ }
+-static inline __m128
+-_mm_magnitude_ps(__m128 cplxValue1, __m128 cplxValue2){
+-  return _mm_sqrt_ps(_mm_magnitudesquared_ps(cplxValue1, cplxValue2));
++static inline __m128 _mm_magnitude_ps(__m128 cplxValue1, __m128 cplxValue2)
++{
++    return _mm_sqrt_ps(_mm_magnitudesquared_ps(cplxValue1, cplxValue2));
+ }
+-static inline __m128
+-_mm_scaled_norm_dist_ps_sse(const __m128 symbols0, const __m128 symbols1, const __m128 points0, const __m128 points1, const __m128 scalar)
++static inline __m128 _mm_scaled_norm_dist_ps_sse(const __m128 symbols0,
++                                                 const __m128 symbols1,
++                                                 const __m128 points0,
++                                                 const __m128 points1,
++                                                 const __m128 scalar)
+ {
+-  // calculate scalar * |x - y|^2
+-  const __m128 diff0 = _mm_sub_ps(symbols0, points0);
+-  const __m128 diff1 = _mm_sub_ps(symbols1, points1);
+-  const __m128 norms = _mm_magnitudesquared_ps(diff0, diff1);
+-  return _mm_mul_ps(norms, scalar);
++    // calculate scalar * |x - y|^2
++    const __m128 diff0 = _mm_sub_ps(symbols0, points0);
++    const __m128 diff1 = _mm_sub_ps(symbols1, points1);
++    const __m128 norms = _mm_magnitudesquared_ps(diff0, diff1);
++    return _mm_mul_ps(norms, scalar);
+ }
+ #endif /* INCLUDE_VOLK_VOLK_SSE_INTRINSICS_H_ */
+diff --git a/kernels/volk/volk_16i_32fc_dot_prod_32fc.h b/kernels/volk/volk_16i_32fc_dot_prod_32fc.h
+index f250340..2635649 100644
+--- a/kernels/volk/volk_16i_32fc_dot_prod_32fc.h
++++ b/kernels/volk/volk_16i_32fc_dot_prod_32fc.h
+@@ -33,8 +33,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_16i_32fc_dot_prod_32fc(lv_32fc_t* result, const short* input, const lv_32fc_t * taps, unsigned int num_points)
+- * \endcode
++ * void volk_16i_32fc_dot_prod_32fc(lv_32fc_t* result, const short* input, const lv_32fc_t
++ * * taps, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li input: vector of shorts.
+@@ -58,165 +58,178 @@
+ #ifndef INCLUDED_volk_16i_32fc_dot_prod_32fc_H
+ #define INCLUDED_volk_16i_32fc_dot_prod_32fc_H
+-#include <volk/volk_common.h>
+ #include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_16i_32fc_dot_prod_32fc_generic(lv_32fc_t* result, const short* input, const lv_32fc_t * taps, unsigned int num_points) {
++static inline void volk_16i_32fc_dot_prod_32fc_generic(lv_32fc_t* result,
++                                                       const short* input,
++                                                       const lv_32fc_t* taps,
++                                                       unsigned int num_points)
++{
+-  static const int N_UNROLL = 4;
++    static const int N_UNROLL = 4;
+-  lv_32fc_t acc0 = 0;
+-  lv_32fc_t acc1 = 0;
+-  lv_32fc_t acc2 = 0;
+-  lv_32fc_t acc3 = 0;
++    lv_32fc_t acc0 = 0;
++    lv_32fc_t acc1 = 0;
++    lv_32fc_t acc2 = 0;
++    lv_32fc_t acc3 = 0;
+-  unsigned i = 0;
+-  unsigned n = (num_points / N_UNROLL) * N_UNROLL;
++    unsigned i = 0;
++    unsigned n = (num_points / N_UNROLL) * N_UNROLL;
+-  for(i = 0; i < n; i += N_UNROLL) {
+-    acc0 += taps[i + 0] * (float)input[i + 0];
+-    acc1 += taps[i + 1] * (float)input[i + 1];
+-    acc2 += taps[i + 2] * (float)input[i + 2];
+-    acc3 += taps[i + 3] * (float)input[i + 3];
+-  }
++    for (i = 0; i < n; i += N_UNROLL) {
++        acc0 += taps[i + 0] * (float)input[i + 0];
++        acc1 += taps[i + 1] * (float)input[i + 1];
++        acc2 += taps[i + 2] * (float)input[i + 2];
++        acc3 += taps[i + 3] * (float)input[i + 3];
++    }
+-  for(; i < num_points; i++) {
+-    acc0 += taps[i] * (float)input[i];
+-  }
++    for (; i < num_points; i++) {
++        acc0 += taps[i] * (float)input[i];
++    }
+-  *result = acc0 + acc1 + acc2 + acc3;
++    *result = acc0 + acc1 + acc2 + acc3;
+ }
+ #endif /*LV_HAVE_GENERIC*/
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void volk_16i_32fc_dot_prod_32fc_neon(lv_32fc_t* result, const short* input, const lv_32fc_t * taps, unsigned int num_points) {
+-
+-  unsigned ii;
+-  unsigned quarter_points = num_points / 4;
+-  lv_32fc_t* tapsPtr = (lv_32fc_t*) taps;
+-  short* inputPtr = (short*) input;
+-  lv_32fc_t accumulator_vec[4];
+-
+-  float32x4x2_t tapsVal, accumulator_val;
+-  int16x4_t input16;
+-  int32x4_t input32;
+-  float32x4_t input_float, prod_re, prod_im;
+-
+-  accumulator_val.val[0] = vdupq_n_f32(0.0);
+-  accumulator_val.val[1] = vdupq_n_f32(0.0);
+-
+-  for(ii = 0; ii < quarter_points; ++ii) {
+-    tapsVal = vld2q_f32((float*)tapsPtr);
+-    input16 = vld1_s16(inputPtr);
+-    // widen 16-bit int to 32-bit int
+-    input32 = vmovl_s16(input16);
+-    // convert 32-bit int to float with scale
+-    input_float = vcvtq_f32_s32(input32);
+-
+-    prod_re = vmulq_f32(input_float, tapsVal.val[0]);
+-    prod_im = vmulq_f32(input_float, tapsVal.val[1]);
+-
+-    accumulator_val.val[0] = vaddq_f32(prod_re, accumulator_val.val[0]);
+-    accumulator_val.val[1] = vaddq_f32(prod_im, accumulator_val.val[1]);
+-
+-    tapsPtr += 4;
+-    inputPtr += 4;
+-  }
+-  vst2q_f32((float*)accumulator_vec, accumulator_val);
+-  accumulator_vec[0] += accumulator_vec[1];
+-  accumulator_vec[2] += accumulator_vec[3];
+-  accumulator_vec[0] += accumulator_vec[2];
+-
+-  for(ii = quarter_points * 4; ii < num_points; ++ii) {
+-    accumulator_vec[0] += *(tapsPtr++) * (float)(*(inputPtr++));
+-  }
+-
+-  *result = accumulator_vec[0];
++static inline void volk_16i_32fc_dot_prod_32fc_neon(lv_32fc_t* result,
++                                                    const short* input,
++                                                    const lv_32fc_t* taps,
++                                                    unsigned int num_points)
++{
++
++    unsigned ii;
++    unsigned quarter_points = num_points / 4;
++    lv_32fc_t* tapsPtr = (lv_32fc_t*)taps;
++    short* inputPtr = (short*)input;
++    lv_32fc_t accumulator_vec[4];
++
++    float32x4x2_t tapsVal, accumulator_val;
++    int16x4_t input16;
++    int32x4_t input32;
++    float32x4_t input_float, prod_re, prod_im;
++
++    accumulator_val.val[0] = vdupq_n_f32(0.0);
++    accumulator_val.val[1] = vdupq_n_f32(0.0);
++
++    for (ii = 0; ii < quarter_points; ++ii) {
++        tapsVal = vld2q_f32((float*)tapsPtr);
++        input16 = vld1_s16(inputPtr);
++        // widen 16-bit int to 32-bit int
++        input32 = vmovl_s16(input16);
++        // convert 32-bit int to float with scale
++        input_float = vcvtq_f32_s32(input32);
++
++        prod_re = vmulq_f32(input_float, tapsVal.val[0]);
++        prod_im = vmulq_f32(input_float, tapsVal.val[1]);
++
++        accumulator_val.val[0] = vaddq_f32(prod_re, accumulator_val.val[0]);
++        accumulator_val.val[1] = vaddq_f32(prod_im, accumulator_val.val[1]);
++
++        tapsPtr += 4;
++        inputPtr += 4;
++    }
++    vst2q_f32((float*)accumulator_vec, accumulator_val);
++    accumulator_vec[0] += accumulator_vec[1];
++    accumulator_vec[2] += accumulator_vec[3];
++    accumulator_vec[0] += accumulator_vec[2];
++
++    for (ii = quarter_points * 4; ii < num_points; ++ii) {
++        accumulator_vec[0] += *(tapsPtr++) * (float)(*(inputPtr++));
++    }
++
++    *result = accumulator_vec[0];
+ }
+ #endif /*LV_HAVE_NEON*/
+ #if LV_HAVE_SSE && LV_HAVE_MMX
+-static inline void volk_16i_32fc_dot_prod_32fc_u_sse( lv_32fc_t* result, const  short* input, const  lv_32fc_t* taps, unsigned int num_points) {
+-
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 8;
+-
+-  float res[2];
+-  float *realpt = &res[0], *imagpt = &res[1];
+-  const short* aPtr = input;
+-  const float* bPtr = (float*)taps;
+-
+-  __m64  m0, m1;
+-  __m128 f0, f1, f2, f3;
+-  __m128 a0Val, a1Val, a2Val, a3Val;
+-  __m128 b0Val, b1Val, b2Val, b3Val;
+-  __m128 c0Val, c1Val, c2Val, c3Val;
+-
+-  __m128 dotProdVal0 = _mm_setzero_ps();
+-  __m128 dotProdVal1 = _mm_setzero_ps();
+-  __m128 dotProdVal2 = _mm_setzero_ps();
+-  __m128 dotProdVal3 = _mm_setzero_ps();
+-
+-  for(;number < sixteenthPoints; number++){
+-
+-    m0 = _mm_set_pi16(*(aPtr+3), *(aPtr+2), *(aPtr+1), *(aPtr+0));
+-    m1 = _mm_set_pi16(*(aPtr+7), *(aPtr+6), *(aPtr+5), *(aPtr+4));
+-    f0 = _mm_cvtpi16_ps(m0);
+-    f1 = _mm_cvtpi16_ps(m0);
+-    f2 = _mm_cvtpi16_ps(m1);
+-    f3 = _mm_cvtpi16_ps(m1);
+-
+-    a0Val = _mm_unpacklo_ps(f0, f1);
+-    a1Val = _mm_unpackhi_ps(f0, f1);
+-    a2Val = _mm_unpacklo_ps(f2, f3);
+-    a3Val = _mm_unpackhi_ps(f2, f3);
+-
+-    b0Val = _mm_loadu_ps(bPtr);
+-    b1Val = _mm_loadu_ps(bPtr+4);
+-    b2Val = _mm_loadu_ps(bPtr+8);
+-    b3Val = _mm_loadu_ps(bPtr+12);
+-
+-    c0Val = _mm_mul_ps(a0Val, b0Val);
+-    c1Val = _mm_mul_ps(a1Val, b1Val);
+-    c2Val = _mm_mul_ps(a2Val, b2Val);
+-    c3Val = _mm_mul_ps(a3Val, b3Val);
+-
+-    dotProdVal0 = _mm_add_ps(c0Val, dotProdVal0);
+-    dotProdVal1 = _mm_add_ps(c1Val, dotProdVal1);
+-    dotProdVal2 = _mm_add_ps(c2Val, dotProdVal2);
+-    dotProdVal3 = _mm_add_ps(c3Val, dotProdVal3);
+-
+-    aPtr += 8;
+-    bPtr += 16;
+-  }
+-
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal1);
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal2);
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal3);
+-
+-  __VOLK_ATTR_ALIGNED(16) float dotProductVector[4];
+-
+-  _mm_store_ps(dotProductVector,dotProdVal0); // Store the results back into the dot product vector
+-
+-  *realpt = dotProductVector[0];
+-  *imagpt = dotProductVector[1];
+-  *realpt += dotProductVector[2];
+-  *imagpt += dotProductVector[3];
+-
+-  number = sixteenthPoints*8;
+-  for(;number < num_points; number++){
+-    *realpt += ((*aPtr)   * (*bPtr++));
+-    *imagpt += ((*aPtr++) * (*bPtr++));
+-  }
+-
+-  *result = *(lv_32fc_t*)(&res[0]);
++static inline void volk_16i_32fc_dot_prod_32fc_u_sse(lv_32fc_t* result,
++                                                     const short* input,
++                                                     const lv_32fc_t* taps,
++                                                     unsigned int num_points)
++{
++
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 8;
++
++    float res[2];
++    float *realpt = &res[0], *imagpt = &res[1];
++    const short* aPtr = input;
++    const float* bPtr = (float*)taps;
++
++    __m64 m0, m1;
++    __m128 f0, f1, f2, f3;
++    __m128 a0Val, a1Val, a2Val, a3Val;
++    __m128 b0Val, b1Val, b2Val, b3Val;
++    __m128 c0Val, c1Val, c2Val, c3Val;
++
++    __m128 dotProdVal0 = _mm_setzero_ps();
++    __m128 dotProdVal1 = _mm_setzero_ps();
++    __m128 dotProdVal2 = _mm_setzero_ps();
++    __m128 dotProdVal3 = _mm_setzero_ps();
++
++    for (; number < sixteenthPoints; number++) {
++
++        m0 = _mm_set_pi16(*(aPtr + 3), *(aPtr + 2), *(aPtr + 1), *(aPtr + 0));
++        m1 = _mm_set_pi16(*(aPtr + 7), *(aPtr + 6), *(aPtr + 5), *(aPtr + 4));
++        f0 = _mm_cvtpi16_ps(m0);
++        f1 = _mm_cvtpi16_ps(m0);
++        f2 = _mm_cvtpi16_ps(m1);
++        f3 = _mm_cvtpi16_ps(m1);
++
++        a0Val = _mm_unpacklo_ps(f0, f1);
++        a1Val = _mm_unpackhi_ps(f0, f1);
++        a2Val = _mm_unpacklo_ps(f2, f3);
++        a3Val = _mm_unpackhi_ps(f2, f3);
++
++        b0Val = _mm_loadu_ps(bPtr);
++        b1Val = _mm_loadu_ps(bPtr + 4);
++        b2Val = _mm_loadu_ps(bPtr + 8);
++        b3Val = _mm_loadu_ps(bPtr + 12);
++
++        c0Val = _mm_mul_ps(a0Val, b0Val);
++        c1Val = _mm_mul_ps(a1Val, b1Val);
++        c2Val = _mm_mul_ps(a2Val, b2Val);
++        c3Val = _mm_mul_ps(a3Val, b3Val);
++
++        dotProdVal0 = _mm_add_ps(c0Val, dotProdVal0);
++        dotProdVal1 = _mm_add_ps(c1Val, dotProdVal1);
++        dotProdVal2 = _mm_add_ps(c2Val, dotProdVal2);
++        dotProdVal3 = _mm_add_ps(c3Val, dotProdVal3);
++
++        aPtr += 8;
++        bPtr += 16;
++    }
++
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal1);
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal2);
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal3);
++
++    __VOLK_ATTR_ALIGNED(16) float dotProductVector[4];
++
++    _mm_store_ps(dotProductVector,
++                 dotProdVal0); // Store the results back into the dot product vector
++
++    *realpt = dotProductVector[0];
++    *imagpt = dotProductVector[1];
++    *realpt += dotProductVector[2];
++    *imagpt += dotProductVector[3];
++
++    number = sixteenthPoints * 8;
++    for (; number < num_points; number++) {
++        *realpt += ((*aPtr) * (*bPtr++));
++        *imagpt += ((*aPtr++) * (*bPtr++));
++    }
++
++    *result = *(lv_32fc_t*)(&res[0]);
+ }
+ #endif /*LV_HAVE_SSE && LV_HAVE_MMX*/
+@@ -224,85 +237,90 @@ static inline void volk_16i_32fc_dot_prod_32fc_u_sse( lv_32fc_t* result, const
+ #if LV_HAVE_AVX2 && LV_HAVE_FMA
+-static inline void volk_16i_32fc_dot_prod_32fc_u_avx2_fma( lv_32fc_t* result, const  short* input, const  lv_32fc_t* taps, unsigned int num_points) {
+-
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
+-
+-  float res[2];
+-  float *realpt = &res[0], *imagpt = &res[1];
+-  const short* aPtr = input;
+-  const float* bPtr = (float*)taps;
+-
+-  __m128i  m0, m1;
+-  __m256i f0, f1;
+-  __m256  g0, g1, h0, h1, h2, h3;
+-  __m256 a0Val, a1Val, a2Val, a3Val;
+-  __m256 b0Val, b1Val, b2Val, b3Val;
+-
+-  __m256 dotProdVal0 = _mm256_setzero_ps();
+-  __m256 dotProdVal1 = _mm256_setzero_ps();
+-  __m256 dotProdVal2 = _mm256_setzero_ps();
+-  __m256 dotProdVal3 = _mm256_setzero_ps();
+-
+-  for(;number < sixteenthPoints; number++){
+-
+-    m0 = _mm_loadu_si128((__m128i const*) aPtr);
+-    m1 = _mm_loadu_si128((__m128i const*)(aPtr+8));
+-
+-    f0 = _mm256_cvtepi16_epi32(m0);
+-    g0 = _mm256_cvtepi32_ps(f0);
+-    f1 = _mm256_cvtepi16_epi32(m1);
+-    g1 = _mm256_cvtepi32_ps(f1);
+-
+-    h0 = _mm256_unpacklo_ps(g0, g0);
+-    h1 = _mm256_unpackhi_ps(g0, g0);
+-    h2 = _mm256_unpacklo_ps(g1, g1);
+-    h3 = _mm256_unpackhi_ps(g1, g1);
+-
+-    a0Val = _mm256_permute2f128_ps(h0, h1, 0x20);
+-    a1Val = _mm256_permute2f128_ps(h0, h1, 0x31);
+-    a2Val = _mm256_permute2f128_ps(h2, h3, 0x20);
+-    a3Val = _mm256_permute2f128_ps(h2, h3, 0x31);
+-
+-    b0Val = _mm256_loadu_ps(bPtr);
+-    b1Val = _mm256_loadu_ps(bPtr+8);
+-    b2Val = _mm256_loadu_ps(bPtr+16);
+-    b3Val = _mm256_loadu_ps(bPtr+24);
+-
+-    dotProdVal0 = _mm256_fmadd_ps(a0Val,b0Val,dotProdVal0);
+-    dotProdVal1 = _mm256_fmadd_ps(a1Val,b1Val,dotProdVal1);
+-    dotProdVal2 = _mm256_fmadd_ps(a2Val,b2Val,dotProdVal2);
+-    dotProdVal3 = _mm256_fmadd_ps(a3Val,b3Val,dotProdVal3);
+-
+-    aPtr += 16;
+-    bPtr += 32;
+-  }
+-
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal1);
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal2);
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal3);
+-
+-  __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
+-
+-  _mm256_store_ps(dotProductVector,dotProdVal0); // Store the results back into the dot product vector
+-
+-  *realpt = dotProductVector[0];
+-  *imagpt = dotProductVector[1];
+-  *realpt += dotProductVector[2];
+-  *imagpt += dotProductVector[3];
+-  *realpt += dotProductVector[4];
+-  *imagpt += dotProductVector[5];
+-  *realpt += dotProductVector[6];
+-  *imagpt += dotProductVector[7];
+-
+-  number = sixteenthPoints*16;
+-  for(;number < num_points; number++){
+-    *realpt += ((*aPtr)   * (*bPtr++));
+-    *imagpt += ((*aPtr++) * (*bPtr++));
+-  }
+-
+-  *result = *(lv_32fc_t*)(&res[0]);
++static inline void volk_16i_32fc_dot_prod_32fc_u_avx2_fma(lv_32fc_t* result,
++                                                          const short* input,
++                                                          const lv_32fc_t* taps,
++                                                          unsigned int num_points)
++{
++
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
++
++    float res[2];
++    float *realpt = &res[0], *imagpt = &res[1];
++    const short* aPtr = input;
++    const float* bPtr = (float*)taps;
++
++    __m128i m0, m1;
++    __m256i f0, f1;
++    __m256 g0, g1, h0, h1, h2, h3;
++    __m256 a0Val, a1Val, a2Val, a3Val;
++    __m256 b0Val, b1Val, b2Val, b3Val;
++
++    __m256 dotProdVal0 = _mm256_setzero_ps();
++    __m256 dotProdVal1 = _mm256_setzero_ps();
++    __m256 dotProdVal2 = _mm256_setzero_ps();
++    __m256 dotProdVal3 = _mm256_setzero_ps();
++
++    for (; number < sixteenthPoints; number++) {
++
++        m0 = _mm_loadu_si128((__m128i const*)aPtr);
++        m1 = _mm_loadu_si128((__m128i const*)(aPtr + 8));
++
++        f0 = _mm256_cvtepi16_epi32(m0);
++        g0 = _mm256_cvtepi32_ps(f0);
++        f1 = _mm256_cvtepi16_epi32(m1);
++        g1 = _mm256_cvtepi32_ps(f1);
++
++        h0 = _mm256_unpacklo_ps(g0, g0);
++        h1 = _mm256_unpackhi_ps(g0, g0);
++        h2 = _mm256_unpacklo_ps(g1, g1);
++        h3 = _mm256_unpackhi_ps(g1, g1);
++
++        a0Val = _mm256_permute2f128_ps(h0, h1, 0x20);
++        a1Val = _mm256_permute2f128_ps(h0, h1, 0x31);
++        a2Val = _mm256_permute2f128_ps(h2, h3, 0x20);
++        a3Val = _mm256_permute2f128_ps(h2, h3, 0x31);
++
++        b0Val = _mm256_loadu_ps(bPtr);
++        b1Val = _mm256_loadu_ps(bPtr + 8);
++        b2Val = _mm256_loadu_ps(bPtr + 16);
++        b3Val = _mm256_loadu_ps(bPtr + 24);
++
++        dotProdVal0 = _mm256_fmadd_ps(a0Val, b0Val, dotProdVal0);
++        dotProdVal1 = _mm256_fmadd_ps(a1Val, b1Val, dotProdVal1);
++        dotProdVal2 = _mm256_fmadd_ps(a2Val, b2Val, dotProdVal2);
++        dotProdVal3 = _mm256_fmadd_ps(a3Val, b3Val, dotProdVal3);
++
++        aPtr += 16;
++        bPtr += 32;
++    }
++
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal1);
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal2);
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal3);
++
++    __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
++
++    _mm256_store_ps(dotProductVector,
++                    dotProdVal0); // Store the results back into the dot product vector
++
++    *realpt = dotProductVector[0];
++    *imagpt = dotProductVector[1];
++    *realpt += dotProductVector[2];
++    *imagpt += dotProductVector[3];
++    *realpt += dotProductVector[4];
++    *imagpt += dotProductVector[5];
++    *realpt += dotProductVector[6];
++    *imagpt += dotProductVector[7];
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        *realpt += ((*aPtr) * (*bPtr++));
++        *imagpt += ((*aPtr++) * (*bPtr++));
++    }
++
++    *result = *(lv_32fc_t*)(&res[0]);
+ }
+ #endif /*LV_HAVE_AVX2 && lV_HAVE_FMA*/
+@@ -310,91 +328,96 @@ static inline void volk_16i_32fc_dot_prod_32fc_u_avx2_fma( lv_32fc_t* result, co
+ #ifdef LV_HAVE_AVX2
+-static inline void volk_16i_32fc_dot_prod_32fc_u_avx2( lv_32fc_t* result, const  short* input, const  lv_32fc_t* taps, unsigned int num_points) {
+-
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
+-
+-  float res[2];
+-  float *realpt = &res[0], *imagpt = &res[1];
+-  const short* aPtr = input;
+-  const float* bPtr = (float*)taps;
+-
+-  __m128i  m0, m1;
+-  __m256i f0, f1;
+-  __m256  g0, g1, h0, h1, h2, h3;
+-  __m256 a0Val, a1Val, a2Val, a3Val;
+-  __m256 b0Val, b1Val, b2Val, b3Val;
+-  __m256 c0Val, c1Val, c2Val, c3Val;
+-
+-  __m256 dotProdVal0 = _mm256_setzero_ps();
+-  __m256 dotProdVal1 = _mm256_setzero_ps();
+-  __m256 dotProdVal2 = _mm256_setzero_ps();
+-  __m256 dotProdVal3 = _mm256_setzero_ps();
+-
+-  for(;number < sixteenthPoints; number++){
+-
+-    m0 = _mm_loadu_si128((__m128i const*) aPtr);
+-    m1 = _mm_loadu_si128((__m128i const*)(aPtr+8));
+-
+-    f0 = _mm256_cvtepi16_epi32(m0);
+-    g0 = _mm256_cvtepi32_ps(f0);
+-    f1 = _mm256_cvtepi16_epi32(m1);
+-    g1 = _mm256_cvtepi32_ps(f1);
+-
+-    h0 = _mm256_unpacklo_ps(g0, g0);
+-    h1 = _mm256_unpackhi_ps(g0, g0);
+-    h2 = _mm256_unpacklo_ps(g1, g1);
+-    h3 = _mm256_unpackhi_ps(g1, g1);
+-
+-    a0Val = _mm256_permute2f128_ps(h0, h1, 0x20);
+-    a1Val = _mm256_permute2f128_ps(h0, h1, 0x31);
+-    a2Val = _mm256_permute2f128_ps(h2, h3, 0x20);
+-    a3Val = _mm256_permute2f128_ps(h2, h3, 0x31);
+-
+-    b0Val = _mm256_loadu_ps(bPtr);
+-    b1Val = _mm256_loadu_ps(bPtr+8);
+-    b2Val = _mm256_loadu_ps(bPtr+16);
+-    b3Val = _mm256_loadu_ps(bPtr+24);
+-
+-    c0Val = _mm256_mul_ps(a0Val, b0Val);
+-    c1Val = _mm256_mul_ps(a1Val, b1Val);
+-    c2Val = _mm256_mul_ps(a2Val, b2Val);
+-    c3Val = _mm256_mul_ps(a3Val, b3Val);
+-
+-    dotProdVal0 = _mm256_add_ps(c0Val, dotProdVal0);
+-    dotProdVal1 = _mm256_add_ps(c1Val, dotProdVal1);
+-    dotProdVal2 = _mm256_add_ps(c2Val, dotProdVal2);
+-    dotProdVal3 = _mm256_add_ps(c3Val, dotProdVal3);
+-
+-    aPtr += 16;
+-    bPtr += 32;
+-  }
+-
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal1);
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal2);
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal3);
+-
+-  __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
+-
+-  _mm256_store_ps(dotProductVector,dotProdVal0); // Store the results back into the dot product vector
+-
+-  *realpt = dotProductVector[0];
+-  *imagpt = dotProductVector[1];
+-  *realpt += dotProductVector[2];
+-  *imagpt += dotProductVector[3];
+-  *realpt += dotProductVector[4];
+-  *imagpt += dotProductVector[5];
+-  *realpt += dotProductVector[6];
+-  *imagpt += dotProductVector[7];
+-
+-  number = sixteenthPoints*16;
+-  for(;number < num_points; number++){
+-    *realpt += ((*aPtr)   * (*bPtr++));
+-    *imagpt += ((*aPtr++) * (*bPtr++));
+-  }
+-
+-  *result = *(lv_32fc_t*)(&res[0]);
++static inline void volk_16i_32fc_dot_prod_32fc_u_avx2(lv_32fc_t* result,
++                                                      const short* input,
++                                                      const lv_32fc_t* taps,
++                                                      unsigned int num_points)
++{
++
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
++
++    float res[2];
++    float *realpt = &res[0], *imagpt = &res[1];
++    const short* aPtr = input;
++    const float* bPtr = (float*)taps;
++
++    __m128i m0, m1;
++    __m256i f0, f1;
++    __m256 g0, g1, h0, h1, h2, h3;
++    __m256 a0Val, a1Val, a2Val, a3Val;
++    __m256 b0Val, b1Val, b2Val, b3Val;
++    __m256 c0Val, c1Val, c2Val, c3Val;
++
++    __m256 dotProdVal0 = _mm256_setzero_ps();
++    __m256 dotProdVal1 = _mm256_setzero_ps();
++    __m256 dotProdVal2 = _mm256_setzero_ps();
++    __m256 dotProdVal3 = _mm256_setzero_ps();
++
++    for (; number < sixteenthPoints; number++) {
++
++        m0 = _mm_loadu_si128((__m128i const*)aPtr);
++        m1 = _mm_loadu_si128((__m128i const*)(aPtr + 8));
++
++        f0 = _mm256_cvtepi16_epi32(m0);
++        g0 = _mm256_cvtepi32_ps(f0);
++        f1 = _mm256_cvtepi16_epi32(m1);
++        g1 = _mm256_cvtepi32_ps(f1);
++
++        h0 = _mm256_unpacklo_ps(g0, g0);
++        h1 = _mm256_unpackhi_ps(g0, g0);
++        h2 = _mm256_unpacklo_ps(g1, g1);
++        h3 = _mm256_unpackhi_ps(g1, g1);
++
++        a0Val = _mm256_permute2f128_ps(h0, h1, 0x20);
++        a1Val = _mm256_permute2f128_ps(h0, h1, 0x31);
++        a2Val = _mm256_permute2f128_ps(h2, h3, 0x20);
++        a3Val = _mm256_permute2f128_ps(h2, h3, 0x31);
++
++        b0Val = _mm256_loadu_ps(bPtr);
++        b1Val = _mm256_loadu_ps(bPtr + 8);
++        b2Val = _mm256_loadu_ps(bPtr + 16);
++        b3Val = _mm256_loadu_ps(bPtr + 24);
++
++        c0Val = _mm256_mul_ps(a0Val, b0Val);
++        c1Val = _mm256_mul_ps(a1Val, b1Val);
++        c2Val = _mm256_mul_ps(a2Val, b2Val);
++        c3Val = _mm256_mul_ps(a3Val, b3Val);
++
++        dotProdVal0 = _mm256_add_ps(c0Val, dotProdVal0);
++        dotProdVal1 = _mm256_add_ps(c1Val, dotProdVal1);
++        dotProdVal2 = _mm256_add_ps(c2Val, dotProdVal2);
++        dotProdVal3 = _mm256_add_ps(c3Val, dotProdVal3);
++
++        aPtr += 16;
++        bPtr += 32;
++    }
++
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal1);
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal2);
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal3);
++
++    __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
++
++    _mm256_store_ps(dotProductVector,
++                    dotProdVal0); // Store the results back into the dot product vector
++
++    *realpt = dotProductVector[0];
++    *imagpt = dotProductVector[1];
++    *realpt += dotProductVector[2];
++    *imagpt += dotProductVector[3];
++    *realpt += dotProductVector[4];
++    *imagpt += dotProductVector[5];
++    *realpt += dotProductVector[6];
++    *imagpt += dotProductVector[7];
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        *realpt += ((*aPtr) * (*bPtr++));
++        *imagpt += ((*aPtr++) * (*bPtr++));
++    }
++
++    *result = *(lv_32fc_t*)(&res[0]);
+ }
+ #endif /*LV_HAVE_AVX2*/
+@@ -403,171 +426,181 @@ static inline void volk_16i_32fc_dot_prod_32fc_u_avx2( lv_32fc_t* result, const
+ #if LV_HAVE_SSE && LV_HAVE_MMX
+-static inline void volk_16i_32fc_dot_prod_32fc_a_sse( lv_32fc_t* result, const  short* input, const  lv_32fc_t* taps, unsigned int num_points) {
+-
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 8;
+-
+-  float res[2];
+-  float *realpt = &res[0], *imagpt = &res[1];
+-  const short* aPtr = input;
+-  const float* bPtr = (float*)taps;
+-
+-  __m64  m0, m1;
+-  __m128 f0, f1, f2, f3;
+-  __m128 a0Val, a1Val, a2Val, a3Val;
+-  __m128 b0Val, b1Val, b2Val, b3Val;
+-  __m128 c0Val, c1Val, c2Val, c3Val;
+-
+-  __m128 dotProdVal0 = _mm_setzero_ps();
+-  __m128 dotProdVal1 = _mm_setzero_ps();
+-  __m128 dotProdVal2 = _mm_setzero_ps();
+-  __m128 dotProdVal3 = _mm_setzero_ps();
+-
+-  for(;number < sixteenthPoints; number++){
+-
+-    m0 = _mm_set_pi16(*(aPtr+3), *(aPtr+2), *(aPtr+1), *(aPtr+0));
+-    m1 = _mm_set_pi16(*(aPtr+7), *(aPtr+6), *(aPtr+5), *(aPtr+4));
+-    f0 = _mm_cvtpi16_ps(m0);
+-    f1 = _mm_cvtpi16_ps(m0);
+-    f2 = _mm_cvtpi16_ps(m1);
+-    f3 = _mm_cvtpi16_ps(m1);
+-
+-    a0Val = _mm_unpacklo_ps(f0, f1);
+-    a1Val = _mm_unpackhi_ps(f0, f1);
+-    a2Val = _mm_unpacklo_ps(f2, f3);
+-    a3Val = _mm_unpackhi_ps(f2, f3);
+-
+-    b0Val = _mm_load_ps(bPtr);
+-    b1Val = _mm_load_ps(bPtr+4);
+-    b2Val = _mm_load_ps(bPtr+8);
+-    b3Val = _mm_load_ps(bPtr+12);
+-
+-    c0Val = _mm_mul_ps(a0Val, b0Val);
+-    c1Val = _mm_mul_ps(a1Val, b1Val);
+-    c2Val = _mm_mul_ps(a2Val, b2Val);
+-    c3Val = _mm_mul_ps(a3Val, b3Val);
+-
+-    dotProdVal0 = _mm_add_ps(c0Val, dotProdVal0);
+-    dotProdVal1 = _mm_add_ps(c1Val, dotProdVal1);
+-    dotProdVal2 = _mm_add_ps(c2Val, dotProdVal2);
+-    dotProdVal3 = _mm_add_ps(c3Val, dotProdVal3);
+-
+-    aPtr += 8;
+-    bPtr += 16;
+-  }
+-
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal1);
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal2);
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal3);
+-
+-  __VOLK_ATTR_ALIGNED(16) float dotProductVector[4];
+-
+-  _mm_store_ps(dotProductVector,dotProdVal0); // Store the results back into the dot product vector
+-
+-  *realpt = dotProductVector[0];
+-  *imagpt = dotProductVector[1];
+-  *realpt += dotProductVector[2];
+-  *imagpt += dotProductVector[3];
+-
+-  number = sixteenthPoints*8;
+-  for(;number < num_points; number++){
+-    *realpt += ((*aPtr)   * (*bPtr++));
+-    *imagpt += ((*aPtr++) * (*bPtr++));
+-  }
+-
+-  *result = *(lv_32fc_t*)(&res[0]);
++static inline void volk_16i_32fc_dot_prod_32fc_a_sse(lv_32fc_t* result,
++                                                     const short* input,
++                                                     const lv_32fc_t* taps,
++                                                     unsigned int num_points)
++{
++
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 8;
++
++    float res[2];
++    float *realpt = &res[0], *imagpt = &res[1];
++    const short* aPtr = input;
++    const float* bPtr = (float*)taps;
++
++    __m64 m0, m1;
++    __m128 f0, f1, f2, f3;
++    __m128 a0Val, a1Val, a2Val, a3Val;
++    __m128 b0Val, b1Val, b2Val, b3Val;
++    __m128 c0Val, c1Val, c2Val, c3Val;
++
++    __m128 dotProdVal0 = _mm_setzero_ps();
++    __m128 dotProdVal1 = _mm_setzero_ps();
++    __m128 dotProdVal2 = _mm_setzero_ps();
++    __m128 dotProdVal3 = _mm_setzero_ps();
++
++    for (; number < sixteenthPoints; number++) {
++
++        m0 = _mm_set_pi16(*(aPtr + 3), *(aPtr + 2), *(aPtr + 1), *(aPtr + 0));
++        m1 = _mm_set_pi16(*(aPtr + 7), *(aPtr + 6), *(aPtr + 5), *(aPtr + 4));
++        f0 = _mm_cvtpi16_ps(m0);
++        f1 = _mm_cvtpi16_ps(m0);
++        f2 = _mm_cvtpi16_ps(m1);
++        f3 = _mm_cvtpi16_ps(m1);
++
++        a0Val = _mm_unpacklo_ps(f0, f1);
++        a1Val = _mm_unpackhi_ps(f0, f1);
++        a2Val = _mm_unpacklo_ps(f2, f3);
++        a3Val = _mm_unpackhi_ps(f2, f3);
++
++        b0Val = _mm_load_ps(bPtr);
++        b1Val = _mm_load_ps(bPtr + 4);
++        b2Val = _mm_load_ps(bPtr + 8);
++        b3Val = _mm_load_ps(bPtr + 12);
++
++        c0Val = _mm_mul_ps(a0Val, b0Val);
++        c1Val = _mm_mul_ps(a1Val, b1Val);
++        c2Val = _mm_mul_ps(a2Val, b2Val);
++        c3Val = _mm_mul_ps(a3Val, b3Val);
++
++        dotProdVal0 = _mm_add_ps(c0Val, dotProdVal0);
++        dotProdVal1 = _mm_add_ps(c1Val, dotProdVal1);
++        dotProdVal2 = _mm_add_ps(c2Val, dotProdVal2);
++        dotProdVal3 = _mm_add_ps(c3Val, dotProdVal3);
++
++        aPtr += 8;
++        bPtr += 16;
++    }
++
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal1);
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal2);
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal3);
++
++    __VOLK_ATTR_ALIGNED(16) float dotProductVector[4];
++
++    _mm_store_ps(dotProductVector,
++                 dotProdVal0); // Store the results back into the dot product vector
++
++    *realpt = dotProductVector[0];
++    *imagpt = dotProductVector[1];
++    *realpt += dotProductVector[2];
++    *imagpt += dotProductVector[3];
++
++    number = sixteenthPoints * 8;
++    for (; number < num_points; number++) {
++        *realpt += ((*aPtr) * (*bPtr++));
++        *imagpt += ((*aPtr++) * (*bPtr++));
++    }
++
++    *result = *(lv_32fc_t*)(&res[0]);
+ }
+ #endif /*LV_HAVE_SSE && LV_HAVE_MMX*/
+ #ifdef LV_HAVE_AVX2
+-static inline void volk_16i_32fc_dot_prod_32fc_a_avx2( lv_32fc_t* result, const  short* input, const  lv_32fc_t* taps, unsigned int num_points) {
+-
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
+-
+-  float res[2];
+-  float *realpt = &res[0], *imagpt = &res[1];
+-  const short* aPtr = input;
+-  const float* bPtr = (float*)taps;
+-
+-  __m128i  m0, m1;
+-  __m256i f0, f1;
+-  __m256  g0, g1, h0, h1, h2, h3;
+-  __m256 a0Val, a1Val, a2Val, a3Val;
+-  __m256 b0Val, b1Val, b2Val, b3Val;
+-  __m256 c0Val, c1Val, c2Val, c3Val;
+-
+-  __m256 dotProdVal0 = _mm256_setzero_ps();
+-  __m256 dotProdVal1 = _mm256_setzero_ps();
+-  __m256 dotProdVal2 = _mm256_setzero_ps();
+-  __m256 dotProdVal3 = _mm256_setzero_ps();
+-
+-  for(;number < sixteenthPoints; number++){
+-
+-    m0 = _mm_load_si128((__m128i const*) aPtr);
+-    m1 = _mm_load_si128((__m128i const*)(aPtr+8));
+-
+-    f0 = _mm256_cvtepi16_epi32(m0);
+-    g0 = _mm256_cvtepi32_ps(f0);
+-    f1 = _mm256_cvtepi16_epi32(m1);
+-    g1 = _mm256_cvtepi32_ps(f1);
+-
+-    h0 = _mm256_unpacklo_ps(g0, g0);
+-    h1 = _mm256_unpackhi_ps(g0, g0);
+-    h2 = _mm256_unpacklo_ps(g1, g1);
+-    h3 = _mm256_unpackhi_ps(g1, g1);
+-
+-    a0Val = _mm256_permute2f128_ps(h0, h1, 0x20);
+-    a1Val = _mm256_permute2f128_ps(h0, h1, 0x31);
+-    a2Val = _mm256_permute2f128_ps(h2, h3, 0x20);
+-    a3Val = _mm256_permute2f128_ps(h2, h3, 0x31);
+-
+-    b0Val = _mm256_load_ps(bPtr);
+-    b1Val = _mm256_load_ps(bPtr+8);
+-    b2Val = _mm256_load_ps(bPtr+16);
+-    b3Val = _mm256_load_ps(bPtr+24);
+-
+-    c0Val = _mm256_mul_ps(a0Val, b0Val);
+-    c1Val = _mm256_mul_ps(a1Val, b1Val);
+-    c2Val = _mm256_mul_ps(a2Val, b2Val);
+-    c3Val = _mm256_mul_ps(a3Val, b3Val);
+-
+-    dotProdVal0 = _mm256_add_ps(c0Val, dotProdVal0);
+-    dotProdVal1 = _mm256_add_ps(c1Val, dotProdVal1);
+-    dotProdVal2 = _mm256_add_ps(c2Val, dotProdVal2);
+-    dotProdVal3 = _mm256_add_ps(c3Val, dotProdVal3);
+-
+-    aPtr += 16;
+-    bPtr += 32;
+-  }
+-
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal1);
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal2);
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal3);
+-
+-  __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
+-
+-  _mm256_store_ps(dotProductVector,dotProdVal0); // Store the results back into the dot product vector
+-
+-  *realpt = dotProductVector[0];
+-  *imagpt = dotProductVector[1];
+-  *realpt += dotProductVector[2];
+-  *imagpt += dotProductVector[3];
+-  *realpt += dotProductVector[4];
+-  *imagpt += dotProductVector[5];
+-  *realpt += dotProductVector[6];
+-  *imagpt += dotProductVector[7];
+-
+-  number = sixteenthPoints*16;
+-  for(;number < num_points; number++){
+-    *realpt += ((*aPtr)   * (*bPtr++));
+-    *imagpt += ((*aPtr++) * (*bPtr++));
+-  }
+-
+-  *result = *(lv_32fc_t*)(&res[0]);
++static inline void volk_16i_32fc_dot_prod_32fc_a_avx2(lv_32fc_t* result,
++                                                      const short* input,
++                                                      const lv_32fc_t* taps,
++                                                      unsigned int num_points)
++{
++
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
++
++    float res[2];
++    float *realpt = &res[0], *imagpt = &res[1];
++    const short* aPtr = input;
++    const float* bPtr = (float*)taps;
++
++    __m128i m0, m1;
++    __m256i f0, f1;
++    __m256 g0, g1, h0, h1, h2, h3;
++    __m256 a0Val, a1Val, a2Val, a3Val;
++    __m256 b0Val, b1Val, b2Val, b3Val;
++    __m256 c0Val, c1Val, c2Val, c3Val;
++
++    __m256 dotProdVal0 = _mm256_setzero_ps();
++    __m256 dotProdVal1 = _mm256_setzero_ps();
++    __m256 dotProdVal2 = _mm256_setzero_ps();
++    __m256 dotProdVal3 = _mm256_setzero_ps();
++
++    for (; number < sixteenthPoints; number++) {
++
++        m0 = _mm_load_si128((__m128i const*)aPtr);
++        m1 = _mm_load_si128((__m128i const*)(aPtr + 8));
++
++        f0 = _mm256_cvtepi16_epi32(m0);
++        g0 = _mm256_cvtepi32_ps(f0);
++        f1 = _mm256_cvtepi16_epi32(m1);
++        g1 = _mm256_cvtepi32_ps(f1);
++
++        h0 = _mm256_unpacklo_ps(g0, g0);
++        h1 = _mm256_unpackhi_ps(g0, g0);
++        h2 = _mm256_unpacklo_ps(g1, g1);
++        h3 = _mm256_unpackhi_ps(g1, g1);
++
++        a0Val = _mm256_permute2f128_ps(h0, h1, 0x20);
++        a1Val = _mm256_permute2f128_ps(h0, h1, 0x31);
++        a2Val = _mm256_permute2f128_ps(h2, h3, 0x20);
++        a3Val = _mm256_permute2f128_ps(h2, h3, 0x31);
++
++        b0Val = _mm256_load_ps(bPtr);
++        b1Val = _mm256_load_ps(bPtr + 8);
++        b2Val = _mm256_load_ps(bPtr + 16);
++        b3Val = _mm256_load_ps(bPtr + 24);
++
++        c0Val = _mm256_mul_ps(a0Val, b0Val);
++        c1Val = _mm256_mul_ps(a1Val, b1Val);
++        c2Val = _mm256_mul_ps(a2Val, b2Val);
++        c3Val = _mm256_mul_ps(a3Val, b3Val);
++
++        dotProdVal0 = _mm256_add_ps(c0Val, dotProdVal0);
++        dotProdVal1 = _mm256_add_ps(c1Val, dotProdVal1);
++        dotProdVal2 = _mm256_add_ps(c2Val, dotProdVal2);
++        dotProdVal3 = _mm256_add_ps(c3Val, dotProdVal3);
++
++        aPtr += 16;
++        bPtr += 32;
++    }
++
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal1);
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal2);
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal3);
++
++    __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
++
++    _mm256_store_ps(dotProductVector,
++                    dotProdVal0); // Store the results back into the dot product vector
++
++    *realpt = dotProductVector[0];
++    *imagpt = dotProductVector[1];
++    *realpt += dotProductVector[2];
++    *imagpt += dotProductVector[3];
++    *realpt += dotProductVector[4];
++    *imagpt += dotProductVector[5];
++    *realpt += dotProductVector[6];
++    *imagpt += dotProductVector[7];
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        *realpt += ((*aPtr) * (*bPtr++));
++        *imagpt += ((*aPtr++) * (*bPtr++));
++    }
++
++    *result = *(lv_32fc_t*)(&res[0]);
+ }
+@@ -575,85 +608,90 @@ static inline void volk_16i_32fc_dot_prod_32fc_a_avx2( lv_32fc_t* result, const
+ #if LV_HAVE_AVX2 && LV_HAVE_FMA
+-static inline void volk_16i_32fc_dot_prod_32fc_a_avx2_fma( lv_32fc_t* result, const  short* input, const  lv_32fc_t* taps, unsigned int num_points) {
+-
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
+-
+-  float res[2];
+-  float *realpt = &res[0], *imagpt = &res[1];
+-  const short* aPtr = input;
+-  const float* bPtr = (float*)taps;
+-
+-  __m128i  m0, m1;
+-  __m256i f0, f1;
+-  __m256  g0, g1, h0, h1, h2, h3;
+-  __m256 a0Val, a1Val, a2Val, a3Val;
+-  __m256 b0Val, b1Val, b2Val, b3Val;
+-
+-  __m256 dotProdVal0 = _mm256_setzero_ps();
+-  __m256 dotProdVal1 = _mm256_setzero_ps();
+-  __m256 dotProdVal2 = _mm256_setzero_ps();
+-  __m256 dotProdVal3 = _mm256_setzero_ps();
+-
+-  for(;number < sixteenthPoints; number++){
+-
+-    m0 = _mm_load_si128((__m128i const*) aPtr);
+-    m1 = _mm_load_si128((__m128i const*)(aPtr+8));
+-
+-    f0 = _mm256_cvtepi16_epi32(m0);
+-    g0 = _mm256_cvtepi32_ps(f0);
+-    f1 = _mm256_cvtepi16_epi32(m1);
+-    g1 = _mm256_cvtepi32_ps(f1);
+-
+-    h0 = _mm256_unpacklo_ps(g0, g0);
+-    h1 = _mm256_unpackhi_ps(g0, g0);
+-    h2 = _mm256_unpacklo_ps(g1, g1);
+-    h3 = _mm256_unpackhi_ps(g1, g1);
+-
+-    a0Val = _mm256_permute2f128_ps(h0, h1, 0x20);
+-    a1Val = _mm256_permute2f128_ps(h0, h1, 0x31);
+-    a2Val = _mm256_permute2f128_ps(h2, h3, 0x20);
+-    a3Val = _mm256_permute2f128_ps(h2, h3, 0x31);
+-
+-    b0Val = _mm256_load_ps(bPtr);
+-    b1Val = _mm256_load_ps(bPtr+8);
+-    b2Val = _mm256_load_ps(bPtr+16);
+-    b3Val = _mm256_load_ps(bPtr+24);
+-
+-    dotProdVal0 = _mm256_fmadd_ps(a0Val,b0Val,dotProdVal0);
+-    dotProdVal1 = _mm256_fmadd_ps(a1Val,b1Val,dotProdVal1);
+-    dotProdVal2 = _mm256_fmadd_ps(a2Val,b2Val,dotProdVal2);
+-    dotProdVal3 = _mm256_fmadd_ps(a3Val,b3Val,dotProdVal3);
+-
+-    aPtr += 16;
+-    bPtr += 32;
+-  }
+-
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal1);
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal2);
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal3);
+-
+-  __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
+-
+-  _mm256_store_ps(dotProductVector,dotProdVal0); // Store the results back into the dot product vector
+-
+-  *realpt = dotProductVector[0];
+-  *imagpt = dotProductVector[1];
+-  *realpt += dotProductVector[2];
+-  *imagpt += dotProductVector[3];
+-  *realpt += dotProductVector[4];
+-  *imagpt += dotProductVector[5];
+-  *realpt += dotProductVector[6];
+-  *imagpt += dotProductVector[7];
+-
+-  number = sixteenthPoints*16;
+-  for(;number < num_points; number++){
+-    *realpt += ((*aPtr)   * (*bPtr++));
+-    *imagpt += ((*aPtr++) * (*bPtr++));
+-  }
+-
+-  *result = *(lv_32fc_t*)(&res[0]);
++static inline void volk_16i_32fc_dot_prod_32fc_a_avx2_fma(lv_32fc_t* result,
++                                                          const short* input,
++                                                          const lv_32fc_t* taps,
++                                                          unsigned int num_points)
++{
++
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
++
++    float res[2];
++    float *realpt = &res[0], *imagpt = &res[1];
++    const short* aPtr = input;
++    const float* bPtr = (float*)taps;
++
++    __m128i m0, m1;
++    __m256i f0, f1;
++    __m256 g0, g1, h0, h1, h2, h3;
++    __m256 a0Val, a1Val, a2Val, a3Val;
++    __m256 b0Val, b1Val, b2Val, b3Val;
++
++    __m256 dotProdVal0 = _mm256_setzero_ps();
++    __m256 dotProdVal1 = _mm256_setzero_ps();
++    __m256 dotProdVal2 = _mm256_setzero_ps();
++    __m256 dotProdVal3 = _mm256_setzero_ps();
++
++    for (; number < sixteenthPoints; number++) {
++
++        m0 = _mm_load_si128((__m128i const*)aPtr);
++        m1 = _mm_load_si128((__m128i const*)(aPtr + 8));
++
++        f0 = _mm256_cvtepi16_epi32(m0);
++        g0 = _mm256_cvtepi32_ps(f0);
++        f1 = _mm256_cvtepi16_epi32(m1);
++        g1 = _mm256_cvtepi32_ps(f1);
++
++        h0 = _mm256_unpacklo_ps(g0, g0);
++        h1 = _mm256_unpackhi_ps(g0, g0);
++        h2 = _mm256_unpacklo_ps(g1, g1);
++        h3 = _mm256_unpackhi_ps(g1, g1);
++
++        a0Val = _mm256_permute2f128_ps(h0, h1, 0x20);
++        a1Val = _mm256_permute2f128_ps(h0, h1, 0x31);
++        a2Val = _mm256_permute2f128_ps(h2, h3, 0x20);
++        a3Val = _mm256_permute2f128_ps(h2, h3, 0x31);
++
++        b0Val = _mm256_load_ps(bPtr);
++        b1Val = _mm256_load_ps(bPtr + 8);
++        b2Val = _mm256_load_ps(bPtr + 16);
++        b3Val = _mm256_load_ps(bPtr + 24);
++
++        dotProdVal0 = _mm256_fmadd_ps(a0Val, b0Val, dotProdVal0);
++        dotProdVal1 = _mm256_fmadd_ps(a1Val, b1Val, dotProdVal1);
++        dotProdVal2 = _mm256_fmadd_ps(a2Val, b2Val, dotProdVal2);
++        dotProdVal3 = _mm256_fmadd_ps(a3Val, b3Val, dotProdVal3);
++
++        aPtr += 16;
++        bPtr += 32;
++    }
++
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal1);
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal2);
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal3);
++
++    __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
++
++    _mm256_store_ps(dotProductVector,
++                    dotProdVal0); // Store the results back into the dot product vector
++
++    *realpt = dotProductVector[0];
++    *imagpt = dotProductVector[1];
++    *realpt += dotProductVector[2];
++    *imagpt += dotProductVector[3];
++    *realpt += dotProductVector[4];
++    *imagpt += dotProductVector[5];
++    *realpt += dotProductVector[6];
++    *imagpt += dotProductVector[7];
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        *realpt += ((*aPtr) * (*bPtr++));
++        *imagpt += ((*aPtr++) * (*bPtr++));
++    }
++
++    *result = *(lv_32fc_t*)(&res[0]);
+ }
+diff --git a/kernels/volk/volk_16i_branch_4_state_8.h b/kernels/volk/volk_16i_branch_4_state_8.h
+index 31b66cc..4d00b6b 100644
+--- a/kernels/volk/volk_16i_branch_4_state_8.h
++++ b/kernels/volk/volk_16i_branch_4_state_8.h
+@@ -29,8 +29,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_16i_branch_4_state_8(short* target, short* src0, char** permuters, short* cntl2, short* cntl3, short* scalars)
+- * \endcode
++ * void volk_16i_branch_4_state_8(short* target, short* src0, char** permuters, short*
++ * cntl2, short* cntl3, short* scalars) \endcode
+  *
+  * \b Inputs
+  * \li src0: <FIXME>
+@@ -61,155 +61,154 @@
+ #ifdef LV_HAVE_SSSE3
+-#include <xmmintrin.h>
+ #include <emmintrin.h>
+ #include <tmmintrin.h>
++#include <xmmintrin.h>
+-static inline void
+-volk_16i_branch_4_state_8_a_ssse3(short* target, short* src0, char** permuters, short* cntl2, short* cntl3, short* scalars)
++static inline void volk_16i_branch_4_state_8_a_ssse3(short* target,
++                                                     short* src0,
++                                                     char** permuters,
++                                                     short* cntl2,
++                                                     short* cntl3,
++                                                     short* scalars)
+ {
+-  __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11;
+-  __m128i *p_target, *p_src0, *p_cntl2, *p_cntl3, *p_scalars;
++    __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10, xmm11;
++    __m128i *p_target, *p_src0, *p_cntl2, *p_cntl3, *p_scalars;
+-  p_target = (__m128i*)target;
+-  p_src0 = (__m128i*)src0;
+-  p_cntl2 = (__m128i*)cntl2;
+-  p_cntl3 = (__m128i*)cntl3;
+-  p_scalars = (__m128i*)scalars;
++    p_target = (__m128i*)target;
++    p_src0 = (__m128i*)src0;
++    p_cntl2 = (__m128i*)cntl2;
++    p_cntl3 = (__m128i*)cntl3;
++    p_scalars = (__m128i*)scalars;
+-  xmm0 = _mm_load_si128(p_scalars);
++    xmm0 = _mm_load_si128(p_scalars);
+-  xmm1 = _mm_shufflelo_epi16(xmm0, 0);
+-  xmm2 = _mm_shufflelo_epi16(xmm0, 0x55);
+-  xmm3 = _mm_shufflelo_epi16(xmm0, 0xaa);
+-  xmm4 = _mm_shufflelo_epi16(xmm0, 0xff);
++    xmm1 = _mm_shufflelo_epi16(xmm0, 0);
++    xmm2 = _mm_shufflelo_epi16(xmm0, 0x55);
++    xmm3 = _mm_shufflelo_epi16(xmm0, 0xaa);
++    xmm4 = _mm_shufflelo_epi16(xmm0, 0xff);
+-  xmm1 = _mm_shuffle_epi32(xmm1, 0x00);
+-  xmm2 = _mm_shuffle_epi32(xmm2, 0x00);
+-  xmm3 = _mm_shuffle_epi32(xmm3, 0x00);
+-  xmm4 = _mm_shuffle_epi32(xmm4, 0x00);
++    xmm1 = _mm_shuffle_epi32(xmm1, 0x00);
++    xmm2 = _mm_shuffle_epi32(xmm2, 0x00);
++    xmm3 = _mm_shuffle_epi32(xmm3, 0x00);
++    xmm4 = _mm_shuffle_epi32(xmm4, 0x00);
+-  xmm0 = _mm_load_si128((__m128i*)permuters[0]);
+-  xmm6 = _mm_load_si128((__m128i*)permuters[1]);
+-  xmm8 = _mm_load_si128((__m128i*)permuters[2]);
+-  xmm10 = _mm_load_si128((__m128i*)permuters[3]);
++    xmm0 = _mm_load_si128((__m128i*)permuters[0]);
++    xmm6 = _mm_load_si128((__m128i*)permuters[1]);
++    xmm8 = _mm_load_si128((__m128i*)permuters[2]);
++    xmm10 = _mm_load_si128((__m128i*)permuters[3]);
+-  xmm5 = _mm_load_si128(p_src0);
+-  xmm0 = _mm_shuffle_epi8(xmm5, xmm0);
+-  xmm6 = _mm_shuffle_epi8(xmm5, xmm6);
+-  xmm8 = _mm_shuffle_epi8(xmm5, xmm8);
+-  xmm10 = _mm_shuffle_epi8(xmm5, xmm10);
++    xmm5 = _mm_load_si128(p_src0);
++    xmm0 = _mm_shuffle_epi8(xmm5, xmm0);
++    xmm6 = _mm_shuffle_epi8(xmm5, xmm6);
++    xmm8 = _mm_shuffle_epi8(xmm5, xmm8);
++    xmm10 = _mm_shuffle_epi8(xmm5, xmm10);
+-  xmm5 = _mm_add_epi16(xmm1, xmm2);
++    xmm5 = _mm_add_epi16(xmm1, xmm2);
+-  xmm6 = _mm_add_epi16(xmm2, xmm6);
+-  xmm8 = _mm_add_epi16(xmm1, xmm8);
++    xmm6 = _mm_add_epi16(xmm2, xmm6);
++    xmm8 = _mm_add_epi16(xmm1, xmm8);
+-  xmm7 = _mm_load_si128(p_cntl2);
+-  xmm9 = _mm_load_si128(p_cntl3);
++    xmm7 = _mm_load_si128(p_cntl2);
++    xmm9 = _mm_load_si128(p_cntl3);
+-  xmm0 = _mm_add_epi16(xmm5, xmm0);
++    xmm0 = _mm_add_epi16(xmm5, xmm0);
+-  xmm7 = _mm_and_si128(xmm7, xmm3);
+-  xmm9 = _mm_and_si128(xmm9, xmm4);
++    xmm7 = _mm_and_si128(xmm7, xmm3);
++    xmm9 = _mm_and_si128(xmm9, xmm4);
+-  xmm5 = _mm_load_si128(&p_cntl2[1]);
+-  xmm11 = _mm_load_si128(&p_cntl3[1]);
++    xmm5 = _mm_load_si128(&p_cntl2[1]);
++    xmm11 = _mm_load_si128(&p_cntl3[1]);
+-  xmm7 = _mm_add_epi16(xmm7, xmm9);
++    xmm7 = _mm_add_epi16(xmm7, xmm9);
+-  xmm5 = _mm_and_si128(xmm5, xmm3);
+-  xmm11 = _mm_and_si128(xmm11, xmm4);
++    xmm5 = _mm_and_si128(xmm5, xmm3);
++    xmm11 = _mm_and_si128(xmm11, xmm4);
+-  xmm0 = _mm_add_epi16(xmm0, xmm7);
++    xmm0 = _mm_add_epi16(xmm0, xmm7);
+-  xmm7 = _mm_load_si128(&p_cntl2[2]);
+-  xmm9 = _mm_load_si128(&p_cntl3[2]);
++    xmm7 = _mm_load_si128(&p_cntl2[2]);
++    xmm9 = _mm_load_si128(&p_cntl3[2]);
+-  xmm5 = _mm_add_epi16(xmm5, xmm11);
++    xmm5 = _mm_add_epi16(xmm5, xmm11);
+-  xmm7 = _mm_and_si128(xmm7, xmm3);
+-  xmm9 = _mm_and_si128(xmm9, xmm4);
++    xmm7 = _mm_and_si128(xmm7, xmm3);
++    xmm9 = _mm_and_si128(xmm9, xmm4);
+-  xmm6 = _mm_add_epi16(xmm6, xmm5);
++    xmm6 = _mm_add_epi16(xmm6, xmm5);
+-  xmm5 = _mm_load_si128(&p_cntl2[3]);
+-  xmm11 = _mm_load_si128(&p_cntl3[3]);
++    xmm5 = _mm_load_si128(&p_cntl2[3]);
++    xmm11 = _mm_load_si128(&p_cntl3[3]);
+-  xmm7 = _mm_add_epi16(xmm7, xmm9);
++    xmm7 = _mm_add_epi16(xmm7, xmm9);
+-  xmm5 = _mm_and_si128(xmm5, xmm3);
+-  xmm11 = _mm_and_si128(xmm11, xmm4);
++    xmm5 = _mm_and_si128(xmm5, xmm3);
++    xmm11 = _mm_and_si128(xmm11, xmm4);
+-  xmm8 = _mm_add_epi16(xmm8, xmm7);
++    xmm8 = _mm_add_epi16(xmm8, xmm7);
+-  xmm5 = _mm_add_epi16(xmm5, xmm11);
++    xmm5 = _mm_add_epi16(xmm5, xmm11);
+-  _mm_store_si128(p_target, xmm0);
+-  _mm_store_si128(&p_target[1], xmm6);
++    _mm_store_si128(p_target, xmm0);
++    _mm_store_si128(&p_target[1], xmm6);
+-  xmm10 = _mm_add_epi16(xmm5, xmm10);
++    xmm10 = _mm_add_epi16(xmm5, xmm10);
+-  _mm_store_si128(&p_target[2], xmm8);
++    _mm_store_si128(&p_target[2], xmm8);
+-  _mm_store_si128(&p_target[3], xmm10);
++    _mm_store_si128(&p_target[3], xmm10);
+ }
+ #endif /*LV_HAVE_SSEs*/
+ #ifdef LV_HAVE_GENERIC
+-static inline  void
+-volk_16i_branch_4_state_8_generic(short* target, short* src0, char** permuters, short* cntl2, short* cntl3, short* scalars)
++static inline void volk_16i_branch_4_state_8_generic(short* target,
++                                                     short* src0,
++                                                     char** permuters,
++                                                     short* cntl2,
++                                                     short* cntl3,
++                                                     short* scalars)
+ {
+-  int i = 0;
+-
+-  int bound = 4;
+-
+-  for(; i < bound; ++i) {
+-    target[i* 8] = src0[((char)permuters[i][0])/2]
+-      + ((i + 1)%2  * scalars[0])
+-      + (((i >> 1)^1) * scalars[1])
+-      + (cntl2[i * 8] & scalars[2])
+-      + (cntl3[i * 8] & scalars[3]);
+-    target[i* 8 + 1] = src0[((char)permuters[i][1 * 2])/2]
+-      + ((i + 1)%2  * scalars[0])
+-      + (((i >> 1)^1) * scalars[1])
+-      + (cntl2[i * 8 + 1] & scalars[2])
+-      + (cntl3[i * 8 + 1] & scalars[3]);
+-    target[i* 8 + 2] = src0[((char)permuters[i][2 * 2])/2]
+-      + ((i + 1)%2  * scalars[0])
+-      + (((i >> 1)^1) * scalars[1])
+-      + (cntl2[i * 8 + 2] & scalars[2])
+-      + (cntl3[i * 8 + 2] & scalars[3]);
+-    target[i* 8 + 3] = src0[((char)permuters[i][3 * 2])/2]
+-      + ((i + 1)%2  * scalars[0])
+-      + (((i >> 1)^1) * scalars[1])
+-      + (cntl2[i * 8 + 3] & scalars[2])
+-      + (cntl3[i * 8 + 3] & scalars[3]);
+-    target[i* 8 + 4] = src0[((char)permuters[i][4 * 2])/2]
+-      + ((i + 1)%2  * scalars[0])
+-      + (((i >> 1)^1) * scalars[1])
+-      + (cntl2[i * 8 + 4] & scalars[2])
+-      + (cntl3[i * 8 + 4] & scalars[3]);
+-    target[i* 8 + 5] = src0[((char)permuters[i][5 * 2])/2]
+-      + ((i + 1)%2  * scalars[0])
+-      + (((i >> 1)^1) * scalars[1])
+-      + (cntl2[i * 8 + 5] & scalars[2])
+-      + (cntl3[i * 8 + 5] & scalars[3]);
+-    target[i* 8 + 6] = src0[((char)permuters[i][6 * 2])/2]
+-      + ((i + 1)%2  * scalars[0])
+-      + (((i >> 1)^1) * scalars[1])
+-      + (cntl2[i * 8 + 6] & scalars[2])
+-      + (cntl3[i * 8 + 6] & scalars[3]);
+-    target[i* 8 + 7] = src0[((char)permuters[i][7 * 2])/2]
+-      + ((i + 1)%2  * scalars[0])
+-      + (((i >> 1)^1) * scalars[1])
+-      + (cntl2[i * 8 + 7] & scalars[2])
+-      + (cntl3[i * 8 + 7] & scalars[3]);
+-  }
++    int i = 0;
++
++    int bound = 4;
++
++    for (; i < bound; ++i) {
++        target[i * 8] = src0[((char)permuters[i][0]) / 2] + ((i + 1) % 2 * scalars[0]) +
++                        (((i >> 1) ^ 1) * scalars[1]) + (cntl2[i * 8] & scalars[2]) +
++                        (cntl3[i * 8] & scalars[3]);
++        target[i * 8 + 1] = src0[((char)permuters[i][1 * 2]) / 2] +
++                            ((i + 1) % 2 * scalars[0]) + (((i >> 1) ^ 1) * scalars[1]) +
++                            (cntl2[i * 8 + 1] & scalars[2]) +
++                            (cntl3[i * 8 + 1] & scalars[3]);
++        target[i * 8 + 2] = src0[((char)permuters[i][2 * 2]) / 2] +
++                            ((i + 1) % 2 * scalars[0]) + (((i >> 1) ^ 1) * scalars[1]) +
++                            (cntl2[i * 8 + 2] & scalars[2]) +
++                            (cntl3[i * 8 + 2] & scalars[3]);
++        target[i * 8 + 3] = src0[((char)permuters[i][3 * 2]) / 2] +
++                            ((i + 1) % 2 * scalars[0]) + (((i >> 1) ^ 1) * scalars[1]) +
++                            (cntl2[i * 8 + 3] & scalars[2]) +
++                            (cntl3[i * 8 + 3] & scalars[3]);
++        target[i * 8 + 4] = src0[((char)permuters[i][4 * 2]) / 2] +
++                            ((i + 1) % 2 * scalars[0]) + (((i >> 1) ^ 1) * scalars[1]) +
++                            (cntl2[i * 8 + 4] & scalars[2]) +
++                            (cntl3[i * 8 + 4] & scalars[3]);
++        target[i * 8 + 5] = src0[((char)permuters[i][5 * 2]) / 2] +
++                            ((i + 1) % 2 * scalars[0]) + (((i >> 1) ^ 1) * scalars[1]) +
++                            (cntl2[i * 8 + 5] & scalars[2]) +
++                            (cntl3[i * 8 + 5] & scalars[3]);
++        target[i * 8 + 6] = src0[((char)permuters[i][6 * 2]) / 2] +
++                            ((i + 1) % 2 * scalars[0]) + (((i >> 1) ^ 1) * scalars[1]) +
++                            (cntl2[i * 8 + 6] & scalars[2]) +
++                            (cntl3[i * 8 + 6] & scalars[3]);
++        target[i * 8 + 7] = src0[((char)permuters[i][7 * 2]) / 2] +
++                            ((i + 1) % 2 * scalars[0]) + (((i >> 1) ^ 1) * scalars[1]) +
++                            (cntl2[i * 8 + 7] & scalars[2]) +
++                            (cntl3[i * 8 + 7] & scalars[3]);
++    }
+ }
+ #endif /*LV_HAVE_GENERIC*/
+diff --git a/kernels/volk/volk_16i_convert_8i.h b/kernels/volk/volk_16i_convert_8i.h
+index e2f953b..f09515d 100644
+--- a/kernels/volk/volk_16i_convert_8i.h
++++ b/kernels/volk/volk_16i_convert_8i.h
+@@ -29,8 +29,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_16i_convert_8i(int8_t* outputVector, const int16_t* inputVector, unsigned int num_points)
+- * \endcode
++ * void volk_16i_convert_8i(int8_t* outputVector, const int16_t* inputVector, unsigned int
++ * num_points) \endcode
+  *
+  * \b Inputs
+  * \li inputVector: The input vector of 16-bit shorts.
+@@ -59,39 +59,42 @@
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_16i_convert_8i_u_avx2(int8_t* outputVector, const int16_t* inputVector, unsigned int num_points)
++static inline void volk_16i_convert_8i_u_avx2(int8_t* outputVector,
++                                              const int16_t* inputVector,
++                                              unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int thirtysecondPoints = num_points / 32;
++    unsigned int number = 0;
++    const unsigned int thirtysecondPoints = num_points / 32;
+-  int8_t* outputVectorPtr = outputVector;
+-  int16_t* inputPtr = (int16_t*)inputVector;
+-  __m256i inputVal1;
+-  __m256i inputVal2;
+-  __m256i ret;
++    int8_t* outputVectorPtr = outputVector;
++    int16_t* inputPtr = (int16_t*)inputVector;
++    __m256i inputVal1;
++    __m256i inputVal2;
++    __m256i ret;
+-  for(;number < thirtysecondPoints; number++){
++    for (; number < thirtysecondPoints; number++) {
+-    // Load the 16 values
+-    inputVal1 = _mm256_loadu_si256((__m256i*)inputPtr); inputPtr += 16;
+-    inputVal2 = _mm256_loadu_si256((__m256i*)inputPtr); inputPtr += 16;
++        // Load the 16 values
++        inputVal1 = _mm256_loadu_si256((__m256i*)inputPtr);
++        inputPtr += 16;
++        inputVal2 = _mm256_loadu_si256((__m256i*)inputPtr);
++        inputPtr += 16;
+-    inputVal1 = _mm256_srai_epi16(inputVal1, 8);
+-    inputVal2 = _mm256_srai_epi16(inputVal2, 8);
++        inputVal1 = _mm256_srai_epi16(inputVal1, 8);
++        inputVal2 = _mm256_srai_epi16(inputVal2, 8);
+-    ret = _mm256_packs_epi16(inputVal1, inputVal2);
+-    ret = _mm256_permute4x64_epi64(ret, 0b11011000);
++        ret = _mm256_packs_epi16(inputVal1, inputVal2);
++        ret = _mm256_permute4x64_epi64(ret, 0b11011000);
+-    _mm256_storeu_si256((__m256i*)outputVectorPtr, ret);
++        _mm256_storeu_si256((__m256i*)outputVectorPtr, ret);
+-    outputVectorPtr += 32;
+-  }
++        outputVectorPtr += 32;
++    }
+-  number = thirtysecondPoints * 32;
+-  for(; number < num_points; number++){
+-    outputVector[number] =(int8_t)(inputVector[number] >> 8);
+-  }
++    number = thirtysecondPoints * 32;
++    for (; number < num_points; number++) {
++        outputVector[number] = (int8_t)(inputVector[number] >> 8);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -99,60 +102,62 @@ volk_16i_convert_8i_u_avx2(int8_t* outputVector, const int16_t* inputVector, uns
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void
+-volk_16i_convert_8i_u_sse2(int8_t* outputVector, const int16_t* inputVector, unsigned int num_points)
++static inline void volk_16i_convert_8i_u_sse2(int8_t* outputVector,
++                                              const int16_t* inputVector,
++                                              unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
+-  int8_t* outputVectorPtr = outputVector;
+-  int16_t* inputPtr = (int16_t*)inputVector;
+-  __m128i inputVal1;
+-  __m128i inputVal2;
+-  __m128i ret;
++    int8_t* outputVectorPtr = outputVector;
++    int16_t* inputPtr = (int16_t*)inputVector;
++    __m128i inputVal1;
++    __m128i inputVal2;
++    __m128i ret;
+-  for(;number < sixteenthPoints; number++){
++    for (; number < sixteenthPoints; number++) {
+-    // Load the 16 values
+-    inputVal1 = _mm_loadu_si128((__m128i*)inputPtr); inputPtr += 8;
+-    inputVal2 = _mm_loadu_si128((__m128i*)inputPtr); inputPtr += 8;
++        // Load the 16 values
++        inputVal1 = _mm_loadu_si128((__m128i*)inputPtr);
++        inputPtr += 8;
++        inputVal2 = _mm_loadu_si128((__m128i*)inputPtr);
++        inputPtr += 8;
+-    inputVal1 = _mm_srai_epi16(inputVal1, 8);
+-    inputVal2 = _mm_srai_epi16(inputVal2, 8);
++        inputVal1 = _mm_srai_epi16(inputVal1, 8);
++        inputVal2 = _mm_srai_epi16(inputVal2, 8);
+-    ret = _mm_packs_epi16(inputVal1, inputVal2);
++        ret = _mm_packs_epi16(inputVal1, inputVal2);
+-    _mm_storeu_si128((__m128i*)outputVectorPtr, ret);
++        _mm_storeu_si128((__m128i*)outputVectorPtr, ret);
+-    outputVectorPtr += 16;
+-  }
++        outputVectorPtr += 16;
++    }
+-  number = sixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    outputVector[number] =(int8_t)(inputVector[number] >> 8);
+-  }
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        outputVector[number] = (int8_t)(inputVector[number] >> 8);
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_16i_convert_8i_generic(int8_t* outputVector, const int16_t* inputVector, unsigned int num_points)
++static inline void volk_16i_convert_8i_generic(int8_t* outputVector,
++                                               const int16_t* inputVector,
++                                               unsigned int num_points)
+ {
+-  int8_t* outputVectorPtr = outputVector;
+-  const int16_t* inputVectorPtr = inputVector;
+-  unsigned int number = 0;
++    int8_t* outputVectorPtr = outputVector;
++    const int16_t* inputVectorPtr = inputVector;
++    unsigned int number = 0;
+-  for(number = 0; number < num_points; number++){
+-    *outputVectorPtr++ = ((int8_t)(*inputVectorPtr++  >> 8));
+-  }
++    for (number = 0; number < num_points; number++) {
++        *outputVectorPtr++ = ((int8_t)(*inputVectorPtr++ >> 8));
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+-
+-
+ #endif /* INCLUDED_volk_16i_convert_8i_u_H */
+ #ifndef INCLUDED_volk_16i_convert_8i_a_H
+ #define INCLUDED_volk_16i_convert_8i_a_H
+@@ -163,39 +168,42 @@ volk_16i_convert_8i_generic(int8_t* outputVector, const int16_t* inputVector, un
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_16i_convert_8i_a_avx2(int8_t* outputVector, const int16_t* inputVector, unsigned int num_points)
++static inline void volk_16i_convert_8i_a_avx2(int8_t* outputVector,
++                                              const int16_t* inputVector,
++                                              unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int thirtysecondPoints = num_points / 32;
++    unsigned int number = 0;
++    const unsigned int thirtysecondPoints = num_points / 32;
+-  int8_t* outputVectorPtr = outputVector;
+-  int16_t* inputPtr = (int16_t*)inputVector;
+-  __m256i inputVal1;
+-  __m256i inputVal2;
+-  __m256i ret;
++    int8_t* outputVectorPtr = outputVector;
++    int16_t* inputPtr = (int16_t*)inputVector;
++    __m256i inputVal1;
++    __m256i inputVal2;
++    __m256i ret;
+-  for(;number < thirtysecondPoints; number++){
++    for (; number < thirtysecondPoints; number++) {
+-    // Load the 16 values
+-    inputVal1 = _mm256_load_si256((__m256i*)inputPtr); inputPtr += 16;
+-    inputVal2 = _mm256_load_si256((__m256i*)inputPtr); inputPtr += 16;
++        // Load the 16 values
++        inputVal1 = _mm256_load_si256((__m256i*)inputPtr);
++        inputPtr += 16;
++        inputVal2 = _mm256_load_si256((__m256i*)inputPtr);
++        inputPtr += 16;
+-    inputVal1 = _mm256_srai_epi16(inputVal1, 8);
+-    inputVal2 = _mm256_srai_epi16(inputVal2, 8);
++        inputVal1 = _mm256_srai_epi16(inputVal1, 8);
++        inputVal2 = _mm256_srai_epi16(inputVal2, 8);
+-    ret = _mm256_packs_epi16(inputVal1, inputVal2);
+-    ret = _mm256_permute4x64_epi64(ret, 0b11011000);
++        ret = _mm256_packs_epi16(inputVal1, inputVal2);
++        ret = _mm256_permute4x64_epi64(ret, 0b11011000);
+-    _mm256_store_si256((__m256i*)outputVectorPtr, ret);
++        _mm256_store_si256((__m256i*)outputVectorPtr, ret);
+-    outputVectorPtr += 32;
+-  }
++        outputVectorPtr += 32;
++    }
+-  number = thirtysecondPoints * 32;
+-  for(; number < num_points; number++){
+-    outputVector[number] =(int8_t)(inputVector[number] >> 8);
+-  }
++    number = thirtysecondPoints * 32;
++    for (; number < num_points; number++) {
++        outputVector[number] = (int8_t)(inputVector[number] >> 8);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -203,38 +211,41 @@ volk_16i_convert_8i_a_avx2(int8_t* outputVector, const int16_t* inputVector, uns
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void
+-volk_16i_convert_8i_a_sse2(int8_t* outputVector, const int16_t* inputVector, unsigned int num_points)
++static inline void volk_16i_convert_8i_a_sse2(int8_t* outputVector,
++                                              const int16_t* inputVector,
++                                              unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
+-  int8_t* outputVectorPtr = outputVector;
+-  int16_t* inputPtr = (int16_t*)inputVector;
+-  __m128i inputVal1;
+-  __m128i inputVal2;
+-  __m128i ret;
++    int8_t* outputVectorPtr = outputVector;
++    int16_t* inputPtr = (int16_t*)inputVector;
++    __m128i inputVal1;
++    __m128i inputVal2;
++    __m128i ret;
+-  for(;number < sixteenthPoints; number++){
++    for (; number < sixteenthPoints; number++) {
+-    // Load the 16 values
+-    inputVal1 = _mm_load_si128((__m128i*)inputPtr); inputPtr += 8;
+-    inputVal2 = _mm_load_si128((__m128i*)inputPtr); inputPtr += 8;
++        // Load the 16 values
++        inputVal1 = _mm_load_si128((__m128i*)inputPtr);
++        inputPtr += 8;
++        inputVal2 = _mm_load_si128((__m128i*)inputPtr);
++        inputPtr += 8;
+-    inputVal1 = _mm_srai_epi16(inputVal1, 8);
+-    inputVal2 = _mm_srai_epi16(inputVal2, 8);
++        inputVal1 = _mm_srai_epi16(inputVal1, 8);
++        inputVal2 = _mm_srai_epi16(inputVal2, 8);
+-    ret = _mm_packs_epi16(inputVal1, inputVal2);
++        ret = _mm_packs_epi16(inputVal1, inputVal2);
+-    _mm_store_si128((__m128i*)outputVectorPtr, ret);
++        _mm_store_si128((__m128i*)outputVectorPtr, ret);
+-    outputVectorPtr += 16;
+-  }
++        outputVectorPtr += 16;
++    }
+-  number = sixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    outputVector[number] =(int8_t)(inputVector[number] >> 8);
+-  }
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        outputVector[number] = (int8_t)(inputVector[number] >> 8);
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+@@ -242,53 +253,55 @@ volk_16i_convert_8i_a_sse2(int8_t* outputVector, const int16_t* inputVector, uns
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_16i_convert_8i_neon(int8_t* outputVector, const int16_t* inputVector, unsigned int num_points)
++static inline void volk_16i_convert_8i_neon(int8_t* outputVector,
++                                            const int16_t* inputVector,
++                                            unsigned int num_points)
+ {
+-  int8_t* outputVectorPtr = outputVector;
+-  const int16_t* inputVectorPtr = inputVector;
+-  unsigned int number = 0;
+-  unsigned int sixteenth_points = num_points / 16;
+-
+-  int16x8_t inputVal0;
+-  int16x8_t inputVal1;
+-  int8x8_t outputVal0;
+-  int8x8_t outputVal1;
+-  int8x16_t outputVal;
+-
+-  for(number = 0; number < sixteenth_points; number++){
+-    // load two input vectors
+-    inputVal0 = vld1q_s16(inputVectorPtr);
+-    inputVal1 = vld1q_s16(inputVectorPtr+8);
+-    // shift right
+-    outputVal0 = vshrn_n_s16(inputVal0, 8);
+-    outputVal1 = vshrn_n_s16(inputVal1, 8);
+-    // squash two vectors and write output
+-    outputVal = vcombine_s8(outputVal0, outputVal1);
+-    vst1q_s8(outputVectorPtr, outputVal);
+-    inputVectorPtr += 16;
+-    outputVectorPtr += 16;
+-  }
+-
+-  for(number = sixteenth_points * 16; number < num_points; number++){
+-    *outputVectorPtr++ = ((int8_t)(*inputVectorPtr++ >> 8));
+-  }
++    int8_t* outputVectorPtr = outputVector;
++    const int16_t* inputVectorPtr = inputVector;
++    unsigned int number = 0;
++    unsigned int sixteenth_points = num_points / 16;
++
++    int16x8_t inputVal0;
++    int16x8_t inputVal1;
++    int8x8_t outputVal0;
++    int8x8_t outputVal1;
++    int8x16_t outputVal;
++
++    for (number = 0; number < sixteenth_points; number++) {
++        // load two input vectors
++        inputVal0 = vld1q_s16(inputVectorPtr);
++        inputVal1 = vld1q_s16(inputVectorPtr + 8);
++        // shift right
++        outputVal0 = vshrn_n_s16(inputVal0, 8);
++        outputVal1 = vshrn_n_s16(inputVal1, 8);
++        // squash two vectors and write output
++        outputVal = vcombine_s8(outputVal0, outputVal1);
++        vst1q_s8(outputVectorPtr, outputVal);
++        inputVectorPtr += 16;
++        outputVectorPtr += 16;
++    }
++
++    for (number = sixteenth_points * 16; number < num_points; number++) {
++        *outputVectorPtr++ = ((int8_t)(*inputVectorPtr++ >> 8));
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_16i_convert_8i_a_generic(int8_t* outputVector, const int16_t* inputVector, unsigned int num_points)
++static inline void volk_16i_convert_8i_a_generic(int8_t* outputVector,
++                                                 const int16_t* inputVector,
++                                                 unsigned int num_points)
+ {
+-  int8_t* outputVectorPtr = outputVector;
+-  const int16_t* inputVectorPtr = inputVector;
+-  unsigned int number = 0;
++    int8_t* outputVectorPtr = outputVector;
++    const int16_t* inputVectorPtr = inputVector;
++    unsigned int number = 0;
+-  for(number = 0; number < num_points; number++){
+-    *outputVectorPtr++ = ((int8_t)(*inputVectorPtr++ >> 8));
+-  }
++    for (number = 0; number < num_points; number++) {
++        *outputVectorPtr++ = ((int8_t)(*inputVectorPtr++ >> 8));
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+diff --git a/kernels/volk/volk_16i_max_star_16i.h b/kernels/volk/volk_16i_max_star_16i.h
+index 78fd911..d5dad18 100644
+--- a/kernels/volk/volk_16i_max_star_16i.h
++++ b/kernels/volk/volk_16i_max_star_16i.h
+@@ -53,67 +53,69 @@
+ #ifndef INCLUDED_volk_16i_max_star_16i_a_H
+ #define INCLUDED_volk_16i_max_star_16i_a_H
+-#include<inttypes.h>
+-#include<stdio.h>
++#include <inttypes.h>
++#include <stdio.h>
+ #ifdef LV_HAVE_SSSE3
+-#include<xmmintrin.h>
+-#include<emmintrin.h>
+-#include<tmmintrin.h>
++#include <emmintrin.h>
++#include <tmmintrin.h>
++#include <xmmintrin.h>
+ static inline void
+ volk_16i_max_star_16i_a_ssse3(short* target, short* src0, unsigned int num_points)
+ {
+-  const unsigned int num_bytes = num_points*2;
++    const unsigned int num_bytes = num_points * 2;
+-  short candidate = src0[0];
+-  short cands[8];
+-  __m128i xmm0, xmm1, xmm3, xmm4, xmm5, xmm6;
++    short candidate = src0[0];
++    short cands[8];
++    __m128i xmm0, xmm1, xmm3, xmm4, xmm5, xmm6;
+-  __m128i *p_src0;
++    __m128i* p_src0;
+-  p_src0 = (__m128i*)src0;
++    p_src0 = (__m128i*)src0;
+-  int bound = num_bytes >> 4;
+-  int leftovers = (num_bytes >> 1) & 7;
++    int bound = num_bytes >> 4;
++    int leftovers = (num_bytes >> 1) & 7;
+-  int i = 0;
++    int i = 0;
+-  xmm1 = _mm_setzero_si128();
+-  xmm0 = _mm_setzero_si128();
+-  //_mm_insert_epi16(xmm0, candidate, 0);
++    xmm1 = _mm_setzero_si128();
++    xmm0 = _mm_setzero_si128();
++    //_mm_insert_epi16(xmm0, candidate, 0);
+-  xmm0 = _mm_shuffle_epi8(xmm0, xmm1);
++    xmm0 = _mm_shuffle_epi8(xmm0, xmm1);
+-  for(i = 0; i < bound; ++i) {
+-    xmm1 = _mm_load_si128(p_src0);
+-    p_src0 += 1;
+-    //xmm2 = _mm_sub_epi16(xmm1, xmm0);
++    for (i = 0; i < bound; ++i) {
++        xmm1 = _mm_load_si128(p_src0);
++        p_src0 += 1;
++        // xmm2 = _mm_sub_epi16(xmm1, xmm0);
+-    xmm3 = _mm_cmpgt_epi16(xmm0, xmm1);
+-    xmm4 = _mm_cmpeq_epi16(xmm0, xmm1);
+-    xmm5 = _mm_cmpgt_epi16(xmm1, xmm0);
++        xmm3 = _mm_cmpgt_epi16(xmm0, xmm1);
++        xmm4 = _mm_cmpeq_epi16(xmm0, xmm1);
++        xmm5 = _mm_cmpgt_epi16(xmm1, xmm0);
+-    xmm6 = _mm_xor_si128(xmm4, xmm5);
++        xmm6 = _mm_xor_si128(xmm4, xmm5);
+-    xmm3 = _mm_and_si128(xmm3, xmm0);
+-    xmm4 = _mm_and_si128(xmm6, xmm1);
++        xmm3 = _mm_and_si128(xmm3, xmm0);
++        xmm4 = _mm_and_si128(xmm6, xmm1);
+-    xmm0 = _mm_add_epi16(xmm3, xmm4);
+-  }
++        xmm0 = _mm_add_epi16(xmm3, xmm4);
++    }
+-  _mm_store_si128((__m128i*)cands, xmm0);
++    _mm_store_si128((__m128i*)cands, xmm0);
+-  for(i = 0; i < 8; ++i) {
+-    candidate = ((short)(candidate - cands[i]) > 0) ? candidate : cands[i];
+-  }
++    for (i = 0; i < 8; ++i) {
++        candidate = ((short)(candidate - cands[i]) > 0) ? candidate : cands[i];
++    }
+-  for(i = 0; i < leftovers; ++i) {
+-    candidate = ((short)(candidate - src0[(bound << 3) + i]) > 0) ? candidate : src0[(bound << 3) + i];
+-  }
++    for (i = 0; i < leftovers; ++i) {
++        candidate = ((short)(candidate - src0[(bound << 3) + i]) > 0)
++                        ? candidate
++                        : src0[(bound << 3) + i];
++    }
+-  target[0] = candidate;
++    target[0] = candidate;
+ }
+ #endif /*LV_HAVE_SSSE3*/
+@@ -124,38 +126,38 @@ volk_16i_max_star_16i_a_ssse3(short* target, short* src0, unsigned int num_point
+ static inline void
+ volk_16i_max_star_16i_neon(short* target, short* src0, unsigned int num_points)
+ {
+-  const unsigned int eighth_points = num_points / 8;
+-  unsigned number;
+-  int16x8_t input_vec;
+-  int16x8_t diff, zeros;
+-  uint16x8_t comp1, comp2;
+-  zeros = vdupq_n_s16(0);
+-
+-  int16x8x2_t tmpvec;
+-
+-  int16x8_t candidate_vec = vld1q_dup_s16(src0 );
+-  short candidate;
+-  ++src0;
+-
+-  for(number=0; number < eighth_points; ++number) {
+-    input_vec = vld1q_s16(src0);
+-    __VOLK_PREFETCH(src0+16);
+-    diff = vsubq_s16(candidate_vec, input_vec);
+-    comp1 = vcgeq_s16(diff, zeros);
+-    comp2 = vcltq_s16(diff, zeros);
+-
+-    tmpvec.val[0] = vandq_s16(candidate_vec, (int16x8_t)comp1);
+-    tmpvec.val[1] = vandq_s16(input_vec, (int16x8_t)comp2);
+-
+-    candidate_vec = vaddq_s16(tmpvec.val[0], tmpvec.val[1]);
+-    src0 += 8;
+-  }
+-  vst1q_s16(&candidate, candidate_vec);
+-
+-  for(number=0; number < num_points%8; number++) {
+-    candidate = ((int16_t)(candidate - src0[number]) > 0) ? candidate : src0[number];
+-  }
+-  target[0] = candidate;
++    const unsigned int eighth_points = num_points / 8;
++    unsigned number;
++    int16x8_t input_vec;
++    int16x8_t diff, zeros;
++    uint16x8_t comp1, comp2;
++    zeros = vdupq_n_s16(0);
++
++    int16x8x2_t tmpvec;
++
++    int16x8_t candidate_vec = vld1q_dup_s16(src0);
++    short candidate;
++    ++src0;
++
++    for (number = 0; number < eighth_points; ++number) {
++        input_vec = vld1q_s16(src0);
++        __VOLK_PREFETCH(src0 + 16);
++        diff = vsubq_s16(candidate_vec, input_vec);
++        comp1 = vcgeq_s16(diff, zeros);
++        comp2 = vcltq_s16(diff, zeros);
++
++        tmpvec.val[0] = vandq_s16(candidate_vec, (int16x8_t)comp1);
++        tmpvec.val[1] = vandq_s16(input_vec, (int16x8_t)comp2);
++
++        candidate_vec = vaddq_s16(tmpvec.val[0], tmpvec.val[1]);
++        src0 += 8;
++    }
++    vst1q_s16(&candidate, candidate_vec);
++
++    for (number = 0; number < num_points % 8; number++) {
++        candidate = ((int16_t)(candidate - src0[number]) > 0) ? candidate : src0[number];
++    }
++    target[0] = candidate;
+ }
+ #endif /*LV_HAVE_NEON*/
+@@ -164,17 +166,17 @@ volk_16i_max_star_16i_neon(short* target, short* src0, unsigned int num_points)
+ static inline void
+ volk_16i_max_star_16i_generic(short* target, short* src0, unsigned int num_points)
+ {
+-  const unsigned int num_bytes = num_points*2;
++    const unsigned int num_bytes = num_points * 2;
+-  int i = 0;
++    int i = 0;
+-  int bound = num_bytes >> 1;
++    int bound = num_bytes >> 1;
+-  short candidate = src0[0];
+-  for(i = 1; i < bound; ++i) {
+-    candidate = ((short)(candidate - src0[i]) > 0) ? candidate : src0[i];
+-  }
+-  target[0] = candidate;
++    short candidate = src0[0];
++    for (i = 1; i < bound; ++i) {
++        candidate = ((short)(candidate - src0[i]) > 0) ? candidate : src0[i];
++    }
++    target[0] = candidate;
+ }
+ #endif /*LV_HAVE_GENERIC*/
+diff --git a/kernels/volk/volk_16i_max_star_horizontal_16i.h b/kernels/volk/volk_16i_max_star_horizontal_16i.h
+index 4ffe264..2e1f52b 100644
+--- a/kernels/volk/volk_16i_max_star_horizontal_16i.h
++++ b/kernels/volk/volk_16i_max_star_horizontal_16i.h
+@@ -29,8 +29,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_16i_max_star_horizontal_16i(short* target, short* src0, unsigned int num_points);
+- * \endcode
++ * void volk_16i_max_star_horizontal_16i(short* target, short* src0, unsigned int
++ * num_points); \endcode
+  *
+  * \b Inputs
+  * \li src0: The input vector.
+@@ -55,102 +55,113 @@
+ #include <volk/volk_common.h>
+-#include<inttypes.h>
+-#include<stdio.h>
++#include <inttypes.h>
++#include <stdio.h>
+ #ifdef LV_HAVE_SSSE3
+-#include<xmmintrin.h>
+-#include<emmintrin.h>
+-#include<tmmintrin.h>
++#include <emmintrin.h>
++#include <tmmintrin.h>
++#include <xmmintrin.h>
+-static inline void
+-volk_16i_max_star_horizontal_16i_a_ssse3(int16_t* target, int16_t* src0, unsigned int num_points)
++static inline void volk_16i_max_star_horizontal_16i_a_ssse3(int16_t* target,
++                                                            int16_t* src0,
++                                                            unsigned int num_points)
+ {
+-  const unsigned int num_bytes = num_points*2;
++    const unsigned int num_bytes = num_points * 2;
+-  static const uint8_t shufmask0[16] = {0x00, 0x01, 0x04, 0x05, 0x08, 0x09, 0x0c, 0x0d, 0xff,
+-                                        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
+-  static const uint8_t shufmask1[16] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00,
+-                                        0x01, 0x04, 0x05, 0x08, 0x09, 0x0c, 0x0d};
+-  static const uint8_t andmask0[16] = {0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,0x02, 0x00,
+-                                       0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
+-  static const uint8_t andmask1[16] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x02,
+-                                       0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02};
++    static const uint8_t shufmask0[16] = {
++        0x00, 0x01, 0x04, 0x05, 0x08, 0x09, 0x0c, 0x0d,
++        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
++    };
++    static const uint8_t shufmask1[16] = {
++        0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
++        0x00, 0x01, 0x04, 0x05, 0x08, 0x09, 0x0c, 0x0d
++    };
++    static const uint8_t andmask0[16] = {
++        0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02,
++        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
++    };
++    static const uint8_t andmask1[16] = {
++        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
++        0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02, 0x02
++    };
+-  __m128i xmm0, xmm1, xmm2, xmm3, xmm4;
+-  __m128i  xmm5, xmm6, xmm7, xmm8;
++    __m128i xmm0, xmm1, xmm2, xmm3, xmm4;
++    __m128i xmm5, xmm6, xmm7, xmm8;
+-  xmm4 = _mm_load_si128((__m128i*)shufmask0);
+-  xmm5 = _mm_load_si128((__m128i*)shufmask1);
+-  xmm6 = _mm_load_si128((__m128i*)andmask0);
+-  xmm7 = _mm_load_si128((__m128i*)andmask1);
++    xmm4 = _mm_load_si128((__m128i*)shufmask0);
++    xmm5 = _mm_load_si128((__m128i*)shufmask1);
++    xmm6 = _mm_load_si128((__m128i*)andmask0);
++    xmm7 = _mm_load_si128((__m128i*)andmask1);
+-  __m128i *p_target, *p_src0;
++    __m128i *p_target, *p_src0;
+-  p_target = (__m128i*)target;
+-  p_src0 = (__m128i*)src0;
++    p_target = (__m128i*)target;
++    p_src0 = (__m128i*)src0;
+-  int bound = num_bytes >> 5;
+-  int intermediate = (num_bytes >> 4) & 1;
+-  int leftovers = (num_bytes >> 1) & 7;
++    int bound = num_bytes >> 5;
++    int intermediate = (num_bytes >> 4) & 1;
++    int leftovers = (num_bytes >> 1) & 7;
+-  int i = 0;
++    int i = 0;
+-  for(i = 0; i < bound; ++i) {
+-    xmm0 = _mm_load_si128(p_src0);
+-    xmm1 = _mm_load_si128(&p_src0[1]);
++    for (i = 0; i < bound; ++i) {
++        xmm0 = _mm_load_si128(p_src0);
++        xmm1 = _mm_load_si128(&p_src0[1]);
+-    xmm2 = _mm_xor_si128(xmm2, xmm2);
+-    p_src0 += 2;
++        xmm2 = _mm_xor_si128(xmm2, xmm2);
++        p_src0 += 2;
+-    xmm3 = _mm_hsub_epi16(xmm0, xmm1);
++        xmm3 = _mm_hsub_epi16(xmm0, xmm1);
+-    xmm2 = _mm_cmpgt_epi16(xmm2, xmm3);
++        xmm2 = _mm_cmpgt_epi16(xmm2, xmm3);
+-    xmm8 = _mm_and_si128(xmm2, xmm6);
+-    xmm3 = _mm_and_si128(xmm2, xmm7);
++        xmm8 = _mm_and_si128(xmm2, xmm6);
++        xmm3 = _mm_and_si128(xmm2, xmm7);
+-    xmm8 = _mm_add_epi8(xmm8, xmm4);
+-    xmm3 = _mm_add_epi8(xmm3, xmm5);
++        xmm8 = _mm_add_epi8(xmm8, xmm4);
++        xmm3 = _mm_add_epi8(xmm3, xmm5);
+-    xmm0 = _mm_shuffle_epi8(xmm0, xmm8);
+-    xmm1 = _mm_shuffle_epi8(xmm1, xmm3);
++        xmm0 = _mm_shuffle_epi8(xmm0, xmm8);
++        xmm1 = _mm_shuffle_epi8(xmm1, xmm3);
+-    xmm3 = _mm_add_epi16(xmm0, xmm1);
++        xmm3 = _mm_add_epi16(xmm0, xmm1);
+-    _mm_store_si128(p_target, xmm3);
++        _mm_store_si128(p_target, xmm3);
+-    p_target += 1;
+-  }
++        p_target += 1;
++    }
+-  if (intermediate) {
+-    xmm0 = _mm_load_si128(p_src0);
++    if (intermediate) {
++        xmm0 = _mm_load_si128(p_src0);
+-    xmm2 = _mm_xor_si128(xmm2, xmm2);
+-    p_src0 += 1;
++        xmm2 = _mm_xor_si128(xmm2, xmm2);
++        p_src0 += 1;
+-    xmm3 = _mm_hsub_epi16(xmm0, xmm1);
+-    xmm2 = _mm_cmpgt_epi16(xmm2, xmm3);
++        xmm3 = _mm_hsub_epi16(xmm0, xmm1);
++        xmm2 = _mm_cmpgt_epi16(xmm2, xmm3);
+-    xmm8 = _mm_and_si128(xmm2, xmm6);
++        xmm8 = _mm_and_si128(xmm2, xmm6);
+-    xmm3 = _mm_add_epi8(xmm8, xmm4);
++        xmm3 = _mm_add_epi8(xmm8, xmm4);
+-    xmm0 = _mm_shuffle_epi8(xmm0, xmm3);
++        xmm0 = _mm_shuffle_epi8(xmm0, xmm3);
+-    _mm_storel_pd((double*)p_target, bit128_p(&xmm0)->double_vec);
++        _mm_storel_pd((double*)p_target, bit128_p(&xmm0)->double_vec);
+-    p_target = (__m128i*)((int8_t*)p_target + 8);
+-  }
++        p_target = (__m128i*)((int8_t*)p_target + 8);
++    }
+-  for(i = (bound << 4) + (intermediate << 3); i < (bound << 4) + (intermediate << 3) + leftovers ; i += 2) {
+-    target[i>>1] = ((int16_t)(src0[i] - src0[i + 1]) > 0) ? src0[i] : src0[i + 1];
+-  }
++    for (i = (bound << 4) + (intermediate << 3);
++         i < (bound << 4) + (intermediate << 3) + leftovers;
++         i += 2) {
++        target[i >> 1] = ((int16_t)(src0[i] - src0[i + 1]) > 0) ? src0[i] : src0[i + 1];
++    }
+ }
+ #endif /*LV_HAVE_SSSE3*/
+@@ -158,54 +169,59 @@ volk_16i_max_star_horizontal_16i_a_ssse3(int16_t* target, int16_t* src0, unsigne
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_16i_max_star_horizontal_16i_neon(int16_t* target, int16_t* src0, unsigned int num_points)
++static inline void volk_16i_max_star_horizontal_16i_neon(int16_t* target,
++                                                         int16_t* src0,
++                                                         unsigned int num_points)
+ {
+-  const unsigned int eighth_points = num_points / 16;
+-  unsigned number;
+-  int16x8x2_t input_vec;
+-  int16x8_t diff, max_vec, zeros;
+-  uint16x8_t comp1, comp2;
+-  zeros = vdupq_n_s16(0);
+-  for(number=0; number < eighth_points; ++number) {
+-    input_vec = vld2q_s16(src0);
+-    //__VOLK_PREFETCH(src0+16);
+-    diff = vsubq_s16(input_vec.val[0], input_vec.val[1]);
+-    comp1 = vcgeq_s16(diff, zeros);
+-    comp2 = vcltq_s16(diff, zeros);
+-
+-    input_vec.val[0] = vandq_s16(input_vec.val[0], (int16x8_t)comp1);
+-    input_vec.val[1] = vandq_s16(input_vec.val[1], (int16x8_t)comp2);
+-
+-    max_vec = vaddq_s16(input_vec.val[0], input_vec.val[1]);
+-    vst1q_s16(target, max_vec);
+-    src0 += 16;
+-    target += 8;
+-  }
+-  for(number=0; number < num_points%16; number+=2) {
+-    target[number >> 1] = ((int16_t)(src0[number] - src0[number + 1]) > 0) ? src0[number] : src0[number+1];
+-  }
+-
++    const unsigned int eighth_points = num_points / 16;
++    unsigned number;
++    int16x8x2_t input_vec;
++    int16x8_t diff, max_vec, zeros;
++    uint16x8_t comp1, comp2;
++    zeros = vdupq_n_s16(0);
++    for (number = 0; number < eighth_points; ++number) {
++        input_vec = vld2q_s16(src0);
++        //__VOLK_PREFETCH(src0+16);
++        diff = vsubq_s16(input_vec.val[0], input_vec.val[1]);
++        comp1 = vcgeq_s16(diff, zeros);
++        comp2 = vcltq_s16(diff, zeros);
++
++        input_vec.val[0] = vandq_s16(input_vec.val[0], (int16x8_t)comp1);
++        input_vec.val[1] = vandq_s16(input_vec.val[1], (int16x8_t)comp2);
++
++        max_vec = vaddq_s16(input_vec.val[0], input_vec.val[1]);
++        vst1q_s16(target, max_vec);
++        src0 += 16;
++        target += 8;
++    }
++    for (number = 0; number < num_points % 16; number += 2) {
++        target[number >> 1] = ((int16_t)(src0[number] - src0[number + 1]) > 0)
++                                  ? src0[number]
++                                  : src0[number + 1];
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_NEONV7
+-extern void volk_16i_max_star_horizontal_16i_a_neonasm(int16_t* target, int16_t* src0, unsigned int num_points);
++extern void volk_16i_max_star_horizontal_16i_a_neonasm(int16_t* target,
++                                                       int16_t* src0,
++                                                       unsigned int num_points);
+ #endif /* LV_HAVE_NEONV7 */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_16i_max_star_horizontal_16i_generic(int16_t* target, int16_t* src0, unsigned int num_points)
++static inline void volk_16i_max_star_horizontal_16i_generic(int16_t* target,
++                                                            int16_t* src0,
++                                                            unsigned int num_points)
+ {
+-  const unsigned int num_bytes = num_points*2;
++    const unsigned int num_bytes = num_points * 2;
+-  int i = 0;
++    int i = 0;
+-  int bound = num_bytes >> 1;
++    int bound = num_bytes >> 1;
+-  for(i = 0; i < bound; i += 2) {
+-    target[i >> 1] = ((int16_t) (src0[i] - src0[i + 1]) > 0) ? src0[i] : src0[i+1];
+-  }
++    for (i = 0; i < bound; i += 2) {
++        target[i >> 1] = ((int16_t)(src0[i] - src0[i + 1]) > 0) ? src0[i] : src0[i + 1];
++    }
+ }
+ #endif /*LV_HAVE_GENERIC*/
+diff --git a/kernels/volk/volk_16i_permute_and_scalar_add.h b/kernels/volk/volk_16i_permute_and_scalar_add.h
+index 7fcdad3..0563f07 100644
+--- a/kernels/volk/volk_16i_permute_and_scalar_add.h
++++ b/kernels/volk/volk_16i_permute_and_scalar_add.h
+@@ -29,8 +29,9 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_16i_permute_and_scalar_add(short* target,  short* src0, short* permute_indexes, short* cntl0, short* cntl1, short* cntl2, short* cntl3, short* scalars, unsigned int num_points)
+- * \endcode
++ * void volk_16i_permute_and_scalar_add(short* target,  short* src0, short*
++ * permute_indexes, short* cntl0, short* cntl1, short* cntl2, short* cntl3, short*
++ * scalars, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li src0: The input vector.
+@@ -58,137 +59,143 @@
+ #ifndef INCLUDED_volk_16i_permute_and_scalar_add_a_H
+ #define INCLUDED_volk_16i_permute_and_scalar_add_a_H
+-#include<inttypes.h>
+-#include<stdio.h>
++#include <inttypes.h>
++#include <stdio.h>
+ #ifdef LV_HAVE_SSE2
+-#include<xmmintrin.h>
+-#include<emmintrin.h>
+-
+-static inline void
+-volk_16i_permute_and_scalar_add_a_sse2(short* target,  short* src0, short* permute_indexes,
+-                                       short* cntl0, short* cntl1, short* cntl2, short* cntl3,
+-                                       short* scalars, unsigned int num_points)
++#include <emmintrin.h>
++#include <xmmintrin.h>
++
++static inline void volk_16i_permute_and_scalar_add_a_sse2(short* target,
++                                                          short* src0,
++                                                          short* permute_indexes,
++                                                          short* cntl0,
++                                                          short* cntl1,
++                                                          short* cntl2,
++                                                          short* cntl3,
++                                                          short* scalars,
++                                                          unsigned int num_points)
+ {
+-  const unsigned int num_bytes = num_points*2;
++    const unsigned int num_bytes = num_points * 2;
+-  __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
++    __m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
+-  __m128i *p_target, *p_cntl0, *p_cntl1, *p_cntl2, *p_cntl3, *p_scalars;
++    __m128i *p_target, *p_cntl0, *p_cntl1, *p_cntl2, *p_cntl3, *p_scalars;
+-  short* p_permute_indexes = permute_indexes;
++    short* p_permute_indexes = permute_indexes;
+-  p_target = (__m128i*)target;
+-  p_cntl0 = (__m128i*)cntl0;
+-  p_cntl1 = (__m128i*)cntl1;
+-  p_cntl2 = (__m128i*)cntl2;
+-  p_cntl3 = (__m128i*)cntl3;
+-  p_scalars = (__m128i*)scalars;
++    p_target = (__m128i*)target;
++    p_cntl0 = (__m128i*)cntl0;
++    p_cntl1 = (__m128i*)cntl1;
++    p_cntl2 = (__m128i*)cntl2;
++    p_cntl3 = (__m128i*)cntl3;
++    p_scalars = (__m128i*)scalars;
+-  int i = 0;
++    int i = 0;
+-  int bound = (num_bytes >> 4);
+-  int leftovers = (num_bytes >> 1) & 7;
++    int bound = (num_bytes >> 4);
++    int leftovers = (num_bytes >> 1) & 7;
+-  xmm0 = _mm_load_si128(p_scalars);
++    xmm0 = _mm_load_si128(p_scalars);
+-  xmm1 = _mm_shufflelo_epi16(xmm0, 0);
+-  xmm2 = _mm_shufflelo_epi16(xmm0, 0x55);
+-  xmm3 = _mm_shufflelo_epi16(xmm0, 0xaa);
+-  xmm4 = _mm_shufflelo_epi16(xmm0, 0xff);
++    xmm1 = _mm_shufflelo_epi16(xmm0, 0);
++    xmm2 = _mm_shufflelo_epi16(xmm0, 0x55);
++    xmm3 = _mm_shufflelo_epi16(xmm0, 0xaa);
++    xmm4 = _mm_shufflelo_epi16(xmm0, 0xff);
+-  xmm1 = _mm_shuffle_epi32(xmm1, 0x00);
+-  xmm2 = _mm_shuffle_epi32(xmm2, 0x00);
+-  xmm3 = _mm_shuffle_epi32(xmm3, 0x00);
+-  xmm4 = _mm_shuffle_epi32(xmm4, 0x00);
++    xmm1 = _mm_shuffle_epi32(xmm1, 0x00);
++    xmm2 = _mm_shuffle_epi32(xmm2, 0x00);
++    xmm3 = _mm_shuffle_epi32(xmm3, 0x00);
++    xmm4 = _mm_shuffle_epi32(xmm4, 0x00);
+-  for(; i < bound; ++i) {
+-    xmm0 = _mm_setzero_si128();
+-    xmm5 = _mm_setzero_si128();
+-    xmm6 = _mm_setzero_si128();
+-    xmm7 = _mm_setzero_si128();
++    for (; i < bound; ++i) {
++        xmm0 = _mm_setzero_si128();
++        xmm5 = _mm_setzero_si128();
++        xmm6 = _mm_setzero_si128();
++        xmm7 = _mm_setzero_si128();
+-    xmm0 = _mm_insert_epi16(xmm0, src0[p_permute_indexes[0]], 0);
+-    xmm5 = _mm_insert_epi16(xmm5, src0[p_permute_indexes[1]], 1);
+-    xmm6 = _mm_insert_epi16(xmm6, src0[p_permute_indexes[2]], 2);
+-    xmm7 = _mm_insert_epi16(xmm7, src0[p_permute_indexes[3]], 3);
+-    xmm0 = _mm_insert_epi16(xmm0, src0[p_permute_indexes[4]], 4);
+-    xmm5 = _mm_insert_epi16(xmm5, src0[p_permute_indexes[5]], 5);
+-    xmm6 = _mm_insert_epi16(xmm6, src0[p_permute_indexes[6]], 6);
+-    xmm7 = _mm_insert_epi16(xmm7, src0[p_permute_indexes[7]], 7);
++        xmm0 = _mm_insert_epi16(xmm0, src0[p_permute_indexes[0]], 0);
++        xmm5 = _mm_insert_epi16(xmm5, src0[p_permute_indexes[1]], 1);
++        xmm6 = _mm_insert_epi16(xmm6, src0[p_permute_indexes[2]], 2);
++        xmm7 = _mm_insert_epi16(xmm7, src0[p_permute_indexes[3]], 3);
++        xmm0 = _mm_insert_epi16(xmm0, src0[p_permute_indexes[4]], 4);
++        xmm5 = _mm_insert_epi16(xmm5, src0[p_permute_indexes[5]], 5);
++        xmm6 = _mm_insert_epi16(xmm6, src0[p_permute_indexes[6]], 6);
++        xmm7 = _mm_insert_epi16(xmm7, src0[p_permute_indexes[7]], 7);
+-    xmm0 = _mm_add_epi16(xmm0, xmm5);
+-    xmm6 = _mm_add_epi16(xmm6, xmm7);
++        xmm0 = _mm_add_epi16(xmm0, xmm5);
++        xmm6 = _mm_add_epi16(xmm6, xmm7);
+-    p_permute_indexes += 8;
++        p_permute_indexes += 8;
+-    xmm0 = _mm_add_epi16(xmm0, xmm6);
++        xmm0 = _mm_add_epi16(xmm0, xmm6);
+-    xmm5 = _mm_load_si128(p_cntl0);
+-    xmm6 = _mm_load_si128(p_cntl1);
+-    xmm7 = _mm_load_si128(p_cntl2);
++        xmm5 = _mm_load_si128(p_cntl0);
++        xmm6 = _mm_load_si128(p_cntl1);
++        xmm7 = _mm_load_si128(p_cntl2);
+-    xmm5 = _mm_and_si128(xmm5, xmm1);
+-    xmm6 = _mm_and_si128(xmm6, xmm2);
+-    xmm7 = _mm_and_si128(xmm7, xmm3);
++        xmm5 = _mm_and_si128(xmm5, xmm1);
++        xmm6 = _mm_and_si128(xmm6, xmm2);
++        xmm7 = _mm_and_si128(xmm7, xmm3);
+-    xmm0 = _mm_add_epi16(xmm0, xmm5);
++        xmm0 = _mm_add_epi16(xmm0, xmm5);
+-    xmm5 = _mm_load_si128(p_cntl3);
++        xmm5 = _mm_load_si128(p_cntl3);
+-    xmm6 = _mm_add_epi16(xmm6, xmm7);
++        xmm6 = _mm_add_epi16(xmm6, xmm7);
+-    p_cntl0 += 1;
++        p_cntl0 += 1;
+-    xmm5 = _mm_and_si128(xmm5, xmm4);
++        xmm5 = _mm_and_si128(xmm5, xmm4);
+-    xmm0 = _mm_add_epi16(xmm0, xmm6);
++        xmm0 = _mm_add_epi16(xmm0, xmm6);
+-    p_cntl1 += 1;
+-    p_cntl2 += 1;
++        p_cntl1 += 1;
++        p_cntl2 += 1;
+-    xmm0 = _mm_add_epi16(xmm0, xmm5);
++        xmm0 = _mm_add_epi16(xmm0, xmm5);
+-    p_cntl3 += 1;
++        p_cntl3 += 1;
+-    _mm_store_si128(p_target, xmm0);
++        _mm_store_si128(p_target, xmm0);
+-    p_target += 1;
+-  }
++        p_target += 1;
++    }
+-  for(i = bound * 8; i < (bound * 8) + leftovers; ++i) {
+-    target[i] = src0[permute_indexes[i]]
+-      + (cntl0[i] & scalars[0])
+-      + (cntl1[i] & scalars[1])
+-      + (cntl2[i] & scalars[2])
+-      + (cntl3[i] & scalars[3]);
+-  }
++    for (i = bound * 8; i < (bound * 8) + leftovers; ++i) {
++        target[i] = src0[permute_indexes[i]] + (cntl0[i] & scalars[0]) +
++                    (cntl1[i] & scalars[1]) + (cntl2[i] & scalars[2]) +
++                    (cntl3[i] & scalars[3]);
++    }
+ }
+ #endif /*LV_HAVE_SSE*/
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_16i_permute_and_scalar_add_generic(short* target, short* src0, short* permute_indexes,
+-                                        short* cntl0, short* cntl1, short* cntl2, short* cntl3,
+-                                        short* scalars, unsigned int num_points)
++static inline void volk_16i_permute_and_scalar_add_generic(short* target,
++                                                           short* src0,
++                                                           short* permute_indexes,
++                                                           short* cntl0,
++                                                           short* cntl1,
++                                                           short* cntl2,
++                                                           short* cntl3,
++                                                           short* scalars,
++                                                           unsigned int num_points)
+ {
+-  const unsigned int num_bytes = num_points*2;
++    const unsigned int num_bytes = num_points * 2;
+-  int i = 0;
++    int i = 0;
+-  int bound = num_bytes >> 1;
++    int bound = num_bytes >> 1;
+-  for(i = 0; i < bound; ++i) {
+-    target[i] = src0[permute_indexes[i]]
+-      + (cntl0[i] & scalars[0])
+-      + (cntl1[i] & scalars[1])
+-      + (cntl2[i] & scalars[2])
+-      + (cntl3[i] & scalars[3]);
+-  }
++    for (i = 0; i < bound; ++i) {
++        target[i] = src0[permute_indexes[i]] + (cntl0[i] & scalars[0]) +
++                    (cntl1[i] & scalars[1]) + (cntl2[i] & scalars[2]) +
++                    (cntl3[i] & scalars[3]);
++    }
+ }
+ #endif /*LV_HAVE_GENERIC*/
+diff --git a/kernels/volk/volk_16i_s32f_convert_32f.h b/kernels/volk/volk_16i_s32f_convert_32f.h
+index 38ea6f5..3fd3a77 100644
+--- a/kernels/volk/volk_16i_s32f_convert_32f.h
++++ b/kernels/volk/volk_16i_s32f_convert_32f.h
+@@ -29,8 +29,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_16i_s32f_convert_32f(float* outputVector, const int16_t* inputVector, const float scalar, unsigned int num_points);
+- * \endcode
++ * void volk_16i_s32f_convert_32f(float* outputVector, const int16_t* inputVector, const
++ * float scalar, unsigned int num_points); \endcode
+  *
+  * \b Inputs
+  * \li inputVector: The input vector of 16-bit shorts.
+@@ -60,238 +60,247 @@
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_16i_s32f_convert_32f_u_avx2(float* outputVector, const int16_t* inputVector,
+-                                const float scalar, unsigned int num_points)
++static inline void volk_16i_s32f_convert_32f_u_avx2(float* outputVector,
++                                                    const int16_t* inputVector,
++                                                    const float scalar,
++                                                    unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  float* outputVectorPtr = outputVector;
+-  __m256 invScalar = _mm256_set1_ps(1.0/scalar);
+-  int16_t* inputPtr = (int16_t*)inputVector;
+-  __m128i inputVal;
+-  __m256i inputVal2;
+-  __m256 ret;
++    float* outputVectorPtr = outputVector;
++    __m256 invScalar = _mm256_set1_ps(1.0 / scalar);
++    int16_t* inputPtr = (int16_t*)inputVector;
++    __m128i inputVal;
++    __m256i inputVal2;
++    __m256 ret;
+-  for(;number < eighthPoints; number++){
++    for (; number < eighthPoints; number++) {
+-    // Load the 8 values
+-    inputVal = _mm_loadu_si128((__m128i*)inputPtr);
++        // Load the 8 values
++        inputVal = _mm_loadu_si128((__m128i*)inputPtr);
+-    // Convert
+-    inputVal2 = _mm256_cvtepi16_epi32(inputVal);
++        // Convert
++        inputVal2 = _mm256_cvtepi16_epi32(inputVal);
+-    ret = _mm256_cvtepi32_ps(inputVal2);
+-    ret = _mm256_mul_ps(ret, invScalar);
++        ret = _mm256_cvtepi32_ps(inputVal2);
++        ret = _mm256_mul_ps(ret, invScalar);
+-    _mm256_storeu_ps(outputVectorPtr, ret);
++        _mm256_storeu_ps(outputVectorPtr, ret);
+-    outputVectorPtr += 8;
++        outputVectorPtr += 8;
+-    inputPtr += 8;
+-  }
++        inputPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    outputVector[number] =((float)(inputVector[number])) / scalar;
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        outputVector[number] = ((float)(inputVector[number])) / scalar;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_16i_s32f_convert_32f_u_avx(float* outputVector, const int16_t* inputVector,
+-                                const float scalar, unsigned int num_points)
++static inline void volk_16i_s32f_convert_32f_u_avx(float* outputVector,
++                                                   const int16_t* inputVector,
++                                                   const float scalar,
++                                                   unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  float* outputVectorPtr = outputVector;
+-  __m128 invScalar = _mm_set_ps1(1.0/scalar);
+-  int16_t* inputPtr = (int16_t*)inputVector;
+-  __m128i inputVal, inputVal2;
+-  __m128 ret;
+-  __m256 output;
+-  __m256 dummy = _mm256_setzero_ps();
++    float* outputVectorPtr = outputVector;
++    __m128 invScalar = _mm_set_ps1(1.0 / scalar);
++    int16_t* inputPtr = (int16_t*)inputVector;
++    __m128i inputVal, inputVal2;
++    __m128 ret;
++    __m256 output;
++    __m256 dummy = _mm256_setzero_ps();
+-  for(;number < eighthPoints; number++){
++    for (; number < eighthPoints; number++) {
+-    // Load the 8 values
+-    //inputVal = _mm_loadu_si128((__m128i*)inputPtr);
+-    inputVal = _mm_loadu_si128((__m128i*)inputPtr);
++        // Load the 8 values
++        // inputVal = _mm_loadu_si128((__m128i*)inputPtr);
++        inputVal = _mm_loadu_si128((__m128i*)inputPtr);
+-    // Shift the input data to the right by 64 bits ( 8 bytes )
+-    inputVal2 = _mm_srli_si128(inputVal, 8);
++        // Shift the input data to the right by 64 bits ( 8 bytes )
++        inputVal2 = _mm_srli_si128(inputVal, 8);
+-    // Convert the lower 4 values into 32 bit words
+-    inputVal = _mm_cvtepi16_epi32(inputVal);
+-    inputVal2 = _mm_cvtepi16_epi32(inputVal2);
++        // Convert the lower 4 values into 32 bit words
++        inputVal = _mm_cvtepi16_epi32(inputVal);
++        inputVal2 = _mm_cvtepi16_epi32(inputVal2);
+-    ret = _mm_cvtepi32_ps(inputVal);
+-    ret = _mm_mul_ps(ret, invScalar);
+-    output = _mm256_insertf128_ps(dummy, ret, 0);
++        ret = _mm_cvtepi32_ps(inputVal);
++        ret = _mm_mul_ps(ret, invScalar);
++        output = _mm256_insertf128_ps(dummy, ret, 0);
+-    ret = _mm_cvtepi32_ps(inputVal2);
+-    ret = _mm_mul_ps(ret, invScalar);
+-    output = _mm256_insertf128_ps(output, ret, 1);
++        ret = _mm_cvtepi32_ps(inputVal2);
++        ret = _mm_mul_ps(ret, invScalar);
++        output = _mm256_insertf128_ps(output, ret, 1);
+-    _mm256_storeu_ps(outputVectorPtr, output);
++        _mm256_storeu_ps(outputVectorPtr, output);
+-    outputVectorPtr += 8;
++        outputVectorPtr += 8;
+-    inputPtr += 8;
+-  }
++        inputPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    outputVector[number] =((float)(inputVector[number])) / scalar;
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        outputVector[number] = ((float)(inputVector[number])) / scalar;
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_SSE4_1
+ #include <smmintrin.h>
+-static inline void
+-volk_16i_s32f_convert_32f_u_sse4_1(float* outputVector, const int16_t* inputVector,
+-                                   const float scalar, unsigned int num_points)
++static inline void volk_16i_s32f_convert_32f_u_sse4_1(float* outputVector,
++                                                      const int16_t* inputVector,
++                                                      const float scalar,
++                                                      unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  float* outputVectorPtr = outputVector;
+-  __m128 invScalar = _mm_set_ps1(1.0/scalar);
+-  int16_t* inputPtr = (int16_t*)inputVector;
+-  __m128i inputVal;
+-  __m128i inputVal2;
+-  __m128 ret;
++    float* outputVectorPtr = outputVector;
++    __m128 invScalar = _mm_set_ps1(1.0 / scalar);
++    int16_t* inputPtr = (int16_t*)inputVector;
++    __m128i inputVal;
++    __m128i inputVal2;
++    __m128 ret;
+-  for(;number < eighthPoints; number++){
++    for (; number < eighthPoints; number++) {
+-    // Load the 8 values
+-    inputVal = _mm_loadu_si128((__m128i*)inputPtr);
++        // Load the 8 values
++        inputVal = _mm_loadu_si128((__m128i*)inputPtr);
+-    // Shift the input data to the right by 64 bits ( 8 bytes )
+-    inputVal2 = _mm_srli_si128(inputVal, 8);
++        // Shift the input data to the right by 64 bits ( 8 bytes )
++        inputVal2 = _mm_srli_si128(inputVal, 8);
+-    // Convert the lower 4 values into 32 bit words
+-    inputVal = _mm_cvtepi16_epi32(inputVal);
+-    inputVal2 = _mm_cvtepi16_epi32(inputVal2);
++        // Convert the lower 4 values into 32 bit words
++        inputVal = _mm_cvtepi16_epi32(inputVal);
++        inputVal2 = _mm_cvtepi16_epi32(inputVal2);
+-    ret = _mm_cvtepi32_ps(inputVal);
+-    ret = _mm_mul_ps(ret, invScalar);
+-    _mm_storeu_ps(outputVectorPtr, ret);
+-    outputVectorPtr += 4;
++        ret = _mm_cvtepi32_ps(inputVal);
++        ret = _mm_mul_ps(ret, invScalar);
++        _mm_storeu_ps(outputVectorPtr, ret);
++        outputVectorPtr += 4;
+-    ret = _mm_cvtepi32_ps(inputVal2);
+-    ret = _mm_mul_ps(ret, invScalar);
+-    _mm_storeu_ps(outputVectorPtr, ret);
++        ret = _mm_cvtepi32_ps(inputVal2);
++        ret = _mm_mul_ps(ret, invScalar);
++        _mm_storeu_ps(outputVectorPtr, ret);
+-    outputVectorPtr += 4;
++        outputVectorPtr += 4;
+-    inputPtr += 8;
+-  }
++        inputPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    outputVector[number] =((float)(inputVector[number])) / scalar;
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        outputVector[number] = ((float)(inputVector[number])) / scalar;
++    }
+ }
+ #endif /* LV_HAVE_SSE4_1 */
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_16i_s32f_convert_32f_u_sse(float* outputVector, const int16_t* inputVector,
+-                                const float scalar, unsigned int num_points)
++static inline void volk_16i_s32f_convert_32f_u_sse(float* outputVector,
++                                                   const int16_t* inputVector,
++                                                   const float scalar,
++                                                   unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  float* outputVectorPtr = outputVector;
+-  __m128 invScalar = _mm_set_ps1(1.0/scalar);
+-  int16_t* inputPtr = (int16_t*)inputVector;
+-  __m128 ret;
+-
+-  for(;number < quarterPoints; number++){
+-    ret = _mm_set_ps((float)(inputPtr[3]), (float)(inputPtr[2]), (float)(inputPtr[1]), (float)(inputPtr[0]));
+-
+-    ret = _mm_mul_ps(ret, invScalar);
+-    _mm_storeu_ps(outputVectorPtr, ret);
+-
+-    inputPtr += 4;
+-    outputVectorPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    outputVector[number] = (float)(inputVector[number]) / scalar;
+-  }
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++
++    float* outputVectorPtr = outputVector;
++    __m128 invScalar = _mm_set_ps1(1.0 / scalar);
++    int16_t* inputPtr = (int16_t*)inputVector;
++    __m128 ret;
++
++    for (; number < quarterPoints; number++) {
++        ret = _mm_set_ps((float)(inputPtr[3]),
++                         (float)(inputPtr[2]),
++                         (float)(inputPtr[1]),
++                         (float)(inputPtr[0]));
++
++        ret = _mm_mul_ps(ret, invScalar);
++        _mm_storeu_ps(outputVectorPtr, ret);
++
++        inputPtr += 4;
++        outputVectorPtr += 4;
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        outputVector[number] = (float)(inputVector[number]) / scalar;
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_16i_s32f_convert_32f_generic(float* outputVector, const int16_t* inputVector,
+-                                  const float scalar, unsigned int num_points)
++static inline void volk_16i_s32f_convert_32f_generic(float* outputVector,
++                                                     const int16_t* inputVector,
++                                                     const float scalar,
++                                                     unsigned int num_points)
+ {
+-  float* outputVectorPtr = outputVector;
+-  const int16_t* inputVectorPtr = inputVector;
+-  unsigned int number = 0;
++    float* outputVectorPtr = outputVector;
++    const int16_t* inputVectorPtr = inputVector;
++    unsigned int number = 0;
+-  for(number = 0; number < num_points; number++){
+-    *outputVectorPtr++ = ((float)(*inputVectorPtr++)) / scalar;
+-  }
++    for (number = 0; number < num_points; number++) {
++        *outputVectorPtr++ = ((float)(*inputVectorPtr++)) / scalar;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_16i_s32f_convert_32f_neon(float* outputVector, const int16_t* inputVector,
+-                               const float scalar, unsigned int num_points)
++static inline void volk_16i_s32f_convert_32f_neon(float* outputVector,
++                                                  const int16_t* inputVector,
++                                                  const float scalar,
++                                                  unsigned int num_points)
+ {
+-  float* outputPtr = outputVector;
+-  const int16_t* inputPtr = inputVector;
+-  unsigned int number = 0;
+-  unsigned int eighth_points = num_points / 8;
+-
+-  int16x4x2_t input16;
+-  int32x4_t input32_0, input32_1;
+-  float32x4_t input_float_0, input_float_1;
+-  float32x4x2_t output_float;
+-  float32x4_t inv_scale;
+-
+-  inv_scale = vdupq_n_f32(1.0/scalar);
+-
+-  // the generic disassembles to a 128-bit load
+-  // and duplicates every instruction to operate on 64-bits
+-  // at a time. This is only possible with lanes, which is faster
+-  // than just doing a vld1_s16, but still slower.
+-  for(number = 0; number < eighth_points; number++){
+-    input16 = vld2_s16(inputPtr);
+-    // widen 16-bit int to 32-bit int
+-    input32_0 = vmovl_s16(input16.val[0]);
+-    input32_1 = vmovl_s16(input16.val[1]);
+-    // convert 32-bit int to float with scale
+-    input_float_0 = vcvtq_f32_s32(input32_0);
+-    input_float_1 = vcvtq_f32_s32(input32_1);
+-    output_float.val[0] = vmulq_f32(input_float_0, inv_scale);
+-    output_float.val[1] = vmulq_f32(input_float_1, inv_scale);
+-    vst2q_f32(outputPtr, output_float);
+-    inputPtr += 8;
+-    outputPtr += 8;
+-  }
+-
+-  for(number = eighth_points*8; number < num_points; number++){
+-    *outputPtr++ = ((float)(*inputPtr++)) / scalar;
+-  }
++    float* outputPtr = outputVector;
++    const int16_t* inputPtr = inputVector;
++    unsigned int number = 0;
++    unsigned int eighth_points = num_points / 8;
++
++    int16x4x2_t input16;
++    int32x4_t input32_0, input32_1;
++    float32x4_t input_float_0, input_float_1;
++    float32x4x2_t output_float;
++    float32x4_t inv_scale;
++
++    inv_scale = vdupq_n_f32(1.0 / scalar);
++
++    // the generic disassembles to a 128-bit load
++    // and duplicates every instruction to operate on 64-bits
++    // at a time. This is only possible with lanes, which is faster
++    // than just doing a vld1_s16, but still slower.
++    for (number = 0; number < eighth_points; number++) {
++        input16 = vld2_s16(inputPtr);
++        // widen 16-bit int to 32-bit int
++        input32_0 = vmovl_s16(input16.val[0]);
++        input32_1 = vmovl_s16(input16.val[1]);
++        // convert 32-bit int to float with scale
++        input_float_0 = vcvtq_f32_s32(input32_0);
++        input_float_1 = vcvtq_f32_s32(input32_1);
++        output_float.val[0] = vmulq_f32(input_float_0, inv_scale);
++        output_float.val[1] = vmulq_f32(input_float_1, inv_scale);
++        vst2q_f32(outputPtr, output_float);
++        inputPtr += 8;
++        outputPtr += 8;
++    }
++
++    for (number = eighth_points * 8; number < num_points; number++) {
++        *outputPtr++ = ((float)(*inputPtr++)) / scalar;
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+@@ -306,193 +315,201 @@ volk_16i_s32f_convert_32f_neon(float* outputVector, const int16_t* inputVector,
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_16i_s32f_convert_32f_a_avx2(float* outputVector, const int16_t* inputVector,
+-                                const float scalar, unsigned int num_points)
++static inline void volk_16i_s32f_convert_32f_a_avx2(float* outputVector,
++                                                    const int16_t* inputVector,
++                                                    const float scalar,
++                                                    unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  float* outputVectorPtr = outputVector;
+-  __m256 invScalar = _mm256_set1_ps(1.0/scalar);
+-  int16_t* inputPtr = (int16_t*)inputVector;
+-  __m128i inputVal;
+-  __m256i inputVal2;
+-  __m256 ret;
++    float* outputVectorPtr = outputVector;
++    __m256 invScalar = _mm256_set1_ps(1.0 / scalar);
++    int16_t* inputPtr = (int16_t*)inputVector;
++    __m128i inputVal;
++    __m256i inputVal2;
++    __m256 ret;
+-  for(;number < eighthPoints; number++){
++    for (; number < eighthPoints; number++) {
+-    // Load the 8 values
+-    inputVal = _mm_load_si128((__m128i*)inputPtr);
++        // Load the 8 values
++        inputVal = _mm_load_si128((__m128i*)inputPtr);
+-    // Convert
+-    inputVal2 = _mm256_cvtepi16_epi32(inputVal);
++        // Convert
++        inputVal2 = _mm256_cvtepi16_epi32(inputVal);
+-    ret = _mm256_cvtepi32_ps(inputVal2);
+-    ret = _mm256_mul_ps(ret, invScalar);
++        ret = _mm256_cvtepi32_ps(inputVal2);
++        ret = _mm256_mul_ps(ret, invScalar);
+-    _mm256_store_ps(outputVectorPtr, ret);
++        _mm256_store_ps(outputVectorPtr, ret);
+-    outputVectorPtr += 8;
++        outputVectorPtr += 8;
+-    inputPtr += 8;
+-  }
++        inputPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    outputVector[number] =((float)(inputVector[number])) / scalar;
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        outputVector[number] = ((float)(inputVector[number])) / scalar;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_16i_s32f_convert_32f_a_avx(float* outputVector, const int16_t* inputVector,
+-                                const float scalar, unsigned int num_points)
++static inline void volk_16i_s32f_convert_32f_a_avx(float* outputVector,
++                                                   const int16_t* inputVector,
++                                                   const float scalar,
++                                                   unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  float* outputVectorPtr = outputVector;
+-  __m128 invScalar = _mm_set_ps1(1.0/scalar);
+-  int16_t* inputPtr = (int16_t*)inputVector;
+-  __m128i inputVal, inputVal2;
+-  __m128 ret;
+-  __m256 output;
+-  __m256 dummy = _mm256_setzero_ps();
++    float* outputVectorPtr = outputVector;
++    __m128 invScalar = _mm_set_ps1(1.0 / scalar);
++    int16_t* inputPtr = (int16_t*)inputVector;
++    __m128i inputVal, inputVal2;
++    __m128 ret;
++    __m256 output;
++    __m256 dummy = _mm256_setzero_ps();
+-  for(;number < eighthPoints; number++){
++    for (; number < eighthPoints; number++) {
+-    // Load the 8 values
+-    //inputVal = _mm_loadu_si128((__m128i*)inputPtr);
+-    inputVal = _mm_load_si128((__m128i*)inputPtr);
++        // Load the 8 values
++        // inputVal = _mm_loadu_si128((__m128i*)inputPtr);
++        inputVal = _mm_load_si128((__m128i*)inputPtr);
+-    // Shift the input data to the right by 64 bits ( 8 bytes )
+-    inputVal2 = _mm_srli_si128(inputVal, 8);
++        // Shift the input data to the right by 64 bits ( 8 bytes )
++        inputVal2 = _mm_srli_si128(inputVal, 8);
+-    // Convert the lower 4 values into 32 bit words
+-    inputVal = _mm_cvtepi16_epi32(inputVal);
+-    inputVal2 = _mm_cvtepi16_epi32(inputVal2);
++        // Convert the lower 4 values into 32 bit words
++        inputVal = _mm_cvtepi16_epi32(inputVal);
++        inputVal2 = _mm_cvtepi16_epi32(inputVal2);
+-    ret = _mm_cvtepi32_ps(inputVal);
+-    ret = _mm_mul_ps(ret, invScalar);
+-    output = _mm256_insertf128_ps(dummy, ret, 0);
++        ret = _mm_cvtepi32_ps(inputVal);
++        ret = _mm_mul_ps(ret, invScalar);
++        output = _mm256_insertf128_ps(dummy, ret, 0);
+-    ret = _mm_cvtepi32_ps(inputVal2);
+-    ret = _mm_mul_ps(ret, invScalar);
+-    output = _mm256_insertf128_ps(output, ret, 1);
++        ret = _mm_cvtepi32_ps(inputVal2);
++        ret = _mm_mul_ps(ret, invScalar);
++        output = _mm256_insertf128_ps(output, ret, 1);
+-    _mm256_store_ps(outputVectorPtr, output);
++        _mm256_store_ps(outputVectorPtr, output);
+-    outputVectorPtr += 8;
++        outputVectorPtr += 8;
+-    inputPtr += 8;
+-  }
++        inputPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    outputVector[number] =((float)(inputVector[number])) / scalar;
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        outputVector[number] = ((float)(inputVector[number])) / scalar;
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_SSE4_1
+ #include <smmintrin.h>
+-static inline void
+-volk_16i_s32f_convert_32f_a_sse4_1(float* outputVector, const int16_t* inputVector,
+-                                   const float scalar, unsigned int num_points)
++static inline void volk_16i_s32f_convert_32f_a_sse4_1(float* outputVector,
++                                                      const int16_t* inputVector,
++                                                      const float scalar,
++                                                      unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  float* outputVectorPtr = outputVector;
+-  __m128 invScalar = _mm_set_ps1(1.0/scalar);
+-  int16_t* inputPtr = (int16_t*)inputVector;
+-  __m128i inputVal;
+-  __m128i inputVal2;
+-  __m128 ret;
++    float* outputVectorPtr = outputVector;
++    __m128 invScalar = _mm_set_ps1(1.0 / scalar);
++    int16_t* inputPtr = (int16_t*)inputVector;
++    __m128i inputVal;
++    __m128i inputVal2;
++    __m128 ret;
+-  for(;number < eighthPoints; number++){
++    for (; number < eighthPoints; number++) {
+-    // Load the 8 values
+-    inputVal = _mm_loadu_si128((__m128i*)inputPtr);
++        // Load the 8 values
++        inputVal = _mm_loadu_si128((__m128i*)inputPtr);
+-    // Shift the input data to the right by 64 bits ( 8 bytes )
+-    inputVal2 = _mm_srli_si128(inputVal, 8);
++        // Shift the input data to the right by 64 bits ( 8 bytes )
++        inputVal2 = _mm_srli_si128(inputVal, 8);
+-    // Convert the lower 4 values into 32 bit words
+-    inputVal = _mm_cvtepi16_epi32(inputVal);
+-    inputVal2 = _mm_cvtepi16_epi32(inputVal2);
++        // Convert the lower 4 values into 32 bit words
++        inputVal = _mm_cvtepi16_epi32(inputVal);
++        inputVal2 = _mm_cvtepi16_epi32(inputVal2);
+-    ret = _mm_cvtepi32_ps(inputVal);
+-    ret = _mm_mul_ps(ret, invScalar);
+-    _mm_storeu_ps(outputVectorPtr, ret);
+-    outputVectorPtr += 4;
++        ret = _mm_cvtepi32_ps(inputVal);
++        ret = _mm_mul_ps(ret, invScalar);
++        _mm_storeu_ps(outputVectorPtr, ret);
++        outputVectorPtr += 4;
+-    ret = _mm_cvtepi32_ps(inputVal2);
+-    ret = _mm_mul_ps(ret, invScalar);
+-    _mm_storeu_ps(outputVectorPtr, ret);
++        ret = _mm_cvtepi32_ps(inputVal2);
++        ret = _mm_mul_ps(ret, invScalar);
++        _mm_storeu_ps(outputVectorPtr, ret);
+-    outputVectorPtr += 4;
++        outputVectorPtr += 4;
+-    inputPtr += 8;
+-  }
++        inputPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    outputVector[number] =((float)(inputVector[number])) / scalar;
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        outputVector[number] = ((float)(inputVector[number])) / scalar;
++    }
+ }
+ #endif /* LV_HAVE_SSE4_1 */
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_16i_s32f_convert_32f_a_sse(float* outputVector, const int16_t* inputVector,
+-                                const float scalar, unsigned int num_points)
++static inline void volk_16i_s32f_convert_32f_a_sse(float* outputVector,
++                                                   const int16_t* inputVector,
++                                                   const float scalar,
++                                                   unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  float* outputVectorPtr = outputVector;
+-  __m128 invScalar = _mm_set_ps1(1.0/scalar);
+-  int16_t* inputPtr = (int16_t*)inputVector;
+-  __m128 ret;
+-
+-  for(;number < quarterPoints; number++){
+-    ret = _mm_set_ps((float)(inputPtr[3]), (float)(inputPtr[2]), (float)(inputPtr[1]), (float)(inputPtr[0]));
+-
+-    ret = _mm_mul_ps(ret, invScalar);
+-    _mm_storeu_ps(outputVectorPtr, ret);
+-
+-    inputPtr += 4;
+-    outputVectorPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    outputVector[number] = (float)(inputVector[number]) / scalar;
+-  }
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++
++    float* outputVectorPtr = outputVector;
++    __m128 invScalar = _mm_set_ps1(1.0 / scalar);
++    int16_t* inputPtr = (int16_t*)inputVector;
++    __m128 ret;
++
++    for (; number < quarterPoints; number++) {
++        ret = _mm_set_ps((float)(inputPtr[3]),
++                         (float)(inputPtr[2]),
++                         (float)(inputPtr[1]),
++                         (float)(inputPtr[0]));
++
++        ret = _mm_mul_ps(ret, invScalar);
++        _mm_storeu_ps(outputVectorPtr, ret);
++
++        inputPtr += 4;
++        outputVectorPtr += 4;
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        outputVector[number] = (float)(inputVector[number]) / scalar;
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_16i_s32f_convert_32f_a_generic(float* outputVector, const int16_t* inputVector,
+-                                    const float scalar, unsigned int num_points)
++static inline void volk_16i_s32f_convert_32f_a_generic(float* outputVector,
++                                                       const int16_t* inputVector,
++                                                       const float scalar,
++                                                       unsigned int num_points)
+ {
+-  float* outputVectorPtr = outputVector;
+-  const int16_t* inputVectorPtr = inputVector;
+-  unsigned int number = 0;
++    float* outputVectorPtr = outputVector;
++    const int16_t* inputVectorPtr = inputVector;
++    unsigned int number = 0;
+-  for(number = 0; number < num_points; number++){
+-    *outputVectorPtr++ = ((float)(*inputVectorPtr++)) / scalar;
+-  }
++    for (number = 0; number < num_points; number++) {
++        *outputVectorPtr++ = ((float)(*inputVectorPtr++)) / scalar;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+diff --git a/kernels/volk/volk_16i_x4_quad_max_star_16i.h b/kernels/volk/volk_16i_x4_quad_max_star_16i.h
+index 6aa74c7..619cc90 100644
+--- a/kernels/volk/volk_16i_x4_quad_max_star_16i.h
++++ b/kernels/volk/volk_16i_x4_quad_max_star_16i.h
+@@ -29,8 +29,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_16i_x4_quad_max_star_16i(short* target, short* src0, short* src1, short* src2, short* src3, unsigned int num_points)
+- * \endcode
++ * void volk_16i_x4_quad_max_star_16i(short* target, short* src0, short* src1, short*
++ * src2, short* src3, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li src0: The input vector 0.
+@@ -55,149 +55,152 @@
+ #ifndef INCLUDED_volk_16i_x4_quad_max_star_16i_a_H
+ #define INCLUDED_volk_16i_x4_quad_max_star_16i_a_H
+-#include<inttypes.h>
+-#include<stdio.h>
++#include <inttypes.h>
++#include <stdio.h>
+ #ifdef LV_HAVE_SSE2
+-#include<emmintrin.h>
++#include <emmintrin.h>
+-static inline void
+-volk_16i_x4_quad_max_star_16i_a_sse2(short* target, short* src0, short* src1,
+-                                     short* src2, short* src3, unsigned int num_points)
++static inline void volk_16i_x4_quad_max_star_16i_a_sse2(short* target,
++                                                        short* src0,
++                                                        short* src1,
++                                                        short* src2,
++                                                        short* src3,
++                                                        unsigned int num_points)
+ {
+-  const unsigned int num_bytes = num_points*2;
+-
+-  int i = 0;
++    const unsigned int num_bytes = num_points * 2;
+-  int bound = (num_bytes >> 4);
+-  int bound_copy = bound;
+-  int leftovers = (num_bytes >> 1) & 7;
++    int i = 0;
+-  __m128i *p_target, *p_src0, *p_src1, *p_src2, *p_src3;
+-  p_target = (__m128i*) target;
+-  p_src0 =  (__m128i*)src0;
+-  p_src1 =  (__m128i*)src1;
+-  p_src2 =  (__m128i*)src2;
+-  p_src3 =  (__m128i*)src3;
++    int bound = (num_bytes >> 4);
++    int bound_copy = bound;
++    int leftovers = (num_bytes >> 1) & 7;
+-  __m128i xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8;
++    __m128i *p_target, *p_src0, *p_src1, *p_src2, *p_src3;
++    p_target = (__m128i*)target;
++    p_src0 = (__m128i*)src0;
++    p_src1 = (__m128i*)src1;
++    p_src2 = (__m128i*)src2;
++    p_src3 = (__m128i*)src3;
+-  while(bound_copy > 0) {
+-    xmm1 = _mm_load_si128(p_src0);
+-    xmm2 = _mm_load_si128(p_src1);
+-    xmm3 = _mm_load_si128(p_src2);
+-    xmm4 = _mm_load_si128(p_src3);
++    __m128i xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8;
+-    xmm5 = _mm_setzero_si128();
+-    xmm6 = _mm_setzero_si128();
+-    xmm7 = xmm1;
+-    xmm8 = xmm3;
++    while (bound_copy > 0) {
++        xmm1 = _mm_load_si128(p_src0);
++        xmm2 = _mm_load_si128(p_src1);
++        xmm3 = _mm_load_si128(p_src2);
++        xmm4 = _mm_load_si128(p_src3);
+-    xmm1 = _mm_sub_epi16(xmm2, xmm1);
++        xmm5 = _mm_setzero_si128();
++        xmm6 = _mm_setzero_si128();
++        xmm7 = xmm1;
++        xmm8 = xmm3;
+-    xmm3 = _mm_sub_epi16(xmm4, xmm3);
++        xmm1 = _mm_sub_epi16(xmm2, xmm1);
+-    xmm5 = _mm_cmpgt_epi16(xmm1, xmm5);
+-    xmm6 = _mm_cmpgt_epi16(xmm3, xmm6);
++        xmm3 = _mm_sub_epi16(xmm4, xmm3);
+-    xmm2 = _mm_and_si128(xmm5, xmm2);
+-    xmm4 = _mm_and_si128(xmm6, xmm4);
+-    xmm5 = _mm_andnot_si128(xmm5, xmm7);
+-    xmm6 = _mm_andnot_si128(xmm6, xmm8);
++        xmm5 = _mm_cmpgt_epi16(xmm1, xmm5);
++        xmm6 = _mm_cmpgt_epi16(xmm3, xmm6);
+-    xmm5 = _mm_add_epi16(xmm2, xmm5);
+-    xmm6 = _mm_add_epi16(xmm4, xmm6);
++        xmm2 = _mm_and_si128(xmm5, xmm2);
++        xmm4 = _mm_and_si128(xmm6, xmm4);
++        xmm5 = _mm_andnot_si128(xmm5, xmm7);
++        xmm6 = _mm_andnot_si128(xmm6, xmm8);
+-    xmm1 = _mm_xor_si128(xmm1, xmm1);
+-    xmm2 = xmm5;
+-    xmm5 = _mm_sub_epi16(xmm6, xmm5);
+-    p_src0 += 1;
+-    bound_copy -= 1;
++        xmm5 = _mm_add_epi16(xmm2, xmm5);
++        xmm6 = _mm_add_epi16(xmm4, xmm6);
+-    xmm1 = _mm_cmpgt_epi16(xmm5, xmm1);
+-    p_src1 += 1;
++        xmm1 = _mm_xor_si128(xmm1, xmm1);
++        xmm2 = xmm5;
++        xmm5 = _mm_sub_epi16(xmm6, xmm5);
++        p_src0 += 1;
++        bound_copy -= 1;
+-    xmm6 = _mm_and_si128(xmm1, xmm6);
++        xmm1 = _mm_cmpgt_epi16(xmm5, xmm1);
++        p_src1 += 1;
+-    xmm1 = _mm_andnot_si128(xmm1, xmm2);
+-    p_src2 += 1;
++        xmm6 = _mm_and_si128(xmm1, xmm6);
+-    xmm1 = _mm_add_epi16(xmm6, xmm1);
+-    p_src3 += 1;
++        xmm1 = _mm_andnot_si128(xmm1, xmm2);
++        p_src2 += 1;
+-    _mm_store_si128(p_target, xmm1);
+-    p_target += 1;
++        xmm1 = _mm_add_epi16(xmm6, xmm1);
++        p_src3 += 1;
+-  }
++        _mm_store_si128(p_target, xmm1);
++        p_target += 1;
++    }
+-  /*__VOLK_ASM __VOLK_VOLATILE
+-    (
+-    "volk_16i_x4_quad_max_star_16i_a_sse2_L1:\n\t"
+-    "cmp $0, %[bound]\n\t"
+-    "je volk_16i_x4_quad_max_star_16i_a_sse2_END\n\t"
++    /*__VOLK_ASM __VOLK_VOLATILE
++      (
++      "volk_16i_x4_quad_max_star_16i_a_sse2_L1:\n\t"
++      "cmp $0, %[bound]\n\t"
++      "je volk_16i_x4_quad_max_star_16i_a_sse2_END\n\t"
+-    "movaps (%[src0]), %%xmm1\n\t"
+-    "movaps (%[src1]), %%xmm2\n\t"
+-    "movaps (%[src2]), %%xmm3\n\t"
+-    "movaps (%[src3]), %%xmm4\n\t"
++      "movaps (%[src0]), %%xmm1\n\t"
++      "movaps (%[src1]), %%xmm2\n\t"
++      "movaps (%[src2]), %%xmm3\n\t"
++      "movaps (%[src3]), %%xmm4\n\t"
+-    "pxor %%xmm5, %%xmm5\n\t"
+-    "pxor %%xmm6, %%xmm6\n\t"
+-    "movaps %%xmm1, %%xmm7\n\t"
+-    "movaps %%xmm3, %%xmm8\n\t"
+-    "psubw %%xmm2, %%xmm1\n\t"
+-    "psubw %%xmm4, %%xmm3\n\t"
++      "pxor %%xmm5, %%xmm5\n\t"
++      "pxor %%xmm6, %%xmm6\n\t"
++      "movaps %%xmm1, %%xmm7\n\t"
++      "movaps %%xmm3, %%xmm8\n\t"
++      "psubw %%xmm2, %%xmm1\n\t"
++      "psubw %%xmm4, %%xmm3\n\t"
+-    "pcmpgtw %%xmm1, %%xmm5\n\t"
+-    "pcmpgtw %%xmm3, %%xmm6\n\t"
++      "pcmpgtw %%xmm1, %%xmm5\n\t"
++      "pcmpgtw %%xmm3, %%xmm6\n\t"
+-    "pand %%xmm5, %%xmm2\n\t"
+-    "pand %%xmm6, %%xmm4\n\t"
+-    "pandn %%xmm7, %%xmm5\n\t"
+-    "pandn %%xmm8, %%xmm6\n\t"
++      "pand %%xmm5, %%xmm2\n\t"
++      "pand %%xmm6, %%xmm4\n\t"
++      "pandn %%xmm7, %%xmm5\n\t"
++      "pandn %%xmm8, %%xmm6\n\t"
+-    "paddw %%xmm2, %%xmm5\n\t"
+-    "paddw %%xmm4, %%xmm6\n\t"
++      "paddw %%xmm2, %%xmm5\n\t"
++      "paddw %%xmm4, %%xmm6\n\t"
+-    "pxor %%xmm1, %%xmm1\n\t"
+-    "movaps %%xmm5, %%xmm2\n\t"
++      "pxor %%xmm1, %%xmm1\n\t"
++      "movaps %%xmm5, %%xmm2\n\t"
+-    "psubw %%xmm6, %%xmm5\n\t"
+-    "add $16, %[src0]\n\t"
+-    "add $-1, %[bound]\n\t"
++      "psubw %%xmm6, %%xmm5\n\t"
++      "add $16, %[src0]\n\t"
++      "add $-1, %[bound]\n\t"
+-    "pcmpgtw %%xmm5, %%xmm1\n\t"
+-    "add $16, %[src1]\n\t"
++      "pcmpgtw %%xmm5, %%xmm1\n\t"
++      "add $16, %[src1]\n\t"
+-    "pand %%xmm1, %%xmm6\n\t"
++      "pand %%xmm1, %%xmm6\n\t"
+-    "pandn %%xmm2, %%xmm1\n\t"
+-    "add $16, %[src2]\n\t"
++      "pandn %%xmm2, %%xmm1\n\t"
++      "add $16, %[src2]\n\t"
+-    "paddw %%xmm6, %%xmm1\n\t"
+-    "add $16, %[src3]\n\t"
++      "paddw %%xmm6, %%xmm1\n\t"
++      "add $16, %[src3]\n\t"
+-    "movaps %%xmm1, (%[target])\n\t"
+-    "addw $16, %[target]\n\t"
+-    "jmp volk_16i_x4_quad_max_star_16i_a_sse2_L1\n\t"
++      "movaps %%xmm1, (%[target])\n\t"
++      "addw $16, %[target]\n\t"
++      "jmp volk_16i_x4_quad_max_star_16i_a_sse2_L1\n\t"
+-    "volk_16i_x4_quad_max_star_16i_a_sse2_END:\n\t"
+-    :
+-    :[bound]"r"(bound), [src0]"r"(src0), [src1]"r"(src1), [src2]"r"(src2), [src3]"r"(src3), [target]"r"(target)
+-    :
+-    );
+-  */
++      "volk_16i_x4_quad_max_star_16i_a_sse2_END:\n\t"
++      :
++      :[bound]"r"(bound), [src0]"r"(src0), [src1]"r"(src1), [src2]"r"(src2),
++      [src3]"r"(src3), [target]"r"(target)
++      :
++      );
++    */
+-  short temp0 = 0;
+-  short temp1 = 0;
+-  for(i = bound * 8; i < (bound * 8) + leftovers; ++i) {
+-    temp0 = ((short)(src0[i] - src1[i]) > 0) ? src0[i] : src1[i];
+-    temp1 = ((short)(src2[i] - src3[i])>0) ? src2[i] : src3[i];
+-    target[i] = ((short)(temp0 - temp1)>0) ? temp0 : temp1;
+-  }
+-  return;
++    short temp0 = 0;
++    short temp1 = 0;
++    for (i = bound * 8; i < (bound * 8) + leftovers; ++i) {
++        temp0 = ((short)(src0[i] - src1[i]) > 0) ? src0[i] : src1[i];
++        temp1 = ((short)(src2[i] - src3[i]) > 0) ? src2[i] : src3[i];
++        target[i] = ((short)(temp0 - temp1) > 0) ? temp0 : temp1;
++    }
++    return;
+ }
+ #endif /*LV_HAVE_SSE2*/
+@@ -206,85 +209,91 @@ volk_16i_x4_quad_max_star_16i_a_sse2(short* target, short* src0, short* src1,
+ #include <arm_neon.h>
+-static inline void
+-volk_16i_x4_quad_max_star_16i_neon(short* target, short* src0, short* src1,
+-                                   short* src2, short* src3, unsigned int num_points)
++static inline void volk_16i_x4_quad_max_star_16i_neon(short* target,
++                                                      short* src0,
++                                                      short* src1,
++                                                      short* src2,
++                                                      short* src3,
++                                                      unsigned int num_points)
+ {
+-  const unsigned int eighth_points = num_points / 8;
+-  unsigned i;
+-
+-  int16x8_t src0_vec, src1_vec, src2_vec, src3_vec;
+-  int16x8_t diff12, diff34;
+-  int16x8_t comp0, comp1, comp2, comp3;
+-  int16x8_t result1_vec, result2_vec;
+-  int16x8_t zeros;
+-  zeros = vdupq_n_s16(0);
+-  for(i=0; i < eighth_points; ++i) {
+-    src0_vec = vld1q_s16(src0);
+-    src1_vec = vld1q_s16(src1);
+-    src2_vec = vld1q_s16(src2);
+-    src3_vec = vld1q_s16(src3);
+-    diff12 = vsubq_s16(src0_vec, src1_vec);
+-    diff34  = vsubq_s16(src2_vec, src3_vec);
+-    comp0 = (int16x8_t)vcgeq_s16(diff12, zeros);
+-    comp1 = (int16x8_t)vcltq_s16(diff12, zeros);
+-    comp2 = (int16x8_t)vcgeq_s16(diff34, zeros);
+-    comp3 = (int16x8_t)vcltq_s16(diff34, zeros);
+-    comp0 = vandq_s16(src0_vec, comp0);
+-    comp1 = vandq_s16(src1_vec, comp1);
+-    comp2 = vandq_s16(src2_vec, comp2);
+-    comp3 = vandq_s16(src3_vec, comp3);
+-
+-    result1_vec = vaddq_s16(comp0, comp1);
+-    result2_vec = vaddq_s16(comp2, comp3);
+-
+-    diff12 = vsubq_s16(result1_vec, result2_vec);
+-    comp0 = (int16x8_t)vcgeq_s16(diff12, zeros);
+-    comp1 = (int16x8_t)vcltq_s16(diff12, zeros);
+-    comp0 = vandq_s16(result1_vec, comp0);
+-    comp1 = vandq_s16(result2_vec, comp1);
+-    result1_vec = vaddq_s16(comp0, comp1);
+-    vst1q_s16(target, result1_vec);
+-    src0 += 8;
+-    src1 += 8;
+-    src2 += 8;
+-    src3 += 8;
+-    target += 8;
++    const unsigned int eighth_points = num_points / 8;
++    unsigned i;
++
++    int16x8_t src0_vec, src1_vec, src2_vec, src3_vec;
++    int16x8_t diff12, diff34;
++    int16x8_t comp0, comp1, comp2, comp3;
++    int16x8_t result1_vec, result2_vec;
++    int16x8_t zeros;
++    zeros = vdupq_n_s16(0);
++    for (i = 0; i < eighth_points; ++i) {
++        src0_vec = vld1q_s16(src0);
++        src1_vec = vld1q_s16(src1);
++        src2_vec = vld1q_s16(src2);
++        src3_vec = vld1q_s16(src3);
++        diff12 = vsubq_s16(src0_vec, src1_vec);
++        diff34 = vsubq_s16(src2_vec, src3_vec);
++        comp0 = (int16x8_t)vcgeq_s16(diff12, zeros);
++        comp1 = (int16x8_t)vcltq_s16(diff12, zeros);
++        comp2 = (int16x8_t)vcgeq_s16(diff34, zeros);
++        comp3 = (int16x8_t)vcltq_s16(diff34, zeros);
++        comp0 = vandq_s16(src0_vec, comp0);
++        comp1 = vandq_s16(src1_vec, comp1);
++        comp2 = vandq_s16(src2_vec, comp2);
++        comp3 = vandq_s16(src3_vec, comp3);
++
++        result1_vec = vaddq_s16(comp0, comp1);
++        result2_vec = vaddq_s16(comp2, comp3);
++
++        diff12 = vsubq_s16(result1_vec, result2_vec);
++        comp0 = (int16x8_t)vcgeq_s16(diff12, zeros);
++        comp1 = (int16x8_t)vcltq_s16(diff12, zeros);
++        comp0 = vandq_s16(result1_vec, comp0);
++        comp1 = vandq_s16(result2_vec, comp1);
++        result1_vec = vaddq_s16(comp0, comp1);
++        vst1q_s16(target, result1_vec);
++        src0 += 8;
++        src1 += 8;
++        src2 += 8;
++        src3 += 8;
++        target += 8;
+     }
+-  short temp0 = 0;
+-  short temp1 = 0;
+-  for(i=eighth_points*8; i < num_points; ++i) {
+-    temp0 = ((short)(*src0 - *src1) > 0) ? *src0 : *src1;
+-    temp1 = ((short)(*src2 - *src3) > 0) ? *src2 : *src3;
+-    *target++ = ((short)(temp0 - temp1)>0) ? temp0 : temp1;
+-    src0++;
+-    src1++;
+-    src2++;
+-    src3++;
+-  }
++    short temp0 = 0;
++    short temp1 = 0;
++    for (i = eighth_points * 8; i < num_points; ++i) {
++        temp0 = ((short)(*src0 - *src1) > 0) ? *src0 : *src1;
++        temp1 = ((short)(*src2 - *src3) > 0) ? *src2 : *src3;
++        *target++ = ((short)(temp0 - temp1) > 0) ? temp0 : temp1;
++        src0++;
++        src1++;
++        src2++;
++        src3++;
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_16i_x4_quad_max_star_16i_generic(short* target, short* src0, short* src1,
+-                                      short* src2, short* src3, unsigned int num_points)
++static inline void volk_16i_x4_quad_max_star_16i_generic(short* target,
++                                                         short* src0,
++                                                         short* src1,
++                                                         short* src2,
++                                                         short* src3,
++                                                         unsigned int num_points)
+ {
+-  const unsigned int num_bytes = num_points*2;
++    const unsigned int num_bytes = num_points * 2;
+-  int i = 0;
++    int i = 0;
+-  int bound = num_bytes >> 1;
++    int bound = num_bytes >> 1;
+-  short temp0 = 0;
+-  short temp1 = 0;
+-  for(i = 0; i < bound; ++i) {
+-    temp0 = ((short)(src0[i] - src1[i]) > 0) ? src0[i] : src1[i];
+-    temp1 = ((short)(src2[i] - src3[i])>0) ? src2[i] : src3[i];
+-    target[i] = ((short)(temp0 - temp1)>0) ? temp0 : temp1;
+-  }
++    short temp0 = 0;
++    short temp1 = 0;
++    for (i = 0; i < bound; ++i) {
++        temp0 = ((short)(src0[i] - src1[i]) > 0) ? src0[i] : src1[i];
++        temp1 = ((short)(src2[i] - src3[i]) > 0) ? src2[i] : src3[i];
++        target[i] = ((short)(temp0 - temp1) > 0) ? temp0 : temp1;
++    }
+ }
+ #endif /*LV_HAVE_GENERIC*/
+diff --git a/kernels/volk/volk_16i_x5_add_quad_16i_x4.h b/kernels/volk/volk_16i_x5_add_quad_16i_x4.h
+index 30417de..f735f11 100644
+--- a/kernels/volk/volk_16i_x5_add_quad_16i_x4.h
++++ b/kernels/volk/volk_16i_x5_add_quad_16i_x4.h
+@@ -29,8 +29,9 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_16i_x5_add_quad_16i_x4(short* target0, short* target1, short* target2, short* target3, short* src0, short* src1, short* src2, short* src3, short* src4, unsigned int num_points);
+- * \endcode
++ * void volk_16i_x5_add_quad_16i_x4(short* target0, short* target1, short* target2, short*
++ * target3, short* src0, short* src1, short* src2, short* src3, short* src4, unsigned int
++ * num_points); \endcode
+  *
+  * \b Inputs
+  * \li src0: The input vector 0.
+@@ -59,182 +60,203 @@
+ #ifndef INCLUDED_volk_16i_x5_add_quad_16i_x4_a_H
+ #define INCLUDED_volk_16i_x5_add_quad_16i_x4_a_H
+-#include<inttypes.h>
+-#include<stdio.h>
++#include <inttypes.h>
++#include <stdio.h>
+ #ifdef LV_HAVE_SSE2
+-#include<xmmintrin.h>
+-#include<emmintrin.h>
++#include <emmintrin.h>
++#include <xmmintrin.h>
+-static inline void
+-volk_16i_x5_add_quad_16i_x4_a_sse2(short* target0, short* target1, short* target2, short* target3,
+-                                   short* src0, short* src1, short* src2, short* src3, short* src4,
+-                                   unsigned int num_points)
++static inline void volk_16i_x5_add_quad_16i_x4_a_sse2(short* target0,
++                                                      short* target1,
++                                                      short* target2,
++                                                      short* target3,
++                                                      short* src0,
++                                                      short* src1,
++                                                      short* src2,
++                                                      short* src3,
++                                                      short* src4,
++                                                      unsigned int num_points)
+ {
+-  const unsigned int num_bytes = num_points*2;
+-
+-  __m128i xmm0, xmm1, xmm2, xmm3, xmm4;
+-  __m128i *p_target0, *p_target1, *p_target2, *p_target3,  *p_src0, *p_src1, *p_src2, *p_src3, *p_src4;
+-  p_target0 = (__m128i*)target0;
+-  p_target1 = (__m128i*)target1;
+-  p_target2 = (__m128i*)target2;
+-  p_target3 = (__m128i*)target3;
+-
+-  p_src0 = (__m128i*)src0;
+-  p_src1 = (__m128i*)src1;
+-  p_src2 = (__m128i*)src2;
+-  p_src3 = (__m128i*)src3;
+-  p_src4 = (__m128i*)src4;
+-
+-  int i = 0;
+-
+-  int bound = (num_bytes >> 4);
+-  int leftovers = (num_bytes >> 1) & 7;
+-
+-  for(; i < bound; ++i) {
+-    xmm0 = _mm_load_si128(p_src0);
+-    xmm1 = _mm_load_si128(p_src1);
+-    xmm2 = _mm_load_si128(p_src2);
+-    xmm3 = _mm_load_si128(p_src3);
+-    xmm4 = _mm_load_si128(p_src4);
+-
+-    p_src0 += 1;
+-    p_src1 += 1;
+-
+-    xmm1 = _mm_add_epi16(xmm0, xmm1);
+-    xmm2 = _mm_add_epi16(xmm0, xmm2);
+-    xmm3 = _mm_add_epi16(xmm0, xmm3);
+-    xmm4 = _mm_add_epi16(xmm0, xmm4);
+-
+-
+-    p_src2 += 1;
+-    p_src3 += 1;
+-    p_src4 += 1;
+-
+-    _mm_store_si128(p_target0, xmm1);
+-    _mm_store_si128(p_target1, xmm2);
+-    _mm_store_si128(p_target2, xmm3);
+-    _mm_store_si128(p_target3, xmm4);
+-
+-    p_target0 += 1;
+-    p_target1 += 1;
+-    p_target2 += 1;
+-    p_target3 += 1;
+-  }
+-  /*__VOLK_ASM __VOLK_VOLATILE
+-    (
+-    ".%=volk_16i_x5_add_quad_16i_x4_a_sse2_L1:\n\t"
+-    "cmp $0, %[bound]\n\t"
+-    "je .%=volk_16i_x5_add_quad_16i_x4_a_sse2_END\n\t"
+-    "movaps (%[src0]), %%xmm1\n\t"
+-    "movaps (%[src1]), %%xmm2\n\t"
+-    "movaps (%[src2]), %%xmm3\n\t"
+-    "movaps (%[src3]), %%xmm4\n\t"
+-    "movaps (%[src4]), %%xmm5\n\t"
+-    "add $16, %[src0]\n\t"
+-    "add $16, %[src1]\n\t"
+-    "add $16, %[src2]\n\t"
+-    "add $16, %[src3]\n\t"
+-    "add $16, %[src4]\n\t"
+-    "paddw %%xmm1, %%xmm2\n\t"
+-    "paddw %%xmm1, %%xmm3\n\t"
+-    "paddw %%xmm1, %%xmm4\n\t"
+-    "paddw %%xmm1, %%xmm5\n\t"
+-    "add $-1, %[bound]\n\t"
+-    "movaps %%xmm2, (%[target0])\n\t"
+-    "movaps %%xmm3, (%[target1])\n\t"
+-    "movaps %%xmm4, (%[target2])\n\t"
+-    "movaps %%xmm5, (%[target3])\n\t"
+-    "add $16, %[target0]\n\t"
+-    "add $16, %[target1]\n\t"
+-    "add $16, %[target2]\n\t"
+-    "add $16, %[target3]\n\t"
+-    "jmp .%=volk_16i_x5_add_quad_16i_x4_a_sse2_L1\n\t"
+-    ".%=volk_16i_x5_add_quad_16i_x4_a_sse2_END:\n\t"
+-    :
+-    :[bound]"r"(bound), [src0]"r"(src0), [src1]"r"(src1), [src2]"r"(src2), [src3]"r"(src3), [src4]"r"(src4), [target0]"r"(target0), [target1]"r"(target1), [target2]"r"(target2), [target3]"r"(target3)
+-    :"xmm1", "xmm2", "xmm3", "xmm4", "xmm5"
+-    );
+-  */
+-
+-  for(i = bound * 8; i < (bound * 8) + leftovers; ++i) {
+-    target0[i] = src0[i] + src1[i];
+-    target1[i] = src0[i] + src2[i];
+-    target2[i] = src0[i] + src3[i];
+-    target3[i] = src0[i] + src4[i];
+-  }
++    const unsigned int num_bytes = num_points * 2;
++
++    __m128i xmm0, xmm1, xmm2, xmm3, xmm4;
++    __m128i *p_target0, *p_target1, *p_target2, *p_target3, *p_src0, *p_src1, *p_src2,
++        *p_src3, *p_src4;
++    p_target0 = (__m128i*)target0;
++    p_target1 = (__m128i*)target1;
++    p_target2 = (__m128i*)target2;
++    p_target3 = (__m128i*)target3;
++
++    p_src0 = (__m128i*)src0;
++    p_src1 = (__m128i*)src1;
++    p_src2 = (__m128i*)src2;
++    p_src3 = (__m128i*)src3;
++    p_src4 = (__m128i*)src4;
++
++    int i = 0;
++
++    int bound = (num_bytes >> 4);
++    int leftovers = (num_bytes >> 1) & 7;
++
++    for (; i < bound; ++i) {
++        xmm0 = _mm_load_si128(p_src0);
++        xmm1 = _mm_load_si128(p_src1);
++        xmm2 = _mm_load_si128(p_src2);
++        xmm3 = _mm_load_si128(p_src3);
++        xmm4 = _mm_load_si128(p_src4);
++
++        p_src0 += 1;
++        p_src1 += 1;
++
++        xmm1 = _mm_add_epi16(xmm0, xmm1);
++        xmm2 = _mm_add_epi16(xmm0, xmm2);
++        xmm3 = _mm_add_epi16(xmm0, xmm3);
++        xmm4 = _mm_add_epi16(xmm0, xmm4);
++
++
++        p_src2 += 1;
++        p_src3 += 1;
++        p_src4 += 1;
++
++        _mm_store_si128(p_target0, xmm1);
++        _mm_store_si128(p_target1, xmm2);
++        _mm_store_si128(p_target2, xmm3);
++        _mm_store_si128(p_target3, xmm4);
++
++        p_target0 += 1;
++        p_target1 += 1;
++        p_target2 += 1;
++        p_target3 += 1;
++    }
++    /*__VOLK_ASM __VOLK_VOLATILE
++      (
++      ".%=volk_16i_x5_add_quad_16i_x4_a_sse2_L1:\n\t"
++      "cmp $0, %[bound]\n\t"
++      "je .%=volk_16i_x5_add_quad_16i_x4_a_sse2_END\n\t"
++      "movaps (%[src0]), %%xmm1\n\t"
++      "movaps (%[src1]), %%xmm2\n\t"
++      "movaps (%[src2]), %%xmm3\n\t"
++      "movaps (%[src3]), %%xmm4\n\t"
++      "movaps (%[src4]), %%xmm5\n\t"
++      "add $16, %[src0]\n\t"
++      "add $16, %[src1]\n\t"
++      "add $16, %[src2]\n\t"
++      "add $16, %[src3]\n\t"
++      "add $16, %[src4]\n\t"
++      "paddw %%xmm1, %%xmm2\n\t"
++      "paddw %%xmm1, %%xmm3\n\t"
++      "paddw %%xmm1, %%xmm4\n\t"
++      "paddw %%xmm1, %%xmm5\n\t"
++      "add $-1, %[bound]\n\t"
++      "movaps %%xmm2, (%[target0])\n\t"
++      "movaps %%xmm3, (%[target1])\n\t"
++      "movaps %%xmm4, (%[target2])\n\t"
++      "movaps %%xmm5, (%[target3])\n\t"
++      "add $16, %[target0]\n\t"
++      "add $16, %[target1]\n\t"
++      "add $16, %[target2]\n\t"
++      "add $16, %[target3]\n\t"
++      "jmp .%=volk_16i_x5_add_quad_16i_x4_a_sse2_L1\n\t"
++      ".%=volk_16i_x5_add_quad_16i_x4_a_sse2_END:\n\t"
++      :
++      :[bound]"r"(bound), [src0]"r"(src0), [src1]"r"(src1), [src2]"r"(src2),
++      [src3]"r"(src3), [src4]"r"(src4), [target0]"r"(target0), [target1]"r"(target1),
++      [target2]"r"(target2), [target3]"r"(target3)
++      :"xmm1", "xmm2", "xmm3", "xmm4", "xmm5"
++      );
++    */
++
++    for (i = bound * 8; i < (bound * 8) + leftovers; ++i) {
++        target0[i] = src0[i] + src1[i];
++        target1[i] = src0[i] + src2[i];
++        target2[i] = src0[i] + src3[i];
++        target3[i] = src0[i] + src4[i];
++    }
+ }
+ #endif /*LV_HAVE_SSE2*/
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_16i_x5_add_quad_16i_x4_neon(short* target0, short* target1, short* target2, short* target3,
+-                                 short* src0, short* src1, short* src2, short* src3, short* src4,
+-                                 unsigned int num_points)
++static inline void volk_16i_x5_add_quad_16i_x4_neon(short* target0,
++                                                    short* target1,
++                                                    short* target2,
++                                                    short* target3,
++                                                    short* src0,
++                                                    short* src1,
++                                                    short* src2,
++                                                    short* src3,
++                                                    short* src4,
++                                                    unsigned int num_points)
+ {
+-  const unsigned int eighth_points = num_points / 8;
+-  unsigned int number = 0;
+-
+-  int16x8_t src0_vec, src1_vec, src2_vec, src3_vec, src4_vec;
+-  int16x8_t target0_vec, target1_vec, target2_vec, target3_vec;
+-  for(number = 0; number < eighth_points; ++number) {
+-    src0_vec = vld1q_s16(src0);
+-    src1_vec = vld1q_s16(src1);
+-    src2_vec = vld1q_s16(src2);
+-    src3_vec = vld1q_s16(src3);
+-    src4_vec = vld1q_s16(src4);
+-
+-    target0_vec = vaddq_s16(src0_vec , src1_vec);
+-    target1_vec = vaddq_s16(src0_vec , src2_vec);
+-    target2_vec = vaddq_s16(src0_vec , src3_vec);
+-    target3_vec = vaddq_s16(src0_vec , src4_vec);
+-
+-    vst1q_s16(target0, target0_vec);
+-    vst1q_s16(target1, target1_vec);
+-    vst1q_s16(target2, target2_vec);
+-    vst1q_s16(target3, target3_vec);
+-    src0 += 8;
+-    src1 += 8;
+-    src2 += 8;
+-    src3 += 8;
+-    src4 += 8;
+-    target0 += 8;
+-    target1 += 8;
+-    target2 += 8;
+-    target3 += 8;
+-  }
+-
+-  for(number = eighth_points * 8; number < num_points; ++number) {
+-    *target0++ = *src0 + *src1++;
+-    *target1++ = *src0 + *src2++;
+-    *target2++ = *src0 + *src3++;
+-    *target3++ = *src0++ + *src4++;
+-  }
++    const unsigned int eighth_points = num_points / 8;
++    unsigned int number = 0;
++
++    int16x8_t src0_vec, src1_vec, src2_vec, src3_vec, src4_vec;
++    int16x8_t target0_vec, target1_vec, target2_vec, target3_vec;
++    for (number = 0; number < eighth_points; ++number) {
++        src0_vec = vld1q_s16(src0);
++        src1_vec = vld1q_s16(src1);
++        src2_vec = vld1q_s16(src2);
++        src3_vec = vld1q_s16(src3);
++        src4_vec = vld1q_s16(src4);
++
++        target0_vec = vaddq_s16(src0_vec, src1_vec);
++        target1_vec = vaddq_s16(src0_vec, src2_vec);
++        target2_vec = vaddq_s16(src0_vec, src3_vec);
++        target3_vec = vaddq_s16(src0_vec, src4_vec);
++
++        vst1q_s16(target0, target0_vec);
++        vst1q_s16(target1, target1_vec);
++        vst1q_s16(target2, target2_vec);
++        vst1q_s16(target3, target3_vec);
++        src0 += 8;
++        src1 += 8;
++        src2 += 8;
++        src3 += 8;
++        src4 += 8;
++        target0 += 8;
++        target1 += 8;
++        target2 += 8;
++        target3 += 8;
++    }
++
++    for (number = eighth_points * 8; number < num_points; ++number) {
++        *target0++ = *src0 + *src1++;
++        *target1++ = *src0 + *src2++;
++        *target2++ = *src0 + *src3++;
++        *target3++ = *src0++ + *src4++;
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_16i_x5_add_quad_16i_x4_generic(short* target0, short* target1, short* target2, short* target3,
+-                                    short* src0, short* src1, short* src2, short* src3, short* src4,
+-                                    unsigned int num_points)
++static inline void volk_16i_x5_add_quad_16i_x4_generic(short* target0,
++                                                       short* target1,
++                                                       short* target2,
++                                                       short* target3,
++                                                       short* src0,
++                                                       short* src1,
++                                                       short* src2,
++                                                       short* src3,
++                                                       short* src4,
++                                                       unsigned int num_points)
+ {
+-  const unsigned int num_bytes = num_points*2;
++    const unsigned int num_bytes = num_points * 2;
+-  int i = 0;
++    int i = 0;
+-  int bound = num_bytes >> 1;
++    int bound = num_bytes >> 1;
+-  for(i = 0; i < bound; ++i) {
+-    target0[i] = src0[i] + src1[i];
+-    target1[i] = src0[i] + src2[i];
+-    target2[i] = src0[i] + src3[i];
+-    target3[i] = src0[i] + src4[i];
+-  }
++    for (i = 0; i < bound; ++i) {
++        target0[i] = src0[i] + src1[i];
++        target1[i] = src0[i] + src2[i];
++        target2[i] = src0[i] + src3[i];
++        target3[i] = src0[i] + src4[i];
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+diff --git a/kernels/volk/volk_16ic_convert_32fc.h b/kernels/volk/volk_16ic_convert_32fc.h
+index 84f067c..1453724 100644
+--- a/kernels/volk/volk_16ic_convert_32fc.h
++++ b/kernels/volk/volk_16ic_convert_32fc.h
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_16ic_convert_32fc(lv_32fc_t* outputVector, const lv_16sc_t* inputVector, unsigned int num_points)
+- * \endcode
++ * void volk_16ic_convert_32fc(lv_32fc_t* outputVector, const lv_16sc_t* inputVector,
++ * unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li inputVector:  The complex 16-bit integer input data buffer.
+@@ -51,7 +51,9 @@
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void volk_16ic_convert_32fc_a_avx2(lv_32fc_t* outputVector, const lv_16sc_t* inputVector, unsigned int num_points)
++static inline void volk_16ic_convert_32fc_a_avx2(lv_32fc_t* outputVector,
++                                                 const lv_16sc_t* inputVector,
++                                                 unsigned int num_points)
+ {
+     const unsigned int avx_iters = num_points / 8;
+     unsigned int number = 0;
+@@ -61,36 +63,36 @@ static inline void volk_16ic_convert_32fc_a_avx2(lv_32fc_t* outputVector, const
+     __m256i outValInt;
+     __m128i cplxValue;
+-    for(number = 0; number < avx_iters; number++)
+-        {
+-            cplxValue = _mm_load_si128((__m128i*)complexVectorPtr);
+-            complexVectorPtr += 8;
+-            
+-            outValInt = _mm256_cvtepi16_epi32(cplxValue);
+-            outVal = _mm256_cvtepi32_ps(outValInt);
+-            _mm256_store_ps((float*)outputVectorPtr, outVal);
++    for (number = 0; number < avx_iters; number++) {
++        cplxValue = _mm_load_si128((__m128i*)complexVectorPtr);
++        complexVectorPtr += 8;
+-            outputVectorPtr += 8;
+-        }
++        outValInt = _mm256_cvtepi16_epi32(cplxValue);
++        outVal = _mm256_cvtepi32_ps(outValInt);
++        _mm256_store_ps((float*)outputVectorPtr, outVal);
++
++        outputVectorPtr += 8;
++    }
+     number = avx_iters * 8;
+-    for(; number < num_points*2; number++)
+-        {
+-            *outputVectorPtr++ = (float)*complexVectorPtr++;
+-        }
++    for (; number < num_points * 2; number++) {
++        *outputVectorPtr++ = (float)*complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_16ic_convert_32fc_generic(lv_32fc_t* outputVector, const lv_16sc_t* inputVector, unsigned int num_points)
++static inline void volk_16ic_convert_32fc_generic(lv_32fc_t* outputVector,
++                                                  const lv_16sc_t* inputVector,
++                                                  unsigned int num_points)
+ {
+     unsigned int i;
+-    for(i = 0; i < num_points; i++)
+-        {
+-            outputVector[i] = lv_cmake((float)lv_creal(inputVector[i]), (float)lv_cimag(inputVector[i]));
+-        }
++    for (i = 0; i < num_points; i++) {
++        outputVector[i] =
++            lv_cmake((float)lv_creal(inputVector[i]), (float)lv_cimag(inputVector[i]));
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -99,7 +101,9 @@ static inline void volk_16ic_convert_32fc_generic(lv_32fc_t* outputVector, const
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void volk_16ic_convert_32fc_a_sse2(lv_32fc_t* outputVector, const lv_16sc_t* inputVector, unsigned int num_points)
++static inline void volk_16ic_convert_32fc_a_sse2(lv_32fc_t* outputVector,
++                                                 const lv_16sc_t* inputVector,
++                                                 unsigned int num_points)
+ {
+     const unsigned int sse_iters = num_points / 2;
+@@ -108,18 +112,21 @@ static inline void volk_16ic_convert_32fc_a_sse2(lv_32fc_t* outputVector, const
+     __m128 a;
+     unsigned int number;
+-    for(number = 0; number < sse_iters; number++)
+-        {
+-            a = _mm_set_ps((float)(lv_cimag(_in[1])), (float)(lv_creal(_in[1])), (float)(lv_cimag(_in[0])), (float)(lv_creal(_in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
+-            _mm_store_ps((float*)_out, a);
+-            _in += 2;
+-            _out += 2;
+-        }
+-    if (num_points & 1)
+-        {
+-            *_out++ = lv_cmake((float)lv_creal(*_in), (float)lv_cimag(*_in));
+-            _in++;
+-        }
++    for (number = 0; number < sse_iters; number++) {
++        a = _mm_set_ps(
++            (float)(lv_cimag(_in[1])),
++            (float)(lv_creal(_in[1])),
++            (float)(lv_cimag(_in[0])),
++            (float)(lv_creal(
++                _in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
++        _mm_store_ps((float*)_out, a);
++        _in += 2;
++        _out += 2;
++    }
++    if (num_points & 1) {
++        *_out++ = lv_cmake((float)lv_creal(*_in), (float)lv_cimag(*_in));
++        _in++;
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+@@ -127,7 +134,9 @@ static inline void volk_16ic_convert_32fc_a_sse2(lv_32fc_t* outputVector, const
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void volk_16ic_convert_32fc_a_avx(lv_32fc_t* outputVector, const lv_16sc_t* inputVector, unsigned int num_points)
++static inline void volk_16ic_convert_32fc_a_avx(lv_32fc_t* outputVector,
++                                                const lv_16sc_t* inputVector,
++                                                unsigned int num_points)
+ {
+     const unsigned int sse_iters = num_points / 4;
+@@ -136,19 +145,26 @@ static inline void volk_16ic_convert_32fc_a_avx(lv_32fc_t* outputVector, const l
+     __m256 a;
+     unsigned int i, number;
+-    for(number = 0; number < sse_iters; number++)
+-        {
+-            a = _mm256_set_ps((float)(lv_cimag(_in[3])), (float)(lv_creal(_in[3])), (float)(lv_cimag(_in[2])), (float)(lv_creal(_in[2])), (float)(lv_cimag(_in[1])), (float)(lv_creal(_in[1])), (float)(lv_cimag(_in[0])), (float)(lv_creal(_in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
+-            _mm256_store_ps((float*)_out, a);
+-            _in += 4;
+-            _out += 4;
+-        }
++    for (number = 0; number < sse_iters; number++) {
++        a = _mm256_set_ps(
++            (float)(lv_cimag(_in[3])),
++            (float)(lv_creal(_in[3])),
++            (float)(lv_cimag(_in[2])),
++            (float)(lv_creal(_in[2])),
++            (float)(lv_cimag(_in[1])),
++            (float)(lv_creal(_in[1])),
++            (float)(lv_cimag(_in[0])),
++            (float)(lv_creal(
++                _in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
++        _mm256_store_ps((float*)_out, a);
++        _in += 4;
++        _out += 4;
++    }
+     _mm256_zeroupper();
+-    for (i = 0; i < (num_points % 4); ++i)
+-        {
+-            *_out++ = lv_cmake((float)lv_creal(*_in), (float)lv_cimag(*_in));
+-            _in++;
+-        }
++    for (i = 0; i < (num_points % 4); ++i) {
++        *_out++ = lv_cmake((float)lv_creal(*_in), (float)lv_cimag(*_in));
++        _in++;
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -157,7 +173,9 @@ static inline void volk_16ic_convert_32fc_a_avx(lv_32fc_t* outputVector, const l
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void volk_16ic_convert_32fc_neon(lv_32fc_t* outputVector, const lv_16sc_t* inputVector, unsigned int num_points)
++static inline void volk_16ic_convert_32fc_neon(lv_32fc_t* outputVector,
++                                               const lv_16sc_t* inputVector,
++                                               unsigned int num_points)
+ {
+     const unsigned int sse_iters = num_points / 2;
+@@ -169,21 +187,19 @@ static inline void volk_16ic_convert_32fc_neon(lv_32fc_t* outputVector, const lv
+     float32x4_t f32x4;
+     unsigned int i, number;
+-    for(number = 0; number < sse_iters; number++)
+-        {
+-            a16x4 = vld1_s16((const int16_t*)_in);
+-            __VOLK_PREFETCH(_in + 4);
+-            a32x4 = vmovl_s16(a16x4);
+-            f32x4 = vcvtq_f32_s32(a32x4);
+-            vst1q_f32((float32_t*)_out, f32x4);
+-            _in += 2;
+-            _out += 2;
+-        }
+-    for (i = 0; i < (num_points % 2); ++i)
+-        {
+-            *_out++ = lv_cmake((float)lv_creal(*_in), (float)lv_cimag(*_in));
+-            _in++;
+-        }
++    for (number = 0; number < sse_iters; number++) {
++        a16x4 = vld1_s16((const int16_t*)_in);
++        __VOLK_PREFETCH(_in + 4);
++        a32x4 = vmovl_s16(a16x4);
++        f32x4 = vcvtq_f32_s32(a32x4);
++        vst1q_f32((float32_t*)_out, f32x4);
++        _in += 2;
++        _out += 2;
++    }
++    for (i = 0; i < (num_points % 2); ++i) {
++        *_out++ = lv_cmake((float)lv_creal(*_in), (float)lv_cimag(*_in));
++        _in++;
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+@@ -198,7 +214,9 @@ static inline void volk_16ic_convert_32fc_neon(lv_32fc_t* outputVector, const lv
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void volk_16ic_convert_32fc_u_avx2(lv_32fc_t* outputVector, const lv_16sc_t* inputVector, unsigned int num_points)
++static inline void volk_16ic_convert_32fc_u_avx2(lv_32fc_t* outputVector,
++                                                 const lv_16sc_t* inputVector,
++                                                 unsigned int num_points)
+ {
+     const unsigned int avx_iters = num_points / 8;
+     unsigned int number = 0;
+@@ -208,23 +226,21 @@ static inline void volk_16ic_convert_32fc_u_avx2(lv_32fc_t* outputVector, const
+     __m256i outValInt;
+     __m128i cplxValue;
+-    for(number = 0; number < avx_iters; number++)
+-        {
+-            cplxValue = _mm_loadu_si128((__m128i*)complexVectorPtr);
+-            complexVectorPtr += 8;
+-            
+-            outValInt = _mm256_cvtepi16_epi32(cplxValue);
+-            outVal = _mm256_cvtepi32_ps(outValInt);
+-            _mm256_storeu_ps((float*)outputVectorPtr, outVal);
++    for (number = 0; number < avx_iters; number++) {
++        cplxValue = _mm_loadu_si128((__m128i*)complexVectorPtr);
++        complexVectorPtr += 8;
++
++        outValInt = _mm256_cvtepi16_epi32(cplxValue);
++        outVal = _mm256_cvtepi32_ps(outValInt);
++        _mm256_storeu_ps((float*)outputVectorPtr, outVal);
+-            outputVectorPtr += 8;
+-        }
++        outputVectorPtr += 8;
++    }
+     number = avx_iters * 8;
+-    for(; number < num_points*2; number++)
+-        {
+-            *outputVectorPtr++ = (float)*complexVectorPtr++;
+-        }
++    for (; number < num_points * 2; number++) {
++        *outputVectorPtr++ = (float)*complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -232,7 +248,9 @@ static inline void volk_16ic_convert_32fc_u_avx2(lv_32fc_t* outputVector, const
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void volk_16ic_convert_32fc_u_sse2(lv_32fc_t* outputVector, const lv_16sc_t* inputVector, unsigned int num_points)
++static inline void volk_16ic_convert_32fc_u_sse2(lv_32fc_t* outputVector,
++                                                 const lv_16sc_t* inputVector,
++                                                 unsigned int num_points)
+ {
+     const unsigned int sse_iters = num_points / 2;
+@@ -241,18 +259,21 @@ static inline void volk_16ic_convert_32fc_u_sse2(lv_32fc_t* outputVector, const
+     __m128 a;
+     unsigned int number;
+-    for(number = 0; number < sse_iters; number++)
+-        {
+-            a = _mm_set_ps((float)(lv_cimag(_in[1])), (float)(lv_creal(_in[1])), (float)(lv_cimag(_in[0])), (float)(lv_creal(_in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
+-            _mm_storeu_ps((float*)_out, a);
+-            _in += 2;
+-            _out += 2;
+-        }
+-    if (num_points & 1)
+-        {
+-            *_out++ = lv_cmake((float)lv_creal(*_in), (float)lv_cimag(*_in));
+-            _in++;
+-        }
++    for (number = 0; number < sse_iters; number++) {
++        a = _mm_set_ps(
++            (float)(lv_cimag(_in[1])),
++            (float)(lv_creal(_in[1])),
++            (float)(lv_cimag(_in[0])),
++            (float)(lv_creal(
++                _in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
++        _mm_storeu_ps((float*)_out, a);
++        _in += 2;
++        _out += 2;
++    }
++    if (num_points & 1) {
++        *_out++ = lv_cmake((float)lv_creal(*_in), (float)lv_cimag(*_in));
++        _in++;
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+@@ -261,7 +282,9 @@ static inline void volk_16ic_convert_32fc_u_sse2(lv_32fc_t* outputVector, const
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void volk_16ic_convert_32fc_u_avx(lv_32fc_t* outputVector, const lv_16sc_t* inputVector, unsigned int num_points)
++static inline void volk_16ic_convert_32fc_u_avx(lv_32fc_t* outputVector,
++                                                const lv_16sc_t* inputVector,
++                                                unsigned int num_points)
+ {
+     const unsigned int sse_iters = num_points / 4;
+@@ -270,21 +293,27 @@ static inline void volk_16ic_convert_32fc_u_avx(lv_32fc_t* outputVector, const l
+     __m256 a;
+     unsigned int i, number;
+-    for(number = 0; number < sse_iters; number++)
+-        {
+-            a = _mm256_set_ps((float)(lv_cimag(_in[3])), (float)(lv_creal(_in[3])), (float)(lv_cimag(_in[2])), (float)(lv_creal(_in[2])), (float)(lv_cimag(_in[1])), (float)(lv_creal(_in[1])), (float)(lv_cimag(_in[0])), (float)(lv_creal(_in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
+-            _mm256_storeu_ps((float*)_out, a);
+-            _in += 4;
+-            _out += 4;
+-        }
++    for (number = 0; number < sse_iters; number++) {
++        a = _mm256_set_ps(
++            (float)(lv_cimag(_in[3])),
++            (float)(lv_creal(_in[3])),
++            (float)(lv_cimag(_in[2])),
++            (float)(lv_creal(_in[2])),
++            (float)(lv_cimag(_in[1])),
++            (float)(lv_creal(_in[1])),
++            (float)(lv_cimag(_in[0])),
++            (float)(lv_creal(
++                _in[0]))); // //load (2 byte imag, 2 byte real) x 2 into 128 bits reg
++        _mm256_storeu_ps((float*)_out, a);
++        _in += 4;
++        _out += 4;
++    }
+     _mm256_zeroupper();
+-    for (i = 0; i < (num_points % 4); ++i)
+-        {
+-            *_out++ = lv_cmake((float)lv_creal(*_in), (float)lv_cimag(*_in));
+-            _in++;
+-        }
++    for (i = 0; i < (num_points % 4); ++i) {
++        *_out++ = lv_cmake((float)lv_creal(*_in), (float)lv_cimag(*_in));
++        _in++;
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+ #endif /* INCLUDED_volk_32fc_convert_16ic_u_H */
+-
+diff --git a/kernels/volk/volk_16ic_deinterleave_16i_x2.h b/kernels/volk/volk_16ic_deinterleave_16i_x2.h
+index 40d10b4..9e784a6 100644
+--- a/kernels/volk/volk_16ic_deinterleave_16i_x2.h
++++ b/kernels/volk/volk_16ic_deinterleave_16i_x2.h
+@@ -29,8 +29,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_16ic_deinterleave_16i_x2(int16_t* iBuffer, int16_t* qBuffer, const lv_16sc_t* complexVector, unsigned int num_points)
+- * \endcode
++ * void volk_16ic_deinterleave_16i_x2(int16_t* iBuffer, int16_t* qBuffer, const lv_16sc_t*
++ * complexVector, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li complexVector: The complex input vector.
+@@ -59,179 +59,241 @@
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_16ic_deinterleave_16i_x2_a_avx2(int16_t* iBuffer, int16_t* qBuffer, const lv_16sc_t* complexVector, unsigned int num_points)
++static inline void volk_16ic_deinterleave_16i_x2_a_avx2(int16_t* iBuffer,
++                                                        int16_t* qBuffer,
++                                                        const lv_16sc_t* complexVector,
++                                                        unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const int8_t* complexVectorPtr = (int8_t*)complexVector;
+-  int16_t* iBufferPtr = iBuffer;
+-  int16_t* qBufferPtr = qBuffer;
+-
+-  __m256i MoveMask = _mm256_set_epi8(15,14,11,10,7,6,3,2,13,12,9,8,5,4,1,0, 15,14,11,10,7,6,3,2,13,12,9,8,5,4,1,0);
+-
+-  __m256i iMove2, iMove1;
+-  __m256i complexVal1, complexVal2, iOutputVal, qOutputVal;
+-
+-  unsigned int sixteenthPoints = num_points / 16;
+-
+-  for(number = 0; number < sixteenthPoints; number++){
+-    complexVal1 = _mm256_load_si256((__m256i*)complexVectorPtr);  complexVectorPtr += 32;
+-    complexVal2 = _mm256_load_si256((__m256i*)complexVectorPtr);  complexVectorPtr += 32;
+-
+-    iMove2 = _mm256_shuffle_epi8(complexVal2, MoveMask);
+-    iMove1 = _mm256_shuffle_epi8(complexVal1, MoveMask);
+-
+-    iOutputVal = _mm256_permute2x128_si256(_mm256_permute4x64_epi64(iMove1,0x08),_mm256_permute4x64_epi64(iMove2,0x80),0x30);
+-    qOutputVal = _mm256_permute2x128_si256(_mm256_permute4x64_epi64(iMove1,0x0d),_mm256_permute4x64_epi64(iMove2,0xd0),0x30);
+-
+-    _mm256_store_si256((__m256i*)iBufferPtr, iOutputVal);
+-    _mm256_store_si256((__m256i*)qBufferPtr, qOutputVal);
+-
+-    iBufferPtr += 16;
+-    qBufferPtr += 16;
+-  }
+-
+-  number = sixteenthPoints * 16;
+-  int16_t* int16ComplexVectorPtr = (int16_t*)complexVectorPtr;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = *int16ComplexVectorPtr++;
+-    *qBufferPtr++ = *int16ComplexVectorPtr++;
+-  }
++    unsigned int number = 0;
++    const int8_t* complexVectorPtr = (int8_t*)complexVector;
++    int16_t* iBufferPtr = iBuffer;
++    int16_t* qBufferPtr = qBuffer;
++
++    __m256i MoveMask = _mm256_set_epi8(15,
++                                       14,
++                                       11,
++                                       10,
++                                       7,
++                                       6,
++                                       3,
++                                       2,
++                                       13,
++                                       12,
++                                       9,
++                                       8,
++                                       5,
++                                       4,
++                                       1,
++                                       0,
++                                       15,
++                                       14,
++                                       11,
++                                       10,
++                                       7,
++                                       6,
++                                       3,
++                                       2,
++                                       13,
++                                       12,
++                                       9,
++                                       8,
++                                       5,
++                                       4,
++                                       1,
++                                       0);
++
++    __m256i iMove2, iMove1;
++    __m256i complexVal1, complexVal2, iOutputVal, qOutputVal;
++
++    unsigned int sixteenthPoints = num_points / 16;
++
++    for (number = 0; number < sixteenthPoints; number++) {
++        complexVal1 = _mm256_load_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32;
++        complexVal2 = _mm256_load_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32;
++
++        iMove2 = _mm256_shuffle_epi8(complexVal2, MoveMask);
++        iMove1 = _mm256_shuffle_epi8(complexVal1, MoveMask);
++
++        iOutputVal = _mm256_permute2x128_si256(_mm256_permute4x64_epi64(iMove1, 0x08),
++                                               _mm256_permute4x64_epi64(iMove2, 0x80),
++                                               0x30);
++        qOutputVal = _mm256_permute2x128_si256(_mm256_permute4x64_epi64(iMove1, 0x0d),
++                                               _mm256_permute4x64_epi64(iMove2, 0xd0),
++                                               0x30);
++
++        _mm256_store_si256((__m256i*)iBufferPtr, iOutputVal);
++        _mm256_store_si256((__m256i*)qBufferPtr, qOutputVal);
++
++        iBufferPtr += 16;
++        qBufferPtr += 16;
++    }
++
++    number = sixteenthPoints * 16;
++    int16_t* int16ComplexVectorPtr = (int16_t*)complexVectorPtr;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = *int16ComplexVectorPtr++;
++        *qBufferPtr++ = *int16ComplexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+ #ifdef LV_HAVE_SSSE3
+ #include <tmmintrin.h>
+-static inline void
+-volk_16ic_deinterleave_16i_x2_a_ssse3(int16_t* iBuffer, int16_t* qBuffer, const lv_16sc_t* complexVector, unsigned int num_points)
++static inline void volk_16ic_deinterleave_16i_x2_a_ssse3(int16_t* iBuffer,
++                                                         int16_t* qBuffer,
++                                                         const lv_16sc_t* complexVector,
++                                                         unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const int8_t* complexVectorPtr = (int8_t*)complexVector;
+-  int16_t* iBufferPtr = iBuffer;
+-  int16_t* qBufferPtr = qBuffer;
+-
+-  __m128i iMoveMask1 = _mm_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 13, 12, 9, 8, 5, 4, 1, 0);
+-  __m128i iMoveMask2 = _mm_set_epi8(13, 12, 9, 8, 5, 4, 1, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80);
+-
+-  __m128i qMoveMask1 = _mm_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 15, 14, 11, 10, 7, 6, 3, 2);
+-  __m128i qMoveMask2 = _mm_set_epi8(15, 14, 11, 10, 7, 6, 3, 2, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80);
+-
+-  __m128i complexVal1, complexVal2, iOutputVal, qOutputVal;
+-
+-  unsigned int eighthPoints = num_points / 8;
+-
+-  for(number = 0; number < eighthPoints; number++){
+-    complexVal1 = _mm_load_si128((__m128i*)complexVectorPtr);  complexVectorPtr += 16;
+-    complexVal2 = _mm_load_si128((__m128i*)complexVectorPtr);  complexVectorPtr += 16;
+-
+-    iOutputVal = _mm_or_si128( _mm_shuffle_epi8(complexVal1, iMoveMask1) , _mm_shuffle_epi8(complexVal2, iMoveMask2));
+-    qOutputVal = _mm_or_si128( _mm_shuffle_epi8(complexVal1, qMoveMask1) , _mm_shuffle_epi8(complexVal2, qMoveMask2));
+-
+-    _mm_store_si128((__m128i*)iBufferPtr, iOutputVal);
+-    _mm_store_si128((__m128i*)qBufferPtr, qOutputVal);
+-
+-    iBufferPtr += 8;
+-    qBufferPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  int16_t* int16ComplexVectorPtr = (int16_t*)complexVectorPtr;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = *int16ComplexVectorPtr++;
+-    *qBufferPtr++ = *int16ComplexVectorPtr++;
+-  }
++    unsigned int number = 0;
++    const int8_t* complexVectorPtr = (int8_t*)complexVector;
++    int16_t* iBufferPtr = iBuffer;
++    int16_t* qBufferPtr = qBuffer;
++
++    __m128i iMoveMask1 = _mm_set_epi8(
++        0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 13, 12, 9, 8, 5, 4, 1, 0);
++    __m128i iMoveMask2 = _mm_set_epi8(
++        13, 12, 9, 8, 5, 4, 1, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80);
++
++    __m128i qMoveMask1 = _mm_set_epi8(
++        0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 15, 14, 11, 10, 7, 6, 3, 2);
++    __m128i qMoveMask2 = _mm_set_epi8(
++        15, 14, 11, 10, 7, 6, 3, 2, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80);
++
++    __m128i complexVal1, complexVal2, iOutputVal, qOutputVal;
++
++    unsigned int eighthPoints = num_points / 8;
++
++    for (number = 0; number < eighthPoints; number++) {
++        complexVal1 = _mm_load_si128((__m128i*)complexVectorPtr);
++        complexVectorPtr += 16;
++        complexVal2 = _mm_load_si128((__m128i*)complexVectorPtr);
++        complexVectorPtr += 16;
++
++        iOutputVal = _mm_or_si128(_mm_shuffle_epi8(complexVal1, iMoveMask1),
++                                  _mm_shuffle_epi8(complexVal2, iMoveMask2));
++        qOutputVal = _mm_or_si128(_mm_shuffle_epi8(complexVal1, qMoveMask1),
++                                  _mm_shuffle_epi8(complexVal2, qMoveMask2));
++
++        _mm_store_si128((__m128i*)iBufferPtr, iOutputVal);
++        _mm_store_si128((__m128i*)qBufferPtr, qOutputVal);
++
++        iBufferPtr += 8;
++        qBufferPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    int16_t* int16ComplexVectorPtr = (int16_t*)complexVectorPtr;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = *int16ComplexVectorPtr++;
++        *qBufferPtr++ = *int16ComplexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_SSSE3 */
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void
+-volk_16ic_deinterleave_16i_x2_a_sse2(int16_t* iBuffer, int16_t* qBuffer, const lv_16sc_t* complexVector, unsigned int num_points)
++static inline void volk_16ic_deinterleave_16i_x2_a_sse2(int16_t* iBuffer,
++                                                        int16_t* qBuffer,
++                                                        const lv_16sc_t* complexVector,
++                                                        unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const int16_t* complexVectorPtr = (int16_t*)complexVector;
+-  int16_t* iBufferPtr = iBuffer;
+-  int16_t* qBufferPtr = qBuffer;
+-  __m128i complexVal1, complexVal2, iComplexVal1, iComplexVal2, qComplexVal1, qComplexVal2, iOutputVal, qOutputVal;
+-  __m128i lowMask = _mm_set_epi32(0x0, 0x0, 0xFFFFFFFF, 0xFFFFFFFF);
+-  __m128i highMask = _mm_set_epi32(0xFFFFFFFF, 0xFFFFFFFF, 0x0, 0x0);
++    unsigned int number = 0;
++    const int16_t* complexVectorPtr = (int16_t*)complexVector;
++    int16_t* iBufferPtr = iBuffer;
++    int16_t* qBufferPtr = qBuffer;
++    __m128i complexVal1, complexVal2, iComplexVal1, iComplexVal2, qComplexVal1,
++        qComplexVal2, iOutputVal, qOutputVal;
++    __m128i lowMask = _mm_set_epi32(0x0, 0x0, 0xFFFFFFFF, 0xFFFFFFFF);
++    __m128i highMask = _mm_set_epi32(0xFFFFFFFF, 0xFFFFFFFF, 0x0, 0x0);
+-  unsigned int eighthPoints = num_points / 8;
++    unsigned int eighthPoints = num_points / 8;
+-  for(number = 0; number < eighthPoints; number++){
+-    complexVal1 = _mm_load_si128((__m128i*)complexVectorPtr);  complexVectorPtr += 8;
+-    complexVal2 = _mm_load_si128((__m128i*)complexVectorPtr);  complexVectorPtr += 8;
++    for (number = 0; number < eighthPoints; number++) {
++        complexVal1 = _mm_load_si128((__m128i*)complexVectorPtr);
++        complexVectorPtr += 8;
++        complexVal2 = _mm_load_si128((__m128i*)complexVectorPtr);
++        complexVectorPtr += 8;
+-    iComplexVal1 = _mm_shufflelo_epi16(complexVal1, _MM_SHUFFLE(3,1,2,0));
++        iComplexVal1 = _mm_shufflelo_epi16(complexVal1, _MM_SHUFFLE(3, 1, 2, 0));
+-    iComplexVal1 = _mm_shufflehi_epi16(iComplexVal1, _MM_SHUFFLE(3,1,2,0));
++        iComplexVal1 = _mm_shufflehi_epi16(iComplexVal1, _MM_SHUFFLE(3, 1, 2, 0));
+-    iComplexVal1 = _mm_shuffle_epi32(iComplexVal1, _MM_SHUFFLE(3,1,2,0));
++        iComplexVal1 = _mm_shuffle_epi32(iComplexVal1, _MM_SHUFFLE(3, 1, 2, 0));
+-    iComplexVal2 = _mm_shufflelo_epi16(complexVal2, _MM_SHUFFLE(3,1,2,0));
++        iComplexVal2 = _mm_shufflelo_epi16(complexVal2, _MM_SHUFFLE(3, 1, 2, 0));
+-    iComplexVal2 = _mm_shufflehi_epi16(iComplexVal2, _MM_SHUFFLE(3,1,2,0));
++        iComplexVal2 = _mm_shufflehi_epi16(iComplexVal2, _MM_SHUFFLE(3, 1, 2, 0));
+-    iComplexVal2 = _mm_shuffle_epi32(iComplexVal2, _MM_SHUFFLE(2,0,3,1));
++        iComplexVal2 = _mm_shuffle_epi32(iComplexVal2, _MM_SHUFFLE(2, 0, 3, 1));
+-    iOutputVal = _mm_or_si128(_mm_and_si128(iComplexVal1, lowMask), _mm_and_si128(iComplexVal2, highMask));
++        iOutputVal = _mm_or_si128(_mm_and_si128(iComplexVal1, lowMask),
++                                  _mm_and_si128(iComplexVal2, highMask));
+-    _mm_store_si128((__m128i*)iBufferPtr, iOutputVal);
++        _mm_store_si128((__m128i*)iBufferPtr, iOutputVal);
+-    qComplexVal1 = _mm_shufflelo_epi16(complexVal1, _MM_SHUFFLE(2,0,3,1));
++        qComplexVal1 = _mm_shufflelo_epi16(complexVal1, _MM_SHUFFLE(2, 0, 3, 1));
+-    qComplexVal1 = _mm_shufflehi_epi16(qComplexVal1, _MM_SHUFFLE(2,0,3,1));
++        qComplexVal1 = _mm_shufflehi_epi16(qComplexVal1, _MM_SHUFFLE(2, 0, 3, 1));
+-    qComplexVal1 = _mm_shuffle_epi32(qComplexVal1, _MM_SHUFFLE(3,1,2,0));
++        qComplexVal1 = _mm_shuffle_epi32(qComplexVal1, _MM_SHUFFLE(3, 1, 2, 0));
+-    qComplexVal2 = _mm_shufflelo_epi16(complexVal2, _MM_SHUFFLE(2,0,3,1));
++        qComplexVal2 = _mm_shufflelo_epi16(complexVal2, _MM_SHUFFLE(2, 0, 3, 1));
+-    qComplexVal2 = _mm_shufflehi_epi16(qComplexVal2, _MM_SHUFFLE(2,0,3,1));
++        qComplexVal2 = _mm_shufflehi_epi16(qComplexVal2, _MM_SHUFFLE(2, 0, 3, 1));
+-    qComplexVal2 = _mm_shuffle_epi32(qComplexVal2, _MM_SHUFFLE(2,0,3,1));
++        qComplexVal2 = _mm_shuffle_epi32(qComplexVal2, _MM_SHUFFLE(2, 0, 3, 1));
+-    qOutputVal = _mm_or_si128(_mm_and_si128(qComplexVal1, lowMask), _mm_and_si128(qComplexVal2, highMask));
++        qOutputVal = _mm_or_si128(_mm_and_si128(qComplexVal1, lowMask),
++                                  _mm_and_si128(qComplexVal2, highMask));
+-    _mm_store_si128((__m128i*)qBufferPtr, qOutputVal);
++        _mm_store_si128((__m128i*)qBufferPtr, qOutputVal);
+-    iBufferPtr += 8;
+-    qBufferPtr += 8;
+-  }
++        iBufferPtr += 8;
++        qBufferPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = *complexVectorPtr++;
+-    *qBufferPtr++ = *complexVectorPtr++;
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = *complexVectorPtr++;
++        *qBufferPtr++ = *complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_16ic_deinterleave_16i_x2_generic(int16_t* iBuffer, int16_t* qBuffer, const lv_16sc_t* complexVector, unsigned int num_points)
++static inline void volk_16ic_deinterleave_16i_x2_generic(int16_t* iBuffer,
++                                                         int16_t* qBuffer,
++                                                         const lv_16sc_t* complexVector,
++                                                         unsigned int num_points)
+ {
+-  const int16_t* complexVectorPtr = (const int16_t*)complexVector;
+-  int16_t* iBufferPtr = iBuffer;
+-  int16_t* qBufferPtr = qBuffer;
+-  unsigned int number;
+-  for(number = 0; number < num_points; number++){
+-    *iBufferPtr++ = *complexVectorPtr++;
+-    *qBufferPtr++ = *complexVectorPtr++;
+-  }
++    const int16_t* complexVectorPtr = (const int16_t*)complexVector;
++    int16_t* iBufferPtr = iBuffer;
++    int16_t* qBufferPtr = qBuffer;
++    unsigned int number;
++    for (number = 0; number < num_points; number++) {
++        *iBufferPtr++ = *complexVectorPtr++;
++        *qBufferPtr++ = *complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_ORC
+-extern void
+-volk_16ic_deinterleave_16i_x2_a_orc_impl(int16_t* iBuffer, int16_t* qBuffer, const lv_16sc_t* complexVector, unsigned int num_points);
+-static inline void
+-volk_16ic_deinterleave_16i_x2_u_orc(int16_t* iBuffer, int16_t* qBuffer, const lv_16sc_t* complexVector, unsigned int num_points)
++extern void volk_16ic_deinterleave_16i_x2_a_orc_impl(int16_t* iBuffer,
++                                                     int16_t* qBuffer,
++                                                     const lv_16sc_t* complexVector,
++                                                     unsigned int num_points);
++static inline void volk_16ic_deinterleave_16i_x2_u_orc(int16_t* iBuffer,
++                                                       int16_t* qBuffer,
++                                                       const lv_16sc_t* complexVector,
++                                                       unsigned int num_points)
+ {
+-  volk_16ic_deinterleave_16i_x2_a_orc_impl(iBuffer, qBuffer, complexVector, num_points);
++    volk_16ic_deinterleave_16i_x2_a_orc_impl(iBuffer, qBuffer, complexVector, num_points);
+ }
+ #endif /* LV_HAVE_ORC */
+@@ -246,44 +308,83 @@ volk_16ic_deinterleave_16i_x2_u_orc(int16_t* iBuffer, int16_t* qBuffer, const lv
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_16ic_deinterleave_16i_x2_u_avx2(int16_t* iBuffer, int16_t* qBuffer, const lv_16sc_t* complexVector, unsigned int num_points)
++static inline void volk_16ic_deinterleave_16i_x2_u_avx2(int16_t* iBuffer,
++                                                        int16_t* qBuffer,
++                                                        const lv_16sc_t* complexVector,
++                                                        unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const int8_t* complexVectorPtr = (int8_t*)complexVector;
+-  int16_t* iBufferPtr = iBuffer;
+-  int16_t* qBufferPtr = qBuffer;
+-
+-  __m256i MoveMask = _mm256_set_epi8(15,14,11,10,7,6,3,2,13,12,9,8,5,4,1,0, 15,14,11,10,7,6,3,2,13,12,9,8,5,4,1,0);
+-
+-  __m256i iMove2, iMove1;
+-  __m256i complexVal1, complexVal2, iOutputVal, qOutputVal;
+-
+-  unsigned int sixteenthPoints = num_points / 16;
+-
+-  for(number = 0; number < sixteenthPoints; number++){
+-    complexVal1 = _mm256_loadu_si256((__m256i*)complexVectorPtr);  complexVectorPtr += 32;
+-    complexVal2 = _mm256_loadu_si256((__m256i*)complexVectorPtr);  complexVectorPtr += 32;
+-
+-    iMove2 = _mm256_shuffle_epi8(complexVal2, MoveMask);
+-    iMove1 = _mm256_shuffle_epi8(complexVal1, MoveMask);
+-
+-    iOutputVal = _mm256_permute2x128_si256(_mm256_permute4x64_epi64(iMove1,0x08),_mm256_permute4x64_epi64(iMove2,0x80),0x30);
+-    qOutputVal = _mm256_permute2x128_si256(_mm256_permute4x64_epi64(iMove1,0x0d),_mm256_permute4x64_epi64(iMove2,0xd0),0x30);
+-
+-    _mm256_storeu_si256((__m256i*)iBufferPtr, iOutputVal);
+-    _mm256_storeu_si256((__m256i*)qBufferPtr, qOutputVal);
+-
+-    iBufferPtr += 16;
+-    qBufferPtr += 16;
+-  }
+-
+-  number = sixteenthPoints * 16;
+-  int16_t* int16ComplexVectorPtr = (int16_t*)complexVectorPtr;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = *int16ComplexVectorPtr++;
+-    *qBufferPtr++ = *int16ComplexVectorPtr++;
+-  }
++    unsigned int number = 0;
++    const int8_t* complexVectorPtr = (int8_t*)complexVector;
++    int16_t* iBufferPtr = iBuffer;
++    int16_t* qBufferPtr = qBuffer;
++
++    __m256i MoveMask = _mm256_set_epi8(15,
++                                       14,
++                                       11,
++                                       10,
++                                       7,
++                                       6,
++                                       3,
++                                       2,
++                                       13,
++                                       12,
++                                       9,
++                                       8,
++                                       5,
++                                       4,
++                                       1,
++                                       0,
++                                       15,
++                                       14,
++                                       11,
++                                       10,
++                                       7,
++                                       6,
++                                       3,
++                                       2,
++                                       13,
++                                       12,
++                                       9,
++                                       8,
++                                       5,
++                                       4,
++                                       1,
++                                       0);
++
++    __m256i iMove2, iMove1;
++    __m256i complexVal1, complexVal2, iOutputVal, qOutputVal;
++
++    unsigned int sixteenthPoints = num_points / 16;
++
++    for (number = 0; number < sixteenthPoints; number++) {
++        complexVal1 = _mm256_loadu_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32;
++        complexVal2 = _mm256_loadu_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32;
++
++        iMove2 = _mm256_shuffle_epi8(complexVal2, MoveMask);
++        iMove1 = _mm256_shuffle_epi8(complexVal1, MoveMask);
++
++        iOutputVal = _mm256_permute2x128_si256(_mm256_permute4x64_epi64(iMove1, 0x08),
++                                               _mm256_permute4x64_epi64(iMove2, 0x80),
++                                               0x30);
++        qOutputVal = _mm256_permute2x128_si256(_mm256_permute4x64_epi64(iMove1, 0x0d),
++                                               _mm256_permute4x64_epi64(iMove2, 0xd0),
++                                               0x30);
++
++        _mm256_storeu_si256((__m256i*)iBufferPtr, iOutputVal);
++        _mm256_storeu_si256((__m256i*)qBufferPtr, qOutputVal);
++
++        iBufferPtr += 16;
++        qBufferPtr += 16;
++    }
++
++    number = sixteenthPoints * 16;
++    int16_t* int16ComplexVectorPtr = (int16_t*)complexVectorPtr;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = *int16ComplexVectorPtr++;
++        *qBufferPtr++ = *int16ComplexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+diff --git a/kernels/volk/volk_16ic_deinterleave_real_16i.h b/kernels/volk/volk_16ic_deinterleave_real_16i.h
+index c1de553..45fcd99 100644
+--- a/kernels/volk/volk_16ic_deinterleave_real_16i.h
++++ b/kernels/volk/volk_16ic_deinterleave_real_16i.h
+@@ -25,12 +25,13 @@
+  *
+  * \b Overview
+  *
+- * Deinterleaves the complex 16 bit vector and returns the real (inphase) part of the signal.
++ * Deinterleaves the complex 16 bit vector and returns the real (inphase) part of the
++ * signal.
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_16ic_deinterleave_real_16i(int16_t* iBuffer, const lv_16sc_t* complexVector, unsigned int num_points)
+- * \endcode
++ * void volk_16ic_deinterleave_real_16i(int16_t* iBuffer, const lv_16sc_t* complexVector,
++ * unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li complexVector: The complex input vector.
+@@ -60,79 +61,149 @@
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_16ic_deinterleave_real_16i_a_avx2(int16_t* iBuffer, const lv_16sc_t* complexVector, unsigned int num_points)
++static inline void volk_16ic_deinterleave_real_16i_a_avx2(int16_t* iBuffer,
++                                                          const lv_16sc_t* complexVector,
++                                                          unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const int16_t* complexVectorPtr = (int16_t*)complexVector;
+-  int16_t* iBufferPtr = iBuffer;
+-
+-  __m256i iMoveMask1 = _mm256_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 13, 12, 9, 8, 5, 4, 1, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 13, 12, 9, 8, 5, 4, 1, 0);
+-  __m256i iMoveMask2 = _mm256_set_epi8(13, 12, 9, 8, 5, 4, 1, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 13, 12, 9, 8, 5, 4, 1, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80);
+-
+-  __m256i complexVal1, complexVal2, iOutputVal;
+-
+-  unsigned int sixteenthPoints = num_points / 16;
+-
+-  for(number = 0; number < sixteenthPoints; number++){
+-    complexVal1 = _mm256_load_si256((__m256i*)complexVectorPtr);  complexVectorPtr += 16;
+-    complexVal2 = _mm256_load_si256((__m256i*)complexVectorPtr);  complexVectorPtr += 16;
+-
+-    complexVal1 = _mm256_shuffle_epi8(complexVal1, iMoveMask1);
+-    complexVal2 = _mm256_shuffle_epi8(complexVal2, iMoveMask2);
+-
+-    iOutputVal = _mm256_or_si256(complexVal1, complexVal2);
+-    iOutputVal = _mm256_permute4x64_epi64(iOutputVal, 0xd8);
+-
+-    _mm256_store_si256((__m256i*)iBufferPtr, iOutputVal);
+-
+-    iBufferPtr += 16;
+-  }
+-
+-  number = sixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = *complexVectorPtr++;
+-    complexVectorPtr++;
+-  }
++    unsigned int number = 0;
++    const int16_t* complexVectorPtr = (int16_t*)complexVector;
++    int16_t* iBufferPtr = iBuffer;
++
++    __m256i iMoveMask1 = _mm256_set_epi8(0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         13,
++                                         12,
++                                         9,
++                                         8,
++                                         5,
++                                         4,
++                                         1,
++                                         0,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         13,
++                                         12,
++                                         9,
++                                         8,
++                                         5,
++                                         4,
++                                         1,
++                                         0);
++    __m256i iMoveMask2 = _mm256_set_epi8(13,
++                                         12,
++                                         9,
++                                         8,
++                                         5,
++                                         4,
++                                         1,
++                                         0,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         13,
++                                         12,
++                                         9,
++                                         8,
++                                         5,
++                                         4,
++                                         1,
++                                         0,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80);
++
++    __m256i complexVal1, complexVal2, iOutputVal;
++
++    unsigned int sixteenthPoints = num_points / 16;
++
++    for (number = 0; number < sixteenthPoints; number++) {
++        complexVal1 = _mm256_load_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 16;
++        complexVal2 = _mm256_load_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 16;
++
++        complexVal1 = _mm256_shuffle_epi8(complexVal1, iMoveMask1);
++        complexVal2 = _mm256_shuffle_epi8(complexVal2, iMoveMask2);
++
++        iOutputVal = _mm256_or_si256(complexVal1, complexVal2);
++        iOutputVal = _mm256_permute4x64_epi64(iOutputVal, 0xd8);
++
++        _mm256_store_si256((__m256i*)iBufferPtr, iOutputVal);
++
++        iBufferPtr += 16;
++    }
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = *complexVectorPtr++;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+ #ifdef LV_HAVE_SSSE3
+ #include <tmmintrin.h>
+-static inline void
+-volk_16ic_deinterleave_real_16i_a_ssse3(int16_t* iBuffer, const lv_16sc_t* complexVector, unsigned int num_points)
++static inline void volk_16ic_deinterleave_real_16i_a_ssse3(int16_t* iBuffer,
++                                                           const lv_16sc_t* complexVector,
++                                                           unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const int16_t* complexVectorPtr = (int16_t*)complexVector;
+-  int16_t* iBufferPtr = iBuffer;
++    unsigned int number = 0;
++    const int16_t* complexVectorPtr = (int16_t*)complexVector;
++    int16_t* iBufferPtr = iBuffer;
+-  __m128i iMoveMask1 = _mm_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 13, 12, 9, 8, 5, 4, 1, 0);
+-  __m128i iMoveMask2 = _mm_set_epi8(13, 12, 9, 8, 5, 4, 1, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80);
++    __m128i iMoveMask1 = _mm_set_epi8(
++        0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 13, 12, 9, 8, 5, 4, 1, 0);
++    __m128i iMoveMask2 = _mm_set_epi8(
++        13, 12, 9, 8, 5, 4, 1, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80);
+-  __m128i complexVal1, complexVal2, iOutputVal;
++    __m128i complexVal1, complexVal2, iOutputVal;
+-  unsigned int eighthPoints = num_points / 8;
++    unsigned int eighthPoints = num_points / 8;
+-  for(number = 0; number < eighthPoints; number++){
+-    complexVal1 = _mm_load_si128((__m128i*)complexVectorPtr);  complexVectorPtr += 8;
+-    complexVal2 = _mm_load_si128((__m128i*)complexVectorPtr);  complexVectorPtr += 8;
++    for (number = 0; number < eighthPoints; number++) {
++        complexVal1 = _mm_load_si128((__m128i*)complexVectorPtr);
++        complexVectorPtr += 8;
++        complexVal2 = _mm_load_si128((__m128i*)complexVectorPtr);
++        complexVectorPtr += 8;
+-    complexVal1 = _mm_shuffle_epi8(complexVal1, iMoveMask1);
+-    complexVal2 = _mm_shuffle_epi8(complexVal2, iMoveMask2);
++        complexVal1 = _mm_shuffle_epi8(complexVal1, iMoveMask1);
++        complexVal2 = _mm_shuffle_epi8(complexVal2, iMoveMask2);
+-    iOutputVal = _mm_or_si128(complexVal1, complexVal2);
++        iOutputVal = _mm_or_si128(complexVal1, complexVal2);
+-    _mm_store_si128((__m128i*)iBufferPtr, iOutputVal);
++        _mm_store_si128((__m128i*)iBufferPtr, iOutputVal);
+-    iBufferPtr += 8;
+-  }
++        iBufferPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = *complexVectorPtr++;
+-    complexVectorPtr++;
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = *complexVectorPtr++;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_SSSE3 */
+@@ -140,61 +211,66 @@ volk_16ic_deinterleave_real_16i_a_ssse3(int16_t* iBuffer, const lv_16sc_t* compl
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void
+-volk_16ic_deinterleave_real_16i_a_sse2(int16_t* iBuffer, const lv_16sc_t* complexVector, unsigned int num_points)
++static inline void volk_16ic_deinterleave_real_16i_a_sse2(int16_t* iBuffer,
++                                                          const lv_16sc_t* complexVector,
++                                                          unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const int16_t* complexVectorPtr = (int16_t*)complexVector;
+-  int16_t* iBufferPtr = iBuffer;
+-  __m128i complexVal1, complexVal2, iOutputVal;
+-  __m128i lowMask = _mm_set_epi32(0x0, 0x0, 0xFFFFFFFF, 0xFFFFFFFF);
+-  __m128i highMask = _mm_set_epi32(0xFFFFFFFF, 0xFFFFFFFF, 0x0, 0x0);
++    unsigned int number = 0;
++    const int16_t* complexVectorPtr = (int16_t*)complexVector;
++    int16_t* iBufferPtr = iBuffer;
++    __m128i complexVal1, complexVal2, iOutputVal;
++    __m128i lowMask = _mm_set_epi32(0x0, 0x0, 0xFFFFFFFF, 0xFFFFFFFF);
++    __m128i highMask = _mm_set_epi32(0xFFFFFFFF, 0xFFFFFFFF, 0x0, 0x0);
+-  unsigned int eighthPoints = num_points / 8;
++    unsigned int eighthPoints = num_points / 8;
+-  for(number = 0; number < eighthPoints; number++){
+-    complexVal1 = _mm_load_si128((__m128i*)complexVectorPtr);  complexVectorPtr += 8;
+-    complexVal2 = _mm_load_si128((__m128i*)complexVectorPtr);  complexVectorPtr += 8;
++    for (number = 0; number < eighthPoints; number++) {
++        complexVal1 = _mm_load_si128((__m128i*)complexVectorPtr);
++        complexVectorPtr += 8;
++        complexVal2 = _mm_load_si128((__m128i*)complexVectorPtr);
++        complexVectorPtr += 8;
+-    complexVal1 = _mm_shufflelo_epi16(complexVal1, _MM_SHUFFLE(3,1,2,0));
++        complexVal1 = _mm_shufflelo_epi16(complexVal1, _MM_SHUFFLE(3, 1, 2, 0));
+-    complexVal1 = _mm_shufflehi_epi16(complexVal1, _MM_SHUFFLE(3,1,2,0));
++        complexVal1 = _mm_shufflehi_epi16(complexVal1, _MM_SHUFFLE(3, 1, 2, 0));
+-    complexVal1 = _mm_shuffle_epi32(complexVal1, _MM_SHUFFLE(3,1,2,0));
++        complexVal1 = _mm_shuffle_epi32(complexVal1, _MM_SHUFFLE(3, 1, 2, 0));
+-    complexVal2 = _mm_shufflelo_epi16(complexVal2, _MM_SHUFFLE(3,1,2,0));
++        complexVal2 = _mm_shufflelo_epi16(complexVal2, _MM_SHUFFLE(3, 1, 2, 0));
+-    complexVal2 = _mm_shufflehi_epi16(complexVal2, _MM_SHUFFLE(3,1,2,0));
++        complexVal2 = _mm_shufflehi_epi16(complexVal2, _MM_SHUFFLE(3, 1, 2, 0));
+-    complexVal2 = _mm_shuffle_epi32(complexVal2, _MM_SHUFFLE(2,0,3,1));
++        complexVal2 = _mm_shuffle_epi32(complexVal2, _MM_SHUFFLE(2, 0, 3, 1));
+-    iOutputVal = _mm_or_si128(_mm_and_si128(complexVal1, lowMask), _mm_and_si128(complexVal2, highMask));
++        iOutputVal = _mm_or_si128(_mm_and_si128(complexVal1, lowMask),
++                                  _mm_and_si128(complexVal2, highMask));
+-    _mm_store_si128((__m128i*)iBufferPtr, iOutputVal);
++        _mm_store_si128((__m128i*)iBufferPtr, iOutputVal);
+-    iBufferPtr += 8;
+-  }
++        iBufferPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = *complexVectorPtr++;
+-    complexVectorPtr++;
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = *complexVectorPtr++;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_16ic_deinterleave_real_16i_generic(int16_t* iBuffer, const lv_16sc_t* complexVector, unsigned int num_points)
++static inline void volk_16ic_deinterleave_real_16i_generic(int16_t* iBuffer,
++                                                           const lv_16sc_t* complexVector,
++                                                           unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const int16_t* complexVectorPtr = (int16_t*)complexVector;
+-  int16_t* iBufferPtr = iBuffer;
+-  for(number = 0; number < num_points; number++){
+-    *iBufferPtr++ = *complexVectorPtr++;
+-    complexVectorPtr++;
+-  }
++    unsigned int number = 0;
++    const int16_t* complexVectorPtr = (int16_t*)complexVector;
++    int16_t* iBufferPtr = iBuffer;
++    for (number = 0; number < num_points; number++) {
++        *iBufferPtr++ = *complexVectorPtr++;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -212,40 +288,105 @@ volk_16ic_deinterleave_real_16i_generic(int16_t* iBuffer, const lv_16sc_t* compl
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_16ic_deinterleave_real_16i_u_avx2(int16_t* iBuffer, const lv_16sc_t* complexVector, unsigned int num_points)
++static inline void volk_16ic_deinterleave_real_16i_u_avx2(int16_t* iBuffer,
++                                                          const lv_16sc_t* complexVector,
++                                                          unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const int16_t* complexVectorPtr = (int16_t*)complexVector;
+-  int16_t* iBufferPtr = iBuffer;
+-
+-  __m256i iMoveMask1 = _mm256_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 13, 12, 9, 8, 5, 4, 1, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 13, 12, 9, 8, 5, 4, 1, 0);
+-  __m256i iMoveMask2 = _mm256_set_epi8(13, 12, 9, 8, 5, 4, 1, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 13, 12, 9, 8, 5, 4, 1, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80);
+-
+-  __m256i complexVal1, complexVal2, iOutputVal;
+-
+-  unsigned int sixteenthPoints = num_points / 16;
+-
+-  for(number = 0; number < sixteenthPoints; number++){
+-    complexVal1 = _mm256_loadu_si256((__m256i*)complexVectorPtr);  complexVectorPtr += 16;
+-    complexVal2 = _mm256_loadu_si256((__m256i*)complexVectorPtr);  complexVectorPtr += 16;
+-
+-    complexVal1 = _mm256_shuffle_epi8(complexVal1, iMoveMask1);
+-    complexVal2 = _mm256_shuffle_epi8(complexVal2, iMoveMask2);
+-
+-    iOutputVal = _mm256_or_si256(complexVal1, complexVal2);
+-    iOutputVal = _mm256_permute4x64_epi64(iOutputVal, 0xd8);
+-
+-    _mm256_storeu_si256((__m256i*)iBufferPtr, iOutputVal);
+-
+-    iBufferPtr += 16;
+-  }
+-
+-  number = sixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = *complexVectorPtr++;
+-    complexVectorPtr++;
+-  }
++    unsigned int number = 0;
++    const int16_t* complexVectorPtr = (int16_t*)complexVector;
++    int16_t* iBufferPtr = iBuffer;
++
++    __m256i iMoveMask1 = _mm256_set_epi8(0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         13,
++                                         12,
++                                         9,
++                                         8,
++                                         5,
++                                         4,
++                                         1,
++                                         0,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         13,
++                                         12,
++                                         9,
++                                         8,
++                                         5,
++                                         4,
++                                         1,
++                                         0);
++    __m256i iMoveMask2 = _mm256_set_epi8(13,
++                                         12,
++                                         9,
++                                         8,
++                                         5,
++                                         4,
++                                         1,
++                                         0,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         13,
++                                         12,
++                                         9,
++                                         8,
++                                         5,
++                                         4,
++                                         1,
++                                         0,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80);
++
++    __m256i complexVal1, complexVal2, iOutputVal;
++
++    unsigned int sixteenthPoints = num_points / 16;
++
++    for (number = 0; number < sixteenthPoints; number++) {
++        complexVal1 = _mm256_loadu_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 16;
++        complexVal2 = _mm256_loadu_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 16;
++
++        complexVal1 = _mm256_shuffle_epi8(complexVal1, iMoveMask1);
++        complexVal2 = _mm256_shuffle_epi8(complexVal2, iMoveMask2);
++
++        iOutputVal = _mm256_or_si256(complexVal1, complexVal2);
++        iOutputVal = _mm256_permute4x64_epi64(iOutputVal, 0xd8);
++
++        _mm256_storeu_si256((__m256i*)iBufferPtr, iOutputVal);
++
++        iBufferPtr += 16;
++    }
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = *complexVectorPtr++;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+diff --git a/kernels/volk/volk_16ic_deinterleave_real_8i.h b/kernels/volk/volk_16ic_deinterleave_real_8i.h
+index 1022688..3d8e4ea 100644
+--- a/kernels/volk/volk_16ic_deinterleave_real_8i.h
++++ b/kernels/volk/volk_16ic_deinterleave_real_8i.h
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_16ic_deinterleave_real_8i(int8_t* iBuffer, const lv_16sc_t* complexVector, unsigned int num_points)
+- * \endcode
++ * void volk_16ic_deinterleave_real_8i(int8_t* iBuffer, const lv_16sc_t* complexVector,
++ * unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li complexVector: The complex input vector.
+@@ -61,54 +61,121 @@
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_16ic_deinterleave_real_8i_a_avx2(int8_t* iBuffer, const lv_16sc_t* complexVector, unsigned int num_points)
++static inline void volk_16ic_deinterleave_real_8i_a_avx2(int8_t* iBuffer,
++                                                         const lv_16sc_t* complexVector,
++                                                         unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const int8_t* complexVectorPtr = (int8_t*)complexVector;
+-  int8_t* iBufferPtr = iBuffer;
+-  __m256i iMoveMask1 = _mm256_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 13, 12, 9, 8, 5, 4, 1, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 13, 12, 9, 8, 5, 4, 1, 0);
+-  __m256i iMoveMask2 = _mm256_set_epi8(13, 12, 9, 8, 5, 4, 1, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 13, 12, 9, 8, 5, 4, 1, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80);
+-  __m256i complexVal1, complexVal2, complexVal3, complexVal4, iOutputVal;
+-
+-  unsigned int thirtysecondPoints = num_points / 32;
+-
+-  for(number = 0; number < thirtysecondPoints; number++){
+-    complexVal1 = _mm256_load_si256((__m256i*)complexVectorPtr);  complexVectorPtr += 32;
+-    complexVal2 = _mm256_load_si256((__m256i*)complexVectorPtr);  complexVectorPtr += 32;
+-
+-    complexVal3 = _mm256_load_si256((__m256i*)complexVectorPtr);  complexVectorPtr += 32;
+-    complexVal4 = _mm256_load_si256((__m256i*)complexVectorPtr);  complexVectorPtr += 32;
+-
+-    complexVal1 = _mm256_shuffle_epi8(complexVal1, iMoveMask1);
+-    complexVal2 = _mm256_shuffle_epi8(complexVal2, iMoveMask2);
+-
+-    complexVal1 = _mm256_or_si256(complexVal1, complexVal2);
+-    complexVal1 = _mm256_permute4x64_epi64(complexVal1, 0xd8);
+-
+-    complexVal3 = _mm256_shuffle_epi8(complexVal3, iMoveMask1);
+-    complexVal4 = _mm256_shuffle_epi8(complexVal4, iMoveMask2);
+-
+-    complexVal3 = _mm256_or_si256(complexVal3, complexVal4);
+-    complexVal3 = _mm256_permute4x64_epi64(complexVal3, 0xd8);
+-
+-    complexVal1 = _mm256_srai_epi16(complexVal1, 8);
+-    complexVal3 = _mm256_srai_epi16(complexVal3, 8);
+-
+-    iOutputVal = _mm256_packs_epi16(complexVal1, complexVal3);
+-    iOutputVal = _mm256_permute4x64_epi64(iOutputVal, 0xd8);
+-
+-    _mm256_store_si256((__m256i*)iBufferPtr, iOutputVal);
+-
+-    iBufferPtr += 32;
+-  }
+-
+-  number = thirtysecondPoints * 32;
+-  int16_t* int16ComplexVectorPtr = (int16_t*)complexVectorPtr;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = ((int8_t)(*int16ComplexVectorPtr++ >> 8));
+-    int16ComplexVectorPtr++;
+-  }
++    unsigned int number = 0;
++    const int8_t* complexVectorPtr = (int8_t*)complexVector;
++    int8_t* iBufferPtr = iBuffer;
++    __m256i iMoveMask1 = _mm256_set_epi8(0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         13,
++                                         12,
++                                         9,
++                                         8,
++                                         5,
++                                         4,
++                                         1,
++                                         0,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         13,
++                                         12,
++                                         9,
++                                         8,
++                                         5,
++                                         4,
++                                         1,
++                                         0);
++    __m256i iMoveMask2 = _mm256_set_epi8(13,
++                                         12,
++                                         9,
++                                         8,
++                                         5,
++                                         4,
++                                         1,
++                                         0,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         13,
++                                         12,
++                                         9,
++                                         8,
++                                         5,
++                                         4,
++                                         1,
++                                         0,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80);
++    __m256i complexVal1, complexVal2, complexVal3, complexVal4, iOutputVal;
++
++    unsigned int thirtysecondPoints = num_points / 32;
++
++    for (number = 0; number < thirtysecondPoints; number++) {
++        complexVal1 = _mm256_load_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32;
++        complexVal2 = _mm256_load_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32;
++
++        complexVal3 = _mm256_load_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32;
++        complexVal4 = _mm256_load_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32;
++
++        complexVal1 = _mm256_shuffle_epi8(complexVal1, iMoveMask1);
++        complexVal2 = _mm256_shuffle_epi8(complexVal2, iMoveMask2);
++
++        complexVal1 = _mm256_or_si256(complexVal1, complexVal2);
++        complexVal1 = _mm256_permute4x64_epi64(complexVal1, 0xd8);
++
++        complexVal3 = _mm256_shuffle_epi8(complexVal3, iMoveMask1);
++        complexVal4 = _mm256_shuffle_epi8(complexVal4, iMoveMask2);
++
++        complexVal3 = _mm256_or_si256(complexVal3, complexVal4);
++        complexVal3 = _mm256_permute4x64_epi64(complexVal3, 0xd8);
++
++        complexVal1 = _mm256_srai_epi16(complexVal1, 8);
++        complexVal3 = _mm256_srai_epi16(complexVal3, 8);
++
++        iOutputVal = _mm256_packs_epi16(complexVal1, complexVal3);
++        iOutputVal = _mm256_permute4x64_epi64(iOutputVal, 0xd8);
++
++        _mm256_store_si256((__m256i*)iBufferPtr, iOutputVal);
++
++        iBufferPtr += 32;
++    }
++
++    number = thirtysecondPoints * 32;
++    int16_t* int16ComplexVectorPtr = (int16_t*)complexVectorPtr;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = ((int8_t)(*int16ComplexVectorPtr++ >> 8));
++        int16ComplexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -116,105 +183,116 @@ volk_16ic_deinterleave_real_8i_a_avx2(int8_t* iBuffer, const lv_16sc_t* complexV
+ #ifdef LV_HAVE_SSSE3
+ #include <tmmintrin.h>
+-static inline void
+-volk_16ic_deinterleave_real_8i_a_ssse3(int8_t* iBuffer, const lv_16sc_t* complexVector, unsigned int num_points)
++static inline void volk_16ic_deinterleave_real_8i_a_ssse3(int8_t* iBuffer,
++                                                          const lv_16sc_t* complexVector,
++                                                          unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const int8_t* complexVectorPtr = (int8_t*)complexVector;
+-  int8_t* iBufferPtr = iBuffer;
+-  __m128i iMoveMask1 = _mm_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 13, 12, 9, 8, 5, 4, 1, 0);
+-  __m128i iMoveMask2 = _mm_set_epi8(13, 12, 9, 8, 5, 4, 1, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80);
+-  __m128i complexVal1, complexVal2, complexVal3, complexVal4, iOutputVal;
++    unsigned int number = 0;
++    const int8_t* complexVectorPtr = (int8_t*)complexVector;
++    int8_t* iBufferPtr = iBuffer;
++    __m128i iMoveMask1 = _mm_set_epi8(
++        0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 13, 12, 9, 8, 5, 4, 1, 0);
++    __m128i iMoveMask2 = _mm_set_epi8(
++        13, 12, 9, 8, 5, 4, 1, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80);
++    __m128i complexVal1, complexVal2, complexVal3, complexVal4, iOutputVal;
+-  unsigned int sixteenthPoints = num_points / 16;
++    unsigned int sixteenthPoints = num_points / 16;
+-  for(number = 0; number < sixteenthPoints; number++){
+-    complexVal1 = _mm_load_si128((__m128i*)complexVectorPtr);  complexVectorPtr += 16;
+-    complexVal2 = _mm_load_si128((__m128i*)complexVectorPtr);  complexVectorPtr += 16;
++    for (number = 0; number < sixteenthPoints; number++) {
++        complexVal1 = _mm_load_si128((__m128i*)complexVectorPtr);
++        complexVectorPtr += 16;
++        complexVal2 = _mm_load_si128((__m128i*)complexVectorPtr);
++        complexVectorPtr += 16;
+-    complexVal3 = _mm_load_si128((__m128i*)complexVectorPtr);  complexVectorPtr += 16;
+-    complexVal4 = _mm_load_si128((__m128i*)complexVectorPtr);  complexVectorPtr += 16;
++        complexVal3 = _mm_load_si128((__m128i*)complexVectorPtr);
++        complexVectorPtr += 16;
++        complexVal4 = _mm_load_si128((__m128i*)complexVectorPtr);
++        complexVectorPtr += 16;
+-    complexVal1 = _mm_shuffle_epi8(complexVal1, iMoveMask1);
+-    complexVal2 = _mm_shuffle_epi8(complexVal2, iMoveMask2);
++        complexVal1 = _mm_shuffle_epi8(complexVal1, iMoveMask1);
++        complexVal2 = _mm_shuffle_epi8(complexVal2, iMoveMask2);
+-    complexVal1 = _mm_or_si128(complexVal1, complexVal2);
++        complexVal1 = _mm_or_si128(complexVal1, complexVal2);
+-    complexVal3 = _mm_shuffle_epi8(complexVal3, iMoveMask1);
+-    complexVal4 = _mm_shuffle_epi8(complexVal4, iMoveMask2);
++        complexVal3 = _mm_shuffle_epi8(complexVal3, iMoveMask1);
++        complexVal4 = _mm_shuffle_epi8(complexVal4, iMoveMask2);
+-    complexVal3 = _mm_or_si128(complexVal3, complexVal4);
++        complexVal3 = _mm_or_si128(complexVal3, complexVal4);
+-    complexVal1 = _mm_srai_epi16(complexVal1, 8);
+-    complexVal3 = _mm_srai_epi16(complexVal3, 8);
++        complexVal1 = _mm_srai_epi16(complexVal1, 8);
++        complexVal3 = _mm_srai_epi16(complexVal3, 8);
+-    iOutputVal = _mm_packs_epi16(complexVal1, complexVal3);
++        iOutputVal = _mm_packs_epi16(complexVal1, complexVal3);
+-    _mm_store_si128((__m128i*)iBufferPtr, iOutputVal);
++        _mm_store_si128((__m128i*)iBufferPtr, iOutputVal);
+-    iBufferPtr += 16;
+-  }
++        iBufferPtr += 16;
++    }
+-  number = sixteenthPoints * 16;
+-  int16_t* int16ComplexVectorPtr = (int16_t*)complexVectorPtr;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = ((int8_t)(*int16ComplexVectorPtr++ >> 8));
+-    int16ComplexVectorPtr++;
+-  }
++    number = sixteenthPoints * 16;
++    int16_t* int16ComplexVectorPtr = (int16_t*)complexVectorPtr;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = ((int8_t)(*int16ComplexVectorPtr++ >> 8));
++        int16ComplexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_SSSE3 */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_16ic_deinterleave_real_8i_generic(int8_t* iBuffer, const lv_16sc_t* complexVector, unsigned int num_points)
++static inline void volk_16ic_deinterleave_real_8i_generic(int8_t* iBuffer,
++                                                          const lv_16sc_t* complexVector,
++                                                          unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  int16_t* complexVectorPtr = (int16_t*)complexVector;
+-  int8_t* iBufferPtr = iBuffer;
+-  for(number = 0; number < num_points; number++){
+-    *iBufferPtr++ = ((int8_t)(*complexVectorPtr++ >> 8));
+-    complexVectorPtr++;
+-  }
++    unsigned int number = 0;
++    int16_t* complexVectorPtr = (int16_t*)complexVector;
++    int8_t* iBufferPtr = iBuffer;
++    for (number = 0; number < num_points; number++) {
++        *iBufferPtr++ = ((int8_t)(*complexVectorPtr++ >> 8));
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_16ic_deinterleave_real_8i_neon(int8_t* iBuffer, const lv_16sc_t* complexVector, unsigned int num_points)
++static inline void volk_16ic_deinterleave_real_8i_neon(int8_t* iBuffer,
++                                                       const lv_16sc_t* complexVector,
++                                                       unsigned int num_points)
+ {
+-  const int16_t* complexVectorPtr = (const int16_t*)complexVector;
+-  int8_t* iBufferPtr = iBuffer;
+-  unsigned int eighth_points = num_points / 8;
+-  unsigned int number;
+-
+-  int16x8x2_t complexInput;
+-  int8x8_t realOutput;
+-  for(number = 0; number < eighth_points; number++){
+-    complexInput = vld2q_s16(complexVectorPtr);
+-    realOutput = vshrn_n_s16(complexInput.val[0], 8);
+-    vst1_s8(iBufferPtr, realOutput);
+-    complexVectorPtr += 16;
+-    iBufferPtr += 8;
+-  }
+-
+-  for(number = eighth_points*8; number < num_points; number++){
+-    *iBufferPtr++ = ((int8_t)(*complexVectorPtr++ >> 8));
+-    complexVectorPtr++;
+-  }
++    const int16_t* complexVectorPtr = (const int16_t*)complexVector;
++    int8_t* iBufferPtr = iBuffer;
++    unsigned int eighth_points = num_points / 8;
++    unsigned int number;
++
++    int16x8x2_t complexInput;
++    int8x8_t realOutput;
++    for (number = 0; number < eighth_points; number++) {
++        complexInput = vld2q_s16(complexVectorPtr);
++        realOutput = vshrn_n_s16(complexInput.val[0], 8);
++        vst1_s8(iBufferPtr, realOutput);
++        complexVectorPtr += 16;
++        iBufferPtr += 8;
++    }
++
++    for (number = eighth_points * 8; number < num_points; number++) {
++        *iBufferPtr++ = ((int8_t)(*complexVectorPtr++ >> 8));
++        complexVectorPtr++;
++    }
+ }
+ #endif
+ #ifdef LV_HAVE_ORC
+-extern void
+-volk_16ic_deinterleave_real_8i_a_orc_impl(int8_t* iBuffer, const lv_16sc_t* complexVector, unsigned int num_points);
++extern void volk_16ic_deinterleave_real_8i_a_orc_impl(int8_t* iBuffer,
++                                                      const lv_16sc_t* complexVector,
++                                                      unsigned int num_points);
+-static inline void
+-volk_16ic_deinterleave_real_8i_u_orc(int8_t* iBuffer, const lv_16sc_t* complexVector, unsigned int num_points)
++static inline void volk_16ic_deinterleave_real_8i_u_orc(int8_t* iBuffer,
++                                                        const lv_16sc_t* complexVector,
++                                                        unsigned int num_points)
+ {
+     volk_16ic_deinterleave_real_8i_a_orc_impl(iBuffer, complexVector, num_points);
+ }
+@@ -233,54 +311,121 @@ volk_16ic_deinterleave_real_8i_u_orc(int8_t* iBuffer, const lv_16sc_t* complexVe
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_16ic_deinterleave_real_8i_u_avx2(int8_t* iBuffer, const lv_16sc_t* complexVector, unsigned int num_points)
++static inline void volk_16ic_deinterleave_real_8i_u_avx2(int8_t* iBuffer,
++                                                         const lv_16sc_t* complexVector,
++                                                         unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const int8_t* complexVectorPtr = (int8_t*)complexVector;
+-  int8_t* iBufferPtr = iBuffer;
+-  __m256i iMoveMask1 = _mm256_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 13, 12, 9, 8, 5, 4, 1, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 13, 12, 9, 8, 5, 4, 1, 0);
+-  __m256i iMoveMask2 = _mm256_set_epi8(13, 12, 9, 8, 5, 4, 1, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 13, 12, 9, 8, 5, 4, 1, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80);
+-  __m256i complexVal1, complexVal2, complexVal3, complexVal4, iOutputVal;
+-
+-  unsigned int thirtysecondPoints = num_points / 32;
+-
+-  for(number = 0; number < thirtysecondPoints; number++){
+-    complexVal1 = _mm256_loadu_si256((__m256i*)complexVectorPtr);  complexVectorPtr += 32;
+-    complexVal2 = _mm256_loadu_si256((__m256i*)complexVectorPtr);  complexVectorPtr += 32;
+-
+-    complexVal3 = _mm256_loadu_si256((__m256i*)complexVectorPtr);  complexVectorPtr += 32;
+-    complexVal4 = _mm256_loadu_si256((__m256i*)complexVectorPtr);  complexVectorPtr += 32;
+-
+-    complexVal1 = _mm256_shuffle_epi8(complexVal1, iMoveMask1);
+-    complexVal2 = _mm256_shuffle_epi8(complexVal2, iMoveMask2);
+-
+-    complexVal1 = _mm256_or_si256(complexVal1, complexVal2);
+-    complexVal1 = _mm256_permute4x64_epi64(complexVal1, 0xd8);
+-
+-    complexVal3 = _mm256_shuffle_epi8(complexVal3, iMoveMask1);
+-    complexVal4 = _mm256_shuffle_epi8(complexVal4, iMoveMask2);
+-
+-    complexVal3 = _mm256_or_si256(complexVal3, complexVal4);
+-    complexVal3 = _mm256_permute4x64_epi64(complexVal3, 0xd8);
+-
+-    complexVal1 = _mm256_srai_epi16(complexVal1, 8);
+-    complexVal3 = _mm256_srai_epi16(complexVal3, 8);
+-
+-    iOutputVal = _mm256_packs_epi16(complexVal1, complexVal3);
+-    iOutputVal = _mm256_permute4x64_epi64(iOutputVal, 0xd8);
+-
+-    _mm256_storeu_si256((__m256i*)iBufferPtr, iOutputVal);
+-
+-    iBufferPtr += 32;
+-  }
+-
+-  number = thirtysecondPoints * 32;
+-  int16_t* int16ComplexVectorPtr = (int16_t*)complexVectorPtr;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = ((int8_t)(*int16ComplexVectorPtr++ >> 8));
+-    int16ComplexVectorPtr++;
+-  }
++    unsigned int number = 0;
++    const int8_t* complexVectorPtr = (int8_t*)complexVector;
++    int8_t* iBufferPtr = iBuffer;
++    __m256i iMoveMask1 = _mm256_set_epi8(0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         13,
++                                         12,
++                                         9,
++                                         8,
++                                         5,
++                                         4,
++                                         1,
++                                         0,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         13,
++                                         12,
++                                         9,
++                                         8,
++                                         5,
++                                         4,
++                                         1,
++                                         0);
++    __m256i iMoveMask2 = _mm256_set_epi8(13,
++                                         12,
++                                         9,
++                                         8,
++                                         5,
++                                         4,
++                                         1,
++                                         0,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         13,
++                                         12,
++                                         9,
++                                         8,
++                                         5,
++                                         4,
++                                         1,
++                                         0,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80,
++                                         0x80);
++    __m256i complexVal1, complexVal2, complexVal3, complexVal4, iOutputVal;
++
++    unsigned int thirtysecondPoints = num_points / 32;
++
++    for (number = 0; number < thirtysecondPoints; number++) {
++        complexVal1 = _mm256_loadu_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32;
++        complexVal2 = _mm256_loadu_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32;
++
++        complexVal3 = _mm256_loadu_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32;
++        complexVal4 = _mm256_loadu_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32;
++
++        complexVal1 = _mm256_shuffle_epi8(complexVal1, iMoveMask1);
++        complexVal2 = _mm256_shuffle_epi8(complexVal2, iMoveMask2);
++
++        complexVal1 = _mm256_or_si256(complexVal1, complexVal2);
++        complexVal1 = _mm256_permute4x64_epi64(complexVal1, 0xd8);
++
++        complexVal3 = _mm256_shuffle_epi8(complexVal3, iMoveMask1);
++        complexVal4 = _mm256_shuffle_epi8(complexVal4, iMoveMask2);
++
++        complexVal3 = _mm256_or_si256(complexVal3, complexVal4);
++        complexVal3 = _mm256_permute4x64_epi64(complexVal3, 0xd8);
++
++        complexVal1 = _mm256_srai_epi16(complexVal1, 8);
++        complexVal3 = _mm256_srai_epi16(complexVal3, 8);
++
++        iOutputVal = _mm256_packs_epi16(complexVal1, complexVal3);
++        iOutputVal = _mm256_permute4x64_epi64(iOutputVal, 0xd8);
++
++        _mm256_storeu_si256((__m256i*)iBufferPtr, iOutputVal);
++
++        iBufferPtr += 32;
++    }
++
++    number = thirtysecondPoints * 32;
++    int16_t* int16ComplexVectorPtr = (int16_t*)complexVectorPtr;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = ((int8_t)(*int16ComplexVectorPtr++ >> 8));
++        int16ComplexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+ #endif /* INCLUDED_volk_16ic_deinterleave_real_8i_u_H */
+diff --git a/kernels/volk/volk_16ic_magnitude_16i.h b/kernels/volk/volk_16ic_magnitude_16i.h
+index bbe72a8..35b40cb 100644
+--- a/kernels/volk/volk_16ic_magnitude_16i.h
++++ b/kernels/volk/volk_16ic_magnitude_16i.h
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_16ic_magnitude_16i(int16_t* magnitudeVector, const lv_16sc_t* complexVector, unsigned int num_points)
+- * \endcode
++ * void volk_16ic_magnitude_16i(int16_t* magnitudeVector, const lv_16sc_t* complexVector,
++ * unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li complexVector: The complex input vector.
+@@ -54,242 +54,255 @@
+ #ifndef INCLUDED_volk_16ic_magnitude_16i_a_H
+ #define INCLUDED_volk_16ic_magnitude_16i_a_H
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+-#include <stdio.h>
+-#include <math.h>
+ #include <limits.h>
++#include <math.h>
++#include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_16ic_magnitude_16i_a_avx2(int16_t* magnitudeVector, const lv_16sc_t* complexVector, unsigned int num_points)
++static inline void volk_16ic_magnitude_16i_a_avx2(int16_t* magnitudeVector,
++                                                  const lv_16sc_t* complexVector,
++                                                  unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  const int16_t* complexVectorPtr = (const int16_t*)complexVector;
+-  int16_t* magnitudeVectorPtr = magnitudeVector;
+-
+-  __m256 vScalar = _mm256_set1_ps(SHRT_MAX);
+-  __m256 invScalar = _mm256_set1_ps(1.0f/SHRT_MAX);
+-  __m256i int1, int2;
+-  __m128i short1, short2;
+-  __m256 cplxValue1, cplxValue2, result;
+-  __m256i idx = _mm256_set_epi32(0,0,0,0,5,1,4,0);
+-
+-  for(;number < eighthPoints; number++){
+-
+-    int1 = _mm256_load_si256((__m256i*)complexVectorPtr);
+-    complexVectorPtr += 16;
+-    short1 = _mm256_extracti128_si256(int1,0);
+-    short2 = _mm256_extracti128_si256(int1,1);
+-
+-    int1 = _mm256_cvtepi16_epi32(short1);
+-    int2 = _mm256_cvtepi16_epi32(short2);
+-    cplxValue1 = _mm256_cvtepi32_ps(int1);
+-    cplxValue2 = _mm256_cvtepi32_ps(int2);
+-
+-    cplxValue1 = _mm256_mul_ps(cplxValue1, invScalar);
+-    cplxValue2 = _mm256_mul_ps(cplxValue2, invScalar);
+-
+-    cplxValue1 = _mm256_mul_ps(cplxValue1, cplxValue1); // Square the values
+-    cplxValue2 = _mm256_mul_ps(cplxValue2, cplxValue2); // Square the Values
+-
+-    result = _mm256_hadd_ps(cplxValue1, cplxValue2); // Add the I2 and Q2 values
+-
+-    result = _mm256_sqrt_ps(result); // Square root the values
+-
+-    result = _mm256_mul_ps(result, vScalar); // Scale the results
+-
+-    int1 = _mm256_cvtps_epi32(result);
+-    int1 = _mm256_packs_epi32(int1, int1);
+-    int1 = _mm256_permutevar8x32_epi32(int1, idx); //permute to compensate for shuffling in hadd and packs
+-    short1 = _mm256_extracti128_si256(int1, 0);
+-    _mm_store_si128((__m128i*)magnitudeVectorPtr,short1);
+-    magnitudeVectorPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  magnitudeVectorPtr = &magnitudeVector[number];
+-  complexVectorPtr = (const int16_t*)&complexVector[number];
+-  for(; number < num_points; number++){
+-    const float val1Real = (float)(*complexVectorPtr++) / SHRT_MAX;
+-    const float val1Imag = (float)(*complexVectorPtr++) / SHRT_MAX;
+-    const float val1Result = sqrtf((val1Real * val1Real) + (val1Imag * val1Imag)) * SHRT_MAX;
+-    *magnitudeVectorPtr++ = (int16_t)rintf(val1Result);
+-  }
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    const int16_t* complexVectorPtr = (const int16_t*)complexVector;
++    int16_t* magnitudeVectorPtr = magnitudeVector;
++
++    __m256 vScalar = _mm256_set1_ps(SHRT_MAX);
++    __m256 invScalar = _mm256_set1_ps(1.0f / SHRT_MAX);
++    __m256i int1, int2;
++    __m128i short1, short2;
++    __m256 cplxValue1, cplxValue2, result;
++    __m256i idx = _mm256_set_epi32(0, 0, 0, 0, 5, 1, 4, 0);
++
++    for (; number < eighthPoints; number++) {
++
++        int1 = _mm256_load_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 16;
++        short1 = _mm256_extracti128_si256(int1, 0);
++        short2 = _mm256_extracti128_si256(int1, 1);
++
++        int1 = _mm256_cvtepi16_epi32(short1);
++        int2 = _mm256_cvtepi16_epi32(short2);
++        cplxValue1 = _mm256_cvtepi32_ps(int1);
++        cplxValue2 = _mm256_cvtepi32_ps(int2);
++
++        cplxValue1 = _mm256_mul_ps(cplxValue1, invScalar);
++        cplxValue2 = _mm256_mul_ps(cplxValue2, invScalar);
++
++        cplxValue1 = _mm256_mul_ps(cplxValue1, cplxValue1); // Square the values
++        cplxValue2 = _mm256_mul_ps(cplxValue2, cplxValue2); // Square the Values
++
++        result = _mm256_hadd_ps(cplxValue1, cplxValue2); // Add the I2 and Q2 values
++
++        result = _mm256_sqrt_ps(result); // Square root the values
++
++        result = _mm256_mul_ps(result, vScalar); // Scale the results
++
++        int1 = _mm256_cvtps_epi32(result);
++        int1 = _mm256_packs_epi32(int1, int1);
++        int1 = _mm256_permutevar8x32_epi32(
++            int1, idx); // permute to compensate for shuffling in hadd and packs
++        short1 = _mm256_extracti128_si256(int1, 0);
++        _mm_store_si128((__m128i*)magnitudeVectorPtr, short1);
++        magnitudeVectorPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    magnitudeVectorPtr = &magnitudeVector[number];
++    complexVectorPtr = (const int16_t*)&complexVector[number];
++    for (; number < num_points; number++) {
++        const float val1Real = (float)(*complexVectorPtr++) / SHRT_MAX;
++        const float val1Imag = (float)(*complexVectorPtr++) / SHRT_MAX;
++        const float val1Result =
++            sqrtf((val1Real * val1Real) + (val1Imag * val1Imag)) * SHRT_MAX;
++        *magnitudeVectorPtr++ = (int16_t)rintf(val1Result);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+ #ifdef LV_HAVE_SSE3
+ #include <pmmintrin.h>
+-static inline void
+-volk_16ic_magnitude_16i_a_sse3(int16_t* magnitudeVector, const lv_16sc_t* complexVector, unsigned int num_points)
++static inline void volk_16ic_magnitude_16i_a_sse3(int16_t* magnitudeVector,
++                                                  const lv_16sc_t* complexVector,
++                                                  unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  const int16_t* complexVectorPtr = (const int16_t*)complexVector;
+-  int16_t* magnitudeVectorPtr = magnitudeVector;
++    const int16_t* complexVectorPtr = (const int16_t*)complexVector;
++    int16_t* magnitudeVectorPtr = magnitudeVector;
+-  __m128 vScalar = _mm_set_ps1(SHRT_MAX);
+-  __m128 invScalar = _mm_set_ps1(1.0f/SHRT_MAX);
++    __m128 vScalar = _mm_set_ps1(SHRT_MAX);
++    __m128 invScalar = _mm_set_ps1(1.0f / SHRT_MAX);
+-  __m128 cplxValue1, cplxValue2, result;
++    __m128 cplxValue1, cplxValue2, result;
+-  __VOLK_ATTR_ALIGNED(16) float inputFloatBuffer[8];
+-  __VOLK_ATTR_ALIGNED(16) float outputFloatBuffer[4];
++    __VOLK_ATTR_ALIGNED(16) float inputFloatBuffer[8];
++    __VOLK_ATTR_ALIGNED(16) float outputFloatBuffer[4];
+-  for(;number < quarterPoints; number++){
++    for (; number < quarterPoints; number++) {
+-    inputFloatBuffer[0] = (float)(complexVectorPtr[0]);
+-    inputFloatBuffer[1] = (float)(complexVectorPtr[1]);
+-    inputFloatBuffer[2] = (float)(complexVectorPtr[2]);
+-    inputFloatBuffer[3] = (float)(complexVectorPtr[3]);
++        inputFloatBuffer[0] = (float)(complexVectorPtr[0]);
++        inputFloatBuffer[1] = (float)(complexVectorPtr[1]);
++        inputFloatBuffer[2] = (float)(complexVectorPtr[2]);
++        inputFloatBuffer[3] = (float)(complexVectorPtr[3]);
+-    inputFloatBuffer[4] = (float)(complexVectorPtr[4]);
+-    inputFloatBuffer[5] = (float)(complexVectorPtr[5]);
+-    inputFloatBuffer[6] = (float)(complexVectorPtr[6]);
+-    inputFloatBuffer[7] = (float)(complexVectorPtr[7]);
++        inputFloatBuffer[4] = (float)(complexVectorPtr[4]);
++        inputFloatBuffer[5] = (float)(complexVectorPtr[5]);
++        inputFloatBuffer[6] = (float)(complexVectorPtr[6]);
++        inputFloatBuffer[7] = (float)(complexVectorPtr[7]);
+-    cplxValue1 = _mm_load_ps(&inputFloatBuffer[0]);
+-    cplxValue2 = _mm_load_ps(&inputFloatBuffer[4]);
++        cplxValue1 = _mm_load_ps(&inputFloatBuffer[0]);
++        cplxValue2 = _mm_load_ps(&inputFloatBuffer[4]);
+-    complexVectorPtr += 8;
++        complexVectorPtr += 8;
+-    cplxValue1 = _mm_mul_ps(cplxValue1, invScalar);
+-    cplxValue2 = _mm_mul_ps(cplxValue2, invScalar);
++        cplxValue1 = _mm_mul_ps(cplxValue1, invScalar);
++        cplxValue2 = _mm_mul_ps(cplxValue2, invScalar);
+-    cplxValue1 = _mm_mul_ps(cplxValue1, cplxValue1); // Square the values
+-    cplxValue2 = _mm_mul_ps(cplxValue2, cplxValue2); // Square the Values
++        cplxValue1 = _mm_mul_ps(cplxValue1, cplxValue1); // Square the values
++        cplxValue2 = _mm_mul_ps(cplxValue2, cplxValue2); // Square the Values
+-    result = _mm_hadd_ps(cplxValue1, cplxValue2); // Add the I2 and Q2 values
++        result = _mm_hadd_ps(cplxValue1, cplxValue2); // Add the I2 and Q2 values
+-    result = _mm_sqrt_ps(result); // Square root the values
++        result = _mm_sqrt_ps(result); // Square root the values
+-    result = _mm_mul_ps(result, vScalar); // Scale the results
++        result = _mm_mul_ps(result, vScalar); // Scale the results
+-    _mm_store_ps(outputFloatBuffer, result);
+-    *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[0]);
+-    *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[1]);
+-    *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[2]);
+-    *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[3]);
+-  }
++        _mm_store_ps(outputFloatBuffer, result);
++        *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[0]);
++        *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[1]);
++        *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[2]);
++        *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[3]);
++    }
+-  number = quarterPoints * 4;
+-  magnitudeVectorPtr = &magnitudeVector[number];
+-  complexVectorPtr = (const int16_t*)&complexVector[number];
+-  for(; number < num_points; number++){
+-    const float val1Real = (float)(*complexVectorPtr++) / SHRT_MAX;
+-    const float val1Imag = (float)(*complexVectorPtr++) / SHRT_MAX;
+-    const float val1Result = sqrtf((val1Real * val1Real) + (val1Imag * val1Imag)) * SHRT_MAX;
+-    *magnitudeVectorPtr++ = (int16_t)rintf(val1Result);
+-  }
++    number = quarterPoints * 4;
++    magnitudeVectorPtr = &magnitudeVector[number];
++    complexVectorPtr = (const int16_t*)&complexVector[number];
++    for (; number < num_points; number++) {
++        const float val1Real = (float)(*complexVectorPtr++) / SHRT_MAX;
++        const float val1Imag = (float)(*complexVectorPtr++) / SHRT_MAX;
++        const float val1Result =
++            sqrtf((val1Real * val1Real) + (val1Imag * val1Imag)) * SHRT_MAX;
++        *magnitudeVectorPtr++ = (int16_t)rintf(val1Result);
++    }
+ }
+ #endif /* LV_HAVE_SSE3 */
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_16ic_magnitude_16i_a_sse(int16_t* magnitudeVector, const lv_16sc_t* complexVector, unsigned int num_points)
++static inline void volk_16ic_magnitude_16i_a_sse(int16_t* magnitudeVector,
++                                                 const lv_16sc_t* complexVector,
++                                                 unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  const int16_t* complexVectorPtr = (const int16_t*)complexVector;
+-  int16_t* magnitudeVectorPtr = magnitudeVector;
++    const int16_t* complexVectorPtr = (const int16_t*)complexVector;
++    int16_t* magnitudeVectorPtr = magnitudeVector;
+-  __m128 vScalar = _mm_set_ps1(SHRT_MAX);
+-  __m128 invScalar = _mm_set_ps1(1.0f/SHRT_MAX);
++    __m128 vScalar = _mm_set_ps1(SHRT_MAX);
++    __m128 invScalar = _mm_set_ps1(1.0f / SHRT_MAX);
+-  __m128 cplxValue1, cplxValue2, iValue, qValue, result;
++    __m128 cplxValue1, cplxValue2, iValue, qValue, result;
+-  __VOLK_ATTR_ALIGNED(16) float inputFloatBuffer[4];
+-  __VOLK_ATTR_ALIGNED(16) float outputFloatBuffer[4];
++    __VOLK_ATTR_ALIGNED(16) float inputFloatBuffer[4];
++    __VOLK_ATTR_ALIGNED(16) float outputFloatBuffer[4];
+-  for(;number < quarterPoints; number++){
++    for (; number < quarterPoints; number++) {
+-    inputFloatBuffer[0] = (float)(complexVectorPtr[0]);
+-    inputFloatBuffer[1] = (float)(complexVectorPtr[1]);
+-    inputFloatBuffer[2] = (float)(complexVectorPtr[2]);
+-    inputFloatBuffer[3] = (float)(complexVectorPtr[3]);
++        inputFloatBuffer[0] = (float)(complexVectorPtr[0]);
++        inputFloatBuffer[1] = (float)(complexVectorPtr[1]);
++        inputFloatBuffer[2] = (float)(complexVectorPtr[2]);
++        inputFloatBuffer[3] = (float)(complexVectorPtr[3]);
+-    cplxValue1 = _mm_load_ps(inputFloatBuffer);
+-    complexVectorPtr += 4;
++        cplxValue1 = _mm_load_ps(inputFloatBuffer);
++        complexVectorPtr += 4;
+-    inputFloatBuffer[0] = (float)(complexVectorPtr[0]);
+-    inputFloatBuffer[1] = (float)(complexVectorPtr[1]);
+-    inputFloatBuffer[2] = (float)(complexVectorPtr[2]);
+-    inputFloatBuffer[3] = (float)(complexVectorPtr[3]);
++        inputFloatBuffer[0] = (float)(complexVectorPtr[0]);
++        inputFloatBuffer[1] = (float)(complexVectorPtr[1]);
++        inputFloatBuffer[2] = (float)(complexVectorPtr[2]);
++        inputFloatBuffer[3] = (float)(complexVectorPtr[3]);
+-    cplxValue2 = _mm_load_ps(inputFloatBuffer);
+-    complexVectorPtr += 4;
++        cplxValue2 = _mm_load_ps(inputFloatBuffer);
++        complexVectorPtr += 4;
+-    cplxValue1 = _mm_mul_ps(cplxValue1, invScalar);
+-    cplxValue2 = _mm_mul_ps(cplxValue2, invScalar);
++        cplxValue1 = _mm_mul_ps(cplxValue1, invScalar);
++        cplxValue2 = _mm_mul_ps(cplxValue2, invScalar);
+-    // Arrange in i1i2i3i4 format
+-    iValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2,0,2,0));
+-    // Arrange in q1q2q3q4 format
+-    qValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(3,1,3,1));
++        // Arrange in i1i2i3i4 format
++        iValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2, 0, 2, 0));
++        // Arrange in q1q2q3q4 format
++        qValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(3, 1, 3, 1));
+-    iValue = _mm_mul_ps(iValue, iValue); // Square the I values
+-    qValue = _mm_mul_ps(qValue, qValue); // Square the Q Values
++        iValue = _mm_mul_ps(iValue, iValue); // Square the I values
++        qValue = _mm_mul_ps(qValue, qValue); // Square the Q Values
+-    result = _mm_add_ps(iValue, qValue); // Add the I2 and Q2 values
++        result = _mm_add_ps(iValue, qValue); // Add the I2 and Q2 values
+-    result = _mm_sqrt_ps(result); // Square root the values
++        result = _mm_sqrt_ps(result); // Square root the values
+-    result = _mm_mul_ps(result, vScalar); // Scale the results
++        result = _mm_mul_ps(result, vScalar); // Scale the results
+-    _mm_store_ps(outputFloatBuffer, result);
+-    *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[0]);
+-    *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[1]);
+-    *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[2]);
+-    *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[3]);
+-  }
++        _mm_store_ps(outputFloatBuffer, result);
++        *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[0]);
++        *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[1]);
++        *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[2]);
++        *magnitudeVectorPtr++ = (int16_t)rintf(outputFloatBuffer[3]);
++    }
+-  number = quarterPoints * 4;
+-  magnitudeVectorPtr = &magnitudeVector[number];
+-  complexVectorPtr = (const int16_t*)&complexVector[number];
+-  for(; number < num_points; number++){
+-    const float val1Real = (float)(*complexVectorPtr++) / SHRT_MAX;
+-    const float val1Imag = (float)(*complexVectorPtr++) / SHRT_MAX;
+-    const float val1Result = sqrtf((val1Real * val1Real) + (val1Imag * val1Imag)) * SHRT_MAX;
+-    *magnitudeVectorPtr++ = (int16_t)rintf(val1Result);
+-  }
++    number = quarterPoints * 4;
++    magnitudeVectorPtr = &magnitudeVector[number];
++    complexVectorPtr = (const int16_t*)&complexVector[number];
++    for (; number < num_points; number++) {
++        const float val1Real = (float)(*complexVectorPtr++) / SHRT_MAX;
++        const float val1Imag = (float)(*complexVectorPtr++) / SHRT_MAX;
++        const float val1Result =
++            sqrtf((val1Real * val1Real) + (val1Imag * val1Imag)) * SHRT_MAX;
++        *magnitudeVectorPtr++ = (int16_t)rintf(val1Result);
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_16ic_magnitude_16i_generic(int16_t* magnitudeVector, const lv_16sc_t* complexVector, unsigned int num_points)
++static inline void volk_16ic_magnitude_16i_generic(int16_t* magnitudeVector,
++                                                   const lv_16sc_t* complexVector,
++                                                   unsigned int num_points)
+ {
+-  const int16_t* complexVectorPtr = (const int16_t*)complexVector;
+-  int16_t* magnitudeVectorPtr = magnitudeVector;
+-  unsigned int number = 0;
+-  const float scalar = SHRT_MAX;
+-  for(number = 0; number < num_points; number++){
+-    float real = ((float)(*complexVectorPtr++)) / scalar;
+-    float imag = ((float)(*complexVectorPtr++)) / scalar;
+-    *magnitudeVectorPtr++ = (int16_t)rintf(sqrtf((real*real) + (imag*imag)) * scalar);
+-  }
++    const int16_t* complexVectorPtr = (const int16_t*)complexVector;
++    int16_t* magnitudeVectorPtr = magnitudeVector;
++    unsigned int number = 0;
++    const float scalar = SHRT_MAX;
++    for (number = 0; number < num_points; number++) {
++        float real = ((float)(*complexVectorPtr++)) / scalar;
++        float imag = ((float)(*complexVectorPtr++)) / scalar;
++        *magnitudeVectorPtr++ =
++            (int16_t)rintf(sqrtf((real * real) + (imag * imag)) * scalar);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_ORC_DISABLED
+-extern void
+-volk_16ic_magnitude_16i_a_orc_impl(int16_t* magnitudeVector, const lv_16sc_t* complexVector, float scalar, unsigned int num_points);
+-
+-static inline void
+-volk_16ic_magnitude_16i_u_orc(int16_t* magnitudeVector, const lv_16sc_t* complexVector, unsigned int num_points)
++extern void volk_16ic_magnitude_16i_a_orc_impl(int16_t* magnitudeVector,
++                                               const lv_16sc_t* complexVector,
++                                               float scalar,
++                                               unsigned int num_points);
++
++static inline void volk_16ic_magnitude_16i_u_orc(int16_t* magnitudeVector,
++                                                 const lv_16sc_t* complexVector,
++                                                 unsigned int num_points)
+ {
+-    volk_16ic_magnitude_16i_a_orc_impl(magnitudeVector, complexVector, SHRT_MAX, num_points);
++    volk_16ic_magnitude_16i_a_orc_impl(
++        magnitudeVector, complexVector, SHRT_MAX, num_points);
+ }
+ #endif /* LV_HAVE_ORC */
+@@ -300,71 +313,74 @@ volk_16ic_magnitude_16i_u_orc(int16_t* magnitudeVector, const lv_16sc_t* complex
+ #ifndef INCLUDED_volk_16ic_magnitude_16i_u_H
+ #define INCLUDED_volk_16ic_magnitude_16i_u_H
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+-#include <stdio.h>
+ #include <math.h>
++#include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_16ic_magnitude_16i_u_avx2(int16_t* magnitudeVector, const lv_16sc_t* complexVector, unsigned int num_points)
++static inline void volk_16ic_magnitude_16i_u_avx2(int16_t* magnitudeVector,
++                                                  const lv_16sc_t* complexVector,
++                                                  unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  const int16_t* complexVectorPtr = (const int16_t*)complexVector;
+-  int16_t* magnitudeVectorPtr = magnitudeVector;
+-
+-  __m256 vScalar = _mm256_set1_ps(SHRT_MAX);
+-  __m256 invScalar = _mm256_set1_ps(1.0f/SHRT_MAX);
+-  __m256i int1, int2;
+-  __m128i short1, short2;
+-  __m256 cplxValue1, cplxValue2, result;
+-  __m256i idx = _mm256_set_epi32(0,0,0,0,5,1,4,0);
+-
+-  for(;number < eighthPoints; number++){
+-
+-    int1 = _mm256_loadu_si256((__m256i*)complexVectorPtr);
+-    complexVectorPtr += 16;
+-    short1 = _mm256_extracti128_si256(int1,0);
+-    short2 = _mm256_extracti128_si256(int1,1);
+-
+-    int1 = _mm256_cvtepi16_epi32(short1);
+-    int2 = _mm256_cvtepi16_epi32(short2);
+-    cplxValue1 = _mm256_cvtepi32_ps(int1);
+-    cplxValue2 = _mm256_cvtepi32_ps(int2);
+-
+-    cplxValue1 = _mm256_mul_ps(cplxValue1, invScalar);
+-    cplxValue2 = _mm256_mul_ps(cplxValue2, invScalar);
+-
+-    cplxValue1 = _mm256_mul_ps(cplxValue1, cplxValue1); // Square the values
+-    cplxValue2 = _mm256_mul_ps(cplxValue2, cplxValue2); // Square the Values
+-
+-    result = _mm256_hadd_ps(cplxValue1, cplxValue2); // Add the I2 and Q2 values
+-
+-    result = _mm256_sqrt_ps(result); // Square root the values
+-
+-    result = _mm256_mul_ps(result, vScalar); // Scale the results
+-
+-    int1 = _mm256_cvtps_epi32(result);
+-    int1 = _mm256_packs_epi32(int1, int1);
+-    int1 = _mm256_permutevar8x32_epi32(int1, idx); //permute to compensate for shuffling in hadd and packs
+-    short1 = _mm256_extracti128_si256(int1, 0);
+-    _mm_storeu_si128((__m128i*)magnitudeVectorPtr,short1);
+-    magnitudeVectorPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  magnitudeVectorPtr = &magnitudeVector[number];
+-  complexVectorPtr = (const int16_t*)&complexVector[number];
+-  for(; number < num_points; number++){
+-    const float val1Real = (float)(*complexVectorPtr++) / SHRT_MAX;
+-    const float val1Imag = (float)(*complexVectorPtr++) / SHRT_MAX;
+-    const float val1Result = sqrtf((val1Real * val1Real) + (val1Imag * val1Imag)) * SHRT_MAX;
+-    *magnitudeVectorPtr++ = (int16_t)rintf(val1Result);
+-  }
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    const int16_t* complexVectorPtr = (const int16_t*)complexVector;
++    int16_t* magnitudeVectorPtr = magnitudeVector;
++
++    __m256 vScalar = _mm256_set1_ps(SHRT_MAX);
++    __m256 invScalar = _mm256_set1_ps(1.0f / SHRT_MAX);
++    __m256i int1, int2;
++    __m128i short1, short2;
++    __m256 cplxValue1, cplxValue2, result;
++    __m256i idx = _mm256_set_epi32(0, 0, 0, 0, 5, 1, 4, 0);
++
++    for (; number < eighthPoints; number++) {
++
++        int1 = _mm256_loadu_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 16;
++        short1 = _mm256_extracti128_si256(int1, 0);
++        short2 = _mm256_extracti128_si256(int1, 1);
++
++        int1 = _mm256_cvtepi16_epi32(short1);
++        int2 = _mm256_cvtepi16_epi32(short2);
++        cplxValue1 = _mm256_cvtepi32_ps(int1);
++        cplxValue2 = _mm256_cvtepi32_ps(int2);
++
++        cplxValue1 = _mm256_mul_ps(cplxValue1, invScalar);
++        cplxValue2 = _mm256_mul_ps(cplxValue2, invScalar);
++
++        cplxValue1 = _mm256_mul_ps(cplxValue1, cplxValue1); // Square the values
++        cplxValue2 = _mm256_mul_ps(cplxValue2, cplxValue2); // Square the Values
++
++        result = _mm256_hadd_ps(cplxValue1, cplxValue2); // Add the I2 and Q2 values
++
++        result = _mm256_sqrt_ps(result); // Square root the values
++
++        result = _mm256_mul_ps(result, vScalar); // Scale the results
++
++        int1 = _mm256_cvtps_epi32(result);
++        int1 = _mm256_packs_epi32(int1, int1);
++        int1 = _mm256_permutevar8x32_epi32(
++            int1, idx); // permute to compensate for shuffling in hadd and packs
++        short1 = _mm256_extracti128_si256(int1, 0);
++        _mm_storeu_si128((__m128i*)magnitudeVectorPtr, short1);
++        magnitudeVectorPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    magnitudeVectorPtr = &magnitudeVector[number];
++    complexVectorPtr = (const int16_t*)&complexVector[number];
++    for (; number < num_points; number++) {
++        const float val1Real = (float)(*complexVectorPtr++) / SHRT_MAX;
++        const float val1Imag = (float)(*complexVectorPtr++) / SHRT_MAX;
++        const float val1Result =
++            sqrtf((val1Real * val1Real) + (val1Imag * val1Imag)) * SHRT_MAX;
++        *magnitudeVectorPtr++ = (int16_t)rintf(val1Result);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -372,24 +388,25 @@ volk_16ic_magnitude_16i_u_avx2(int16_t* magnitudeVector, const lv_16sc_t* comple
+ #include <arm_neon.h>
+ #include <volk/volk_neon_intrinsics.h>
+-static inline void
+-volk_16ic_magnitude_16i_neonv7(int16_t* magnitudeVector, const lv_16sc_t* complexVector, unsigned int num_points)
++static inline void volk_16ic_magnitude_16i_neonv7(int16_t* magnitudeVector,
++                                                  const lv_16sc_t* complexVector,
++                                                  unsigned int num_points)
+ {
+     unsigned int number = 0;
+     unsigned int quarter_points = num_points / 4;
+-    
++
+     const float scalar = SHRT_MAX;
+     const float inv_scalar = 1.0f / scalar;
+-    
++
+     int16_t* magnitudeVectorPtr = magnitudeVector;
+     const lv_16sc_t* complexVectorPtr = complexVector;
+-    
++
+     float32x4_t mag_vec;
+     float32x4x2_t c_vec;
+-    
+-    for(number = 0; number < quarter_points; number++) {
++
++    for (number = 0; number < quarter_points; number++) {
+         const int16x4x2_t c16_vec = vld2_s16((int16_t*)complexVectorPtr);
+-        __VOLK_PREFETCH(complexVectorPtr+4);
++        __VOLK_PREFETCH(complexVectorPtr + 4);
+         c_vec.val[0] = vcvtq_f32_s32(vmovl_s16(c16_vec.val[0]));
+         c_vec.val[1] = vcvtq_f32_s32(vmovl_s16(c16_vec.val[1]));
+         // Scale to close to 0-1
+@@ -406,15 +423,16 @@ volk_16ic_magnitude_16i_neonv7(int16_t* magnitudeVector, const lv_16sc_t* comple
+         const int16x4_t mag16_vec = vmovn_s32(vcvtq_s32_f32(mag_vec));
+         vst1_s16(magnitudeVectorPtr, mag16_vec);
+         // Advance pointers
+-        magnitudeVectorPtr+=4;
+-        complexVectorPtr+=4;
++        magnitudeVectorPtr += 4;
++        complexVectorPtr += 4;
+     }
+-    
++
+     // Deal with the rest
+-    for(number = quarter_points * 4; number < num_points; number++) {
++    for (number = quarter_points * 4; number < num_points; number++) {
+         const float real = lv_creal(*complexVectorPtr) * inv_scalar;
+         const float imag = lv_cimag(*complexVectorPtr) * inv_scalar;
+-        *magnitudeVectorPtr = (int16_t)rintf(sqrtf((real*real) + (imag*imag)) * scalar);
++        *magnitudeVectorPtr =
++            (int16_t)rintf(sqrtf((real * real) + (imag * imag)) * scalar);
+         complexVectorPtr++;
+         magnitudeVectorPtr++;
+     }
+diff --git a/kernels/volk/volk_16ic_s32f_deinterleave_32f_x2.h b/kernels/volk/volk_16ic_s32f_deinterleave_32f_x2.h
+index 50d9341..7425ec6 100644
+--- a/kernels/volk/volk_16ic_s32f_deinterleave_32f_x2.h
++++ b/kernels/volk/volk_16ic_s32f_deinterleave_32f_x2.h
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- *  void volk_16ic_s32f_deinterleave_32f_x2(float* iBuffer, float* qBuffer, const lv_16sc_t* complexVector, const float scalar, unsigned int num_points){
+- * \endcode
++ *  void volk_16ic_s32f_deinterleave_32f_x2(float* iBuffer, float* qBuffer, const
++ * lv_16sc_t* complexVector, const float scalar, unsigned int num_points){ \endcode
+  *
+  * \b Inputs
+  * \li complexVector: The complex input vector of 16-bit shorts.
+@@ -56,197 +56,214 @@
+ #ifndef INCLUDED_volk_16ic_s32f_deinterleave_32f_x2_a_H
+ #define INCLUDED_volk_16ic_s32f_deinterleave_32f_x2_a_H
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+ #include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline
+-void volk_16ic_s32f_deinterleave_32f_x2_a_avx2(float* iBuffer, float* qBuffer, const lv_16sc_t* complexVector,
+-                                              const float scalar, unsigned int num_points)
++static inline void
++volk_16ic_s32f_deinterleave_32f_x2_a_avx2(float* iBuffer,
++                                          float* qBuffer,
++                                          const lv_16sc_t* complexVector,
++                                          const float scalar,
++                                          unsigned int num_points)
+ {
+-  float* iBufferPtr = iBuffer;
+-  float* qBufferPtr = qBuffer;
+-
+-  uint64_t number = 0;
+-  const uint64_t eighthPoints = num_points / 8;
+-  __m256 cplxValue1, cplxValue2, iValue, qValue;
+-  __m256i cplxValueA, cplxValueB;
+-  __m128i cplxValue128;
+-
+-  __m256 invScalar = _mm256_set1_ps(1.0/scalar);
+-  int16_t* complexVectorPtr = (int16_t*)complexVector;
+-  __m256i idx = _mm256_set_epi32(7,6,3,2,5,4,1,0);
+-
+-  for(;number < eighthPoints; number++){
+-
+-    cplxValueA = _mm256_load_si256((__m256i*) complexVectorPtr);
+-    complexVectorPtr += 16;
+-
+-    //cvt
+-    cplxValue128 = _mm256_extracti128_si256(cplxValueA, 0);
+-    cplxValueB = _mm256_cvtepi16_epi32(cplxValue128);
+-    cplxValue1 = _mm256_cvtepi32_ps(cplxValueB);
+-    cplxValue128 = _mm256_extracti128_si256(cplxValueA, 1);
+-    cplxValueB = _mm256_cvtepi16_epi32(cplxValue128);
+-    cplxValue2 = _mm256_cvtepi32_ps(cplxValueB);
+-
+-    cplxValue1 = _mm256_mul_ps(cplxValue1, invScalar);
+-    cplxValue2 = _mm256_mul_ps(cplxValue2, invScalar);
+-
+-    // Arrange in i1i2i3i4 format
+-    iValue = _mm256_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2,0,2,0));
+-    iValue = _mm256_permutevar8x32_ps(iValue,idx);
+-    // Arrange in q1q2q3q4 format
+-    qValue = _mm256_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(3,1,3,1));
+-    qValue = _mm256_permutevar8x32_ps(qValue,idx);
+-
+-    _mm256_store_ps(iBufferPtr, iValue);
+-    _mm256_store_ps(qBufferPtr, qValue);
+-
+-    iBufferPtr += 8;
+-    qBufferPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  complexVectorPtr = (int16_t*)&complexVector[number];
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = (float)(*complexVectorPtr++) / scalar;
+-    *qBufferPtr++ = (float)(*complexVectorPtr++) / scalar;
+-  }
++    float* iBufferPtr = iBuffer;
++    float* qBufferPtr = qBuffer;
++
++    uint64_t number = 0;
++    const uint64_t eighthPoints = num_points / 8;
++    __m256 cplxValue1, cplxValue2, iValue, qValue;
++    __m256i cplxValueA, cplxValueB;
++    __m128i cplxValue128;
++
++    __m256 invScalar = _mm256_set1_ps(1.0 / scalar);
++    int16_t* complexVectorPtr = (int16_t*)complexVector;
++    __m256i idx = _mm256_set_epi32(7, 6, 3, 2, 5, 4, 1, 0);
++
++    for (; number < eighthPoints; number++) {
++
++        cplxValueA = _mm256_load_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 16;
++
++        // cvt
++        cplxValue128 = _mm256_extracti128_si256(cplxValueA, 0);
++        cplxValueB = _mm256_cvtepi16_epi32(cplxValue128);
++        cplxValue1 = _mm256_cvtepi32_ps(cplxValueB);
++        cplxValue128 = _mm256_extracti128_si256(cplxValueA, 1);
++        cplxValueB = _mm256_cvtepi16_epi32(cplxValue128);
++        cplxValue2 = _mm256_cvtepi32_ps(cplxValueB);
++
++        cplxValue1 = _mm256_mul_ps(cplxValue1, invScalar);
++        cplxValue2 = _mm256_mul_ps(cplxValue2, invScalar);
++
++        // Arrange in i1i2i3i4 format
++        iValue = _mm256_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2, 0, 2, 0));
++        iValue = _mm256_permutevar8x32_ps(iValue, idx);
++        // Arrange in q1q2q3q4 format
++        qValue = _mm256_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(3, 1, 3, 1));
++        qValue = _mm256_permutevar8x32_ps(qValue, idx);
++
++        _mm256_store_ps(iBufferPtr, iValue);
++        _mm256_store_ps(qBufferPtr, qValue);
++
++        iBufferPtr += 8;
++        qBufferPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    complexVectorPtr = (int16_t*)&complexVector[number];
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = (float)(*complexVectorPtr++) / scalar;
++        *qBufferPtr++ = (float)(*complexVectorPtr++) / scalar;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline
+-void volk_16ic_s32f_deinterleave_32f_x2_a_sse(float* iBuffer, float* qBuffer, const lv_16sc_t* complexVector,
+-                                              const float scalar, unsigned int num_points)
++static inline void
++volk_16ic_s32f_deinterleave_32f_x2_a_sse(float* iBuffer,
++                                         float* qBuffer,
++                                         const lv_16sc_t* complexVector,
++                                         const float scalar,
++                                         unsigned int num_points)
+ {
+-  float* iBufferPtr = iBuffer;
+-  float* qBufferPtr = qBuffer;
++    float* iBufferPtr = iBuffer;
++    float* qBufferPtr = qBuffer;
+-  uint64_t number = 0;
+-  const uint64_t quarterPoints = num_points / 4;
+-  __m128 cplxValue1, cplxValue2, iValue, qValue;
++    uint64_t number = 0;
++    const uint64_t quarterPoints = num_points / 4;
++    __m128 cplxValue1, cplxValue2, iValue, qValue;
+-  __m128 invScalar = _mm_set_ps1(1.0/scalar);
+-  int16_t* complexVectorPtr = (int16_t*)complexVector;
++    __m128 invScalar = _mm_set_ps1(1.0 / scalar);
++    int16_t* complexVectorPtr = (int16_t*)complexVector;
+-  __VOLK_ATTR_ALIGNED(16) float floatBuffer[8];
++    __VOLK_ATTR_ALIGNED(16) float floatBuffer[8];
+-  for(;number < quarterPoints; number++){
++    for (; number < quarterPoints; number++) {
+-    floatBuffer[0] = (float)(complexVectorPtr[0]);
+-    floatBuffer[1] = (float)(complexVectorPtr[1]);
+-    floatBuffer[2] = (float)(complexVectorPtr[2]);
+-    floatBuffer[3] = (float)(complexVectorPtr[3]);
++        floatBuffer[0] = (float)(complexVectorPtr[0]);
++        floatBuffer[1] = (float)(complexVectorPtr[1]);
++        floatBuffer[2] = (float)(complexVectorPtr[2]);
++        floatBuffer[3] = (float)(complexVectorPtr[3]);
+-    floatBuffer[4] = (float)(complexVectorPtr[4]);
+-    floatBuffer[5] = (float)(complexVectorPtr[5]);
+-    floatBuffer[6] = (float)(complexVectorPtr[6]);
+-    floatBuffer[7] = (float)(complexVectorPtr[7]);
++        floatBuffer[4] = (float)(complexVectorPtr[4]);
++        floatBuffer[5] = (float)(complexVectorPtr[5]);
++        floatBuffer[6] = (float)(complexVectorPtr[6]);
++        floatBuffer[7] = (float)(complexVectorPtr[7]);
+-    cplxValue1 = _mm_load_ps(&floatBuffer[0]);
+-    cplxValue2 = _mm_load_ps(&floatBuffer[4]);
++        cplxValue1 = _mm_load_ps(&floatBuffer[0]);
++        cplxValue2 = _mm_load_ps(&floatBuffer[4]);
+-    complexVectorPtr += 8;
++        complexVectorPtr += 8;
+-    cplxValue1 = _mm_mul_ps(cplxValue1, invScalar);
+-    cplxValue2 = _mm_mul_ps(cplxValue2, invScalar);
++        cplxValue1 = _mm_mul_ps(cplxValue1, invScalar);
++        cplxValue2 = _mm_mul_ps(cplxValue2, invScalar);
+-    // Arrange in i1i2i3i4 format
+-    iValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2,0,2,0));
+-    // Arrange in q1q2q3q4 format
+-    qValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(3,1,3,1));
++        // Arrange in i1i2i3i4 format
++        iValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2, 0, 2, 0));
++        // Arrange in q1q2q3q4 format
++        qValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(3, 1, 3, 1));
+-    _mm_store_ps(iBufferPtr, iValue);
+-    _mm_store_ps(qBufferPtr, qValue);
++        _mm_store_ps(iBufferPtr, iValue);
++        _mm_store_ps(qBufferPtr, qValue);
+-    iBufferPtr += 4;
+-    qBufferPtr += 4;
+-  }
++        iBufferPtr += 4;
++        qBufferPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  complexVectorPtr = (int16_t*)&complexVector[number];
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = (float)(*complexVectorPtr++) / scalar;
+-    *qBufferPtr++ = (float)(*complexVectorPtr++) / scalar;
+-  }
++    number = quarterPoints * 4;
++    complexVectorPtr = (int16_t*)&complexVector[number];
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = (float)(*complexVectorPtr++) / scalar;
++        *qBufferPtr++ = (float)(*complexVectorPtr++) / scalar;
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+ static inline void
+-volk_16ic_s32f_deinterleave_32f_x2_generic(float* iBuffer, float* qBuffer, const lv_16sc_t* complexVector,
+-                                           const float scalar, unsigned int num_points)
++volk_16ic_s32f_deinterleave_32f_x2_generic(float* iBuffer,
++                                           float* qBuffer,
++                                           const lv_16sc_t* complexVector,
++                                           const float scalar,
++                                           unsigned int num_points)
+ {
+-  const int16_t* complexVectorPtr = (const int16_t*)complexVector;
+-  float* iBufferPtr = iBuffer;
+-  float* qBufferPtr = qBuffer;
+-  unsigned int number;
+-  for(number = 0; number < num_points; number++){
+-    *iBufferPtr++ = (float)(*complexVectorPtr++) / scalar;
+-    *qBufferPtr++ = (float)(*complexVectorPtr++) / scalar;
+-  }
++    const int16_t* complexVectorPtr = (const int16_t*)complexVector;
++    float* iBufferPtr = iBuffer;
++    float* qBufferPtr = qBuffer;
++    unsigned int number;
++    for (number = 0; number < num_points; number++) {
++        *iBufferPtr++ = (float)(*complexVectorPtr++) / scalar;
++        *qBufferPtr++ = (float)(*complexVectorPtr++) / scalar;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_16ic_s32f_deinterleave_32f_x2_neon(float* iBuffer, float* qBuffer, const lv_16sc_t* complexVector,
+-                                        const float scalar, unsigned int num_points)
++static inline void volk_16ic_s32f_deinterleave_32f_x2_neon(float* iBuffer,
++                                                           float* qBuffer,
++                                                           const lv_16sc_t* complexVector,
++                                                           const float scalar,
++                                                           unsigned int num_points)
+ {
+-  const int16_t* complexVectorPtr = (const int16_t*)complexVector;
+-  float* iBufferPtr = iBuffer;
+-  float* qBufferPtr = qBuffer;
+-  unsigned int eighth_points = num_points / 4;
+-  unsigned int number;
+-  float iScalar = 1.f/scalar;
+-  float32x4_t invScalar;
+-  invScalar = vld1q_dup_f32(&iScalar);
+-
+-  int16x4x2_t complexInput_s16;
+-  int32x4x2_t complexInput_s32;
+-  float32x4x2_t complexFloat;
+-
+-  for(number = 0; number < eighth_points; number++){
+-    complexInput_s16 = vld2_s16(complexVectorPtr);
+-    complexInput_s32.val[0] = vmovl_s16(complexInput_s16.val[0]);
+-    complexInput_s32.val[1] = vmovl_s16(complexInput_s16.val[1]);
+-    complexFloat.val[0] = vcvtq_f32_s32(complexInput_s32.val[0]);
+-    complexFloat.val[1] = vcvtq_f32_s32(complexInput_s32.val[1]);
+-    complexFloat.val[0] = vmulq_f32(complexFloat.val[0], invScalar);
+-    complexFloat.val[1] = vmulq_f32(complexFloat.val[1], invScalar);
+-    vst1q_f32(iBufferPtr, complexFloat.val[0]);
+-    vst1q_f32(qBufferPtr, complexFloat.val[1]);
+-    complexVectorPtr += 8;
+-    iBufferPtr += 4;
+-    qBufferPtr += 4;
+-  }
+-
+-  for(number = eighth_points*4; number < num_points; number++){
+-    *iBufferPtr++ = (float)(*complexVectorPtr++) / scalar;
+-    *qBufferPtr++ = (float)(*complexVectorPtr++) / scalar;
+-  }
++    const int16_t* complexVectorPtr = (const int16_t*)complexVector;
++    float* iBufferPtr = iBuffer;
++    float* qBufferPtr = qBuffer;
++    unsigned int eighth_points = num_points / 4;
++    unsigned int number;
++    float iScalar = 1.f / scalar;
++    float32x4_t invScalar;
++    invScalar = vld1q_dup_f32(&iScalar);
++
++    int16x4x2_t complexInput_s16;
++    int32x4x2_t complexInput_s32;
++    float32x4x2_t complexFloat;
++
++    for (number = 0; number < eighth_points; number++) {
++        complexInput_s16 = vld2_s16(complexVectorPtr);
++        complexInput_s32.val[0] = vmovl_s16(complexInput_s16.val[0]);
++        complexInput_s32.val[1] = vmovl_s16(complexInput_s16.val[1]);
++        complexFloat.val[0] = vcvtq_f32_s32(complexInput_s32.val[0]);
++        complexFloat.val[1] = vcvtq_f32_s32(complexInput_s32.val[1]);
++        complexFloat.val[0] = vmulq_f32(complexFloat.val[0], invScalar);
++        complexFloat.val[1] = vmulq_f32(complexFloat.val[1], invScalar);
++        vst1q_f32(iBufferPtr, complexFloat.val[0]);
++        vst1q_f32(qBufferPtr, complexFloat.val[1]);
++        complexVectorPtr += 8;
++        iBufferPtr += 4;
++        qBufferPtr += 4;
++    }
++
++    for (number = eighth_points * 4; number < num_points; number++) {
++        *iBufferPtr++ = (float)(*complexVectorPtr++) / scalar;
++        *qBufferPtr++ = (float)(*complexVectorPtr++) / scalar;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_ORC
+-extern void
+-volk_16ic_s32f_deinterleave_32f_x2_a_orc_impl(float* iBuffer, float* qBuffer, const lv_16sc_t* complexVector,
+-                                              const float scalar, unsigned int num_points);
++extern void volk_16ic_s32f_deinterleave_32f_x2_a_orc_impl(float* iBuffer,
++                                                          float* qBuffer,
++                                                          const lv_16sc_t* complexVector,
++                                                          const float scalar,
++                                                          unsigned int num_points);
+ static inline void
+-volk_16ic_s32f_deinterleave_32f_x2_u_orc(float* iBuffer, float* qBuffer, const lv_16sc_t* complexVector,
+-                                         const float scalar, unsigned int num_points)
++volk_16ic_s32f_deinterleave_32f_x2_u_orc(float* iBuffer,
++                                         float* qBuffer,
++                                         const lv_16sc_t* complexVector,
++                                         const float scalar,
++                                         unsigned int num_points)
+ {
+-  volk_16ic_s32f_deinterleave_32f_x2_a_orc_impl(iBuffer, qBuffer, complexVector, scalar, num_points);
++    volk_16ic_s32f_deinterleave_32f_x2_a_orc_impl(
++        iBuffer, qBuffer, complexVector, scalar, num_points);
+ }
+ #endif /* LV_HAVE_ORC */
+@@ -257,66 +274,69 @@ volk_16ic_s32f_deinterleave_32f_x2_u_orc(float* iBuffer, float* qBuffer, const l
+ #ifndef INCLUDED_volk_16ic_s32f_deinterleave_32f_x2_u_H
+ #define INCLUDED_volk_16ic_s32f_deinterleave_32f_x2_u_H
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+ #include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline
+-void volk_16ic_s32f_deinterleave_32f_x2_u_avx2(float* iBuffer, float* qBuffer, const lv_16sc_t* complexVector,
+-                                              const float scalar, unsigned int num_points)
++static inline void
++volk_16ic_s32f_deinterleave_32f_x2_u_avx2(float* iBuffer,
++                                          float* qBuffer,
++                                          const lv_16sc_t* complexVector,
++                                          const float scalar,
++                                          unsigned int num_points)
+ {
+-  float* iBufferPtr = iBuffer;
+-  float* qBufferPtr = qBuffer;
+-
+-  uint64_t number = 0;
+-  const uint64_t eighthPoints = num_points / 8;
+-  __m256 cplxValue1, cplxValue2, iValue, qValue;
+-  __m256i cplxValueA, cplxValueB;
+-  __m128i cplxValue128;
+-
+-  __m256 invScalar = _mm256_set1_ps(1.0/scalar);
+-  int16_t* complexVectorPtr = (int16_t*)complexVector;
+-  __m256i idx = _mm256_set_epi32(7,6,3,2,5,4,1,0);
+-
+-  for(;number < eighthPoints; number++){
+-
+-    cplxValueA = _mm256_loadu_si256((__m256i*) complexVectorPtr);
+-    complexVectorPtr += 16;
+-
+-    //cvt
+-    cplxValue128 = _mm256_extracti128_si256(cplxValueA, 0);
+-    cplxValueB = _mm256_cvtepi16_epi32(cplxValue128);
+-    cplxValue1 = _mm256_cvtepi32_ps(cplxValueB);
+-    cplxValue128 = _mm256_extracti128_si256(cplxValueA, 1);
+-    cplxValueB = _mm256_cvtepi16_epi32(cplxValue128);
+-    cplxValue2 = _mm256_cvtepi32_ps(cplxValueB);
+-
+-    cplxValue1 = _mm256_mul_ps(cplxValue1, invScalar);
+-    cplxValue2 = _mm256_mul_ps(cplxValue2, invScalar);
+-
+-    // Arrange in i1i2i3i4 format
+-    iValue = _mm256_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2,0,2,0));
+-    iValue = _mm256_permutevar8x32_ps(iValue,idx);
+-    // Arrange in q1q2q3q4 format
+-    qValue = _mm256_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(3,1,3,1));
+-    qValue = _mm256_permutevar8x32_ps(qValue,idx);
+-
+-    _mm256_storeu_ps(iBufferPtr, iValue);
+-    _mm256_storeu_ps(qBufferPtr, qValue);
+-
+-    iBufferPtr += 8;
+-    qBufferPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  complexVectorPtr = (int16_t*)&complexVector[number];
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = (float)(*complexVectorPtr++) / scalar;
+-    *qBufferPtr++ = (float)(*complexVectorPtr++) / scalar;
+-  }
++    float* iBufferPtr = iBuffer;
++    float* qBufferPtr = qBuffer;
++
++    uint64_t number = 0;
++    const uint64_t eighthPoints = num_points / 8;
++    __m256 cplxValue1, cplxValue2, iValue, qValue;
++    __m256i cplxValueA, cplxValueB;
++    __m128i cplxValue128;
++
++    __m256 invScalar = _mm256_set1_ps(1.0 / scalar);
++    int16_t* complexVectorPtr = (int16_t*)complexVector;
++    __m256i idx = _mm256_set_epi32(7, 6, 3, 2, 5, 4, 1, 0);
++
++    for (; number < eighthPoints; number++) {
++
++        cplxValueA = _mm256_loadu_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 16;
++
++        // cvt
++        cplxValue128 = _mm256_extracti128_si256(cplxValueA, 0);
++        cplxValueB = _mm256_cvtepi16_epi32(cplxValue128);
++        cplxValue1 = _mm256_cvtepi32_ps(cplxValueB);
++        cplxValue128 = _mm256_extracti128_si256(cplxValueA, 1);
++        cplxValueB = _mm256_cvtepi16_epi32(cplxValue128);
++        cplxValue2 = _mm256_cvtepi32_ps(cplxValueB);
++
++        cplxValue1 = _mm256_mul_ps(cplxValue1, invScalar);
++        cplxValue2 = _mm256_mul_ps(cplxValue2, invScalar);
++
++        // Arrange in i1i2i3i4 format
++        iValue = _mm256_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2, 0, 2, 0));
++        iValue = _mm256_permutevar8x32_ps(iValue, idx);
++        // Arrange in q1q2q3q4 format
++        qValue = _mm256_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(3, 1, 3, 1));
++        qValue = _mm256_permutevar8x32_ps(qValue, idx);
++
++        _mm256_storeu_ps(iBufferPtr, iValue);
++        _mm256_storeu_ps(qBufferPtr, qValue);
++
++        iBufferPtr += 8;
++        qBufferPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    complexVectorPtr = (int16_t*)&complexVector[number];
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = (float)(*complexVectorPtr++) / scalar;
++        *qBufferPtr++ = (float)(*complexVectorPtr++) / scalar;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+diff --git a/kernels/volk/volk_16ic_s32f_deinterleave_real_32f.h b/kernels/volk/volk_16ic_s32f_deinterleave_real_32f.h
+index 713e6a1..8b72d1c 100644
+--- a/kernels/volk/volk_16ic_s32f_deinterleave_real_32f.h
++++ b/kernels/volk/volk_16ic_s32f_deinterleave_real_32f.h
+@@ -31,8 +31,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- *  void volk_16ic_s32f_deinterleave_real_32f(float* iBuffer, const lv_16sc_t* complexVector, const float scalar, unsigned int num_points){
+- * \endcode
++ *  void volk_16ic_s32f_deinterleave_real_32f(float* iBuffer, const lv_16sc_t*
++ * complexVector, const float scalar, unsigned int num_points){ \endcode
+  *
+  * \b Inputs
+  * \li complexVector: The complex input vector of 16-bit shorts.
+@@ -56,55 +56,88 @@
+ #ifndef INCLUDED_volk_16ic_s32f_deinterleave_real_32f_a_H
+ #define INCLUDED_volk_16ic_s32f_deinterleave_real_32f_a_H
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+ #include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+ static inline void
+-volk_16ic_s32f_deinterleave_real_32f_a_avx2(float* iBuffer, const lv_16sc_t* complexVector,
+-                                              const float scalar, unsigned int num_points)
++volk_16ic_s32f_deinterleave_real_32f_a_avx2(float* iBuffer,
++                                            const lv_16sc_t* complexVector,
++                                            const float scalar,
++                                            unsigned int num_points)
+ {
+-  float* iBufferPtr = iBuffer;
+-
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  __m256 iFloatValue;
+-
+-  const float iScalar= 1.0 / scalar;
+-  __m256 invScalar = _mm256_set1_ps(iScalar);
+-  __m256i complexVal, iIntVal;
+-  __m128i complexVal128;
+-  int8_t* complexVectorPtr = (int8_t*)complexVector;
+-
+-  __m256i moveMask = _mm256_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 13, 12, 9, 8, 5, 4, 1, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 13, 12, 9, 8, 5, 4, 1, 0);
+-
+-  for(;number < eighthPoints; number++){
+-    complexVal = _mm256_load_si256((__m256i*)complexVectorPtr); complexVectorPtr += 32;
+-    complexVal = _mm256_shuffle_epi8(complexVal, moveMask);
+-    complexVal = _mm256_permute4x64_epi64(complexVal, 0xd8);
+-    complexVal128 = _mm256_extracti128_si256(complexVal, 0);
+-
+-    iIntVal = _mm256_cvtepi16_epi32(complexVal128);
+-    iFloatValue = _mm256_cvtepi32_ps(iIntVal);
+-
+-    iFloatValue = _mm256_mul_ps(iFloatValue, invScalar);
+-
+-    _mm256_store_ps(iBufferPtr, iFloatValue);
+-
+-    iBufferPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  int16_t* sixteenTComplexVectorPtr = (int16_t*)&complexVector[number];
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = ((float)(*sixteenTComplexVectorPtr++)) * iScalar;
+-    sixteenTComplexVectorPtr++;
+-  }
+-
++    float* iBufferPtr = iBuffer;
++
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    __m256 iFloatValue;
++
++    const float iScalar = 1.0 / scalar;
++    __m256 invScalar = _mm256_set1_ps(iScalar);
++    __m256i complexVal, iIntVal;
++    __m128i complexVal128;
++    int8_t* complexVectorPtr = (int8_t*)complexVector;
++
++    __m256i moveMask = _mm256_set_epi8(0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       13,
++                                       12,
++                                       9,
++                                       8,
++                                       5,
++                                       4,
++                                       1,
++                                       0,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       13,
++                                       12,
++                                       9,
++                                       8,
++                                       5,
++                                       4,
++                                       1,
++                                       0);
++
++    for (; number < eighthPoints; number++) {
++        complexVal = _mm256_load_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32;
++        complexVal = _mm256_shuffle_epi8(complexVal, moveMask);
++        complexVal = _mm256_permute4x64_epi64(complexVal, 0xd8);
++        complexVal128 = _mm256_extracti128_si256(complexVal, 0);
++
++        iIntVal = _mm256_cvtepi16_epi32(complexVal128);
++        iFloatValue = _mm256_cvtepi32_ps(iIntVal);
++
++        iFloatValue = _mm256_mul_ps(iFloatValue, invScalar);
++
++        _mm256_store_ps(iBufferPtr, iFloatValue);
++
++        iBufferPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    int16_t* sixteenTComplexVectorPtr = (int16_t*)&complexVector[number];
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = ((float)(*sixteenTComplexVectorPtr++)) * iScalar;
++        sixteenTComplexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -112,44 +145,47 @@ volk_16ic_s32f_deinterleave_real_32f_a_avx2(float* iBuffer, const lv_16sc_t* com
+ #include <smmintrin.h>
+ static inline void
+-volk_16ic_s32f_deinterleave_real_32f_a_sse4_1(float* iBuffer, const lv_16sc_t* complexVector,
+-                                              const float scalar, unsigned int num_points)
++volk_16ic_s32f_deinterleave_real_32f_a_sse4_1(float* iBuffer,
++                                              const lv_16sc_t* complexVector,
++                                              const float scalar,
++                                              unsigned int num_points)
+ {
+-  float* iBufferPtr = iBuffer;
+-
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    float* iBufferPtr = iBuffer;
+-  __m128 iFloatValue;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  const float iScalar= 1.0 / scalar;
+-  __m128 invScalar = _mm_set_ps1(iScalar);
+-  __m128i complexVal, iIntVal;
+-  int8_t* complexVectorPtr = (int8_t*)complexVector;
++    __m128 iFloatValue;
+-  __m128i moveMask = _mm_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 13, 12, 9, 8, 5, 4, 1, 0);
++    const float iScalar = 1.0 / scalar;
++    __m128 invScalar = _mm_set_ps1(iScalar);
++    __m128i complexVal, iIntVal;
++    int8_t* complexVectorPtr = (int8_t*)complexVector;
+-  for(;number < quarterPoints; number++){
+-    complexVal = _mm_load_si128((__m128i*)complexVectorPtr); complexVectorPtr += 16;
+-    complexVal = _mm_shuffle_epi8(complexVal, moveMask);
++    __m128i moveMask = _mm_set_epi8(
++        0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 13, 12, 9, 8, 5, 4, 1, 0);
+-    iIntVal = _mm_cvtepi16_epi32(complexVal);
+-    iFloatValue = _mm_cvtepi32_ps(iIntVal);
++    for (; number < quarterPoints; number++) {
++        complexVal = _mm_load_si128((__m128i*)complexVectorPtr);
++        complexVectorPtr += 16;
++        complexVal = _mm_shuffle_epi8(complexVal, moveMask);
+-    iFloatValue = _mm_mul_ps(iFloatValue, invScalar);
++        iIntVal = _mm_cvtepi16_epi32(complexVal);
++        iFloatValue = _mm_cvtepi32_ps(iIntVal);
+-    _mm_store_ps(iBufferPtr, iFloatValue);
++        iFloatValue = _mm_mul_ps(iFloatValue, invScalar);
+-    iBufferPtr += 4;
+-  }
++        _mm_store_ps(iBufferPtr, iFloatValue);
+-  number = quarterPoints * 4;
+-  int16_t* sixteenTComplexVectorPtr = (int16_t*)&complexVector[number];
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = ((float)(*sixteenTComplexVectorPtr++)) * iScalar;
+-    sixteenTComplexVectorPtr++;
+-  }
++        iBufferPtr += 4;
++    }
++    number = quarterPoints * 4;
++    int16_t* sixteenTComplexVectorPtr = (int16_t*)&complexVector[number];
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = ((float)(*sixteenTComplexVectorPtr++)) * iScalar;
++        sixteenTComplexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_SSE4_1 */
+@@ -157,59 +193,66 @@ volk_16ic_s32f_deinterleave_real_32f_a_sse4_1(float* iBuffer, const lv_16sc_t* c
+ #include <xmmintrin.h>
+ static inline void
+-volk_16ic_s32f_deinterleave_real_32f_a_sse(float* iBuffer, const lv_16sc_t* complexVector,
+-                                           const float scalar, unsigned int num_points)
++volk_16ic_s32f_deinterleave_real_32f_a_sse(float* iBuffer,
++                                           const lv_16sc_t* complexVector,
++                                           const float scalar,
++                                           unsigned int num_points)
+ {
+-  float* iBufferPtr = iBuffer;
++    float* iBufferPtr = iBuffer;
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-  __m128 iValue;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++    __m128 iValue;
+-  const float iScalar = 1.0/scalar;
+-  __m128 invScalar = _mm_set_ps1(iScalar);
+-  int16_t* complexVectorPtr = (int16_t*)complexVector;
++    const float iScalar = 1.0 / scalar;
++    __m128 invScalar = _mm_set_ps1(iScalar);
++    int16_t* complexVectorPtr = (int16_t*)complexVector;
+-  __VOLK_ATTR_ALIGNED(16) float floatBuffer[4];
++    __VOLK_ATTR_ALIGNED(16) float floatBuffer[4];
+-  for(;number < quarterPoints; number++){
+-    floatBuffer[0] = (float)(*complexVectorPtr); complexVectorPtr += 2;
+-    floatBuffer[1] = (float)(*complexVectorPtr); complexVectorPtr += 2;
+-    floatBuffer[2] = (float)(*complexVectorPtr); complexVectorPtr += 2;
+-    floatBuffer[3] = (float)(*complexVectorPtr); complexVectorPtr += 2;
++    for (; number < quarterPoints; number++) {
++        floatBuffer[0] = (float)(*complexVectorPtr);
++        complexVectorPtr += 2;
++        floatBuffer[1] = (float)(*complexVectorPtr);
++        complexVectorPtr += 2;
++        floatBuffer[2] = (float)(*complexVectorPtr);
++        complexVectorPtr += 2;
++        floatBuffer[3] = (float)(*complexVectorPtr);
++        complexVectorPtr += 2;
+-    iValue = _mm_load_ps(floatBuffer);
++        iValue = _mm_load_ps(floatBuffer);
+-    iValue = _mm_mul_ps(iValue, invScalar);
++        iValue = _mm_mul_ps(iValue, invScalar);
+-    _mm_store_ps(iBufferPtr, iValue);
++        _mm_store_ps(iBufferPtr, iValue);
+-    iBufferPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  complexVectorPtr = (int16_t*)&complexVector[number];
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = ((float)(*complexVectorPtr++)) * iScalar;
+-    complexVectorPtr++;
+-  }
++        iBufferPtr += 4;
++    }
++    number = quarterPoints * 4;
++    complexVectorPtr = (int16_t*)&complexVector[number];
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = ((float)(*complexVectorPtr++)) * iScalar;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+ static inline void
+-volk_16ic_s32f_deinterleave_real_32f_generic(float* iBuffer, const lv_16sc_t* complexVector,
+-                                             const float scalar, unsigned int num_points)
++volk_16ic_s32f_deinterleave_real_32f_generic(float* iBuffer,
++                                             const lv_16sc_t* complexVector,
++                                             const float scalar,
++                                             unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const int16_t* complexVectorPtr = (const int16_t*)complexVector;
+-  float* iBufferPtr = iBuffer;
+-  const float invScalar = 1.0 / scalar;
+-  for(number = 0; number < num_points; number++){
+-    *iBufferPtr++ = ((float)(*complexVectorPtr++)) * invScalar;
+-    complexVectorPtr++;
+-  }
++    unsigned int number = 0;
++    const int16_t* complexVectorPtr = (const int16_t*)complexVector;
++    float* iBufferPtr = iBuffer;
++    const float invScalar = 1.0 / scalar;
++    for (number = 0; number < num_points; number++) {
++        *iBufferPtr++ = ((float)(*complexVectorPtr++)) * invScalar;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -219,55 +262,88 @@ volk_16ic_s32f_deinterleave_real_32f_generic(float* iBuffer, const lv_16sc_t* co
+ #ifndef INCLUDED_volk_16ic_s32f_deinterleave_real_32f_u_H
+ #define INCLUDED_volk_16ic_s32f_deinterleave_real_32f_u_H
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+ #include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+ static inline void
+-volk_16ic_s32f_deinterleave_real_32f_u_avx2(float* iBuffer, const lv_16sc_t* complexVector,
+-                                              const float scalar, unsigned int num_points)
++volk_16ic_s32f_deinterleave_real_32f_u_avx2(float* iBuffer,
++                                            const lv_16sc_t* complexVector,
++                                            const float scalar,
++                                            unsigned int num_points)
+ {
+-  float* iBufferPtr = iBuffer;
+-
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  __m256 iFloatValue;
+-
+-  const float iScalar= 1.0 / scalar;
+-  __m256 invScalar = _mm256_set1_ps(iScalar);
+-  __m256i complexVal, iIntVal;
+-  __m128i complexVal128;
+-  int8_t* complexVectorPtr = (int8_t*)complexVector;
+-
+-  __m256i moveMask = _mm256_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 13, 12, 9, 8, 5, 4, 1, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 13, 12, 9, 8, 5, 4, 1, 0);
+-
+-  for(;number < eighthPoints; number++){
+-    complexVal = _mm256_loadu_si256((__m256i*)complexVectorPtr); complexVectorPtr += 32;
+-    complexVal = _mm256_shuffle_epi8(complexVal, moveMask);
+-    complexVal = _mm256_permute4x64_epi64(complexVal, 0xd8);
+-    complexVal128 = _mm256_extracti128_si256(complexVal, 0);
+-
+-    iIntVal = _mm256_cvtepi16_epi32(complexVal128);
+-    iFloatValue = _mm256_cvtepi32_ps(iIntVal);
+-
+-    iFloatValue = _mm256_mul_ps(iFloatValue, invScalar);
+-
+-    _mm256_storeu_ps(iBufferPtr, iFloatValue);
+-
+-    iBufferPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  int16_t* sixteenTComplexVectorPtr = (int16_t*)&complexVector[number];
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = ((float)(*sixteenTComplexVectorPtr++)) * iScalar;
+-    sixteenTComplexVectorPtr++;
+-  }
+-
++    float* iBufferPtr = iBuffer;
++
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    __m256 iFloatValue;
++
++    const float iScalar = 1.0 / scalar;
++    __m256 invScalar = _mm256_set1_ps(iScalar);
++    __m256i complexVal, iIntVal;
++    __m128i complexVal128;
++    int8_t* complexVectorPtr = (int8_t*)complexVector;
++
++    __m256i moveMask = _mm256_set_epi8(0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       13,
++                                       12,
++                                       9,
++                                       8,
++                                       5,
++                                       4,
++                                       1,
++                                       0,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       13,
++                                       12,
++                                       9,
++                                       8,
++                                       5,
++                                       4,
++                                       1,
++                                       0);
++
++    for (; number < eighthPoints; number++) {
++        complexVal = _mm256_loadu_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32;
++        complexVal = _mm256_shuffle_epi8(complexVal, moveMask);
++        complexVal = _mm256_permute4x64_epi64(complexVal, 0xd8);
++        complexVal128 = _mm256_extracti128_si256(complexVal, 0);
++
++        iIntVal = _mm256_cvtepi16_epi32(complexVal128);
++        iFloatValue = _mm256_cvtepi32_ps(iIntVal);
++
++        iFloatValue = _mm256_mul_ps(iFloatValue, invScalar);
++
++        _mm256_storeu_ps(iBufferPtr, iFloatValue);
++
++        iBufferPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    int16_t* sixteenTComplexVectorPtr = (int16_t*)&complexVector[number];
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = ((float)(*sixteenTComplexVectorPtr++)) * iScalar;
++        sixteenTComplexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+diff --git a/kernels/volk/volk_16ic_s32f_magnitude_32f.h b/kernels/volk/volk_16ic_s32f_magnitude_32f.h
+index bb0459c..c3e3605 100644
+--- a/kernels/volk/volk_16ic_s32f_magnitude_32f.h
++++ b/kernels/volk/volk_16ic_s32f_magnitude_32f.h
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_16ic_s32f_magnitude_32f(float* magnitudeVector, const lv_16sc_t* complexVector, const float scalar, unsigned int num_points)
+- * \endcode
++ * void volk_16ic_s32f_magnitude_32f(float* magnitudeVector, const lv_16sc_t*
++ * complexVector, const float scalar, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li complexVector: The complex input vector of complex 16-bit shorts.
+@@ -55,67 +55,68 @@
+ #ifndef INCLUDED_volk_16ic_s32f_magnitude_32f_a_H
+ #define INCLUDED_volk_16ic_s32f_magnitude_32f_a_H
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+-#include <stdio.h>
+ #include <math.h>
++#include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_16ic_s32f_magnitude_32f_a_avx2(float* magnitudeVector, const lv_16sc_t* complexVector,
+-                                    const float scalar, unsigned int num_points)
++static inline void volk_16ic_s32f_magnitude_32f_a_avx2(float* magnitudeVector,
++                                                       const lv_16sc_t* complexVector,
++                                                       const float scalar,
++                                                       unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    const int16_t* complexVectorPtr = (const int16_t*)complexVector;
++    float* magnitudeVectorPtr = magnitudeVector;
+-  const int16_t* complexVectorPtr = (const int16_t*)complexVector;
+-  float* magnitudeVectorPtr = magnitudeVector;
++    __m256 invScalar = _mm256_set1_ps(1.0 / scalar);
+-  __m256 invScalar = _mm256_set1_ps(1.0/scalar);
++    __m256 cplxValue1, cplxValue2, result;
++    __m256i int1, int2;
++    __m128i short1, short2;
++    __m256i idx = _mm256_set_epi32(7, 6, 3, 2, 5, 4, 1, 0);
+-  __m256 cplxValue1, cplxValue2, result;
+-  __m256i int1, int2;
+-  __m128i short1, short2;
+-  __m256i idx = _mm256_set_epi32(7,6,3,2,5,4,1,0);
++    for (; number < eighthPoints; number++) {
+-  for(;number < eighthPoints; number++){
+-    
+-    int1 = _mm256_loadu_si256((__m256i*)complexVectorPtr);
+-    complexVectorPtr += 16;
+-    short1 = _mm256_extracti128_si256(int1,0);
+-    short2 = _mm256_extracti128_si256(int1,1);
++        int1 = _mm256_loadu_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 16;
++        short1 = _mm256_extracti128_si256(int1, 0);
++        short2 = _mm256_extracti128_si256(int1, 1);
+-    int1 = _mm256_cvtepi16_epi32(short1);
+-    int2 = _mm256_cvtepi16_epi32(short2);
+-    cplxValue1 = _mm256_cvtepi32_ps(int1);
+-    cplxValue2 = _mm256_cvtepi32_ps(int2);
++        int1 = _mm256_cvtepi16_epi32(short1);
++        int2 = _mm256_cvtepi16_epi32(short2);
++        cplxValue1 = _mm256_cvtepi32_ps(int1);
++        cplxValue2 = _mm256_cvtepi32_ps(int2);
+-    cplxValue1 = _mm256_mul_ps(cplxValue1, invScalar);
+-    cplxValue2 = _mm256_mul_ps(cplxValue2, invScalar);
++        cplxValue1 = _mm256_mul_ps(cplxValue1, invScalar);
++        cplxValue2 = _mm256_mul_ps(cplxValue2, invScalar);
+-    cplxValue1 = _mm256_mul_ps(cplxValue1, cplxValue1); // Square the values
+-    cplxValue2 = _mm256_mul_ps(cplxValue2, cplxValue2); // Square the Values
++        cplxValue1 = _mm256_mul_ps(cplxValue1, cplxValue1); // Square the values
++        cplxValue2 = _mm256_mul_ps(cplxValue2, cplxValue2); // Square the Values
+-    result = _mm256_hadd_ps(cplxValue1, cplxValue2); // Add the I2 and Q2 values
+-    result = _mm256_permutevar8x32_ps(result, idx);
++        result = _mm256_hadd_ps(cplxValue1, cplxValue2); // Add the I2 and Q2 values
++        result = _mm256_permutevar8x32_ps(result, idx);
+-    result = _mm256_sqrt_ps(result); // Square root the values
++        result = _mm256_sqrt_ps(result); // Square root the values
+-    _mm256_store_ps(magnitudeVectorPtr, result);
++        _mm256_store_ps(magnitudeVectorPtr, result);
+-    magnitudeVectorPtr += 8;
+-  }
++        magnitudeVectorPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  magnitudeVectorPtr = &magnitudeVector[number];
+-  complexVectorPtr = (const int16_t*)&complexVector[number];
+-  for(; number < num_points; number++){
+-    float val1Real = (float)(*complexVectorPtr++) / scalar;
+-    float val1Imag = (float)(*complexVectorPtr++) / scalar;
+-    *magnitudeVectorPtr++ = sqrtf((val1Real * val1Real) + (val1Imag * val1Imag));
+-  }
++    number = eighthPoints * 8;
++    magnitudeVectorPtr = &magnitudeVector[number];
++    complexVectorPtr = (const int16_t*)&complexVector[number];
++    for (; number < num_points; number++) {
++        float val1Real = (float)(*complexVectorPtr++) / scalar;
++        float val1Imag = (float)(*complexVectorPtr++) / scalar;
++        *magnitudeVectorPtr++ = sqrtf((val1Real * val1Real) + (val1Imag * val1Imag));
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -123,127 +124,129 @@ volk_16ic_s32f_magnitude_32f_a_avx2(float* magnitudeVector, const lv_16sc_t* com
+ #ifdef LV_HAVE_SSE3
+ #include <pmmintrin.h>
+-static inline void
+-volk_16ic_s32f_magnitude_32f_a_sse3(float* magnitudeVector, const lv_16sc_t* complexVector,
+-                                    const float scalar, unsigned int num_points)
++static inline void volk_16ic_s32f_magnitude_32f_a_sse3(float* magnitudeVector,
++                                                       const lv_16sc_t* complexVector,
++                                                       const float scalar,
++                                                       unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  const int16_t* complexVectorPtr = (const int16_t*)complexVector;
+-  float* magnitudeVectorPtr = magnitudeVector;
++    const int16_t* complexVectorPtr = (const int16_t*)complexVector;
++    float* magnitudeVectorPtr = magnitudeVector;
+-  __m128 invScalar = _mm_set_ps1(1.0/scalar);
++    __m128 invScalar = _mm_set_ps1(1.0 / scalar);
+-  __m128 cplxValue1, cplxValue2, result;
++    __m128 cplxValue1, cplxValue2, result;
+-  __VOLK_ATTR_ALIGNED(16) float inputFloatBuffer[8];
++    __VOLK_ATTR_ALIGNED(16) float inputFloatBuffer[8];
+-  for(;number < quarterPoints; number++){
++    for (; number < quarterPoints; number++) {
+-    inputFloatBuffer[0] = (float)(complexVectorPtr[0]);
+-    inputFloatBuffer[1] = (float)(complexVectorPtr[1]);
+-    inputFloatBuffer[2] = (float)(complexVectorPtr[2]);
+-    inputFloatBuffer[3] = (float)(complexVectorPtr[3]);
++        inputFloatBuffer[0] = (float)(complexVectorPtr[0]);
++        inputFloatBuffer[1] = (float)(complexVectorPtr[1]);
++        inputFloatBuffer[2] = (float)(complexVectorPtr[2]);
++        inputFloatBuffer[3] = (float)(complexVectorPtr[3]);
+-    inputFloatBuffer[4] = (float)(complexVectorPtr[4]);
+-    inputFloatBuffer[5] = (float)(complexVectorPtr[5]);
+-    inputFloatBuffer[6] = (float)(complexVectorPtr[6]);
+-    inputFloatBuffer[7] = (float)(complexVectorPtr[7]);
++        inputFloatBuffer[4] = (float)(complexVectorPtr[4]);
++        inputFloatBuffer[5] = (float)(complexVectorPtr[5]);
++        inputFloatBuffer[6] = (float)(complexVectorPtr[6]);
++        inputFloatBuffer[7] = (float)(complexVectorPtr[7]);
+-    cplxValue1 = _mm_load_ps(&inputFloatBuffer[0]);
+-    cplxValue2 = _mm_load_ps(&inputFloatBuffer[4]);
++        cplxValue1 = _mm_load_ps(&inputFloatBuffer[0]);
++        cplxValue2 = _mm_load_ps(&inputFloatBuffer[4]);
+-    complexVectorPtr += 8;
++        complexVectorPtr += 8;
+-    cplxValue1 = _mm_mul_ps(cplxValue1, invScalar);
+-    cplxValue2 = _mm_mul_ps(cplxValue2, invScalar);
++        cplxValue1 = _mm_mul_ps(cplxValue1, invScalar);
++        cplxValue2 = _mm_mul_ps(cplxValue2, invScalar);
+-    cplxValue1 = _mm_mul_ps(cplxValue1, cplxValue1); // Square the values
+-    cplxValue2 = _mm_mul_ps(cplxValue2, cplxValue2); // Square the Values
++        cplxValue1 = _mm_mul_ps(cplxValue1, cplxValue1); // Square the values
++        cplxValue2 = _mm_mul_ps(cplxValue2, cplxValue2); // Square the Values
+-    result = _mm_hadd_ps(cplxValue1, cplxValue2); // Add the I2 and Q2 values
++        result = _mm_hadd_ps(cplxValue1, cplxValue2); // Add the I2 and Q2 values
+-    result = _mm_sqrt_ps(result); // Square root the values
++        result = _mm_sqrt_ps(result); // Square root the values
+-    _mm_store_ps(magnitudeVectorPtr, result);
++        _mm_store_ps(magnitudeVectorPtr, result);
+-    magnitudeVectorPtr += 4;
+-  }
++        magnitudeVectorPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  magnitudeVectorPtr = &magnitudeVector[number];
+-  complexVectorPtr = (const int16_t*)&complexVector[number];
+-  for(; number < num_points; number++){
+-    float val1Real = (float)(*complexVectorPtr++) / scalar;
+-    float val1Imag = (float)(*complexVectorPtr++) / scalar;
+-    *magnitudeVectorPtr++ = sqrtf((val1Real * val1Real) + (val1Imag * val1Imag));
+-  }
++    number = quarterPoints * 4;
++    magnitudeVectorPtr = &magnitudeVector[number];
++    complexVectorPtr = (const int16_t*)&complexVector[number];
++    for (; number < num_points; number++) {
++        float val1Real = (float)(*complexVectorPtr++) / scalar;
++        float val1Imag = (float)(*complexVectorPtr++) / scalar;
++        *magnitudeVectorPtr++ = sqrtf((val1Real * val1Real) + (val1Imag * val1Imag));
++    }
+ }
+ #endif /* LV_HAVE_SSE3 */
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_16ic_s32f_magnitude_32f_a_sse(float* magnitudeVector, const lv_16sc_t* complexVector,
+-                                   const float scalar, unsigned int num_points)
++static inline void volk_16ic_s32f_magnitude_32f_a_sse(float* magnitudeVector,
++                                                      const lv_16sc_t* complexVector,
++                                                      const float scalar,
++                                                      unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  const int16_t* complexVectorPtr = (const int16_t*)complexVector;
+-  float* magnitudeVectorPtr = magnitudeVector;
++    const int16_t* complexVectorPtr = (const int16_t*)complexVector;
++    float* magnitudeVectorPtr = magnitudeVector;
+-  const float iScalar = 1.0 / scalar;
+-  __m128 invScalar = _mm_set_ps1(iScalar);
++    const float iScalar = 1.0 / scalar;
++    __m128 invScalar = _mm_set_ps1(iScalar);
+-  __m128 cplxValue1, cplxValue2, result, re, im;
++    __m128 cplxValue1, cplxValue2, result, re, im;
+-  __VOLK_ATTR_ALIGNED(16) float inputFloatBuffer[8];
++    __VOLK_ATTR_ALIGNED(16) float inputFloatBuffer[8];
+-  for(;number < quarterPoints; number++){
+-    inputFloatBuffer[0] = (float)(complexVectorPtr[0]);
+-    inputFloatBuffer[1] = (float)(complexVectorPtr[1]);
+-    inputFloatBuffer[2] = (float)(complexVectorPtr[2]);
+-    inputFloatBuffer[3] = (float)(complexVectorPtr[3]);
++    for (; number < quarterPoints; number++) {
++        inputFloatBuffer[0] = (float)(complexVectorPtr[0]);
++        inputFloatBuffer[1] = (float)(complexVectorPtr[1]);
++        inputFloatBuffer[2] = (float)(complexVectorPtr[2]);
++        inputFloatBuffer[3] = (float)(complexVectorPtr[3]);
+-    inputFloatBuffer[4] = (float)(complexVectorPtr[4]);
+-    inputFloatBuffer[5] = (float)(complexVectorPtr[5]);
+-    inputFloatBuffer[6] = (float)(complexVectorPtr[6]);
+-    inputFloatBuffer[7] = (float)(complexVectorPtr[7]);
++        inputFloatBuffer[4] = (float)(complexVectorPtr[4]);
++        inputFloatBuffer[5] = (float)(complexVectorPtr[5]);
++        inputFloatBuffer[6] = (float)(complexVectorPtr[6]);
++        inputFloatBuffer[7] = (float)(complexVectorPtr[7]);
+-    cplxValue1 = _mm_load_ps(&inputFloatBuffer[0]);
+-    cplxValue2 = _mm_load_ps(&inputFloatBuffer[4]);
++        cplxValue1 = _mm_load_ps(&inputFloatBuffer[0]);
++        cplxValue2 = _mm_load_ps(&inputFloatBuffer[4]);
+-    re = _mm_shuffle_ps(cplxValue1, cplxValue2, 0x88);
+-    im = _mm_shuffle_ps(cplxValue1, cplxValue2, 0xdd);
++        re = _mm_shuffle_ps(cplxValue1, cplxValue2, 0x88);
++        im = _mm_shuffle_ps(cplxValue1, cplxValue2, 0xdd);
+-    complexVectorPtr += 8;
++        complexVectorPtr += 8;
+-    cplxValue1 = _mm_mul_ps(re, invScalar);
+-    cplxValue2 = _mm_mul_ps(im, invScalar);
++        cplxValue1 = _mm_mul_ps(re, invScalar);
++        cplxValue2 = _mm_mul_ps(im, invScalar);
+-    cplxValue1 = _mm_mul_ps(cplxValue1, cplxValue1); // Square the values
+-    cplxValue2 = _mm_mul_ps(cplxValue2, cplxValue2); // Square the Values
++        cplxValue1 = _mm_mul_ps(cplxValue1, cplxValue1); // Square the values
++        cplxValue2 = _mm_mul_ps(cplxValue2, cplxValue2); // Square the Values
+-    result = _mm_add_ps(cplxValue1, cplxValue2); // Add the I2 and Q2 values
++        result = _mm_add_ps(cplxValue1, cplxValue2); // Add the I2 and Q2 values
+-    result = _mm_sqrt_ps(result); // Square root the values
++        result = _mm_sqrt_ps(result); // Square root the values
+-    _mm_store_ps(magnitudeVectorPtr, result);
++        _mm_store_ps(magnitudeVectorPtr, result);
+-    magnitudeVectorPtr += 4;
+-  }
++        magnitudeVectorPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  magnitudeVectorPtr = &magnitudeVector[number];
+-  complexVectorPtr = (const int16_t*)&complexVector[number];
+-  for(; number < num_points; number++){
+-    float val1Real = (float)(*complexVectorPtr++) * iScalar;
+-    float val1Imag = (float)(*complexVectorPtr++) * iScalar;
+-    *magnitudeVectorPtr++ = sqrtf((val1Real * val1Real) + (val1Imag * val1Imag));
+-  }
++    number = quarterPoints * 4;
++    magnitudeVectorPtr = &magnitudeVector[number];
++    complexVectorPtr = (const int16_t*)&complexVector[number];
++    for (; number < num_points; number++) {
++        float val1Real = (float)(*complexVectorPtr++) * iScalar;
++        float val1Imag = (float)(*complexVectorPtr++) * iScalar;
++        *magnitudeVectorPtr++ = sqrtf((val1Real * val1Real) + (val1Imag * val1Imag));
++    }
+ }
+@@ -251,33 +254,37 @@ volk_16ic_s32f_magnitude_32f_a_sse(float* magnitudeVector, const lv_16sc_t* comp
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_16ic_s32f_magnitude_32f_generic(float* magnitudeVector, const lv_16sc_t* complexVector,
+-                                     const float scalar, unsigned int num_points)
++static inline void volk_16ic_s32f_magnitude_32f_generic(float* magnitudeVector,
++                                                        const lv_16sc_t* complexVector,
++                                                        const float scalar,
++                                                        unsigned int num_points)
+ {
+-  const int16_t* complexVectorPtr = (const int16_t*)complexVector;
+-  float* magnitudeVectorPtr = magnitudeVector;
+-  unsigned int number = 0;
+-  const float invScalar = 1.0 / scalar;
+-  for(number = 0; number < num_points; number++){
+-    float real = ( (float) (*complexVectorPtr++)) * invScalar;
+-    float imag = ( (float) (*complexVectorPtr++)) * invScalar;
+-    *magnitudeVectorPtr++ = sqrtf((real*real) + (imag*imag));
+-  }
++    const int16_t* complexVectorPtr = (const int16_t*)complexVector;
++    float* magnitudeVectorPtr = magnitudeVector;
++    unsigned int number = 0;
++    const float invScalar = 1.0 / scalar;
++    for (number = 0; number < num_points; number++) {
++        float real = ((float)(*complexVectorPtr++)) * invScalar;
++        float imag = ((float)(*complexVectorPtr++)) * invScalar;
++        *magnitudeVectorPtr++ = sqrtf((real * real) + (imag * imag));
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_ORC_DISABLED
+-extern void
+-volk_16ic_s32f_magnitude_32f_a_orc_impl(float* magnitudeVector, const lv_16sc_t* complexVector,
+-                                        const float scalar, unsigned int num_points);
++extern void volk_16ic_s32f_magnitude_32f_a_orc_impl(float* magnitudeVector,
++                                                    const lv_16sc_t* complexVector,
++                                                    const float scalar,
++                                                    unsigned int num_points);
+-static inline void
+-volk_16ic_s32f_magnitude_32f_u_orc(float* magnitudeVector, const lv_16sc_t* complexVector,
+-                                   const float scalar, unsigned int num_points)
++static inline void volk_16ic_s32f_magnitude_32f_u_orc(float* magnitudeVector,
++                                                      const lv_16sc_t* complexVector,
++                                                      const float scalar,
++                                                      unsigned int num_points)
+ {
+-  volk_16ic_s32f_magnitude_32f_a_orc_impl(magnitudeVector, complexVector, scalar, num_points);
++    volk_16ic_s32f_magnitude_32f_a_orc_impl(
++        magnitudeVector, complexVector, scalar, num_points);
+ }
+ #endif /* LV_HAVE_ORC */
+@@ -287,69 +294,69 @@ volk_16ic_s32f_magnitude_32f_u_orc(float* magnitudeVector, const lv_16sc_t* comp
+ #ifndef INCLUDED_volk_16ic_s32f_magnitude_32f_u_H
+ #define INCLUDED_volk_16ic_s32f_magnitude_32f_u_H
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+-#include <stdio.h>
+ #include <math.h>
++#include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_16ic_s32f_magnitude_32f_u_avx2(float* magnitudeVector, const lv_16sc_t* complexVector,
+-                                    const float scalar, unsigned int num_points)
++static inline void volk_16ic_s32f_magnitude_32f_u_avx2(float* magnitudeVector,
++                                                       const lv_16sc_t* complexVector,
++                                                       const float scalar,
++                                                       unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    const int16_t* complexVectorPtr = (const int16_t*)complexVector;
++    float* magnitudeVectorPtr = magnitudeVector;
+-  const int16_t* complexVectorPtr = (const int16_t*)complexVector;
+-  float* magnitudeVectorPtr = magnitudeVector;
++    __m256 invScalar = _mm256_set1_ps(1.0 / scalar);
+-  __m256 invScalar = _mm256_set1_ps(1.0/scalar);
++    __m256 cplxValue1, cplxValue2, result;
++    __m256i int1, int2;
++    __m128i short1, short2;
++    __m256i idx = _mm256_set_epi32(7, 6, 3, 2, 5, 4, 1, 0);
+-  __m256 cplxValue1, cplxValue2, result;
+-  __m256i int1, int2;
+-  __m128i short1, short2;
+-  __m256i idx = _mm256_set_epi32(7,6,3,2,5,4,1,0);
++    for (; number < eighthPoints; number++) {
+-  for(;number < eighthPoints; number++){
+-    
+-    int1 = _mm256_loadu_si256((__m256i*)complexVectorPtr);
+-    complexVectorPtr += 16;
+-    short1 = _mm256_extracti128_si256(int1,0);
+-    short2 = _mm256_extracti128_si256(int1,1);
++        int1 = _mm256_loadu_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 16;
++        short1 = _mm256_extracti128_si256(int1, 0);
++        short2 = _mm256_extracti128_si256(int1, 1);
+-    int1 = _mm256_cvtepi16_epi32(short1);
+-    int2 = _mm256_cvtepi16_epi32(short2);
+-    cplxValue1 = _mm256_cvtepi32_ps(int1);
+-    cplxValue2 = _mm256_cvtepi32_ps(int2);
++        int1 = _mm256_cvtepi16_epi32(short1);
++        int2 = _mm256_cvtepi16_epi32(short2);
++        cplxValue1 = _mm256_cvtepi32_ps(int1);
++        cplxValue2 = _mm256_cvtepi32_ps(int2);
+-    cplxValue1 = _mm256_mul_ps(cplxValue1, invScalar);
+-    cplxValue2 = _mm256_mul_ps(cplxValue2, invScalar);
++        cplxValue1 = _mm256_mul_ps(cplxValue1, invScalar);
++        cplxValue2 = _mm256_mul_ps(cplxValue2, invScalar);
+-    cplxValue1 = _mm256_mul_ps(cplxValue1, cplxValue1); // Square the values
+-    cplxValue2 = _mm256_mul_ps(cplxValue2, cplxValue2); // Square the Values
++        cplxValue1 = _mm256_mul_ps(cplxValue1, cplxValue1); // Square the values
++        cplxValue2 = _mm256_mul_ps(cplxValue2, cplxValue2); // Square the Values
+-    result = _mm256_hadd_ps(cplxValue1, cplxValue2); // Add the I2 and Q2 values
+-    result = _mm256_permutevar8x32_ps(result, idx);
++        result = _mm256_hadd_ps(cplxValue1, cplxValue2); // Add the I2 and Q2 values
++        result = _mm256_permutevar8x32_ps(result, idx);
+-    result = _mm256_sqrt_ps(result); // Square root the values
++        result = _mm256_sqrt_ps(result); // Square root the values
+-    _mm256_storeu_ps(magnitudeVectorPtr, result);
++        _mm256_storeu_ps(magnitudeVectorPtr, result);
+-    magnitudeVectorPtr += 8;
+-  }
++        magnitudeVectorPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  magnitudeVectorPtr = &magnitudeVector[number];
+-  complexVectorPtr = (const int16_t*)&complexVector[number];
+-  for(; number < num_points; number++){
+-    float val1Real = (float)(*complexVectorPtr++) / scalar;
+-    float val1Imag = (float)(*complexVectorPtr++) / scalar;
+-    *magnitudeVectorPtr++ = sqrtf((val1Real * val1Real) + (val1Imag * val1Imag));
+-  }
++    number = eighthPoints * 8;
++    magnitudeVectorPtr = &magnitudeVector[number];
++    complexVectorPtr = (const int16_t*)&complexVector[number];
++    for (; number < num_points; number++) {
++        float val1Real = (float)(*complexVectorPtr++) / scalar;
++        float val1Imag = (float)(*complexVectorPtr++) / scalar;
++        *magnitudeVectorPtr++ = sqrtf((val1Real * val1Real) + (val1Imag * val1Imag));
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+ #endif /* INCLUDED_volk_16ic_s32f_magnitude_32f_u_H */
+-
+diff --git a/kernels/volk/volk_16ic_x2_dot_prod_16ic.h b/kernels/volk/volk_16ic_x2_dot_prod_16ic.h
+index ae10cff..a1a0e8c 100644
+--- a/kernels/volk/volk_16ic_x2_dot_prod_16ic.h
++++ b/kernels/volk/volk_16ic_x2_dot_prod_16ic.h
+@@ -25,18 +25,20 @@
+  *
+  * \b Overview
+  *
+- * Multiplies two input complex vectors (16-bit integer each component) and accumulates them,
+- * storing the result. Results are saturated so never go beyond the limits of the data type.
++ * Multiplies two input complex vectors (16-bit integer each component) and accumulates
++ * them, storing the result. Results are saturated so never go beyond the limits of the
++ * data type.
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_16ic_x2_dot_prod_16ic(lv_16sc_t* result, const lv_16sc_t* in_a, const lv_16sc_t* in_b, unsigned int num_points);
+- * \endcode
++ * void volk_16ic_x2_dot_prod_16ic(lv_16sc_t* result, const lv_16sc_t* in_a, const
++ * lv_16sc_t* in_b, unsigned int num_points); \endcode
+  *
+  * \b Inputs
+  * \li in_a:          One of the vectors to be multiplied and accumulated.
+  * \li in_b:          The other vector to be multiplied and accumulated.
+- * \li num_points:    Number of complex values to be multiplied together, accumulated and stored into \p result
++ * \li num_points:    Number of complex values to be multiplied together, accumulated and
++ * stored into \p result
+  *
+  * \b Outputs
+  * \li result:        Value of the accumulated result.
+@@ -46,22 +48,25 @@
+ #ifndef INCLUDED_volk_16ic_x2_dot_prod_16ic_H
+ #define INCLUDED_volk_16ic_x2_dot_prod_16ic_H
++#include <volk/saturation_arithmetic.h>
+ #include <volk/volk_common.h>
+ #include <volk/volk_complex.h>
+-#include <volk/saturation_arithmetic.h>
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_16ic_x2_dot_prod_16ic_generic(lv_16sc_t* result, const lv_16sc_t* in_a, const lv_16sc_t* in_b, unsigned int num_points)
++static inline void volk_16ic_x2_dot_prod_16ic_generic(lv_16sc_t* result,
++                                                      const lv_16sc_t* in_a,
++                                                      const lv_16sc_t* in_b,
++                                                      unsigned int num_points)
+ {
+     result[0] = lv_cmake((int16_t)0, (int16_t)0);
+     unsigned int n;
+-    for (n = 0; n < num_points; n++)
+-        {
+-            lv_16sc_t tmp = in_a[n] * in_b[n];
+-            result[0] = lv_cmake(sat_adds16i(lv_creal(result[0]), lv_creal(tmp)), sat_adds16i(lv_cimag(result[0]), lv_cimag(tmp) ));
+-        }
++    for (n = 0; n < num_points; n++) {
++        lv_16sc_t tmp = in_a[n] * in_b[n];
++        result[0] = lv_cmake(sat_adds16i(lv_creal(result[0]), lv_creal(tmp)),
++                             sat_adds16i(lv_cimag(result[0]), lv_cimag(tmp)));
++    }
+ }
+ #endif /*LV_HAVE_GENERIC*/
+@@ -70,7 +75,10 @@ static inline void volk_16ic_x2_dot_prod_16ic_generic(lv_16sc_t* result, const l
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void volk_16ic_x2_dot_prod_16ic_a_sse2(lv_16sc_t* out, const lv_16sc_t* in_a, const lv_16sc_t* in_b, unsigned int num_points)
++static inline void volk_16ic_x2_dot_prod_16ic_a_sse2(lv_16sc_t* out,
++                                                     const lv_16sc_t* in_a,
++                                                     const lv_16sc_t* in_b,
++                                                     unsigned int num_points)
+ {
+     lv_16sc_t dotProduct = lv_cmake((int16_t)0, (int16_t)0);
+@@ -81,62 +89,67 @@ static inline void volk_16ic_x2_dot_prod_16ic_a_sse2(lv_16sc_t* out, const lv_16
+     const lv_16sc_t* _in_b = in_b;
+     lv_16sc_t* _out = out;
+-    if (sse_iters > 0)
+-        {
+-            __m128i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl, realcacc, imagcacc;
+-            __VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4];
++    if (sse_iters > 0) {
++        __m128i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl,
++            realcacc, imagcacc;
++        __VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4];
+-            realcacc = _mm_setzero_si128();
+-            imagcacc = _mm_setzero_si128();
++        realcacc = _mm_setzero_si128();
++        imagcacc = _mm_setzero_si128();
+-            mask_imag = _mm_set_epi8(0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0);
+-            mask_real = _mm_set_epi8(0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF);
++        mask_imag = _mm_set_epi8(
++            0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0);
++        mask_real = _mm_set_epi8(
++            0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF);
+-            for(number = 0; number < sse_iters; number++)
+-                {
+-                    // a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r]
+-                    a = _mm_load_si128((__m128i*)_in_a); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
+-                    __VOLK_PREFETCH(_in_a + 8);
+-                    b = _mm_load_si128((__m128i*)_in_b);
+-                    __VOLK_PREFETCH(_in_b + 8);
+-                    c = _mm_mullo_epi16(a, b); // a3.i*b3.i, a3.r*b3.r, ....
++        for (number = 0; number < sse_iters; number++) {
++            // a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r]
++            a = _mm_load_si128(
++                (__m128i*)_in_a); // load (2 byte imag, 2 byte real) x 4 into 128 bits reg
++            __VOLK_PREFETCH(_in_a + 8);
++            b = _mm_load_si128((__m128i*)_in_b);
++            __VOLK_PREFETCH(_in_b + 8);
++            c = _mm_mullo_epi16(a, b); // a3.i*b3.i, a3.r*b3.r, ....
+-                    c_sr = _mm_srli_si128(c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
+-                    real = _mm_subs_epi16(c, c_sr);
++            c_sr = _mm_srli_si128(c, 2); // Shift a right by imm8 bytes while shifting in
++                                         // zeros, and store the results in dst.
++            real = _mm_subs_epi16(c, c_sr);
+-                    b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
+-                    a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
++            b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
++            a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
+-                    imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
+-                    imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
++            imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
++            imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
+-                    imag = _mm_adds_epi16(imag1, imag2); //with saturation arithmetic!
++            imag = _mm_adds_epi16(imag1, imag2); // with saturation arithmetic!
+-                    realcacc = _mm_adds_epi16(realcacc, real);
+-                    imagcacc = _mm_adds_epi16(imagcacc, imag);
++            realcacc = _mm_adds_epi16(realcacc, real);
++            imagcacc = _mm_adds_epi16(imagcacc, imag);
+-                    _in_a += 4;
+-                    _in_b += 4;
+-                }
++            _in_a += 4;
++            _in_b += 4;
++        }
+-            realcacc = _mm_and_si128(realcacc, mask_real);
+-            imagcacc = _mm_and_si128(imagcacc, mask_imag);
++        realcacc = _mm_and_si128(realcacc, mask_real);
++        imagcacc = _mm_and_si128(imagcacc, mask_imag);
+-            a = _mm_or_si128(realcacc, imagcacc);
++        a = _mm_or_si128(realcacc, imagcacc);
+-            _mm_store_si128((__m128i*)dotProductVector, a); // Store the results back into the dot product vector
++        _mm_store_si128((__m128i*)dotProductVector,
++                        a); // Store the results back into the dot product vector
+-            for (number = 0; number < 4; ++number)
+-                {
+-                    dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(dotProductVector[number])), sat_adds16i(lv_cimag(dotProduct), lv_cimag(dotProductVector[number])));
+-                }
++        for (number = 0; number < 4; ++number) {
++            dotProduct = lv_cmake(
++                sat_adds16i(lv_creal(dotProduct), lv_creal(dotProductVector[number])),
++                sat_adds16i(lv_cimag(dotProduct), lv_cimag(dotProductVector[number])));
+         }
++    }
+-    for (number = 0; number < (num_points % 4); ++number)
+-        {
+-            lv_16sc_t tmp = (*_in_a++) * (*_in_b++);
+-            dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(tmp)), sat_adds16i(lv_cimag(dotProduct), lv_cimag(tmp)));
+-        }
++    for (number = 0; number < (num_points % 4); ++number) {
++        lv_16sc_t tmp = (*_in_a++) * (*_in_b++);
++        dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(tmp)),
++                              sat_adds16i(lv_cimag(dotProduct), lv_cimag(tmp)));
++    }
+     *_out = dotProduct;
+ }
+@@ -147,7 +160,10 @@ static inline void volk_16ic_x2_dot_prod_16ic_a_sse2(lv_16sc_t* out, const lv_16
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void volk_16ic_x2_dot_prod_16ic_u_sse2(lv_16sc_t* out, const lv_16sc_t* in_a, const lv_16sc_t* in_b, unsigned int num_points)
++static inline void volk_16ic_x2_dot_prod_16ic_u_sse2(lv_16sc_t* out,
++                                                     const lv_16sc_t* in_a,
++                                                     const lv_16sc_t* in_b,
++                                                     unsigned int num_points)
+ {
+     lv_16sc_t dotProduct = lv_cmake((int16_t)0, (int16_t)0);
+@@ -158,62 +174,67 @@ static inline void volk_16ic_x2_dot_prod_16ic_u_sse2(lv_16sc_t* out, const lv_16
+     lv_16sc_t* _out = out;
+     unsigned int number;
+-    if (sse_iters > 0)
+-        {
+-            __m128i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl, realcacc, imagcacc, result;
+-            __VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4];
++    if (sse_iters > 0) {
++        __m128i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl,
++            realcacc, imagcacc, result;
++        __VOLK_ATTR_ALIGNED(16) lv_16sc_t dotProductVector[4];
+-            realcacc = _mm_setzero_si128();
+-            imagcacc = _mm_setzero_si128();
++        realcacc = _mm_setzero_si128();
++        imagcacc = _mm_setzero_si128();
+-            mask_imag = _mm_set_epi8(0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0);
+-            mask_real = _mm_set_epi8(0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF);
++        mask_imag = _mm_set_epi8(
++            0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0);
++        mask_real = _mm_set_epi8(
++            0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF);
+-            for(number = 0; number < sse_iters; number++)
+-                {
+-                    // a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r]
+-                    a = _mm_loadu_si128((__m128i*)_in_a); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
+-                    __VOLK_PREFETCH(_in_a + 8);
+-                    b = _mm_loadu_si128((__m128i*)_in_b);
+-                    __VOLK_PREFETCH(_in_b + 8);
+-                    c = _mm_mullo_epi16(a, b); // a3.i*b3.i, a3.r*b3.r, ....
++        for (number = 0; number < sse_iters; number++) {
++            // a[127:0]=[a3.i,a3.r,a2.i,a2.r,a1.i,a1.r,a0.i,a0.r]
++            a = _mm_loadu_si128(
++                (__m128i*)_in_a); // load (2 byte imag, 2 byte real) x 4 into 128 bits reg
++            __VOLK_PREFETCH(_in_a + 8);
++            b = _mm_loadu_si128((__m128i*)_in_b);
++            __VOLK_PREFETCH(_in_b + 8);
++            c = _mm_mullo_epi16(a, b); // a3.i*b3.i, a3.r*b3.r, ....
+-                    c_sr = _mm_srli_si128(c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
+-                    real = _mm_subs_epi16(c, c_sr);
++            c_sr = _mm_srli_si128(c, 2); // Shift a right by imm8 bytes while shifting in
++                                         // zeros, and store the results in dst.
++            real = _mm_subs_epi16(c, c_sr);
+-                    b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
+-                    a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
++            b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
++            a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
+-                    imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
+-                    imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
++            imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
++            imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
+-                    imag = _mm_adds_epi16(imag1, imag2); //with saturation arithmetic!
++            imag = _mm_adds_epi16(imag1, imag2); // with saturation arithmetic!
+-                    realcacc = _mm_adds_epi16(realcacc, real);
+-                    imagcacc = _mm_adds_epi16(imagcacc, imag);
++            realcacc = _mm_adds_epi16(realcacc, real);
++            imagcacc = _mm_adds_epi16(imagcacc, imag);
+-                    _in_a += 4;
+-                    _in_b += 4;
+-                }
++            _in_a += 4;
++            _in_b += 4;
++        }
+-            realcacc = _mm_and_si128(realcacc, mask_real);
+-            imagcacc = _mm_and_si128(imagcacc, mask_imag);
++        realcacc = _mm_and_si128(realcacc, mask_real);
++        imagcacc = _mm_and_si128(imagcacc, mask_imag);
+-            result = _mm_or_si128(realcacc, imagcacc);
++        result = _mm_or_si128(realcacc, imagcacc);
+-            _mm_storeu_si128((__m128i*)dotProductVector, result); // Store the results back into the dot product vector
++        _mm_storeu_si128((__m128i*)dotProductVector,
++                         result); // Store the results back into the dot product vector
+-            for (number = 0; number < 4; ++number)
+-                {
+-                    dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(dotProductVector[number])), sat_adds16i(lv_cimag(dotProduct), lv_cimag(dotProductVector[number])));
+-                }
++        for (number = 0; number < 4; ++number) {
++            dotProduct = lv_cmake(
++                sat_adds16i(lv_creal(dotProduct), lv_creal(dotProductVector[number])),
++                sat_adds16i(lv_cimag(dotProduct), lv_cimag(dotProductVector[number])));
+         }
++    }
+-    for (number = 0; number < (num_points % 4); ++number)
+-        {
+-            lv_16sc_t tmp = (*_in_a++) * (*_in_b++);
+-            dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(tmp)), sat_adds16i(lv_cimag(dotProduct), lv_cimag(tmp)));
+-        }
++    for (number = 0; number < (num_points % 4); ++number) {
++        lv_16sc_t tmp = (*_in_a++) * (*_in_b++);
++        dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(tmp)),
++                              sat_adds16i(lv_cimag(dotProduct), lv_cimag(tmp)));
++    }
+     *_out = dotProduct;
+ }
+@@ -223,7 +244,10 @@ static inline void volk_16ic_x2_dot_prod_16ic_u_sse2(lv_16sc_t* out, const lv_16
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void volk_16ic_x2_dot_prod_16ic_u_axv2(lv_16sc_t* out, const lv_16sc_t* in_a, const lv_16sc_t* in_b, unsigned int num_points)
++static inline void volk_16ic_x2_dot_prod_16ic_u_axv2(lv_16sc_t* out,
++                                                     const lv_16sc_t* in_a,
++                                                     const lv_16sc_t* in_b,
++                                                     unsigned int num_points)
+ {
+     lv_16sc_t dotProduct = lv_cmake((int16_t)0, (int16_t)0);
+@@ -234,62 +258,126 @@ static inline void volk_16ic_x2_dot_prod_16ic_u_axv2(lv_16sc_t* out, const lv_16
+     lv_16sc_t* _out = out;
+     unsigned int number;
+-    if (avx_iters > 0)
+-        {
+-            __m256i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl, realcacc, imagcacc, result;
+-            __VOLK_ATTR_ALIGNED(32) lv_16sc_t dotProductVector[8];
+-
+-            realcacc = _mm256_setzero_si256();
+-            imagcacc = _mm256_setzero_si256();
+-
+-            mask_imag = _mm256_set_epi8(0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0);
+-            mask_real = _mm256_set_epi8(0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF);
+-
+-            for(number = 0; number < avx_iters; number++)
+-                {
+-                    a = _mm256_loadu_si256((__m256i*)_in_a);
+-                    __VOLK_PREFETCH(_in_a + 16);
+-                    b = _mm256_loadu_si256((__m256i*)_in_b);
+-                    __VOLK_PREFETCH(_in_b + 16);
+-                    c = _mm256_mullo_epi16(a, b);
+-
+-                    c_sr = _mm256_srli_si256(c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
+-                    real = _mm256_subs_epi16(c, c_sr);
+-
+-                    b_sl = _mm256_slli_si256(b, 2);
+-                    a_sl = _mm256_slli_si256(a, 2);
+-
+-                    imag1 = _mm256_mullo_epi16(a, b_sl);
+-                    imag2 = _mm256_mullo_epi16(b, a_sl);
+-
+-                    imag = _mm256_adds_epi16(imag1, imag2); //with saturation arithmetic!
+-
+-                    realcacc = _mm256_adds_epi16(realcacc, real);
+-                    imagcacc = _mm256_adds_epi16(imagcacc, imag);
+-
+-                    _in_a += 8;
+-                    _in_b += 8;
+-                }
++    if (avx_iters > 0) {
++        __m256i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl,
++            realcacc, imagcacc, result;
++        __VOLK_ATTR_ALIGNED(32) lv_16sc_t dotProductVector[8];
++
++        realcacc = _mm256_setzero_si256();
++        imagcacc = _mm256_setzero_si256();
++
++        mask_imag = _mm256_set_epi8(0xFF,
++                                    0xFF,
++                                    0,
++                                    0,
++                                    0xFF,
++                                    0xFF,
++                                    0,
++                                    0,
++                                    0xFF,
++                                    0xFF,
++                                    0,
++                                    0,
++                                    0xFF,
++                                    0xFF,
++                                    0,
++                                    0,
++                                    0xFF,
++                                    0xFF,
++                                    0,
++                                    0,
++                                    0xFF,
++                                    0xFF,
++                                    0,
++                                    0,
++                                    0xFF,
++                                    0xFF,
++                                    0,
++                                    0,
++                                    0xFF,
++                                    0xFF,
++                                    0,
++                                    0);
++        mask_real = _mm256_set_epi8(0,
++                                    0,
++                                    0xFF,
++                                    0xFF,
++                                    0,
++                                    0,
++                                    0xFF,
++                                    0xFF,
++                                    0,
++                                    0,
++                                    0xFF,
++                                    0xFF,
++                                    0,
++                                    0,
++                                    0xFF,
++                                    0xFF,
++                                    0,
++                                    0,
++                                    0xFF,
++                                    0xFF,
++                                    0,
++                                    0,
++                                    0xFF,
++                                    0xFF,
++                                    0,
++                                    0,
++                                    0xFF,
++                                    0xFF,
++                                    0,
++                                    0,
++                                    0xFF,
++                                    0xFF);
++
++        for (number = 0; number < avx_iters; number++) {
++            a = _mm256_loadu_si256((__m256i*)_in_a);
++            __VOLK_PREFETCH(_in_a + 16);
++            b = _mm256_loadu_si256((__m256i*)_in_b);
++            __VOLK_PREFETCH(_in_b + 16);
++            c = _mm256_mullo_epi16(a, b);
++
++            c_sr = _mm256_srli_si256(c, 2); // Shift a right by imm8 bytes while shifting
++                                            // in zeros, and store the results in dst.
++            real = _mm256_subs_epi16(c, c_sr);
++
++            b_sl = _mm256_slli_si256(b, 2);
++            a_sl = _mm256_slli_si256(a, 2);
++
++            imag1 = _mm256_mullo_epi16(a, b_sl);
++            imag2 = _mm256_mullo_epi16(b, a_sl);
++
++            imag = _mm256_adds_epi16(imag1, imag2); // with saturation arithmetic!
++
++            realcacc = _mm256_adds_epi16(realcacc, real);
++            imagcacc = _mm256_adds_epi16(imagcacc, imag);
++
++            _in_a += 8;
++            _in_b += 8;
++        }
+-            realcacc = _mm256_and_si256(realcacc, mask_real);
+-            imagcacc = _mm256_and_si256(imagcacc, mask_imag);
++        realcacc = _mm256_and_si256(realcacc, mask_real);
++        imagcacc = _mm256_and_si256(imagcacc, mask_imag);
+-            result = _mm256_or_si256(realcacc, imagcacc);
++        result = _mm256_or_si256(realcacc, imagcacc);
+-            _mm256_storeu_si256((__m256i*)dotProductVector, result); // Store the results back into the dot product vector
+-            _mm256_zeroupper();
++        _mm256_storeu_si256((__m256i*)dotProductVector,
++                            result); // Store the results back into the dot product vector
++        _mm256_zeroupper();
+-            for (number = 0; number < 8; ++number)
+-                {
+-                    dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(dotProductVector[number])), sat_adds16i(lv_cimag(dotProduct), lv_cimag(dotProductVector[number])));
+-                }
++        for (number = 0; number < 8; ++number) {
++            dotProduct = lv_cmake(
++                sat_adds16i(lv_creal(dotProduct), lv_creal(dotProductVector[number])),
++                sat_adds16i(lv_cimag(dotProduct), lv_cimag(dotProductVector[number])));
+         }
++    }
+-    for (number = 0; number < (num_points % 8); ++number)
+-        {
+-            lv_16sc_t tmp = (*_in_a++) * (*_in_b++);
+-            dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(tmp)), sat_adds16i(lv_cimag(dotProduct), lv_cimag(tmp)));
+-        }
++    for (number = 0; number < (num_points % 8); ++number) {
++        lv_16sc_t tmp = (*_in_a++) * (*_in_b++);
++        dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(tmp)),
++                              sat_adds16i(lv_cimag(dotProduct), lv_cimag(tmp)));
++    }
+     *_out = dotProduct;
+ }
+@@ -299,7 +387,10 @@ static inline void volk_16ic_x2_dot_prod_16ic_u_axv2(lv_16sc_t* out, const lv_16
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void volk_16ic_x2_dot_prod_16ic_a_axv2(lv_16sc_t* out, const lv_16sc_t* in_a, const lv_16sc_t* in_b, unsigned int num_points)
++static inline void volk_16ic_x2_dot_prod_16ic_a_axv2(lv_16sc_t* out,
++                                                     const lv_16sc_t* in_a,
++                                                     const lv_16sc_t* in_b,
++                                                     unsigned int num_points)
+ {
+     lv_16sc_t dotProduct = lv_cmake((int16_t)0, (int16_t)0);
+@@ -310,62 +401,126 @@ static inline void volk_16ic_x2_dot_prod_16ic_a_axv2(lv_16sc_t* out, const lv_16
+     lv_16sc_t* _out = out;
+     unsigned int number;
+-    if (avx_iters > 0)
+-        {
+-            __m256i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl, realcacc, imagcacc, result;
+-            __VOLK_ATTR_ALIGNED(32) lv_16sc_t dotProductVector[8];
+-
+-            realcacc = _mm256_setzero_si256();
+-            imagcacc = _mm256_setzero_si256();
+-
+-            mask_imag = _mm256_set_epi8(0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0);
+-            mask_real = _mm256_set_epi8(0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF);
+-
+-            for(number = 0; number < avx_iters; number++)
+-                {
+-                    a = _mm256_load_si256((__m256i*)_in_a);
+-                    __VOLK_PREFETCH(_in_a + 16);
+-                    b = _mm256_load_si256((__m256i*)_in_b);
+-                    __VOLK_PREFETCH(_in_b + 16);
+-                    c = _mm256_mullo_epi16(a, b);
+-
+-                    c_sr = _mm256_srli_si256(c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
+-                    real = _mm256_subs_epi16(c, c_sr);
+-
+-                    b_sl = _mm256_slli_si256(b, 2);
+-                    a_sl = _mm256_slli_si256(a, 2);
+-
+-                    imag1 = _mm256_mullo_epi16(a, b_sl);
+-                    imag2 = _mm256_mullo_epi16(b, a_sl);
+-
+-                    imag = _mm256_adds_epi16(imag1, imag2); //with saturation arithmetic!
+-
+-                    realcacc = _mm256_adds_epi16(realcacc, real);
+-                    imagcacc = _mm256_adds_epi16(imagcacc, imag);
+-
+-                    _in_a += 8;
+-                    _in_b += 8;
+-                }
++    if (avx_iters > 0) {
++        __m256i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl,
++            realcacc, imagcacc, result;
++        __VOLK_ATTR_ALIGNED(32) lv_16sc_t dotProductVector[8];
++
++        realcacc = _mm256_setzero_si256();
++        imagcacc = _mm256_setzero_si256();
++
++        mask_imag = _mm256_set_epi8(0xFF,
++                                    0xFF,
++                                    0,
++                                    0,
++                                    0xFF,
++                                    0xFF,
++                                    0,
++                                    0,
++                                    0xFF,
++                                    0xFF,
++                                    0,
++                                    0,
++                                    0xFF,
++                                    0xFF,
++                                    0,
++                                    0,
++                                    0xFF,
++                                    0xFF,
++                                    0,
++                                    0,
++                                    0xFF,
++                                    0xFF,
++                                    0,
++                                    0,
++                                    0xFF,
++                                    0xFF,
++                                    0,
++                                    0,
++                                    0xFF,
++                                    0xFF,
++                                    0,
++                                    0);
++        mask_real = _mm256_set_epi8(0,
++                                    0,
++                                    0xFF,
++                                    0xFF,
++                                    0,
++                                    0,
++                                    0xFF,
++                                    0xFF,
++                                    0,
++                                    0,
++                                    0xFF,
++                                    0xFF,
++                                    0,
++                                    0,
++                                    0xFF,
++                                    0xFF,
++                                    0,
++                                    0,
++                                    0xFF,
++                                    0xFF,
++                                    0,
++                                    0,
++                                    0xFF,
++                                    0xFF,
++                                    0,
++                                    0,
++                                    0xFF,
++                                    0xFF,
++                                    0,
++                                    0,
++                                    0xFF,
++                                    0xFF);
++
++        for (number = 0; number < avx_iters; number++) {
++            a = _mm256_load_si256((__m256i*)_in_a);
++            __VOLK_PREFETCH(_in_a + 16);
++            b = _mm256_load_si256((__m256i*)_in_b);
++            __VOLK_PREFETCH(_in_b + 16);
++            c = _mm256_mullo_epi16(a, b);
++
++            c_sr = _mm256_srli_si256(c, 2); // Shift a right by imm8 bytes while shifting
++                                            // in zeros, and store the results in dst.
++            real = _mm256_subs_epi16(c, c_sr);
++
++            b_sl = _mm256_slli_si256(b, 2);
++            a_sl = _mm256_slli_si256(a, 2);
++
++            imag1 = _mm256_mullo_epi16(a, b_sl);
++            imag2 = _mm256_mullo_epi16(b, a_sl);
++
++            imag = _mm256_adds_epi16(imag1, imag2); // with saturation arithmetic!
++
++            realcacc = _mm256_adds_epi16(realcacc, real);
++            imagcacc = _mm256_adds_epi16(imagcacc, imag);
++
++            _in_a += 8;
++            _in_b += 8;
++        }
+-            realcacc = _mm256_and_si256(realcacc, mask_real);
+-            imagcacc = _mm256_and_si256(imagcacc, mask_imag);
++        realcacc = _mm256_and_si256(realcacc, mask_real);
++        imagcacc = _mm256_and_si256(imagcacc, mask_imag);
+-            result = _mm256_or_si256(realcacc, imagcacc);
++        result = _mm256_or_si256(realcacc, imagcacc);
+-            _mm256_store_si256((__m256i*)dotProductVector, result); // Store the results back into the dot product vector
+-            _mm256_zeroupper();
++        _mm256_store_si256((__m256i*)dotProductVector,
++                           result); // Store the results back into the dot product vector
++        _mm256_zeroupper();
+-            for (number = 0; number < 8; ++number)
+-                {
+-                    dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(dotProductVector[number])), sat_adds16i(lv_cimag(dotProduct), lv_cimag(dotProductVector[number])));
+-                }
++        for (number = 0; number < 8; ++number) {
++            dotProduct = lv_cmake(
++                sat_adds16i(lv_creal(dotProduct), lv_creal(dotProductVector[number])),
++                sat_adds16i(lv_cimag(dotProduct), lv_cimag(dotProductVector[number])));
+         }
++    }
+-    for (number = 0; number < (num_points % 8); ++number)
+-        {
+-            lv_16sc_t tmp = (*_in_a++) * (*_in_b++);
+-            dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(tmp)), sat_adds16i(lv_cimag(dotProduct), lv_cimag(tmp)));
+-        }
++    for (number = 0; number < (num_points % 8); ++number) {
++        lv_16sc_t tmp = (*_in_a++) * (*_in_b++);
++        dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(tmp)),
++                              sat_adds16i(lv_cimag(dotProduct), lv_cimag(tmp)));
++    }
+     *_out = dotProduct;
+ }
+@@ -375,69 +530,70 @@ static inline void volk_16ic_x2_dot_prod_16ic_a_axv2(lv_16sc_t* out, const lv_16
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void volk_16ic_x2_dot_prod_16ic_neon(lv_16sc_t* out, const lv_16sc_t* in_a, const lv_16sc_t* in_b, unsigned int num_points)
++static inline void volk_16ic_x2_dot_prod_16ic_neon(lv_16sc_t* out,
++                                                   const lv_16sc_t* in_a,
++                                                   const lv_16sc_t* in_b,
++                                                   unsigned int num_points)
+ {
+     unsigned int quarter_points = num_points / 4;
+     unsigned int number;
+-    lv_16sc_t* a_ptr = (lv_16sc_t*) in_a;
+-    lv_16sc_t* b_ptr = (lv_16sc_t*) in_b;
++    lv_16sc_t* a_ptr = (lv_16sc_t*)in_a;
++    lv_16sc_t* b_ptr = (lv_16sc_t*)in_b;
+     *out = lv_cmake((int16_t)0, (int16_t)0);
+-    if (quarter_points > 0)
+-        {
+-            // for 2-lane vectors, 1st lane holds the real part,
+-            // 2nd lane holds the imaginary part
+-            int16x4x2_t a_val, b_val, c_val, accumulator;
+-            int16x4x2_t tmp_real, tmp_imag;
+-            __VOLK_ATTR_ALIGNED(16) lv_16sc_t accum_result[4];
+-            accumulator.val[0] = vdup_n_s16(0);
+-            accumulator.val[1] = vdup_n_s16(0);
+-            lv_16sc_t dotProduct = lv_cmake((int16_t)0, (int16_t)0);
+-
+-            for(number = 0; number < quarter_points; ++number)
+-                {
+-                    a_val = vld2_s16((int16_t*)a_ptr); // a0r|a1r|a2r|a3r || a0i|a1i|a2i|a3i
+-                    b_val = vld2_s16((int16_t*)b_ptr); // b0r|b1r|b2r|b3r || b0i|b1i|b2i|b3i
+-                    __VOLK_PREFETCH(a_ptr + 8);
+-                    __VOLK_PREFETCH(b_ptr + 8);
+-
+-                    // multiply the real*real and imag*imag to get real result
+-                    // a0r*b0r|a1r*b1r|a2r*b2r|a3r*b3r
+-                    tmp_real.val[0] = vmul_s16(a_val.val[0], b_val.val[0]);
+-                    // a0i*b0i|a1i*b1i|a2i*b2i|a3i*b3i
+-                    tmp_real.val[1] = vmul_s16(a_val.val[1], b_val.val[1]);
+-
+-                    // Multiply cross terms to get the imaginary result
+-                    // a0r*b0i|a1r*b1i|a2r*b2i|a3r*b3i
+-                    tmp_imag.val[0] = vmul_s16(a_val.val[0], b_val.val[1]);
+-                    // a0i*b0r|a1i*b1r|a2i*b2r|a3i*b3r
+-                    tmp_imag.val[1] = vmul_s16(a_val.val[1], b_val.val[0]);
+-
+-                    c_val.val[0] = vqsub_s16(tmp_real.val[0], tmp_real.val[1]);
+-                    c_val.val[1] = vqadd_s16(tmp_imag.val[0], tmp_imag.val[1]);
+-
+-                    accumulator.val[0] = vqadd_s16(accumulator.val[0], c_val.val[0]);
+-                    accumulator.val[1] = vqadd_s16(accumulator.val[1], c_val.val[1]);
+-
+-                    a_ptr += 4;
+-                    b_ptr += 4;
+-                }
+-
+-            vst2_s16((int16_t*)accum_result, accumulator);
+-            for (number = 0; number < 4; ++number)
+-                {
+-                    dotProduct = lv_cmake(sat_adds16i(lv_creal(dotProduct), lv_creal(accum_result[number])), sat_adds16i(lv_cimag(dotProduct), lv_cimag(accum_result[number])));
+-                }
+-
+-            *out = dotProduct;
++    if (quarter_points > 0) {
++        // for 2-lane vectors, 1st lane holds the real part,
++        // 2nd lane holds the imaginary part
++        int16x4x2_t a_val, b_val, c_val, accumulator;
++        int16x4x2_t tmp_real, tmp_imag;
++        __VOLK_ATTR_ALIGNED(16) lv_16sc_t accum_result[4];
++        accumulator.val[0] = vdup_n_s16(0);
++        accumulator.val[1] = vdup_n_s16(0);
++        lv_16sc_t dotProduct = lv_cmake((int16_t)0, (int16_t)0);
++
++        for (number = 0; number < quarter_points; ++number) {
++            a_val = vld2_s16((int16_t*)a_ptr); // a0r|a1r|a2r|a3r || a0i|a1i|a2i|a3i
++            b_val = vld2_s16((int16_t*)b_ptr); // b0r|b1r|b2r|b3r || b0i|b1i|b2i|b3i
++            __VOLK_PREFETCH(a_ptr + 8);
++            __VOLK_PREFETCH(b_ptr + 8);
++
++            // multiply the real*real and imag*imag to get real result
++            // a0r*b0r|a1r*b1r|a2r*b2r|a3r*b3r
++            tmp_real.val[0] = vmul_s16(a_val.val[0], b_val.val[0]);
++            // a0i*b0i|a1i*b1i|a2i*b2i|a3i*b3i
++            tmp_real.val[1] = vmul_s16(a_val.val[1], b_val.val[1]);
++
++            // Multiply cross terms to get the imaginary result
++            // a0r*b0i|a1r*b1i|a2r*b2i|a3r*b3i
++            tmp_imag.val[0] = vmul_s16(a_val.val[0], b_val.val[1]);
++            // a0i*b0r|a1i*b1r|a2i*b2r|a3i*b3r
++            tmp_imag.val[1] = vmul_s16(a_val.val[1], b_val.val[0]);
++
++            c_val.val[0] = vqsub_s16(tmp_real.val[0], tmp_real.val[1]);
++            c_val.val[1] = vqadd_s16(tmp_imag.val[0], tmp_imag.val[1]);
++
++            accumulator.val[0] = vqadd_s16(accumulator.val[0], c_val.val[0]);
++            accumulator.val[1] = vqadd_s16(accumulator.val[1], c_val.val[1]);
++
++            a_ptr += 4;
++            b_ptr += 4;
+         }
+-    // tail case
+-    for(number = quarter_points * 4; number < num_points; ++number)
+-        {
+-            *out += (*a_ptr++) * (*b_ptr++);
++        vst2_s16((int16_t*)accum_result, accumulator);
++        for (number = 0; number < 4; ++number) {
++            dotProduct = lv_cmake(
++                sat_adds16i(lv_creal(dotProduct), lv_creal(accum_result[number])),
++                sat_adds16i(lv_cimag(dotProduct), lv_cimag(accum_result[number])));
+         }
++
++        *out = dotProduct;
++    }
++
++    // tail case
++    for (number = quarter_points * 4; number < num_points; ++number) {
++        *out += (*a_ptr++) * (*b_ptr++);
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+@@ -446,13 +602,16 @@ static inline void volk_16ic_x2_dot_prod_16ic_neon(lv_16sc_t* out, const lv_16sc
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void volk_16ic_x2_dot_prod_16ic_neon_vma(lv_16sc_t* out, const lv_16sc_t* in_a, const lv_16sc_t* in_b, unsigned int num_points)
++static inline void volk_16ic_x2_dot_prod_16ic_neon_vma(lv_16sc_t* out,
++                                                       const lv_16sc_t* in_a,
++                                                       const lv_16sc_t* in_b,
++                                                       unsigned int num_points)
+ {
+     unsigned int quarter_points = num_points / 4;
+     unsigned int number;
+-    lv_16sc_t* a_ptr = (lv_16sc_t*) in_a;
+-    lv_16sc_t* b_ptr = (lv_16sc_t*) in_b;
++    lv_16sc_t* a_ptr = (lv_16sc_t*)in_a;
++    lv_16sc_t* b_ptr = (lv_16sc_t*)in_b;
+     // for 2-lane vectors, 1st lane holds the real part,
+     // 2nd lane holds the imaginary part
+     int16x4x2_t a_val, b_val, accumulator;
+@@ -461,35 +620,33 @@ static inline void volk_16ic_x2_dot_prod_16ic_neon_vma(lv_16sc_t* out, const lv_
+     accumulator.val[0] = vdup_n_s16(0);
+     accumulator.val[1] = vdup_n_s16(0);
+-    for(number = 0; number < quarter_points; ++number)
+-        {
+-            a_val = vld2_s16((int16_t*)a_ptr); // a0r|a1r|a2r|a3r || a0i|a1i|a2i|a3i
+-            b_val = vld2_s16((int16_t*)b_ptr); // b0r|b1r|b2r|b3r || b0i|b1i|b2i|b3i
+-            __VOLK_PREFETCH(a_ptr + 8);
+-            __VOLK_PREFETCH(b_ptr + 8);
++    for (number = 0; number < quarter_points; ++number) {
++        a_val = vld2_s16((int16_t*)a_ptr); // a0r|a1r|a2r|a3r || a0i|a1i|a2i|a3i
++        b_val = vld2_s16((int16_t*)b_ptr); // b0r|b1r|b2r|b3r || b0i|b1i|b2i|b3i
++        __VOLK_PREFETCH(a_ptr + 8);
++        __VOLK_PREFETCH(b_ptr + 8);
+-            tmp.val[0] = vmul_s16(a_val.val[0], b_val.val[0]);
+-            tmp.val[1] = vmul_s16(a_val.val[1], b_val.val[0]);
++        tmp.val[0] = vmul_s16(a_val.val[0], b_val.val[0]);
++        tmp.val[1] = vmul_s16(a_val.val[1], b_val.val[0]);
+-            // use multiply accumulate/subtract to get result
+-            tmp.val[0] = vmls_s16(tmp.val[0], a_val.val[1], b_val.val[1]);
+-            tmp.val[1] = vmla_s16(tmp.val[1], a_val.val[0], b_val.val[1]);
++        // use multiply accumulate/subtract to get result
++        tmp.val[0] = vmls_s16(tmp.val[0], a_val.val[1], b_val.val[1]);
++        tmp.val[1] = vmla_s16(tmp.val[1], a_val.val[0], b_val.val[1]);
+-            accumulator.val[0] = vqadd_s16(accumulator.val[0], tmp.val[0]);
+-            accumulator.val[1] = vqadd_s16(accumulator.val[1], tmp.val[1]);
++        accumulator.val[0] = vqadd_s16(accumulator.val[0], tmp.val[0]);
++        accumulator.val[1] = vqadd_s16(accumulator.val[1], tmp.val[1]);
+-            a_ptr += 4;
+-            b_ptr += 4;
+-        }
++        a_ptr += 4;
++        b_ptr += 4;
++    }
+     vst2_s16((int16_t*)accum_result, accumulator);
+     *out = accum_result[0] + accum_result[1] + accum_result[2] + accum_result[3];
+     // tail case
+-    for(number = quarter_points * 4; number < num_points; ++number)
+-        {
+-            *out += (*a_ptr++) * (*b_ptr++);
+-        }
++    for (number = quarter_points * 4; number < num_points; ++number) {
++        *out += (*a_ptr++) * (*b_ptr++);
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+@@ -498,13 +655,16 @@ static inline void volk_16ic_x2_dot_prod_16ic_neon_vma(lv_16sc_t* out, const lv_
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void volk_16ic_x2_dot_prod_16ic_neon_optvma(lv_16sc_t* out, const lv_16sc_t* in_a, const lv_16sc_t* in_b, unsigned int num_points)
++static inline void volk_16ic_x2_dot_prod_16ic_neon_optvma(lv_16sc_t* out,
++                                                          const lv_16sc_t* in_a,
++                                                          const lv_16sc_t* in_b,
++                                                          unsigned int num_points)
+ {
+     unsigned int quarter_points = num_points / 4;
+     unsigned int number;
+-    lv_16sc_t* a_ptr = (lv_16sc_t*) in_a;
+-    lv_16sc_t* b_ptr = (lv_16sc_t*) in_b;
++    lv_16sc_t* a_ptr = (lv_16sc_t*)in_a;
++    lv_16sc_t* b_ptr = (lv_16sc_t*)in_b;
+     // for 2-lane vectors, 1st lane holds the real part,
+     // 2nd lane holds the imaginary part
+     int16x4x2_t a_val, b_val, accumulator1, accumulator2;
+@@ -515,22 +675,21 @@ static inline void volk_16ic_x2_dot_prod_16ic_neon_optvma(lv_16sc_t* out, const
+     accumulator2.val[0] = vdup_n_s16(0);
+     accumulator2.val[1] = vdup_n_s16(0);
+-    for(number = 0; number < quarter_points; ++number)
+-        {
+-            a_val = vld2_s16((int16_t*)a_ptr); // a0r|a1r|a2r|a3r || a0i|a1i|a2i|a3i
+-            b_val = vld2_s16((int16_t*)b_ptr); // b0r|b1r|b2r|b3r || b0i|b1i|b2i|b3i
+-            __VOLK_PREFETCH(a_ptr + 8);
+-            __VOLK_PREFETCH(b_ptr + 8);
++    for (number = 0; number < quarter_points; ++number) {
++        a_val = vld2_s16((int16_t*)a_ptr); // a0r|a1r|a2r|a3r || a0i|a1i|a2i|a3i
++        b_val = vld2_s16((int16_t*)b_ptr); // b0r|b1r|b2r|b3r || b0i|b1i|b2i|b3i
++        __VOLK_PREFETCH(a_ptr + 8);
++        __VOLK_PREFETCH(b_ptr + 8);
+-            // use 2 accumulators to remove inter-instruction data dependencies
+-            accumulator1.val[0] = vmla_s16(accumulator1.val[0], a_val.val[0], b_val.val[0]);
+-            accumulator2.val[0] = vmls_s16(accumulator2.val[0], a_val.val[1], b_val.val[1]);
+-            accumulator1.val[1] = vmla_s16(accumulator1.val[1], a_val.val[0], b_val.val[1]);
+-            accumulator2.val[1] = vmla_s16(accumulator2.val[1], a_val.val[1], b_val.val[0]);
++        // use 2 accumulators to remove inter-instruction data dependencies
++        accumulator1.val[0] = vmla_s16(accumulator1.val[0], a_val.val[0], b_val.val[0]);
++        accumulator2.val[0] = vmls_s16(accumulator2.val[0], a_val.val[1], b_val.val[1]);
++        accumulator1.val[1] = vmla_s16(accumulator1.val[1], a_val.val[0], b_val.val[1]);
++        accumulator2.val[1] = vmla_s16(accumulator2.val[1], a_val.val[1], b_val.val[0]);
+-            a_ptr += 4;
+-            b_ptr += 4;
+-        }
++        a_ptr += 4;
++        b_ptr += 4;
++    }
+     accumulator1.val[0] = vqadd_s16(accumulator1.val[0], accumulator2.val[0]);
+     accumulator1.val[1] = vqadd_s16(accumulator1.val[1], accumulator2.val[1]);
+@@ -539,10 +698,9 @@ static inline void volk_16ic_x2_dot_prod_16ic_neon_optvma(lv_16sc_t* out, const
+     *out = accum_result[0] + accum_result[1] + accum_result[2] + accum_result[3];
+     // tail case
+-    for(number = quarter_points * 4; number < num_points; ++number)
+-        {
+-            *out += (*a_ptr++) * (*b_ptr++);
+-        }
++    for (number = quarter_points * 4; number < num_points; ++number) {
++        *out += (*a_ptr++) * (*b_ptr++);
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+diff --git a/kernels/volk/volk_16ic_x2_multiply_16ic.h b/kernels/volk/volk_16ic_x2_multiply_16ic.h
+index 20d6a7f..2bf835d 100644
+--- a/kernels/volk/volk_16ic_x2_multiply_16ic.h
++++ b/kernels/volk/volk_16ic_x2_multiply_16ic.h
+@@ -25,18 +25,19 @@
+  *
+  * \b Overview
+  *
+- * Multiplies two input complex vectors, point-by-point, storing the result in the third vector.
+- * WARNING: Saturation is not checked.
++ * Multiplies two input complex vectors, point-by-point, storing the result in the third
++ * vector. WARNING: Saturation is not checked.
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_16ic_x2_multiply_16ic(lv_16sc_t* result, const lv_16sc_t* in_a, const lv_16sc_t* in_b, unsigned int num_points);
+- * \endcode
++ * void volk_16ic_x2_multiply_16ic(lv_16sc_t* result, const lv_16sc_t* in_a, const
++ * lv_16sc_t* in_b, unsigned int num_points); \endcode
+  *
+  * \b Inputs
+  * \li in_a: One of the vectors to be multiplied.
+  * \li in_b: The other vector to be multiplied.
+- * \li num_points: The number of complex data points to be multiplied from both input vectors.
++ * \li num_points: The number of complex data points to be multiplied from both input
++ * vectors.
+  *
+  * \b Outputs
+  * \li result: The vector where the results will be stored.
+@@ -51,13 +52,15 @@
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_16ic_x2_multiply_16ic_generic(lv_16sc_t* result, const lv_16sc_t* in_a, const lv_16sc_t* in_b, unsigned int num_points)
++static inline void volk_16ic_x2_multiply_16ic_generic(lv_16sc_t* result,
++                                                      const lv_16sc_t* in_a,
++                                                      const lv_16sc_t* in_b,
++                                                      unsigned int num_points)
+ {
+     unsigned int n;
+-    for (n = 0; n < num_points; n++)
+-        {
+-            result[n] = in_a[n] * in_b[n];
+-        }
++    for (n = 0; n < num_points; n++) {
++        result[n] = in_a[n] * in_b[n];
++    }
+ }
+ #endif /*LV_HAVE_GENERIC*/
+@@ -66,51 +69,58 @@ static inline void volk_16ic_x2_multiply_16ic_generic(lv_16sc_t* result, const l
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void volk_16ic_x2_multiply_16ic_a_sse2(lv_16sc_t* out, const lv_16sc_t* in_a, const lv_16sc_t* in_b, unsigned int num_points)
++static inline void volk_16ic_x2_multiply_16ic_a_sse2(lv_16sc_t* out,
++                                                     const lv_16sc_t* in_a,
++                                                     const lv_16sc_t* in_b,
++                                                     unsigned int num_points)
+ {
+     const unsigned int sse_iters = num_points / 4;
+-    __m128i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl, result;
++    __m128i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl,
++        result;
+-    mask_imag = _mm_set_epi8(0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0);
+-    mask_real = _mm_set_epi8(0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF);
++    mask_imag = _mm_set_epi8(
++        0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0);
++    mask_real = _mm_set_epi8(
++        0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF);
+     const lv_16sc_t* _in_a = in_a;
+     const lv_16sc_t* _in_b = in_b;
+     lv_16sc_t* _out = out;
+     unsigned int number;
+-    for(number = 0; number < sse_iters; number++)
+-        {
+-            a = _mm_load_si128((__m128i*)_in_a); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
+-            b = _mm_load_si128((__m128i*)_in_b);
+-            c = _mm_mullo_epi16 (a, b); // a3.i*b3.i, a3.r*b3.r, ....
++    for (number = 0; number < sse_iters; number++) {
++        a = _mm_load_si128(
++            (__m128i*)_in_a); // load (2 byte imag, 2 byte real) x 4 into 128 bits reg
++        b = _mm_load_si128((__m128i*)_in_b);
++        c = _mm_mullo_epi16(a, b); // a3.i*b3.i, a3.r*b3.r, ....
+-            c_sr = _mm_srli_si128 (c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
+-            real = _mm_subs_epi16 (c, c_sr);
+-            real = _mm_and_si128 (real, mask_real); // a3.r*b3.r-a3.i*b3.i , 0,  a3.r*b3.r- a3.i*b3.i
++        c_sr = _mm_srli_si128(c, 2); // Shift a right by imm8 bytes while shifting in
++                                     // zeros, and store the results in dst.
++        real = _mm_subs_epi16(c, c_sr);
++        real = _mm_and_si128(real,
++                             mask_real); // a3.r*b3.r-a3.i*b3.i , 0,  a3.r*b3.r- a3.i*b3.i
+-            b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
+-            a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
++        b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
++        a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
+-            imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
+-            imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
++        imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
++        imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
+-            imag = _mm_adds_epi16(imag1, imag2);
+-            imag = _mm_and_si128 (imag, mask_imag); // a3.i*b3.r+b3.i*a3.r, 0, ...
++        imag = _mm_adds_epi16(imag1, imag2);
++        imag = _mm_and_si128(imag, mask_imag); // a3.i*b3.r+b3.i*a3.r, 0, ...
+-            result = _mm_or_si128 (real, imag);
++        result = _mm_or_si128(real, imag);
+-            _mm_store_si128((__m128i*)_out, result);
++        _mm_store_si128((__m128i*)_out, result);
+-            _in_a += 4;
+-            _in_b += 4;
+-            _out += 4;
+-        }
++        _in_a += 4;
++        _in_b += 4;
++        _out += 4;
++    }
+-    for (number = sse_iters * 4; number < num_points; ++number)
+-        {
+-            *_out++ = (*_in_a++) * (*_in_b++);
+-        }
++    for (number = sse_iters * 4; number < num_points; ++number) {
++        *_out++ = (*_in_a++) * (*_in_b++);
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+@@ -118,51 +128,58 @@ static inline void volk_16ic_x2_multiply_16ic_a_sse2(lv_16sc_t* out, const lv_16
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void volk_16ic_x2_multiply_16ic_u_sse2(lv_16sc_t* out, const lv_16sc_t* in_a, const lv_16sc_t* in_b, unsigned int num_points)
++static inline void volk_16ic_x2_multiply_16ic_u_sse2(lv_16sc_t* out,
++                                                     const lv_16sc_t* in_a,
++                                                     const lv_16sc_t* in_b,
++                                                     unsigned int num_points)
+ {
+     const unsigned int sse_iters = num_points / 4;
+-    __m128i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1,imag2, b_sl, a_sl, result;
++    __m128i a, b, c, c_sr, mask_imag, mask_real, real, imag, imag1, imag2, b_sl, a_sl,
++        result;
+-    mask_imag = _mm_set_epi8(0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0);
+-    mask_real = _mm_set_epi8(0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF);
++    mask_imag = _mm_set_epi8(
++        0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0);
++    mask_real = _mm_set_epi8(
++        0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF);
+     const lv_16sc_t* _in_a = in_a;
+     const lv_16sc_t* _in_b = in_b;
+     lv_16sc_t* _out = out;
+     unsigned int number;
+-    for(number = 0; number < sse_iters; number++)
+-        {
+-            a = _mm_loadu_si128((__m128i*)_in_a); //load (2 byte imag, 2 byte real) x 4 into 128 bits reg
+-            b = _mm_loadu_si128((__m128i*)_in_b);
+-            c = _mm_mullo_epi16 (a, b); // a3.i*b3.i, a3.r*b3.r, ....
++    for (number = 0; number < sse_iters; number++) {
++        a = _mm_loadu_si128(
++            (__m128i*)_in_a); // load (2 byte imag, 2 byte real) x 4 into 128 bits reg
++        b = _mm_loadu_si128((__m128i*)_in_b);
++        c = _mm_mullo_epi16(a, b); // a3.i*b3.i, a3.r*b3.r, ....
+-            c_sr = _mm_srli_si128 (c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
+-            real = _mm_subs_epi16 (c, c_sr);
+-            real = _mm_and_si128 (real, mask_real); // a3.r*b3.r-a3.i*b3.i , 0,  a3.r*b3.r- a3.i*b3.i
++        c_sr = _mm_srli_si128(c, 2); // Shift a right by imm8 bytes while shifting in
++                                     // zeros, and store the results in dst.
++        real = _mm_subs_epi16(c, c_sr);
++        real = _mm_and_si128(real,
++                             mask_real); // a3.r*b3.r-a3.i*b3.i , 0,  a3.r*b3.r- a3.i*b3.i
+-            b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
+-            a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
++        b_sl = _mm_slli_si128(b, 2); // b3.r, b2.i ....
++        a_sl = _mm_slli_si128(a, 2); // a3.r, a2.i ....
+-            imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
+-            imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
++        imag1 = _mm_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
++        imag2 = _mm_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
+-            imag = _mm_adds_epi16(imag1, imag2);
+-            imag = _mm_and_si128 (imag, mask_imag); // a3.i*b3.r+b3.i*a3.r, 0, ...
++        imag = _mm_adds_epi16(imag1, imag2);
++        imag = _mm_and_si128(imag, mask_imag); // a3.i*b3.r+b3.i*a3.r, 0, ...
+-            result = _mm_or_si128 (real, imag);
++        result = _mm_or_si128(real, imag);
+-            _mm_storeu_si128((__m128i*)_out, result);
++        _mm_storeu_si128((__m128i*)_out, result);
+-            _in_a += 4;
+-            _in_b += 4;
+-            _out += 4;
+-        }
++        _in_a += 4;
++        _in_b += 4;
++        _out += 4;
++    }
+-    for (number = sse_iters * 4; number < num_points; ++number)
+-        {
+-            *_out++ = (*_in_a++) * (*_in_b++);
+-        }
++    for (number = sse_iters * 4; number < num_points; ++number) {
++        *_out++ = (*_in_a++) * (*_in_b++);
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+@@ -170,7 +187,10 @@ static inline void volk_16ic_x2_multiply_16ic_u_sse2(lv_16sc_t* out, const lv_16
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void volk_16ic_x2_multiply_16ic_u_avx2(lv_16sc_t* out, const lv_16sc_t* in_a, const lv_16sc_t* in_b, unsigned int num_points)
++static inline void volk_16ic_x2_multiply_16ic_u_avx2(lv_16sc_t* out,
++                                                     const lv_16sc_t* in_a,
++                                                     const lv_16sc_t* in_b,
++                                                     unsigned int num_points)
+ {
+     unsigned int number = 0;
+     const unsigned int avx2_points = num_points / 8;
+@@ -179,44 +199,108 @@ static inline void volk_16ic_x2_multiply_16ic_u_avx2(lv_16sc_t* out, const lv_16
+     const lv_16sc_t* _in_b = in_b;
+     lv_16sc_t* _out = out;
+-    __m256i a, b, c, c_sr,  real, imag, imag1, imag2, b_sl, a_sl, result;
+-
+-    const __m256i mask_imag = _mm256_set_epi8(0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0);
+-    const __m256i mask_real = _mm256_set_epi8(0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF);
+-
+-    for(;number < avx2_points; number++)
+-        {
+-            a = _mm256_loadu_si256((__m256i*)_in_a); // Load the ar + ai, br + bi as ar,ai,br,bi
+-            b = _mm256_loadu_si256((__m256i*)_in_b); // Load the cr + ci, dr + di as cr,ci,dr,di
+-            c = _mm256_mullo_epi16(a, b);
+-
+-            c_sr = _mm256_srli_si256(c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
+-            real = _mm256_subs_epi16(c, c_sr);
+-            real = _mm256_and_si256(real, mask_real); // a3.r*b3.r-a3.i*b3.i , 0,  a3.r*b3.r- a3.i*b3.i
+-
+-            b_sl = _mm256_slli_si256(b, 2); // b3.r, b2.i ....
+-            a_sl = _mm256_slli_si256(a, 2); // a3.r, a2.i ....
+-
+-            imag1 = _mm256_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
+-            imag2 = _mm256_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
+-
+-            imag = _mm256_adds_epi16(imag1, imag2);
+-            imag = _mm256_and_si256(imag, mask_imag); // a3.i*b3.r+b3.i*a3.r, 0, ...
+-
+-            result = _mm256_or_si256(real, imag);
+-
+-            _mm256_storeu_si256((__m256i*)_out, result);
+-
+-            _in_a += 8;
+-            _in_b += 8;
+-            _out += 8;
+-        }
++    __m256i a, b, c, c_sr, real, imag, imag1, imag2, b_sl, a_sl, result;
++
++    const __m256i mask_imag = _mm256_set_epi8(0xFF,
++                                              0xFF,
++                                              0,
++                                              0,
++                                              0xFF,
++                                              0xFF,
++                                              0,
++                                              0,
++                                              0xFF,
++                                              0xFF,
++                                              0,
++                                              0,
++                                              0xFF,
++                                              0xFF,
++                                              0,
++                                              0,
++                                              0xFF,
++                                              0xFF,
++                                              0,
++                                              0,
++                                              0xFF,
++                                              0xFF,
++                                              0,
++                                              0,
++                                              0xFF,
++                                              0xFF,
++                                              0,
++                                              0,
++                                              0xFF,
++                                              0xFF,
++                                              0,
++                                              0);
++    const __m256i mask_real = _mm256_set_epi8(0,
++                                              0,
++                                              0xFF,
++                                              0xFF,
++                                              0,
++                                              0,
++                                              0xFF,
++                                              0xFF,
++                                              0,
++                                              0,
++                                              0xFF,
++                                              0xFF,
++                                              0,
++                                              0,
++                                              0xFF,
++                                              0xFF,
++                                              0,
++                                              0,
++                                              0xFF,
++                                              0xFF,
++                                              0,
++                                              0,
++                                              0xFF,
++                                              0xFF,
++                                              0,
++                                              0,
++                                              0xFF,
++                                              0xFF,
++                                              0,
++                                              0,
++                                              0xFF,
++                                              0xFF);
++
++    for (; number < avx2_points; number++) {
++        a = _mm256_loadu_si256(
++            (__m256i*)_in_a); // Load the ar + ai, br + bi as ar,ai,br,bi
++        b = _mm256_loadu_si256(
++            (__m256i*)_in_b); // Load the cr + ci, dr + di as cr,ci,dr,di
++        c = _mm256_mullo_epi16(a, b);
++
++        c_sr = _mm256_srli_si256(c, 2); // Shift a right by imm8 bytes while shifting in
++                                        // zeros, and store the results in dst.
++        real = _mm256_subs_epi16(c, c_sr);
++        real = _mm256_and_si256(
++            real, mask_real); // a3.r*b3.r-a3.i*b3.i , 0,  a3.r*b3.r- a3.i*b3.i
++
++        b_sl = _mm256_slli_si256(b, 2); // b3.r, b2.i ....
++        a_sl = _mm256_slli_si256(a, 2); // a3.r, a2.i ....
++
++        imag1 = _mm256_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
++        imag2 = _mm256_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
++
++        imag = _mm256_adds_epi16(imag1, imag2);
++        imag = _mm256_and_si256(imag, mask_imag); // a3.i*b3.r+b3.i*a3.r, 0, ...
++
++        result = _mm256_or_si256(real, imag);
++
++        _mm256_storeu_si256((__m256i*)_out, result);
++
++        _in_a += 8;
++        _in_b += 8;
++        _out += 8;
++    }
+     _mm256_zeroupper();
+     number = avx2_points * 8;
+-    for(;number < num_points; number++)
+-        {
+-            *_out++ = (*_in_a++) * (*_in_b++);
+-        }
++    for (; number < num_points; number++) {
++        *_out++ = (*_in_a++) * (*_in_b++);
++    }
+ }
+ #endif /* LV_HAVE_AVX2  */
+@@ -224,7 +308,10 @@ static inline void volk_16ic_x2_multiply_16ic_u_avx2(lv_16sc_t* out, const lv_16
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void volk_16ic_x2_multiply_16ic_a_avx2(lv_16sc_t* out, const lv_16sc_t* in_a, const lv_16sc_t* in_b, unsigned int num_points)
++static inline void volk_16ic_x2_multiply_16ic_a_avx2(lv_16sc_t* out,
++                                                     const lv_16sc_t* in_a,
++                                                     const lv_16sc_t* in_b,
++                                                     unsigned int num_points)
+ {
+     unsigned int number = 0;
+     const unsigned int avx2_points = num_points / 8;
+@@ -233,44 +320,108 @@ static inline void volk_16ic_x2_multiply_16ic_a_avx2(lv_16sc_t* out, const lv_16
+     const lv_16sc_t* _in_b = in_b;
+     lv_16sc_t* _out = out;
+-    __m256i a, b, c, c_sr,  real, imag, imag1, imag2, b_sl, a_sl, result;
+-
+-    const __m256i mask_imag = _mm256_set_epi8(0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0);
+-    const __m256i mask_real = _mm256_set_epi8(0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF, 0, 0, 0xFF, 0xFF);
+-
+-    for(;number < avx2_points; number++)
+-        {
+-            a = _mm256_load_si256((__m256i*)_in_a); // Load the ar + ai, br + bi as ar,ai,br,bi
+-            b = _mm256_load_si256((__m256i*)_in_b); // Load the cr + ci, dr + di as cr,ci,dr,di
+-            c = _mm256_mullo_epi16(a, b);
+-
+-            c_sr = _mm256_srli_si256(c, 2); // Shift a right by imm8 bytes while shifting in zeros, and store the results in dst.
+-            real = _mm256_subs_epi16(c, c_sr);
+-            real = _mm256_and_si256(real, mask_real); // a3.r*b3.r-a3.i*b3.i , 0,  a3.r*b3.r- a3.i*b3.i
+-
+-            b_sl = _mm256_slli_si256(b, 2); // b3.r, b2.i ....
+-            a_sl = _mm256_slli_si256(a, 2); // a3.r, a2.i ....
+-
+-            imag1 = _mm256_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
+-            imag2 = _mm256_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
+-
+-            imag = _mm256_adds_epi16(imag1, imag2);
+-            imag = _mm256_and_si256(imag, mask_imag); // a3.i*b3.r+b3.i*a3.r, 0, ...
+-
+-            result = _mm256_or_si256(real, imag);
+-
+-            _mm256_store_si256((__m256i*)_out, result);
+-
+-            _in_a += 8;
+-            _in_b += 8;
+-            _out += 8;
+-        }
++    __m256i a, b, c, c_sr, real, imag, imag1, imag2, b_sl, a_sl, result;
++
++    const __m256i mask_imag = _mm256_set_epi8(0xFF,
++                                              0xFF,
++                                              0,
++                                              0,
++                                              0xFF,
++                                              0xFF,
++                                              0,
++                                              0,
++                                              0xFF,
++                                              0xFF,
++                                              0,
++                                              0,
++                                              0xFF,
++                                              0xFF,
++                                              0,
++                                              0,
++                                              0xFF,
++                                              0xFF,
++                                              0,
++                                              0,
++                                              0xFF,
++                                              0xFF,
++                                              0,
++                                              0,
++                                              0xFF,
++                                              0xFF,
++                                              0,
++                                              0,
++                                              0xFF,
++                                              0xFF,
++                                              0,
++                                              0);
++    const __m256i mask_real = _mm256_set_epi8(0,
++                                              0,
++                                              0xFF,
++                                              0xFF,
++                                              0,
++                                              0,
++                                              0xFF,
++                                              0xFF,
++                                              0,
++                                              0,
++                                              0xFF,
++                                              0xFF,
++                                              0,
++                                              0,
++                                              0xFF,
++                                              0xFF,
++                                              0,
++                                              0,
++                                              0xFF,
++                                              0xFF,
++                                              0,
++                                              0,
++                                              0xFF,
++                                              0xFF,
++                                              0,
++                                              0,
++                                              0xFF,
++                                              0xFF,
++                                              0,
++                                              0,
++                                              0xFF,
++                                              0xFF);
++
++    for (; number < avx2_points; number++) {
++        a = _mm256_load_si256(
++            (__m256i*)_in_a); // Load the ar + ai, br + bi as ar,ai,br,bi
++        b = _mm256_load_si256(
++            (__m256i*)_in_b); // Load the cr + ci, dr + di as cr,ci,dr,di
++        c = _mm256_mullo_epi16(a, b);
++
++        c_sr = _mm256_srli_si256(c, 2); // Shift a right by imm8 bytes while shifting in
++                                        // zeros, and store the results in dst.
++        real = _mm256_subs_epi16(c, c_sr);
++        real = _mm256_and_si256(
++            real, mask_real); // a3.r*b3.r-a3.i*b3.i , 0,  a3.r*b3.r- a3.i*b3.i
++
++        b_sl = _mm256_slli_si256(b, 2); // b3.r, b2.i ....
++        a_sl = _mm256_slli_si256(a, 2); // a3.r, a2.i ....
++
++        imag1 = _mm256_mullo_epi16(a, b_sl); // a3.i*b3.r, ....
++        imag2 = _mm256_mullo_epi16(b, a_sl); // b3.i*a3.r, ....
++
++        imag = _mm256_adds_epi16(imag1, imag2);
++        imag = _mm256_and_si256(imag, mask_imag); // a3.i*b3.r+b3.i*a3.r, 0, ...
++
++        result = _mm256_or_si256(real, imag);
++
++        _mm256_store_si256((__m256i*)_out, result);
++
++        _in_a += 8;
++        _in_b += 8;
++        _out += 8;
++    }
+     _mm256_zeroupper();
+     number = avx2_points * 8;
+-    for(;number < num_points; number++)
+-        {
+-            *_out++ = (*_in_a++) * (*_in_b++);
+-        }
++    for (; number < num_points; number++) {
++        *_out++ = (*_in_a++) * (*_in_b++);
++    }
+ }
+ #endif /* LV_HAVE_AVX2  */
+@@ -278,48 +429,49 @@ static inline void volk_16ic_x2_multiply_16ic_a_avx2(lv_16sc_t* out, const lv_16
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void volk_16ic_x2_multiply_16ic_neon(lv_16sc_t* out, const lv_16sc_t* in_a, const lv_16sc_t* in_b, unsigned int num_points)
++static inline void volk_16ic_x2_multiply_16ic_neon(lv_16sc_t* out,
++                                                   const lv_16sc_t* in_a,
++                                                   const lv_16sc_t* in_b,
++                                                   unsigned int num_points)
+ {
+-    lv_16sc_t *a_ptr = (lv_16sc_t*) in_a;
+-    lv_16sc_t *b_ptr = (lv_16sc_t*) in_b;
++    lv_16sc_t* a_ptr = (lv_16sc_t*)in_a;
++    lv_16sc_t* b_ptr = (lv_16sc_t*)in_b;
+     unsigned int quarter_points = num_points / 4;
+     int16x4x2_t a_val, b_val, c_val;
+     int16x4x2_t tmp_real, tmp_imag;
+     unsigned int number = 0;
+-    for(number = 0; number < quarter_points; ++number)
+-        {
+-            a_val = vld2_s16((int16_t*)a_ptr); // a0r|a1r|a2r|a3r || a0i|a1i|a2i|a3i
+-            b_val = vld2_s16((int16_t*)b_ptr); // b0r|b1r|b2r|b3r || b0i|b1i|b2i|b3i
+-            __VOLK_PREFETCH(a_ptr + 4);
+-            __VOLK_PREFETCH(b_ptr + 4);
+-
+-            // multiply the real*real and imag*imag to get real result
+-            // a0r*b0r|a1r*b1r|a2r*b2r|a3r*b3r
+-            tmp_real.val[0] = vmul_s16(a_val.val[0], b_val.val[0]);
+-            // a0i*b0i|a1i*b1i|a2i*b2i|a3i*b3i
+-            tmp_real.val[1] = vmul_s16(a_val.val[1], b_val.val[1]);
+-
+-            // Multiply cross terms to get the imaginary result
+-            // a0r*b0i|a1r*b1i|a2r*b2i|a3r*b3i
+-            tmp_imag.val[0] = vmul_s16(a_val.val[0], b_val.val[1]);
+-            // a0i*b0r|a1i*b1r|a2i*b2r|a3i*b3r
+-            tmp_imag.val[1] = vmul_s16(a_val.val[1], b_val.val[0]);
+-
+-            // store the results
+-            c_val.val[0] = vsub_s16(tmp_real.val[0], tmp_real.val[1]);
+-            c_val.val[1] = vadd_s16(tmp_imag.val[0], tmp_imag.val[1]);
+-            vst2_s16((int16_t*)out, c_val);
+-
+-            a_ptr += 4;
+-            b_ptr += 4;
+-            out += 4;
+-        }
+-
+-    for(number = quarter_points * 4; number < num_points; number++)
+-        {
+-            *out++ = (*a_ptr++) * (*b_ptr++);
+-        }
++    for (number = 0; number < quarter_points; ++number) {
++        a_val = vld2_s16((int16_t*)a_ptr); // a0r|a1r|a2r|a3r || a0i|a1i|a2i|a3i
++        b_val = vld2_s16((int16_t*)b_ptr); // b0r|b1r|b2r|b3r || b0i|b1i|b2i|b3i
++        __VOLK_PREFETCH(a_ptr + 4);
++        __VOLK_PREFETCH(b_ptr + 4);
++
++        // multiply the real*real and imag*imag to get real result
++        // a0r*b0r|a1r*b1r|a2r*b2r|a3r*b3r
++        tmp_real.val[0] = vmul_s16(a_val.val[0], b_val.val[0]);
++        // a0i*b0i|a1i*b1i|a2i*b2i|a3i*b3i
++        tmp_real.val[1] = vmul_s16(a_val.val[1], b_val.val[1]);
++
++        // Multiply cross terms to get the imaginary result
++        // a0r*b0i|a1r*b1i|a2r*b2i|a3r*b3i
++        tmp_imag.val[0] = vmul_s16(a_val.val[0], b_val.val[1]);
++        // a0i*b0r|a1i*b1r|a2i*b2r|a3i*b3r
++        tmp_imag.val[1] = vmul_s16(a_val.val[1], b_val.val[0]);
++
++        // store the results
++        c_val.val[0] = vsub_s16(tmp_real.val[0], tmp_real.val[1]);
++        c_val.val[1] = vadd_s16(tmp_imag.val[0], tmp_imag.val[1]);
++        vst2_s16((int16_t*)out, c_val);
++
++        a_ptr += 4;
++        b_ptr += 4;
++        out += 4;
++    }
++
++    for (number = quarter_points * 4; number < num_points; number++) {
++        *out++ = (*a_ptr++) * (*b_ptr++);
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+diff --git a/kernels/volk/volk_16u_byteswap.h b/kernels/volk/volk_16u_byteswap.h
+index eaa972f..221dcdb 100644
+--- a/kernels/volk/volk_16u_byteswap.h
++++ b/kernels/volk/volk_16u_byteswap.h
+@@ -58,74 +58,80 @@
+ #if LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void volk_16u_byteswap_a_avx2(uint16_t* intsToSwap, unsigned int num_points){
+-  unsigned int number;
++static inline void volk_16u_byteswap_a_avx2(uint16_t* intsToSwap, unsigned int num_points)
++{
++    unsigned int number;
+-  const unsigned int nPerSet   = 16;
+-  const uint64_t     nSets   = num_points / nPerSet;
++    const unsigned int nPerSet = 16;
++    const uint64_t nSets = num_points / nPerSet;
+-  uint16_t* inputPtr = (uint16_t*) intsToSwap;
++    uint16_t* inputPtr = (uint16_t*)intsToSwap;
+-  const uint8_t shuffleVector[32] = { 1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14, 17, 16, 19, 18, 21, 20, 23, 22, 25, 24, 27, 26, 29, 28, 31, 30};
++    const uint8_t shuffleVector[32] = { 1,  0,  3,  2,  5,  4,  7,  6,  9,  8,  11,
++                                        10, 13, 12, 15, 14, 17, 16, 19, 18, 21, 20,
++                                        23, 22, 25, 24, 27, 26, 29, 28, 31, 30 };
+-  const __m256i myShuffle = _mm256_loadu_si256((__m256i*) &shuffleVector[0]);
++    const __m256i myShuffle = _mm256_loadu_si256((__m256i*)&shuffleVector[0]);
+-  for(number = 0; number < nSets; number++) {
+-    // Load the 32t values, increment inputPtr later since we're doing it in-place.
+-    const __m256i input  = _mm256_load_si256((__m256i*)inputPtr);
+-    const __m256i output = _mm256_shuffle_epi8(input, myShuffle);
++    for (number = 0; number < nSets; number++) {
++        // Load the 32t values, increment inputPtr later since we're doing it in-place.
++        const __m256i input = _mm256_load_si256((__m256i*)inputPtr);
++        const __m256i output = _mm256_shuffle_epi8(input, myShuffle);
+-    // Store the results
+-    _mm256_store_si256((__m256i*)inputPtr, output);
+-    inputPtr += nPerSet;
+-  }
++        // Store the results
++        _mm256_store_si256((__m256i*)inputPtr, output);
++        inputPtr += nPerSet;
++    }
+-  _mm256_zeroupper();
++    _mm256_zeroupper();
+-  // Byteswap any remaining points:
+-  for(number = nPerSet * nSets; number < num_points; number++) {
+-    uint16_t outputVal = *inputPtr;
+-    outputVal = (((outputVal >> 8) & 0xff) | ((outputVal << 8) & 0xff00));
+-    *inputPtr = outputVal;
+-    inputPtr++;
+-  }
++    // Byteswap any remaining points:
++    for (number = nPerSet * nSets; number < num_points; number++) {
++        uint16_t outputVal = *inputPtr;
++        outputVal = (((outputVal >> 8) & 0xff) | ((outputVal << 8) & 0xff00));
++        *inputPtr = outputVal;
++        inputPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+ #if LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void volk_16u_byteswap_u_avx2(uint16_t* intsToSwap, unsigned int num_points){
+-  unsigned int number;
++static inline void volk_16u_byteswap_u_avx2(uint16_t* intsToSwap, unsigned int num_points)
++{
++    unsigned int number;
+-  const unsigned int nPerSet   = 16;
+-  const uint64_t     nSets   = num_points / nPerSet;
++    const unsigned int nPerSet = 16;
++    const uint64_t nSets = num_points / nPerSet;
+-  uint16_t* inputPtr = (uint16_t*) intsToSwap;
++    uint16_t* inputPtr = (uint16_t*)intsToSwap;
+-  const uint8_t shuffleVector[32] = { 1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14, 17, 16, 19, 18, 21, 20, 23, 22, 25, 24, 27, 26, 29, 28, 31, 30};
++    const uint8_t shuffleVector[32] = { 1,  0,  3,  2,  5,  4,  7,  6,  9,  8,  11,
++                                        10, 13, 12, 15, 14, 17, 16, 19, 18, 21, 20,
++                                        23, 22, 25, 24, 27, 26, 29, 28, 31, 30 };
+-  const __m256i myShuffle = _mm256_loadu_si256((__m256i*) &shuffleVector[0]);
++    const __m256i myShuffle = _mm256_loadu_si256((__m256i*)&shuffleVector[0]);
+-  for (number = 0; number < nSets; number++) {
+-    // Load the 32t values, increment inputPtr later since we're doing it in-place.
+-    const __m256i input  = _mm256_loadu_si256((__m256i*)inputPtr);
+-    const __m256i output = _mm256_shuffle_epi8(input,myShuffle);
++    for (number = 0; number < nSets; number++) {
++        // Load the 32t values, increment inputPtr later since we're doing it in-place.
++        const __m256i input = _mm256_loadu_si256((__m256i*)inputPtr);
++        const __m256i output = _mm256_shuffle_epi8(input, myShuffle);
+-    // Store the results
+-    _mm256_storeu_si256((__m256i*)inputPtr, output);
+-    inputPtr += nPerSet;
+-  }
++        // Store the results
++        _mm256_storeu_si256((__m256i*)inputPtr, output);
++        inputPtr += nPerSet;
++    }
+-  _mm256_zeroupper();
++    _mm256_zeroupper();
+-  // Byteswap any remaining points:
+-  for(number = nPerSet * nSets; number < num_points; number++) {
+-    uint16_t outputVal = *inputPtr;
+-    outputVal = (((outputVal >> 8) & 0xff) | ((outputVal << 8) & 0xff00));
+-    *inputPtr = outputVal;
+-    inputPtr++;
+-  }
++    // Byteswap any remaining points:
++    for (number = nPerSet * nSets; number < num_points; number++) {
++        uint16_t outputVal = *inputPtr;
++        outputVal = (((outputVal >> 8) & 0xff) | ((outputVal << 8) & 0xff00));
++        *inputPtr = outputVal;
++        inputPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -133,47 +139,50 @@ static inline void volk_16u_byteswap_u_avx2(uint16_t* intsToSwap, unsigned int n
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void volk_16u_byteswap_u_sse2(uint16_t* intsToSwap, unsigned int num_points){
+-  unsigned int number = 0;
+-  uint16_t* inputPtr = intsToSwap;
+-  __m128i input, left, right, output;
+-
+-  const unsigned int eighthPoints = num_points / 8;
+-  for(;number < eighthPoints; number++){
+-    // Load the 16t values, increment inputPtr later since we're doing it in-place.
+-    input = _mm_loadu_si128((__m128i*)inputPtr);
+-    // Do the two shifts
+-    left = _mm_slli_epi16(input, 8);
+-    right = _mm_srli_epi16(input, 8);
+-    // Or the left and right halves together
+-    output = _mm_or_si128(left, right);
+-    // Store the results
+-    _mm_storeu_si128((__m128i*)inputPtr, output);
+-    inputPtr += 8;
+-  }
+-
+-  // Byteswap any remaining points:
+-  number = eighthPoints*8;
+-  for(; number < num_points; number++){
+-    uint16_t outputVal = *inputPtr;
+-    outputVal = (((outputVal >> 8) & 0xff) | ((outputVal << 8) & 0xff00));
+-    *inputPtr = outputVal;
+-    inputPtr++;
+-  }
++static inline void volk_16u_byteswap_u_sse2(uint16_t* intsToSwap, unsigned int num_points)
++{
++    unsigned int number = 0;
++    uint16_t* inputPtr = intsToSwap;
++    __m128i input, left, right, output;
++
++    const unsigned int eighthPoints = num_points / 8;
++    for (; number < eighthPoints; number++) {
++        // Load the 16t values, increment inputPtr later since we're doing it in-place.
++        input = _mm_loadu_si128((__m128i*)inputPtr);
++        // Do the two shifts
++        left = _mm_slli_epi16(input, 8);
++        right = _mm_srli_epi16(input, 8);
++        // Or the left and right halves together
++        output = _mm_or_si128(left, right);
++        // Store the results
++        _mm_storeu_si128((__m128i*)inputPtr, output);
++        inputPtr += 8;
++    }
++
++    // Byteswap any remaining points:
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        uint16_t outputVal = *inputPtr;
++        outputVal = (((outputVal >> 8) & 0xff) | ((outputVal << 8) & 0xff00));
++        *inputPtr = outputVal;
++        inputPtr++;
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_16u_byteswap_generic(uint16_t* intsToSwap, unsigned int num_points){
+-  unsigned int point;
+-  uint16_t* inputPtr = intsToSwap;
+-  for(point = 0; point < num_points; point++){
+-    uint16_t output = *inputPtr;
+-    output = (((output >> 8) & 0xff) | ((output << 8) & 0xff00));
+-    *inputPtr = output;
+-    inputPtr++;
+-  }
++static inline void volk_16u_byteswap_generic(uint16_t* intsToSwap,
++                                             unsigned int num_points)
++{
++    unsigned int point;
++    uint16_t* inputPtr = intsToSwap;
++    for (point = 0; point < num_points; point++) {
++        uint16_t output = *inputPtr;
++        output = (((output >> 8) & 0xff) | ((output << 8) & 0xff00));
++        *inputPtr = output;
++        inputPtr++;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -187,129 +196,136 @@ static inline void volk_16u_byteswap_generic(uint16_t* intsToSwap, unsigned int
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void volk_16u_byteswap_a_sse2(uint16_t* intsToSwap, unsigned int num_points){
+-  unsigned int number = 0;
+-  uint16_t* inputPtr = intsToSwap;
+-  __m128i input, left, right, output;
+-
+-  const unsigned int eighthPoints = num_points / 8;
+-  for(;number < eighthPoints; number++){
+-    // Load the 16t values, increment inputPtr later since we're doing it in-place.
+-    input = _mm_load_si128((__m128i*)inputPtr);
+-    // Do the two shifts
+-    left = _mm_slli_epi16(input, 8);
+-    right = _mm_srli_epi16(input, 8);
+-    // Or the left and right halves together
+-    output = _mm_or_si128(left, right);
+-    // Store the results
+-    _mm_store_si128((__m128i*)inputPtr, output);
+-    inputPtr += 8;
+-  }
+-
+-
+-  // Byteswap any remaining points:
+-  number = eighthPoints*8;
+-  for(; number < num_points; number++){
+-    uint16_t outputVal = *inputPtr;
+-    outputVal = (((outputVal >> 8) & 0xff) | ((outputVal << 8) & 0xff00));
+-    *inputPtr = outputVal;
+-    inputPtr++;
+-  }
++static inline void volk_16u_byteswap_a_sse2(uint16_t* intsToSwap, unsigned int num_points)
++{
++    unsigned int number = 0;
++    uint16_t* inputPtr = intsToSwap;
++    __m128i input, left, right, output;
++
++    const unsigned int eighthPoints = num_points / 8;
++    for (; number < eighthPoints; number++) {
++        // Load the 16t values, increment inputPtr later since we're doing it in-place.
++        input = _mm_load_si128((__m128i*)inputPtr);
++        // Do the two shifts
++        left = _mm_slli_epi16(input, 8);
++        right = _mm_srli_epi16(input, 8);
++        // Or the left and right halves together
++        output = _mm_or_si128(left, right);
++        // Store the results
++        _mm_store_si128((__m128i*)inputPtr, output);
++        inputPtr += 8;
++    }
++
++
++    // Byteswap any remaining points:
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        uint16_t outputVal = *inputPtr;
++        outputVal = (((outputVal >> 8) & 0xff) | ((outputVal << 8) & 0xff00));
++        *inputPtr = outputVal;
++        inputPtr++;
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void volk_16u_byteswap_neon(uint16_t* intsToSwap, unsigned int num_points){
+-  unsigned int number;
+-  unsigned int eighth_points = num_points / 8;
+-  uint16x8_t input, output;
+-  uint16_t* inputPtr = intsToSwap;
+-
+-  for(number = 0; number < eighth_points; number++) {
+-    input = vld1q_u16(inputPtr);
+-    output = vsriq_n_u16(output, input, 8);
+-    output = vsliq_n_u16(output, input, 8);
+-    vst1q_u16(inputPtr, output);
+-    inputPtr += 8;
+-  }
+-
+-  for(number = eighth_points * 8; number < num_points; number++){
+-    uint16_t output = *inputPtr;
+-    output = (((output >> 8) & 0xff) | ((output << 8) & 0xff00));
+-    *inputPtr = output;
+-    inputPtr++;
+-  }
++static inline void volk_16u_byteswap_neon(uint16_t* intsToSwap, unsigned int num_points)
++{
++    unsigned int number;
++    unsigned int eighth_points = num_points / 8;
++    uint16x8_t input, output;
++    uint16_t* inputPtr = intsToSwap;
++
++    for (number = 0; number < eighth_points; number++) {
++        input = vld1q_u16(inputPtr);
++        output = vsriq_n_u16(output, input, 8);
++        output = vsliq_n_u16(output, input, 8);
++        vst1q_u16(inputPtr, output);
++        inputPtr += 8;
++    }
++
++    for (number = eighth_points * 8; number < num_points; number++) {
++        uint16_t output = *inputPtr;
++        output = (((output >> 8) & 0xff) | ((output << 8) & 0xff00));
++        *inputPtr = output;
++        inputPtr++;
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void volk_16u_byteswap_neon_table(uint16_t* intsToSwap, unsigned int num_points){
+-  uint16_t* inputPtr = intsToSwap;
+-  unsigned int number = 0;
+-  unsigned int n16points = num_points / 16;
+-
+-  uint8x8x4_t input_table;
+-  uint8x8_t int_lookup01, int_lookup23, int_lookup45, int_lookup67;
+-  uint8x8_t swapped_int01, swapped_int23, swapped_int45, swapped_int67;
+-
+-  /* these magic numbers are used as byte-indices in the LUT.
+-     they are pre-computed to save time. A simple C program
+-     can calculate them; for example for lookup01:
+-    uint8_t chars[8] = {24, 16, 8, 0, 25, 17, 9, 1};
+-    for(ii=0; ii < 8; ++ii) {
+-        index += ((uint64_t)(*(chars+ii))) << (ii*8);
++static inline void volk_16u_byteswap_neon_table(uint16_t* intsToSwap,
++                                                unsigned int num_points)
++{
++    uint16_t* inputPtr = intsToSwap;
++    unsigned int number = 0;
++    unsigned int n16points = num_points / 16;
++
++    uint8x8x4_t input_table;
++    uint8x8_t int_lookup01, int_lookup23, int_lookup45, int_lookup67;
++    uint8x8_t swapped_int01, swapped_int23, swapped_int45, swapped_int67;
++
++    /* these magic numbers are used as byte-indices in the LUT.
++       they are pre-computed to save time. A simple C program
++       can calculate them; for example for lookup01:
++      uint8_t chars[8] = {24, 16, 8, 0, 25, 17, 9, 1};
++      for(ii=0; ii < 8; ++ii) {
++          index += ((uint64_t)(*(chars+ii))) << (ii*8);
++      }
++    */
++    int_lookup01 = vcreate_u8(1232017111498883080);
++    int_lookup23 = vcreate_u8(1376697457175036426);
++    int_lookup45 = vcreate_u8(1521377802851189772);
++    int_lookup67 = vcreate_u8(1666058148527343118);
++
++    for (number = 0; number < n16points; ++number) {
++        input_table = vld4_u8((uint8_t*)inputPtr);
++        swapped_int01 = vtbl4_u8(input_table, int_lookup01);
++        swapped_int23 = vtbl4_u8(input_table, int_lookup23);
++        swapped_int45 = vtbl4_u8(input_table, int_lookup45);
++        swapped_int67 = vtbl4_u8(input_table, int_lookup67);
++        vst1_u8((uint8_t*)inputPtr, swapped_int01);
++        vst1_u8((uint8_t*)(inputPtr + 4), swapped_int23);
++        vst1_u8((uint8_t*)(inputPtr + 8), swapped_int45);
++        vst1_u8((uint8_t*)(inputPtr + 12), swapped_int67);
++
++        inputPtr += 16;
++    }
++
++    for (number = n16points * 16; number < num_points; ++number) {
++        uint16_t output = *inputPtr;
++        output = (((output >> 8) & 0xff) | ((output << 8) & 0xff00));
++        *inputPtr = output;
++        inputPtr++;
+     }
+-  */
+-  int_lookup01 = vcreate_u8(1232017111498883080);
+-  int_lookup23 = vcreate_u8(1376697457175036426);
+-  int_lookup45 = vcreate_u8(1521377802851189772);
+-  int_lookup67 = vcreate_u8(1666058148527343118);
+-
+-  for(number = 0; number < n16points; ++number){
+-    input_table = vld4_u8((uint8_t*) inputPtr);
+-    swapped_int01 = vtbl4_u8(input_table, int_lookup01);
+-    swapped_int23 = vtbl4_u8(input_table, int_lookup23);
+-    swapped_int45 = vtbl4_u8(input_table, int_lookup45);
+-    swapped_int67 = vtbl4_u8(input_table, int_lookup67);
+-    vst1_u8((uint8_t*)inputPtr, swapped_int01);
+-    vst1_u8((uint8_t*)(inputPtr+4), swapped_int23);
+-    vst1_u8((uint8_t*)(inputPtr+8), swapped_int45);
+-    vst1_u8((uint8_t*)(inputPtr+12), swapped_int67);
+-
+-    inputPtr += 16;
+-  }
+-
+-  for(number = n16points * 16; number < num_points; ++number){
+-    uint16_t output = *inputPtr;
+-    output = (((output >> 8) & 0xff) | ((output << 8) & 0xff00));
+-    *inputPtr = output;
+-    inputPtr++;
+-  }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_16u_byteswap_a_generic(uint16_t* intsToSwap, unsigned int num_points){
+-  unsigned int point;
+-  uint16_t* inputPtr = intsToSwap;
+-  for(point = 0; point < num_points; point++){
+-    uint16_t output = *inputPtr;
+-    output = (((output >> 8) & 0xff) | ((output << 8) & 0xff00));
+-    *inputPtr = output;
+-    inputPtr++;
+-  }
++static inline void volk_16u_byteswap_a_generic(uint16_t* intsToSwap,
++                                               unsigned int num_points)
++{
++    unsigned int point;
++    uint16_t* inputPtr = intsToSwap;
++    for (point = 0; point < num_points; point++) {
++        uint16_t output = *inputPtr;
++        output = (((output >> 8) & 0xff) | ((output << 8) & 0xff00));
++        *inputPtr = output;
++        inputPtr++;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_ORC
+ extern void volk_16u_byteswap_a_orc_impl(uint16_t* intsToSwap, unsigned int num_points);
+-static inline void volk_16u_byteswap_u_orc(uint16_t* intsToSwap, unsigned int num_points){
++static inline void volk_16u_byteswap_u_orc(uint16_t* intsToSwap, unsigned int num_points)
++{
+     volk_16u_byteswap_a_orc_impl(intsToSwap, num_points);
+ }
+ #endif /* LV_HAVE_ORC */
+diff --git a/kernels/volk/volk_16u_byteswappuppet_16u.h b/kernels/volk/volk_16u_byteswappuppet_16u.h
+index d3c8c5d..8cb1318 100644
+--- a/kernels/volk/volk_16u_byteswappuppet_16u.h
++++ b/kernels/volk/volk_16u_byteswappuppet_16u.h
+@@ -3,69 +3,83 @@
+ #include <stdint.h>
+-#include <volk/volk_16u_byteswap.h>
+ #include <string.h>
++#include <volk/volk_16u_byteswap.h>
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_16u_byteswappuppet_16u_generic(uint16_t*output, uint16_t* intsToSwap, unsigned int num_points){
++static inline void volk_16u_byteswappuppet_16u_generic(uint16_t* output,
++                                                       uint16_t* intsToSwap,
++                                                       unsigned int num_points)
++{
+     volk_16u_byteswap_generic((uint16_t*)intsToSwap, num_points);
+     memcpy((void*)output, (void*)intsToSwap, num_points * sizeof(uint16_t));
+-
+ }
+ #endif
+ #ifdef LV_HAVE_NEON
+-static inline void volk_16u_byteswappuppet_16u_neon(uint16_t*output, uint16_t* intsToSwap, unsigned int num_points){
++static inline void volk_16u_byteswappuppet_16u_neon(uint16_t* output,
++                                                    uint16_t* intsToSwap,
++                                                    unsigned int num_points)
++{
+     volk_16u_byteswap_neon((uint16_t*)intsToSwap, num_points);
+     memcpy((void*)output, (void*)intsToSwap, num_points * sizeof(uint16_t));
+-
+ }
+ #endif
+ #ifdef LV_HAVE_NEON
+-static inline void volk_16u_byteswappuppet_16u_neon_table(uint16_t*output, uint16_t* intsToSwap, unsigned int num_points){
++static inline void volk_16u_byteswappuppet_16u_neon_table(uint16_t* output,
++                                                          uint16_t* intsToSwap,
++                                                          unsigned int num_points)
++{
+     volk_16u_byteswap_neon_table((uint16_t*)intsToSwap, num_points);
+     memcpy((void*)output, (void*)intsToSwap, num_points * sizeof(uint16_t));
+-
+ }
+ #endif
+ #ifdef LV_HAVE_SSE2
+-static inline void volk_16u_byteswappuppet_16u_u_sse2(uint16_t *output, uint16_t* intsToSwap, unsigned int num_points){
++static inline void volk_16u_byteswappuppet_16u_u_sse2(uint16_t* output,
++                                                      uint16_t* intsToSwap,
++                                                      unsigned int num_points)
++{
+     volk_16u_byteswap_u_sse2((uint16_t*)intsToSwap, num_points);
+     memcpy((void*)output, (void*)intsToSwap, num_points * sizeof(uint16_t));
+-
+ }
+ #endif
+ #ifdef LV_HAVE_SSE2
+-static inline void volk_16u_byteswappuppet_16u_a_sse2(uint16_t *output, uint16_t* intsToSwap, unsigned int num_points){
++static inline void volk_16u_byteswappuppet_16u_a_sse2(uint16_t* output,
++                                                      uint16_t* intsToSwap,
++                                                      unsigned int num_points)
++{
+     volk_16u_byteswap_a_sse2((uint16_t*)intsToSwap, num_points);
+     memcpy((void*)output, (void*)intsToSwap, num_points * sizeof(uint16_t));
+-
+ }
+ #endif
+ #ifdef LV_HAVE_AVX2
+-static inline void volk_16u_byteswappuppet_16u_u_avx2(uint16_t *output, uint16_t* intsToSwap, unsigned int num_points){
++static inline void volk_16u_byteswappuppet_16u_u_avx2(uint16_t* output,
++                                                      uint16_t* intsToSwap,
++                                                      unsigned int num_points)
++{
+     volk_16u_byteswap_u_avx2((uint16_t*)intsToSwap, num_points);
+     memcpy((void*)output, (void*)intsToSwap, num_points * sizeof(uint16_t));
+-
+ }
+ #endif
+ #ifdef LV_HAVE_AVX2
+-static inline void volk_16u_byteswappuppet_16u_a_avx2(uint16_t *output, uint16_t* intsToSwap, unsigned int num_points){
++static inline void volk_16u_byteswappuppet_16u_a_avx2(uint16_t* output,
++                                                      uint16_t* intsToSwap,
++                                                      unsigned int num_points)
++{
+     volk_16u_byteswap_a_avx2((uint16_t*)intsToSwap, num_points);
+     memcpy((void*)output, (void*)intsToSwap, num_points * sizeof(uint16_t));
+-
+ }
+ #endif
+diff --git a/kernels/volk/volk_32f_64f_add_64f.h b/kernels/volk/volk_32f_64f_add_64f.h
+index 770c27e..d00ada5 100644
+--- a/kernels/volk/volk_32f_64f_add_64f.h
++++ b/kernels/volk/volk_32f_64f_add_64f.h
+@@ -77,18 +77,19 @@
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32f_64f_add_64f_generic(double *cVector,
+-                                                const float *aVector,
+-                                                const double *bVector,
+-                                                unsigned int num_points) {
+-  double *cPtr = cVector;
+-  const float *aPtr = aVector;
+-  const double *bPtr = bVector;
+-  unsigned int number = 0;
+-
+-  for (number = 0; number < num_points; number++) {
+-    *cPtr++ = ((double)(*aPtr++)) + (*bPtr++);
+-  }
++static inline void volk_32f_64f_add_64f_generic(double* cVector,
++                                                const float* aVector,
++                                                const double* bVector,
++                                                unsigned int num_points)
++{
++    double* cPtr = cVector;
++    const float* aPtr = aVector;
++    const double* bPtr = bVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = ((double)(*aPtr++)) + (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -96,42 +97,43 @@ static inline void volk_32f_64f_add_64f_generic(double *cVector,
+ #ifdef LV_HAVE_NEONV8
+ #include <arm_neon.h>
+-static inline void volk_32f_64f_add_64f_neon(double *cVector,
+-                                             const float *aVector,
+-                                             const double *bVector,
+-                                             unsigned int num_points) {
+-  unsigned int number = 0;
+-  const unsigned int half_points = num_points / 2;
+-
+-  double *cPtr = cVector;
+-  const float *aPtr = aVector;
+-  const double *bPtr = bVector;
+-
+-  float64x2_t aVal, bVal, cVal;
+-  float32x2_t aVal1;
+-  for (number = 0; number < half_points; number++) {
+-    // Load in to NEON registers
+-    aVal1 = vld1_f32(aPtr);
+-    bVal = vld1q_f64(bPtr);
+-    __VOLK_PREFETCH(aPtr + 2);
+-    __VOLK_PREFETCH(bPtr + 2);
+-    aPtr += 2; // q uses quadwords, 4 floats per vadd
+-    bPtr += 2;
+-
+-    // Vector conversion
+-    aVal = vcvt_f64_f32(aVal1);
+-    // vector add
+-    cVal = vaddq_f64(aVal, bVal);
+-    // Store the results back into the C container
+-    vst1q_f64(cPtr, cVal);
+-
+-    cPtr += 2;
+-  }
+-
+-  number = half_points * 2; // should be = num_points
+-  for (; number < num_points; number++) {
+-    *cPtr++ = ((double)(*aPtr++)) + (*bPtr++);
+-  }
++static inline void volk_32f_64f_add_64f_neon(double* cVector,
++                                             const float* aVector,
++                                             const double* bVector,
++                                             unsigned int num_points)
++{
++    unsigned int number = 0;
++    const unsigned int half_points = num_points / 2;
++
++    double* cPtr = cVector;
++    const float* aPtr = aVector;
++    const double* bPtr = bVector;
++
++    float64x2_t aVal, bVal, cVal;
++    float32x2_t aVal1;
++    for (number = 0; number < half_points; number++) {
++        // Load in to NEON registers
++        aVal1 = vld1_f32(aPtr);
++        bVal = vld1q_f64(bPtr);
++        __VOLK_PREFETCH(aPtr + 2);
++        __VOLK_PREFETCH(bPtr + 2);
++        aPtr += 2; // q uses quadwords, 4 floats per vadd
++        bPtr += 2;
++
++        // Vector conversion
++        aVal = vcvt_f64_f32(aVal1);
++        // vector add
++        cVal = vaddq_f64(aVal, bVal);
++        // Store the results back into the C container
++        vst1q_f64(cPtr, cVal);
++
++        cPtr += 2;
++    }
++
++    number = half_points * 2; // should be = num_points
++    for (; number < num_points; number++) {
++        *cPtr++ = ((double)(*aPtr++)) + (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_NEONV8 */
+@@ -141,49 +143,50 @@ static inline void volk_32f_64f_add_64f_neon(double *cVector,
+ #include <immintrin.h>
+ #include <xmmintrin.h>
+-static inline void volk_32f_64f_add_64f_u_avx(double *cVector,
+-                                              const float *aVector,
+-                                              const double *bVector,
+-                                              unsigned int num_points) {
+-  unsigned int number = 0;
+-  const unsigned int eighth_points = num_points / 8;
+-
+-  double *cPtr = cVector;
+-  const float *aPtr = aVector;
+-  const double *bPtr = bVector;
+-
+-  __m256 aVal;
+-  __m128 aVal1, aVal2;
+-  __m256d aDbl1, aDbl2, bVal1, bVal2, cVal1, cVal2;
+-  for (; number < eighth_points; number++) {
+-
+-    aVal = _mm256_loadu_ps(aPtr);
+-    bVal1 = _mm256_loadu_pd(bPtr);
+-    bVal2 = _mm256_loadu_pd(bPtr + 4);
+-
+-    aVal1 = _mm256_extractf128_ps(aVal, 0);
+-    aVal2 = _mm256_extractf128_ps(aVal, 1);
+-
+-    aDbl1 = _mm256_cvtps_pd(aVal1);
+-    aDbl2 = _mm256_cvtps_pd(aVal2);
+-
+-    cVal1 = _mm256_add_pd(aDbl1, bVal1);
+-    cVal2 = _mm256_add_pd(aDbl2, bVal2);
+-
+-    _mm256_storeu_pd(cPtr,
+-                     cVal1); // Store the results back into the C container
+-    _mm256_storeu_pd(cPtr + 4,
+-                     cVal2); // Store the results back into the C container
+-
+-    aPtr += 8;
+-    bPtr += 8;
+-    cPtr += 8;
+-  }
+-
+-  number = eighth_points * 8;
+-  for (; number < num_points; number++) {
+-    *cPtr++ = ((double)(*aPtr++)) + (*bPtr++);
+-  }
++static inline void volk_32f_64f_add_64f_u_avx(double* cVector,
++                                              const float* aVector,
++                                              const double* bVector,
++                                              unsigned int num_points)
++{
++    unsigned int number = 0;
++    const unsigned int eighth_points = num_points / 8;
++
++    double* cPtr = cVector;
++    const float* aPtr = aVector;
++    const double* bPtr = bVector;
++
++    __m256 aVal;
++    __m128 aVal1, aVal2;
++    __m256d aDbl1, aDbl2, bVal1, bVal2, cVal1, cVal2;
++    for (; number < eighth_points; number++) {
++
++        aVal = _mm256_loadu_ps(aPtr);
++        bVal1 = _mm256_loadu_pd(bPtr);
++        bVal2 = _mm256_loadu_pd(bPtr + 4);
++
++        aVal1 = _mm256_extractf128_ps(aVal, 0);
++        aVal2 = _mm256_extractf128_ps(aVal, 1);
++
++        aDbl1 = _mm256_cvtps_pd(aVal1);
++        aDbl2 = _mm256_cvtps_pd(aVal2);
++
++        cVal1 = _mm256_add_pd(aDbl1, bVal1);
++        cVal2 = _mm256_add_pd(aDbl2, bVal2);
++
++        _mm256_storeu_pd(cPtr,
++                         cVal1); // Store the results back into the C container
++        _mm256_storeu_pd(cPtr + 4,
++                         cVal2); // Store the results back into the C container
++
++        aPtr += 8;
++        bPtr += 8;
++        cPtr += 8;
++    }
++
++    number = eighth_points * 8;
++    for (; number < num_points; number++) {
++        *cPtr++ = ((double)(*aPtr++)) + (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -193,48 +196,49 @@ static inline void volk_32f_64f_add_64f_u_avx(double *cVector,
+ #include <immintrin.h>
+ #include <xmmintrin.h>
+-static inline void volk_32f_64f_add_64f_a_avx(double *cVector,
+-                                              const float *aVector,
+-                                              const double *bVector,
+-                                              unsigned int num_points) {
+-  unsigned int number = 0;
+-  const unsigned int eighth_points = num_points / 8;
+-
+-  double *cPtr = cVector;
+-  const float *aPtr = aVector;
+-  const double *bPtr = bVector;
+-
+-  __m256 aVal;
+-  __m128 aVal1, aVal2;
+-  __m256d aDbl1, aDbl2, bVal1, bVal2, cVal1, cVal2;
+-  for (; number < eighth_points; number++) {
+-
+-    aVal = _mm256_load_ps(aPtr);
+-    bVal1 = _mm256_load_pd(bPtr);
+-    bVal2 = _mm256_load_pd(bPtr + 4);
+-
+-    aVal1 = _mm256_extractf128_ps(aVal, 0);
+-    aVal2 = _mm256_extractf128_ps(aVal, 1);
+-
+-    aDbl1 = _mm256_cvtps_pd(aVal1);
+-    aDbl2 = _mm256_cvtps_pd(aVal2);
+-
+-    cVal1 = _mm256_add_pd(aDbl1, bVal1);
+-    cVal2 = _mm256_add_pd(aDbl2, bVal2);
+-
+-    _mm256_store_pd(cPtr, cVal1); // Store the results back into the C container
+-    _mm256_store_pd(cPtr + 4,
+-                    cVal2); // Store the results back into the C container
+-
+-    aPtr += 8;
+-    bPtr += 8;
+-    cPtr += 8;
+-  }
+-
+-  number = eighth_points * 8;
+-  for (; number < num_points; number++) {
+-    *cPtr++ = ((double)(*aPtr++)) + (*bPtr++);
+-  }
++static inline void volk_32f_64f_add_64f_a_avx(double* cVector,
++                                              const float* aVector,
++                                              const double* bVector,
++                                              unsigned int num_points)
++{
++    unsigned int number = 0;
++    const unsigned int eighth_points = num_points / 8;
++
++    double* cPtr = cVector;
++    const float* aPtr = aVector;
++    const double* bPtr = bVector;
++
++    __m256 aVal;
++    __m128 aVal1, aVal2;
++    __m256d aDbl1, aDbl2, bVal1, bVal2, cVal1, cVal2;
++    for (; number < eighth_points; number++) {
++
++        aVal = _mm256_load_ps(aPtr);
++        bVal1 = _mm256_load_pd(bPtr);
++        bVal2 = _mm256_load_pd(bPtr + 4);
++
++        aVal1 = _mm256_extractf128_ps(aVal, 0);
++        aVal2 = _mm256_extractf128_ps(aVal, 1);
++
++        aDbl1 = _mm256_cvtps_pd(aVal1);
++        aDbl2 = _mm256_cvtps_pd(aVal2);
++
++        cVal1 = _mm256_add_pd(aDbl1, bVal1);
++        cVal2 = _mm256_add_pd(aDbl2, bVal2);
++
++        _mm256_store_pd(cPtr, cVal1); // Store the results back into the C container
++        _mm256_store_pd(cPtr + 4,
++                        cVal2); // Store the results back into the C container
++
++        aPtr += 8;
++        bPtr += 8;
++        cPtr += 8;
++    }
++
++    number = eighth_points * 8;
++    for (; number < num_points; number++) {
++        *cPtr++ = ((double)(*aPtr++)) + (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+diff --git a/kernels/volk/volk_32f_64f_multiply_64f.h b/kernels/volk/volk_32f_64f_multiply_64f.h
+index 50f08a1..1039850 100644
+--- a/kernels/volk/volk_32f_64f_multiply_64f.h
++++ b/kernels/volk/volk_32f_64f_multiply_64f.h
+@@ -31,8 +31,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_64f_multiply_64f(double* cVector, const double* aVector, const double* bVector, unsigned int num_points)
+- * \endcode
++ * void volk_32f_64f_multiply_64f(double* cVector, const double* aVector, const double*
++ * bVector, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li aVector: First input vector.
+@@ -76,18 +76,19 @@
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_64f_multiply_64f_generic(double *cVector, const float *aVector,
+-                                 const double *bVector, unsigned int num_points)
++static inline void volk_32f_64f_multiply_64f_generic(double* cVector,
++                                                     const float* aVector,
++                                                     const double* bVector,
++                                                     unsigned int num_points)
+ {
+-  double *cPtr = cVector;
+-  const float *aPtr = aVector;
+-  const double *bPtr = bVector;
+-  unsigned int number = 0;
+-
+-  for (number = 0; number < num_points; number++) {
+-    *cPtr++ = ((double)(*aPtr++)) * (*bPtr++);
+-  }
++    double* cPtr = cVector;
++    const float* aPtr = aVector;
++    const double* bPtr = bVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = ((double)(*aPtr++)) * (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -102,47 +103,48 @@ volk_32f_64f_multiply_64f_generic(double *cVector, const float *aVector,
+ #include <immintrin.h>
+ #include <xmmintrin.h>
+-static inline void
+-volk_32f_64f_multiply_64f_u_avx(double *cVector, const float *aVector,
+-                               const double *bVector, unsigned int num_points)
++static inline void volk_32f_64f_multiply_64f_u_avx(double* cVector,
++                                                   const float* aVector,
++                                                   const double* bVector,
++                                                   unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighth_points = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighth_points = num_points / 8;
+-  double *cPtr = cVector;
+-  const float *aPtr = aVector;
+-  const double *bPtr = bVector;
++    double* cPtr = cVector;
++    const float* aPtr = aVector;
++    const double* bPtr = bVector;
+-  __m256 aVal;
+-  __m128 aVal1, aVal2;
+-  __m256d aDbl1, aDbl2, bVal1, bVal2, cVal1, cVal2;
+-  for (; number < eighth_points; number++) {
++    __m256 aVal;
++    __m128 aVal1, aVal2;
++    __m256d aDbl1, aDbl2, bVal1, bVal2, cVal1, cVal2;
++    for (; number < eighth_points; number++) {
+-    aVal = _mm256_loadu_ps(aPtr);
+-    bVal1 = _mm256_loadu_pd(bPtr);
+-    bVal2 = _mm256_loadu_pd(bPtr+4);
++        aVal = _mm256_loadu_ps(aPtr);
++        bVal1 = _mm256_loadu_pd(bPtr);
++        bVal2 = _mm256_loadu_pd(bPtr + 4);
+-    aVal1 = _mm256_extractf128_ps(aVal, 0);
+-    aVal2 = _mm256_extractf128_ps(aVal, 1);
++        aVal1 = _mm256_extractf128_ps(aVal, 0);
++        aVal2 = _mm256_extractf128_ps(aVal, 1);
+-    aDbl1 = _mm256_cvtps_pd(aVal1);
+-    aDbl2 = _mm256_cvtps_pd(aVal2);
++        aDbl1 = _mm256_cvtps_pd(aVal1);
++        aDbl2 = _mm256_cvtps_pd(aVal2);
+-    cVal1 = _mm256_mul_pd(aDbl1, bVal1);
+-    cVal2 = _mm256_mul_pd(aDbl2, bVal2);
++        cVal1 = _mm256_mul_pd(aDbl1, bVal1);
++        cVal2 = _mm256_mul_pd(aDbl2, bVal2);
+-    _mm256_storeu_pd(cPtr, cVal1); // Store the results back into the C container
+-    _mm256_storeu_pd(cPtr+4, cVal2); // Store the results back into the C container
++        _mm256_storeu_pd(cPtr, cVal1);     // Store the results back into the C container
++        _mm256_storeu_pd(cPtr + 4, cVal2); // Store the results back into the C container
+-    aPtr += 8;
+-    bPtr += 8;
+-    cPtr += 8;
+-  }
++        aPtr += 8;
++        bPtr += 8;
++        cPtr += 8;
++    }
+-  number = eighth_points * 8;
+-  for (; number < num_points; number++) {
+-    *cPtr++ = ((double)(*aPtr++)) * (*bPtr++);
+-  }
++    number = eighth_points * 8;
++    for (; number < num_points; number++) {
++        *cPtr++ = ((double)(*aPtr++)) * (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -153,51 +155,51 @@ volk_32f_64f_multiply_64f_u_avx(double *cVector, const float *aVector,
+ #include <immintrin.h>
+ #include <xmmintrin.h>
+-static inline void
+-volk_32f_64f_multiply_64f_a_avx(double *cVector, const float *aVector,
+-                                const double *bVector, unsigned int num_points)
++static inline void volk_32f_64f_multiply_64f_a_avx(double* cVector,
++                                                   const float* aVector,
++                                                   const double* bVector,
++                                                   unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighth_points = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighth_points = num_points / 8;
+-  double *cPtr = cVector;
+-  const float *aPtr = aVector;
+-  const double *bPtr = bVector;
++    double* cPtr = cVector;
++    const float* aPtr = aVector;
++    const double* bPtr = bVector;
+-  __m256 aVal;
+-  __m128 aVal1, aVal2;
+-  __m256d aDbl1, aDbl2, bVal1, bVal2, cVal1, cVal2;
+-  for (; number < eighth_points; number++) {
++    __m256 aVal;
++    __m128 aVal1, aVal2;
++    __m256d aDbl1, aDbl2, bVal1, bVal2, cVal1, cVal2;
++    for (; number < eighth_points; number++) {
+-    aVal = _mm256_load_ps(aPtr);
+-    bVal1 = _mm256_load_pd(bPtr);
+-    bVal2 = _mm256_load_pd(bPtr+4);
++        aVal = _mm256_load_ps(aPtr);
++        bVal1 = _mm256_load_pd(bPtr);
++        bVal2 = _mm256_load_pd(bPtr + 4);
+-    aVal1 = _mm256_extractf128_ps(aVal, 0);
+-    aVal2 = _mm256_extractf128_ps(aVal, 1);
++        aVal1 = _mm256_extractf128_ps(aVal, 0);
++        aVal2 = _mm256_extractf128_ps(aVal, 1);
+-    aDbl1 = _mm256_cvtps_pd(aVal1);
+-    aDbl2 = _mm256_cvtps_pd(aVal2);
++        aDbl1 = _mm256_cvtps_pd(aVal1);
++        aDbl2 = _mm256_cvtps_pd(aVal2);
+-    cVal1 = _mm256_mul_pd(aDbl1, bVal1);
+-    cVal2 = _mm256_mul_pd(aDbl2, bVal2);
++        cVal1 = _mm256_mul_pd(aDbl1, bVal1);
++        cVal2 = _mm256_mul_pd(aDbl2, bVal2);
+-    _mm256_store_pd(cPtr, cVal1); // Store the results back into the C container
+-    _mm256_store_pd(cPtr+4, cVal2); // Store the results back into the C container
++        _mm256_store_pd(cPtr, cVal1);     // Store the results back into the C container
++        _mm256_store_pd(cPtr + 4, cVal2); // Store the results back into the C container
+-    aPtr += 8;
+-    bPtr += 8;
+-    cPtr += 8;
+-  }
++        aPtr += 8;
++        bPtr += 8;
++        cPtr += 8;
++    }
+-  number = eighth_points * 8;
+-  for (; number < num_points; number++) {
+-    *cPtr++ = ((double)(*aPtr++)) * (*bPtr++);
+-  }
++    number = eighth_points * 8;
++    for (; number < num_points; number++) {
++        *cPtr++ = ((double)(*aPtr++)) * (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+-
+ #endif /* INCLUDED_volk_32f_64f_multiply_64f_u_H */
+diff --git a/kernels/volk/volk_32f_8u_polarbutterfly_32f.h b/kernels/volk/volk_32f_8u_polarbutterfly_32f.h
+index 4aba6c4..2198b33 100644
+--- a/kernels/volk/volk_32f_8u_polarbutterfly_32f.h
++++ b/kernels/volk/volk_32f_8u_polarbutterfly_32f.h
+@@ -51,14 +51,17 @@
+  * int frame_exp = 10;
+  * int frame_size = 0x01 << frame_exp;
+  *
+- * float* llrs = (float*) volk_malloc(sizeof(float) * frame_size * (frame_exp + 1), volk_get_alignment());
+- * unsigned char* u = (unsigned char) volk_malloc(sizeof(unsigned char) * frame_size * (frame_exp + 1), volk_get_alignment());
++ * float* llrs = (float*) volk_malloc(sizeof(float) * frame_size * (frame_exp + 1),
++ * volk_get_alignment()); unsigned char* u = (unsigned char) volk_malloc(sizeof(unsigned
++ * char) * frame_size * (frame_exp + 1), volk_get_alignment());
+  *
+- *  {some_function_to_write_encoded_bits_to_float_llrs(llrs + frame_size * frame_exp, data)};
++ *  {some_function_to_write_encoded_bits_to_float_llrs(llrs + frame_size * frame_exp,
++ * data)};
+  *
+  * unsigned int u_num;
+  * for(u_num = 0; u_num < frame_size; u_num++){
+- *     volk_32f_8u_polarbutterfly_32f_u_avx(llrs, u, frame_size, frame_exp, 0, u_num, u_num);
++ *     volk_32f_8u_polarbutterfly_32f_u_avx(llrs, u, frame_size, frame_exp, 0, u_num,
++ * u_num);
+  *     // next line could first search for frozen bit value and then do bit decision.
+  *     u[u_num] = llrs[u_num] > 0 ? 0 : 1;
+  * }
+@@ -73,130 +76,131 @@
+ #include <math.h>
+ #include <volk/volk_8u_x2_encodeframepolar_8u.h>
+-static inline float
+-llr_odd(const float la, const float lb)
++static inline float llr_odd(const float la, const float lb)
+ {
+-  const float ala = fabsf(la);
+-  const float alb = fabsf(lb);
+-  return copysignf(1.0f, la) * copysignf(1.0f, lb) * (ala > alb ? alb : ala);
++    const float ala = fabsf(la);
++    const float alb = fabsf(lb);
++    return copysignf(1.0f, la) * copysignf(1.0f, lb) * (ala > alb ? alb : ala);
+ }
+-static inline void
+-llr_odd_stages(float* llrs, int min_stage, const int depth, const int frame_size, const int row)
++static inline void llr_odd_stages(
++    float* llrs, int min_stage, const int depth, const int frame_size, const int row)
+ {
+-  int loop_stage = depth - 1;
+-  float* dst_llr_ptr;
+-  float* src_llr_ptr;
+-  int stage_size = 0x01 << loop_stage;
+-
+-  int el;
+-  while(min_stage <= loop_stage){
+-    dst_llr_ptr = llrs + loop_stage * frame_size + row;
+-    src_llr_ptr = dst_llr_ptr + frame_size;
+-    for(el = 0; el < stage_size; el++){
+-      *dst_llr_ptr++ = llr_odd(*src_llr_ptr, *(src_llr_ptr + 1));
+-      src_llr_ptr += 2;
++    int loop_stage = depth - 1;
++    float* dst_llr_ptr;
++    float* src_llr_ptr;
++    int stage_size = 0x01 << loop_stage;
++
++    int el;
++    while (min_stage <= loop_stage) {
++        dst_llr_ptr = llrs + loop_stage * frame_size + row;
++        src_llr_ptr = dst_llr_ptr + frame_size;
++        for (el = 0; el < stage_size; el++) {
++            *dst_llr_ptr++ = llr_odd(*src_llr_ptr, *(src_llr_ptr + 1));
++            src_llr_ptr += 2;
++        }
++
++        --loop_stage;
++        stage_size >>= 1;
+     }
+-
+-    --loop_stage;
+-    stage_size >>= 1;
+-  }
+ }
+-static inline float
+-llr_even(const float la, const float lb, const unsigned char f)
++static inline float llr_even(const float la, const float lb, const unsigned char f)
+ {
+-  switch(f){
++    switch (f) {
+     case 0:
+-      return lb + la;
++        return lb + la;
+     default:
+-      return lb - la;
+-  }
++        return lb - la;
++    }
+ }
+ static inline void
+ even_u_values(unsigned char* u_even, const unsigned char* u, const int u_num)
+ {
+-  u++;
+-  int i;
+-  for(i = 1; i < u_num; i += 2){
+-    *u_even++ = *u;
+-    u += 2;
+-  }
++    u++;
++    int i;
++    for (i = 1; i < u_num; i += 2) {
++        *u_even++ = *u;
++        u += 2;
++    }
+ }
+ static inline void
+ odd_xor_even_values(unsigned char* u_xor, const unsigned char* u, const int u_num)
+ {
+-  int i;
+-  for(i = 1; i < u_num; i += 2){
+-    *u_xor++ = *u ^ *(u + 1);
+-    u += 2;
+-  }
++    int i;
++    for (i = 1; i < u_num; i += 2) {
++        *u_xor++ = *u ^ *(u + 1);
++        u += 2;
++    }
+ }
+-static inline int
+-calculate_max_stage_depth_for_row(const int frame_exp, const int row)
++static inline int calculate_max_stage_depth_for_row(const int frame_exp, const int row)
+ {
+-  int max_stage_depth = 0;
+-  int half_stage_size = 0x01;
+-  int stage_size = half_stage_size << 1;
+-  while(max_stage_depth < (frame_exp - 1)){ // last stage holds received values.
+-    if(!(row % stage_size < half_stage_size)){
+-      break;
++    int max_stage_depth = 0;
++    int half_stage_size = 0x01;
++    int stage_size = half_stage_size << 1;
++    while (max_stage_depth < (frame_exp - 1)) { // last stage holds received values.
++        if (!(row % stage_size < half_stage_size)) {
++            break;
++        }
++        half_stage_size <<= 1;
++        stage_size <<= 1;
++        max_stage_depth++;
+     }
+-    half_stage_size <<= 1;
+-    stage_size <<= 1;
+-    max_stage_depth++;
+-  }
+-  return max_stage_depth;
++    return max_stage_depth;
+ }
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_8u_polarbutterfly_32f_generic(float* llrs, unsigned char* u,
+-    const int frame_exp,
+-    const int stage, const int u_num, const int row)
++static inline void volk_32f_8u_polarbutterfly_32f_generic(float* llrs,
++                                                          unsigned char* u,
++                                                          const int frame_exp,
++                                                          const int stage,
++                                                          const int u_num,
++                                                          const int row)
+ {
+-  const int frame_size = 0x01 << frame_exp;
+-  const int next_stage = stage + 1;
++    const int frame_size = 0x01 << frame_exp;
++    const int next_stage = stage + 1;
+-  const int half_stage_size = 0x01 << stage;
+-  const int stage_size = half_stage_size << 1;
++    const int half_stage_size = 0x01 << stage;
++    const int stage_size = half_stage_size << 1;
+-  const bool is_upper_stage_half = row % stage_size < half_stage_size;
++    const bool is_upper_stage_half = row % stage_size < half_stage_size;
+-//      // this is a natural bit order impl
+-  float* next_llrs = llrs + frame_size;// LLRs are stored in a consecutive array.
+-  float* call_row_llr = llrs + row;
++    //      // this is a natural bit order impl
++    float* next_llrs = llrs + frame_size; // LLRs are stored in a consecutive array.
++    float* call_row_llr = llrs + row;
+-  const int section = row - (row % stage_size);
+-  const int jump_size = ((row % half_stage_size) << 1) % stage_size;
++    const int section = row - (row % stage_size);
++    const int jump_size = ((row % half_stage_size) << 1) % stage_size;
+-  const int next_upper_row = section + jump_size;
+-  const int next_lower_row = next_upper_row + 1;
++    const int next_upper_row = section + jump_size;
++    const int next_lower_row = next_upper_row + 1;
+-  const float* upper_right_llr_ptr = next_llrs + next_upper_row;
+-  const float* lower_right_llr_ptr = next_llrs + next_lower_row;
++    const float* upper_right_llr_ptr = next_llrs + next_upper_row;
++    const float* lower_right_llr_ptr = next_llrs + next_lower_row;
+-  if(!is_upper_stage_half){
+-    const int u_pos = u_num >> stage;
+-    const unsigned char f = u[u_pos - 1];
+-    *call_row_llr = llr_even(*upper_right_llr_ptr, *lower_right_llr_ptr, f);
+-    return;
+-  }
++    if (!is_upper_stage_half) {
++        const int u_pos = u_num >> stage;
++        const unsigned char f = u[u_pos - 1];
++        *call_row_llr = llr_even(*upper_right_llr_ptr, *lower_right_llr_ptr, f);
++        return;
++    }
+-  if(frame_exp > next_stage){
+-    unsigned char* u_half = u + frame_size;
+-    odd_xor_even_values(u_half, u, u_num);
+-    volk_32f_8u_polarbutterfly_32f_generic(next_llrs, u_half, frame_exp, next_stage, u_num, next_upper_row);
++    if (frame_exp > next_stage) {
++        unsigned char* u_half = u + frame_size;
++        odd_xor_even_values(u_half, u, u_num);
++        volk_32f_8u_polarbutterfly_32f_generic(
++            next_llrs, u_half, frame_exp, next_stage, u_num, next_upper_row);
+-    even_u_values(u_half, u, u_num);
+-    volk_32f_8u_polarbutterfly_32f_generic(next_llrs, u_half, frame_exp, next_stage, u_num, next_lower_row);
+-  }
++        even_u_values(u_half, u, u_num);
++        volk_32f_8u_polarbutterfly_32f_generic(
++            next_llrs, u_half, frame_exp, next_stage, u_num, next_lower_row);
++    }
+-  *call_row_llr = llr_odd(*upper_right_llr_ptr, *lower_right_llr_ptr);
++    *call_row_llr = llr_odd(*upper_right_llr_ptr, *lower_right_llr_ptr);
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -206,99 +210,99 @@ volk_32f_8u_polarbutterfly_32f_generic(float* llrs, unsigned char* u,
+ #include <immintrin.h>
+ #include <volk/volk_avx_intrinsics.h>
+-static inline void
+-volk_32f_8u_polarbutterfly_32f_u_avx(float* llrs, unsigned char* u,
+-    const int frame_exp,
+-    const int stage, const int u_num, const int row)
++static inline void volk_32f_8u_polarbutterfly_32f_u_avx(float* llrs,
++                                                        unsigned char* u,
++                                                        const int frame_exp,
++                                                        const int stage,
++                                                        const int u_num,
++                                                        const int row)
+ {
+-  const int frame_size = 0x01 << frame_exp;
+-  if(row % 2){ // for odd rows just do the only necessary calculation and return.
+-    const float* next_llrs = llrs + frame_size + row;
+-    *(llrs + row) = llr_even(*(next_llrs - 1), *next_llrs, u[u_num - 1]);
+-    return;
+-  }
+-
+-  const int max_stage_depth = calculate_max_stage_depth_for_row(frame_exp, row);
+-  if(max_stage_depth < 3){ // vectorized version needs larger vectors.
+-    volk_32f_8u_polarbutterfly_32f_generic(llrs, u, frame_exp, stage, u_num, row);
+-    return;
+-  }
+-
+-  int loop_stage = max_stage_depth;
+-  int stage_size = 0x01 << loop_stage;
+-
+-  float* src_llr_ptr;
+-  float* dst_llr_ptr;
+-
+-  __m256 src0, src1, dst;
+-
+-  if(row){ // not necessary for ZERO row. == first bit to be decoded.
+-    // first do bit combination for all stages
+-    // effectively encode some decoded bits again.
+-    unsigned char* u_target = u + frame_size;
+-    unsigned char* u_temp = u + 2* frame_size;
+-    memcpy(u_temp, u + u_num - stage_size, sizeof(unsigned char) * stage_size);
+-
+-    if(stage_size > 15){
+-      _mm256_zeroupper();
+-      volk_8u_x2_encodeframepolar_8u_u_ssse3(u_target, u_temp, stage_size);
++    const int frame_size = 0x01 << frame_exp;
++    if (row % 2) { // for odd rows just do the only necessary calculation and return.
++        const float* next_llrs = llrs + frame_size + row;
++        *(llrs + row) = llr_even(*(next_llrs - 1), *next_llrs, u[u_num - 1]);
++        return;
+     }
+-    else{
+-      volk_8u_x2_encodeframepolar_8u_generic(u_target, u_temp, stage_size);
++
++    const int max_stage_depth = calculate_max_stage_depth_for_row(frame_exp, row);
++    if (max_stage_depth < 3) { // vectorized version needs larger vectors.
++        volk_32f_8u_polarbutterfly_32f_generic(llrs, u, frame_exp, stage, u_num, row);
++        return;
+     }
+-    src_llr_ptr = llrs + (max_stage_depth + 1) * frame_size + row - stage_size;
+-    dst_llr_ptr = llrs + max_stage_depth * frame_size + row;
++    int loop_stage = max_stage_depth;
++    int stage_size = 0x01 << loop_stage;
+-    __m128i fbits;
++    float* src_llr_ptr;
++    float* dst_llr_ptr;
+-    int p;
+-    for(p = 0; p < stage_size; p += 8){
+-      _mm256_zeroupper();
+-      fbits = _mm_loadu_si128((__m128i*) u_target);
+-      u_target += 8;
++    __m256 src0, src1, dst;
+-      src0 = _mm256_loadu_ps(src_llr_ptr);
+-      src1 = _mm256_loadu_ps(src_llr_ptr + 8);
+-      src_llr_ptr += 16;
++    if (row) { // not necessary for ZERO row. == first bit to be decoded.
++        // first do bit combination for all stages
++        // effectively encode some decoded bits again.
++        unsigned char* u_target = u + frame_size;
++        unsigned char* u_temp = u + 2 * frame_size;
++        memcpy(u_temp, u + u_num - stage_size, sizeof(unsigned char) * stage_size);
+-      dst = _mm256_polar_fsign_add_llrs(src0, src1, fbits);
++        if (stage_size > 15) {
++            _mm256_zeroupper();
++            volk_8u_x2_encodeframepolar_8u_u_ssse3(u_target, u_temp, stage_size);
++        } else {
++            volk_8u_x2_encodeframepolar_8u_generic(u_target, u_temp, stage_size);
++        }
+-      _mm256_storeu_ps(dst_llr_ptr, dst);
+-      dst_llr_ptr += 8;
+-    }
++        src_llr_ptr = llrs + (max_stage_depth + 1) * frame_size + row - stage_size;
++        dst_llr_ptr = llrs + max_stage_depth * frame_size + row;
+-    --loop_stage;
+-    stage_size >>= 1;
+-  }
++        __m128i fbits;
+-  const int min_stage = stage > 2 ? stage : 2;
++        int p;
++        for (p = 0; p < stage_size; p += 8) {
++            _mm256_zeroupper();
++            fbits = _mm_loadu_si128((__m128i*)u_target);
++            u_target += 8;
+-  _mm256_zeroall(); // Important to clear cache!
++            src0 = _mm256_loadu_ps(src_llr_ptr);
++            src1 = _mm256_loadu_ps(src_llr_ptr + 8);
++            src_llr_ptr += 16;
+-  int el;
+-  while(min_stage < loop_stage){
+-    dst_llr_ptr = llrs + loop_stage * frame_size + row;
+-    src_llr_ptr = dst_llr_ptr + frame_size;
+-    for(el = 0; el < stage_size; el += 8){
+-      src0 = _mm256_loadu_ps(src_llr_ptr);
+-      src_llr_ptr += 8;
+-      src1 = _mm256_loadu_ps(src_llr_ptr);
+-      src_llr_ptr += 8;
++            dst = _mm256_polar_fsign_add_llrs(src0, src1, fbits);
+-      dst = _mm256_polar_minsum_llrs(src0, src1);
++            _mm256_storeu_ps(dst_llr_ptr, dst);
++            dst_llr_ptr += 8;
++        }
+-      _mm256_storeu_ps(dst_llr_ptr, dst);
+-      dst_llr_ptr += 8;
++        --loop_stage;
++        stage_size >>= 1;
+     }
+-    --loop_stage;
+-    stage_size >>= 1;
++    const int min_stage = stage > 2 ? stage : 2;
++
++    _mm256_zeroall(); // Important to clear cache!
+-  }
++    int el;
++    while (min_stage < loop_stage) {
++        dst_llr_ptr = llrs + loop_stage * frame_size + row;
++        src_llr_ptr = dst_llr_ptr + frame_size;
++        for (el = 0; el < stage_size; el += 8) {
++            src0 = _mm256_loadu_ps(src_llr_ptr);
++            src_llr_ptr += 8;
++            src1 = _mm256_loadu_ps(src_llr_ptr);
++            src_llr_ptr += 8;
+-  // for stages < 3 vectors are too small!.
+-  llr_odd_stages(llrs, stage, loop_stage + 1,frame_size, row);
++            dst = _mm256_polar_minsum_llrs(src0, src1);
++
++            _mm256_storeu_ps(dst_llr_ptr, dst);
++            dst_llr_ptr += 8;
++        }
++
++        --loop_stage;
++        stage_size >>= 1;
++    }
++
++    // for stages < 3 vectors are too small!.
++    llr_odd_stages(llrs, stage, loop_stage + 1, frame_size, row);
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -307,99 +311,99 @@ volk_32f_8u_polarbutterfly_32f_u_avx(float* llrs, unsigned char* u,
+ #include <immintrin.h>
+ #include <volk/volk_avx2_intrinsics.h>
+-static inline void
+-volk_32f_8u_polarbutterfly_32f_u_avx2(float* llrs, unsigned char* u,
+-    const int frame_exp,
+-    const int stage, const int u_num, const int row)
++static inline void volk_32f_8u_polarbutterfly_32f_u_avx2(float* llrs,
++                                                         unsigned char* u,
++                                                         const int frame_exp,
++                                                         const int stage,
++                                                         const int u_num,
++                                                         const int row)
+ {
+-  const int frame_size = 0x01 << frame_exp;
+-  if(row % 2){ // for odd rows just do the only necessary calculation and return.
+-    const float* next_llrs = llrs + frame_size + row;
+-    *(llrs + row) = llr_even(*(next_llrs - 1), *next_llrs, u[u_num - 1]);
+-    return;
+-  }
+-
+-  const int max_stage_depth = calculate_max_stage_depth_for_row(frame_exp, row);
+-  if(max_stage_depth < 3){ // vectorized version needs larger vectors.
+-    volk_32f_8u_polarbutterfly_32f_generic(llrs, u, frame_exp, stage, u_num, row);
+-    return;
+-  }
+-
+-  int loop_stage = max_stage_depth;
+-  int stage_size = 0x01 << loop_stage;
+-
+-  float* src_llr_ptr;
+-  float* dst_llr_ptr;
+-
+-  __m256 src0, src1, dst;
+-
+-  if(row){ // not necessary for ZERO row. == first bit to be decoded.
+-    // first do bit combination for all stages
+-    // effectively encode some decoded bits again.
+-    unsigned char* u_target = u + frame_size;
+-    unsigned char* u_temp = u + 2* frame_size;
+-    memcpy(u_temp, u + u_num - stage_size, sizeof(unsigned char) * stage_size);
+-
+-    if(stage_size > 15){
+-      _mm256_zeroupper();
+-      volk_8u_x2_encodeframepolar_8u_u_ssse3(u_target, u_temp, stage_size);
++    const int frame_size = 0x01 << frame_exp;
++    if (row % 2) { // for odd rows just do the only necessary calculation and return.
++        const float* next_llrs = llrs + frame_size + row;
++        *(llrs + row) = llr_even(*(next_llrs - 1), *next_llrs, u[u_num - 1]);
++        return;
+     }
+-    else{
+-      volk_8u_x2_encodeframepolar_8u_generic(u_target, u_temp, stage_size);
++
++    const int max_stage_depth = calculate_max_stage_depth_for_row(frame_exp, row);
++    if (max_stage_depth < 3) { // vectorized version needs larger vectors.
++        volk_32f_8u_polarbutterfly_32f_generic(llrs, u, frame_exp, stage, u_num, row);
++        return;
+     }
+-    src_llr_ptr = llrs + (max_stage_depth + 1) * frame_size + row - stage_size;
+-    dst_llr_ptr = llrs + max_stage_depth * frame_size + row;
++    int loop_stage = max_stage_depth;
++    int stage_size = 0x01 << loop_stage;
+-    __m128i fbits;
++    float* src_llr_ptr;
++    float* dst_llr_ptr;
+-    int p;
+-    for(p = 0; p < stage_size; p += 8){
+-      _mm256_zeroupper();
+-      fbits = _mm_loadu_si128((__m128i*) u_target);
+-      u_target += 8;
++    __m256 src0, src1, dst;
+-      src0 = _mm256_loadu_ps(src_llr_ptr);
+-      src1 = _mm256_loadu_ps(src_llr_ptr + 8);
+-      src_llr_ptr += 16;
++    if (row) { // not necessary for ZERO row. == first bit to be decoded.
++        // first do bit combination for all stages
++        // effectively encode some decoded bits again.
++        unsigned char* u_target = u + frame_size;
++        unsigned char* u_temp = u + 2 * frame_size;
++        memcpy(u_temp, u + u_num - stage_size, sizeof(unsigned char) * stage_size);
+-      dst = _mm256_polar_fsign_add_llrs_avx2(src0, src1, fbits);
++        if (stage_size > 15) {
++            _mm256_zeroupper();
++            volk_8u_x2_encodeframepolar_8u_u_ssse3(u_target, u_temp, stage_size);
++        } else {
++            volk_8u_x2_encodeframepolar_8u_generic(u_target, u_temp, stage_size);
++        }
+-      _mm256_storeu_ps(dst_llr_ptr, dst);
+-      dst_llr_ptr += 8;
+-    }
++        src_llr_ptr = llrs + (max_stage_depth + 1) * frame_size + row - stage_size;
++        dst_llr_ptr = llrs + max_stage_depth * frame_size + row;
+-    --loop_stage;
+-    stage_size >>= 1;
+-  }
++        __m128i fbits;
+-  const int min_stage = stage > 2 ? stage : 2;
++        int p;
++        for (p = 0; p < stage_size; p += 8) {
++            _mm256_zeroupper();
++            fbits = _mm_loadu_si128((__m128i*)u_target);
++            u_target += 8;
+-  _mm256_zeroall(); // Important to clear cache!
++            src0 = _mm256_loadu_ps(src_llr_ptr);
++            src1 = _mm256_loadu_ps(src_llr_ptr + 8);
++            src_llr_ptr += 16;
+-  int el;
+-  while(min_stage < loop_stage){
+-    dst_llr_ptr = llrs + loop_stage * frame_size + row;
+-    src_llr_ptr = dst_llr_ptr + frame_size;
+-    for(el = 0; el < stage_size; el += 8){
+-      src0 = _mm256_loadu_ps(src_llr_ptr);
+-      src_llr_ptr += 8;
+-      src1 = _mm256_loadu_ps(src_llr_ptr);
+-      src_llr_ptr += 8;
++            dst = _mm256_polar_fsign_add_llrs_avx2(src0, src1, fbits);
+-      dst = _mm256_polar_minsum_llrs(src0, src1);
++            _mm256_storeu_ps(dst_llr_ptr, dst);
++            dst_llr_ptr += 8;
++        }
+-      _mm256_storeu_ps(dst_llr_ptr, dst);
+-      dst_llr_ptr += 8;
++        --loop_stage;
++        stage_size >>= 1;
+     }
+-    --loop_stage;
+-    stage_size >>= 1;
++    const int min_stage = stage > 2 ? stage : 2;
++
++    _mm256_zeroall(); // Important to clear cache!
++
++    int el;
++    while (min_stage < loop_stage) {
++        dst_llr_ptr = llrs + loop_stage * frame_size + row;
++        src_llr_ptr = dst_llr_ptr + frame_size;
++        for (el = 0; el < stage_size; el += 8) {
++            src0 = _mm256_loadu_ps(src_llr_ptr);
++            src_llr_ptr += 8;
++            src1 = _mm256_loadu_ps(src_llr_ptr);
++            src_llr_ptr += 8;
+-  }
++            dst = _mm256_polar_minsum_llrs(src0, src1);
++
++            _mm256_storeu_ps(dst_llr_ptr, dst);
++            dst_llr_ptr += 8;
++        }
++
++        --loop_stage;
++        stage_size >>= 1;
++    }
+-  // for stages < 3 vectors are too small!.
+-  llr_odd_stages(llrs, stage, loop_stage + 1,frame_size, row);
++    // for stages < 3 vectors are too small!.
++    llr_odd_stages(llrs, stage, loop_stage + 1, frame_size, row);
+ }
+ #endif /* LV_HAVE_AVX2 */
+diff --git a/kernels/volk/volk_32f_8u_polarbutterflypuppet_32f.h b/kernels/volk/volk_32f_8u_polarbutterflypuppet_32f.h
+index fa40a86..6f97dd1 100644
+--- a/kernels/volk/volk_32f_8u_polarbutterflypuppet_32f.h
++++ b/kernels/volk/volk_32f_8u_polarbutterflypuppet_32f.h
+@@ -33,124 +33,129 @@
+ #include <volk/volk_8u_x3_encodepolarpuppet_8u.h>
+-static inline void
+-sanitize_bytes(unsigned char* u, const int elements)
++static inline void sanitize_bytes(unsigned char* u, const int elements)
+ {
+-  int i;
+-  unsigned char* u_ptr = u;
+-  for(i = 0; i < elements; i++){
+-    *u_ptr = (*u_ptr & 0x01);
+-    u_ptr++;
+-  }
++    int i;
++    unsigned char* u_ptr = u;
++    for (i = 0; i < elements; i++) {
++        *u_ptr = (*u_ptr & 0x01);
++        u_ptr++;
++    }
+ }
+-static inline void
+-clean_up_intermediate_values(float* llrs, unsigned char* u, const int frame_size, const int elements)
++static inline void clean_up_intermediate_values(float* llrs,
++                                                unsigned char* u,
++                                                const int frame_size,
++                                                const int elements)
+ {
+-  memset(u + frame_size, 0, sizeof(unsigned char) * (elements - frame_size));
+-  memset(llrs + frame_size, 0, sizeof(float) * (elements - frame_size));
++    memset(u + frame_size, 0, sizeof(unsigned char) * (elements - frame_size));
++    memset(llrs + frame_size, 0, sizeof(float) * (elements - frame_size));
+ }
+ static inline void
+ generate_error_free_input_vector(float* llrs, unsigned char* u, const int frame_size)
+ {
+-  memset(u, 0, frame_size);
+-  unsigned char* target = u + frame_size;
+-  volk_8u_x2_encodeframepolar_8u_generic(target, u + 2 * frame_size, frame_size);
+-  float* ft = llrs;
+-  int i;
+-  for(i = 0; i < frame_size; i++){
+-    *ft = (-2 * ((float) *target++)) + 1.0f;
+-    ft++;
+-  }
++    memset(u, 0, frame_size);
++    unsigned char* target = u + frame_size;
++    volk_8u_x2_encodeframepolar_8u_generic(target, u + 2 * frame_size, frame_size);
++    float* ft = llrs;
++    int i;
++    for (i = 0; i < frame_size; i++) {
++        *ft = (-2 * ((float)*target++)) + 1.0f;
++        ft++;
++    }
+ }
+ static inline void
+ print_llr_tree(const float* llrs, const int frame_size, const int frame_exp)
+ {
+-  int s, e;
+-  for(s = 0; s < frame_size; s++){
+-    for(e = 0; e < frame_exp + 1; e++){
+-      printf("%+4.2f ", llrs[e * frame_size + s]);
+-    }
+-    printf("\n");
+-    if((s + 1) % 8 == 0){
+-      printf("\n");
++    int s, e;
++    for (s = 0; s < frame_size; s++) {
++        for (e = 0; e < frame_exp + 1; e++) {
++            printf("%+4.2f ", llrs[e * frame_size + s]);
++        }
++        printf("\n");
++        if ((s + 1) % 8 == 0) {
++            printf("\n");
++        }
+     }
+-  }
+ }
+-static inline int
+-maximum_frame_size(const int elements)
++static inline int maximum_frame_size(const int elements)
+ {
+-  unsigned int frame_size = next_lower_power_of_two(elements);
+-  unsigned int frame_exp = log2_of_power_of_2(frame_size);
+-  return next_lower_power_of_two(frame_size / frame_exp);
++    unsigned int frame_size = next_lower_power_of_two(elements);
++    unsigned int frame_exp = log2_of_power_of_2(frame_size);
++    return next_lower_power_of_two(frame_size / frame_exp);
+ }
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_8u_polarbutterflypuppet_32f_generic(float* llrs, const float* input, unsigned char* u, const int elements)
++static inline void volk_32f_8u_polarbutterflypuppet_32f_generic(float* llrs,
++                                                                const float* input,
++                                                                unsigned char* u,
++                                                                const int elements)
+ {
+-  unsigned int frame_size = maximum_frame_size(elements);
+-  unsigned int frame_exp = log2_of_power_of_2(frame_size);
++    unsigned int frame_size = maximum_frame_size(elements);
++    unsigned int frame_exp = log2_of_power_of_2(frame_size);
+-  sanitize_bytes(u, elements);
+-  clean_up_intermediate_values(llrs, u, frame_size, elements);
+-  generate_error_free_input_vector(llrs + frame_exp * frame_size, u, frame_size);
++    sanitize_bytes(u, elements);
++    clean_up_intermediate_values(llrs, u, frame_size, elements);
++    generate_error_free_input_vector(llrs + frame_exp * frame_size, u, frame_size);
+-  unsigned int u_num = 0;
+-  for(; u_num < frame_size; u_num++){
+-    volk_32f_8u_polarbutterfly_32f_generic(llrs, u, frame_exp, 0, u_num, u_num);
+-    u[u_num] = llrs[u_num] > 0 ? 0 : 1;
+-  }
++    unsigned int u_num = 0;
++    for (; u_num < frame_size; u_num++) {
++        volk_32f_8u_polarbutterfly_32f_generic(llrs, u, frame_exp, 0, u_num, u_num);
++        u[u_num] = llrs[u_num] > 0 ? 0 : 1;
++    }
+-  clean_up_intermediate_values(llrs, u, frame_size, elements);
++    clean_up_intermediate_values(llrs, u, frame_size, elements);
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_AVX
+-static inline void
+-volk_32f_8u_polarbutterflypuppet_32f_u_avx(float* llrs, const float* input, unsigned char* u, const int elements)
++static inline void volk_32f_8u_polarbutterflypuppet_32f_u_avx(float* llrs,
++                                                              const float* input,
++                                                              unsigned char* u,
++                                                              const int elements)
+ {
+-  unsigned int frame_size = maximum_frame_size(elements);
+-  unsigned int frame_exp = log2_of_power_of_2(frame_size);
++    unsigned int frame_size = maximum_frame_size(elements);
++    unsigned int frame_exp = log2_of_power_of_2(frame_size);
+-  sanitize_bytes(u, elements);
+-  clean_up_intermediate_values(llrs, u, frame_size, elements);
+-  generate_error_free_input_vector(llrs + frame_exp * frame_size, u, frame_size);
++    sanitize_bytes(u, elements);
++    clean_up_intermediate_values(llrs, u, frame_size, elements);
++    generate_error_free_input_vector(llrs + frame_exp * frame_size, u, frame_size);
+-  unsigned int u_num = 0;
+-  for(; u_num < frame_size; u_num++){
+-    volk_32f_8u_polarbutterfly_32f_u_avx(llrs, u, frame_exp, 0, u_num, u_num);
+-    u[u_num] = llrs[u_num] > 0 ? 0 : 1;
+-  }
++    unsigned int u_num = 0;
++    for (; u_num < frame_size; u_num++) {
++        volk_32f_8u_polarbutterfly_32f_u_avx(llrs, u, frame_exp, 0, u_num, u_num);
++        u[u_num] = llrs[u_num] > 0 ? 0 : 1;
++    }
+-  clean_up_intermediate_values(llrs, u, frame_size, elements);
++    clean_up_intermediate_values(llrs, u, frame_size, elements);
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_AVX2
+-static inline void
+-volk_32f_8u_polarbutterflypuppet_32f_u_avx2(float* llrs, const float* input, unsigned char* u, const int elements)
++static inline void volk_32f_8u_polarbutterflypuppet_32f_u_avx2(float* llrs,
++                                                               const float* input,
++                                                               unsigned char* u,
++                                                               const int elements)
+ {
+-  unsigned int frame_size = maximum_frame_size(elements);
+-  unsigned int frame_exp = log2_of_power_of_2(frame_size);
++    unsigned int frame_size = maximum_frame_size(elements);
++    unsigned int frame_exp = log2_of_power_of_2(frame_size);
+-  sanitize_bytes(u, elements);
+-  clean_up_intermediate_values(llrs, u, frame_size, elements);
+-  generate_error_free_input_vector(llrs + frame_exp * frame_size, u, frame_size);
++    sanitize_bytes(u, elements);
++    clean_up_intermediate_values(llrs, u, frame_size, elements);
++    generate_error_free_input_vector(llrs + frame_exp * frame_size, u, frame_size);
+-  unsigned int u_num = 0;
+-  for(; u_num < frame_size; u_num++){
+-    volk_32f_8u_polarbutterfly_32f_u_avx2(llrs, u, frame_exp, 0, u_num, u_num);
+-    u[u_num] = llrs[u_num] > 0 ? 0 : 1;
+-  }
++    unsigned int u_num = 0;
++    for (; u_num < frame_size; u_num++) {
++        volk_32f_8u_polarbutterfly_32f_u_avx2(llrs, u, frame_exp, 0, u_num, u_num);
++        u[u_num] = llrs[u_num] > 0 ? 0 : 1;
++    }
+-  clean_up_intermediate_values(llrs, u, frame_size, elements);
++    clean_up_intermediate_values(llrs, u, frame_size, elements);
+ }
+ #endif /* LV_HAVE_AVX2 */
+-
+ #endif /* VOLK_KERNELS_VOLK_VOLK_32F_8U_POLARBUTTERFLYPUPPET_32F_H_ */
+diff --git a/kernels/volk/volk_32f_accumulator_s32f.h b/kernels/volk/volk_32f_accumulator_s32f.h
+index f6219c8..9a78f58 100644
+--- a/kernels/volk/volk_32f_accumulator_s32f.h
++++ b/kernels/volk/volk_32f_accumulator_s32f.h
+@@ -29,8 +29,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_accumulator_s32f(float* result, const float* inputBuffer, unsigned int num_points)
+- * \endcode
++ * void volk_32f_accumulator_s32f(float* result, const float* inputBuffer, unsigned int
++ * num_points) \endcode
+  *
+  * \b Inputs
+  * \li inputBuffer The buffer of data to be accumulated
+@@ -63,47 +63,48 @@
+ #ifndef INCLUDED_volk_32f_accumulator_s32f_a_H
+ #define INCLUDED_volk_32f_accumulator_s32f_a_H
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32f_accumulator_s32f_a_avx(float* result, const float* inputBuffer, unsigned int num_points)
++static inline void volk_32f_accumulator_s32f_a_avx(float* result,
++                                                   const float* inputBuffer,
++                                                   unsigned int num_points)
+ {
+-  float returnValue = 0;
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  const float* aPtr = inputBuffer;
+-  __VOLK_ATTR_ALIGNED(32) float tempBuffer[8];
+-
+-  __m256 accumulator = _mm256_setzero_ps();
+-  __m256 aVal = _mm256_setzero_ps();
+-
+-  for(;number < eighthPoints; number++){
+-    aVal = _mm256_load_ps(aPtr);
+-    accumulator = _mm256_add_ps(accumulator, aVal);
+-    aPtr += 8;
+-  }
+-
+-  _mm256_store_ps(tempBuffer, accumulator);
+-
+-  returnValue = tempBuffer[0];
+-  returnValue += tempBuffer[1];
+-  returnValue += tempBuffer[2];
+-  returnValue += tempBuffer[3];
+-  returnValue += tempBuffer[4];
+-  returnValue += tempBuffer[5];
+-  returnValue += tempBuffer[6];
+-  returnValue += tempBuffer[7];
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    returnValue += (*aPtr++);
+-  }
+-  *result = returnValue;
++    float returnValue = 0;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    const float* aPtr = inputBuffer;
++    __VOLK_ATTR_ALIGNED(32) float tempBuffer[8];
++
++    __m256 accumulator = _mm256_setzero_ps();
++    __m256 aVal = _mm256_setzero_ps();
++
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_load_ps(aPtr);
++        accumulator = _mm256_add_ps(accumulator, aVal);
++        aPtr += 8;
++    }
++
++    _mm256_store_ps(tempBuffer, accumulator);
++
++    returnValue = tempBuffer[0];
++    returnValue += tempBuffer[1];
++    returnValue += tempBuffer[2];
++    returnValue += tempBuffer[3];
++    returnValue += tempBuffer[4];
++    returnValue += tempBuffer[5];
++    returnValue += tempBuffer[6];
++    returnValue += tempBuffer[7];
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        returnValue += (*aPtr++);
++    }
++    *result = returnValue;
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -111,41 +112,42 @@ volk_32f_accumulator_s32f_a_avx(float* result, const float* inputBuffer, unsigne
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32f_accumulator_s32f_u_avx(float* result, const float* inputBuffer, unsigned int num_points)
++static inline void volk_32f_accumulator_s32f_u_avx(float* result,
++                                                   const float* inputBuffer,
++                                                   unsigned int num_points)
+ {
+-  float returnValue = 0;
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  const float* aPtr = inputBuffer;
+-  __VOLK_ATTR_ALIGNED(32) float tempBuffer[8];
+-
+-  __m256 accumulator = _mm256_setzero_ps();
+-  __m256 aVal = _mm256_setzero_ps();
+-
+-  for(;number < eighthPoints; number++){
+-    aVal = _mm256_loadu_ps(aPtr);
+-    accumulator = _mm256_add_ps(accumulator, aVal);
+-    aPtr += 8;
+-  }
+-
+-  _mm256_store_ps(tempBuffer, accumulator);
+-
+-  returnValue = tempBuffer[0];
+-  returnValue += tempBuffer[1];
+-  returnValue += tempBuffer[2];
+-  returnValue += tempBuffer[3];
+-  returnValue += tempBuffer[4];
+-  returnValue += tempBuffer[5];
+-  returnValue += tempBuffer[6];
+-  returnValue += tempBuffer[7];
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    returnValue += (*aPtr++);
+-  }
+-  *result = returnValue;
++    float returnValue = 0;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    const float* aPtr = inputBuffer;
++    __VOLK_ATTR_ALIGNED(32) float tempBuffer[8];
++
++    __m256 accumulator = _mm256_setzero_ps();
++    __m256 aVal = _mm256_setzero_ps();
++
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_loadu_ps(aPtr);
++        accumulator = _mm256_add_ps(accumulator, aVal);
++        aPtr += 8;
++    }
++
++    _mm256_store_ps(tempBuffer, accumulator);
++
++    returnValue = tempBuffer[0];
++    returnValue += tempBuffer[1];
++    returnValue += tempBuffer[2];
++    returnValue += tempBuffer[3];
++    returnValue += tempBuffer[4];
++    returnValue += tempBuffer[5];
++    returnValue += tempBuffer[6];
++    returnValue += tempBuffer[7];
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        returnValue += (*aPtr++);
++    }
++    *result = returnValue;
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -153,37 +155,38 @@ volk_32f_accumulator_s32f_u_avx(float* result, const float* inputBuffer, unsigne
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32f_accumulator_s32f_a_sse(float* result, const float* inputBuffer, unsigned int num_points)
++static inline void volk_32f_accumulator_s32f_a_sse(float* result,
++                                                   const float* inputBuffer,
++                                                   unsigned int num_points)
+ {
+-  float returnValue = 0;
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  const float* aPtr = inputBuffer;
+-  __VOLK_ATTR_ALIGNED(16) float tempBuffer[4];
+-
+-  __m128 accumulator = _mm_setzero_ps();
+-  __m128 aVal = _mm_setzero_ps();
+-
+-  for(;number < quarterPoints; number++){
+-    aVal = _mm_load_ps(aPtr);
+-    accumulator = _mm_add_ps(accumulator, aVal);
+-    aPtr += 4;
+-  }
+-
+-  _mm_store_ps(tempBuffer,accumulator);
+-
+-  returnValue = tempBuffer[0];
+-  returnValue += tempBuffer[1];
+-  returnValue += tempBuffer[2];
+-  returnValue += tempBuffer[3];
+-
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    returnValue += (*aPtr++);
+-  }
+-  *result = returnValue;
++    float returnValue = 0;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++
++    const float* aPtr = inputBuffer;
++    __VOLK_ATTR_ALIGNED(16) float tempBuffer[4];
++
++    __m128 accumulator = _mm_setzero_ps();
++    __m128 aVal = _mm_setzero_ps();
++
++    for (; number < quarterPoints; number++) {
++        aVal = _mm_load_ps(aPtr);
++        accumulator = _mm_add_ps(accumulator, aVal);
++        aPtr += 4;
++    }
++
++    _mm_store_ps(tempBuffer, accumulator);
++
++    returnValue = tempBuffer[0];
++    returnValue += tempBuffer[1];
++    returnValue += tempBuffer[2];
++    returnValue += tempBuffer[3];
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        returnValue += (*aPtr++);
++    }
++    *result = returnValue;
+ }
+ #endif /* LV_HAVE_SSE */
+@@ -191,52 +194,54 @@ volk_32f_accumulator_s32f_a_sse(float* result, const float* inputBuffer, unsigne
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32f_accumulator_s32f_u_sse(float* result, const float* inputBuffer, unsigned int num_points)
++static inline void volk_32f_accumulator_s32f_u_sse(float* result,
++                                                   const float* inputBuffer,
++                                                   unsigned int num_points)
+ {
+-  float returnValue = 0;
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  const float* aPtr = inputBuffer;
+-  __VOLK_ATTR_ALIGNED(16) float tempBuffer[4];
+-
+-  __m128 accumulator = _mm_setzero_ps();
+-  __m128 aVal = _mm_setzero_ps();
+-
+-  for(;number < quarterPoints; number++){
+-    aVal = _mm_load_ps(aPtr);
+-    accumulator = _mm_add_ps(accumulator, aVal);
+-    aPtr += 4;
+-  }
+-
+-  _mm_store_ps(tempBuffer,accumulator);
+-
+-  returnValue = tempBuffer[0];
+-  returnValue += tempBuffer[1];
+-  returnValue += tempBuffer[2];
+-  returnValue += tempBuffer[3];
+-
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    returnValue += (*aPtr++);
+-  }
+-  *result = returnValue;
++    float returnValue = 0;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++
++    const float* aPtr = inputBuffer;
++    __VOLK_ATTR_ALIGNED(16) float tempBuffer[4];
++
++    __m128 accumulator = _mm_setzero_ps();
++    __m128 aVal = _mm_setzero_ps();
++
++    for (; number < quarterPoints; number++) {
++        aVal = _mm_load_ps(aPtr);
++        accumulator = _mm_add_ps(accumulator, aVal);
++        aPtr += 4;
++    }
++
++    _mm_store_ps(tempBuffer, accumulator);
++
++    returnValue = tempBuffer[0];
++    returnValue += tempBuffer[1];
++    returnValue += tempBuffer[2];
++    returnValue += tempBuffer[3];
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        returnValue += (*aPtr++);
++    }
++    *result = returnValue;
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_accumulator_s32f_generic(float* result, const float* inputBuffer, unsigned int num_points)
++static inline void volk_32f_accumulator_s32f_generic(float* result,
++                                                     const float* inputBuffer,
++                                                     unsigned int num_points)
+ {
+-  const float* aPtr = inputBuffer;
+-  unsigned int number = 0;
+-  float returnValue = 0;
+-
+-  for(;number < num_points; number++){
+-    returnValue += (*aPtr++);
+-  }
+-  *result = returnValue;
++    const float* aPtr = inputBuffer;
++    unsigned int number = 0;
++    float returnValue = 0;
++
++    for (; number < num_points; number++) {
++        returnValue += (*aPtr++);
++    }
++    *result = returnValue;
+ }
+ #endif /* LV_HAVE_GENERIC */
+diff --git a/kernels/volk/volk_32f_acos_32f.h b/kernels/volk/volk_32f_acos_32f.h
+index 5c14c2f..92918ca 100644
+--- a/kernels/volk/volk_32f_acos_32f.h
++++ b/kernels/volk/volk_32f_acos_32f.h
+@@ -67,11 +67,12 @@
+  * \endcode
+  */
+-#include <stdio.h>
+-#include <math.h>
+ #include <inttypes.h>
++#include <math.h>
++#include <stdio.h>
+-/* This is the number of terms of Taylor series to evaluate, increase this for more accuracy*/
++/* This is the number of terms of Taylor series to evaluate, increase this for more
++ * accuracy*/
+ #define ACOS_TERMS 2
+ #ifndef INCLUDED_volk_32f_acos_32f_a_H
+@@ -80,62 +81,68 @@
+ #if LV_HAVE_AVX2 && LV_HAVE_FMA
+ #include <immintrin.h>
+-static inline void
+-volk_32f_acos_32f_a_avx2_fma(float* bVector, const float* aVector, unsigned int num_points)
++static inline void volk_32f_acos_32f_a_avx2_fma(float* bVector,
++                                                const float* aVector,
++                                                unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int eighthPoints = num_points / 8;
+-  int i, j;
+-
+-  __m256 aVal, d, pi, pio2, x, y, z, arccosine;
+-  __m256 fzeroes, fones, ftwos, ffours, condition;
+-
+-  pi = _mm256_set1_ps(3.14159265358979323846);
+-  pio2 = _mm256_set1_ps(3.14159265358979323846/2);
+-  fzeroes = _mm256_setzero_ps();
+-  fones = _mm256_set1_ps(1.0);
+-  ftwos = _mm256_set1_ps(2.0);
+-  ffours = _mm256_set1_ps(4.0);
+-
+-  for(;number < eighthPoints; number++){
+-    aVal = _mm256_load_ps(aPtr);
+-    d = aVal;
+-    aVal = _mm256_div_ps(_mm256_sqrt_ps(_mm256_mul_ps(_mm256_add_ps(fones, aVal), _mm256_sub_ps(fones, aVal))), aVal);
+-    z = aVal;
+-    condition = _mm256_cmp_ps(z, fzeroes, _CMP_LT_OS);
+-    z = _mm256_sub_ps(z, _mm256_and_ps(_mm256_mul_ps(z, ftwos), condition));
+-    condition = _mm256_cmp_ps(z, fones, _CMP_LT_OS);
+-    x = _mm256_add_ps(z, _mm256_and_ps(_mm256_sub_ps(_mm256_div_ps(fones, z), z), condition));
+-
+-    for(i = 0; i < 2; i++)
+-      x = _mm256_add_ps(x, _mm256_sqrt_ps(_mm256_fmadd_ps(x, x,fones)));
+-    x = _mm256_div_ps(fones, x);
+-    y = fzeroes;
+-    for(j = ACOS_TERMS - 1; j >=0 ; j--)
+-      y = _mm256_fmadd_ps(y, _mm256_mul_ps(x, x), _mm256_set1_ps(pow(-1,j)/(2*j+1)));
+-
+-    y = _mm256_mul_ps(y, _mm256_mul_ps(x, ffours));
+-    condition = _mm256_cmp_ps(z, fones, _CMP_GT_OS);
+-
+-    y = _mm256_add_ps(y, _mm256_and_ps(_mm256_fnmadd_ps(y, ftwos, pio2), condition));
+-    arccosine = y;
+-    condition = _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS);
+-    arccosine = _mm256_sub_ps(arccosine, _mm256_and_ps(_mm256_mul_ps(arccosine, ftwos), condition));
+-    condition = _mm256_cmp_ps(d, fzeroes, _CMP_LT_OS);
+-    arccosine = _mm256_add_ps(arccosine, _mm256_and_ps(pi, condition));
+-
+-    _mm256_store_ps(bPtr, arccosine);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *bPtr++ = acos(*aPtr++);
+-  }
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int eighthPoints = num_points / 8;
++    int i, j;
++
++    __m256 aVal, d, pi, pio2, x, y, z, arccosine;
++    __m256 fzeroes, fones, ftwos, ffours, condition;
++
++    pi = _mm256_set1_ps(3.14159265358979323846);
++    pio2 = _mm256_set1_ps(3.14159265358979323846 / 2);
++    fzeroes = _mm256_setzero_ps();
++    fones = _mm256_set1_ps(1.0);
++    ftwos = _mm256_set1_ps(2.0);
++    ffours = _mm256_set1_ps(4.0);
++
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_load_ps(aPtr);
++        d = aVal;
++        aVal = _mm256_div_ps(_mm256_sqrt_ps(_mm256_mul_ps(_mm256_add_ps(fones, aVal),
++                                                          _mm256_sub_ps(fones, aVal))),
++                             aVal);
++        z = aVal;
++        condition = _mm256_cmp_ps(z, fzeroes, _CMP_LT_OS);
++        z = _mm256_sub_ps(z, _mm256_and_ps(_mm256_mul_ps(z, ftwos), condition));
++        condition = _mm256_cmp_ps(z, fones, _CMP_LT_OS);
++        x = _mm256_add_ps(
++            z, _mm256_and_ps(_mm256_sub_ps(_mm256_div_ps(fones, z), z), condition));
++
++        for (i = 0; i < 2; i++)
++            x = _mm256_add_ps(x, _mm256_sqrt_ps(_mm256_fmadd_ps(x, x, fones)));
++        x = _mm256_div_ps(fones, x);
++        y = fzeroes;
++        for (j = ACOS_TERMS - 1; j >= 0; j--)
++            y = _mm256_fmadd_ps(
++                y, _mm256_mul_ps(x, x), _mm256_set1_ps(pow(-1, j) / (2 * j + 1)));
++
++        y = _mm256_mul_ps(y, _mm256_mul_ps(x, ffours));
++        condition = _mm256_cmp_ps(z, fones, _CMP_GT_OS);
++
++        y = _mm256_add_ps(y, _mm256_and_ps(_mm256_fnmadd_ps(y, ftwos, pio2), condition));
++        arccosine = y;
++        condition = _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS);
++        arccosine = _mm256_sub_ps(
++            arccosine, _mm256_and_ps(_mm256_mul_ps(arccosine, ftwos), condition));
++        condition = _mm256_cmp_ps(d, fzeroes, _CMP_LT_OS);
++        arccosine = _mm256_add_ps(arccosine, _mm256_and_ps(pi, condition));
++
++        _mm256_store_ps(bPtr, arccosine);
++        aPtr += 8;
++        bPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *bPtr++ = acos(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 && LV_HAVE_FMA for aligned */
+@@ -147,59 +154,66 @@ volk_32f_acos_32f_a_avx2_fma(float* bVector, const float* aVector, unsigned int
+ static inline void
+ volk_32f_acos_32f_a_avx(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int eighthPoints = num_points / 8;
+-  int i, j;
+-
+-  __m256 aVal, d, pi, pio2, x, y, z, arccosine;
+-  __m256 fzeroes, fones, ftwos, ffours, condition;
+-
+-  pi = _mm256_set1_ps(3.14159265358979323846);
+-  pio2 = _mm256_set1_ps(3.14159265358979323846/2);
+-  fzeroes = _mm256_setzero_ps();
+-  fones = _mm256_set1_ps(1.0);
+-  ftwos = _mm256_set1_ps(2.0);
+-  ffours = _mm256_set1_ps(4.0);
+-
+-  for(;number < eighthPoints; number++){
+-    aVal = _mm256_load_ps(aPtr);
+-    d = aVal;
+-    aVal = _mm256_div_ps(_mm256_sqrt_ps(_mm256_mul_ps(_mm256_add_ps(fones, aVal), _mm256_sub_ps(fones, aVal))), aVal);
+-    z = aVal;
+-    condition = _mm256_cmp_ps(z, fzeroes, _CMP_LT_OS);
+-    z = _mm256_sub_ps(z, _mm256_and_ps(_mm256_mul_ps(z, ftwos), condition));
+-    condition = _mm256_cmp_ps(z, fones, _CMP_LT_OS);
+-    x = _mm256_add_ps(z, _mm256_and_ps(_mm256_sub_ps(_mm256_div_ps(fones, z), z), condition));
+-
+-    for(i = 0; i < 2; i++)
+-      x = _mm256_add_ps(x, _mm256_sqrt_ps(_mm256_add_ps(fones, _mm256_mul_ps(x, x))));
+-    x = _mm256_div_ps(fones, x);
+-    y = fzeroes;
+-    for(j = ACOS_TERMS - 1; j >=0 ; j--)
+-      y = _mm256_add_ps(_mm256_mul_ps(y, _mm256_mul_ps(x, x)), _mm256_set1_ps(pow(-1,j)/(2*j+1)));
+-
+-    y = _mm256_mul_ps(y, _mm256_mul_ps(x, ffours));
+-    condition = _mm256_cmp_ps(z, fones, _CMP_GT_OS);
+-
+-    y = _mm256_add_ps(y, _mm256_and_ps(_mm256_sub_ps(pio2, _mm256_mul_ps(y, ftwos)), condition));
+-    arccosine = y;
+-    condition = _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS);
+-    arccosine = _mm256_sub_ps(arccosine, _mm256_and_ps(_mm256_mul_ps(arccosine, ftwos), condition));
+-    condition = _mm256_cmp_ps(d, fzeroes, _CMP_LT_OS);
+-    arccosine = _mm256_add_ps(arccosine, _mm256_and_ps(pi, condition));
+-
+-    _mm256_store_ps(bPtr, arccosine);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *bPtr++ = acos(*aPtr++);
+-  }
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int eighthPoints = num_points / 8;
++    int i, j;
++
++    __m256 aVal, d, pi, pio2, x, y, z, arccosine;
++    __m256 fzeroes, fones, ftwos, ffours, condition;
++
++    pi = _mm256_set1_ps(3.14159265358979323846);
++    pio2 = _mm256_set1_ps(3.14159265358979323846 / 2);
++    fzeroes = _mm256_setzero_ps();
++    fones = _mm256_set1_ps(1.0);
++    ftwos = _mm256_set1_ps(2.0);
++    ffours = _mm256_set1_ps(4.0);
++
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_load_ps(aPtr);
++        d = aVal;
++        aVal = _mm256_div_ps(_mm256_sqrt_ps(_mm256_mul_ps(_mm256_add_ps(fones, aVal),
++                                                          _mm256_sub_ps(fones, aVal))),
++                             aVal);
++        z = aVal;
++        condition = _mm256_cmp_ps(z, fzeroes, _CMP_LT_OS);
++        z = _mm256_sub_ps(z, _mm256_and_ps(_mm256_mul_ps(z, ftwos), condition));
++        condition = _mm256_cmp_ps(z, fones, _CMP_LT_OS);
++        x = _mm256_add_ps(
++            z, _mm256_and_ps(_mm256_sub_ps(_mm256_div_ps(fones, z), z), condition));
++
++        for (i = 0; i < 2; i++)
++            x = _mm256_add_ps(x,
++                              _mm256_sqrt_ps(_mm256_add_ps(fones, _mm256_mul_ps(x, x))));
++        x = _mm256_div_ps(fones, x);
++        y = fzeroes;
++        for (j = ACOS_TERMS - 1; j >= 0; j--)
++            y = _mm256_add_ps(_mm256_mul_ps(y, _mm256_mul_ps(x, x)),
++                              _mm256_set1_ps(pow(-1, j) / (2 * j + 1)));
++
++        y = _mm256_mul_ps(y, _mm256_mul_ps(x, ffours));
++        condition = _mm256_cmp_ps(z, fones, _CMP_GT_OS);
++
++        y = _mm256_add_ps(
++            y, _mm256_and_ps(_mm256_sub_ps(pio2, _mm256_mul_ps(y, ftwos)), condition));
++        arccosine = y;
++        condition = _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS);
++        arccosine = _mm256_sub_ps(
++            arccosine, _mm256_and_ps(_mm256_mul_ps(arccosine, ftwos), condition));
++        condition = _mm256_cmp_ps(d, fzeroes, _CMP_LT_OS);
++        arccosine = _mm256_add_ps(arccosine, _mm256_and_ps(pi, condition));
++
++        _mm256_store_ps(bPtr, arccosine);
++        aPtr += 8;
++        bPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *bPtr++ = acos(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 for aligned */
+@@ -210,59 +224,63 @@ volk_32f_acos_32f_a_avx(float* bVector, const float* aVector, unsigned int num_p
+ static inline void
+ volk_32f_acos_32f_a_sse4_1(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int quarterPoints = num_points / 4;
+-  int i, j;
+-
+-  __m128 aVal, d, pi, pio2, x, y, z, arccosine;
+-  __m128 fzeroes, fones, ftwos, ffours, condition;
+-
+-  pi = _mm_set1_ps(3.14159265358979323846);
+-  pio2 = _mm_set1_ps(3.14159265358979323846/2);
+-  fzeroes = _mm_setzero_ps();
+-  fones = _mm_set1_ps(1.0);
+-  ftwos = _mm_set1_ps(2.0);
+-  ffours = _mm_set1_ps(4.0);
+-
+-  for(;number < quarterPoints; number++){
+-    aVal = _mm_load_ps(aPtr);
+-    d = aVal;
+-    aVal = _mm_div_ps(_mm_sqrt_ps(_mm_mul_ps(_mm_add_ps(fones, aVal), _mm_sub_ps(fones, aVal))), aVal);
+-    z = aVal;
+-    condition = _mm_cmplt_ps(z, fzeroes);
+-    z = _mm_sub_ps(z, _mm_and_ps(_mm_mul_ps(z, ftwos), condition));
+-    condition = _mm_cmplt_ps(z, fones);
+-    x = _mm_add_ps(z, _mm_and_ps(_mm_sub_ps(_mm_div_ps(fones, z), z), condition));
+-
+-    for(i = 0; i < 2; i++)
+-      x = _mm_add_ps(x, _mm_sqrt_ps(_mm_add_ps(fones, _mm_mul_ps(x, x))));
+-    x = _mm_div_ps(fones, x);
+-    y = fzeroes;
+-    for(j = ACOS_TERMS - 1; j >=0 ; j--)
+-      y = _mm_add_ps(_mm_mul_ps(y, _mm_mul_ps(x, x)), _mm_set1_ps(pow(-1,j)/(2*j+1)));
+-
+-    y = _mm_mul_ps(y, _mm_mul_ps(x, ffours));
+-    condition = _mm_cmpgt_ps(z, fones);
+-
+-    y = _mm_add_ps(y, _mm_and_ps(_mm_sub_ps(pio2, _mm_mul_ps(y, ftwos)), condition));
+-    arccosine = y;
+-    condition = _mm_cmplt_ps(aVal, fzeroes);
+-    arccosine = _mm_sub_ps(arccosine, _mm_and_ps(_mm_mul_ps(arccosine, ftwos), condition));
+-    condition = _mm_cmplt_ps(d, fzeroes);
+-    arccosine = _mm_add_ps(arccosine, _mm_and_ps(pi, condition));
+-
+-    _mm_store_ps(bPtr, arccosine);
+-    aPtr += 4;
+-    bPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    *bPtr++ = acosf(*aPtr++);
+-  }
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int quarterPoints = num_points / 4;
++    int i, j;
++
++    __m128 aVal, d, pi, pio2, x, y, z, arccosine;
++    __m128 fzeroes, fones, ftwos, ffours, condition;
++
++    pi = _mm_set1_ps(3.14159265358979323846);
++    pio2 = _mm_set1_ps(3.14159265358979323846 / 2);
++    fzeroes = _mm_setzero_ps();
++    fones = _mm_set1_ps(1.0);
++    ftwos = _mm_set1_ps(2.0);
++    ffours = _mm_set1_ps(4.0);
++
++    for (; number < quarterPoints; number++) {
++        aVal = _mm_load_ps(aPtr);
++        d = aVal;
++        aVal = _mm_div_ps(
++            _mm_sqrt_ps(_mm_mul_ps(_mm_add_ps(fones, aVal), _mm_sub_ps(fones, aVal))),
++            aVal);
++        z = aVal;
++        condition = _mm_cmplt_ps(z, fzeroes);
++        z = _mm_sub_ps(z, _mm_and_ps(_mm_mul_ps(z, ftwos), condition));
++        condition = _mm_cmplt_ps(z, fones);
++        x = _mm_add_ps(z, _mm_and_ps(_mm_sub_ps(_mm_div_ps(fones, z), z), condition));
++
++        for (i = 0; i < 2; i++)
++            x = _mm_add_ps(x, _mm_sqrt_ps(_mm_add_ps(fones, _mm_mul_ps(x, x))));
++        x = _mm_div_ps(fones, x);
++        y = fzeroes;
++        for (j = ACOS_TERMS - 1; j >= 0; j--)
++            y = _mm_add_ps(_mm_mul_ps(y, _mm_mul_ps(x, x)),
++                           _mm_set1_ps(pow(-1, j) / (2 * j + 1)));
++
++        y = _mm_mul_ps(y, _mm_mul_ps(x, ffours));
++        condition = _mm_cmpgt_ps(z, fones);
++
++        y = _mm_add_ps(y, _mm_and_ps(_mm_sub_ps(pio2, _mm_mul_ps(y, ftwos)), condition));
++        arccosine = y;
++        condition = _mm_cmplt_ps(aVal, fzeroes);
++        arccosine =
++            _mm_sub_ps(arccosine, _mm_and_ps(_mm_mul_ps(arccosine, ftwos), condition));
++        condition = _mm_cmplt_ps(d, fzeroes);
++        arccosine = _mm_add_ps(arccosine, _mm_and_ps(pi, condition));
++
++        _mm_store_ps(bPtr, arccosine);
++        aPtr += 4;
++        bPtr += 4;
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *bPtr++ = acosf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_SSE4_1 for aligned */
+@@ -276,62 +294,68 @@ volk_32f_acos_32f_a_sse4_1(float* bVector, const float* aVector, unsigned int nu
+ #if LV_HAVE_AVX2 && LV_HAVE_FMA
+ #include <immintrin.h>
+-static inline void
+-volk_32f_acos_32f_u_avx2_fma(float* bVector, const float* aVector, unsigned int num_points)
++static inline void volk_32f_acos_32f_u_avx2_fma(float* bVector,
++                                                const float* aVector,
++                                                unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int eighthPoints = num_points / 8;
+-  int i, j;
+-
+-  __m256 aVal, d, pi, pio2, x, y, z, arccosine;
+-  __m256 fzeroes, fones, ftwos, ffours, condition;
+-
+-  pi = _mm256_set1_ps(3.14159265358979323846);
+-  pio2 = _mm256_set1_ps(3.14159265358979323846/2);
+-  fzeroes = _mm256_setzero_ps();
+-  fones = _mm256_set1_ps(1.0);
+-  ftwos = _mm256_set1_ps(2.0);
+-  ffours = _mm256_set1_ps(4.0);
+-
+-  for(;number < eighthPoints; number++){
+-    aVal = _mm256_loadu_ps(aPtr);
+-    d = aVal;
+-    aVal = _mm256_div_ps(_mm256_sqrt_ps(_mm256_mul_ps(_mm256_add_ps(fones, aVal), _mm256_sub_ps(fones, aVal))), aVal);
+-    z = aVal;
+-    condition = _mm256_cmp_ps(z, fzeroes, _CMP_LT_OS);
+-    z = _mm256_sub_ps(z, _mm256_and_ps(_mm256_mul_ps(z, ftwos), condition));
+-    condition = _mm256_cmp_ps(z, fones, _CMP_LT_OS);
+-    x = _mm256_add_ps(z, _mm256_and_ps(_mm256_sub_ps(_mm256_div_ps(fones, z), z), condition));
+-
+-    for(i = 0; i < 2; i++)
+-      x = _mm256_add_ps(x, _mm256_sqrt_ps(_mm256_fmadd_ps(x, x,fones)));
+-    x = _mm256_div_ps(fones, x);
+-    y = fzeroes;
+-    for(j = ACOS_TERMS - 1; j >=0 ; j--)
+-      y = _mm256_fmadd_ps(y, _mm256_mul_ps(x, x), _mm256_set1_ps(pow(-1,j)/(2*j+1)));
+-
+-    y = _mm256_mul_ps(y, _mm256_mul_ps(x, ffours));
+-    condition = _mm256_cmp_ps(z, fones, _CMP_GT_OS);
+-
+-    y = _mm256_add_ps(y, _mm256_and_ps(_mm256_fnmadd_ps(y, ftwos, pio2), condition));
+-    arccosine = y;
+-    condition = _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS);
+-    arccosine = _mm256_sub_ps(arccosine, _mm256_and_ps(_mm256_mul_ps(arccosine, ftwos), condition));
+-    condition = _mm256_cmp_ps(d, fzeroes, _CMP_LT_OS);
+-    arccosine = _mm256_add_ps(arccosine, _mm256_and_ps(pi, condition));
+-
+-    _mm256_storeu_ps(bPtr, arccosine);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *bPtr++ = acos(*aPtr++);
+-  }
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int eighthPoints = num_points / 8;
++    int i, j;
++
++    __m256 aVal, d, pi, pio2, x, y, z, arccosine;
++    __m256 fzeroes, fones, ftwos, ffours, condition;
++
++    pi = _mm256_set1_ps(3.14159265358979323846);
++    pio2 = _mm256_set1_ps(3.14159265358979323846 / 2);
++    fzeroes = _mm256_setzero_ps();
++    fones = _mm256_set1_ps(1.0);
++    ftwos = _mm256_set1_ps(2.0);
++    ffours = _mm256_set1_ps(4.0);
++
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_loadu_ps(aPtr);
++        d = aVal;
++        aVal = _mm256_div_ps(_mm256_sqrt_ps(_mm256_mul_ps(_mm256_add_ps(fones, aVal),
++                                                          _mm256_sub_ps(fones, aVal))),
++                             aVal);
++        z = aVal;
++        condition = _mm256_cmp_ps(z, fzeroes, _CMP_LT_OS);
++        z = _mm256_sub_ps(z, _mm256_and_ps(_mm256_mul_ps(z, ftwos), condition));
++        condition = _mm256_cmp_ps(z, fones, _CMP_LT_OS);
++        x = _mm256_add_ps(
++            z, _mm256_and_ps(_mm256_sub_ps(_mm256_div_ps(fones, z), z), condition));
++
++        for (i = 0; i < 2; i++)
++            x = _mm256_add_ps(x, _mm256_sqrt_ps(_mm256_fmadd_ps(x, x, fones)));
++        x = _mm256_div_ps(fones, x);
++        y = fzeroes;
++        for (j = ACOS_TERMS - 1; j >= 0; j--)
++            y = _mm256_fmadd_ps(
++                y, _mm256_mul_ps(x, x), _mm256_set1_ps(pow(-1, j) / (2 * j + 1)));
++
++        y = _mm256_mul_ps(y, _mm256_mul_ps(x, ffours));
++        condition = _mm256_cmp_ps(z, fones, _CMP_GT_OS);
++
++        y = _mm256_add_ps(y, _mm256_and_ps(_mm256_fnmadd_ps(y, ftwos, pio2), condition));
++        arccosine = y;
++        condition = _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS);
++        arccosine = _mm256_sub_ps(
++            arccosine, _mm256_and_ps(_mm256_mul_ps(arccosine, ftwos), condition));
++        condition = _mm256_cmp_ps(d, fzeroes, _CMP_LT_OS);
++        arccosine = _mm256_add_ps(arccosine, _mm256_and_ps(pi, condition));
++
++        _mm256_storeu_ps(bPtr, arccosine);
++        aPtr += 8;
++        bPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *bPtr++ = acos(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 && LV_HAVE_FMA for unaligned */
+@@ -343,59 +367,66 @@ volk_32f_acos_32f_u_avx2_fma(float* bVector, const float* aVector, unsigned int
+ static inline void
+ volk_32f_acos_32f_u_avx(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int eighthPoints = num_points / 8;
+-  int i, j;
+-
+-  __m256 aVal, d, pi, pio2, x, y, z, arccosine;
+-  __m256 fzeroes, fones, ftwos, ffours, condition;
+-
+-  pi = _mm256_set1_ps(3.14159265358979323846);
+-  pio2 = _mm256_set1_ps(3.14159265358979323846/2);
+-  fzeroes = _mm256_setzero_ps();
+-  fones = _mm256_set1_ps(1.0);
+-  ftwos = _mm256_set1_ps(2.0);
+-  ffours = _mm256_set1_ps(4.0);
+-
+-  for(;number < eighthPoints; number++){
+-    aVal = _mm256_loadu_ps(aPtr);
+-    d = aVal;
+-    aVal = _mm256_div_ps(_mm256_sqrt_ps(_mm256_mul_ps(_mm256_add_ps(fones, aVal), _mm256_sub_ps(fones, aVal))), aVal);
+-    z = aVal;
+-    condition = _mm256_cmp_ps(z, fzeroes, _CMP_LT_OS);
+-    z = _mm256_sub_ps(z, _mm256_and_ps(_mm256_mul_ps(z, ftwos), condition));
+-    condition = _mm256_cmp_ps(z, fones, _CMP_LT_OS);
+-    x = _mm256_add_ps(z, _mm256_and_ps(_mm256_sub_ps(_mm256_div_ps(fones, z), z), condition));
+-
+-    for(i = 0; i < 2; i++)
+-      x = _mm256_add_ps(x, _mm256_sqrt_ps(_mm256_add_ps(fones, _mm256_mul_ps(x, x))));
+-    x = _mm256_div_ps(fones, x);
+-    y = fzeroes;
+-    for(j = ACOS_TERMS - 1; j >=0 ; j--)
+-      y = _mm256_add_ps(_mm256_mul_ps(y, _mm256_mul_ps(x, x)), _mm256_set1_ps(pow(-1,j)/(2*j+1)));
+-
+-    y = _mm256_mul_ps(y, _mm256_mul_ps(x, ffours));
+-    condition = _mm256_cmp_ps(z, fones, _CMP_GT_OS);
+-
+-    y = _mm256_add_ps(y, _mm256_and_ps(_mm256_sub_ps(pio2, _mm256_mul_ps(y, ftwos)), condition));
+-    arccosine = y;
+-    condition = _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS);
+-    arccosine = _mm256_sub_ps(arccosine, _mm256_and_ps(_mm256_mul_ps(arccosine, ftwos), condition));
+-    condition = _mm256_cmp_ps(d, fzeroes, _CMP_LT_OS);
+-    arccosine = _mm256_add_ps(arccosine, _mm256_and_ps(pi, condition));
+-
+-    _mm256_storeu_ps(bPtr, arccosine);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *bPtr++ = acos(*aPtr++);
+-  }
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int eighthPoints = num_points / 8;
++    int i, j;
++
++    __m256 aVal, d, pi, pio2, x, y, z, arccosine;
++    __m256 fzeroes, fones, ftwos, ffours, condition;
++
++    pi = _mm256_set1_ps(3.14159265358979323846);
++    pio2 = _mm256_set1_ps(3.14159265358979323846 / 2);
++    fzeroes = _mm256_setzero_ps();
++    fones = _mm256_set1_ps(1.0);
++    ftwos = _mm256_set1_ps(2.0);
++    ffours = _mm256_set1_ps(4.0);
++
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_loadu_ps(aPtr);
++        d = aVal;
++        aVal = _mm256_div_ps(_mm256_sqrt_ps(_mm256_mul_ps(_mm256_add_ps(fones, aVal),
++                                                          _mm256_sub_ps(fones, aVal))),
++                             aVal);
++        z = aVal;
++        condition = _mm256_cmp_ps(z, fzeroes, _CMP_LT_OS);
++        z = _mm256_sub_ps(z, _mm256_and_ps(_mm256_mul_ps(z, ftwos), condition));
++        condition = _mm256_cmp_ps(z, fones, _CMP_LT_OS);
++        x = _mm256_add_ps(
++            z, _mm256_and_ps(_mm256_sub_ps(_mm256_div_ps(fones, z), z), condition));
++
++        for (i = 0; i < 2; i++)
++            x = _mm256_add_ps(x,
++                              _mm256_sqrt_ps(_mm256_add_ps(fones, _mm256_mul_ps(x, x))));
++        x = _mm256_div_ps(fones, x);
++        y = fzeroes;
++        for (j = ACOS_TERMS - 1; j >= 0; j--)
++            y = _mm256_add_ps(_mm256_mul_ps(y, _mm256_mul_ps(x, x)),
++                              _mm256_set1_ps(pow(-1, j) / (2 * j + 1)));
++
++        y = _mm256_mul_ps(y, _mm256_mul_ps(x, ffours));
++        condition = _mm256_cmp_ps(z, fones, _CMP_GT_OS);
++
++        y = _mm256_add_ps(
++            y, _mm256_and_ps(_mm256_sub_ps(pio2, _mm256_mul_ps(y, ftwos)), condition));
++        arccosine = y;
++        condition = _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS);
++        arccosine = _mm256_sub_ps(
++            arccosine, _mm256_and_ps(_mm256_mul_ps(arccosine, ftwos), condition));
++        condition = _mm256_cmp_ps(d, fzeroes, _CMP_LT_OS);
++        arccosine = _mm256_add_ps(arccosine, _mm256_and_ps(pi, condition));
++
++        _mm256_storeu_ps(bPtr, arccosine);
++        aPtr += 8;
++        bPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *bPtr++ = acos(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 for unaligned */
+@@ -406,60 +437,64 @@ volk_32f_acos_32f_u_avx(float* bVector, const float* aVector, unsigned int num_p
+ static inline void
+ volk_32f_acos_32f_u_sse4_1(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int quarterPoints = num_points / 4;
+-  int i, j;
+-
+-  __m128 aVal, d, pi, pio2, x, y, z, arccosine;
+-  __m128 fzeroes, fones, ftwos, ffours, condition;
+-
+-  pi = _mm_set1_ps(3.14159265358979323846);
+-  pio2 = _mm_set1_ps(3.14159265358979323846/2);
+-  fzeroes = _mm_setzero_ps();
+-  fones = _mm_set1_ps(1.0);
+-  ftwos = _mm_set1_ps(2.0);
+-  ffours = _mm_set1_ps(4.0);
+-
+-  for(;number < quarterPoints; number++){
+-    aVal = _mm_loadu_ps(aPtr);
+-    d = aVal;
+-    aVal = _mm_div_ps(_mm_sqrt_ps(_mm_mul_ps(_mm_add_ps(fones, aVal), _mm_sub_ps(fones, aVal))), aVal);
+-    z = aVal;
+-    condition = _mm_cmplt_ps(z, fzeroes);
+-    z = _mm_sub_ps(z, _mm_and_ps(_mm_mul_ps(z, ftwos), condition));
+-    condition = _mm_cmplt_ps(z, fones);
+-    x = _mm_add_ps(z, _mm_and_ps(_mm_sub_ps(_mm_div_ps(fones, z), z), condition));
+-
+-    for(i = 0; i < 2; i++)
+-      x = _mm_add_ps(x, _mm_sqrt_ps(_mm_add_ps(fones, _mm_mul_ps(x, x))));
+-    x = _mm_div_ps(fones, x);
+-    y = fzeroes;
+-
+-    for(j = ACOS_TERMS - 1; j >=0 ; j--)
+-      y = _mm_add_ps(_mm_mul_ps(y, _mm_mul_ps(x, x)), _mm_set1_ps(pow(-1,j)/(2*j+1)));
+-
+-    y = _mm_mul_ps(y, _mm_mul_ps(x, ffours));
+-    condition = _mm_cmpgt_ps(z, fones);
+-
+-    y = _mm_add_ps(y, _mm_and_ps(_mm_sub_ps(pio2, _mm_mul_ps(y, ftwos)), condition));
+-    arccosine = y;
+-    condition = _mm_cmplt_ps(aVal, fzeroes);
+-    arccosine = _mm_sub_ps(arccosine, _mm_and_ps(_mm_mul_ps(arccosine, ftwos), condition));
+-    condition = _mm_cmplt_ps(d, fzeroes);
+-    arccosine = _mm_add_ps(arccosine, _mm_and_ps(pi, condition));
+-
+-    _mm_storeu_ps(bPtr, arccosine);
+-    aPtr += 4;
+-    bPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    *bPtr++ = acosf(*aPtr++);
+-  }
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int quarterPoints = num_points / 4;
++    int i, j;
++
++    __m128 aVal, d, pi, pio2, x, y, z, arccosine;
++    __m128 fzeroes, fones, ftwos, ffours, condition;
++
++    pi = _mm_set1_ps(3.14159265358979323846);
++    pio2 = _mm_set1_ps(3.14159265358979323846 / 2);
++    fzeroes = _mm_setzero_ps();
++    fones = _mm_set1_ps(1.0);
++    ftwos = _mm_set1_ps(2.0);
++    ffours = _mm_set1_ps(4.0);
++
++    for (; number < quarterPoints; number++) {
++        aVal = _mm_loadu_ps(aPtr);
++        d = aVal;
++        aVal = _mm_div_ps(
++            _mm_sqrt_ps(_mm_mul_ps(_mm_add_ps(fones, aVal), _mm_sub_ps(fones, aVal))),
++            aVal);
++        z = aVal;
++        condition = _mm_cmplt_ps(z, fzeroes);
++        z = _mm_sub_ps(z, _mm_and_ps(_mm_mul_ps(z, ftwos), condition));
++        condition = _mm_cmplt_ps(z, fones);
++        x = _mm_add_ps(z, _mm_and_ps(_mm_sub_ps(_mm_div_ps(fones, z), z), condition));
++
++        for (i = 0; i < 2; i++)
++            x = _mm_add_ps(x, _mm_sqrt_ps(_mm_add_ps(fones, _mm_mul_ps(x, x))));
++        x = _mm_div_ps(fones, x);
++        y = fzeroes;
++
++        for (j = ACOS_TERMS - 1; j >= 0; j--)
++            y = _mm_add_ps(_mm_mul_ps(y, _mm_mul_ps(x, x)),
++                           _mm_set1_ps(pow(-1, j) / (2 * j + 1)));
++
++        y = _mm_mul_ps(y, _mm_mul_ps(x, ffours));
++        condition = _mm_cmpgt_ps(z, fones);
++
++        y = _mm_add_ps(y, _mm_and_ps(_mm_sub_ps(pio2, _mm_mul_ps(y, ftwos)), condition));
++        arccosine = y;
++        condition = _mm_cmplt_ps(aVal, fzeroes);
++        arccosine =
++            _mm_sub_ps(arccosine, _mm_and_ps(_mm_mul_ps(arccosine, ftwos), condition));
++        condition = _mm_cmplt_ps(d, fzeroes);
++        arccosine = _mm_add_ps(arccosine, _mm_and_ps(pi, condition));
++
++        _mm_storeu_ps(bPtr, arccosine);
++        aPtr += 4;
++        bPtr += 4;
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *bPtr++ = acosf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_SSE4_1 for aligned */
+@@ -469,14 +504,13 @@ volk_32f_acos_32f_u_sse4_1(float* bVector, const float* aVector, unsigned int nu
+ static inline void
+ volk_32f_acos_32f_generic(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    *bPtr++ = acosf(*aPtr++);
+-  }
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++    unsigned int number = 0;
++    for (number = 0; number < num_points; number++) {
++        *bPtr++ = acosf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+diff --git a/kernels/volk/volk_32f_asin_32f.h b/kernels/volk/volk_32f_asin_32f.h
+index 864cfcf..946d382 100644
+--- a/kernels/volk/volk_32f_asin_32f.h
++++ b/kernels/volk/volk_32f_asin_32f.h
+@@ -67,11 +67,12 @@
+  * \endcode
+  */
+-#include <stdio.h>
+-#include <math.h>
+ #include <inttypes.h>
++#include <math.h>
++#include <stdio.h>
+-/* This is the number of terms of Taylor series to evaluate, increase this for more accuracy*/
++/* This is the number of terms of Taylor series to evaluate, increase this for more
++ * accuracy*/
+ #define ASIN_TERMS 2
+ #ifndef INCLUDED_volk_32f_asin_32f_a_H
+@@ -80,60 +81,66 @@
+ #if LV_HAVE_AVX2 && LV_HAVE_FMA
+ #include <immintrin.h>
+-static inline void
+-volk_32f_asin_32f_a_avx2_fma(float* bVector, const float* aVector, unsigned int num_points)
++static inline void volk_32f_asin_32f_a_avx2_fma(float* bVector,
++                                                const float* aVector,
++                                                unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int eighthPoints = num_points / 8;
+-  int i, j;
+-
+-  __m256 aVal, pio2, x, y, z, arcsine;
+-  __m256 fzeroes, fones, ftwos, ffours, condition;
+-
+-  pio2 = _mm256_set1_ps(3.14159265358979323846/2);
+-  fzeroes = _mm256_setzero_ps();
+-  fones = _mm256_set1_ps(1.0);
+-  ftwos = _mm256_set1_ps(2.0);
+-  ffours = _mm256_set1_ps(4.0);
+-
+-  for(;number < eighthPoints; number++){
+-    aVal = _mm256_load_ps(aPtr);
+-    aVal = _mm256_div_ps(aVal, _mm256_sqrt_ps(_mm256_mul_ps(_mm256_add_ps(fones, aVal), _mm256_sub_ps(fones, aVal))));
+-    z = aVal;
+-    condition = _mm256_cmp_ps(z, fzeroes, _CMP_LT_OS);
+-    z = _mm256_sub_ps(z, _mm256_and_ps(_mm256_mul_ps(z, ftwos), condition));
+-    condition = _mm256_cmp_ps(z, fones, _CMP_LT_OS);
+-    x = _mm256_add_ps(z, _mm256_and_ps(_mm256_sub_ps(_mm256_div_ps(fones, z), z), condition));
+-
+-    for(i = 0; i < 2; i++){
+-      x = _mm256_add_ps(x, _mm256_sqrt_ps(_mm256_fmadd_ps(x,x,fones)));
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int eighthPoints = num_points / 8;
++    int i, j;
++
++    __m256 aVal, pio2, x, y, z, arcsine;
++    __m256 fzeroes, fones, ftwos, ffours, condition;
++
++    pio2 = _mm256_set1_ps(3.14159265358979323846 / 2);
++    fzeroes = _mm256_setzero_ps();
++    fones = _mm256_set1_ps(1.0);
++    ftwos = _mm256_set1_ps(2.0);
++    ffours = _mm256_set1_ps(4.0);
++
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_load_ps(aPtr);
++        aVal = _mm256_div_ps(aVal,
++                             _mm256_sqrt_ps(_mm256_mul_ps(_mm256_add_ps(fones, aVal),
++                                                          _mm256_sub_ps(fones, aVal))));
++        z = aVal;
++        condition = _mm256_cmp_ps(z, fzeroes, _CMP_LT_OS);
++        z = _mm256_sub_ps(z, _mm256_and_ps(_mm256_mul_ps(z, ftwos), condition));
++        condition = _mm256_cmp_ps(z, fones, _CMP_LT_OS);
++        x = _mm256_add_ps(
++            z, _mm256_and_ps(_mm256_sub_ps(_mm256_div_ps(fones, z), z), condition));
++
++        for (i = 0; i < 2; i++) {
++            x = _mm256_add_ps(x, _mm256_sqrt_ps(_mm256_fmadd_ps(x, x, fones)));
++        }
++        x = _mm256_div_ps(fones, x);
++        y = fzeroes;
++        for (j = ASIN_TERMS - 1; j >= 0; j--) {
++            y = _mm256_fmadd_ps(
++                y, _mm256_mul_ps(x, x), _mm256_set1_ps(pow(-1, j) / (2 * j + 1)));
++        }
++
++        y = _mm256_mul_ps(y, _mm256_mul_ps(x, ffours));
++        condition = _mm256_cmp_ps(z, fones, _CMP_GT_OS);
++
++        y = _mm256_add_ps(y, _mm256_and_ps(_mm256_fnmadd_ps(y, ftwos, pio2), condition));
++        arcsine = y;
++        condition = _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS);
++        arcsine = _mm256_sub_ps(arcsine,
++                                _mm256_and_ps(_mm256_mul_ps(arcsine, ftwos), condition));
++
++        _mm256_store_ps(bPtr, arcsine);
++        aPtr += 8;
++        bPtr += 8;
+     }
+-    x = _mm256_div_ps(fones, x);
+-    y = fzeroes;
+-    for(j = ASIN_TERMS - 1; j >=0 ; j--){
+-      y = _mm256_fmadd_ps(y, _mm256_mul_ps(x, x), _mm256_set1_ps(pow(-1,j)/(2*j+1)));
+-    }
+-
+-    y = _mm256_mul_ps(y, _mm256_mul_ps(x, ffours));
+-    condition = _mm256_cmp_ps(z, fones,_CMP_GT_OS);
+-
+-    y = _mm256_add_ps(y, _mm256_and_ps(_mm256_fnmadd_ps(y,ftwos,pio2), condition));
+-    arcsine = y;
+-    condition = _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS);
+-    arcsine = _mm256_sub_ps(arcsine, _mm256_and_ps(_mm256_mul_ps(arcsine, ftwos), condition));
+-    _mm256_store_ps(bPtr, arcsine);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *bPtr++ = asin(*aPtr++);
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *bPtr++ = asin(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 && LV_HAVE_FMA for aligned */
+@@ -145,57 +152,64 @@ volk_32f_asin_32f_a_avx2_fma(float* bVector, const float* aVector, unsigned int
+ static inline void
+ volk_32f_asin_32f_a_avx(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int eighthPoints = num_points / 8;
+-  int i, j;
+-
+-  __m256 aVal, pio2, x, y, z, arcsine;
+-  __m256 fzeroes, fones, ftwos, ffours, condition;
+-
+-  pio2 = _mm256_set1_ps(3.14159265358979323846/2);
+-  fzeroes = _mm256_setzero_ps();
+-  fones = _mm256_set1_ps(1.0);
+-  ftwos = _mm256_set1_ps(2.0);
+-  ffours = _mm256_set1_ps(4.0);
+-
+-  for(;number < eighthPoints; number++){
+-    aVal = _mm256_load_ps(aPtr);
+-    aVal = _mm256_div_ps(aVal, _mm256_sqrt_ps(_mm256_mul_ps(_mm256_add_ps(fones, aVal), _mm256_sub_ps(fones, aVal))));
+-    z = aVal;
+-    condition = _mm256_cmp_ps(z, fzeroes, _CMP_LT_OS);
+-    z = _mm256_sub_ps(z, _mm256_and_ps(_mm256_mul_ps(z, ftwos), condition));
+-    condition = _mm256_cmp_ps(z, fones, _CMP_LT_OS);
+-    x = _mm256_add_ps(z, _mm256_and_ps(_mm256_sub_ps(_mm256_div_ps(fones, z), z), condition));
+-
+-    for(i = 0; i < 2; i++){
+-      x = _mm256_add_ps(x, _mm256_sqrt_ps(_mm256_add_ps(fones, _mm256_mul_ps(x, x))));
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int eighthPoints = num_points / 8;
++    int i, j;
++
++    __m256 aVal, pio2, x, y, z, arcsine;
++    __m256 fzeroes, fones, ftwos, ffours, condition;
++
++    pio2 = _mm256_set1_ps(3.14159265358979323846 / 2);
++    fzeroes = _mm256_setzero_ps();
++    fones = _mm256_set1_ps(1.0);
++    ftwos = _mm256_set1_ps(2.0);
++    ffours = _mm256_set1_ps(4.0);
++
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_load_ps(aPtr);
++        aVal = _mm256_div_ps(aVal,
++                             _mm256_sqrt_ps(_mm256_mul_ps(_mm256_add_ps(fones, aVal),
++                                                          _mm256_sub_ps(fones, aVal))));
++        z = aVal;
++        condition = _mm256_cmp_ps(z, fzeroes, _CMP_LT_OS);
++        z = _mm256_sub_ps(z, _mm256_and_ps(_mm256_mul_ps(z, ftwos), condition));
++        condition = _mm256_cmp_ps(z, fones, _CMP_LT_OS);
++        x = _mm256_add_ps(
++            z, _mm256_and_ps(_mm256_sub_ps(_mm256_div_ps(fones, z), z), condition));
++
++        for (i = 0; i < 2; i++) {
++            x = _mm256_add_ps(x,
++                              _mm256_sqrt_ps(_mm256_add_ps(fones, _mm256_mul_ps(x, x))));
++        }
++        x = _mm256_div_ps(fones, x);
++        y = fzeroes;
++        for (j = ASIN_TERMS - 1; j >= 0; j--) {
++            y = _mm256_add_ps(_mm256_mul_ps(y, _mm256_mul_ps(x, x)),
++                              _mm256_set1_ps(pow(-1, j) / (2 * j + 1)));
++        }
++
++        y = _mm256_mul_ps(y, _mm256_mul_ps(x, ffours));
++        condition = _mm256_cmp_ps(z, fones, _CMP_GT_OS);
++
++        y = _mm256_add_ps(
++            y, _mm256_and_ps(_mm256_sub_ps(pio2, _mm256_mul_ps(y, ftwos)), condition));
++        arcsine = y;
++        condition = _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS);
++        arcsine = _mm256_sub_ps(arcsine,
++                                _mm256_and_ps(_mm256_mul_ps(arcsine, ftwos), condition));
++
++        _mm256_store_ps(bPtr, arcsine);
++        aPtr += 8;
++        bPtr += 8;
+     }
+-    x = _mm256_div_ps(fones, x);
+-    y = fzeroes;
+-    for(j = ASIN_TERMS - 1; j >=0 ; j--){
+-      y = _mm256_add_ps(_mm256_mul_ps(y, _mm256_mul_ps(x, x)), _mm256_set1_ps(pow(-1,j)/(2*j+1)));
+-    }
+-
+-    y = _mm256_mul_ps(y, _mm256_mul_ps(x, ffours));
+-    condition = _mm256_cmp_ps(z, fones, _CMP_GT_OS);
+-
+-    y = _mm256_add_ps(y, _mm256_and_ps(_mm256_sub_ps(pio2, _mm256_mul_ps(y, ftwos)), condition));
+-    arcsine = y;
+-    condition = _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS);
+-    arcsine = _mm256_sub_ps(arcsine, _mm256_and_ps(_mm256_mul_ps(arcsine, ftwos), condition));
+-    _mm256_store_ps(bPtr, arcsine);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *bPtr++ = asin(*aPtr++);
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *bPtr++ = asin(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX for aligned */
+@@ -206,57 +220,60 @@ volk_32f_asin_32f_a_avx(float* bVector, const float* aVector, unsigned int num_p
+ static inline void
+ volk_32f_asin_32f_a_sse4_1(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int quarterPoints = num_points / 4;
+-  int i, j;
+-
+-  __m128 aVal, pio2, x, y, z, arcsine;
+-  __m128 fzeroes, fones, ftwos, ffours, condition;
+-
+-  pio2 = _mm_set1_ps(3.14159265358979323846/2);
+-  fzeroes = _mm_setzero_ps();
+-  fones = _mm_set1_ps(1.0);
+-  ftwos = _mm_set1_ps(2.0);
+-  ffours = _mm_set1_ps(4.0);
+-
+-  for(;number < quarterPoints; number++){
+-    aVal = _mm_load_ps(aPtr);
+-    aVal = _mm_div_ps(aVal, _mm_sqrt_ps(_mm_mul_ps(_mm_add_ps(fones, aVal), _mm_sub_ps(fones, aVal))));
+-    z = aVal;
+-    condition = _mm_cmplt_ps(z, fzeroes);
+-    z = _mm_sub_ps(z, _mm_and_ps(_mm_mul_ps(z, ftwos), condition));
+-    condition = _mm_cmplt_ps(z, fones);
+-    x = _mm_add_ps(z, _mm_and_ps(_mm_sub_ps(_mm_div_ps(fones, z), z), condition));
+-
+-    for(i = 0; i < 2; i++){
+-      x = _mm_add_ps(x, _mm_sqrt_ps(_mm_add_ps(fones, _mm_mul_ps(x, x))));
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int quarterPoints = num_points / 4;
++    int i, j;
++
++    __m128 aVal, pio2, x, y, z, arcsine;
++    __m128 fzeroes, fones, ftwos, ffours, condition;
++
++    pio2 = _mm_set1_ps(3.14159265358979323846 / 2);
++    fzeroes = _mm_setzero_ps();
++    fones = _mm_set1_ps(1.0);
++    ftwos = _mm_set1_ps(2.0);
++    ffours = _mm_set1_ps(4.0);
++
++    for (; number < quarterPoints; number++) {
++        aVal = _mm_load_ps(aPtr);
++        aVal = _mm_div_ps(
++            aVal,
++            _mm_sqrt_ps(_mm_mul_ps(_mm_add_ps(fones, aVal), _mm_sub_ps(fones, aVal))));
++        z = aVal;
++        condition = _mm_cmplt_ps(z, fzeroes);
++        z = _mm_sub_ps(z, _mm_and_ps(_mm_mul_ps(z, ftwos), condition));
++        condition = _mm_cmplt_ps(z, fones);
++        x = _mm_add_ps(z, _mm_and_ps(_mm_sub_ps(_mm_div_ps(fones, z), z), condition));
++
++        for (i = 0; i < 2; i++) {
++            x = _mm_add_ps(x, _mm_sqrt_ps(_mm_add_ps(fones, _mm_mul_ps(x, x))));
++        }
++        x = _mm_div_ps(fones, x);
++        y = fzeroes;
++        for (j = ASIN_TERMS - 1; j >= 0; j--) {
++            y = _mm_add_ps(_mm_mul_ps(y, _mm_mul_ps(x, x)),
++                           _mm_set1_ps(pow(-1, j) / (2 * j + 1)));
++        }
++
++        y = _mm_mul_ps(y, _mm_mul_ps(x, ffours));
++        condition = _mm_cmpgt_ps(z, fones);
++
++        y = _mm_add_ps(y, _mm_and_ps(_mm_sub_ps(pio2, _mm_mul_ps(y, ftwos)), condition));
++        arcsine = y;
++        condition = _mm_cmplt_ps(aVal, fzeroes);
++        arcsine = _mm_sub_ps(arcsine, _mm_and_ps(_mm_mul_ps(arcsine, ftwos), condition));
++
++        _mm_store_ps(bPtr, arcsine);
++        aPtr += 4;
++        bPtr += 4;
+     }
+-    x = _mm_div_ps(fones, x);
+-    y = fzeroes;
+-    for(j = ASIN_TERMS - 1; j >=0 ; j--){
+-      y = _mm_add_ps(_mm_mul_ps(y, _mm_mul_ps(x, x)), _mm_set1_ps(pow(-1,j)/(2*j+1)));
+-    }
+-
+-    y = _mm_mul_ps(y, _mm_mul_ps(x, ffours));
+-    condition = _mm_cmpgt_ps(z, fones);
+-
+-    y = _mm_add_ps(y, _mm_and_ps(_mm_sub_ps(pio2, _mm_mul_ps(y, ftwos)), condition));
+-    arcsine = y;
+-    condition = _mm_cmplt_ps(aVal, fzeroes);
+-    arcsine = _mm_sub_ps(arcsine, _mm_and_ps(_mm_mul_ps(arcsine, ftwos), condition));
+-
+-    _mm_store_ps(bPtr, arcsine);
+-    aPtr += 4;
+-    bPtr += 4;
+-  }
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    *bPtr++ = asinf(*aPtr++);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *bPtr++ = asinf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_SSE4_1 for aligned */
+@@ -269,60 +286,66 @@ volk_32f_asin_32f_a_sse4_1(float* bVector, const float* aVector, unsigned int nu
+ #if LV_HAVE_AVX2 && LV_HAVE_FMA
+ #include <immintrin.h>
+-static inline void
+-volk_32f_asin_32f_u_avx2_fma(float* bVector, const float* aVector, unsigned int num_points)
++static inline void volk_32f_asin_32f_u_avx2_fma(float* bVector,
++                                                const float* aVector,
++                                                unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int eighthPoints = num_points / 8;
+-  int i, j;
+-
+-  __m256 aVal, pio2, x, y, z, arcsine;
+-  __m256 fzeroes, fones, ftwos, ffours, condition;
+-
+-  pio2 = _mm256_set1_ps(3.14159265358979323846/2);
+-  fzeroes = _mm256_setzero_ps();
+-  fones = _mm256_set1_ps(1.0);
+-  ftwos = _mm256_set1_ps(2.0);
+-  ffours = _mm256_set1_ps(4.0);
+-
+-  for(;number < eighthPoints; number++){
+-    aVal = _mm256_loadu_ps(aPtr);
+-    aVal = _mm256_div_ps(aVal, _mm256_sqrt_ps(_mm256_mul_ps(_mm256_add_ps(fones, aVal), _mm256_sub_ps(fones, aVal))));
+-    z = aVal;
+-    condition = _mm256_cmp_ps(z, fzeroes, _CMP_LT_OS);
+-    z = _mm256_sub_ps(z, _mm256_and_ps(_mm256_mul_ps(z, ftwos), condition));
+-    condition = _mm256_cmp_ps(z, fones, _CMP_LT_OS);
+-    x = _mm256_add_ps(z, _mm256_and_ps(_mm256_sub_ps(_mm256_div_ps(fones, z), z), condition));
+-
+-    for(i = 0; i < 2; i++){
+-      x = _mm256_add_ps(x, _mm256_sqrt_ps(_mm256_fmadd_ps(x,x,fones)));
+-    }
+-    x = _mm256_div_ps(fones, x);
+-    y = fzeroes;
+-    for(j = ASIN_TERMS - 1; j >=0 ; j--){
+-      y = _mm256_fmadd_ps(y, _mm256_mul_ps(x, x), _mm256_set1_ps(pow(-1,j)/(2*j+1)));
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int eighthPoints = num_points / 8;
++    int i, j;
++
++    __m256 aVal, pio2, x, y, z, arcsine;
++    __m256 fzeroes, fones, ftwos, ffours, condition;
++
++    pio2 = _mm256_set1_ps(3.14159265358979323846 / 2);
++    fzeroes = _mm256_setzero_ps();
++    fones = _mm256_set1_ps(1.0);
++    ftwos = _mm256_set1_ps(2.0);
++    ffours = _mm256_set1_ps(4.0);
++
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_loadu_ps(aPtr);
++        aVal = _mm256_div_ps(aVal,
++                             _mm256_sqrt_ps(_mm256_mul_ps(_mm256_add_ps(fones, aVal),
++                                                          _mm256_sub_ps(fones, aVal))));
++        z = aVal;
++        condition = _mm256_cmp_ps(z, fzeroes, _CMP_LT_OS);
++        z = _mm256_sub_ps(z, _mm256_and_ps(_mm256_mul_ps(z, ftwos), condition));
++        condition = _mm256_cmp_ps(z, fones, _CMP_LT_OS);
++        x = _mm256_add_ps(
++            z, _mm256_and_ps(_mm256_sub_ps(_mm256_div_ps(fones, z), z), condition));
++
++        for (i = 0; i < 2; i++) {
++            x = _mm256_add_ps(x, _mm256_sqrt_ps(_mm256_fmadd_ps(x, x, fones)));
++        }
++        x = _mm256_div_ps(fones, x);
++        y = fzeroes;
++        for (j = ASIN_TERMS - 1; j >= 0; j--) {
++            y = _mm256_fmadd_ps(
++                y, _mm256_mul_ps(x, x), _mm256_set1_ps(pow(-1, j) / (2 * j + 1)));
++        }
++
++        y = _mm256_mul_ps(y, _mm256_mul_ps(x, ffours));
++        condition = _mm256_cmp_ps(z, fones, _CMP_GT_OS);
++
++        y = _mm256_add_ps(y, _mm256_and_ps(_mm256_fnmadd_ps(y, ftwos, pio2), condition));
++        arcsine = y;
++        condition = _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS);
++        arcsine = _mm256_sub_ps(arcsine,
++                                _mm256_and_ps(_mm256_mul_ps(arcsine, ftwos), condition));
++
++        _mm256_storeu_ps(bPtr, arcsine);
++        aPtr += 8;
++        bPtr += 8;
+     }
+-    y = _mm256_mul_ps(y, _mm256_mul_ps(x, ffours));
+-    condition = _mm256_cmp_ps(z, fones, _CMP_GT_OS);
+-
+-    y = _mm256_add_ps(y, _mm256_and_ps(_mm256_fnmadd_ps(y,ftwos,pio2), condition));
+-    arcsine = y;
+-    condition = _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS);
+-    arcsine = _mm256_sub_ps(arcsine, _mm256_and_ps(_mm256_mul_ps(arcsine, ftwos), condition));
+-
+-    _mm256_storeu_ps(bPtr, arcsine);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *bPtr++ = asin(*aPtr++);
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *bPtr++ = asin(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 && LV_HAVE_FMA for unaligned */
+@@ -334,57 +357,64 @@ volk_32f_asin_32f_u_avx2_fma(float* bVector, const float* aVector, unsigned int
+ static inline void
+ volk_32f_asin_32f_u_avx(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int eighthPoints = num_points / 8;
+-  int i, j;
+-
+-  __m256 aVal, pio2, x, y, z, arcsine;
+-  __m256 fzeroes, fones, ftwos, ffours, condition;
+-
+-  pio2 = _mm256_set1_ps(3.14159265358979323846/2);
+-  fzeroes = _mm256_setzero_ps();
+-  fones = _mm256_set1_ps(1.0);
+-  ftwos = _mm256_set1_ps(2.0);
+-  ffours = _mm256_set1_ps(4.0);
+-
+-  for(;number < eighthPoints; number++){
+-    aVal = _mm256_loadu_ps(aPtr);
+-    aVal = _mm256_div_ps(aVal, _mm256_sqrt_ps(_mm256_mul_ps(_mm256_add_ps(fones, aVal), _mm256_sub_ps(fones, aVal))));
+-    z = aVal;
+-    condition = _mm256_cmp_ps(z, fzeroes, _CMP_LT_OS);
+-    z = _mm256_sub_ps(z, _mm256_and_ps(_mm256_mul_ps(z, ftwos), condition));
+-    condition = _mm256_cmp_ps(z, fones, _CMP_LT_OS);
+-    x = _mm256_add_ps(z, _mm256_and_ps(_mm256_sub_ps(_mm256_div_ps(fones, z), z), condition));
+-
+-    for(i = 0; i < 2; i++){
+-      x = _mm256_add_ps(x, _mm256_sqrt_ps(_mm256_add_ps(fones, _mm256_mul_ps(x, x))));
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int eighthPoints = num_points / 8;
++    int i, j;
++
++    __m256 aVal, pio2, x, y, z, arcsine;
++    __m256 fzeroes, fones, ftwos, ffours, condition;
++
++    pio2 = _mm256_set1_ps(3.14159265358979323846 / 2);
++    fzeroes = _mm256_setzero_ps();
++    fones = _mm256_set1_ps(1.0);
++    ftwos = _mm256_set1_ps(2.0);
++    ffours = _mm256_set1_ps(4.0);
++
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_loadu_ps(aPtr);
++        aVal = _mm256_div_ps(aVal,
++                             _mm256_sqrt_ps(_mm256_mul_ps(_mm256_add_ps(fones, aVal),
++                                                          _mm256_sub_ps(fones, aVal))));
++        z = aVal;
++        condition = _mm256_cmp_ps(z, fzeroes, _CMP_LT_OS);
++        z = _mm256_sub_ps(z, _mm256_and_ps(_mm256_mul_ps(z, ftwos), condition));
++        condition = _mm256_cmp_ps(z, fones, _CMP_LT_OS);
++        x = _mm256_add_ps(
++            z, _mm256_and_ps(_mm256_sub_ps(_mm256_div_ps(fones, z), z), condition));
++
++        for (i = 0; i < 2; i++) {
++            x = _mm256_add_ps(x,
++                              _mm256_sqrt_ps(_mm256_add_ps(fones, _mm256_mul_ps(x, x))));
++        }
++        x = _mm256_div_ps(fones, x);
++        y = fzeroes;
++        for (j = ASIN_TERMS - 1; j >= 0; j--) {
++            y = _mm256_add_ps(_mm256_mul_ps(y, _mm256_mul_ps(x, x)),
++                              _mm256_set1_ps(pow(-1, j) / (2 * j + 1)));
++        }
++
++        y = _mm256_mul_ps(y, _mm256_mul_ps(x, ffours));
++        condition = _mm256_cmp_ps(z, fones, _CMP_GT_OS);
++
++        y = _mm256_add_ps(
++            y, _mm256_and_ps(_mm256_sub_ps(pio2, _mm256_mul_ps(y, ftwos)), condition));
++        arcsine = y;
++        condition = _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS);
++        arcsine = _mm256_sub_ps(arcsine,
++                                _mm256_and_ps(_mm256_mul_ps(arcsine, ftwos), condition));
++
++        _mm256_storeu_ps(bPtr, arcsine);
++        aPtr += 8;
++        bPtr += 8;
+     }
+-    x = _mm256_div_ps(fones, x);
+-    y = fzeroes;
+-    for(j = ASIN_TERMS - 1; j >=0 ; j--){
+-      y = _mm256_add_ps(_mm256_mul_ps(y, _mm256_mul_ps(x, x)), _mm256_set1_ps(pow(-1,j)/(2*j+1)));
+-    }
+-
+-    y = _mm256_mul_ps(y, _mm256_mul_ps(x, ffours));
+-    condition = _mm256_cmp_ps(z, fones, _CMP_GT_OS);
+-    y = _mm256_add_ps(y, _mm256_and_ps(_mm256_sub_ps(pio2, _mm256_mul_ps(y, ftwos)), condition));
+-    arcsine = y;
+-    condition = _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS);
+-    arcsine = _mm256_sub_ps(arcsine, _mm256_and_ps(_mm256_mul_ps(arcsine, ftwos), condition));
+-
+-    _mm256_storeu_ps(bPtr, arcsine);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *bPtr++ = asin(*aPtr++);
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *bPtr++ = asin(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX for unaligned */
+@@ -396,57 +426,60 @@ volk_32f_asin_32f_u_avx(float* bVector, const float* aVector, unsigned int num_p
+ static inline void
+ volk_32f_asin_32f_u_sse4_1(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int quarterPoints = num_points / 4;
+-  int i, j;
+-
+-  __m128 aVal, pio2, x, y, z, arcsine;
+-  __m128 fzeroes, fones, ftwos, ffours, condition;
+-
+-  pio2 = _mm_set1_ps(3.14159265358979323846/2);
+-  fzeroes = _mm_setzero_ps();
+-  fones = _mm_set1_ps(1.0);
+-  ftwos = _mm_set1_ps(2.0);
+-  ffours = _mm_set1_ps(4.0);
+-
+-  for(;number < quarterPoints; number++){
+-    aVal = _mm_loadu_ps(aPtr);
+-    aVal = _mm_div_ps(aVal, _mm_sqrt_ps(_mm_mul_ps(_mm_add_ps(fones, aVal), _mm_sub_ps(fones, aVal))));
+-    z = aVal;
+-    condition = _mm_cmplt_ps(z, fzeroes);
+-    z = _mm_sub_ps(z, _mm_and_ps(_mm_mul_ps(z, ftwos), condition));
+-    condition = _mm_cmplt_ps(z, fones);
+-    x = _mm_add_ps(z, _mm_and_ps(_mm_sub_ps(_mm_div_ps(fones, z), z), condition));
+-
+-    for(i = 0; i < 2; i++){
+-      x = _mm_add_ps(x, _mm_sqrt_ps(_mm_add_ps(fones, _mm_mul_ps(x, x))));
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int quarterPoints = num_points / 4;
++    int i, j;
++
++    __m128 aVal, pio2, x, y, z, arcsine;
++    __m128 fzeroes, fones, ftwos, ffours, condition;
++
++    pio2 = _mm_set1_ps(3.14159265358979323846 / 2);
++    fzeroes = _mm_setzero_ps();
++    fones = _mm_set1_ps(1.0);
++    ftwos = _mm_set1_ps(2.0);
++    ffours = _mm_set1_ps(4.0);
++
++    for (; number < quarterPoints; number++) {
++        aVal = _mm_loadu_ps(aPtr);
++        aVal = _mm_div_ps(
++            aVal,
++            _mm_sqrt_ps(_mm_mul_ps(_mm_add_ps(fones, aVal), _mm_sub_ps(fones, aVal))));
++        z = aVal;
++        condition = _mm_cmplt_ps(z, fzeroes);
++        z = _mm_sub_ps(z, _mm_and_ps(_mm_mul_ps(z, ftwos), condition));
++        condition = _mm_cmplt_ps(z, fones);
++        x = _mm_add_ps(z, _mm_and_ps(_mm_sub_ps(_mm_div_ps(fones, z), z), condition));
++
++        for (i = 0; i < 2; i++) {
++            x = _mm_add_ps(x, _mm_sqrt_ps(_mm_add_ps(fones, _mm_mul_ps(x, x))));
++        }
++        x = _mm_div_ps(fones, x);
++        y = fzeroes;
++        for (j = ASIN_TERMS - 1; j >= 0; j--) {
++            y = _mm_add_ps(_mm_mul_ps(y, _mm_mul_ps(x, x)),
++                           _mm_set1_ps(pow(-1, j) / (2 * j + 1)));
++        }
++
++        y = _mm_mul_ps(y, _mm_mul_ps(x, ffours));
++        condition = _mm_cmpgt_ps(z, fones);
++
++        y = _mm_add_ps(y, _mm_and_ps(_mm_sub_ps(pio2, _mm_mul_ps(y, ftwos)), condition));
++        arcsine = y;
++        condition = _mm_cmplt_ps(aVal, fzeroes);
++        arcsine = _mm_sub_ps(arcsine, _mm_and_ps(_mm_mul_ps(arcsine, ftwos), condition));
++
++        _mm_storeu_ps(bPtr, arcsine);
++        aPtr += 4;
++        bPtr += 4;
+     }
+-    x = _mm_div_ps(fones, x);
+-    y = fzeroes;
+-    for(j = ASIN_TERMS - 1; j >=0 ; j--){
+-      y = _mm_add_ps(_mm_mul_ps(y, _mm_mul_ps(x, x)), _mm_set1_ps(pow(-1,j)/(2*j+1)));
+-    }
+-
+-    y = _mm_mul_ps(y, _mm_mul_ps(x, ffours));
+-    condition = _mm_cmpgt_ps(z, fones);
+-    y = _mm_add_ps(y, _mm_and_ps(_mm_sub_ps(pio2, _mm_mul_ps(y, ftwos)), condition));
+-    arcsine = y;
+-    condition = _mm_cmplt_ps(aVal, fzeroes);
+-    arcsine = _mm_sub_ps(arcsine, _mm_and_ps(_mm_mul_ps(arcsine, ftwos), condition));
+-
+-    _mm_storeu_ps(bPtr, arcsine);
+-    aPtr += 4;
+-    bPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    *bPtr++ = asinf(*aPtr++);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *bPtr++ = asinf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_SSE4_1 for unaligned */
+@@ -456,13 +489,13 @@ volk_32f_asin_32f_u_sse4_1(float* bVector, const float* aVector, unsigned int nu
+ static inline void
+ volk_32f_asin_32f_u_generic(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-  unsigned int number = 0;
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++    unsigned int number = 0;
+-  for(number = 0; number < num_points; number++){
+-    *bPtr++ = asinf(*aPtr++);
+-  }
++    for (number = 0; number < num_points; number++) {
++        *bPtr++ = asinf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+diff --git a/kernels/volk/volk_32f_atan_32f.h b/kernels/volk/volk_32f_atan_32f.h
+index 3496f0e..6652ee8 100644
+--- a/kernels/volk/volk_32f_atan_32f.h
++++ b/kernels/volk/volk_32f_atan_32f.h
+@@ -67,11 +67,12 @@
+  * \endcode
+  */
+-#include <stdio.h>
+-#include <math.h>
+ #include <inttypes.h>
++#include <math.h>
++#include <stdio.h>
+-/* This is the number of terms of Taylor series to evaluate, increase this for more accuracy*/
++/* This is the number of terms of Taylor series to evaluate, increase this for more
++ * accuracy*/
+ #define TERMS 2
+ #ifndef INCLUDED_volk_32f_atan_32f_a_H
+@@ -80,59 +81,63 @@
+ #if LV_HAVE_AVX2 && LV_HAVE_FMA
+ #include <immintrin.h>
+-static inline void
+-volk_32f_atan_32f_a_avx2_fma(float* bVector, const float* aVector, unsigned int num_points)
++static inline void volk_32f_atan_32f_a_avx2_fma(float* bVector,
++                                                const float* aVector,
++                                                unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int eighthPoints = num_points / 8;
+-  int i, j;
+-
+-  __m256 aVal, pio2, x, y, z, arctangent;
+-  __m256 fzeroes, fones, ftwos, ffours, condition;
+-
+-  pio2 = _mm256_set1_ps(3.14159265358979323846/2);
+-  fzeroes = _mm256_setzero_ps();
+-  fones = _mm256_set1_ps(1.0);
+-  ftwos = _mm256_set1_ps(2.0);
+-  ffours = _mm256_set1_ps(4.0);
+-
+-  for(;number < eighthPoints; number++){
+-    aVal = _mm256_load_ps(aPtr);
+-    z = aVal;
+-    condition = _mm256_cmp_ps(z, fzeroes, _CMP_LT_OS);
+-    z = _mm256_sub_ps(z, _mm256_and_ps(_mm256_mul_ps(z, ftwos), condition));
+-    condition = _mm256_cmp_ps(z, fones, _CMP_LT_OS);
+-    x = _mm256_add_ps(z, _mm256_and_ps(_mm256_sub_ps(_mm256_div_ps(fones, z), z), condition));
+-
+-    for(i = 0; i < 2; i++){
+-      x = _mm256_add_ps(x, _mm256_sqrt_ps(_mm256_fmadd_ps(x,x,fones)));
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int eighthPoints = num_points / 8;
++    int i, j;
++
++    __m256 aVal, pio2, x, y, z, arctangent;
++    __m256 fzeroes, fones, ftwos, ffours, condition;
++
++    pio2 = _mm256_set1_ps(3.14159265358979323846 / 2);
++    fzeroes = _mm256_setzero_ps();
++    fones = _mm256_set1_ps(1.0);
++    ftwos = _mm256_set1_ps(2.0);
++    ffours = _mm256_set1_ps(4.0);
++
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_load_ps(aPtr);
++        z = aVal;
++        condition = _mm256_cmp_ps(z, fzeroes, _CMP_LT_OS);
++        z = _mm256_sub_ps(z, _mm256_and_ps(_mm256_mul_ps(z, ftwos), condition));
++        condition = _mm256_cmp_ps(z, fones, _CMP_LT_OS);
++        x = _mm256_add_ps(
++            z, _mm256_and_ps(_mm256_sub_ps(_mm256_div_ps(fones, z), z), condition));
++
++        for (i = 0; i < 2; i++) {
++            x = _mm256_add_ps(x, _mm256_sqrt_ps(_mm256_fmadd_ps(x, x, fones)));
++        }
++        x = _mm256_div_ps(fones, x);
++        y = fzeroes;
++        for (j = TERMS - 1; j >= 0; j--) {
++            y = _mm256_fmadd_ps(
++                y, _mm256_mul_ps(x, x), _mm256_set1_ps(pow(-1, j) / (2 * j + 1)));
++        }
++
++        y = _mm256_mul_ps(y, _mm256_mul_ps(x, ffours));
++        condition = _mm256_cmp_ps(z, fones, _CMP_GT_OS);
++
++        y = _mm256_add_ps(y, _mm256_and_ps(_mm256_fnmadd_ps(y, ftwos, pio2), condition));
++        arctangent = y;
++        condition = _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS);
++        arctangent = _mm256_sub_ps(
++            arctangent, _mm256_and_ps(_mm256_mul_ps(arctangent, ftwos), condition));
++
++        _mm256_store_ps(bPtr, arctangent);
++        aPtr += 8;
++        bPtr += 8;
+     }
+-    x = _mm256_div_ps(fones, x);
+-    y = fzeroes;
+-    for(j = TERMS - 1; j >=0 ; j--){
+-      y = _mm256_fmadd_ps(y, _mm256_mul_ps(x, x), _mm256_set1_ps(pow(-1,j)/(2*j+1)));
+-    }
+-
+-    y = _mm256_mul_ps(y, _mm256_mul_ps(x, ffours));
+-    condition = _mm256_cmp_ps(z, fones, _CMP_GT_OS);
+-
+-    y = _mm256_add_ps(y, _mm256_and_ps(_mm256_fnmadd_ps(y,ftwos,pio2), condition));
+-    arctangent = y;
+-    condition = _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS);
+-    arctangent = _mm256_sub_ps(arctangent, _mm256_and_ps(_mm256_mul_ps(arctangent, ftwos), condition));
+-
+-    _mm256_store_ps(bPtr, arctangent);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *bPtr++ = atan(*aPtr++);
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *bPtr++ = atan(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 && LV_HAVE_FMA for aligned */
+@@ -144,56 +149,61 @@ volk_32f_atan_32f_a_avx2_fma(float* bVector, const float* aVector, unsigned int
+ static inline void
+ volk_32f_atan_32f_a_avx(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int eighthPoints = num_points / 8;
+-  int i, j;
+-
+-  __m256 aVal, pio2, x, y, z, arctangent;
+-  __m256 fzeroes, fones, ftwos, ffours, condition;
+-
+-  pio2 = _mm256_set1_ps(3.14159265358979323846/2);
+-  fzeroes = _mm256_setzero_ps();
+-  fones = _mm256_set1_ps(1.0);
+-  ftwos = _mm256_set1_ps(2.0);
+-  ffours = _mm256_set1_ps(4.0);
+-
+-  for(;number < eighthPoints; number++){
+-    aVal = _mm256_load_ps(aPtr);
+-    z = aVal;
+-    condition = _mm256_cmp_ps(z, fzeroes, _CMP_LT_OS);
+-    z = _mm256_sub_ps(z, _mm256_and_ps(_mm256_mul_ps(z, ftwos), condition));
+-    condition = _mm256_cmp_ps(z, fones, _CMP_LT_OS);
+-    x = _mm256_add_ps(z, _mm256_and_ps(_mm256_sub_ps(_mm256_div_ps(fones, z), z), condition));
+-
+-    for(i = 0; i < 2; i++){
+-      x = _mm256_add_ps(x, _mm256_sqrt_ps(_mm256_add_ps(fones, _mm256_mul_ps(x, x))));
+-    }
+-    x = _mm256_div_ps(fones, x);
+-    y = fzeroes;
+-    for(j = TERMS - 1; j >=0 ; j--){
+-      y = _mm256_add_ps(_mm256_mul_ps(y, _mm256_mul_ps(x, x)), _mm256_set1_ps(pow(-1,j)/(2*j+1)));
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int eighthPoints = num_points / 8;
++    int i, j;
++
++    __m256 aVal, pio2, x, y, z, arctangent;
++    __m256 fzeroes, fones, ftwos, ffours, condition;
++
++    pio2 = _mm256_set1_ps(3.14159265358979323846 / 2);
++    fzeroes = _mm256_setzero_ps();
++    fones = _mm256_set1_ps(1.0);
++    ftwos = _mm256_set1_ps(2.0);
++    ffours = _mm256_set1_ps(4.0);
++
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_load_ps(aPtr);
++        z = aVal;
++        condition = _mm256_cmp_ps(z, fzeroes, _CMP_LT_OS);
++        z = _mm256_sub_ps(z, _mm256_and_ps(_mm256_mul_ps(z, ftwos), condition));
++        condition = _mm256_cmp_ps(z, fones, _CMP_LT_OS);
++        x = _mm256_add_ps(
++            z, _mm256_and_ps(_mm256_sub_ps(_mm256_div_ps(fones, z), z), condition));
++
++        for (i = 0; i < 2; i++) {
++            x = _mm256_add_ps(x,
++                              _mm256_sqrt_ps(_mm256_add_ps(fones, _mm256_mul_ps(x, x))));
++        }
++        x = _mm256_div_ps(fones, x);
++        y = fzeroes;
++        for (j = TERMS - 1; j >= 0; j--) {
++            y = _mm256_add_ps(_mm256_mul_ps(y, _mm256_mul_ps(x, x)),
++                              _mm256_set1_ps(pow(-1, j) / (2 * j + 1)));
++        }
++
++        y = _mm256_mul_ps(y, _mm256_mul_ps(x, ffours));
++        condition = _mm256_cmp_ps(z, fones, _CMP_GT_OS);
++
++        y = _mm256_add_ps(
++            y, _mm256_and_ps(_mm256_sub_ps(pio2, _mm256_mul_ps(y, ftwos)), condition));
++        arctangent = y;
++        condition = _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS);
++        arctangent = _mm256_sub_ps(
++            arctangent, _mm256_and_ps(_mm256_mul_ps(arctangent, ftwos), condition));
++
++        _mm256_store_ps(bPtr, arctangent);
++        aPtr += 8;
++        bPtr += 8;
+     }
+-    y = _mm256_mul_ps(y, _mm256_mul_ps(x, ffours));
+-    condition = _mm256_cmp_ps(z, fones, _CMP_GT_OS);
+-
+-    y = _mm256_add_ps(y, _mm256_and_ps(_mm256_sub_ps(pio2, _mm256_mul_ps(y, ftwos)), condition));
+-    arctangent = y;
+-    condition = _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS);
+-    arctangent = _mm256_sub_ps(arctangent, _mm256_and_ps(_mm256_mul_ps(arctangent, ftwos), condition));
+-
+-    _mm256_store_ps(bPtr, arctangent);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *bPtr++ = atan(*aPtr++);
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *bPtr++ = atan(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX for aligned */
+@@ -204,56 +214,58 @@ volk_32f_atan_32f_a_avx(float* bVector, const float* aVector, unsigned int num_p
+ static inline void
+ volk_32f_atan_32f_a_sse4_1(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int quarterPoints = num_points / 4;
+-  int i, j;
+-
+-  __m128 aVal, pio2, x, y, z, arctangent;
+-  __m128 fzeroes, fones, ftwos, ffours, condition;
+-
+-  pio2 = _mm_set1_ps(3.14159265358979323846/2);
+-  fzeroes = _mm_setzero_ps();
+-  fones = _mm_set1_ps(1.0);
+-  ftwos = _mm_set1_ps(2.0);
+-  ffours = _mm_set1_ps(4.0);
+-
+-  for(;number < quarterPoints; number++){
+-    aVal = _mm_load_ps(aPtr);
+-    z = aVal;
+-    condition = _mm_cmplt_ps(z, fzeroes);
+-    z = _mm_sub_ps(z, _mm_and_ps(_mm_mul_ps(z, ftwos), condition));
+-    condition = _mm_cmplt_ps(z, fones);
+-    x = _mm_add_ps(z, _mm_and_ps(_mm_sub_ps(_mm_div_ps(fones, z), z), condition));
+-
+-    for(i = 0; i < 2; i++){
+-      x = _mm_add_ps(x, _mm_sqrt_ps(_mm_add_ps(fones, _mm_mul_ps(x, x))));
+-    }
+-    x = _mm_div_ps(fones, x);
+-    y = fzeroes;
+-    for(j = TERMS - 1; j >=0 ; j--){
+-      y = _mm_add_ps(_mm_mul_ps(y, _mm_mul_ps(x, x)), _mm_set1_ps(pow(-1,j)/(2*j+1)));
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int quarterPoints = num_points / 4;
++    int i, j;
++
++    __m128 aVal, pio2, x, y, z, arctangent;
++    __m128 fzeroes, fones, ftwos, ffours, condition;
++
++    pio2 = _mm_set1_ps(3.14159265358979323846 / 2);
++    fzeroes = _mm_setzero_ps();
++    fones = _mm_set1_ps(1.0);
++    ftwos = _mm_set1_ps(2.0);
++    ffours = _mm_set1_ps(4.0);
++
++    for (; number < quarterPoints; number++) {
++        aVal = _mm_load_ps(aPtr);
++        z = aVal;
++        condition = _mm_cmplt_ps(z, fzeroes);
++        z = _mm_sub_ps(z, _mm_and_ps(_mm_mul_ps(z, ftwos), condition));
++        condition = _mm_cmplt_ps(z, fones);
++        x = _mm_add_ps(z, _mm_and_ps(_mm_sub_ps(_mm_div_ps(fones, z), z), condition));
++
++        for (i = 0; i < 2; i++) {
++            x = _mm_add_ps(x, _mm_sqrt_ps(_mm_add_ps(fones, _mm_mul_ps(x, x))));
++        }
++        x = _mm_div_ps(fones, x);
++        y = fzeroes;
++        for (j = TERMS - 1; j >= 0; j--) {
++            y = _mm_add_ps(_mm_mul_ps(y, _mm_mul_ps(x, x)),
++                           _mm_set1_ps(pow(-1, j) / (2 * j + 1)));
++        }
++
++        y = _mm_mul_ps(y, _mm_mul_ps(x, ffours));
++        condition = _mm_cmpgt_ps(z, fones);
++
++        y = _mm_add_ps(y, _mm_and_ps(_mm_sub_ps(pio2, _mm_mul_ps(y, ftwos)), condition));
++        arctangent = y;
++        condition = _mm_cmplt_ps(aVal, fzeroes);
++        arctangent =
++            _mm_sub_ps(arctangent, _mm_and_ps(_mm_mul_ps(arctangent, ftwos), condition));
++
++        _mm_store_ps(bPtr, arctangent);
++        aPtr += 4;
++        bPtr += 4;
+     }
+-    y = _mm_mul_ps(y, _mm_mul_ps(x, ffours));
+-    condition = _mm_cmpgt_ps(z, fones);
+-
+-    y = _mm_add_ps(y, _mm_and_ps(_mm_sub_ps(pio2, _mm_mul_ps(y, ftwos)), condition));
+-    arctangent = y;
+-    condition = _mm_cmplt_ps(aVal, fzeroes);
+-    arctangent = _mm_sub_ps(arctangent, _mm_and_ps(_mm_mul_ps(arctangent, ftwos), condition));
+-
+-    _mm_store_ps(bPtr, arctangent);
+-    aPtr += 4;
+-    bPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    *bPtr++ = atanf(*aPtr++);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *bPtr++ = atanf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_SSE4_1 for aligned */
+@@ -266,59 +278,63 @@ volk_32f_atan_32f_a_sse4_1(float* bVector, const float* aVector, unsigned int nu
+ #if LV_HAVE_AVX2 && LV_HAVE_FMA
+ #include <immintrin.h>
+-static inline void
+-volk_32f_atan_32f_u_avx2_fma(float* bVector, const float* aVector, unsigned int num_points)
++static inline void volk_32f_atan_32f_u_avx2_fma(float* bVector,
++                                                const float* aVector,
++                                                unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int eighthPoints = num_points / 8;
+-  int i, j;
+-
+-  __m256 aVal, pio2, x, y, z, arctangent;
+-  __m256 fzeroes, fones, ftwos, ffours, condition;
+-
+-  pio2 = _mm256_set1_ps(3.14159265358979323846/2);
+-  fzeroes = _mm256_setzero_ps();
+-  fones = _mm256_set1_ps(1.0);
+-  ftwos = _mm256_set1_ps(2.0);
+-  ffours = _mm256_set1_ps(4.0);
+-
+-  for(;number < eighthPoints; number++){
+-    aVal = _mm256_loadu_ps(aPtr);
+-    z = aVal;
+-    condition = _mm256_cmp_ps(z, fzeroes, _CMP_LT_OS);
+-    z = _mm256_sub_ps(z, _mm256_and_ps(_mm256_mul_ps(z, ftwos), condition));
+-    condition = _mm256_cmp_ps(z, fones, _CMP_LT_OS);
+-    x = _mm256_add_ps(z, _mm256_and_ps(_mm256_sub_ps(_mm256_div_ps(fones, z), z), condition));
+-
+-    for(i = 0; i < 2; i++){
+-      x = _mm256_add_ps(x, _mm256_sqrt_ps(_mm256_fmadd_ps(x,x,fones)));
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int eighthPoints = num_points / 8;
++    int i, j;
++
++    __m256 aVal, pio2, x, y, z, arctangent;
++    __m256 fzeroes, fones, ftwos, ffours, condition;
++
++    pio2 = _mm256_set1_ps(3.14159265358979323846 / 2);
++    fzeroes = _mm256_setzero_ps();
++    fones = _mm256_set1_ps(1.0);
++    ftwos = _mm256_set1_ps(2.0);
++    ffours = _mm256_set1_ps(4.0);
++
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_loadu_ps(aPtr);
++        z = aVal;
++        condition = _mm256_cmp_ps(z, fzeroes, _CMP_LT_OS);
++        z = _mm256_sub_ps(z, _mm256_and_ps(_mm256_mul_ps(z, ftwos), condition));
++        condition = _mm256_cmp_ps(z, fones, _CMP_LT_OS);
++        x = _mm256_add_ps(
++            z, _mm256_and_ps(_mm256_sub_ps(_mm256_div_ps(fones, z), z), condition));
++
++        for (i = 0; i < 2; i++) {
++            x = _mm256_add_ps(x, _mm256_sqrt_ps(_mm256_fmadd_ps(x, x, fones)));
++        }
++        x = _mm256_div_ps(fones, x);
++        y = fzeroes;
++        for (j = TERMS - 1; j >= 0; j--) {
++            y = _mm256_fmadd_ps(
++                y, _mm256_mul_ps(x, x), _mm256_set1_ps(pow(-1, j) / (2 * j + 1)));
++        }
++
++        y = _mm256_mul_ps(y, _mm256_mul_ps(x, ffours));
++        condition = _mm256_cmp_ps(z, fones, _CMP_GT_OS);
++
++        y = _mm256_add_ps(y, _mm256_and_ps(_mm256_fnmadd_ps(y, ftwos, pio2), condition));
++        arctangent = y;
++        condition = _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS);
++        arctangent = _mm256_sub_ps(
++            arctangent, _mm256_and_ps(_mm256_mul_ps(arctangent, ftwos), condition));
++
++        _mm256_storeu_ps(bPtr, arctangent);
++        aPtr += 8;
++        bPtr += 8;
+     }
+-    x = _mm256_div_ps(fones, x);
+-    y = fzeroes;
+-    for(j = TERMS - 1; j >=0 ; j--){
+-      y = _mm256_fmadd_ps(y, _mm256_mul_ps(x, x), _mm256_set1_ps(pow(-1,j)/(2*j+1)));
+-    }
+-
+-    y = _mm256_mul_ps(y, _mm256_mul_ps(x, ffours));
+-    condition = _mm256_cmp_ps(z, fones, _CMP_GT_OS);
+-    y = _mm256_add_ps(y, _mm256_and_ps(_mm256_fnmadd_ps(y,ftwos,pio2), condition));
+-    arctangent = y;
+-    condition = _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS);
+-    arctangent = _mm256_sub_ps(arctangent, _mm256_and_ps(_mm256_mul_ps(arctangent, ftwos), condition));
+-
+-    _mm256_storeu_ps(bPtr, arctangent);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *bPtr++ = atan(*aPtr++);
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *bPtr++ = atan(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 && LV_HAVE_FMA for unaligned */
+@@ -330,56 +346,61 @@ volk_32f_atan_32f_u_avx2_fma(float* bVector, const float* aVector, unsigned int
+ static inline void
+ volk_32f_atan_32f_u_avx(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int eighthPoints = num_points / 8;
+-  int i, j;
+-
+-  __m256 aVal, pio2, x, y, z, arctangent;
+-  __m256 fzeroes, fones, ftwos, ffours, condition;
+-
+-  pio2 = _mm256_set1_ps(3.14159265358979323846/2);
+-  fzeroes = _mm256_setzero_ps();
+-  fones = _mm256_set1_ps(1.0);
+-  ftwos = _mm256_set1_ps(2.0);
+-  ffours = _mm256_set1_ps(4.0);
+-
+-  for(;number < eighthPoints; number++){
+-    aVal = _mm256_loadu_ps(aPtr);
+-    z = aVal;
+-    condition = _mm256_cmp_ps(z, fzeroes, _CMP_LT_OS);
+-    z = _mm256_sub_ps(z, _mm256_and_ps(_mm256_mul_ps(z, ftwos), condition));
+-    condition = _mm256_cmp_ps(z, fones, _CMP_LT_OS);
+-    x = _mm256_add_ps(z, _mm256_and_ps(_mm256_sub_ps(_mm256_div_ps(fones, z), z), condition));
+-
+-    for(i = 0; i < 2; i++){
+-      x = _mm256_add_ps(x, _mm256_sqrt_ps(_mm256_add_ps(fones, _mm256_mul_ps(x, x))));
+-    }
+-    x = _mm256_div_ps(fones, x);
+-    y = fzeroes;
+-    for(j = TERMS - 1; j >=0 ; j--){
+-      y = _mm256_add_ps(_mm256_mul_ps(y, _mm256_mul_ps(x, x)), _mm256_set1_ps(pow(-1,j)/(2*j+1)));
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int eighthPoints = num_points / 8;
++    int i, j;
++
++    __m256 aVal, pio2, x, y, z, arctangent;
++    __m256 fzeroes, fones, ftwos, ffours, condition;
++
++    pio2 = _mm256_set1_ps(3.14159265358979323846 / 2);
++    fzeroes = _mm256_setzero_ps();
++    fones = _mm256_set1_ps(1.0);
++    ftwos = _mm256_set1_ps(2.0);
++    ffours = _mm256_set1_ps(4.0);
++
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_loadu_ps(aPtr);
++        z = aVal;
++        condition = _mm256_cmp_ps(z, fzeroes, _CMP_LT_OS);
++        z = _mm256_sub_ps(z, _mm256_and_ps(_mm256_mul_ps(z, ftwos), condition));
++        condition = _mm256_cmp_ps(z, fones, _CMP_LT_OS);
++        x = _mm256_add_ps(
++            z, _mm256_and_ps(_mm256_sub_ps(_mm256_div_ps(fones, z), z), condition));
++
++        for (i = 0; i < 2; i++) {
++            x = _mm256_add_ps(x,
++                              _mm256_sqrt_ps(_mm256_add_ps(fones, _mm256_mul_ps(x, x))));
++        }
++        x = _mm256_div_ps(fones, x);
++        y = fzeroes;
++        for (j = TERMS - 1; j >= 0; j--) {
++            y = _mm256_add_ps(_mm256_mul_ps(y, _mm256_mul_ps(x, x)),
++                              _mm256_set1_ps(pow(-1, j) / (2 * j + 1)));
++        }
++
++        y = _mm256_mul_ps(y, _mm256_mul_ps(x, ffours));
++        condition = _mm256_cmp_ps(z, fones, _CMP_GT_OS);
++
++        y = _mm256_add_ps(
++            y, _mm256_and_ps(_mm256_sub_ps(pio2, _mm256_mul_ps(y, ftwos)), condition));
++        arctangent = y;
++        condition = _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS);
++        arctangent = _mm256_sub_ps(
++            arctangent, _mm256_and_ps(_mm256_mul_ps(arctangent, ftwos), condition));
++
++        _mm256_storeu_ps(bPtr, arctangent);
++        aPtr += 8;
++        bPtr += 8;
+     }
+-    y = _mm256_mul_ps(y, _mm256_mul_ps(x, ffours));
+-    condition = _mm256_cmp_ps(z, fones, _CMP_GT_OS);
+-
+-    y = _mm256_add_ps(y, _mm256_and_ps(_mm256_sub_ps(pio2, _mm256_mul_ps(y, ftwos)), condition));
+-    arctangent = y;
+-    condition = _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS);
+-    arctangent = _mm256_sub_ps(arctangent, _mm256_and_ps(_mm256_mul_ps(arctangent, ftwos), condition));
+-
+-    _mm256_storeu_ps(bPtr, arctangent);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *bPtr++ = atan(*aPtr++);
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *bPtr++ = atan(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX for unaligned */
+@@ -390,54 +411,56 @@ volk_32f_atan_32f_u_avx(float* bVector, const float* aVector, unsigned int num_p
+ static inline void
+ volk_32f_atan_32f_u_sse4_1(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int quarterPoints = num_points / 4;
+-  int i, j;
+-
+-  __m128 aVal, pio2, x, y, z, arctangent;
+-  __m128 fzeroes, fones, ftwos, ffours, condition;
+-
+-  pio2 = _mm_set1_ps(3.14159265358979323846/2);
+-  fzeroes = _mm_setzero_ps();
+-  fones = _mm_set1_ps(1.0);
+-  ftwos = _mm_set1_ps(2.0);
+-  ffours = _mm_set1_ps(4.0);
+-
+-  for(;number < quarterPoints; number++){
+-    aVal = _mm_loadu_ps(aPtr);
+-    z = aVal;
+-    condition = _mm_cmplt_ps(z, fzeroes);
+-    z = _mm_sub_ps(z, _mm_and_ps(_mm_mul_ps(z, ftwos), condition));
+-    condition = _mm_cmplt_ps(z, fones);
+-    x = _mm_add_ps(z, _mm_and_ps(_mm_sub_ps(_mm_div_ps(fones, z), z), condition));
+-
+-    for(i = 0; i < 2; i++)
+-      x = _mm_add_ps(x, _mm_sqrt_ps(_mm_add_ps(fones, _mm_mul_ps(x, x))));
+-    x = _mm_div_ps(fones, x);
+-    y = fzeroes;
+-    for(j = TERMS - 1; j >= 0; j--)
+-      y = _mm_add_ps(_mm_mul_ps(y, _mm_mul_ps(x, x)), _mm_set1_ps(pow(-1,j)/(2*j+1)));
+-
+-    y = _mm_mul_ps(y, _mm_mul_ps(x, ffours));
+-    condition = _mm_cmpgt_ps(z, fones);
+-
+-    y = _mm_add_ps(y, _mm_and_ps(_mm_sub_ps(pio2, _mm_mul_ps(y, ftwos)), condition));
+-    arctangent = y;
+-    condition = _mm_cmplt_ps(aVal, fzeroes);
+-    arctangent = _mm_sub_ps(arctangent, _mm_and_ps(_mm_mul_ps(arctangent, ftwos), condition));
+-
+-    _mm_storeu_ps(bPtr, arctangent);
+-    aPtr += 4;
+-    bPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    *bPtr++ = atanf(*aPtr++);
+-  }
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int quarterPoints = num_points / 4;
++    int i, j;
++
++    __m128 aVal, pio2, x, y, z, arctangent;
++    __m128 fzeroes, fones, ftwos, ffours, condition;
++
++    pio2 = _mm_set1_ps(3.14159265358979323846 / 2);
++    fzeroes = _mm_setzero_ps();
++    fones = _mm_set1_ps(1.0);
++    ftwos = _mm_set1_ps(2.0);
++    ffours = _mm_set1_ps(4.0);
++
++    for (; number < quarterPoints; number++) {
++        aVal = _mm_loadu_ps(aPtr);
++        z = aVal;
++        condition = _mm_cmplt_ps(z, fzeroes);
++        z = _mm_sub_ps(z, _mm_and_ps(_mm_mul_ps(z, ftwos), condition));
++        condition = _mm_cmplt_ps(z, fones);
++        x = _mm_add_ps(z, _mm_and_ps(_mm_sub_ps(_mm_div_ps(fones, z), z), condition));
++
++        for (i = 0; i < 2; i++)
++            x = _mm_add_ps(x, _mm_sqrt_ps(_mm_add_ps(fones, _mm_mul_ps(x, x))));
++        x = _mm_div_ps(fones, x);
++        y = fzeroes;
++        for (j = TERMS - 1; j >= 0; j--)
++            y = _mm_add_ps(_mm_mul_ps(y, _mm_mul_ps(x, x)),
++                           _mm_set1_ps(pow(-1, j) / (2 * j + 1)));
++
++        y = _mm_mul_ps(y, _mm_mul_ps(x, ffours));
++        condition = _mm_cmpgt_ps(z, fones);
++
++        y = _mm_add_ps(y, _mm_and_ps(_mm_sub_ps(pio2, _mm_mul_ps(y, ftwos)), condition));
++        arctangent = y;
++        condition = _mm_cmplt_ps(aVal, fzeroes);
++        arctangent =
++            _mm_sub_ps(arctangent, _mm_and_ps(_mm_mul_ps(arctangent, ftwos), condition));
++
++        _mm_storeu_ps(bPtr, arctangent);
++        aPtr += 4;
++        bPtr += 4;
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *bPtr++ = atanf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_SSE4_1 for unaligned */
+@@ -447,13 +470,13 @@ volk_32f_atan_32f_u_sse4_1(float* bVector, const float* aVector, unsigned int nu
+ static inline void
+ volk_32f_atan_32f_generic(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-  unsigned int number = 0;
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++    unsigned int number = 0;
+-  for(number = 0; number < num_points; number++){
+-    *bPtr++ = atanf(*aPtr++);
+-  }
++    for (number = 0; number < num_points; number++) {
++        *bPtr++ = atanf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+diff --git a/kernels/volk/volk_32f_binary_slicer_32i.h b/kernels/volk/volk_32f_binary_slicer_32i.h
+index c56ff8f..635d0c3 100644
+--- a/kernels/volk/volk_32f_binary_slicer_32i.h
++++ b/kernels/volk/volk_32f_binary_slicer_32i.h
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_binary_slicer_32i(int* cVector, const float* aVector, unsigned int num_points)
+- * \endcode
++ * void volk_32f_binary_slicer_32i(int* cVector, const float* aVector, unsigned int
++ * num_points) \endcode
+  *
+  * \b Inputs
+  * \li aVector: The input vector of floats.
+@@ -73,37 +73,38 @@
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_binary_slicer_32i_generic(int* cVector, const float* aVector, unsigned int num_points)
++static inline void volk_32f_binary_slicer_32i_generic(int* cVector,
++                                                      const float* aVector,
++                                                      unsigned int num_points)
+ {
+-  int* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    if( *aPtr++ >= 0) {
+-      *cPtr++ = 1;
+-    }
+-    else {
+-      *cPtr++ = 0;
++    int* cPtr = cVector;
++    const float* aPtr = aVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        if (*aPtr++ >= 0) {
++            *cPtr++ = 1;
++        } else {
++            *cPtr++ = 0;
++        }
+     }
+-  }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_binary_slicer_32i_generic_branchless(int* cVector, const float* aVector, unsigned int num_points)
++static inline void volk_32f_binary_slicer_32i_generic_branchless(int* cVector,
++                                                                 const float* aVector,
++                                                                 unsigned int num_points)
+ {
+-  int* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  unsigned int number = 0;
++    int* cPtr = cVector;
++    const float* aPtr = aVector;
++    unsigned int number = 0;
+-  for(number = 0; number < num_points; number++){
+-    *cPtr++ = (*aPtr++ >= 0);
+-  }
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = (*aPtr++ >= 0);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -111,40 +112,40 @@ volk_32f_binary_slicer_32i_generic_branchless(int* cVector, const float* aVector
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void
+-volk_32f_binary_slicer_32i_a_sse2(int* cVector, const float* aVector, unsigned int num_points)
++static inline void volk_32f_binary_slicer_32i_a_sse2(int* cVector,
++                                                     const float* aVector,
++                                                     unsigned int num_points)
+ {
+-  int* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  unsigned int number = 0;
+-
+-  unsigned int quarter_points = num_points / 4;
+-  __m128 a_val, res_f;
+-  __m128i res_i, binary_i;
+-  __m128 zero_val;
+-  zero_val = _mm_set1_ps (0.0f);
++    int* cPtr = cVector;
++    const float* aPtr = aVector;
++    unsigned int number = 0;
+-  for(number = 0; number < quarter_points; number++){
+-    a_val = _mm_load_ps(aPtr);
++    unsigned int quarter_points = num_points / 4;
++    __m128 a_val, res_f;
++    __m128i res_i, binary_i;
++    __m128 zero_val;
++    zero_val = _mm_set1_ps(0.0f);
+-    res_f = _mm_cmpge_ps (a_val, zero_val);
+-    res_i = _mm_cvtps_epi32 (res_f);
+-    binary_i = _mm_srli_epi32 (res_i, 31);
++    for (number = 0; number < quarter_points; number++) {
++        a_val = _mm_load_ps(aPtr);
+-    _mm_store_si128((__m128i*)cPtr, binary_i);
++        res_f = _mm_cmpge_ps(a_val, zero_val);
++        res_i = _mm_cvtps_epi32(res_f);
++        binary_i = _mm_srli_epi32(res_i, 31);
+-    cPtr += 4;
+-    aPtr += 4;
+-  }
++        _mm_store_si128((__m128i*)cPtr, binary_i);
+-  for(number = quarter_points * 4; number < num_points; number++){
+-    if( *aPtr++ >= 0) {
+-      *cPtr++ = 1;
++        cPtr += 4;
++        aPtr += 4;
+     }
+-    else {
+-      *cPtr++ = 0;
++
++    for (number = quarter_points * 4; number < num_points; number++) {
++        if (*aPtr++ >= 0) {
++            *cPtr++ = 1;
++        } else {
++            *cPtr++ = 0;
++        }
+     }
+-  }
+ }
+ #endif /* LV_HAVE_SSE2 */
+@@ -152,41 +153,41 @@ volk_32f_binary_slicer_32i_a_sse2(int* cVector, const float* aVector, unsigned i
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32f_binary_slicer_32i_a_avx(int* cVector, const float* aVector, unsigned int num_points)
++static inline void volk_32f_binary_slicer_32i_a_avx(int* cVector,
++                                                    const float* aVector,
++                                                    unsigned int num_points)
+ {
+-  int* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  unsigned int number = 0;
++    int* cPtr = cVector;
++    const float* aPtr = aVector;
++    unsigned int number = 0;
+-  unsigned int quarter_points = num_points / 8;
+-  __m256 a_val, res_f, binary_f;
+-  __m256i binary_i;
+-  __m256 zero_val, one_val;
+-  zero_val = _mm256_set1_ps (0.0f);
+-  one_val = _mm256_set1_ps (1.0f);
++    unsigned int quarter_points = num_points / 8;
++    __m256 a_val, res_f, binary_f;
++    __m256i binary_i;
++    __m256 zero_val, one_val;
++    zero_val = _mm256_set1_ps(0.0f);
++    one_val = _mm256_set1_ps(1.0f);
+-  for(number = 0; number < quarter_points; number++){
+-    a_val = _mm256_load_ps(aPtr);
++    for (number = 0; number < quarter_points; number++) {
++        a_val = _mm256_load_ps(aPtr);
+-    res_f = _mm256_cmp_ps (a_val, zero_val, _CMP_GE_OS);
+-    binary_f = _mm256_and_ps (res_f, one_val);
+-    binary_i = _mm256_cvtps_epi32(binary_f);
++        res_f = _mm256_cmp_ps(a_val, zero_val, _CMP_GE_OS);
++        binary_f = _mm256_and_ps(res_f, one_val);
++        binary_i = _mm256_cvtps_epi32(binary_f);
+-    _mm256_store_si256((__m256i *)cPtr, binary_i);
++        _mm256_store_si256((__m256i*)cPtr, binary_i);
+-    cPtr += 8;
+-    aPtr += 8;
+-  }
+-
+-  for(number = quarter_points * 8; number < num_points; number++){
+-    if( *aPtr++ >= 0) {
+-      *cPtr++ = 1;
++        cPtr += 8;
++        aPtr += 8;
+     }
+-    else {
+-      *cPtr++ = 0;
++
++    for (number = quarter_points * 8; number < num_points; number++) {
++        if (*aPtr++ >= 0) {
++            *cPtr++ = 1;
++        } else {
++            *cPtr++ = 0;
++        }
+     }
+-  }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -194,40 +195,40 @@ volk_32f_binary_slicer_32i_a_avx(int* cVector, const float* aVector, unsigned in
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void
+-volk_32f_binary_slicer_32i_u_sse2(int* cVector, const float* aVector, unsigned int num_points)
++static inline void volk_32f_binary_slicer_32i_u_sse2(int* cVector,
++                                                     const float* aVector,
++                                                     unsigned int num_points)
+ {
+-  int* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  unsigned int number = 0;
+-
+-  unsigned int quarter_points = num_points / 4;
+-  __m128 a_val, res_f;
+-  __m128i res_i, binary_i;
+-  __m128 zero_val;
+-  zero_val = _mm_set1_ps (0.0f);
++    int* cPtr = cVector;
++    const float* aPtr = aVector;
++    unsigned int number = 0;
+-  for(number = 0; number < quarter_points; number++){
+-    a_val = _mm_loadu_ps(aPtr);
++    unsigned int quarter_points = num_points / 4;
++    __m128 a_val, res_f;
++    __m128i res_i, binary_i;
++    __m128 zero_val;
++    zero_val = _mm_set1_ps(0.0f);
+-    res_f = _mm_cmpge_ps (a_val, zero_val);
+-    res_i = _mm_cvtps_epi32 (res_f);
+-    binary_i = _mm_srli_epi32 (res_i, 31);
++    for (number = 0; number < quarter_points; number++) {
++        a_val = _mm_loadu_ps(aPtr);
+-    _mm_storeu_si128((__m128i*)cPtr, binary_i);
++        res_f = _mm_cmpge_ps(a_val, zero_val);
++        res_i = _mm_cvtps_epi32(res_f);
++        binary_i = _mm_srli_epi32(res_i, 31);
+-    cPtr += 4;
+-    aPtr += 4;
+-  }
++        _mm_storeu_si128((__m128i*)cPtr, binary_i);
+-  for(number = quarter_points * 4; number < num_points; number++){
+-    if( *aPtr++ >= 0) {
+-      *cPtr++ = 1;
++        cPtr += 4;
++        aPtr += 4;
+     }
+-    else {
+-      *cPtr++ = 0;
++
++    for (number = quarter_points * 4; number < num_points; number++) {
++        if (*aPtr++ >= 0) {
++            *cPtr++ = 1;
++        } else {
++            *cPtr++ = 0;
++        }
+     }
+-  }
+ }
+ #endif /* LV_HAVE_SSE2 */
+@@ -235,41 +236,41 @@ volk_32f_binary_slicer_32i_u_sse2(int* cVector, const float* aVector, unsigned i
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32f_binary_slicer_32i_u_avx(int* cVector, const float* aVector, unsigned int num_points)
++static inline void volk_32f_binary_slicer_32i_u_avx(int* cVector,
++                                                    const float* aVector,
++                                                    unsigned int num_points)
+ {
+-  int* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  unsigned int number = 0;
+-
+-  unsigned int quarter_points = num_points / 8;
+-  __m256 a_val, res_f, binary_f;
+-  __m256i binary_i;
+-  __m256 zero_val, one_val;
+-  zero_val = _mm256_set1_ps (0.0f);
+-  one_val = _mm256_set1_ps (1.0f);
++    int* cPtr = cVector;
++    const float* aPtr = aVector;
++    unsigned int number = 0;
+-  for(number = 0; number < quarter_points; number++){
+-    a_val = _mm256_loadu_ps(aPtr);
++    unsigned int quarter_points = num_points / 8;
++    __m256 a_val, res_f, binary_f;
++    __m256i binary_i;
++    __m256 zero_val, one_val;
++    zero_val = _mm256_set1_ps(0.0f);
++    one_val = _mm256_set1_ps(1.0f);
+-    res_f = _mm256_cmp_ps (a_val, zero_val, _CMP_GE_OS);
+-    binary_f = _mm256_and_ps (res_f, one_val);
+-    binary_i = _mm256_cvtps_epi32(binary_f);
++    for (number = 0; number < quarter_points; number++) {
++        a_val = _mm256_loadu_ps(aPtr);
+-    _mm256_storeu_si256((__m256i*)cPtr, binary_i);
++        res_f = _mm256_cmp_ps(a_val, zero_val, _CMP_GE_OS);
++        binary_f = _mm256_and_ps(res_f, one_val);
++        binary_i = _mm256_cvtps_epi32(binary_f);
+-    cPtr += 8;
+-    aPtr += 8;
+-  }
++        _mm256_storeu_si256((__m256i*)cPtr, binary_i);
+-  for(number = quarter_points * 8; number < num_points; number++){
+-    if( *aPtr++ >= 0) {
+-      *cPtr++ = 1;
++        cPtr += 8;
++        aPtr += 8;
+     }
+-    else {
+-      *cPtr++ = 0;
++
++    for (number = quarter_points * 8; number < num_points; number++) {
++        if (*aPtr++ >= 0) {
++            *cPtr++ = 1;
++        } else {
++            *cPtr++ = 0;
++        }
+     }
+-  }
+ }
+ #endif /* LV_HAVE_AVX */
+diff --git a/kernels/volk/volk_32f_binary_slicer_8i.h b/kernels/volk/volk_32f_binary_slicer_8i.h
+index 5920621..3eddb5c 100644
+--- a/kernels/volk/volk_32f_binary_slicer_8i.h
++++ b/kernels/volk/volk_32f_binary_slicer_8i.h
+@@ -30,7 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_binary_slicer_8i(int8_t* cVector, const float* aVector, unsigned int num_points)
++ * void volk_32f_binary_slicer_8i(int8_t* cVector, const float* aVector, unsigned int
++ num_points)
+  * \endcode
+  *
+  * \b Inputs
+@@ -74,39 +75,38 @@
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_binary_slicer_8i_generic(int8_t* cVector, const float* aVector,
+-                                  unsigned int num_points)
++static inline void volk_32f_binary_slicer_8i_generic(int8_t* cVector,
++                                                     const float* aVector,
++                                                     unsigned int num_points)
+ {
+-  int8_t* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++) {
+-    if(*aPtr++ >= 0) {
+-      *cPtr++ = 1;
+-    }
+-    else {
+-      *cPtr++ = 0;
++    int8_t* cPtr = cVector;
++    const float* aPtr = aVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        if (*aPtr++ >= 0) {
++            *cPtr++ = 1;
++        } else {
++            *cPtr++ = 0;
++        }
+     }
+-  }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_binary_slicer_8i_generic_branchless(int8_t* cVector, const float* aVector,
+-                                             unsigned int num_points)
++static inline void volk_32f_binary_slicer_8i_generic_branchless(int8_t* cVector,
++                                                                const float* aVector,
++                                                                unsigned int num_points)
+ {
+-  int8_t* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  unsigned int number = 0;
++    int8_t* cPtr = cVector;
++    const float* aPtr = aVector;
++    unsigned int number = 0;
+-  for(number = 0; number < num_points; number++){
+-    *cPtr++ = (*aPtr++ >= 0);
+-  }
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = (*aPtr++ >= 0);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -114,279 +114,329 @@ volk_32f_binary_slicer_8i_generic_branchless(int8_t* cVector, const float* aVect
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_32f_binary_slicer_8i_a_avx2(int8_t* cVector, const float* aVector,
+-                                 unsigned int num_points)
++static inline void volk_32f_binary_slicer_8i_a_avx2(int8_t* cVector,
++                                                    const float* aVector,
++                                                    unsigned int num_points)
+ {
+-  int8_t* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  unsigned int number = 0;
+-  unsigned int n32points = num_points / 32;
+-
+-  const __m256 zero_val = _mm256_set1_ps(0.0f);
+-  __m256 a0_val, a1_val, a2_val, a3_val;
+-  __m256 res0_f, res1_f, res2_f, res3_f;
+-  __m256i res0_i, res1_i, res2_i, res3_i;
+-  __m256i byte_shuffle = _mm256_set_epi8( 15, 14, 13, 12, 7, 6, 5, 4,
+-                                        11, 10, 9, 8, 3, 2, 1, 0,
+-                                        15, 14, 13, 12, 7, 6, 5, 4,
+-                                        11, 10, 9, 8, 3, 2, 1, 0);
+-
+-  for(number = 0; number < n32points; number++) {
+-    a0_val = _mm256_load_ps(aPtr);
+-    a1_val = _mm256_load_ps(aPtr+8);
+-    a2_val = _mm256_load_ps(aPtr+16);
+-    a3_val = _mm256_load_ps(aPtr+24);
+-
+-    // compare >= 0; return float
+-    res0_f = _mm256_cmp_ps(a0_val, zero_val, _CMP_GE_OS);
+-    res1_f = _mm256_cmp_ps(a1_val, zero_val, _CMP_GE_OS);
+-    res2_f = _mm256_cmp_ps(a2_val, zero_val, _CMP_GE_OS);
+-    res3_f = _mm256_cmp_ps(a3_val, zero_val, _CMP_GE_OS);
+-
+-    // convert to 32i and >> 31
+-    res0_i = _mm256_srli_epi32(_mm256_cvtps_epi32(res0_f), 31);
+-    res1_i = _mm256_srli_epi32(_mm256_cvtps_epi32(res1_f), 31);
+-    res2_i = _mm256_srli_epi32(_mm256_cvtps_epi32(res2_f), 31);
+-    res3_i = _mm256_srli_epi32(_mm256_cvtps_epi32(res3_f), 31);
+-
+-    // pack in to 16-bit results
+-    res0_i = _mm256_packs_epi32(res0_i, res1_i);
+-    res2_i = _mm256_packs_epi32(res2_i, res3_i);
+-    // pack in to 8-bit results
+-    // res0: (after packs_epi32)
+-    //  a0, a1, a2, a3, b0, b1, b2, b3, a4, a5, a6, a7, b4, b5, b6, b7
+-    // res2:
+-    //  c0, c1, c2, c3, d0, d1, d2, d3, c4, c5, c6, c7, d4, d5, d6, d7
+-    res0_i = _mm256_packs_epi16(res0_i, res2_i);
+-    // shuffle the lanes
+-    // res0: (after packs_epi16)
+-    //  a0, a1, a2, a3, b0, b1, b2, b3, c0, c1, c2, c3, d0, d1, d2, d3
+-    //  a4, a5, a6, a7, b4, b5, b6, b7, c4, c5, c6, c7, d4, d5, d6, d7
+-    //   0, 2, 1, 3 -> 11 01 10 00 (0xd8)
+-    res0_i = _mm256_permute4x64_epi64(res0_i, 0xd8);
+-
+-    // shuffle bytes within lanes
+-    // res0: (after shuffle_epi8)
+-    //  a0, a1, a2, a3, b0, b1, b2, b3, a4, a5, a6, a7, b4, b5, b6, b7
+-    //  c0, c1, c2, c3, d0, d1, d2, d3, c4, c5, c6, c7, d4, d5, d6, d7
+-    res0_i = _mm256_shuffle_epi8(res0_i, byte_shuffle);
+-
+-    _mm256_store_si256((__m256i*)cPtr, res0_i);
+-    aPtr += 32;
+-    cPtr += 32;
+-  }
+-
+-  for(number = n32points * 32; number < num_points; number++) {
+-    if( *aPtr++ >= 0) {
+-      *cPtr++ = 1;
++    int8_t* cPtr = cVector;
++    const float* aPtr = aVector;
++    unsigned int number = 0;
++    unsigned int n32points = num_points / 32;
++
++    const __m256 zero_val = _mm256_set1_ps(0.0f);
++    __m256 a0_val, a1_val, a2_val, a3_val;
++    __m256 res0_f, res1_f, res2_f, res3_f;
++    __m256i res0_i, res1_i, res2_i, res3_i;
++    __m256i byte_shuffle = _mm256_set_epi8(15,
++                                           14,
++                                           13,
++                                           12,
++                                           7,
++                                           6,
++                                           5,
++                                           4,
++                                           11,
++                                           10,
++                                           9,
++                                           8,
++                                           3,
++                                           2,
++                                           1,
++                                           0,
++                                           15,
++                                           14,
++                                           13,
++                                           12,
++                                           7,
++                                           6,
++                                           5,
++                                           4,
++                                           11,
++                                           10,
++                                           9,
++                                           8,
++                                           3,
++                                           2,
++                                           1,
++                                           0);
++
++    for (number = 0; number < n32points; number++) {
++        a0_val = _mm256_load_ps(aPtr);
++        a1_val = _mm256_load_ps(aPtr + 8);
++        a2_val = _mm256_load_ps(aPtr + 16);
++        a3_val = _mm256_load_ps(aPtr + 24);
++
++        // compare >= 0; return float
++        res0_f = _mm256_cmp_ps(a0_val, zero_val, _CMP_GE_OS);
++        res1_f = _mm256_cmp_ps(a1_val, zero_val, _CMP_GE_OS);
++        res2_f = _mm256_cmp_ps(a2_val, zero_val, _CMP_GE_OS);
++        res3_f = _mm256_cmp_ps(a3_val, zero_val, _CMP_GE_OS);
++
++        // convert to 32i and >> 31
++        res0_i = _mm256_srli_epi32(_mm256_cvtps_epi32(res0_f), 31);
++        res1_i = _mm256_srli_epi32(_mm256_cvtps_epi32(res1_f), 31);
++        res2_i = _mm256_srli_epi32(_mm256_cvtps_epi32(res2_f), 31);
++        res3_i = _mm256_srli_epi32(_mm256_cvtps_epi32(res3_f), 31);
++
++        // pack in to 16-bit results
++        res0_i = _mm256_packs_epi32(res0_i, res1_i);
++        res2_i = _mm256_packs_epi32(res2_i, res3_i);
++        // pack in to 8-bit results
++        // res0: (after packs_epi32)
++        //  a0, a1, a2, a3, b0, b1, b2, b3, a4, a5, a6, a7, b4, b5, b6, b7
++        // res2:
++        //  c0, c1, c2, c3, d0, d1, d2, d3, c4, c5, c6, c7, d4, d5, d6, d7
++        res0_i = _mm256_packs_epi16(res0_i, res2_i);
++        // shuffle the lanes
++        // res0: (after packs_epi16)
++        //  a0, a1, a2, a3, b0, b1, b2, b3, c0, c1, c2, c3, d0, d1, d2, d3
++        //  a4, a5, a6, a7, b4, b5, b6, b7, c4, c5, c6, c7, d4, d5, d6, d7
++        //   0, 2, 1, 3 -> 11 01 10 00 (0xd8)
++        res0_i = _mm256_permute4x64_epi64(res0_i, 0xd8);
++
++        // shuffle bytes within lanes
++        // res0: (after shuffle_epi8)
++        //  a0, a1, a2, a3, b0, b1, b2, b3, a4, a5, a6, a7, b4, b5, b6, b7
++        //  c0, c1, c2, c3, d0, d1, d2, d3, c4, c5, c6, c7, d4, d5, d6, d7
++        res0_i = _mm256_shuffle_epi8(res0_i, byte_shuffle);
++
++        _mm256_store_si256((__m256i*)cPtr, res0_i);
++        aPtr += 32;
++        cPtr += 32;
+     }
+-    else {
+-      *cPtr++ = 0;
++
++    for (number = n32points * 32; number < num_points; number++) {
++        if (*aPtr++ >= 0) {
++            *cPtr++ = 1;
++        } else {
++            *cPtr++ = 0;
++        }
+     }
+-  }
+ }
+ #endif
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_32f_binary_slicer_8i_u_avx2(int8_t* cVector, const float* aVector,
+-                                 unsigned int num_points)
++static inline void volk_32f_binary_slicer_8i_u_avx2(int8_t* cVector,
++                                                    const float* aVector,
++                                                    unsigned int num_points)
+ {
+-  int8_t* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  unsigned int number = 0;
+-  unsigned int n32points = num_points / 32;
+-
+-  const __m256 zero_val = _mm256_set1_ps(0.0f);
+-  __m256 a0_val, a1_val, a2_val, a3_val;
+-  __m256 res0_f, res1_f, res2_f, res3_f;
+-  __m256i res0_i, res1_i, res2_i, res3_i;
+-  __m256i byte_shuffle = _mm256_set_epi8( 15, 14, 13, 12, 7, 6, 5, 4,
+-                                        11, 10, 9, 8, 3, 2, 1, 0,
+-                                        15, 14, 13, 12, 7, 6, 5, 4,
+-                                        11, 10, 9, 8, 3, 2, 1, 0);
+-
+-  for(number = 0; number < n32points; number++) {
+-    a0_val = _mm256_loadu_ps(aPtr);
+-    a1_val = _mm256_loadu_ps(aPtr+8);
+-    a2_val = _mm256_loadu_ps(aPtr+16);
+-    a3_val = _mm256_loadu_ps(aPtr+24);
+-
+-    // compare >= 0; return float
+-    res0_f = _mm256_cmp_ps(a0_val, zero_val, _CMP_GE_OS);
+-    res1_f = _mm256_cmp_ps(a1_val, zero_val, _CMP_GE_OS);
+-    res2_f = _mm256_cmp_ps(a2_val, zero_val, _CMP_GE_OS);
+-    res3_f = _mm256_cmp_ps(a3_val, zero_val, _CMP_GE_OS);
+-
+-    // convert to 32i and >> 31
+-    res0_i = _mm256_srli_epi32(_mm256_cvtps_epi32(res0_f), 31);
+-    res1_i = _mm256_srli_epi32(_mm256_cvtps_epi32(res1_f), 31);
+-    res2_i = _mm256_srli_epi32(_mm256_cvtps_epi32(res2_f), 31);
+-    res3_i = _mm256_srli_epi32(_mm256_cvtps_epi32(res3_f), 31);
+-
+-    // pack in to 16-bit results
+-    res0_i = _mm256_packs_epi32(res0_i, res1_i);
+-    res2_i = _mm256_packs_epi32(res2_i, res3_i);
+-    // pack in to 8-bit results
+-    // res0: (after packs_epi32)
+-    //  a0, a1, a2, a3, b0, b1, b2, b3, a4, a5, a6, a7, b4, b5, b6, b7
+-    // res2:
+-    //  c0, c1, c2, c3, d0, d1, d2, d3, c4, c5, c6, c7, d4, d5, d6, d7
+-    res0_i = _mm256_packs_epi16(res0_i, res2_i);
+-    // shuffle the lanes
+-    // res0: (after packs_epi16)
+-    //  a0, a1, a2, a3, b0, b1, b2, b3, c0, c1, c2, c3, d0, d1, d2, d3
+-    //  a4, a5, a6, a7, b4, b5, b6, b7, c4, c5, c6, c7, d4, d5, d6, d7
+-    //   0, 2, 1, 3 -> 11 01 10 00 (0xd8)
+-    res0_i = _mm256_permute4x64_epi64(res0_i, 0xd8);
+-
+-    // shuffle bytes within lanes
+-    // res0: (after shuffle_epi8)
+-    //  a0, a1, a2, a3, b0, b1, b2, b3, a4, a5, a6, a7, b4, b5, b6, b7
+-    //  c0, c1, c2, c3, d0, d1, d2, d3, c4, c5, c6, c7, d4, d5, d6, d7
+-    res0_i = _mm256_shuffle_epi8(res0_i, byte_shuffle);
+-
+-    _mm256_storeu_si256((__m256i*)cPtr, res0_i);
+-    aPtr += 32;
+-    cPtr += 32;
+-  }
+-
+-  for(number = n32points * 32; number < num_points; number++) {
+-    if( *aPtr++ >= 0) {
+-      *cPtr++ = 1;
++    int8_t* cPtr = cVector;
++    const float* aPtr = aVector;
++    unsigned int number = 0;
++    unsigned int n32points = num_points / 32;
++
++    const __m256 zero_val = _mm256_set1_ps(0.0f);
++    __m256 a0_val, a1_val, a2_val, a3_val;
++    __m256 res0_f, res1_f, res2_f, res3_f;
++    __m256i res0_i, res1_i, res2_i, res3_i;
++    __m256i byte_shuffle = _mm256_set_epi8(15,
++                                           14,
++                                           13,
++                                           12,
++                                           7,
++                                           6,
++                                           5,
++                                           4,
++                                           11,
++                                           10,
++                                           9,
++                                           8,
++                                           3,
++                                           2,
++                                           1,
++                                           0,
++                                           15,
++                                           14,
++                                           13,
++                                           12,
++                                           7,
++                                           6,
++                                           5,
++                                           4,
++                                           11,
++                                           10,
++                                           9,
++                                           8,
++                                           3,
++                                           2,
++                                           1,
++                                           0);
++
++    for (number = 0; number < n32points; number++) {
++        a0_val = _mm256_loadu_ps(aPtr);
++        a1_val = _mm256_loadu_ps(aPtr + 8);
++        a2_val = _mm256_loadu_ps(aPtr + 16);
++        a3_val = _mm256_loadu_ps(aPtr + 24);
++
++        // compare >= 0; return float
++        res0_f = _mm256_cmp_ps(a0_val, zero_val, _CMP_GE_OS);
++        res1_f = _mm256_cmp_ps(a1_val, zero_val, _CMP_GE_OS);
++        res2_f = _mm256_cmp_ps(a2_val, zero_val, _CMP_GE_OS);
++        res3_f = _mm256_cmp_ps(a3_val, zero_val, _CMP_GE_OS);
++
++        // convert to 32i and >> 31
++        res0_i = _mm256_srli_epi32(_mm256_cvtps_epi32(res0_f), 31);
++        res1_i = _mm256_srli_epi32(_mm256_cvtps_epi32(res1_f), 31);
++        res2_i = _mm256_srli_epi32(_mm256_cvtps_epi32(res2_f), 31);
++        res3_i = _mm256_srli_epi32(_mm256_cvtps_epi32(res3_f), 31);
++
++        // pack in to 16-bit results
++        res0_i = _mm256_packs_epi32(res0_i, res1_i);
++        res2_i = _mm256_packs_epi32(res2_i, res3_i);
++        // pack in to 8-bit results
++        // res0: (after packs_epi32)
++        //  a0, a1, a2, a3, b0, b1, b2, b3, a4, a5, a6, a7, b4, b5, b6, b7
++        // res2:
++        //  c0, c1, c2, c3, d0, d1, d2, d3, c4, c5, c6, c7, d4, d5, d6, d7
++        res0_i = _mm256_packs_epi16(res0_i, res2_i);
++        // shuffle the lanes
++        // res0: (after packs_epi16)
++        //  a0, a1, a2, a3, b0, b1, b2, b3, c0, c1, c2, c3, d0, d1, d2, d3
++        //  a4, a5, a6, a7, b4, b5, b6, b7, c4, c5, c6, c7, d4, d5, d6, d7
++        //   0, 2, 1, 3 -> 11 01 10 00 (0xd8)
++        res0_i = _mm256_permute4x64_epi64(res0_i, 0xd8);
++
++        // shuffle bytes within lanes
++        // res0: (after shuffle_epi8)
++        //  a0, a1, a2, a3, b0, b1, b2, b3, a4, a5, a6, a7, b4, b5, b6, b7
++        //  c0, c1, c2, c3, d0, d1, d2, d3, c4, c5, c6, c7, d4, d5, d6, d7
++        res0_i = _mm256_shuffle_epi8(res0_i, byte_shuffle);
++
++        _mm256_storeu_si256((__m256i*)cPtr, res0_i);
++        aPtr += 32;
++        cPtr += 32;
+     }
+-    else {
+-      *cPtr++ = 0;
++
++    for (number = n32points * 32; number < num_points; number++) {
++        if (*aPtr++ >= 0) {
++            *cPtr++ = 1;
++        } else {
++            *cPtr++ = 0;
++        }
+     }
+-  }
+ }
+ #endif
+-
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void
+-volk_32f_binary_slicer_8i_a_sse2(int8_t* cVector, const float* aVector,
+-                                 unsigned int num_points)
++static inline void volk_32f_binary_slicer_8i_a_sse2(int8_t* cVector,
++                                                    const float* aVector,
++                                                    unsigned int num_points)
+ {
+-  int8_t* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  unsigned int number = 0;
+-
+-  unsigned int n16points = num_points / 16;
+-  __m128 a0_val, a1_val, a2_val, a3_val;
+-  __m128 res0_f, res1_f, res2_f, res3_f;
+-  __m128i res0_i, res1_i, res2_i, res3_i;
+-  __m128 zero_val;
+-  zero_val = _mm_set1_ps(0.0f);
+-
+-  for(number = 0; number < n16points; number++) {
+-    a0_val = _mm_load_ps(aPtr);
+-    a1_val = _mm_load_ps(aPtr+4);
+-    a2_val = _mm_load_ps(aPtr+8);
+-    a3_val = _mm_load_ps(aPtr+12);
+-
+-    // compare >= 0; return float
+-    res0_f = _mm_cmpge_ps(a0_val, zero_val);
+-    res1_f = _mm_cmpge_ps(a1_val, zero_val);
+-    res2_f = _mm_cmpge_ps(a2_val, zero_val);
+-    res3_f = _mm_cmpge_ps(a3_val, zero_val);
+-
+-    // convert to 32i and >> 31
+-    res0_i = _mm_srli_epi32(_mm_cvtps_epi32(res0_f), 31);
+-    res1_i = _mm_srli_epi32(_mm_cvtps_epi32(res1_f), 31);
+-    res2_i = _mm_srli_epi32(_mm_cvtps_epi32(res2_f), 31);
+-    res3_i = _mm_srli_epi32(_mm_cvtps_epi32(res3_f), 31);
+-
+-    // pack into 16-bit results
+-    res0_i = _mm_packs_epi32(res0_i, res1_i);
+-    res2_i = _mm_packs_epi32(res2_i, res3_i);
+-
+-    // pack into 8-bit results
+-    res0_i = _mm_packs_epi16(res0_i, res2_i);
+-
+-    _mm_store_si128((__m128i*)cPtr, res0_i);
+-
+-    cPtr += 16;
+-    aPtr += 16;
+-  }
+-
+-  for(number = n16points * 16; number < num_points; number++) {
+-    if( *aPtr++ >= 0) {
+-      *cPtr++ = 1;
++    int8_t* cPtr = cVector;
++    const float* aPtr = aVector;
++    unsigned int number = 0;
++
++    unsigned int n16points = num_points / 16;
++    __m128 a0_val, a1_val, a2_val, a3_val;
++    __m128 res0_f, res1_f, res2_f, res3_f;
++    __m128i res0_i, res1_i, res2_i, res3_i;
++    __m128 zero_val;
++    zero_val = _mm_set1_ps(0.0f);
++
++    for (number = 0; number < n16points; number++) {
++        a0_val = _mm_load_ps(aPtr);
++        a1_val = _mm_load_ps(aPtr + 4);
++        a2_val = _mm_load_ps(aPtr + 8);
++        a3_val = _mm_load_ps(aPtr + 12);
++
++        // compare >= 0; return float
++        res0_f = _mm_cmpge_ps(a0_val, zero_val);
++        res1_f = _mm_cmpge_ps(a1_val, zero_val);
++        res2_f = _mm_cmpge_ps(a2_val, zero_val);
++        res3_f = _mm_cmpge_ps(a3_val, zero_val);
++
++        // convert to 32i and >> 31
++        res0_i = _mm_srli_epi32(_mm_cvtps_epi32(res0_f), 31);
++        res1_i = _mm_srli_epi32(_mm_cvtps_epi32(res1_f), 31);
++        res2_i = _mm_srli_epi32(_mm_cvtps_epi32(res2_f), 31);
++        res3_i = _mm_srli_epi32(_mm_cvtps_epi32(res3_f), 31);
++
++        // pack into 16-bit results
++        res0_i = _mm_packs_epi32(res0_i, res1_i);
++        res2_i = _mm_packs_epi32(res2_i, res3_i);
++
++        // pack into 8-bit results
++        res0_i = _mm_packs_epi16(res0_i, res2_i);
++
++        _mm_store_si128((__m128i*)cPtr, res0_i);
++
++        cPtr += 16;
++        aPtr += 16;
+     }
+-    else {
+-      *cPtr++ = 0;
++
++    for (number = n16points * 16; number < num_points; number++) {
++        if (*aPtr++ >= 0) {
++            *cPtr++ = 1;
++        } else {
++            *cPtr++ = 0;
++        }
+     }
+-  }
+ }
+ #endif /* LV_HAVE_SSE2 */
+-
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void
+-volk_32f_binary_slicer_8i_u_sse2(int8_t* cVector, const float* aVector,
+-                                  unsigned int num_points)
++static inline void volk_32f_binary_slicer_8i_u_sse2(int8_t* cVector,
++                                                    const float* aVector,
++                                                    unsigned int num_points)
+ {
+-  int8_t* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  unsigned int number = 0;
+-
+-  unsigned int n16points = num_points / 16;
+-  __m128 a0_val, a1_val, a2_val, a3_val;
+-  __m128 res0_f, res1_f, res2_f, res3_f;
+-  __m128i res0_i, res1_i, res2_i, res3_i;
+-  __m128 zero_val;
+-  zero_val = _mm_set1_ps (0.0f);
+-
+-  for(number = 0; number < n16points; number++) {
+-    a0_val = _mm_loadu_ps(aPtr);
+-    a1_val = _mm_loadu_ps(aPtr+4);
+-    a2_val = _mm_loadu_ps(aPtr+8);
+-    a3_val = _mm_loadu_ps(aPtr+12);
+-
+-    // compare >= 0; return float
+-    res0_f = _mm_cmpge_ps(a0_val, zero_val);
+-    res1_f = _mm_cmpge_ps(a1_val, zero_val);
+-    res2_f = _mm_cmpge_ps(a2_val, zero_val);
+-    res3_f = _mm_cmpge_ps(a3_val, zero_val);
+-
+-    // convert to 32i and >> 31
+-    res0_i = _mm_srli_epi32(_mm_cvtps_epi32(res0_f), 31);
+-    res1_i = _mm_srli_epi32(_mm_cvtps_epi32(res1_f), 31);
+-    res2_i = _mm_srli_epi32(_mm_cvtps_epi32(res2_f), 31);
+-    res3_i = _mm_srli_epi32(_mm_cvtps_epi32(res3_f), 31);
+-
+-    // pack into 16-bit results
+-    res0_i = _mm_packs_epi32(res0_i, res1_i);
+-    res2_i = _mm_packs_epi32(res2_i, res3_i);
+-
+-    // pack into 8-bit results
+-    res0_i = _mm_packs_epi16(res0_i, res2_i);
+-
+-    _mm_storeu_si128((__m128i*)cPtr, res0_i);
+-
+-    cPtr += 16;
+-    aPtr += 16;
+-  }
+-
+-  for(number = n16points * 16; number < num_points; number++) {
+-    if( *aPtr++ >= 0) {
+-      *cPtr++ = 1;
++    int8_t* cPtr = cVector;
++    const float* aPtr = aVector;
++    unsigned int number = 0;
++
++    unsigned int n16points = num_points / 16;
++    __m128 a0_val, a1_val, a2_val, a3_val;
++    __m128 res0_f, res1_f, res2_f, res3_f;
++    __m128i res0_i, res1_i, res2_i, res3_i;
++    __m128 zero_val;
++    zero_val = _mm_set1_ps(0.0f);
++
++    for (number = 0; number < n16points; number++) {
++        a0_val = _mm_loadu_ps(aPtr);
++        a1_val = _mm_loadu_ps(aPtr + 4);
++        a2_val = _mm_loadu_ps(aPtr + 8);
++        a3_val = _mm_loadu_ps(aPtr + 12);
++
++        // compare >= 0; return float
++        res0_f = _mm_cmpge_ps(a0_val, zero_val);
++        res1_f = _mm_cmpge_ps(a1_val, zero_val);
++        res2_f = _mm_cmpge_ps(a2_val, zero_val);
++        res3_f = _mm_cmpge_ps(a3_val, zero_val);
++
++        // convert to 32i and >> 31
++        res0_i = _mm_srli_epi32(_mm_cvtps_epi32(res0_f), 31);
++        res1_i = _mm_srli_epi32(_mm_cvtps_epi32(res1_f), 31);
++        res2_i = _mm_srli_epi32(_mm_cvtps_epi32(res2_f), 31);
++        res3_i = _mm_srli_epi32(_mm_cvtps_epi32(res3_f), 31);
++
++        // pack into 16-bit results
++        res0_i = _mm_packs_epi32(res0_i, res1_i);
++        res2_i = _mm_packs_epi32(res2_i, res3_i);
++
++        // pack into 8-bit results
++        res0_i = _mm_packs_epi16(res0_i, res2_i);
++
++        _mm_storeu_si128((__m128i*)cPtr, res0_i);
++
++        cPtr += 16;
++        aPtr += 16;
+     }
+-    else {
+-      *cPtr++ = 0;
++
++    for (number = n16points * 16; number < num_points; number++) {
++        if (*aPtr++ >= 0) {
++            *cPtr++ = 1;
++        } else {
++            *cPtr++ = 0;
++        }
+     }
+-  }
+ }
+ #endif /* LV_HAVE_SSE2 */
+@@ -394,74 +444,72 @@ volk_32f_binary_slicer_8i_u_sse2(int8_t* cVector, const float* aVector,
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_32f_binary_slicer_8i_neon(int8_t* cVector, const float* aVector,
+-                                  unsigned int num_points)
++static inline void volk_32f_binary_slicer_8i_neon(int8_t* cVector,
++                                                  const float* aVector,
++                                                  unsigned int num_points)
+ {
+-  int8_t* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  unsigned int number = 0;
+-  unsigned int n16points = num_points / 16;
+-
+-  float32x4x2_t input_val0, input_val1;
+-  float32x4_t zero_val;
+-  uint32x4x2_t res0_u32, res1_u32;
+-  uint16x4x2_t res0_u16x4, res1_u16x4;
+-  uint16x8x2_t res_u16x8;
+-  uint8x8x2_t res_u8;
+-  uint8x8_t one;
+-
+-  zero_val = vdupq_n_f32(0.0);
+-  one = vdup_n_u8(0x01);
+-
+-  // TODO: this is a good candidate for asm because the vcombines
+-  // can be eliminated simply by picking dst registers that are
+-  // adjacent.
+-  for(number = 0; number < n16points; number++) {
+-    input_val0 = vld2q_f32(aPtr);
+-    input_val1 = vld2q_f32(aPtr+8);
+-
+-    // test against 0; return uint32
+-    res0_u32.val[0] = vcgeq_f32(input_val0.val[0], zero_val);
+-    res0_u32.val[1] = vcgeq_f32(input_val0.val[1], zero_val);
+-    res1_u32.val[0] = vcgeq_f32(input_val1.val[0], zero_val);
+-    res1_u32.val[1] = vcgeq_f32(input_val1.val[1], zero_val);
+-
+-    // narrow uint32 -> uint16 followed by combine to 8-element vectors
+-    res0_u16x4.val[0] = vmovn_u32(res0_u32.val[0]);
+-    res0_u16x4.val[1] = vmovn_u32(res0_u32.val[1]);
+-    res1_u16x4.val[0] = vmovn_u32(res1_u32.val[0]);
+-    res1_u16x4.val[1] = vmovn_u32(res1_u32.val[1]);
+-
+-    res_u16x8.val[0] = vcombine_u16(res0_u16x4.val[0], res1_u16x4.val[0]);
+-    res_u16x8.val[1] = vcombine_u16(res0_u16x4.val[1], res1_u16x4.val[1]);
+-
+-    // narrow uint16x8 -> uint8x8
+-    res_u8.val[0] = vmovn_u16(res_u16x8.val[0]);
+-    res_u8.val[1] = vmovn_u16(res_u16x8.val[1]);
+-    // we *could* load twice as much data and do another vcombine here
+-    // to get a uint8x16x2 vector, still only do 2 vandqs and a single store
+-    // but that turns out to be ~16% slower than this version on zc702
+-    // it's possible register contention in GCC scheduler slows it down
+-    // and a hand-written asm with quad-word u8 registers is much faster.
+-
+-    res_u8.val[0] = vand_u8(one, res_u8.val[0]);
+-    res_u8.val[1] = vand_u8(one, res_u8.val[1]);
+-
+-    vst2_u8((unsigned char*)cPtr, res_u8);
+-    cPtr += 16;
+-    aPtr += 16;
+-
+-  }
+-
+-  for(number = n16points * 16; number < num_points; number++) {
+-    if(*aPtr++ >= 0) {
+-      *cPtr++ = 1;
++    int8_t* cPtr = cVector;
++    const float* aPtr = aVector;
++    unsigned int number = 0;
++    unsigned int n16points = num_points / 16;
++
++    float32x4x2_t input_val0, input_val1;
++    float32x4_t zero_val;
++    uint32x4x2_t res0_u32, res1_u32;
++    uint16x4x2_t res0_u16x4, res1_u16x4;
++    uint16x8x2_t res_u16x8;
++    uint8x8x2_t res_u8;
++    uint8x8_t one;
++
++    zero_val = vdupq_n_f32(0.0);
++    one = vdup_n_u8(0x01);
++
++    // TODO: this is a good candidate for asm because the vcombines
++    // can be eliminated simply by picking dst registers that are
++    // adjacent.
++    for (number = 0; number < n16points; number++) {
++        input_val0 = vld2q_f32(aPtr);
++        input_val1 = vld2q_f32(aPtr + 8);
++
++        // test against 0; return uint32
++        res0_u32.val[0] = vcgeq_f32(input_val0.val[0], zero_val);
++        res0_u32.val[1] = vcgeq_f32(input_val0.val[1], zero_val);
++        res1_u32.val[0] = vcgeq_f32(input_val1.val[0], zero_val);
++        res1_u32.val[1] = vcgeq_f32(input_val1.val[1], zero_val);
++
++        // narrow uint32 -> uint16 followed by combine to 8-element vectors
++        res0_u16x4.val[0] = vmovn_u32(res0_u32.val[0]);
++        res0_u16x4.val[1] = vmovn_u32(res0_u32.val[1]);
++        res1_u16x4.val[0] = vmovn_u32(res1_u32.val[0]);
++        res1_u16x4.val[1] = vmovn_u32(res1_u32.val[1]);
++
++        res_u16x8.val[0] = vcombine_u16(res0_u16x4.val[0], res1_u16x4.val[0]);
++        res_u16x8.val[1] = vcombine_u16(res0_u16x4.val[1], res1_u16x4.val[1]);
++
++        // narrow uint16x8 -> uint8x8
++        res_u8.val[0] = vmovn_u16(res_u16x8.val[0]);
++        res_u8.val[1] = vmovn_u16(res_u16x8.val[1]);
++        // we *could* load twice as much data and do another vcombine here
++        // to get a uint8x16x2 vector, still only do 2 vandqs and a single store
++        // but that turns out to be ~16% slower than this version on zc702
++        // it's possible register contention in GCC scheduler slows it down
++        // and a hand-written asm with quad-word u8 registers is much faster.
++
++        res_u8.val[0] = vand_u8(one, res_u8.val[0]);
++        res_u8.val[1] = vand_u8(one, res_u8.val[1]);
++
++        vst2_u8((unsigned char*)cPtr, res_u8);
++        cPtr += 16;
++        aPtr += 16;
+     }
+-    else {
+-      *cPtr++ = 0;
++
++    for (number = n16points * 16; number < num_points; number++) {
++        if (*aPtr++ >= 0) {
++            *cPtr++ = 1;
++        } else {
++            *cPtr++ = 0;
++        }
+     }
+-  }
+ }
+ #endif /* LV_HAVE_NEON */
+diff --git a/kernels/volk/volk_32f_convert_64f.h b/kernels/volk/volk_32f_convert_64f.h
+index bf57e3a..d2e3f8a 100644
+--- a/kernels/volk/volk_32f_convert_64f.h
++++ b/kernels/volk/volk_32f_convert_64f.h
+@@ -29,8 +29,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_convert_64f(double* outputVector, const float* inputVector, unsigned int num_points)
+- * \endcode
++ * void volk_32f_convert_64f(double* outputVector, const float* inputVector, unsigned int
++ * num_points) \endcode
+  *
+  * \b Inputs
+  * \li inputVector: The vector of floats to convert to doubles.
+@@ -72,29 +72,33 @@
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void volk_32f_convert_64f_u_avx(double* outputVector, const float* inputVector, unsigned int num_points){
+-  unsigned int number = 0;
++static inline void volk_32f_convert_64f_u_avx(double* outputVector,
++                                              const float* inputVector,
++                                              unsigned int num_points)
++{
++    unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    const unsigned int quarterPoints = num_points / 4;
+-  const float* inputVectorPtr = (const float*)inputVector;
+-  double* outputVectorPtr = outputVector;
+-  __m256d ret;
+-  __m128 inputVal;
++    const float* inputVectorPtr = (const float*)inputVector;
++    double* outputVectorPtr = outputVector;
++    __m256d ret;
++    __m128 inputVal;
+-  for(;number < quarterPoints; number++){
+-    inputVal = _mm_loadu_ps(inputVectorPtr); inputVectorPtr += 4;
++    for (; number < quarterPoints; number++) {
++        inputVal = _mm_loadu_ps(inputVectorPtr);
++        inputVectorPtr += 4;
+-    ret = _mm256_cvtps_pd(inputVal);
+-    _mm256_storeu_pd(outputVectorPtr, ret);
++        ret = _mm256_cvtps_pd(inputVal);
++        _mm256_storeu_pd(outputVectorPtr, ret);
+-    outputVectorPtr += 4;
+-  }
++        outputVectorPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    outputVector[number] = (double)(inputVector[number]);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        outputVector[number] = (double)(inputVector[number]);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -102,56 +106,61 @@ static inline void volk_32f_convert_64f_u_avx(double* outputVector, const float*
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void volk_32f_convert_64f_u_sse2(double* outputVector, const float* inputVector, unsigned int num_points){
+-  unsigned int number = 0;
++static inline void volk_32f_convert_64f_u_sse2(double* outputVector,
++                                               const float* inputVector,
++                                               unsigned int num_points)
++{
++    unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    const unsigned int quarterPoints = num_points / 4;
+-  const float* inputVectorPtr = (const float*)inputVector;
+-  double* outputVectorPtr = outputVector;
+-  __m128d ret;
+-  __m128 inputVal;
++    const float* inputVectorPtr = (const float*)inputVector;
++    double* outputVectorPtr = outputVector;
++    __m128d ret;
++    __m128 inputVal;
+-  for(;number < quarterPoints; number++){
+-    inputVal = _mm_loadu_ps(inputVectorPtr); inputVectorPtr += 4;
++    for (; number < quarterPoints; number++) {
++        inputVal = _mm_loadu_ps(inputVectorPtr);
++        inputVectorPtr += 4;
+-    ret = _mm_cvtps_pd(inputVal);
++        ret = _mm_cvtps_pd(inputVal);
+-    _mm_storeu_pd(outputVectorPtr, ret);
+-    outputVectorPtr += 2;
++        _mm_storeu_pd(outputVectorPtr, ret);
++        outputVectorPtr += 2;
+-    inputVal = _mm_movehl_ps(inputVal, inputVal);
++        inputVal = _mm_movehl_ps(inputVal, inputVal);
+-    ret = _mm_cvtps_pd(inputVal);
++        ret = _mm_cvtps_pd(inputVal);
+-    _mm_storeu_pd(outputVectorPtr, ret);
+-    outputVectorPtr += 2;
+-  }
++        _mm_storeu_pd(outputVectorPtr, ret);
++        outputVectorPtr += 2;
++    }
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    outputVector[number] = (double)(inputVector[number]);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        outputVector[number] = (double)(inputVector[number]);
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32f_convert_64f_generic(double* outputVector, const float* inputVector, unsigned int num_points){
+-  double* outputVectorPtr = outputVector;
+-  const float* inputVectorPtr = inputVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    *outputVectorPtr++ = ((double)(*inputVectorPtr++));
+-  }
++static inline void volk_32f_convert_64f_generic(double* outputVector,
++                                                const float* inputVector,
++                                                unsigned int num_points)
++{
++    double* outputVectorPtr = outputVector;
++    const float* inputVectorPtr = inputVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        *outputVectorPtr++ = ((double)(*inputVectorPtr++));
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+-
+-
+ #endif /* INCLUDED_volk_32f_convert_64f_u_H */
+@@ -164,83 +173,92 @@ static inline void volk_32f_convert_64f_generic(double* outputVector, const floa
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void volk_32f_convert_64f_a_avx(double* outputVector, const float* inputVector, unsigned int num_points){
+-  unsigned int number = 0;
++static inline void volk_32f_convert_64f_a_avx(double* outputVector,
++                                              const float* inputVector,
++                                              unsigned int num_points)
++{
++    unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    const unsigned int quarterPoints = num_points / 4;
+-  const float* inputVectorPtr = (const float*)inputVector;
+-  double* outputVectorPtr = outputVector;
+-  __m256d ret;
+-  __m128 inputVal;
++    const float* inputVectorPtr = (const float*)inputVector;
++    double* outputVectorPtr = outputVector;
++    __m256d ret;
++    __m128 inputVal;
+-  for(;number < quarterPoints; number++){
+-    inputVal = _mm_load_ps(inputVectorPtr); inputVectorPtr += 4;
++    for (; number < quarterPoints; number++) {
++        inputVal = _mm_load_ps(inputVectorPtr);
++        inputVectorPtr += 4;
+-    ret = _mm256_cvtps_pd(inputVal);
+-    _mm256_store_pd(outputVectorPtr, ret);
++        ret = _mm256_cvtps_pd(inputVal);
++        _mm256_store_pd(outputVectorPtr, ret);
+-    outputVectorPtr += 4;
+-  }
++        outputVectorPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    outputVector[number] = (double)(inputVector[number]);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        outputVector[number] = (double)(inputVector[number]);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void volk_32f_convert_64f_a_sse2(double* outputVector, const float* inputVector, unsigned int num_points){
+-  unsigned int number = 0;
++static inline void volk_32f_convert_64f_a_sse2(double* outputVector,
++                                               const float* inputVector,
++                                               unsigned int num_points)
++{
++    unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    const unsigned int quarterPoints = num_points / 4;
+-  const float* inputVectorPtr = (const float*)inputVector;
+-  double* outputVectorPtr = outputVector;
+-  __m128d ret;
+-  __m128 inputVal;
++    const float* inputVectorPtr = (const float*)inputVector;
++    double* outputVectorPtr = outputVector;
++    __m128d ret;
++    __m128 inputVal;
+-  for(;number < quarterPoints; number++){
+-    inputVal = _mm_load_ps(inputVectorPtr); inputVectorPtr += 4;
++    for (; number < quarterPoints; number++) {
++        inputVal = _mm_load_ps(inputVectorPtr);
++        inputVectorPtr += 4;
+-    ret = _mm_cvtps_pd(inputVal);
++        ret = _mm_cvtps_pd(inputVal);
+-    _mm_store_pd(outputVectorPtr, ret);
+-    outputVectorPtr += 2;
++        _mm_store_pd(outputVectorPtr, ret);
++        outputVectorPtr += 2;
+-    inputVal = _mm_movehl_ps(inputVal, inputVal);
++        inputVal = _mm_movehl_ps(inputVal, inputVal);
+-    ret = _mm_cvtps_pd(inputVal);
++        ret = _mm_cvtps_pd(inputVal);
+-    _mm_store_pd(outputVectorPtr, ret);
+-    outputVectorPtr += 2;
+-  }
++        _mm_store_pd(outputVectorPtr, ret);
++        outputVectorPtr += 2;
++    }
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    outputVector[number] = (double)(inputVector[number]);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        outputVector[number] = (double)(inputVector[number]);
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32f_convert_64f_a_generic(double* outputVector, const float* inputVector, unsigned int num_points){
+-  double* outputVectorPtr = outputVector;
+-  const float* inputVectorPtr = inputVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    *outputVectorPtr++ = ((double)(*inputVectorPtr++));
+-  }
++static inline void volk_32f_convert_64f_a_generic(double* outputVector,
++                                                  const float* inputVector,
++                                                  unsigned int num_points)
++{
++    double* outputVectorPtr = outputVector;
++    const float* inputVectorPtr = inputVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        *outputVectorPtr++ = ((double)(*inputVectorPtr++));
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+-
+-
+ #endif /* INCLUDED_volk_32f_convert_64f_a_H */
+diff --git a/kernels/volk/volk_32f_cos_32f.h b/kernels/volk/volk_32f_cos_32f.h
+index 39c2008..b493764 100644
+--- a/kernels/volk/volk_32f_cos_32f.h
++++ b/kernels/volk/volk_32f_cos_32f.h
+@@ -69,9 +69,9 @@
+  * \endcode
+  */
+-#include <stdio.h>
+-#include <math.h>
+ #include <inttypes.h>
++#include <math.h>
++#include <stdio.h>
+ #ifndef INCLUDED_volk_32f_cos_32f_a_H
+ #define INCLUDED_volk_32f_cos_32f_a_H
+@@ -80,86 +80,102 @@
+ #include <immintrin.h>
+ static inline void
+- volk_32f_cos_32f_a_avx2_fma(float* bVector, const float* aVector, unsigned int num_points)
++volk_32f_cos_32f_a_avx2_fma(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int eighthPoints = num_points / 8;
+-  unsigned int i = 0;
+-
+-  __m256 aVal, s, r, m4pi, pio4A, pio4B, pio4C, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones, fzeroes;
+-  __m256 sine, cosine;
+-  __m256i q, ones, twos, fours;
+-
+-  m4pi = _mm256_set1_ps(1.273239544735162542821171882678754627704620361328125);
+-  pio4A = _mm256_set1_ps(0.7853981554508209228515625);
+-  pio4B = _mm256_set1_ps(0.794662735614792836713604629039764404296875e-8);
+-  pio4C = _mm256_set1_ps(0.306161699786838294306516483068750264552437361480769e-16);
+-  ffours = _mm256_set1_ps(4.0);
+-  ftwos = _mm256_set1_ps(2.0);
+-  fones = _mm256_set1_ps(1.0);
+-  fzeroes = _mm256_setzero_ps();
+-  __m256i zeroes = _mm256_set1_epi32(0);
+-  ones = _mm256_set1_epi32(1);
+-  __m256i allones = _mm256_set1_epi32(0xffffffff);
+-  twos = _mm256_set1_epi32(2);
+-  fours = _mm256_set1_epi32(4);
+-
+-  cp1 = _mm256_set1_ps(1.0);
+-  cp2 = _mm256_set1_ps(0.08333333333333333);
+-  cp3 = _mm256_set1_ps(0.002777777777777778);
+-  cp4 = _mm256_set1_ps(4.96031746031746e-05);
+-  cp5 = _mm256_set1_ps(5.511463844797178e-07);
+-  union bit256 condition1;
+-  union bit256 condition3;
+-
+-  for(;number < eighthPoints; number++){
+-
+-    aVal = _mm256_load_ps(aPtr);
+-    // s = fabs(aVal)
+-    s = _mm256_sub_ps(aVal, _mm256_and_ps(_mm256_mul_ps(aVal, ftwos), _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS)));
+-    // q = (int) (s * (4/pi)), floor(aVal / (pi/4))
+-    q = _mm256_cvtps_epi32(_mm256_floor_ps(_mm256_mul_ps(s, m4pi)));
+-    // r = q + q&1, q indicates quadrant, r gives
+-    r = _mm256_cvtepi32_ps(_mm256_add_epi32(q, _mm256_and_si256(q, ones)));
+-
+-    s = _mm256_fnmadd_ps(r,pio4A,s);
+-    s = _mm256_fnmadd_ps(r,pio4B,s);
+-    s = _mm256_fnmadd_ps(r,pio4C,s);
+-
+-    s = _mm256_div_ps(s, _mm256_set1_ps(8.0));    // The constant is 2^N, for 3 times argument reduction
+-    s = _mm256_mul_ps(s, s);
+-    // Evaluate Taylor series
+-    s = _mm256_mul_ps(_mm256_fmadd_ps(_mm256_fmsub_ps(_mm256_fmadd_ps(_mm256_fmsub_ps(s, cp5, cp4), s, cp3), s, cp2), s, cp1), s);
+-
+-    for(i = 0; i < 3; i++)
+-      s = _mm256_mul_ps(s, _mm256_sub_ps(ffours, s));
+-    s = _mm256_div_ps(s, ftwos);
+-
+-    sine = _mm256_sqrt_ps(_mm256_mul_ps(_mm256_sub_ps(ftwos, s), s));
+-    cosine = _mm256_sub_ps(fones, s);
+-
+-    // if(((q+1)&2) != 0) { cosine=sine;}
+-    condition1.int_vec = _mm256_cmpeq_epi32(_mm256_and_si256(_mm256_add_epi32(q, ones), twos), zeroes);
+-    condition1.int_vec = _mm256_xor_si256(allones, condition1.int_vec);
+-
+-    // if(((q+2)&4) != 0) { cosine = -cosine;}
+-    condition3.int_vec = _mm256_cmpeq_epi32(_mm256_and_si256(_mm256_add_epi32(q, twos), fours), zeroes);
+-    condition3.int_vec = _mm256_xor_si256(allones, condition3.int_vec);
+-
+-    cosine = _mm256_add_ps(cosine, _mm256_and_ps(_mm256_sub_ps(sine, cosine), condition1.float_vec));
+-    cosine = _mm256_sub_ps(cosine, _mm256_and_ps(_mm256_mul_ps(cosine, _mm256_set1_ps(2.0f)), condition3.float_vec));
+-    _mm256_store_ps(bPtr, cosine);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *bPtr++ = cos(*aPtr++);
+-  }
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int eighthPoints = num_points / 8;
++    unsigned int i = 0;
++
++    __m256 aVal, s, r, m4pi, pio4A, pio4B, pio4C, cp1, cp2, cp3, cp4, cp5, ffours, ftwos,
++        fones, fzeroes;
++    __m256 sine, cosine;
++    __m256i q, ones, twos, fours;
++
++    m4pi = _mm256_set1_ps(1.273239544735162542821171882678754627704620361328125);
++    pio4A = _mm256_set1_ps(0.7853981554508209228515625);
++    pio4B = _mm256_set1_ps(0.794662735614792836713604629039764404296875e-8);
++    pio4C = _mm256_set1_ps(0.306161699786838294306516483068750264552437361480769e-16);
++    ffours = _mm256_set1_ps(4.0);
++    ftwos = _mm256_set1_ps(2.0);
++    fones = _mm256_set1_ps(1.0);
++    fzeroes = _mm256_setzero_ps();
++    __m256i zeroes = _mm256_set1_epi32(0);
++    ones = _mm256_set1_epi32(1);
++    __m256i allones = _mm256_set1_epi32(0xffffffff);
++    twos = _mm256_set1_epi32(2);
++    fours = _mm256_set1_epi32(4);
++
++    cp1 = _mm256_set1_ps(1.0);
++    cp2 = _mm256_set1_ps(0.08333333333333333);
++    cp3 = _mm256_set1_ps(0.002777777777777778);
++    cp4 = _mm256_set1_ps(4.96031746031746e-05);
++    cp5 = _mm256_set1_ps(5.511463844797178e-07);
++    union bit256 condition1;
++    union bit256 condition3;
++
++    for (; number < eighthPoints; number++) {
++
++        aVal = _mm256_load_ps(aPtr);
++        // s = fabs(aVal)
++        s = _mm256_sub_ps(aVal,
++                          _mm256_and_ps(_mm256_mul_ps(aVal, ftwos),
++                                        _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS)));
++        // q = (int) (s * (4/pi)), floor(aVal / (pi/4))
++        q = _mm256_cvtps_epi32(_mm256_floor_ps(_mm256_mul_ps(s, m4pi)));
++        // r = q + q&1, q indicates quadrant, r gives
++        r = _mm256_cvtepi32_ps(_mm256_add_epi32(q, _mm256_and_si256(q, ones)));
++
++        s = _mm256_fnmadd_ps(r, pio4A, s);
++        s = _mm256_fnmadd_ps(r, pio4B, s);
++        s = _mm256_fnmadd_ps(r, pio4C, s);
++
++        s = _mm256_div_ps(
++            s,
++            _mm256_set1_ps(8.0)); // The constant is 2^N, for 3 times argument reduction
++        s = _mm256_mul_ps(s, s);
++        // Evaluate Taylor series
++        s = _mm256_mul_ps(
++            _mm256_fmadd_ps(
++                _mm256_fmsub_ps(
++                    _mm256_fmadd_ps(_mm256_fmsub_ps(s, cp5, cp4), s, cp3), s, cp2),
++                s,
++                cp1),
++            s);
++
++        for (i = 0; i < 3; i++)
++            s = _mm256_mul_ps(s, _mm256_sub_ps(ffours, s));
++        s = _mm256_div_ps(s, ftwos);
++
++        sine = _mm256_sqrt_ps(_mm256_mul_ps(_mm256_sub_ps(ftwos, s), s));
++        cosine = _mm256_sub_ps(fones, s);
++
++        // if(((q+1)&2) != 0) { cosine=sine;}
++        condition1.int_vec =
++            _mm256_cmpeq_epi32(_mm256_and_si256(_mm256_add_epi32(q, ones), twos), zeroes);
++        condition1.int_vec = _mm256_xor_si256(allones, condition1.int_vec);
++
++        // if(((q+2)&4) != 0) { cosine = -cosine;}
++        condition3.int_vec = _mm256_cmpeq_epi32(
++            _mm256_and_si256(_mm256_add_epi32(q, twos), fours), zeroes);
++        condition3.int_vec = _mm256_xor_si256(allones, condition3.int_vec);
++
++        cosine = _mm256_add_ps(
++            cosine, _mm256_and_ps(_mm256_sub_ps(sine, cosine), condition1.float_vec));
++        cosine = _mm256_sub_ps(cosine,
++                               _mm256_and_ps(_mm256_mul_ps(cosine, _mm256_set1_ps(2.0f)),
++                                             condition3.float_vec));
++        _mm256_store_ps(bPtr, cosine);
++        aPtr += 8;
++        bPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *bPtr++ = cos(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 && LV_HAVE_FMA for aligned */
+@@ -168,86 +184,109 @@ static inline void
+ #include <immintrin.h>
+ static inline void
+- volk_32f_cos_32f_a_avx2(float* bVector, const float* aVector, unsigned int num_points)
++volk_32f_cos_32f_a_avx2(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int eighthPoints = num_points / 8;
+-  unsigned int i = 0;
+-
+-  __m256 aVal, s, r, m4pi, pio4A, pio4B, pio4C, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones, fzeroes;
+-  __m256 sine, cosine;
+-  __m256i q, ones, twos, fours;
+-
+-  m4pi = _mm256_set1_ps(1.273239544735162542821171882678754627704620361328125);
+-  pio4A = _mm256_set1_ps(0.7853981554508209228515625);
+-  pio4B = _mm256_set1_ps(0.794662735614792836713604629039764404296875e-8);
+-  pio4C = _mm256_set1_ps(0.306161699786838294306516483068750264552437361480769e-16);
+-  ffours = _mm256_set1_ps(4.0);
+-  ftwos = _mm256_set1_ps(2.0);
+-  fones = _mm256_set1_ps(1.0);
+-  fzeroes = _mm256_setzero_ps();
+-  __m256i zeroes = _mm256_set1_epi32(0);
+-  ones = _mm256_set1_epi32(1);
+-  __m256i allones = _mm256_set1_epi32(0xffffffff);
+-  twos = _mm256_set1_epi32(2);
+-  fours = _mm256_set1_epi32(4);
+-
+-  cp1 = _mm256_set1_ps(1.0);
+-  cp2 = _mm256_set1_ps(0.08333333333333333);
+-  cp3 = _mm256_set1_ps(0.002777777777777778);
+-  cp4 = _mm256_set1_ps(4.96031746031746e-05);
+-  cp5 = _mm256_set1_ps(5.511463844797178e-07);
+-  union bit256 condition1;
+-  union bit256 condition3;
+-
+-  for(;number < eighthPoints; number++){
+-
+-    aVal = _mm256_load_ps(aPtr);
+-    // s = fabs(aVal)
+-    s = _mm256_sub_ps(aVal, _mm256_and_ps(_mm256_mul_ps(aVal, ftwos), _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS)));
+-    // q = (int) (s * (4/pi)), floor(aVal / (pi/4))
+-    q = _mm256_cvtps_epi32(_mm256_floor_ps(_mm256_mul_ps(s, m4pi)));
+-    // r = q + q&1, q indicates quadrant, r gives
+-    r = _mm256_cvtepi32_ps(_mm256_add_epi32(q, _mm256_and_si256(q, ones)));
+-
+-    s = _mm256_sub_ps(s, _mm256_mul_ps(r,pio4A));
+-    s = _mm256_sub_ps(s, _mm256_mul_ps(r,pio4B));
+-    s = _mm256_sub_ps(s, _mm256_mul_ps(r,pio4C));
+-
+-    s = _mm256_div_ps(s, _mm256_set1_ps(8.0));    // The constant is 2^N, for 3 times argument reduction
+-    s = _mm256_mul_ps(s, s);
+-    // Evaluate Taylor series
+-    s = _mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(s, cp5), cp4), s), cp3), s), cp2), s), cp1), s);
+-
+-    for(i = 0; i < 3; i++)
+-      s = _mm256_mul_ps(s, _mm256_sub_ps(ffours, s));
+-    s = _mm256_div_ps(s, ftwos);
+-
+-    sine = _mm256_sqrt_ps(_mm256_mul_ps(_mm256_sub_ps(ftwos, s), s));
+-    cosine = _mm256_sub_ps(fones, s);
+-
+-    // if(((q+1)&2) != 0) { cosine=sine;}
+-    condition1.int_vec = _mm256_cmpeq_epi32(_mm256_and_si256(_mm256_add_epi32(q, ones), twos), zeroes);
+-    condition1.int_vec = _mm256_xor_si256(allones, condition1.int_vec);
+-
+-    // if(((q+2)&4) != 0) { cosine = -cosine;}
+-    condition3.int_vec = _mm256_cmpeq_epi32(_mm256_and_si256(_mm256_add_epi32(q, twos), fours), zeroes);
+-    condition3.int_vec = _mm256_xor_si256(allones, condition3.int_vec);
+-
+-    cosine = _mm256_add_ps(cosine, _mm256_and_ps(_mm256_sub_ps(sine, cosine), condition1.float_vec));
+-    cosine = _mm256_sub_ps(cosine, _mm256_and_ps(_mm256_mul_ps(cosine, _mm256_set1_ps(2.0f)), condition3.float_vec));
+-    _mm256_store_ps(bPtr, cosine);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *bPtr++ = cos(*aPtr++);
+-  }
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int eighthPoints = num_points / 8;
++    unsigned int i = 0;
++
++    __m256 aVal, s, r, m4pi, pio4A, pio4B, pio4C, cp1, cp2, cp3, cp4, cp5, ffours, ftwos,
++        fones, fzeroes;
++    __m256 sine, cosine;
++    __m256i q, ones, twos, fours;
++
++    m4pi = _mm256_set1_ps(1.273239544735162542821171882678754627704620361328125);
++    pio4A = _mm256_set1_ps(0.7853981554508209228515625);
++    pio4B = _mm256_set1_ps(0.794662735614792836713604629039764404296875e-8);
++    pio4C = _mm256_set1_ps(0.306161699786838294306516483068750264552437361480769e-16);
++    ffours = _mm256_set1_ps(4.0);
++    ftwos = _mm256_set1_ps(2.0);
++    fones = _mm256_set1_ps(1.0);
++    fzeroes = _mm256_setzero_ps();
++    __m256i zeroes = _mm256_set1_epi32(0);
++    ones = _mm256_set1_epi32(1);
++    __m256i allones = _mm256_set1_epi32(0xffffffff);
++    twos = _mm256_set1_epi32(2);
++    fours = _mm256_set1_epi32(4);
++
++    cp1 = _mm256_set1_ps(1.0);
++    cp2 = _mm256_set1_ps(0.08333333333333333);
++    cp3 = _mm256_set1_ps(0.002777777777777778);
++    cp4 = _mm256_set1_ps(4.96031746031746e-05);
++    cp5 = _mm256_set1_ps(5.511463844797178e-07);
++    union bit256 condition1;
++    union bit256 condition3;
++
++    for (; number < eighthPoints; number++) {
++
++        aVal = _mm256_load_ps(aPtr);
++        // s = fabs(aVal)
++        s = _mm256_sub_ps(aVal,
++                          _mm256_and_ps(_mm256_mul_ps(aVal, ftwos),
++                                        _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS)));
++        // q = (int) (s * (4/pi)), floor(aVal / (pi/4))
++        q = _mm256_cvtps_epi32(_mm256_floor_ps(_mm256_mul_ps(s, m4pi)));
++        // r = q + q&1, q indicates quadrant, r gives
++        r = _mm256_cvtepi32_ps(_mm256_add_epi32(q, _mm256_and_si256(q, ones)));
++
++        s = _mm256_sub_ps(s, _mm256_mul_ps(r, pio4A));
++        s = _mm256_sub_ps(s, _mm256_mul_ps(r, pio4B));
++        s = _mm256_sub_ps(s, _mm256_mul_ps(r, pio4C));
++
++        s = _mm256_div_ps(
++            s,
++            _mm256_set1_ps(8.0)); // The constant is 2^N, for 3 times argument reduction
++        s = _mm256_mul_ps(s, s);
++        // Evaluate Taylor series
++        s = _mm256_mul_ps(
++            _mm256_add_ps(
++                _mm256_mul_ps(
++                    _mm256_sub_ps(
++                        _mm256_mul_ps(
++                            _mm256_add_ps(
++                                _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(s, cp5), cp4),
++                                              s),
++                                cp3),
++                            s),
++                        cp2),
++                    s),
++                cp1),
++            s);
++
++        for (i = 0; i < 3; i++)
++            s = _mm256_mul_ps(s, _mm256_sub_ps(ffours, s));
++        s = _mm256_div_ps(s, ftwos);
++
++        sine = _mm256_sqrt_ps(_mm256_mul_ps(_mm256_sub_ps(ftwos, s), s));
++        cosine = _mm256_sub_ps(fones, s);
++
++        // if(((q+1)&2) != 0) { cosine=sine;}
++        condition1.int_vec =
++            _mm256_cmpeq_epi32(_mm256_and_si256(_mm256_add_epi32(q, ones), twos), zeroes);
++        condition1.int_vec = _mm256_xor_si256(allones, condition1.int_vec);
++
++        // if(((q+2)&4) != 0) { cosine = -cosine;}
++        condition3.int_vec = _mm256_cmpeq_epi32(
++            _mm256_and_si256(_mm256_add_epi32(q, twos), fours), zeroes);
++        condition3.int_vec = _mm256_xor_si256(allones, condition3.int_vec);
++
++        cosine = _mm256_add_ps(
++            cosine, _mm256_and_ps(_mm256_sub_ps(sine, cosine), condition1.float_vec));
++        cosine = _mm256_sub_ps(cosine,
++                               _mm256_and_ps(_mm256_mul_ps(cosine, _mm256_set1_ps(2.0f)),
++                                             condition3.float_vec));
++        _mm256_store_ps(bPtr, cosine);
++        aPtr += 8;
++        bPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *bPtr++ = cos(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 for aligned */
+@@ -256,86 +295,105 @@ static inline void
+ #include <smmintrin.h>
+ static inline void
+- volk_32f_cos_32f_a_sse4_1(float* bVector, const float* aVector, unsigned int num_points)
++volk_32f_cos_32f_a_sse4_1(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int quarterPoints = num_points / 4;
+-  unsigned int i = 0;
+-
+-  __m128 aVal, s, r, m4pi, pio4A, pio4B, pio4C, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones, fzeroes;
+-  __m128 sine, cosine;
+-  __m128i q, ones, twos, fours;
+-
+-  m4pi = _mm_set1_ps(1.273239544735162542821171882678754627704620361328125);
+-  pio4A = _mm_set1_ps(0.7853981554508209228515625);
+-  pio4B = _mm_set1_ps(0.794662735614792836713604629039764404296875e-8);
+-  pio4C = _mm_set1_ps(0.306161699786838294306516483068750264552437361480769e-16);
+-  ffours = _mm_set1_ps(4.0);
+-  ftwos = _mm_set1_ps(2.0);
+-  fones = _mm_set1_ps(1.0);
+-  fzeroes = _mm_setzero_ps();
+-  __m128i zeroes = _mm_set1_epi32(0);
+-  ones = _mm_set1_epi32(1);
+-  __m128i allones = _mm_set1_epi32(0xffffffff);
+-  twos = _mm_set1_epi32(2);
+-  fours = _mm_set1_epi32(4);
+-
+-  cp1 = _mm_set1_ps(1.0);
+-  cp2 = _mm_set1_ps(0.08333333333333333);
+-  cp3 = _mm_set1_ps(0.002777777777777778);
+-  cp4 = _mm_set1_ps(4.96031746031746e-05);
+-  cp5 = _mm_set1_ps(5.511463844797178e-07);
+-  union bit128 condition1;
+-  union bit128 condition3;
+-
+-  for(;number < quarterPoints; number++){
+-
+-    aVal = _mm_load_ps(aPtr);
+-    // s = fabs(aVal)
+-    s = _mm_sub_ps(aVal, _mm_and_ps(_mm_mul_ps(aVal, ftwos), _mm_cmplt_ps(aVal, fzeroes)));
+-    // q = (int) (s * (4/pi)), floor(aVal / (pi/4))
+-    q = _mm_cvtps_epi32(_mm_floor_ps(_mm_mul_ps(s, m4pi)));
+-    // r = q + q&1, q indicates quadrant, r gives
+-    r = _mm_cvtepi32_ps(_mm_add_epi32(q, _mm_and_si128(q, ones)));
+-
+-    s = _mm_sub_ps(s, _mm_mul_ps(r, pio4A));
+-    s = _mm_sub_ps(s, _mm_mul_ps(r, pio4B));
+-    s = _mm_sub_ps(s, _mm_mul_ps(r, pio4C));
+-
+-    s = _mm_div_ps(s, _mm_set1_ps(8.0));    // The constant is 2^N, for 3 times argument reduction
+-    s = _mm_mul_ps(s, s);
+-    // Evaluate Taylor series
+-    s = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(s, cp5), cp4), s), cp3), s), cp2), s), cp1), s);
+-
+-    for(i = 0; i < 3; i++)
+-      s = _mm_mul_ps(s, _mm_sub_ps(ffours, s));
+-    s = _mm_div_ps(s, ftwos);
+-
+-    sine = _mm_sqrt_ps(_mm_mul_ps(_mm_sub_ps(ftwos, s), s));
+-    cosine = _mm_sub_ps(fones, s);
+-
+-    // if(((q+1)&2) != 0) { cosine=sine;}
+-    condition1.int_vec = _mm_cmpeq_epi32(_mm_and_si128(_mm_add_epi32(q, ones), twos), zeroes);
+-    condition1.int_vec = _mm_xor_si128(allones, condition1.int_vec);
+-
+-    // if(((q+2)&4) != 0) { cosine = -cosine;}
+-    condition3.int_vec = _mm_cmpeq_epi32(_mm_and_si128(_mm_add_epi32(q, twos), fours), zeroes);
+-    condition3.int_vec = _mm_xor_si128(allones, condition3.int_vec);
+-
+-    cosine = _mm_add_ps(cosine, _mm_and_ps(_mm_sub_ps(sine, cosine), condition1.float_vec));
+-    cosine = _mm_sub_ps(cosine, _mm_and_ps(_mm_mul_ps(cosine, _mm_set1_ps(2.0f)), condition3.float_vec));
+-    _mm_store_ps(bPtr, cosine);
+-    aPtr += 4;
+-    bPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    *bPtr++ = cosf(*aPtr++);
+-  }
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int quarterPoints = num_points / 4;
++    unsigned int i = 0;
++
++    __m128 aVal, s, r, m4pi, pio4A, pio4B, pio4C, cp1, cp2, cp3, cp4, cp5, ffours, ftwos,
++        fones, fzeroes;
++    __m128 sine, cosine;
++    __m128i q, ones, twos, fours;
++
++    m4pi = _mm_set1_ps(1.273239544735162542821171882678754627704620361328125);
++    pio4A = _mm_set1_ps(0.7853981554508209228515625);
++    pio4B = _mm_set1_ps(0.794662735614792836713604629039764404296875e-8);
++    pio4C = _mm_set1_ps(0.306161699786838294306516483068750264552437361480769e-16);
++    ffours = _mm_set1_ps(4.0);
++    ftwos = _mm_set1_ps(2.0);
++    fones = _mm_set1_ps(1.0);
++    fzeroes = _mm_setzero_ps();
++    __m128i zeroes = _mm_set1_epi32(0);
++    ones = _mm_set1_epi32(1);
++    __m128i allones = _mm_set1_epi32(0xffffffff);
++    twos = _mm_set1_epi32(2);
++    fours = _mm_set1_epi32(4);
++
++    cp1 = _mm_set1_ps(1.0);
++    cp2 = _mm_set1_ps(0.08333333333333333);
++    cp3 = _mm_set1_ps(0.002777777777777778);
++    cp4 = _mm_set1_ps(4.96031746031746e-05);
++    cp5 = _mm_set1_ps(5.511463844797178e-07);
++    union bit128 condition1;
++    union bit128 condition3;
++
++    for (; number < quarterPoints; number++) {
++
++        aVal = _mm_load_ps(aPtr);
++        // s = fabs(aVal)
++        s = _mm_sub_ps(aVal,
++                       _mm_and_ps(_mm_mul_ps(aVal, ftwos), _mm_cmplt_ps(aVal, fzeroes)));
++        // q = (int) (s * (4/pi)), floor(aVal / (pi/4))
++        q = _mm_cvtps_epi32(_mm_floor_ps(_mm_mul_ps(s, m4pi)));
++        // r = q + q&1, q indicates quadrant, r gives
++        r = _mm_cvtepi32_ps(_mm_add_epi32(q, _mm_and_si128(q, ones)));
++
++        s = _mm_sub_ps(s, _mm_mul_ps(r, pio4A));
++        s = _mm_sub_ps(s, _mm_mul_ps(r, pio4B));
++        s = _mm_sub_ps(s, _mm_mul_ps(r, pio4C));
++
++        s = _mm_div_ps(
++            s, _mm_set1_ps(8.0)); // The constant is 2^N, for 3 times argument reduction
++        s = _mm_mul_ps(s, s);
++        // Evaluate Taylor series
++        s = _mm_mul_ps(
++            _mm_add_ps(
++                _mm_mul_ps(
++                    _mm_sub_ps(
++                        _mm_mul_ps(
++                            _mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(s, cp5), cp4), s),
++                                       cp3),
++                            s),
++                        cp2),
++                    s),
++                cp1),
++            s);
++
++        for (i = 0; i < 3; i++)
++            s = _mm_mul_ps(s, _mm_sub_ps(ffours, s));
++        s = _mm_div_ps(s, ftwos);
++
++        sine = _mm_sqrt_ps(_mm_mul_ps(_mm_sub_ps(ftwos, s), s));
++        cosine = _mm_sub_ps(fones, s);
++
++        // if(((q+1)&2) != 0) { cosine=sine;}
++        condition1.int_vec =
++            _mm_cmpeq_epi32(_mm_and_si128(_mm_add_epi32(q, ones), twos), zeroes);
++        condition1.int_vec = _mm_xor_si128(allones, condition1.int_vec);
++
++        // if(((q+2)&4) != 0) { cosine = -cosine;}
++        condition3.int_vec =
++            _mm_cmpeq_epi32(_mm_and_si128(_mm_add_epi32(q, twos), fours), zeroes);
++        condition3.int_vec = _mm_xor_si128(allones, condition3.int_vec);
++
++        cosine = _mm_add_ps(cosine,
++                            _mm_and_ps(_mm_sub_ps(sine, cosine), condition1.float_vec));
++        cosine = _mm_sub_ps(
++            cosine,
++            _mm_and_ps(_mm_mul_ps(cosine, _mm_set1_ps(2.0f)), condition3.float_vec));
++        _mm_store_ps(bPtr, cosine);
++        aPtr += 4;
++        bPtr += 4;
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *bPtr++ = cosf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_SSE4_1 for aligned */
+@@ -343,7 +401,6 @@ static inline void
+ #endif /* INCLUDED_volk_32f_cos_32f_a_H */
+-
+ #ifndef INCLUDED_volk_32f_cos_32f_u_H
+ #define INCLUDED_volk_32f_cos_32f_u_H
+@@ -351,86 +408,102 @@ static inline void
+ #include <immintrin.h>
+ static inline void
+- volk_32f_cos_32f_u_avx2_fma(float* bVector, const float* aVector, unsigned int num_points)
++volk_32f_cos_32f_u_avx2_fma(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int eighthPoints = num_points / 8;
+-  unsigned int i = 0;
+-
+-  __m256 aVal, s, r, m4pi, pio4A, pio4B, pio4C, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones, fzeroes;
+-  __m256 sine, cosine;
+-  __m256i q, ones, twos, fours;
+-
+-  m4pi = _mm256_set1_ps(1.273239544735162542821171882678754627704620361328125);
+-  pio4A = _mm256_set1_ps(0.7853981554508209228515625);
+-  pio4B = _mm256_set1_ps(0.794662735614792836713604629039764404296875e-8);
+-  pio4C = _mm256_set1_ps(0.306161699786838294306516483068750264552437361480769e-16);
+-  ffours = _mm256_set1_ps(4.0);
+-  ftwos = _mm256_set1_ps(2.0);
+-  fones = _mm256_set1_ps(1.0);
+-  fzeroes = _mm256_setzero_ps();
+-  __m256i zeroes = _mm256_set1_epi32(0);
+-  ones = _mm256_set1_epi32(1);
+-  __m256i allones = _mm256_set1_epi32(0xffffffff);
+-  twos = _mm256_set1_epi32(2);
+-  fours = _mm256_set1_epi32(4);
+-
+-  cp1 = _mm256_set1_ps(1.0);
+-  cp2 = _mm256_set1_ps(0.08333333333333333);
+-  cp3 = _mm256_set1_ps(0.002777777777777778);
+-  cp4 = _mm256_set1_ps(4.96031746031746e-05);
+-  cp5 = _mm256_set1_ps(5.511463844797178e-07);
+-  union bit256 condition1;
+-  union bit256 condition3;
+-
+-  for(;number < eighthPoints; number++){
+-
+-    aVal = _mm256_loadu_ps(aPtr);
+-    // s = fabs(aVal)
+-    s = _mm256_sub_ps(aVal, _mm256_and_ps(_mm256_mul_ps(aVal, ftwos), _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS)));
+-    // q = (int) (s * (4/pi)), floor(aVal / (pi/4))
+-    q = _mm256_cvtps_epi32(_mm256_floor_ps(_mm256_mul_ps(s, m4pi)));
+-    // r = q + q&1, q indicates quadrant, r gives
+-    r = _mm256_cvtepi32_ps(_mm256_add_epi32(q, _mm256_and_si256(q, ones)));
+-
+-    s = _mm256_fnmadd_ps(r,pio4A,s);
+-    s = _mm256_fnmadd_ps(r,pio4B,s);
+-    s = _mm256_fnmadd_ps(r,pio4C,s);
+-
+-    s = _mm256_div_ps(s, _mm256_set1_ps(8.0));    // The constant is 2^N, for 3 times argument reduction
+-    s = _mm256_mul_ps(s, s);
+-    // Evaluate Taylor series
+-    s = _mm256_mul_ps(_mm256_fmadd_ps(_mm256_fmsub_ps(_mm256_fmadd_ps(_mm256_fmsub_ps(s, cp5, cp4), s, cp3), s, cp2), s, cp1), s);
+-
+-    for(i = 0; i < 3; i++)
+-      s = _mm256_mul_ps(s, _mm256_sub_ps(ffours, s));
+-    s = _mm256_div_ps(s, ftwos);
+-
+-    sine = _mm256_sqrt_ps(_mm256_mul_ps(_mm256_sub_ps(ftwos, s), s));
+-    cosine = _mm256_sub_ps(fones, s);
+-
+-    // if(((q+1)&2) != 0) { cosine=sine;}
+-    condition1.int_vec = _mm256_cmpeq_epi32(_mm256_and_si256(_mm256_add_epi32(q, ones), twos), zeroes);
+-    condition1.int_vec = _mm256_xor_si256(allones, condition1.int_vec);
+-
+-    // if(((q+2)&4) != 0) { cosine = -cosine;}
+-    condition3.int_vec = _mm256_cmpeq_epi32(_mm256_and_si256(_mm256_add_epi32(q, twos), fours), zeroes);
+-    condition3.int_vec = _mm256_xor_si256(allones, condition3.int_vec);
+-
+-    cosine = _mm256_add_ps(cosine, _mm256_and_ps(_mm256_sub_ps(sine, cosine), condition1.float_vec));
+-    cosine = _mm256_sub_ps(cosine, _mm256_and_ps(_mm256_mul_ps(cosine, _mm256_set1_ps(2.0f)), condition3.float_vec));
+-    _mm256_storeu_ps(bPtr, cosine);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *bPtr++ = cos(*aPtr++);
+-  }
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int eighthPoints = num_points / 8;
++    unsigned int i = 0;
++
++    __m256 aVal, s, r, m4pi, pio4A, pio4B, pio4C, cp1, cp2, cp3, cp4, cp5, ffours, ftwos,
++        fones, fzeroes;
++    __m256 sine, cosine;
++    __m256i q, ones, twos, fours;
++
++    m4pi = _mm256_set1_ps(1.273239544735162542821171882678754627704620361328125);
++    pio4A = _mm256_set1_ps(0.7853981554508209228515625);
++    pio4B = _mm256_set1_ps(0.794662735614792836713604629039764404296875e-8);
++    pio4C = _mm256_set1_ps(0.306161699786838294306516483068750264552437361480769e-16);
++    ffours = _mm256_set1_ps(4.0);
++    ftwos = _mm256_set1_ps(2.0);
++    fones = _mm256_set1_ps(1.0);
++    fzeroes = _mm256_setzero_ps();
++    __m256i zeroes = _mm256_set1_epi32(0);
++    ones = _mm256_set1_epi32(1);
++    __m256i allones = _mm256_set1_epi32(0xffffffff);
++    twos = _mm256_set1_epi32(2);
++    fours = _mm256_set1_epi32(4);
++
++    cp1 = _mm256_set1_ps(1.0);
++    cp2 = _mm256_set1_ps(0.08333333333333333);
++    cp3 = _mm256_set1_ps(0.002777777777777778);
++    cp4 = _mm256_set1_ps(4.96031746031746e-05);
++    cp5 = _mm256_set1_ps(5.511463844797178e-07);
++    union bit256 condition1;
++    union bit256 condition3;
++
++    for (; number < eighthPoints; number++) {
++
++        aVal = _mm256_loadu_ps(aPtr);
++        // s = fabs(aVal)
++        s = _mm256_sub_ps(aVal,
++                          _mm256_and_ps(_mm256_mul_ps(aVal, ftwos),
++                                        _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS)));
++        // q = (int) (s * (4/pi)), floor(aVal / (pi/4))
++        q = _mm256_cvtps_epi32(_mm256_floor_ps(_mm256_mul_ps(s, m4pi)));
++        // r = q + q&1, q indicates quadrant, r gives
++        r = _mm256_cvtepi32_ps(_mm256_add_epi32(q, _mm256_and_si256(q, ones)));
++
++        s = _mm256_fnmadd_ps(r, pio4A, s);
++        s = _mm256_fnmadd_ps(r, pio4B, s);
++        s = _mm256_fnmadd_ps(r, pio4C, s);
++
++        s = _mm256_div_ps(
++            s,
++            _mm256_set1_ps(8.0)); // The constant is 2^N, for 3 times argument reduction
++        s = _mm256_mul_ps(s, s);
++        // Evaluate Taylor series
++        s = _mm256_mul_ps(
++            _mm256_fmadd_ps(
++                _mm256_fmsub_ps(
++                    _mm256_fmadd_ps(_mm256_fmsub_ps(s, cp5, cp4), s, cp3), s, cp2),
++                s,
++                cp1),
++            s);
++
++        for (i = 0; i < 3; i++)
++            s = _mm256_mul_ps(s, _mm256_sub_ps(ffours, s));
++        s = _mm256_div_ps(s, ftwos);
++
++        sine = _mm256_sqrt_ps(_mm256_mul_ps(_mm256_sub_ps(ftwos, s), s));
++        cosine = _mm256_sub_ps(fones, s);
++
++        // if(((q+1)&2) != 0) { cosine=sine;}
++        condition1.int_vec =
++            _mm256_cmpeq_epi32(_mm256_and_si256(_mm256_add_epi32(q, ones), twos), zeroes);
++        condition1.int_vec = _mm256_xor_si256(allones, condition1.int_vec);
++
++        // if(((q+2)&4) != 0) { cosine = -cosine;}
++        condition3.int_vec = _mm256_cmpeq_epi32(
++            _mm256_and_si256(_mm256_add_epi32(q, twos), fours), zeroes);
++        condition3.int_vec = _mm256_xor_si256(allones, condition3.int_vec);
++
++        cosine = _mm256_add_ps(
++            cosine, _mm256_and_ps(_mm256_sub_ps(sine, cosine), condition1.float_vec));
++        cosine = _mm256_sub_ps(cosine,
++                               _mm256_and_ps(_mm256_mul_ps(cosine, _mm256_set1_ps(2.0f)),
++                                             condition3.float_vec));
++        _mm256_storeu_ps(bPtr, cosine);
++        aPtr += 8;
++        bPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *bPtr++ = cos(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 && LV_HAVE_FMA for unaligned */
+@@ -439,86 +512,109 @@ static inline void
+ #include <immintrin.h>
+ static inline void
+- volk_32f_cos_32f_u_avx2(float* bVector, const float* aVector, unsigned int num_points)
++volk_32f_cos_32f_u_avx2(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int eighthPoints = num_points / 8;
+-  unsigned int i = 0;
+-
+-  __m256 aVal, s, r, m4pi, pio4A, pio4B, pio4C, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones, fzeroes;
+-  __m256 sine, cosine;
+-  __m256i q, ones, twos, fours;
+-
+-  m4pi = _mm256_set1_ps(1.273239544735162542821171882678754627704620361328125);
+-  pio4A = _mm256_set1_ps(0.7853981554508209228515625);
+-  pio4B = _mm256_set1_ps(0.794662735614792836713604629039764404296875e-8);
+-  pio4C = _mm256_set1_ps(0.306161699786838294306516483068750264552437361480769e-16);
+-  ffours = _mm256_set1_ps(4.0);
+-  ftwos = _mm256_set1_ps(2.0);
+-  fones = _mm256_set1_ps(1.0);
+-  fzeroes = _mm256_setzero_ps();
+-  __m256i zeroes = _mm256_set1_epi32(0);
+-  ones = _mm256_set1_epi32(1);
+-  __m256i allones = _mm256_set1_epi32(0xffffffff);
+-  twos = _mm256_set1_epi32(2);
+-  fours = _mm256_set1_epi32(4);
+-
+-  cp1 = _mm256_set1_ps(1.0);
+-  cp2 = _mm256_set1_ps(0.08333333333333333);
+-  cp3 = _mm256_set1_ps(0.002777777777777778);
+-  cp4 = _mm256_set1_ps(4.96031746031746e-05);
+-  cp5 = _mm256_set1_ps(5.511463844797178e-07);
+-  union bit256 condition1;
+-  union bit256 condition3;
+-
+-  for(;number < eighthPoints; number++){
+-
+-    aVal = _mm256_loadu_ps(aPtr);
+-    // s = fabs(aVal)
+-    s = _mm256_sub_ps(aVal, _mm256_and_ps(_mm256_mul_ps(aVal, ftwos), _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS)));
+-    // q = (int) (s * (4/pi)), floor(aVal / (pi/4))
+-    q = _mm256_cvtps_epi32(_mm256_floor_ps(_mm256_mul_ps(s, m4pi)));
+-    // r = q + q&1, q indicates quadrant, r gives
+-    r = _mm256_cvtepi32_ps(_mm256_add_epi32(q, _mm256_and_si256(q, ones)));
+-
+-    s = _mm256_sub_ps(s, _mm256_mul_ps(r,pio4A));
+-    s = _mm256_sub_ps(s, _mm256_mul_ps(r,pio4B));
+-    s = _mm256_sub_ps(s, _mm256_mul_ps(r,pio4C));
+-
+-    s = _mm256_div_ps(s, _mm256_set1_ps(8.0));    // The constant is 2^N, for 3 times argument reduction
+-    s = _mm256_mul_ps(s, s);
+-    // Evaluate Taylor series
+-    s = _mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(s, cp5), cp4), s), cp3), s), cp2), s), cp1), s);
+-
+-    for(i = 0; i < 3; i++)
+-      s = _mm256_mul_ps(s, _mm256_sub_ps(ffours, s));
+-    s = _mm256_div_ps(s, ftwos);
+-
+-    sine = _mm256_sqrt_ps(_mm256_mul_ps(_mm256_sub_ps(ftwos, s), s));
+-    cosine = _mm256_sub_ps(fones, s);
+-
+-    // if(((q+1)&2) != 0) { cosine=sine;}
+-    condition1.int_vec = _mm256_cmpeq_epi32(_mm256_and_si256(_mm256_add_epi32(q, ones), twos), zeroes);
+-    condition1.int_vec = _mm256_xor_si256(allones, condition1.int_vec);
+-
+-    // if(((q+2)&4) != 0) { cosine = -cosine;}
+-    condition3.int_vec = _mm256_cmpeq_epi32(_mm256_and_si256(_mm256_add_epi32(q, twos), fours), zeroes);
+-    condition3.int_vec = _mm256_xor_si256(allones, condition3.int_vec);
+-
+-    cosine = _mm256_add_ps(cosine, _mm256_and_ps(_mm256_sub_ps(sine, cosine), condition1.float_vec));
+-    cosine = _mm256_sub_ps(cosine, _mm256_and_ps(_mm256_mul_ps(cosine, _mm256_set1_ps(2.0f)), condition3.float_vec));
+-    _mm256_storeu_ps(bPtr, cosine);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *bPtr++ = cos(*aPtr++);
+-  }
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int eighthPoints = num_points / 8;
++    unsigned int i = 0;
++
++    __m256 aVal, s, r, m4pi, pio4A, pio4B, pio4C, cp1, cp2, cp3, cp4, cp5, ffours, ftwos,
++        fones, fzeroes;
++    __m256 sine, cosine;
++    __m256i q, ones, twos, fours;
++
++    m4pi = _mm256_set1_ps(1.273239544735162542821171882678754627704620361328125);
++    pio4A = _mm256_set1_ps(0.7853981554508209228515625);
++    pio4B = _mm256_set1_ps(0.794662735614792836713604629039764404296875e-8);
++    pio4C = _mm256_set1_ps(0.306161699786838294306516483068750264552437361480769e-16);
++    ffours = _mm256_set1_ps(4.0);
++    ftwos = _mm256_set1_ps(2.0);
++    fones = _mm256_set1_ps(1.0);
++    fzeroes = _mm256_setzero_ps();
++    __m256i zeroes = _mm256_set1_epi32(0);
++    ones = _mm256_set1_epi32(1);
++    __m256i allones = _mm256_set1_epi32(0xffffffff);
++    twos = _mm256_set1_epi32(2);
++    fours = _mm256_set1_epi32(4);
++
++    cp1 = _mm256_set1_ps(1.0);
++    cp2 = _mm256_set1_ps(0.08333333333333333);
++    cp3 = _mm256_set1_ps(0.002777777777777778);
++    cp4 = _mm256_set1_ps(4.96031746031746e-05);
++    cp5 = _mm256_set1_ps(5.511463844797178e-07);
++    union bit256 condition1;
++    union bit256 condition3;
++
++    for (; number < eighthPoints; number++) {
++
++        aVal = _mm256_loadu_ps(aPtr);
++        // s = fabs(aVal)
++        s = _mm256_sub_ps(aVal,
++                          _mm256_and_ps(_mm256_mul_ps(aVal, ftwos),
++                                        _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS)));
++        // q = (int) (s * (4/pi)), floor(aVal / (pi/4))
++        q = _mm256_cvtps_epi32(_mm256_floor_ps(_mm256_mul_ps(s, m4pi)));
++        // r = q + q&1, q indicates quadrant, r gives
++        r = _mm256_cvtepi32_ps(_mm256_add_epi32(q, _mm256_and_si256(q, ones)));
++
++        s = _mm256_sub_ps(s, _mm256_mul_ps(r, pio4A));
++        s = _mm256_sub_ps(s, _mm256_mul_ps(r, pio4B));
++        s = _mm256_sub_ps(s, _mm256_mul_ps(r, pio4C));
++
++        s = _mm256_div_ps(
++            s,
++            _mm256_set1_ps(8.0)); // The constant is 2^N, for 3 times argument reduction
++        s = _mm256_mul_ps(s, s);
++        // Evaluate Taylor series
++        s = _mm256_mul_ps(
++            _mm256_add_ps(
++                _mm256_mul_ps(
++                    _mm256_sub_ps(
++                        _mm256_mul_ps(
++                            _mm256_add_ps(
++                                _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(s, cp5), cp4),
++                                              s),
++                                cp3),
++                            s),
++                        cp2),
++                    s),
++                cp1),
++            s);
++
++        for (i = 0; i < 3; i++)
++            s = _mm256_mul_ps(s, _mm256_sub_ps(ffours, s));
++        s = _mm256_div_ps(s, ftwos);
++
++        sine = _mm256_sqrt_ps(_mm256_mul_ps(_mm256_sub_ps(ftwos, s), s));
++        cosine = _mm256_sub_ps(fones, s);
++
++        // if(((q+1)&2) != 0) { cosine=sine;}
++        condition1.int_vec =
++            _mm256_cmpeq_epi32(_mm256_and_si256(_mm256_add_epi32(q, ones), twos), zeroes);
++        condition1.int_vec = _mm256_xor_si256(allones, condition1.int_vec);
++
++        // if(((q+2)&4) != 0) { cosine = -cosine;}
++        condition3.int_vec = _mm256_cmpeq_epi32(
++            _mm256_and_si256(_mm256_add_epi32(q, twos), fours), zeroes);
++        condition3.int_vec = _mm256_xor_si256(allones, condition3.int_vec);
++
++        cosine = _mm256_add_ps(
++            cosine, _mm256_and_ps(_mm256_sub_ps(sine, cosine), condition1.float_vec));
++        cosine = _mm256_sub_ps(cosine,
++                               _mm256_and_ps(_mm256_mul_ps(cosine, _mm256_set1_ps(2.0f)),
++                                             condition3.float_vec));
++        _mm256_storeu_ps(bPtr, cosine);
++        aPtr += 8;
++        bPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *bPtr++ = cos(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 for unaligned */
+@@ -529,71 +625,88 @@ static inline void
+ static inline void
+ volk_32f_cos_32f_u_sse4_1(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int quarterPoints = num_points / 4;
+-  unsigned int i = 0;
+-
+-  __m128 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones, fzeroes;
+-  __m128 sine, cosine, condition1, condition3;
+-  __m128i q, r, ones, twos, fours;
+-
+-  m4pi = _mm_set1_ps(1.273239545);
+-  pio4A = _mm_set1_ps(0.78515625);
+-  pio4B = _mm_set1_ps(0.241876e-3);
+-  ffours = _mm_set1_ps(4.0);
+-  ftwos = _mm_set1_ps(2.0);
+-  fones = _mm_set1_ps(1.0);
+-  fzeroes = _mm_setzero_ps();
+-  ones = _mm_set1_epi32(1);
+-  twos = _mm_set1_epi32(2);
+-  fours = _mm_set1_epi32(4);
+-
+-  cp1 = _mm_set1_ps(1.0);
+-  cp2 = _mm_set1_ps(0.83333333e-1);
+-  cp3 = _mm_set1_ps(0.2777778e-2);
+-  cp4 = _mm_set1_ps(0.49603e-4);
+-  cp5 = _mm_set1_ps(0.551e-6);
+-
+-  for(;number < quarterPoints; number++){
+-    aVal = _mm_loadu_ps(aPtr);
+-    s = _mm_sub_ps(aVal, _mm_and_ps(_mm_mul_ps(aVal, ftwos), _mm_cmplt_ps(aVal, fzeroes)));
+-    q = _mm_cvtps_epi32(_mm_floor_ps(_mm_mul_ps(s, m4pi)));
+-    r = _mm_add_epi32(q, _mm_and_si128(q, ones));
+-
+-    s = _mm_sub_ps(s, _mm_mul_ps(_mm_cvtepi32_ps(r), pio4A));
+-    s = _mm_sub_ps(s, _mm_mul_ps(_mm_cvtepi32_ps(r), pio4B));
+-
+-    s = _mm_div_ps(s, _mm_set1_ps(8.0));    // The constant is 2^N, for 3 times argument reduction
+-    s = _mm_mul_ps(s, s);
+-    // Evaluate Taylor series
+-    s = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(s, cp5), cp4), s), cp3), s), cp2), s), cp1), s);
+-
+-    for(i = 0; i < 3; i++){
+-      s = _mm_mul_ps(s, _mm_sub_ps(ffours, s));
+-    }
+-    s = _mm_div_ps(s, ftwos);
+-
+-    sine = _mm_sqrt_ps(_mm_mul_ps(_mm_sub_ps(ftwos, s), s));
+-    cosine = _mm_sub_ps(fones, s);
+-
+-    condition1 = _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q, ones), twos)), fzeroes);
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
+-    condition3 = _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q, twos), fours)), fzeroes);
+-
+-    cosine = _mm_add_ps(cosine, _mm_and_ps(_mm_sub_ps(sine, cosine), condition1));
+-    cosine = _mm_sub_ps(cosine, _mm_and_ps(_mm_mul_ps(cosine, _mm_set1_ps(2.0f)), condition3));
+-    _mm_storeu_ps(bPtr, cosine);
+-    aPtr += 4;
+-    bPtr += 4;
+-  }
++    unsigned int number = 0;
++    unsigned int quarterPoints = num_points / 4;
++    unsigned int i = 0;
++
++    __m128 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones,
++        fzeroes;
++    __m128 sine, cosine, condition1, condition3;
++    __m128i q, r, ones, twos, fours;
++
++    m4pi = _mm_set1_ps(1.273239545);
++    pio4A = _mm_set1_ps(0.78515625);
++    pio4B = _mm_set1_ps(0.241876e-3);
++    ffours = _mm_set1_ps(4.0);
++    ftwos = _mm_set1_ps(2.0);
++    fones = _mm_set1_ps(1.0);
++    fzeroes = _mm_setzero_ps();
++    ones = _mm_set1_epi32(1);
++    twos = _mm_set1_epi32(2);
++    fours = _mm_set1_epi32(4);
++
++    cp1 = _mm_set1_ps(1.0);
++    cp2 = _mm_set1_ps(0.83333333e-1);
++    cp3 = _mm_set1_ps(0.2777778e-2);
++    cp4 = _mm_set1_ps(0.49603e-4);
++    cp5 = _mm_set1_ps(0.551e-6);
++
++    for (; number < quarterPoints; number++) {
++        aVal = _mm_loadu_ps(aPtr);
++        s = _mm_sub_ps(aVal,
++                       _mm_and_ps(_mm_mul_ps(aVal, ftwos), _mm_cmplt_ps(aVal, fzeroes)));
++        q = _mm_cvtps_epi32(_mm_floor_ps(_mm_mul_ps(s, m4pi)));
++        r = _mm_add_epi32(q, _mm_and_si128(q, ones));
++
++        s = _mm_sub_ps(s, _mm_mul_ps(_mm_cvtepi32_ps(r), pio4A));
++        s = _mm_sub_ps(s, _mm_mul_ps(_mm_cvtepi32_ps(r), pio4B));
++
++        s = _mm_div_ps(
++            s, _mm_set1_ps(8.0)); // The constant is 2^N, for 3 times argument reduction
++        s = _mm_mul_ps(s, s);
++        // Evaluate Taylor series
++        s = _mm_mul_ps(
++            _mm_add_ps(
++                _mm_mul_ps(
++                    _mm_sub_ps(
++                        _mm_mul_ps(
++                            _mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(s, cp5), cp4), s),
++                                       cp3),
++                            s),
++                        cp2),
++                    s),
++                cp1),
++            s);
++
++        for (i = 0; i < 3; i++) {
++            s = _mm_mul_ps(s, _mm_sub_ps(ffours, s));
++        }
++        s = _mm_div_ps(s, ftwos);
++
++        sine = _mm_sqrt_ps(_mm_mul_ps(_mm_sub_ps(ftwos, s), s));
++        cosine = _mm_sub_ps(fones, s);
++
++        condition1 = _mm_cmpneq_ps(
++            _mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q, ones), twos)), fzeroes);
++
++        condition3 = _mm_cmpneq_ps(
++            _mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q, twos), fours)), fzeroes);
++
++        cosine = _mm_add_ps(cosine, _mm_and_ps(_mm_sub_ps(sine, cosine), condition1));
++        cosine = _mm_sub_ps(
++            cosine, _mm_and_ps(_mm_mul_ps(cosine, _mm_set1_ps(2.0f)), condition3));
++        _mm_storeu_ps(bPtr, cosine);
++        aPtr += 4;
++        bPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    *bPtr++ = cosf(*aPtr++);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *bPtr++ = cosf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_SSE4_1 for unaligned */
+@@ -606,52 +719,55 @@ volk_32f_cos_32f_u_sse4_1(float* bVector, const float* aVector, unsigned int num
+  * Shibata, Naoki, "Efficient evaluation methods of elementary functions
+  * suitable for SIMD computation," in Springer-Verlag 2010
+  */
+-static inline void
+-volk_32f_cos_32f_generic_fast(float* bVector, const float* aVector, unsigned int num_points)
++static inline void volk_32f_cos_32f_generic_fast(float* bVector,
++                                                 const float* aVector,
++                                                 unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  float m4pi = 1.273239544735162542821171882678754627704620361328125;
+-  float pio4A = 0.7853981554508209228515625;
+-  float pio4B = 0.794662735614792836713604629039764404296875e-8;
+-  float pio4C = 0.306161699786838294306516483068750264552437361480769e-16;
+-  int N = 3; // order of argument reduction
+-
+-  unsigned int number;
+-  for(number = 0; number < num_points; number++){
+-      float s = fabs(*aPtr);
+-      int q = (int)(s * m4pi);
+-      int r = q + (q&1);
+-      s -= r * pio4A;
+-      s -= r * pio4B;
+-      s -= r * pio4C;
+-
+-      s = s * 0.125; // 2^-N (<--3)
+-      s = s*s;
+-      s = ((((s/1814400. - 1.0/20160.0)*s + 1.0/360.0)*s - 1.0/12.0)*s + 1.0)*s;
+-
+-      int i;
+-      for(i=0; i < N; ++i) {
+-          s = (4.0-s)*s;
+-      }
+-      s = s/2.0;
+-
+-      float sine = sqrt((2.0-s)*s);
+-      float cosine = 1-s;
+-
+-      if (((q+1) & 2) != 0) {
+-          s = cosine;
+-          cosine = sine;
+-          sine = s;
+-      }
+-      if (((q+2) & 4) != 0) {
+-          cosine = -cosine;
+-      }
+-      *bPtr = cosine;
+-      bPtr++;
+-      aPtr++;
+-  }
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    float m4pi = 1.273239544735162542821171882678754627704620361328125;
++    float pio4A = 0.7853981554508209228515625;
++    float pio4B = 0.794662735614792836713604629039764404296875e-8;
++    float pio4C = 0.306161699786838294306516483068750264552437361480769e-16;
++    int N = 3; // order of argument reduction
++
++    unsigned int number;
++    for (number = 0; number < num_points; number++) {
++        float s = fabs(*aPtr);
++        int q = (int)(s * m4pi);
++        int r = q + (q & 1);
++        s -= r * pio4A;
++        s -= r * pio4B;
++        s -= r * pio4C;
++
++        s = s * 0.125; // 2^-N (<--3)
++        s = s * s;
++        s = ((((s / 1814400. - 1.0 / 20160.0) * s + 1.0 / 360.0) * s - 1.0 / 12.0) * s +
++             1.0) *
++            s;
++
++        int i;
++        for (i = 0; i < N; ++i) {
++            s = (4.0 - s) * s;
++        }
++        s = s / 2.0;
++
++        float sine = sqrt((2.0 - s) * s);
++        float cosine = 1 - s;
++
++        if (((q + 1) & 2) != 0) {
++            s = cosine;
++            cosine = sine;
++            sine = s;
++        }
++        if (((q + 2) & 4) != 0) {
++            cosine = -cosine;
++        }
++        *bPtr = cosine;
++        bPtr++;
++        aPtr++;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -662,13 +778,13 @@ volk_32f_cos_32f_generic_fast(float* bVector, const float* aVector, unsigned int
+ static inline void
+ volk_32f_cos_32f_generic(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-  unsigned int number = 0;
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++    unsigned int number = 0;
+-  for(; number < num_points; number++){
+-    *bPtr++ = cosf(*aPtr++);
+-  }
++    for (; number < num_points; number++) {
++        *bPtr++ = cosf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -679,30 +795,29 @@ volk_32f_cos_32f_generic(float* bVector, const float* aVector, unsigned int num_
+ #include <volk/volk_neon_intrinsics.h>
+ static inline void
+-volk_32f_cos_32f_neon(float* bVector, const float* aVector,
+-                      unsigned int num_points)
++volk_32f_cos_32f_neon(float* bVector, const float* aVector, unsigned int num_points)
+ {
+     unsigned int number = 0;
+     unsigned int quarter_points = num_points / 4;
+     float* bVectorPtr = bVector;
+     const float* aVectorPtr = aVector;
+-    
++
+     float32x4_t b_vec;
+     float32x4_t a_vec;
+-    
+-    for(number = 0; number < quarter_points; number++) {
++
++    for (number = 0; number < quarter_points; number++) {
+         a_vec = vld1q_f32(aVectorPtr);
+         // Prefetch next one, speeds things up
+-        __VOLK_PREFETCH(aVectorPtr+4);
++        __VOLK_PREFETCH(aVectorPtr + 4);
+         b_vec = _vcosq_f32(a_vec);
+         vst1q_f32(bVectorPtr, b_vec);
+         // move pointers ahead
+-        bVectorPtr+=4;
+-        aVectorPtr+=4;
++        bVectorPtr += 4;
++        aVectorPtr += 4;
+     }
+-    
++
+     // Deal with the rest
+-    for(number = quarter_points * 4; number < num_points; number++) {
++    for (number = quarter_points * 4; number < num_points; number++) {
+         *bVectorPtr++ = cosf(*aVectorPtr++);
+     }
+ }
+diff --git a/kernels/volk/volk_32f_expfast_32f.h b/kernels/volk/volk_32f_expfast_32f.h
+index ecb4914..45de3f9 100644
+--- a/kernels/volk/volk_32f_expfast_32f.h
++++ b/kernels/volk/volk_32f_expfast_32f.h
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_expfast_32f(float* bVector, const float* aVector, unsigned int num_points)
+- * \endcode
++ * void volk_32f_expfast_32f(float* bVector, const float* aVector, unsigned int
++ * num_points) \endcode
+  *
+  * \b Inputs
+  * \li aVector: Input vector of floats.
+@@ -62,9 +62,9 @@
+  * \endcode
+  */
+-#include <stdio.h>
+-#include <math.h>
+ #include <inttypes.h>
++#include <math.h>
++#include <stdio.h>
+ #define Mln2 0.6931471805f
+ #define A 8388608.0f
+@@ -79,34 +79,35 @@
+ #include <immintrin.h>
+-static inline void
+- volk_32f_expfast_32f_a_avx_fma(float* bVector, const float* aVector, unsigned int num_points)
++static inline void volk_32f_expfast_32f_a_avx_fma(float* bVector,
++                                                  const float* aVector,
++                                                  unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  __m256 aVal, bVal, a, b;
+-  __m256i exp;
+-  a = _mm256_set1_ps(A/Mln2);
+-  b = _mm256_set1_ps(B-C);
+-
+-  for(;number < eighthPoints; number++){
+-    aVal = _mm256_load_ps(aPtr);
+-    exp = _mm256_cvtps_epi32(_mm256_fmadd_ps(a,aVal, b));
+-    bVal = _mm256_castsi256_ps(exp);
+-
+-    _mm256_store_ps(bPtr, bVal);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *bPtr++ = expf(*aPtr++);
+-  }
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    __m256 aVal, bVal, a, b;
++    __m256i exp;
++    a = _mm256_set1_ps(A / Mln2);
++    b = _mm256_set1_ps(B - C);
++
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_load_ps(aPtr);
++        exp = _mm256_cvtps_epi32(_mm256_fmadd_ps(a, aVal, b));
++        bVal = _mm256_castsi256_ps(exp);
++
++        _mm256_store_ps(bPtr, bVal);
++        aPtr += 8;
++        bPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *bPtr++ = expf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX && LV_HAVE_FMA for aligned */
+@@ -116,33 +117,33 @@ static inline void
+ #include <immintrin.h>
+ static inline void
+- volk_32f_expfast_32f_a_avx(float* bVector, const float* aVector, unsigned int num_points)
++volk_32f_expfast_32f_a_avx(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  __m256 aVal, bVal, a, b;
+-  __m256i exp;
+-  a = _mm256_set1_ps(A/Mln2);
+-  b = _mm256_set1_ps(B-C);
+-
+-  for(;number < eighthPoints; number++){
+-    aVal = _mm256_load_ps(aPtr);
+-    exp = _mm256_cvtps_epi32(_mm256_add_ps(_mm256_mul_ps(a,aVal), b));
+-    bVal = _mm256_castsi256_ps(exp);
+-
+-    _mm256_store_ps(bPtr, bVal);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *bPtr++ = expf(*aPtr++);
+-  }
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    __m256 aVal, bVal, a, b;
++    __m256i exp;
++    a = _mm256_set1_ps(A / Mln2);
++    b = _mm256_set1_ps(B - C);
++
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_load_ps(aPtr);
++        exp = _mm256_cvtps_epi32(_mm256_add_ps(_mm256_mul_ps(a, aVal), b));
++        bVal = _mm256_castsi256_ps(exp);
++
++        _mm256_store_ps(bPtr, bVal);
++        aPtr += 8;
++        bPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *bPtr++ = expf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX for aligned */
+@@ -150,34 +151,35 @@ static inline void
+ #ifdef LV_HAVE_SSE4_1
+ #include <smmintrin.h>
+-static inline void
+-volk_32f_expfast_32f_a_sse4_1(float* bVector, const float* aVector, unsigned int num_points)
++static inline void volk_32f_expfast_32f_a_sse4_1(float* bVector,
++                                                 const float* aVector,
++                                                 unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  __m128 aVal, bVal, a, b;
+-  __m128i exp;
+-  a = _mm_set1_ps(A/Mln2);
+-  b = _mm_set1_ps(B-C);
+-
+-  for(;number < quarterPoints; number++){
+-    aVal = _mm_load_ps(aPtr);
+-    exp = _mm_cvtps_epi32(_mm_add_ps(_mm_mul_ps(a,aVal), b));
+-    bVal = _mm_castsi128_ps(exp);
+-
+-    _mm_store_ps(bPtr, bVal);
+-    aPtr += 4;
+-    bPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    *bPtr++ = expf(*aPtr++);
+-  }
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++
++    __m128 aVal, bVal, a, b;
++    __m128i exp;
++    a = _mm_set1_ps(A / Mln2);
++    b = _mm_set1_ps(B - C);
++
++    for (; number < quarterPoints; number++) {
++        aVal = _mm_load_ps(aPtr);
++        exp = _mm_cvtps_epi32(_mm_add_ps(_mm_mul_ps(a, aVal), b));
++        bVal = _mm_castsi128_ps(exp);
++
++        _mm_store_ps(bPtr, bVal);
++        aPtr += 4;
++        bPtr += 4;
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *bPtr++ = expf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_SSE4_1 for aligned */
+@@ -190,34 +192,35 @@ volk_32f_expfast_32f_a_sse4_1(float* bVector, const float* aVector, unsigned int
+ #if LV_HAVE_AVX && LV_HAVE_FMA
+ #include <immintrin.h>
+-static inline void
+-volk_32f_expfast_32f_u_avx_fma(float* bVector, const float* aVector, unsigned int num_points)
++static inline void volk_32f_expfast_32f_u_avx_fma(float* bVector,
++                                                  const float* aVector,
++                                                  unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  __m256 aVal, bVal, a, b;
+-  __m256i exp;
+-  a = _mm256_set1_ps(A/Mln2);
+-  b = _mm256_set1_ps(B-C);
+-
+-  for(;number < eighthPoints; number++){
+-    aVal = _mm256_loadu_ps(aPtr);
+-    exp = _mm256_cvtps_epi32(_mm256_fmadd_ps(a,aVal, b));
+-    bVal = _mm256_castsi256_ps(exp);
+-
+-    _mm256_storeu_ps(bPtr, bVal);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *bPtr++ = expf(*aPtr++);
+-  }
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    __m256 aVal, bVal, a, b;
++    __m256i exp;
++    a = _mm256_set1_ps(A / Mln2);
++    b = _mm256_set1_ps(B - C);
++
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_loadu_ps(aPtr);
++        exp = _mm256_cvtps_epi32(_mm256_fmadd_ps(a, aVal, b));
++        bVal = _mm256_castsi256_ps(exp);
++
++        _mm256_storeu_ps(bPtr, bVal);
++        aPtr += 8;
++        bPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *bPtr++ = expf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX && LV_HAVE_FMA for unaligned */
+@@ -228,31 +231,31 @@ volk_32f_expfast_32f_u_avx_fma(float* bVector, const float* aVector, unsigned in
+ static inline void
+ volk_32f_expfast_32f_u_avx(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  __m256 aVal, bVal, a, b;
+-  __m256i exp;
+-  a = _mm256_set1_ps(A/Mln2);
+-  b = _mm256_set1_ps(B-C);
+-
+-  for(;number < eighthPoints; number++){
+-    aVal = _mm256_loadu_ps(aPtr);
+-    exp = _mm256_cvtps_epi32(_mm256_add_ps(_mm256_mul_ps(a,aVal), b));
+-    bVal = _mm256_castsi256_ps(exp);
+-
+-    _mm256_storeu_ps(bPtr, bVal);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *bPtr++ = expf(*aPtr++);
+-  }
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    __m256 aVal, bVal, a, b;
++    __m256i exp;
++    a = _mm256_set1_ps(A / Mln2);
++    b = _mm256_set1_ps(B - C);
++
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_loadu_ps(aPtr);
++        exp = _mm256_cvtps_epi32(_mm256_add_ps(_mm256_mul_ps(a, aVal), b));
++        bVal = _mm256_castsi256_ps(exp);
++
++        _mm256_storeu_ps(bPtr, bVal);
++        aPtr += 8;
++        bPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *bPtr++ = expf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX for unaligned */
+@@ -261,34 +264,35 @@ volk_32f_expfast_32f_u_avx(float* bVector, const float* aVector, unsigned int nu
+ #ifdef LV_HAVE_SSE4_1
+ #include <smmintrin.h>
+-static inline void
+-volk_32f_expfast_32f_u_sse4_1(float* bVector, const float* aVector, unsigned int num_points)
++static inline void volk_32f_expfast_32f_u_sse4_1(float* bVector,
++                                                 const float* aVector,
++                                                 unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  __m128 aVal, bVal, a, b;
+-  __m128i exp;
+-  a = _mm_set1_ps(A/Mln2);
+-  b = _mm_set1_ps(B-C);
+-
+-  for(;number < quarterPoints; number++){
+-    aVal = _mm_loadu_ps(aPtr);
+-    exp = _mm_cvtps_epi32(_mm_add_ps(_mm_mul_ps(a,aVal), b));
+-    bVal = _mm_castsi128_ps(exp);
+-
+-    _mm_storeu_ps(bPtr, bVal);
+-    aPtr += 4;
+-    bPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    *bPtr++ = expf(*aPtr++);
+-  }
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++
++    __m128 aVal, bVal, a, b;
++    __m128i exp;
++    a = _mm_set1_ps(A / Mln2);
++    b = _mm_set1_ps(B - C);
++
++    for (; number < quarterPoints; number++) {
++        aVal = _mm_loadu_ps(aPtr);
++        exp = _mm_cvtps_epi32(_mm_add_ps(_mm_mul_ps(a, aVal), b));
++        bVal = _mm_castsi128_ps(exp);
++
++        _mm_storeu_ps(bPtr, bVal);
++        aPtr += 4;
++        bPtr += 4;
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *bPtr++ = expf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_SSE4_1 for unaligned */
+@@ -296,16 +300,17 @@ volk_32f_expfast_32f_u_sse4_1(float* bVector, const float* aVector, unsigned int
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_expfast_32f_generic(float* bVector, const float* aVector, unsigned int num_points)
++static inline void volk_32f_expfast_32f_generic(float* bVector,
++                                                const float* aVector,
++                                                unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-  unsigned int number = 0;
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++    unsigned int number = 0;
+-  for(number = 0; number < num_points; number++){
+-    *bPtr++ = expf(*aPtr++);
+-  }
++    for (number = 0; number < num_points; number++) {
++        *bPtr++ = expf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+diff --git a/kernels/volk/volk_32f_index_max_16u.h b/kernels/volk/volk_32f_index_max_16u.h
+index 7ca6928..3ee10f4 100644
+--- a/kernels/volk/volk_32f_index_max_16u.h
++++ b/kernels/volk/volk_32f_index_max_16u.h
+@@ -71,72 +71,71 @@
+ #ifndef INCLUDED_volk_32f_index_max_16u_a_H
+ #define INCLUDED_volk_32f_index_max_16u_a_H
+-#include <volk/volk_common.h>
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+ #include <limits.h>
+ #include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+ static inline void
+-volk_32f_index_max_16u_a_avx(uint16_t* target, const float* src0,
+-                             uint32_t num_points)
++volk_32f_index_max_16u_a_avx(uint16_t* target, const float* src0, uint32_t num_points)
+ {
+-  num_points = (num_points > USHRT_MAX) ? USHRT_MAX : num_points;
+-
+-  uint32_t number = 0;
+-  const uint32_t eighthPoints = num_points / 8;
++    num_points = (num_points > USHRT_MAX) ? USHRT_MAX : num_points;
+-  float* inputPtr = (float*)src0;
++    uint32_t number = 0;
++    const uint32_t eighthPoints = num_points / 8;
+-  __m256 indexIncrementValues = _mm256_set1_ps(8);
+-  __m256 currentIndexes = _mm256_set_ps(-1,-2,-3,-4,-5,-6,-7,-8);
++    float* inputPtr = (float*)src0;
+-  float max = src0[0];
+-  float index = 0;
+-  __m256 maxValues = _mm256_set1_ps(max);
+-  __m256 maxValuesIndex = _mm256_setzero_ps();
+-  __m256 compareResults;
+-  __m256 currentValues;
++    __m256 indexIncrementValues = _mm256_set1_ps(8);
++    __m256 currentIndexes = _mm256_set_ps(-1, -2, -3, -4, -5, -6, -7, -8);
+-  __VOLK_ATTR_ALIGNED(32) float maxValuesBuffer[8];
+-  __VOLK_ATTR_ALIGNED(32) float maxIndexesBuffer[8];
++    float max = src0[0];
++    float index = 0;
++    __m256 maxValues = _mm256_set1_ps(max);
++    __m256 maxValuesIndex = _mm256_setzero_ps();
++    __m256 compareResults;
++    __m256 currentValues;
+-  for(;number < eighthPoints; number++){
++    __VOLK_ATTR_ALIGNED(32) float maxValuesBuffer[8];
++    __VOLK_ATTR_ALIGNED(32) float maxIndexesBuffer[8];
+-    currentValues  = _mm256_load_ps(inputPtr); inputPtr += 8;
+-    currentIndexes = _mm256_add_ps(currentIndexes, indexIncrementValues);
++    for (; number < eighthPoints; number++) {
+-    compareResults = _mm256_cmp_ps(currentValues, maxValues, _CMP_GT_OS);
++        currentValues = _mm256_load_ps(inputPtr);
++        inputPtr += 8;
++        currentIndexes = _mm256_add_ps(currentIndexes, indexIncrementValues);
+-    maxValuesIndex = _mm256_blendv_ps(maxValuesIndex, currentIndexes, compareResults);
+-    maxValues      = _mm256_blendv_ps(maxValues, currentValues, compareResults);
+-  }
++        compareResults = _mm256_cmp_ps(currentValues, maxValues, _CMP_GT_OS);
+-  // Calculate the largest value from the remaining 4 points
+-  _mm256_store_ps(maxValuesBuffer, maxValues);
+-  _mm256_store_ps(maxIndexesBuffer, maxValuesIndex);
++        maxValuesIndex = _mm256_blendv_ps(maxValuesIndex, currentIndexes, compareResults);
++        maxValues = _mm256_blendv_ps(maxValues, currentValues, compareResults);
++    }
+-  for(number = 0; number < 8; number++){
+-    if(maxValuesBuffer[number] > max){
+-      index = maxIndexesBuffer[number];
+-      max = maxValuesBuffer[number];
+-    } else if(maxValuesBuffer[number] == max){
+-      if (index > maxIndexesBuffer[number])
+-        index = maxIndexesBuffer[number];
++    // Calculate the largest value from the remaining 4 points
++    _mm256_store_ps(maxValuesBuffer, maxValues);
++    _mm256_store_ps(maxIndexesBuffer, maxValuesIndex);
++
++    for (number = 0; number < 8; number++) {
++        if (maxValuesBuffer[number] > max) {
++            index = maxIndexesBuffer[number];
++            max = maxValuesBuffer[number];
++        } else if (maxValuesBuffer[number] == max) {
++            if (index > maxIndexesBuffer[number])
++                index = maxIndexesBuffer[number];
++        }
+     }
+-  }
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    if(src0[number] > max){
+-      index = number;
+-      max = src0[number];
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        if (src0[number] > max) {
++            index = number;
++            max = src0[number];
++        }
+     }
+-  }
+-  target[0] = (uint16_t)index;
++    target[0] = (uint16_t)index;
+ }
+ #endif /*LV_HAVE_AVX*/
+@@ -145,62 +144,62 @@ volk_32f_index_max_16u_a_avx(uint16_t* target, const float* src0,
+ #include <smmintrin.h>
+ static inline void
+-volk_32f_index_max_16u_a_sse4_1(uint16_t* target, const float* src0,
+-                                uint32_t num_points)
++volk_32f_index_max_16u_a_sse4_1(uint16_t* target, const float* src0, uint32_t num_points)
+ {
+-  num_points = (num_points > USHRT_MAX) ? USHRT_MAX : num_points;
+-
+-  uint32_t number = 0;
+-  const uint32_t quarterPoints = num_points / 4;
++    num_points = (num_points > USHRT_MAX) ? USHRT_MAX : num_points;
+-  float* inputPtr = (float*)src0;
++    uint32_t number = 0;
++    const uint32_t quarterPoints = num_points / 4;
+-  __m128 indexIncrementValues = _mm_set1_ps(4);
+-  __m128 currentIndexes = _mm_set_ps(-1,-2,-3,-4);
++    float* inputPtr = (float*)src0;
+-  float max = src0[0];
+-  float index = 0;
+-  __m128 maxValues = _mm_set1_ps(max);
+-  __m128 maxValuesIndex = _mm_setzero_ps();
+-  __m128 compareResults;
+-  __m128 currentValues;
++    __m128 indexIncrementValues = _mm_set1_ps(4);
++    __m128 currentIndexes = _mm_set_ps(-1, -2, -3, -4);
+-  __VOLK_ATTR_ALIGNED(16) float maxValuesBuffer[4];
+-  __VOLK_ATTR_ALIGNED(16) float maxIndexesBuffer[4];
++    float max = src0[0];
++    float index = 0;
++    __m128 maxValues = _mm_set1_ps(max);
++    __m128 maxValuesIndex = _mm_setzero_ps();
++    __m128 compareResults;
++    __m128 currentValues;
+-  for(;number < quarterPoints; number++){
++    __VOLK_ATTR_ALIGNED(16) float maxValuesBuffer[4];
++    __VOLK_ATTR_ALIGNED(16) float maxIndexesBuffer[4];
+-    currentValues  = _mm_load_ps(inputPtr); inputPtr += 4;
+-    currentIndexes = _mm_add_ps(currentIndexes, indexIncrementValues);
++    for (; number < quarterPoints; number++) {
+-    compareResults = _mm_cmpgt_ps(currentValues, maxValues);
++        currentValues = _mm_load_ps(inputPtr);
++        inputPtr += 4;
++        currentIndexes = _mm_add_ps(currentIndexes, indexIncrementValues);
+-    maxValuesIndex = _mm_blendv_ps(maxValuesIndex, currentIndexes, compareResults);
+-    maxValues      = _mm_blendv_ps(maxValues, currentValues, compareResults);
+-  }
++        compareResults = _mm_cmpgt_ps(currentValues, maxValues);
+-  // Calculate the largest value from the remaining 4 points
+-  _mm_store_ps(maxValuesBuffer, maxValues);
+-  _mm_store_ps(maxIndexesBuffer, maxValuesIndex);
++        maxValuesIndex = _mm_blendv_ps(maxValuesIndex, currentIndexes, compareResults);
++        maxValues = _mm_blendv_ps(maxValues, currentValues, compareResults);
++    }
+-  for(number = 0; number < 4; number++){
+-    if(maxValuesBuffer[number] > max){
+-      index = maxIndexesBuffer[number];
+-      max = maxValuesBuffer[number];
+-    } else if(maxValuesBuffer[number] == max){
+-      if (index > maxIndexesBuffer[number])
+-        index = maxIndexesBuffer[number];
++    // Calculate the largest value from the remaining 4 points
++    _mm_store_ps(maxValuesBuffer, maxValues);
++    _mm_store_ps(maxIndexesBuffer, maxValuesIndex);
++
++    for (number = 0; number < 4; number++) {
++        if (maxValuesBuffer[number] > max) {
++            index = maxIndexesBuffer[number];
++            max = maxValuesBuffer[number];
++        } else if (maxValuesBuffer[number] == max) {
++            if (index > maxIndexesBuffer[number])
++                index = maxIndexesBuffer[number];
++        }
+     }
+-  }
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    if(src0[number] > max){
+-      index = number;
+-      max = src0[number];
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        if (src0[number] > max) {
++            index = number;
++            max = src0[number];
++        }
+     }
+-  }
+-  target[0] = (uint16_t)index;
++    target[0] = (uint16_t)index;
+ }
+ #endif /*LV_HAVE_SSE4_1*/
+@@ -211,64 +210,64 @@ volk_32f_index_max_16u_a_sse4_1(uint16_t* target, const float* src0,
+ #include <xmmintrin.h>
+ static inline void
+-volk_32f_index_max_16u_a_sse(uint16_t* target, const float* src0,
+-                             uint32_t num_points)
++volk_32f_index_max_16u_a_sse(uint16_t* target, const float* src0, uint32_t num_points)
+ {
+-  num_points = (num_points > USHRT_MAX) ? USHRT_MAX : num_points;
+-
+-  uint32_t number = 0;
+-  const uint32_t quarterPoints = num_points / 4;
++    num_points = (num_points > USHRT_MAX) ? USHRT_MAX : num_points;
+-  float* inputPtr = (float*)src0;
++    uint32_t number = 0;
++    const uint32_t quarterPoints = num_points / 4;
+-  __m128 indexIncrementValues = _mm_set1_ps(4);
+-  __m128 currentIndexes = _mm_set_ps(-1,-2,-3,-4);
++    float* inputPtr = (float*)src0;
+-  float max = src0[0];
+-  float index = 0;
+-  __m128 maxValues = _mm_set1_ps(max);
+-  __m128 maxValuesIndex = _mm_setzero_ps();
+-  __m128 compareResults;
+-  __m128 currentValues;
++    __m128 indexIncrementValues = _mm_set1_ps(4);
++    __m128 currentIndexes = _mm_set_ps(-1, -2, -3, -4);
+-  __VOLK_ATTR_ALIGNED(16) float maxValuesBuffer[4];
+-  __VOLK_ATTR_ALIGNED(16) float maxIndexesBuffer[4];
++    float max = src0[0];
++    float index = 0;
++    __m128 maxValues = _mm_set1_ps(max);
++    __m128 maxValuesIndex = _mm_setzero_ps();
++    __m128 compareResults;
++    __m128 currentValues;
+-  for(;number < quarterPoints; number++){
++    __VOLK_ATTR_ALIGNED(16) float maxValuesBuffer[4];
++    __VOLK_ATTR_ALIGNED(16) float maxIndexesBuffer[4];
+-    currentValues  = _mm_load_ps(inputPtr); inputPtr += 4;
+-    currentIndexes = _mm_add_ps(currentIndexes, indexIncrementValues);
++    for (; number < quarterPoints; number++) {
+-    compareResults = _mm_cmpgt_ps(currentValues, maxValues);
++        currentValues = _mm_load_ps(inputPtr);
++        inputPtr += 4;
++        currentIndexes = _mm_add_ps(currentIndexes, indexIncrementValues);
+-    maxValuesIndex = _mm_or_ps(_mm_and_ps(compareResults, currentIndexes),
+-                               _mm_andnot_ps(compareResults, maxValuesIndex));
+-    maxValues      = _mm_or_ps(_mm_and_ps(compareResults, currentValues),
+-                               _mm_andnot_ps(compareResults, maxValues));
+-  }
++        compareResults = _mm_cmpgt_ps(currentValues, maxValues);
+-  // Calculate the largest value from the remaining 4 points
+-  _mm_store_ps(maxValuesBuffer, maxValues);
+-  _mm_store_ps(maxIndexesBuffer, maxValuesIndex);
++        maxValuesIndex = _mm_or_ps(_mm_and_ps(compareResults, currentIndexes),
++                                   _mm_andnot_ps(compareResults, maxValuesIndex));
++        maxValues = _mm_or_ps(_mm_and_ps(compareResults, currentValues),
++                              _mm_andnot_ps(compareResults, maxValues));
++    }
+-  for(number = 0; number < 4; number++){
+-    if(maxValuesBuffer[number] > max){
+-      index = maxIndexesBuffer[number];
+-      max = maxValuesBuffer[number];
+-    } else if(maxValuesBuffer[number] == max){
+-      if (index > maxIndexesBuffer[number])
+-        index = maxIndexesBuffer[number];
++    // Calculate the largest value from the remaining 4 points
++    _mm_store_ps(maxValuesBuffer, maxValues);
++    _mm_store_ps(maxIndexesBuffer, maxValuesIndex);
++
++    for (number = 0; number < 4; number++) {
++        if (maxValuesBuffer[number] > max) {
++            index = maxIndexesBuffer[number];
++            max = maxValuesBuffer[number];
++        } else if (maxValuesBuffer[number] == max) {
++            if (index > maxIndexesBuffer[number])
++                index = maxIndexesBuffer[number];
++        }
+     }
+-  }
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    if(src0[number] > max){
+-      index = number;
+-      max = src0[number];
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        if (src0[number] > max) {
++            index = number;
++            max = src0[number];
++        }
+     }
+-  }
+-  target[0] = (uint16_t)index;
++    target[0] = (uint16_t)index;
+ }
+ #endif /*LV_HAVE_SSE*/
+@@ -277,23 +276,22 @@ volk_32f_index_max_16u_a_sse(uint16_t* target, const float* src0,
+ #ifdef LV_HAVE_GENERIC
+ static inline void
+-volk_32f_index_max_16u_generic(uint16_t* target, const float* src0,
+-                               uint32_t num_points)
++volk_32f_index_max_16u_generic(uint16_t* target, const float* src0, uint32_t num_points)
+ {
+-  num_points = (num_points > USHRT_MAX) ? USHRT_MAX : num_points;
++    num_points = (num_points > USHRT_MAX) ? USHRT_MAX : num_points;
+-  float max = src0[0];
+-  uint16_t index = 0;
++    float max = src0[0];
++    uint16_t index = 0;
+-  uint32_t i = 1;
++    uint32_t i = 1;
+-  for(; i < num_points; ++i) {
+-    if(src0[i] > max) {
+-      index = i;
+-      max = src0[i];
++    for (; i < num_points; ++i) {
++        if (src0[i] > max) {
++            index = i;
++            max = src0[i];
++        }
+     }
+-  }
+-  target[0] = index;
++    target[0] = index;
+ }
+ #endif /*LV_HAVE_GENERIC*/
+@@ -302,76 +300,74 @@ volk_32f_index_max_16u_generic(uint16_t* target, const float* src0,
+ #endif /*INCLUDED_volk_32f_index_max_16u_a_H*/
+-
+ #ifndef INCLUDED_volk_32f_index_max_16u_u_H
+ #define INCLUDED_volk_32f_index_max_16u_u_H
+-#include <volk/volk_common.h>
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+ #include <limits.h>
+ #include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+ static inline void
+-volk_32f_index_max_16u_u_avx(uint16_t* target, const float* src0,
+-                                uint32_t num_points)
++volk_32f_index_max_16u_u_avx(uint16_t* target, const float* src0, uint32_t num_points)
+ {
+-  num_points = (num_points > USHRT_MAX) ? USHRT_MAX : num_points;
+-
+-  uint32_t number = 0;
+-  const uint32_t eighthPoints = num_points / 8;
++    num_points = (num_points > USHRT_MAX) ? USHRT_MAX : num_points;
+-  float* inputPtr = (float*)src0;
++    uint32_t number = 0;
++    const uint32_t eighthPoints = num_points / 8;
+-  __m256 indexIncrementValues = _mm256_set1_ps(8);
+-  __m256 currentIndexes = _mm256_set_ps(-1,-2,-3,-4,-5,-6,-7,-8);
++    float* inputPtr = (float*)src0;
+-  float max = src0[0];
+-  float index = 0;
+-  __m256 maxValues = _mm256_set1_ps(max);
+-  __m256 maxValuesIndex = _mm256_setzero_ps();
+-  __m256 compareResults;
+-  __m256 currentValues;
++    __m256 indexIncrementValues = _mm256_set1_ps(8);
++    __m256 currentIndexes = _mm256_set_ps(-1, -2, -3, -4, -5, -6, -7, -8);
+-  __VOLK_ATTR_ALIGNED(32) float maxValuesBuffer[8];
+-  __VOLK_ATTR_ALIGNED(32) float maxIndexesBuffer[8];
++    float max = src0[0];
++    float index = 0;
++    __m256 maxValues = _mm256_set1_ps(max);
++    __m256 maxValuesIndex = _mm256_setzero_ps();
++    __m256 compareResults;
++    __m256 currentValues;
+-  for(;number < eighthPoints; number++){
++    __VOLK_ATTR_ALIGNED(32) float maxValuesBuffer[8];
++    __VOLK_ATTR_ALIGNED(32) float maxIndexesBuffer[8];
+-    currentValues  = _mm256_loadu_ps(inputPtr); inputPtr += 8;
+-    currentIndexes = _mm256_add_ps(currentIndexes, indexIncrementValues);
++    for (; number < eighthPoints; number++) {
+-    compareResults = _mm256_cmp_ps(currentValues, maxValues, _CMP_GT_OS);
++        currentValues = _mm256_loadu_ps(inputPtr);
++        inputPtr += 8;
++        currentIndexes = _mm256_add_ps(currentIndexes, indexIncrementValues);
+-    maxValuesIndex = _mm256_blendv_ps(maxValuesIndex, currentIndexes, compareResults);
+-    maxValues      = _mm256_blendv_ps(maxValues, currentValues, compareResults);
+-  }
++        compareResults = _mm256_cmp_ps(currentValues, maxValues, _CMP_GT_OS);
+-  // Calculate the largest value from the remaining 4 points
+-  _mm256_storeu_ps(maxValuesBuffer, maxValues);
+-  _mm256_storeu_ps(maxIndexesBuffer, maxValuesIndex);
++        maxValuesIndex = _mm256_blendv_ps(maxValuesIndex, currentIndexes, compareResults);
++        maxValues = _mm256_blendv_ps(maxValues, currentValues, compareResults);
++    }
+-  for(number = 0; number < 8; number++){
+-    if(maxValuesBuffer[number] > max){
+-      index = maxIndexesBuffer[number];
+-      max = maxValuesBuffer[number];
+-    } else if(maxValuesBuffer[number] == max){
+-      if (index > maxIndexesBuffer[number])
+-        index = maxIndexesBuffer[number];
++    // Calculate the largest value from the remaining 4 points
++    _mm256_storeu_ps(maxValuesBuffer, maxValues);
++    _mm256_storeu_ps(maxIndexesBuffer, maxValuesIndex);
++
++    for (number = 0; number < 8; number++) {
++        if (maxValuesBuffer[number] > max) {
++            index = maxIndexesBuffer[number];
++            max = maxValuesBuffer[number];
++        } else if (maxValuesBuffer[number] == max) {
++            if (index > maxIndexesBuffer[number])
++                index = maxIndexesBuffer[number];
++        }
+     }
+-  }
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    if(src0[number] > max){
+-      index = number;
+-      max = src0[number];
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        if (src0[number] > max) {
++            index = number;
++            max = src0[number];
++        }
+     }
+-  }
+-  target[0] = (uint16_t)index;
++    target[0] = (uint16_t)index;
+ }
+ #endif /*LV_HAVE_AVX*/
+diff --git a/kernels/volk/volk_32f_index_max_32u.h b/kernels/volk/volk_32f_index_max_32u.h
+index 318c8e4..315531d 100644
+--- a/kernels/volk/volk_32f_index_max_32u.h
++++ b/kernels/volk/volk_32f_index_max_32u.h
+@@ -25,7 +25,8 @@
+  *
+  * \b Overview
+  *
+- * Returns Argmax_i x[i]. Finds and returns the index which contains the first maximum value in the given vector.
++ * Returns Argmax_i x[i]. Finds and returns the index which contains the first maximum
++ * value in the given vector.
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+@@ -64,70 +65,71 @@
+ #ifndef INCLUDED_volk_32f_index_max_32u_a_H
+ #define INCLUDED_volk_32f_index_max_32u_a_H
+-#include <volk/volk_common.h>
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+ #include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_SSE4_1
+-#include<smmintrin.h>
++#include <smmintrin.h>
+ static inline void
+ volk_32f_index_max_32u_a_sse4_1(uint32_t* target, const float* src0, uint32_t num_points)
+ {
+-  if(num_points > 0){
+-    uint32_t number = 0;
+-    const uint32_t quarterPoints = num_points / 4;
++    if (num_points > 0) {
++        uint32_t number = 0;
++        const uint32_t quarterPoints = num_points / 4;
+-    float* inputPtr = (float*)src0;
++        float* inputPtr = (float*)src0;
+-    __m128 indexIncrementValues = _mm_set1_ps(4);
+-    __m128 currentIndexes = _mm_set_ps(-1,-2,-3,-4);
++        __m128 indexIncrementValues = _mm_set1_ps(4);
++        __m128 currentIndexes = _mm_set_ps(-1, -2, -3, -4);
+-    float max = src0[0];
+-    float index = 0;
+-    __m128 maxValues = _mm_set1_ps(max);
+-    __m128 maxValuesIndex = _mm_setzero_ps();
+-    __m128 compareResults;
+-    __m128 currentValues;
++        float max = src0[0];
++        float index = 0;
++        __m128 maxValues = _mm_set1_ps(max);
++        __m128 maxValuesIndex = _mm_setzero_ps();
++        __m128 compareResults;
++        __m128 currentValues;
+-    __VOLK_ATTR_ALIGNED(16) float maxValuesBuffer[4];
+-    __VOLK_ATTR_ALIGNED(16) float maxIndexesBuffer[4];
++        __VOLK_ATTR_ALIGNED(16) float maxValuesBuffer[4];
++        __VOLK_ATTR_ALIGNED(16) float maxIndexesBuffer[4];
+-    for(;number < quarterPoints; number++){
++        for (; number < quarterPoints; number++) {
+-      currentValues  = _mm_load_ps(inputPtr); inputPtr += 4;
+-      currentIndexes = _mm_add_ps(currentIndexes, indexIncrementValues);
++            currentValues = _mm_load_ps(inputPtr);
++            inputPtr += 4;
++            currentIndexes = _mm_add_ps(currentIndexes, indexIncrementValues);
+-      compareResults = _mm_cmpgt_ps(currentValues, maxValues);
++            compareResults = _mm_cmpgt_ps(currentValues, maxValues);
+-      maxValuesIndex = _mm_blendv_ps(maxValuesIndex, currentIndexes, compareResults);
+-      maxValues      = _mm_blendv_ps(maxValues, currentValues, compareResults);
+-    }
++            maxValuesIndex =
++                _mm_blendv_ps(maxValuesIndex, currentIndexes, compareResults);
++            maxValues = _mm_blendv_ps(maxValues, currentValues, compareResults);
++        }
+-    // Calculate the largest value from the remaining 4 points
+-    _mm_store_ps(maxValuesBuffer, maxValues);
+-    _mm_store_ps(maxIndexesBuffer, maxValuesIndex);
+-
+-    for(number = 0; number < 4; number++){
+-      if(maxValuesBuffer[number] > max){
+-      index = maxIndexesBuffer[number];
+-      max = maxValuesBuffer[number];
+-      } else if(maxValuesBuffer[number] == max){
+-        if (index > maxIndexesBuffer[number])
+-          index = maxIndexesBuffer[number];
+-      }
+-    }
++        // Calculate the largest value from the remaining 4 points
++        _mm_store_ps(maxValuesBuffer, maxValues);
++        _mm_store_ps(maxIndexesBuffer, maxValuesIndex);
++
++        for (number = 0; number < 4; number++) {
++            if (maxValuesBuffer[number] > max) {
++                index = maxIndexesBuffer[number];
++                max = maxValuesBuffer[number];
++            } else if (maxValuesBuffer[number] == max) {
++                if (index > maxIndexesBuffer[number])
++                    index = maxIndexesBuffer[number];
++            }
++        }
+-    number = quarterPoints * 4;
+-    for(;number < num_points; number++){
+-      if(src0[number] > max){
+-      index = number;
+-      max = src0[number];
+-      }
++        number = quarterPoints * 4;
++        for (; number < num_points; number++) {
++            if (src0[number] > max) {
++                index = number;
++                max = src0[number];
++            }
++        }
++        target[0] = (uint32_t)index;
+     }
+-    target[0] = (uint32_t)index;
+-  }
+ }
+ #endif /*LV_HAVE_SSE4_1*/
+@@ -135,67 +137,68 @@ volk_32f_index_max_32u_a_sse4_1(uint32_t* target, const float* src0, uint32_t nu
+ #ifdef LV_HAVE_SSE
+-#include<xmmintrin.h>
++#include <xmmintrin.h>
+ static inline void
+ volk_32f_index_max_32u_a_sse(uint32_t* target, const float* src0, uint32_t num_points)
+ {
+-  if(num_points > 0){
+-    uint32_t number = 0;
+-    const uint32_t quarterPoints = num_points / 4;
++    if (num_points > 0) {
++        uint32_t number = 0;
++        const uint32_t quarterPoints = num_points / 4;
+-    float* inputPtr = (float*)src0;
++        float* inputPtr = (float*)src0;
+-    __m128 indexIncrementValues = _mm_set1_ps(4);
+-    __m128 currentIndexes = _mm_set_ps(-1,-2,-3,-4);
++        __m128 indexIncrementValues = _mm_set1_ps(4);
++        __m128 currentIndexes = _mm_set_ps(-1, -2, -3, -4);
+-    float max = src0[0];
+-    float index = 0;
+-    __m128 maxValues = _mm_set1_ps(max);
+-    __m128 maxValuesIndex = _mm_setzero_ps();
+-    __m128 compareResults;
+-    __m128 currentValues;
++        float max = src0[0];
++        float index = 0;
++        __m128 maxValues = _mm_set1_ps(max);
++        __m128 maxValuesIndex = _mm_setzero_ps();
++        __m128 compareResults;
++        __m128 currentValues;
+-    __VOLK_ATTR_ALIGNED(16) float maxValuesBuffer[4];
+-    __VOLK_ATTR_ALIGNED(16) float maxIndexesBuffer[4];
++        __VOLK_ATTR_ALIGNED(16) float maxValuesBuffer[4];
++        __VOLK_ATTR_ALIGNED(16) float maxIndexesBuffer[4];
+-    for(;number < quarterPoints; number++){
++        for (; number < quarterPoints; number++) {
+-      currentValues  = _mm_load_ps(inputPtr); inputPtr += 4;
+-      currentIndexes = _mm_add_ps(currentIndexes, indexIncrementValues);
++            currentValues = _mm_load_ps(inputPtr);
++            inputPtr += 4;
++            currentIndexes = _mm_add_ps(currentIndexes, indexIncrementValues);
+-      compareResults = _mm_cmpgt_ps(currentValues, maxValues);
++            compareResults = _mm_cmpgt_ps(currentValues, maxValues);
+-      maxValuesIndex = _mm_or_ps(_mm_and_ps(compareResults, currentIndexes),
+-                                 _mm_andnot_ps(compareResults, maxValuesIndex));
++            maxValuesIndex = _mm_or_ps(_mm_and_ps(compareResults, currentIndexes),
++                                       _mm_andnot_ps(compareResults, maxValuesIndex));
+-      maxValues      = _mm_or_ps(_mm_and_ps(compareResults, currentValues),
+-                                 _mm_andnot_ps(compareResults, maxValues));
+-    }
++            maxValues = _mm_or_ps(_mm_and_ps(compareResults, currentValues),
++                                  _mm_andnot_ps(compareResults, maxValues));
++        }
+-    // Calculate the largest value from the remaining 4 points
+-    _mm_store_ps(maxValuesBuffer, maxValues);
+-    _mm_store_ps(maxIndexesBuffer, maxValuesIndex);
+-
+-    for(number = 0; number < 4; number++){
+-      if(maxValuesBuffer[number] > max){
+-      index = maxIndexesBuffer[number];
+-      max = maxValuesBuffer[number];
+-      } else if(maxValuesBuffer[number] == max){
+-        if (index > maxIndexesBuffer[number])
+-          index = maxIndexesBuffer[number];
+-      }
+-    }
++        // Calculate the largest value from the remaining 4 points
++        _mm_store_ps(maxValuesBuffer, maxValues);
++        _mm_store_ps(maxIndexesBuffer, maxValuesIndex);
++
++        for (number = 0; number < 4; number++) {
++            if (maxValuesBuffer[number] > max) {
++                index = maxIndexesBuffer[number];
++                max = maxValuesBuffer[number];
++            } else if (maxValuesBuffer[number] == max) {
++                if (index > maxIndexesBuffer[number])
++                    index = maxIndexesBuffer[number];
++            }
++        }
+-    number = quarterPoints * 4;
+-    for(;number < num_points; number++){
+-      if(src0[number] > max){
+-      index = number;
+-      max = src0[number];
+-      }
++        number = quarterPoints * 4;
++        for (; number < num_points; number++) {
++            if (src0[number] > max) {
++                index = number;
++                max = src0[number];
++            }
++        }
++        target[0] = (uint32_t)index;
+     }
+-    target[0] = (uint32_t)index;
+-  }
+ }
+ #endif /*LV_HAVE_SSE*/
+@@ -204,65 +207,61 @@ volk_32f_index_max_32u_a_sse(uint32_t* target, const float* src0, uint32_t num_p
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void volk_32f_index_max_32u_a_avx(uint32_t* target, const float* src0, uint32_t num_points)
++static inline void
++volk_32f_index_max_32u_a_avx(uint32_t* target, const float* src0, uint32_t num_points)
+ {
+-    if(num_points > 0)
+-        {
+-            uint32_t number = 0;
+-            const uint32_t quarterPoints = num_points / 8;
+-
+-            float* inputPtr = (float*)src0;
+-
+-            __m256 indexIncrementValues = _mm256_set1_ps(8);
+-            __m256 currentIndexes = _mm256_set_ps(-1,-2,-3,-4,-5,-6,-7,-8);
+-
+-            float max = src0[0];
+-            float index = 0;
+-            __m256 maxValues = _mm256_set1_ps(max);
+-            __m256 maxValuesIndex = _mm256_setzero_ps();
+-            __m256 compareResults;
+-            __m256 currentValues;
+-
+-            __VOLK_ATTR_ALIGNED(32) float maxValuesBuffer[8];
+-            __VOLK_ATTR_ALIGNED(32) float maxIndexesBuffer[8];
+-
+-            for(;number < quarterPoints; number++)
+-                {
+-                    currentValues  = _mm256_load_ps(inputPtr); inputPtr += 8;
+-                    currentIndexes = _mm256_add_ps(currentIndexes, indexIncrementValues);
+-                    compareResults = _mm256_cmp_ps(currentValues, maxValues, _CMP_GT_OS);
+-                    maxValuesIndex = _mm256_blendv_ps(maxValuesIndex, currentIndexes, compareResults);
+-                    maxValues      = _mm256_blendv_ps(maxValues, currentValues, compareResults);
+-                }
+-
+-            // Calculate the largest value from the remaining 8 points
+-            _mm256_store_ps(maxValuesBuffer, maxValues);
+-            _mm256_store_ps(maxIndexesBuffer, maxValuesIndex);
+-
+-            for(number = 0; number < 8; number++)
+-                {
+-                    if(maxValuesBuffer[number] > max)
+-                        {
+-                            index = maxIndexesBuffer[number];
+-                            max = maxValuesBuffer[number];
+-                        }
+-                    else if(maxValuesBuffer[number] == max){
+-                      if (index > maxIndexesBuffer[number])
+-                        index = maxIndexesBuffer[number];
+-                    }
+-                }
+-
+-            number = quarterPoints * 8;
+-            for(;number < num_points; number++)
+-                {
+-                    if(src0[number] > max)
+-                        {
+-                            index = number;
+-                            max = src0[number];
+-                        }
+-                }
+-            target[0] = (uint32_t)index;
++    if (num_points > 0) {
++        uint32_t number = 0;
++        const uint32_t quarterPoints = num_points / 8;
++
++        float* inputPtr = (float*)src0;
++
++        __m256 indexIncrementValues = _mm256_set1_ps(8);
++        __m256 currentIndexes = _mm256_set_ps(-1, -2, -3, -4, -5, -6, -7, -8);
++
++        float max = src0[0];
++        float index = 0;
++        __m256 maxValues = _mm256_set1_ps(max);
++        __m256 maxValuesIndex = _mm256_setzero_ps();
++        __m256 compareResults;
++        __m256 currentValues;
++
++        __VOLK_ATTR_ALIGNED(32) float maxValuesBuffer[8];
++        __VOLK_ATTR_ALIGNED(32) float maxIndexesBuffer[8];
++
++        for (; number < quarterPoints; number++) {
++            currentValues = _mm256_load_ps(inputPtr);
++            inputPtr += 8;
++            currentIndexes = _mm256_add_ps(currentIndexes, indexIncrementValues);
++            compareResults = _mm256_cmp_ps(currentValues, maxValues, _CMP_GT_OS);
++            maxValuesIndex =
++                _mm256_blendv_ps(maxValuesIndex, currentIndexes, compareResults);
++            maxValues = _mm256_blendv_ps(maxValues, currentValues, compareResults);
++        }
++
++        // Calculate the largest value from the remaining 8 points
++        _mm256_store_ps(maxValuesBuffer, maxValues);
++        _mm256_store_ps(maxIndexesBuffer, maxValuesIndex);
++
++        for (number = 0; number < 8; number++) {
++            if (maxValuesBuffer[number] > max) {
++                index = maxIndexesBuffer[number];
++                max = maxValuesBuffer[number];
++            } else if (maxValuesBuffer[number] == max) {
++                if (index > maxIndexesBuffer[number])
++                    index = maxIndexesBuffer[number];
++            }
++        }
++
++        number = quarterPoints * 8;
++        for (; number < num_points; number++) {
++            if (src0[number] > max) {
++                index = number;
++                max = src0[number];
++            }
+         }
++        target[0] = (uint32_t)index;
++    }
+ }
+ #endif /*LV_HAVE_AVX*/
+@@ -271,66 +270,63 @@ static inline void volk_32f_index_max_32u_a_avx(uint32_t* target, const float* s
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void volk_32f_index_max_32u_neon(uint32_t* target, const float* src0, uint32_t num_points)
++static inline void
++volk_32f_index_max_32u_neon(uint32_t* target, const float* src0, uint32_t num_points)
+ {
+-    if(num_points > 0)
+-        {
+-            uint32_t number = 0;
+-            const uint32_t quarterPoints = num_points / 4;
+-
+-            float* inputPtr = (float*)src0;
+-            float32x4_t indexIncrementValues = vdupq_n_f32(4);
+-            __VOLK_ATTR_ALIGNED(16) float currentIndexes_float[4] = { -4.0f, -3.0f, -2.0f, -1.0f };
+-            float32x4_t currentIndexes = vld1q_f32(currentIndexes_float);
+-
+-            float max = src0[0];
+-            float index = 0;
+-            float32x4_t maxValues = vdupq_n_f32(max);
+-            uint32x4_t maxValuesIndex = vmovq_n_u32(0);
+-            uint32x4_t compareResults;
+-            uint32x4_t currentIndexes_u;
+-            float32x4_t currentValues;
+-
+-            __VOLK_ATTR_ALIGNED(16) float maxValuesBuffer[4];
+-            __VOLK_ATTR_ALIGNED(16) float maxIndexesBuffer[4];
+-
+-            for(;number < quarterPoints; number++)
+-                {
+-                    currentValues    = vld1q_f32(inputPtr); inputPtr += 4;
+-                    currentIndexes   = vaddq_f32(currentIndexes, indexIncrementValues);
+-                    currentIndexes_u = vcvtq_u32_f32(currentIndexes);
+-                    compareResults   = vcleq_f32(currentValues, maxValues);
+-                    maxValuesIndex   = vorrq_u32( vandq_u32( compareResults, maxValuesIndex ), vbicq_u32(currentIndexes_u, compareResults) );
+-                    maxValues        = vmaxq_f32(currentValues, maxValues);
+-                }
+-
+-            // Calculate the largest value from the remaining 4 points
+-            vst1q_f32(maxValuesBuffer, maxValues);
+-            vst1q_f32(maxIndexesBuffer, vcvtq_f32_u32(maxValuesIndex));
+-            for(number = 0; number < 4; number++)
+-                {
+-                    if(maxValuesBuffer[number] > max)
+-                        {
+-                            index = maxIndexesBuffer[number];
+-                            max = maxValuesBuffer[number];
+-                        }
+-                    else if(maxValues[number] == max){
+-                      if (index > maxIndexesBuffer[number])
+-                        index = maxIndexesBuffer[number];
+-                    }
+-                }
+-
+-            number = quarterPoints * 4;
+-            for(;number < num_points; number++)
+-                {
+-                    if(src0[number] > max)
+-                        {
+-                            index = number;
+-                            max = src0[number];
+-                        }
+-                }
+-            target[0] = (uint32_t)index;
++    if (num_points > 0) {
++        uint32_t number = 0;
++        const uint32_t quarterPoints = num_points / 4;
++
++        float* inputPtr = (float*)src0;
++        float32x4_t indexIncrementValues = vdupq_n_f32(4);
++        __VOLK_ATTR_ALIGNED(16)
++        float currentIndexes_float[4] = { -4.0f, -3.0f, -2.0f, -1.0f };
++        float32x4_t currentIndexes = vld1q_f32(currentIndexes_float);
++
++        float max = src0[0];
++        float index = 0;
++        float32x4_t maxValues = vdupq_n_f32(max);
++        uint32x4_t maxValuesIndex = vmovq_n_u32(0);
++        uint32x4_t compareResults;
++        uint32x4_t currentIndexes_u;
++        float32x4_t currentValues;
++
++        __VOLK_ATTR_ALIGNED(16) float maxValuesBuffer[4];
++        __VOLK_ATTR_ALIGNED(16) float maxIndexesBuffer[4];
++
++        for (; number < quarterPoints; number++) {
++            currentValues = vld1q_f32(inputPtr);
++            inputPtr += 4;
++            currentIndexes = vaddq_f32(currentIndexes, indexIncrementValues);
++            currentIndexes_u = vcvtq_u32_f32(currentIndexes);
++            compareResults = vcleq_f32(currentValues, maxValues);
++            maxValuesIndex = vorrq_u32(vandq_u32(compareResults, maxValuesIndex),
++                                       vbicq_u32(currentIndexes_u, compareResults));
++            maxValues = vmaxq_f32(currentValues, maxValues);
++        }
++
++        // Calculate the largest value from the remaining 4 points
++        vst1q_f32(maxValuesBuffer, maxValues);
++        vst1q_f32(maxIndexesBuffer, vcvtq_f32_u32(maxValuesIndex));
++        for (number = 0; number < 4; number++) {
++            if (maxValuesBuffer[number] > max) {
++                index = maxIndexesBuffer[number];
++                max = maxValuesBuffer[number];
++            } else if (maxValues[number] == max) {
++                if (index > maxIndexesBuffer[number])
++                    index = maxIndexesBuffer[number];
++            }
++        }
++
++        number = quarterPoints * 4;
++        for (; number < num_points; number++) {
++            if (src0[number] > max) {
++                index = number;
++                max = src0[number];
++            }
+         }
++        target[0] = (uint32_t)index;
++    }
+ }
+ #endif /*LV_HAVE_NEON*/
+@@ -341,20 +337,20 @@ static inline void volk_32f_index_max_32u_neon(uint32_t* target, const float* sr
+ static inline void
+ volk_32f_index_max_32u_generic(uint32_t* target, const float* src0, uint32_t num_points)
+ {
+-  if(num_points > 0){
+-    float max = src0[0];
+-    uint32_t index = 0;
++    if (num_points > 0) {
++        float max = src0[0];
++        uint32_t index = 0;
+-    uint32_t i = 1;
++        uint32_t i = 1;
+-    for(; i < num_points; ++i) {
+-      if(src0[i] > max){
+-        index = i;
+-        max = src0[i];
+-      }
++        for (; i < num_points; ++i) {
++            if (src0[i] > max) {
++                index = i;
++                max = src0[i];
++            }
++        }
++        target[0] = index;
+     }
+-    target[0] = index;
+-  }
+ }
+ #endif /*LV_HAVE_GENERIC*/
+@@ -366,209 +362,195 @@ volk_32f_index_max_32u_generic(uint32_t* target, const float* src0, uint32_t num
+ #ifndef INCLUDED_volk_32f_index_max_32u_u_H
+ #define INCLUDED_volk_32f_index_max_32u_u_H
+-#include <volk/volk_common.h>
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+ #include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void volk_32f_index_max_32u_u_avx(uint32_t* target, const float* src0, uint32_t num_points)
++static inline void
++volk_32f_index_max_32u_u_avx(uint32_t* target, const float* src0, uint32_t num_points)
+ {
+-    if(num_points > 0)
+-        {
+-            uint32_t number = 0;
+-            const uint32_t quarterPoints = num_points / 8;
+-
+-            float* inputPtr = (float*)src0;
+-
+-            __m256 indexIncrementValues = _mm256_set1_ps(8);
+-            __m256 currentIndexes = _mm256_set_ps(-1,-2,-3,-4,-5,-6,-7,-8);
+-
+-            float max = src0[0];
+-            float index = 0;
+-            __m256 maxValues = _mm256_set1_ps(max);
+-            __m256 maxValuesIndex = _mm256_setzero_ps();
+-            __m256 compareResults;
+-            __m256 currentValues;
+-
+-            __VOLK_ATTR_ALIGNED(32) float maxValuesBuffer[8];
+-            __VOLK_ATTR_ALIGNED(32) float maxIndexesBuffer[8];
+-
+-            for(;number < quarterPoints; number++)
+-                {
+-                    currentValues  = _mm256_loadu_ps(inputPtr); inputPtr += 8;
+-                    currentIndexes = _mm256_add_ps(currentIndexes, indexIncrementValues);
+-                    compareResults = _mm256_cmp_ps(currentValues, maxValues, _CMP_GT_OS);
+-                    maxValuesIndex = _mm256_blendv_ps(maxValuesIndex, currentIndexes, compareResults);
+-                    maxValues      = _mm256_blendv_ps(maxValues, currentValues, compareResults);
+-                }
+-
+-            // Calculate the largest value from the remaining 8 points
+-            _mm256_store_ps(maxValuesBuffer, maxValues);
+-            _mm256_store_ps(maxIndexesBuffer, maxValuesIndex);
+-
+-            for(number = 0; number < 8; number++)
+-                {
+-                    if(maxValuesBuffer[number] > max)
+-                        {
+-                            index = maxIndexesBuffer[number];
+-                            max = maxValuesBuffer[number];
+-                        }
+-                    else if(maxValuesBuffer[number] == max){
+-                      if (index > maxIndexesBuffer[number])
+-                        index = maxIndexesBuffer[number];
+-                    }
+-                }
+-
+-            number = quarterPoints * 8;
+-            for(;number < num_points; number++)
+-                {
+-                    if(src0[number] > max)
+-                        {
+-                            index = number;
+-                            max = src0[number];
+-                        }
+-                }
+-            target[0] = (uint32_t)index;
++    if (num_points > 0) {
++        uint32_t number = 0;
++        const uint32_t quarterPoints = num_points / 8;
++
++        float* inputPtr = (float*)src0;
++
++        __m256 indexIncrementValues = _mm256_set1_ps(8);
++        __m256 currentIndexes = _mm256_set_ps(-1, -2, -3, -4, -5, -6, -7, -8);
++
++        float max = src0[0];
++        float index = 0;
++        __m256 maxValues = _mm256_set1_ps(max);
++        __m256 maxValuesIndex = _mm256_setzero_ps();
++        __m256 compareResults;
++        __m256 currentValues;
++
++        __VOLK_ATTR_ALIGNED(32) float maxValuesBuffer[8];
++        __VOLK_ATTR_ALIGNED(32) float maxIndexesBuffer[8];
++
++        for (; number < quarterPoints; number++) {
++            currentValues = _mm256_loadu_ps(inputPtr);
++            inputPtr += 8;
++            currentIndexes = _mm256_add_ps(currentIndexes, indexIncrementValues);
++            compareResults = _mm256_cmp_ps(currentValues, maxValues, _CMP_GT_OS);
++            maxValuesIndex =
++                _mm256_blendv_ps(maxValuesIndex, currentIndexes, compareResults);
++            maxValues = _mm256_blendv_ps(maxValues, currentValues, compareResults);
+         }
++
++        // Calculate the largest value from the remaining 8 points
++        _mm256_store_ps(maxValuesBuffer, maxValues);
++        _mm256_store_ps(maxIndexesBuffer, maxValuesIndex);
++
++        for (number = 0; number < 8; number++) {
++            if (maxValuesBuffer[number] > max) {
++                index = maxIndexesBuffer[number];
++                max = maxValuesBuffer[number];
++            } else if (maxValuesBuffer[number] == max) {
++                if (index > maxIndexesBuffer[number])
++                    index = maxIndexesBuffer[number];
++            }
++        }
++
++        number = quarterPoints * 8;
++        for (; number < num_points; number++) {
++            if (src0[number] > max) {
++                index = number;
++                max = src0[number];
++            }
++        }
++        target[0] = (uint32_t)index;
++    }
+ }
+ #endif /*LV_HAVE_AVX*/
+ #ifdef LV_HAVE_SSE4_1
+-#include<smmintrin.h>
++#include <smmintrin.h>
+-static inline void volk_32f_index_max_32u_u_sse4_1(uint32_t* target, const float* src0, uint32_t num_points)
++static inline void
++volk_32f_index_max_32u_u_sse4_1(uint32_t* target, const float* src0, uint32_t num_points)
+ {
+-    if(num_points > 0)
+-        {
+-            uint32_t number = 0;
+-            const uint32_t quarterPoints = num_points / 4;
+-
+-            float* inputPtr = (float*)src0;
+-
+-            __m128 indexIncrementValues = _mm_set1_ps(4);
+-            __m128 currentIndexes = _mm_set_ps(-1,-2,-3,-4);
+-
+-            float max = src0[0];
+-            float index = 0;
+-            __m128 maxValues = _mm_set1_ps(max);
+-            __m128 maxValuesIndex = _mm_setzero_ps();
+-            __m128 compareResults;
+-            __m128 currentValues;
+-
+-            __VOLK_ATTR_ALIGNED(16) float maxValuesBuffer[4];
+-            __VOLK_ATTR_ALIGNED(16) float maxIndexesBuffer[4];
+-
+-            for(;number < quarterPoints; number++)
+-                {
+-                    currentValues  = _mm_loadu_ps(inputPtr); inputPtr += 4;
+-                    currentIndexes = _mm_add_ps(currentIndexes, indexIncrementValues);
+-                    compareResults = _mm_cmpgt_ps(currentValues, maxValues);
+-                    maxValuesIndex = _mm_blendv_ps(maxValuesIndex, currentIndexes, compareResults);
+-                    maxValues      = _mm_blendv_ps(maxValues, currentValues, compareResults);
+-                }
+-
+-            // Calculate the largest value from the remaining 4 points
+-            _mm_store_ps(maxValuesBuffer, maxValues);
+-            _mm_store_ps(maxIndexesBuffer, maxValuesIndex);
+-
+-            for(number = 0; number < 4; number++)
+-                {
+-                    if(maxValuesBuffer[number] > max)
+-                        {
+-                            index = maxIndexesBuffer[number];
+-                            max = maxValuesBuffer[number];
+-                        }
+-                    else if(maxValuesBuffer[number] == max){
+-                      if (index > maxIndexesBuffer[number])
+-                        index = maxIndexesBuffer[number];
+-                    }
+-                }
+-
+-            number = quarterPoints * 4;
+-            for(;number < num_points; number++)
+-                {
+-                    if(src0[number] > max)
+-                        {
+-                            index = number;
+-                            max = src0[number];
+-                        }
+-                }
+-            target[0] = (uint32_t)index;
++    if (num_points > 0) {
++        uint32_t number = 0;
++        const uint32_t quarterPoints = num_points / 4;
++
++        float* inputPtr = (float*)src0;
++
++        __m128 indexIncrementValues = _mm_set1_ps(4);
++        __m128 currentIndexes = _mm_set_ps(-1, -2, -3, -4);
++
++        float max = src0[0];
++        float index = 0;
++        __m128 maxValues = _mm_set1_ps(max);
++        __m128 maxValuesIndex = _mm_setzero_ps();
++        __m128 compareResults;
++        __m128 currentValues;
++
++        __VOLK_ATTR_ALIGNED(16) float maxValuesBuffer[4];
++        __VOLK_ATTR_ALIGNED(16) float maxIndexesBuffer[4];
++
++        for (; number < quarterPoints; number++) {
++            currentValues = _mm_loadu_ps(inputPtr);
++            inputPtr += 4;
++            currentIndexes = _mm_add_ps(currentIndexes, indexIncrementValues);
++            compareResults = _mm_cmpgt_ps(currentValues, maxValues);
++            maxValuesIndex =
++                _mm_blendv_ps(maxValuesIndex, currentIndexes, compareResults);
++            maxValues = _mm_blendv_ps(maxValues, currentValues, compareResults);
+         }
++
++        // Calculate the largest value from the remaining 4 points
++        _mm_store_ps(maxValuesBuffer, maxValues);
++        _mm_store_ps(maxIndexesBuffer, maxValuesIndex);
++
++        for (number = 0; number < 4; number++) {
++            if (maxValuesBuffer[number] > max) {
++                index = maxIndexesBuffer[number];
++                max = maxValuesBuffer[number];
++            } else if (maxValuesBuffer[number] == max) {
++                if (index > maxIndexesBuffer[number])
++                    index = maxIndexesBuffer[number];
++            }
++        }
++
++        number = quarterPoints * 4;
++        for (; number < num_points; number++) {
++            if (src0[number] > max) {
++                index = number;
++                max = src0[number];
++            }
++        }
++        target[0] = (uint32_t)index;
++    }
+ }
+ #endif /*LV_HAVE_SSE4_1*/
+ #ifdef LV_HAVE_SSE
+-#include<xmmintrin.h>
++#include <xmmintrin.h>
+-static inline void volk_32f_index_max_32u_u_sse(uint32_t* target, const float* src0, uint32_t num_points)
++static inline void
++volk_32f_index_max_32u_u_sse(uint32_t* target, const float* src0, uint32_t num_points)
+ {
+-    if(num_points > 0)
+-        {
+-            uint32_t number = 0;
+-            const uint32_t quarterPoints = num_points / 4;
+-
+-            float* inputPtr = (float*)src0;
+-
+-            __m128 indexIncrementValues = _mm_set1_ps(4);
+-            __m128 currentIndexes = _mm_set_ps(-1,-2,-3,-4);
+-
+-            float max = src0[0];
+-            float index = 0;
+-            __m128 maxValues = _mm_set1_ps(max);
+-            __m128 maxValuesIndex = _mm_setzero_ps();
+-            __m128 compareResults;
+-            __m128 currentValues;
+-
+-            __VOLK_ATTR_ALIGNED(16) float maxValuesBuffer[4];
+-            __VOLK_ATTR_ALIGNED(16) float maxIndexesBuffer[4];
+-
+-            for(;number < quarterPoints; number++)
+-                {
+-                    currentValues  = _mm_loadu_ps(inputPtr); inputPtr += 4;
+-                    currentIndexes = _mm_add_ps(currentIndexes, indexIncrementValues);
+-                    compareResults = _mm_cmpgt_ps(currentValues, maxValues);
+-                    maxValuesIndex = _mm_or_ps(_mm_and_ps(compareResults, currentIndexes),
+-                                               _mm_andnot_ps(compareResults, maxValuesIndex));
+-                    maxValues      = _mm_or_ps(_mm_and_ps(compareResults, currentValues),
+-                                               _mm_andnot_ps(compareResults, maxValues));
+-                }
+-
+-            // Calculate the largest value from the remaining 4 points
+-            _mm_store_ps(maxValuesBuffer, maxValues);
+-            _mm_store_ps(maxIndexesBuffer, maxValuesIndex);
+-
+-            for(number = 0; number < 4; number++)
+-                {
+-                    if(maxValuesBuffer[number] > max)
+-                        {
+-                            index = maxIndexesBuffer[number];
+-                            max = maxValuesBuffer[number];
+-                        }
+-                    else if(maxValuesBuffer[number] == max){
+-                      if (index > maxIndexesBuffer[number])
+-                        index = maxIndexesBuffer[number];
+-                    }
+-                }
+-
+-            number = quarterPoints * 4;
+-            for(;number < num_points; number++)
+-                {
+-                    if(src0[number] > max)
+-                        {
+-                            index = number;
+-                            max = src0[number];
+-                        }
+-                }
+-            target[0] = (uint32_t)index;
++    if (num_points > 0) {
++        uint32_t number = 0;
++        const uint32_t quarterPoints = num_points / 4;
++
++        float* inputPtr = (float*)src0;
++
++        __m128 indexIncrementValues = _mm_set1_ps(4);
++        __m128 currentIndexes = _mm_set_ps(-1, -2, -3, -4);
++
++        float max = src0[0];
++        float index = 0;
++        __m128 maxValues = _mm_set1_ps(max);
++        __m128 maxValuesIndex = _mm_setzero_ps();
++        __m128 compareResults;
++        __m128 currentValues;
++
++        __VOLK_ATTR_ALIGNED(16) float maxValuesBuffer[4];
++        __VOLK_ATTR_ALIGNED(16) float maxIndexesBuffer[4];
++
++        for (; number < quarterPoints; number++) {
++            currentValues = _mm_loadu_ps(inputPtr);
++            inputPtr += 4;
++            currentIndexes = _mm_add_ps(currentIndexes, indexIncrementValues);
++            compareResults = _mm_cmpgt_ps(currentValues, maxValues);
++            maxValuesIndex = _mm_or_ps(_mm_and_ps(compareResults, currentIndexes),
++                                       _mm_andnot_ps(compareResults, maxValuesIndex));
++            maxValues = _mm_or_ps(_mm_and_ps(compareResults, currentValues),
++                                  _mm_andnot_ps(compareResults, maxValues));
+         }
++
++        // Calculate the largest value from the remaining 4 points
++        _mm_store_ps(maxValuesBuffer, maxValues);
++        _mm_store_ps(maxIndexesBuffer, maxValuesIndex);
++
++        for (number = 0; number < 4; number++) {
++            if (maxValuesBuffer[number] > max) {
++                index = maxIndexesBuffer[number];
++                max = maxValuesBuffer[number];
++            } else if (maxValuesBuffer[number] == max) {
++                if (index > maxIndexesBuffer[number])
++                    index = maxIndexesBuffer[number];
++            }
++        }
++
++        number = quarterPoints * 4;
++        for (; number < num_points; number++) {
++            if (src0[number] > max) {
++                index = number;
++                max = src0[number];
++            }
++        }
++        target[0] = (uint32_t)index;
++    }
+ }
+ #endif /*LV_HAVE_SSE*/
+diff --git a/kernels/volk/volk_32f_invsqrt_32f.h b/kernels/volk/volk_32f_invsqrt_32f.h
+index e416321..e545515 100644
+--- a/kernels/volk/volk_32f_invsqrt_32f.h
++++ b/kernels/volk/volk_32f_invsqrt_32f.h
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_invsqrt_32f(float* cVector, const float* aVector, unsigned int num_points)
+- * \endcode
++ * void volk_32f_invsqrt_32f(float* cVector, const float* aVector, unsigned int
++ * num_points) \endcode
+  *
+  * \b Inputs
+  * \li aVector: the input vector of floats.
+@@ -66,27 +66,27 @@
+ #define INCLUDED_volk_32f_invsqrt_32f_a_H
+ #include <inttypes.h>
+-#include <stdio.h>
+ #include <math.h>
++#include <stdio.h>
+ #include <string.h>
+-static inline float
+-Q_rsqrt(float number)
++static inline float Q_rsqrt(float number)
+ {
+-  float x2;
+-  const float threehalfs = 1.5F;
+-  union f32_to_i32 {
+-    int32_t i;
+-    float f;
+-  } u;
+-
+-  x2 = number * 0.5F;
+-  u.f = number;
+-  u.i = 0x5f3759df - ( u.i >> 1 );                   // what the fuck?
+-  u.f = u.f * ( threehalfs - ( x2 * u.f * u.f ) );   // 1st iteration
+-  //u.f  = u.f * ( threehalfs - ( x2 * u.f * u.f ) );   // 2nd iteration, this can be removed
+-
+-  return u.f;
++    float x2;
++    const float threehalfs = 1.5F;
++    union f32_to_i32 {
++        int32_t i;
++        float f;
++    } u;
++
++    x2 = number * 0.5F;
++    u.f = number;
++    u.i = 0x5f3759df - (u.i >> 1);               // what the fuck?
++    u.f = u.f * (threehalfs - (x2 * u.f * u.f)); // 1st iteration
++    // u.f  = u.f * ( threehalfs - ( x2 * u.f * u.f ) );   // 2nd iteration, this can be
++    // removed
++
++    return u.f;
+ }
+ #ifdef LV_HAVE_AVX
+@@ -95,24 +95,23 @@ Q_rsqrt(float number)
+ static inline void
+ volk_32f_invsqrt_32f_a_avx(float* cVector, const float* aVector, unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  __m256 aVal, cVal;
+-  for (; number < eighthPoints; number++) {
+-    aVal = _mm256_load_ps(aPtr);
+-    cVal = _mm256_rsqrt_ps(aVal);
+-    _mm256_store_ps(cPtr, cVal);
+-    aPtr += 8;
+-    cPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++)
+-    *cPtr++ = Q_rsqrt(*aPtr++);
+-
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    __m256 aVal, cVal;
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_load_ps(aPtr);
++        cVal = _mm256_rsqrt_ps(aVal);
++        _mm256_store_ps(cPtr, cVal);
++        aPtr += 8;
++        cPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++)
++        *cPtr++ = Q_rsqrt(*aPtr++);
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -123,29 +122,29 @@ volk_32f_invsqrt_32f_a_avx(float* cVector, const float* aVector, unsigned int nu
+ static inline void
+ volk_32f_invsqrt_32f_a_sse(float* cVector, const float* aVector, unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
+-  __m128 aVal, cVal;
+-  for(;number < quarterPoints; number++){
++    __m128 aVal, cVal;
++    for (; number < quarterPoints; number++) {
+-    aVal = _mm_load_ps(aPtr);
++        aVal = _mm_load_ps(aPtr);
+-    cVal = _mm_rsqrt_ps(aVal);
++        cVal = _mm_rsqrt_ps(aVal);
+-    _mm_store_ps(cPtr,cVal); // Store the results back into the C container
++        _mm_store_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 4;
+-    cPtr += 4;
+-  }
++        aPtr += 4;
++        cPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++) {
+-    *cPtr++ = Q_rsqrt(*aPtr++);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *cPtr++ = Q_rsqrt(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+@@ -156,37 +155,38 @@ volk_32f_invsqrt_32f_a_sse(float* cVector, const float* aVector, unsigned int nu
+ static inline void
+ volk_32f_invsqrt_32f_neon(float* cVector, const float* aVector, unsigned int num_points)
+ {
+-  unsigned int number;
+-  const unsigned int quarter_points = num_points / 4;
+-
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  float32x4_t a_val, c_val;
+-  for (number = 0; number < quarter_points; ++number) {
+-    a_val = vld1q_f32(aPtr);
+-    c_val = vrsqrteq_f32(a_val);
+-    vst1q_f32(cPtr, c_val);
+-    aPtr += 4;
+-    cPtr += 4;
+-  }
+-
+-  for(number=quarter_points * 4;number < num_points; number++)
+-    *cPtr++ = Q_rsqrt(*aPtr++);
++    unsigned int number;
++    const unsigned int quarter_points = num_points / 4;
++
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    float32x4_t a_val, c_val;
++    for (number = 0; number < quarter_points; ++number) {
++        a_val = vld1q_f32(aPtr);
++        c_val = vrsqrteq_f32(a_val);
++        vst1q_f32(cPtr, c_val);
++        aPtr += 4;
++        cPtr += 4;
++    }
++
++    for (number = quarter_points * 4; number < num_points; number++)
++        *cPtr++ = Q_rsqrt(*aPtr++);
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_invsqrt_32f_generic(float* cVector, const float* aVector, unsigned int num_points)
++static inline void volk_32f_invsqrt_32f_generic(float* cVector,
++                                                const float* aVector,
++                                                unsigned int num_points)
+ {
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  unsigned int number = 0;
+-  for(number = 0; number < num_points; number++) {
+-    *cPtr++ = Q_rsqrt(*aPtr++);
+-  }
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    unsigned int number = 0;
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = Q_rsqrt(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -196,24 +196,23 @@ volk_32f_invsqrt_32f_generic(float* cVector, const float* aVector, unsigned int
+ static inline void
+ volk_32f_invsqrt_32f_u_avx(float* cVector, const float* aVector, unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  __m256 aVal, cVal;
+-  for (; number < eighthPoints; number++) {
+-    aVal = _mm256_loadu_ps(aPtr);
+-    cVal = _mm256_rsqrt_ps(aVal);
+-    _mm256_storeu_ps(cPtr, cVal);
+-    aPtr += 8;
+-    cPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++)
+-    *cPtr++ = Q_rsqrt(*aPtr++);
+-
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    __m256 aVal, cVal;
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_loadu_ps(aPtr);
++        cVal = _mm256_rsqrt_ps(aVal);
++        _mm256_storeu_ps(cPtr, cVal);
++        aPtr += 8;
++        cPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++)
++        *cPtr++ = Q_rsqrt(*aPtr++);
+ }
+ #endif /* LV_HAVE_AVX */
+diff --git a/kernels/volk/volk_32f_log2_32f.h b/kernels/volk/volk_32f_log2_32f.h
+index 740f89d..47276d4 100644
+--- a/kernels/volk/volk_32f_log2_32f.h
++++ b/kernels/volk/volk_32f_log2_32f.h
+@@ -92,17 +92,18 @@
+ #ifndef INCLUDED_volk_32f_log2_32f_a_H
+ #define INCLUDED_volk_32f_log2_32f_a_H
+-#include <stdio.h>
+-#include <stdlib.h>
+ #include <inttypes.h>
+ #include <math.h>
++#include <stdio.h>
++#include <stdlib.h>
+ #define LOG_POLY_DEGREE 6
+ // +-Inf -> +-127.0f in order to match the behaviour of the SIMD kernels
+-static inline float log2f_non_ieee(float f) {
+-  float const result = log2f(f);
+-  return isinf(result) ? copysignf(127.0f, result) : result;
++static inline float log2f_non_ieee(float f)
++{
++    float const result = log2f(f);
++    return isinf(result) ? copysignf(127.0f, result) : result;
+ }
+ #ifdef LV_HAVE_GENERIC
+@@ -110,12 +111,12 @@ static inline float log2f_non_ieee(float f) {
+ static inline void
+ volk_32f_log2_32f_generic(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-  unsigned int number = 0;
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++    unsigned int number = 0;
+-  for(number = 0; number < num_points; number++)
+-    *bPtr++ = log2f_non_ieee(*aPtr++);
++    for (number = 0; number < num_points; number++)
++        *bPtr++ = log2f_non_ieee(*aPtr++);
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -123,56 +124,86 @@ volk_32f_log2_32f_generic(float* bVector, const float* aVector, unsigned int num
+ #include <immintrin.h>
+ #define POLY0_FMAAVX2(x, c0) _mm256_set1_ps(c0)
+-#define POLY1_FMAAVX2(x, c0, c1) _mm256_fmadd_ps(POLY0_FMAAVX2(x, c1), x, _mm256_set1_ps(c0))
+-#define POLY2_FMAAVX2(x, c0, c1, c2) _mm256_fmadd_ps(POLY1_FMAAVX2(x, c1, c2), x, _mm256_set1_ps(c0))
+-#define POLY3_FMAAVX2(x, c0, c1, c2, c3) _mm256_fmadd_ps(POLY2_FMAAVX2(x, c1, c2, c3), x, _mm256_set1_ps(c0))
+-#define POLY4_FMAAVX2(x, c0, c1, c2, c3, c4) _mm256_fmadd_ps(POLY3_FMAAVX2(x, c1, c2, c3, c4), x, _mm256_set1_ps(c0))
+-#define POLY5_FMAAVX2(x, c0, c1, c2, c3, c4, c5) _mm256_fmadd_ps(POLY4_FMAAVX2(x, c1, c2, c3, c4, c5), x, _mm256_set1_ps(c0))
+-
+-static inline void
+-volk_32f_log2_32f_a_avx2_fma(float* bVector, const float* aVector, unsigned int num_points)
++#define POLY1_FMAAVX2(x, c0, c1) \
++    _mm256_fmadd_ps(POLY0_FMAAVX2(x, c1), x, _mm256_set1_ps(c0))
++#define POLY2_FMAAVX2(x, c0, c1, c2) \
++    _mm256_fmadd_ps(POLY1_FMAAVX2(x, c1, c2), x, _mm256_set1_ps(c0))
++#define POLY3_FMAAVX2(x, c0, c1, c2, c3) \
++    _mm256_fmadd_ps(POLY2_FMAAVX2(x, c1, c2, c3), x, _mm256_set1_ps(c0))
++#define POLY4_FMAAVX2(x, c0, c1, c2, c3, c4) \
++    _mm256_fmadd_ps(POLY3_FMAAVX2(x, c1, c2, c3, c4), x, _mm256_set1_ps(c0))
++#define POLY5_FMAAVX2(x, c0, c1, c2, c3, c4, c5) \
++    _mm256_fmadd_ps(POLY4_FMAAVX2(x, c1, c2, c3, c4, c5), x, _mm256_set1_ps(c0))
++
++static inline void volk_32f_log2_32f_a_avx2_fma(float* bVector,
++                                                const float* aVector,
++                                                unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  __m256 aVal, bVal, mantissa, frac, leadingOne;
+-  __m256i bias, exp;
++    __m256 aVal, bVal, mantissa, frac, leadingOne;
++    __m256i bias, exp;
+-  for(;number < eighthPoints; number++){
++    for (; number < eighthPoints; number++) {
+-    aVal = _mm256_load_ps(aPtr);
+-    bias = _mm256_set1_epi32(127);
+-    leadingOne = _mm256_set1_ps(1.0f);
+-    exp = _mm256_sub_epi32(_mm256_srli_epi32(_mm256_and_si256(_mm256_castps_si256(aVal), _mm256_set1_epi32(0x7f800000)), 23), bias);
+-    bVal = _mm256_cvtepi32_ps(exp);
++        aVal = _mm256_load_ps(aPtr);
++        bias = _mm256_set1_epi32(127);
++        leadingOne = _mm256_set1_ps(1.0f);
++        exp = _mm256_sub_epi32(
++            _mm256_srli_epi32(_mm256_and_si256(_mm256_castps_si256(aVal),
++                                               _mm256_set1_epi32(0x7f800000)),
++                              23),
++            bias);
++        bVal = _mm256_cvtepi32_ps(exp);
+-    // Now to extract mantissa
+-    frac = _mm256_or_ps(leadingOne, _mm256_and_ps(aVal, _mm256_castsi256_ps(_mm256_set1_epi32(0x7fffff))));
++        // Now to extract mantissa
++        frac = _mm256_or_ps(
++            leadingOne,
++            _mm256_and_ps(aVal, _mm256_castsi256_ps(_mm256_set1_epi32(0x7fffff))));
+ #if LOG_POLY_DEGREE == 6
+-    mantissa = POLY5_FMAAVX2( frac, 3.1157899f, -3.3241990f, 2.5988452f, -1.2315303f,  3.1821337e-1f, -3.4436006e-2f);
++        mantissa = POLY5_FMAAVX2(frac,
++                                 3.1157899f,
++                                 -3.3241990f,
++                                 2.5988452f,
++                                 -1.2315303f,
++                                 3.1821337e-1f,
++                                 -3.4436006e-2f);
+ #elif LOG_POLY_DEGREE == 5
+-    mantissa = POLY4_FMAAVX2( frac, 2.8882704548164776201f, -2.52074962577807006663f, 1.48116647521213171641f, -0.465725644288844778798f, 0.0596515482674574969533f);
++        mantissa = POLY4_FMAAVX2(frac,
++                                 2.8882704548164776201f,
++                                 -2.52074962577807006663f,
++                                 1.48116647521213171641f,
++                                 -0.465725644288844778798f,
++                                 0.0596515482674574969533f);
+ #elif LOG_POLY_DEGREE == 4
+-    mantissa = POLY3_FMAAVX2( frac, 2.61761038894603480148f, -1.75647175389045657003f, 0.688243882994381274313f, -0.107254423828329604454f);
++        mantissa = POLY3_FMAAVX2(frac,
++                                 2.61761038894603480148f,
++                                 -1.75647175389045657003f,
++                                 0.688243882994381274313f,
++                                 -0.107254423828329604454f);
+ #elif LOG_POLY_DEGREE == 3
+-    mantissa = POLY2_FMAAVX2( frac, 2.28330284476918490682f, -1.04913055217340124191f, 0.204446009836232697516f);
++        mantissa = POLY2_FMAAVX2(frac,
++                                 2.28330284476918490682f,
++                                 -1.04913055217340124191f,
++                                 0.204446009836232697516f);
+ #else
+ #error
+ #endif
+-    bVal = _mm256_fmadd_ps(mantissa, _mm256_sub_ps(frac, leadingOne), bVal);
+-    _mm256_store_ps(bPtr, bVal);
++        bVal = _mm256_fmadd_ps(mantissa, _mm256_sub_ps(frac, leadingOne), bVal);
++        _mm256_store_ps(bPtr, bVal);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
++        aPtr += 8;
++        bPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  volk_32f_log2_32f_generic(bPtr, aPtr, num_points-number);
++    number = eighthPoints * 8;
++    volk_32f_log2_32f_generic(bPtr, aPtr, num_points - number);
+ }
+ #endif /* LV_HAVE_AVX2 && LV_HAVE_FMA for aligned */
+@@ -181,56 +212,86 @@ volk_32f_log2_32f_a_avx2_fma(float* bVector, const float* aVector, unsigned int
+ #include <immintrin.h>
+ #define POLY0_AVX2(x, c0) _mm256_set1_ps(c0)
+-#define POLY1_AVX2(x, c0, c1) _mm256_add_ps(_mm256_mul_ps(POLY0_AVX2(x, c1), x), _mm256_set1_ps(c0))
+-#define POLY2_AVX2(x, c0, c1, c2) _mm256_add_ps(_mm256_mul_ps(POLY1_AVX2(x, c1, c2), x), _mm256_set1_ps(c0))
+-#define POLY3_AVX2(x, c0, c1, c2, c3) _mm256_add_ps(_mm256_mul_ps(POLY2_AVX2(x, c1, c2, c3), x), _mm256_set1_ps(c0))
+-#define POLY4_AVX2(x, c0, c1, c2, c3, c4) _mm256_add_ps(_mm256_mul_ps(POLY3_AVX2(x, c1, c2, c3, c4), x), _mm256_set1_ps(c0))
+-#define POLY5_AVX2(x, c0, c1, c2, c3, c4, c5) _mm256_add_ps(_mm256_mul_ps(POLY4_AVX2(x, c1, c2, c3, c4, c5), x), _mm256_set1_ps(c0))
++#define POLY1_AVX2(x, c0, c1) \
++    _mm256_add_ps(_mm256_mul_ps(POLY0_AVX2(x, c1), x), _mm256_set1_ps(c0))
++#define POLY2_AVX2(x, c0, c1, c2) \
++    _mm256_add_ps(_mm256_mul_ps(POLY1_AVX2(x, c1, c2), x), _mm256_set1_ps(c0))
++#define POLY3_AVX2(x, c0, c1, c2, c3) \
++    _mm256_add_ps(_mm256_mul_ps(POLY2_AVX2(x, c1, c2, c3), x), _mm256_set1_ps(c0))
++#define POLY4_AVX2(x, c0, c1, c2, c3, c4) \
++    _mm256_add_ps(_mm256_mul_ps(POLY3_AVX2(x, c1, c2, c3, c4), x), _mm256_set1_ps(c0))
++#define POLY5_AVX2(x, c0, c1, c2, c3, c4, c5) \
++    _mm256_add_ps(_mm256_mul_ps(POLY4_AVX2(x, c1, c2, c3, c4, c5), x), _mm256_set1_ps(c0))
+ static inline void
+ volk_32f_log2_32f_a_avx2(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  __m256 aVal, bVal, mantissa, frac, leadingOne;
+-  __m256i bias, exp;
++    __m256 aVal, bVal, mantissa, frac, leadingOne;
++    __m256i bias, exp;
+-  for(;number < eighthPoints; number++){
++    for (; number < eighthPoints; number++) {
+-    aVal = _mm256_load_ps(aPtr);
+-    bias = _mm256_set1_epi32(127);
+-    leadingOne = _mm256_set1_ps(1.0f);
+-    exp = _mm256_sub_epi32(_mm256_srli_epi32(_mm256_and_si256(_mm256_castps_si256(aVal), _mm256_set1_epi32(0x7f800000)), 23), bias);
+-    bVal = _mm256_cvtepi32_ps(exp);
++        aVal = _mm256_load_ps(aPtr);
++        bias = _mm256_set1_epi32(127);
++        leadingOne = _mm256_set1_ps(1.0f);
++        exp = _mm256_sub_epi32(
++            _mm256_srli_epi32(_mm256_and_si256(_mm256_castps_si256(aVal),
++                                               _mm256_set1_epi32(0x7f800000)),
++                              23),
++            bias);
++        bVal = _mm256_cvtepi32_ps(exp);
+-    // Now to extract mantissa
+-    frac = _mm256_or_ps(leadingOne, _mm256_and_ps(aVal, _mm256_castsi256_ps(_mm256_set1_epi32(0x7fffff))));
++        // Now to extract mantissa
++        frac = _mm256_or_ps(
++            leadingOne,
++            _mm256_and_ps(aVal, _mm256_castsi256_ps(_mm256_set1_epi32(0x7fffff))));
+ #if LOG_POLY_DEGREE == 6
+-    mantissa = POLY5_AVX2( frac, 3.1157899f, -3.3241990f, 2.5988452f, -1.2315303f,  3.1821337e-1f, -3.4436006e-2f);
++        mantissa = POLY5_AVX2(frac,
++                              3.1157899f,
++                              -3.3241990f,
++                              2.5988452f,
++                              -1.2315303f,
++                              3.1821337e-1f,
++                              -3.4436006e-2f);
+ #elif LOG_POLY_DEGREE == 5
+-    mantissa = POLY4_AVX2( frac, 2.8882704548164776201f, -2.52074962577807006663f, 1.48116647521213171641f, -0.465725644288844778798f, 0.0596515482674574969533f);
++        mantissa = POLY4_AVX2(frac,
++                              2.8882704548164776201f,
++                              -2.52074962577807006663f,
++                              1.48116647521213171641f,
++                              -0.465725644288844778798f,
++                              0.0596515482674574969533f);
+ #elif LOG_POLY_DEGREE == 4
+-    mantissa = POLY3_AVX2( frac, 2.61761038894603480148f, -1.75647175389045657003f, 0.688243882994381274313f, -0.107254423828329604454f);
++        mantissa = POLY3_AVX2(frac,
++                              2.61761038894603480148f,
++                              -1.75647175389045657003f,
++                              0.688243882994381274313f,
++                              -0.107254423828329604454f);
+ #elif LOG_POLY_DEGREE == 3
+-    mantissa = POLY2_AVX2( frac, 2.28330284476918490682f, -1.04913055217340124191f, 0.204446009836232697516f);
++        mantissa = POLY2_AVX2(frac,
++                              2.28330284476918490682f,
++                              -1.04913055217340124191f,
++                              0.204446009836232697516f);
+ #else
+ #error
+ #endif
+-    bVal = _mm256_add_ps(_mm256_mul_ps(mantissa, _mm256_sub_ps(frac, leadingOne)), bVal);
+-    _mm256_store_ps(bPtr, bVal);
++        bVal =
++            _mm256_add_ps(_mm256_mul_ps(mantissa, _mm256_sub_ps(frac, leadingOne)), bVal);
++        _mm256_store_ps(bPtr, bVal);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
++        aPtr += 8;
++        bPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  volk_32f_log2_32f_generic(bPtr, aPtr, num_points-number);
++    number = eighthPoints * 8;
++    volk_32f_log2_32f_generic(bPtr, aPtr, num_points - number);
+ }
+ #endif /* LV_HAVE_AVX2 for aligned */
+@@ -241,54 +302,79 @@ volk_32f_log2_32f_a_avx2(float* bVector, const float* aVector, unsigned int num_
+ #define POLY0(x, c0) _mm_set1_ps(c0)
+ #define POLY1(x, c0, c1) _mm_add_ps(_mm_mul_ps(POLY0(x, c1), x), _mm_set1_ps(c0))
+ #define POLY2(x, c0, c1, c2) _mm_add_ps(_mm_mul_ps(POLY1(x, c1, c2), x), _mm_set1_ps(c0))
+-#define POLY3(x, c0, c1, c2, c3) _mm_add_ps(_mm_mul_ps(POLY2(x, c1, c2, c3), x), _mm_set1_ps(c0))
+-#define POLY4(x, c0, c1, c2, c3, c4) _mm_add_ps(_mm_mul_ps(POLY3(x, c1, c2, c3, c4), x), _mm_set1_ps(c0))
+-#define POLY5(x, c0, c1, c2, c3, c4, c5) _mm_add_ps(_mm_mul_ps(POLY4(x, c1, c2, c3, c4, c5), x), _mm_set1_ps(c0))
++#define POLY3(x, c0, c1, c2, c3) \
++    _mm_add_ps(_mm_mul_ps(POLY2(x, c1, c2, c3), x), _mm_set1_ps(c0))
++#define POLY4(x, c0, c1, c2, c3, c4) \
++    _mm_add_ps(_mm_mul_ps(POLY3(x, c1, c2, c3, c4), x), _mm_set1_ps(c0))
++#define POLY5(x, c0, c1, c2, c3, c4, c5) \
++    _mm_add_ps(_mm_mul_ps(POLY4(x, c1, c2, c3, c4, c5), x), _mm_set1_ps(c0))
+ static inline void
+ volk_32f_log2_32f_a_sse4_1(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  __m128 aVal, bVal, mantissa, frac, leadingOne;
+-  __m128i bias, exp;
++    __m128 aVal, bVal, mantissa, frac, leadingOne;
++    __m128i bias, exp;
+-  for(;number < quarterPoints; number++){
++    for (; number < quarterPoints; number++) {
+-    aVal = _mm_load_ps(aPtr);
+-    bias = _mm_set1_epi32(127);
+-    leadingOne = _mm_set1_ps(1.0f);
+-    exp = _mm_sub_epi32(_mm_srli_epi32(_mm_and_si128(_mm_castps_si128(aVal), _mm_set1_epi32(0x7f800000)), 23), bias);
+-    bVal = _mm_cvtepi32_ps(exp);
++        aVal = _mm_load_ps(aPtr);
++        bias = _mm_set1_epi32(127);
++        leadingOne = _mm_set1_ps(1.0f);
++        exp = _mm_sub_epi32(
++            _mm_srli_epi32(
++                _mm_and_si128(_mm_castps_si128(aVal), _mm_set1_epi32(0x7f800000)), 23),
++            bias);
++        bVal = _mm_cvtepi32_ps(exp);
+-    // Now to extract mantissa
+-    frac = _mm_or_ps(leadingOne, _mm_and_ps(aVal, _mm_castsi128_ps(_mm_set1_epi32(0x7fffff))));
++        // Now to extract mantissa
++        frac = _mm_or_ps(leadingOne,
++                         _mm_and_ps(aVal, _mm_castsi128_ps(_mm_set1_epi32(0x7fffff))));
+ #if LOG_POLY_DEGREE == 6
+-    mantissa = POLY5( frac, 3.1157899f, -3.3241990f, 2.5988452f, -1.2315303f,  3.1821337e-1f, -3.4436006e-2f);
++        mantissa = POLY5(frac,
++                         3.1157899f,
++                         -3.3241990f,
++                         2.5988452f,
++                         -1.2315303f,
++                         3.1821337e-1f,
++                         -3.4436006e-2f);
+ #elif LOG_POLY_DEGREE == 5
+-    mantissa = POLY4( frac, 2.8882704548164776201f, -2.52074962577807006663f, 1.48116647521213171641f, -0.465725644288844778798f, 0.0596515482674574969533f);
++        mantissa = POLY4(frac,
++                         2.8882704548164776201f,
++                         -2.52074962577807006663f,
++                         1.48116647521213171641f,
++                         -0.465725644288844778798f,
++                         0.0596515482674574969533f);
+ #elif LOG_POLY_DEGREE == 4
+-    mantissa = POLY3( frac, 2.61761038894603480148f, -1.75647175389045657003f, 0.688243882994381274313f, -0.107254423828329604454f);
++        mantissa = POLY3(frac,
++                         2.61761038894603480148f,
++                         -1.75647175389045657003f,
++                         0.688243882994381274313f,
++                         -0.107254423828329604454f);
+ #elif LOG_POLY_DEGREE == 3
+-    mantissa = POLY2( frac, 2.28330284476918490682f, -1.04913055217340124191f, 0.204446009836232697516f);
++        mantissa = POLY2(frac,
++                         2.28330284476918490682f,
++                         -1.04913055217340124191f,
++                         0.204446009836232697516f);
+ #else
+ #error
+ #endif
+-    bVal = _mm_add_ps(bVal, _mm_mul_ps(mantissa, _mm_sub_ps(frac, leadingOne)));
+-    _mm_store_ps(bPtr, bVal);
++        bVal = _mm_add_ps(bVal, _mm_mul_ps(mantissa, _mm_sub_ps(frac, leadingOne)));
++        _mm_store_ps(bPtr, bVal);
+-    aPtr += 4;
+-    bPtr += 4;
+-  }
++        aPtr += 4;
++        bPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  volk_32f_log2_32f_generic(bPtr, aPtr, num_points-number);
++    number = quarterPoints * 4;
++    volk_32f_log2_32f_generic(bPtr, aPtr, num_points - number);
+ }
+ #endif /* LV_HAVE_SSE4_1 for aligned */
+@@ -297,91 +383,91 @@ volk_32f_log2_32f_a_sse4_1(float* bVector, const float* aVector, unsigned int nu
+ #include <arm_neon.h>
+ /* these macros allow us to embed logs in other kernels */
+-#define VLOG2Q_NEON_PREAMBLE()                                  \
+-  int32x4_t one = vdupq_n_s32(0x000800000);                     \
+-  /* minimax polynomial */                                      \
+-  float32x4_t p0 = vdupq_n_f32(-3.0400402727048585);            \
+-  float32x4_t p1 = vdupq_n_f32(6.1129631282966113);             \
+-  float32x4_t p2 = vdupq_n_f32(-5.3419892024633207);            \
+-  float32x4_t p3 = vdupq_n_f32(3.2865287703753912);             \
+-  float32x4_t p4 = vdupq_n_f32(-1.2669182593441635);            \
+-  float32x4_t p5 = vdupq_n_f32(0.2751487703421256);             \
+-  float32x4_t p6 = vdupq_n_f32(-0.0256910888150985);            \
+-  int32x4_t exp_mask = vdupq_n_s32(0x7f800000);                 \
+-  int32x4_t sig_mask = vdupq_n_s32(0x007fffff);                 \
+-  int32x4_t exp_bias = vdupq_n_s32(127);
+-
+-
+-#define VLOG2Q_NEON_F32(log2_approx, aval)                              \
+-  int32x4_t exponent_i = vandq_s32(aval, exp_mask);                     \
+-  int32x4_t significand_i = vandq_s32(aval, sig_mask);                  \
+-  exponent_i = vshrq_n_s32(exponent_i, 23);                             \
+-                                                                        \
+-  /* extract the exponent and significand                               \
+-     we can treat this as fixed point to save ~9% on the                \
+-     conversion + float add */                                          \
+-  significand_i = vorrq_s32(one, significand_i);                        \
+-  float32x4_t significand_f = vcvtq_n_f32_s32(significand_i,23);        \
+-  /* debias the exponent and convert to float */                        \
+-  exponent_i = vsubq_s32(exponent_i, exp_bias);                         \
+-  float32x4_t exponent_f = vcvtq_f32_s32(exponent_i);                   \
+-                                                                        \
+-  /* put the significand through a polynomial fit of log2(x) [1,2]      \
+-     add the result to the exponent */                                  \
+-  log2_approx = vaddq_f32(exponent_f, p0); /* p0 */                     \
+-  float32x4_t tmp1 = vmulq_f32(significand_f, p1); /* p1 * x */         \
+-  log2_approx = vaddq_f32(log2_approx, tmp1);                           \
+-  float32x4_t sig_2 = vmulq_f32(significand_f, significand_f); /* x^2 */ \
+-  tmp1 = vmulq_f32(sig_2, p2); /* p2 * x^2 */                           \
+-  log2_approx = vaddq_f32(log2_approx, tmp1);                           \
+-                                                                        \
+-  float32x4_t sig_3 = vmulq_f32(sig_2, significand_f); /* x^3 */        \
+-  tmp1 = vmulq_f32(sig_3, p3); /* p3 * x^3 */                           \
+-  log2_approx = vaddq_f32(log2_approx, tmp1);                           \
+-  float32x4_t sig_4 = vmulq_f32(sig_2, sig_2); /* x^4 */                \
+-  tmp1 = vmulq_f32(sig_4, p4); /* p4 * x^4 */                           \
+-  log2_approx = vaddq_f32(log2_approx, tmp1);                           \
+-  float32x4_t sig_5 = vmulq_f32(sig_3, sig_2); /* x^5 */                \
+-  tmp1 = vmulq_f32(sig_5, p5); /* p5 * x^5 */                           \
+-  log2_approx = vaddq_f32(log2_approx, tmp1);                           \
+-  float32x4_t sig_6 = vmulq_f32(sig_3, sig_3); /* x^6 */                \
+-  tmp1 = vmulq_f32(sig_6, p6); /* p6 * x^6 */                           \
+-  log2_approx = vaddq_f32(log2_approx, tmp1);
++#define VLOG2Q_NEON_PREAMBLE()                         \
++    int32x4_t one = vdupq_n_s32(0x000800000);          \
++    /* minimax polynomial */                           \
++    float32x4_t p0 = vdupq_n_f32(-3.0400402727048585); \
++    float32x4_t p1 = vdupq_n_f32(6.1129631282966113);  \
++    float32x4_t p2 = vdupq_n_f32(-5.3419892024633207); \
++    float32x4_t p3 = vdupq_n_f32(3.2865287703753912);  \
++    float32x4_t p4 = vdupq_n_f32(-1.2669182593441635); \
++    float32x4_t p5 = vdupq_n_f32(0.2751487703421256);  \
++    float32x4_t p6 = vdupq_n_f32(-0.0256910888150985); \
++    int32x4_t exp_mask = vdupq_n_s32(0x7f800000);      \
++    int32x4_t sig_mask = vdupq_n_s32(0x007fffff);      \
++    int32x4_t exp_bias = vdupq_n_s32(127);
++
++
++#define VLOG2Q_NEON_F32(log2_approx, aval)                                      \
++    int32x4_t exponent_i = vandq_s32(aval, exp_mask);                           \
++    int32x4_t significand_i = vandq_s32(aval, sig_mask);                        \
++    exponent_i = vshrq_n_s32(exponent_i, 23);                                   \
++                                                                                \
++    /* extract the exponent and significand                                     \
++       we can treat this as fixed point to save ~9% on the                      \
++       conversion + float add */                                                \
++    significand_i = vorrq_s32(one, significand_i);                              \
++    float32x4_t significand_f = vcvtq_n_f32_s32(significand_i, 23);             \
++    /* debias the exponent and convert to float */                              \
++    exponent_i = vsubq_s32(exponent_i, exp_bias);                               \
++    float32x4_t exponent_f = vcvtq_f32_s32(exponent_i);                         \
++                                                                                \
++    /* put the significand through a polynomial fit of log2(x) [1,2]            \
++       add the result to the exponent */                                        \
++    log2_approx = vaddq_f32(exponent_f, p0);         /* p0 */                   \
++    float32x4_t tmp1 = vmulq_f32(significand_f, p1); /* p1 * x */               \
++    log2_approx = vaddq_f32(log2_approx, tmp1);                                 \
++    float32x4_t sig_2 = vmulq_f32(significand_f, significand_f); /* x^2 */      \
++    tmp1 = vmulq_f32(sig_2, p2);                                 /* p2 * x^2 */ \
++    log2_approx = vaddq_f32(log2_approx, tmp1);                                 \
++                                                                                \
++    float32x4_t sig_3 = vmulq_f32(sig_2, significand_f); /* x^3 */              \
++    tmp1 = vmulq_f32(sig_3, p3);                         /* p3 * x^3 */         \
++    log2_approx = vaddq_f32(log2_approx, tmp1);                                 \
++    float32x4_t sig_4 = vmulq_f32(sig_2, sig_2); /* x^4 */                      \
++    tmp1 = vmulq_f32(sig_4, p4);                 /* p4 * x^4 */                 \
++    log2_approx = vaddq_f32(log2_approx, tmp1);                                 \
++    float32x4_t sig_5 = vmulq_f32(sig_3, sig_2); /* x^5 */                      \
++    tmp1 = vmulq_f32(sig_5, p5);                 /* p5 * x^5 */                 \
++    log2_approx = vaddq_f32(log2_approx, tmp1);                                 \
++    float32x4_t sig_6 = vmulq_f32(sig_3, sig_3); /* x^6 */                      \
++    tmp1 = vmulq_f32(sig_6, p6);                 /* p6 * x^6 */                 \
++    log2_approx = vaddq_f32(log2_approx, tmp1);
+ static inline void
+ volk_32f_log2_32f_neon(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-  unsigned int number;
+-  const unsigned int quarterPoints = num_points / 4;
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++    unsigned int number;
++    const unsigned int quarterPoints = num_points / 4;
+-  int32x4_t aval;
+-  float32x4_t log2_approx;
++    int32x4_t aval;
++    float32x4_t log2_approx;
+-  VLOG2Q_NEON_PREAMBLE()
+-  // lms
+-  //p0 = vdupq_n_f32(-1.649132280361871);
+-  //p1 = vdupq_n_f32(1.995047138579499);
+-  //p2 = vdupq_n_f32(-0.336914839219728);
++    VLOG2Q_NEON_PREAMBLE()
++    // lms
++    // p0 = vdupq_n_f32(-1.649132280361871);
++    // p1 = vdupq_n_f32(1.995047138579499);
++    // p2 = vdupq_n_f32(-0.336914839219728);
+-  // keep in mind a single precision float is represented as
+-  //   (-1)^sign * 2^exp * 1.significand, so the log2 is
+-  // log2(2^exp * sig) = exponent + log2(1 + significand/(1<<23)
+-  for(number = 0; number < quarterPoints; ++number){
+-    // load float in to an int register without conversion
+-    aval = vld1q_s32((int*)aPtr);
++    // keep in mind a single precision float is represented as
++    //   (-1)^sign * 2^exp * 1.significand, so the log2 is
++    // log2(2^exp * sig) = exponent + log2(1 + significand/(1<<23)
++    for (number = 0; number < quarterPoints; ++number) {
++        // load float in to an int register without conversion
++        aval = vld1q_s32((int*)aPtr);
+-    VLOG2Q_NEON_F32(log2_approx, aval)
++        VLOG2Q_NEON_F32(log2_approx, aval)
+-      vst1q_f32(bPtr, log2_approx);
++        vst1q_f32(bPtr, log2_approx);
+-    aPtr += 4;
+-    bPtr += 4;
+-  }
++        aPtr += 4;
++        bPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  volk_32f_log2_32f_generic(bPtr, aPtr, num_points-number);
++    number = quarterPoints * 4;
++    volk_32f_log2_32f_generic(bPtr, aPtr, num_points - number);
+ }
+ #endif /* LV_HAVE_NEON */
+@@ -398,14 +484,14 @@ volk_32f_log2_32f_neon(float* bVector, const float* aVector, unsigned int num_po
+ static inline void
+ volk_32f_log2_32f_u_generic(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    float const result = log2f(*aPtr++);
+-    *bPtr++ = isinf(result) ? -127.0f : result;
+-  }
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        float const result = log2f(*aPtr++);
++        *bPtr++ = isinf(result) ? -127.0f : result;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -417,54 +503,79 @@ volk_32f_log2_32f_u_generic(float* bVector, const float* aVector, unsigned int n
+ #define POLY0(x, c0) _mm_set1_ps(c0)
+ #define POLY1(x, c0, c1) _mm_add_ps(_mm_mul_ps(POLY0(x, c1), x), _mm_set1_ps(c0))
+ #define POLY2(x, c0, c1, c2) _mm_add_ps(_mm_mul_ps(POLY1(x, c1, c2), x), _mm_set1_ps(c0))
+-#define POLY3(x, c0, c1, c2, c3) _mm_add_ps(_mm_mul_ps(POLY2(x, c1, c2, c3), x), _mm_set1_ps(c0))
+-#define POLY4(x, c0, c1, c2, c3, c4) _mm_add_ps(_mm_mul_ps(POLY3(x, c1, c2, c3, c4), x), _mm_set1_ps(c0))
+-#define POLY5(x, c0, c1, c2, c3, c4, c5) _mm_add_ps(_mm_mul_ps(POLY4(x, c1, c2, c3, c4, c5), x), _mm_set1_ps(c0))
++#define POLY3(x, c0, c1, c2, c3) \
++    _mm_add_ps(_mm_mul_ps(POLY2(x, c1, c2, c3), x), _mm_set1_ps(c0))
++#define POLY4(x, c0, c1, c2, c3, c4) \
++    _mm_add_ps(_mm_mul_ps(POLY3(x, c1, c2, c3, c4), x), _mm_set1_ps(c0))
++#define POLY5(x, c0, c1, c2, c3, c4, c5) \
++    _mm_add_ps(_mm_mul_ps(POLY4(x, c1, c2, c3, c4, c5), x), _mm_set1_ps(c0))
+ static inline void
+ volk_32f_log2_32f_u_sse4_1(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  __m128 aVal, bVal, mantissa, frac, leadingOne;
+-  __m128i bias, exp;
++    __m128 aVal, bVal, mantissa, frac, leadingOne;
++    __m128i bias, exp;
+-  for(;number < quarterPoints; number++){
++    for (; number < quarterPoints; number++) {
+-    aVal = _mm_loadu_ps(aPtr);
+-    bias = _mm_set1_epi32(127);
+-    leadingOne = _mm_set1_ps(1.0f);
+-    exp = _mm_sub_epi32(_mm_srli_epi32(_mm_and_si128(_mm_castps_si128(aVal), _mm_set1_epi32(0x7f800000)), 23), bias);
+-    bVal = _mm_cvtepi32_ps(exp);
++        aVal = _mm_loadu_ps(aPtr);
++        bias = _mm_set1_epi32(127);
++        leadingOne = _mm_set1_ps(1.0f);
++        exp = _mm_sub_epi32(
++            _mm_srli_epi32(
++                _mm_and_si128(_mm_castps_si128(aVal), _mm_set1_epi32(0x7f800000)), 23),
++            bias);
++        bVal = _mm_cvtepi32_ps(exp);
+-    // Now to extract mantissa
+-    frac = _mm_or_ps(leadingOne, _mm_and_ps(aVal, _mm_castsi128_ps(_mm_set1_epi32(0x7fffff))));
++        // Now to extract mantissa
++        frac = _mm_or_ps(leadingOne,
++                         _mm_and_ps(aVal, _mm_castsi128_ps(_mm_set1_epi32(0x7fffff))));
+ #if LOG_POLY_DEGREE == 6
+-    mantissa = POLY5( frac, 3.1157899f, -3.3241990f, 2.5988452f, -1.2315303f,  3.1821337e-1f, -3.4436006e-2f);
++        mantissa = POLY5(frac,
++                         3.1157899f,
++                         -3.3241990f,
++                         2.5988452f,
++                         -1.2315303f,
++                         3.1821337e-1f,
++                         -3.4436006e-2f);
+ #elif LOG_POLY_DEGREE == 5
+-    mantissa = POLY4( frac, 2.8882704548164776201f, -2.52074962577807006663f, 1.48116647521213171641f, -0.465725644288844778798f, 0.0596515482674574969533f);
++        mantissa = POLY4(frac,
++                         2.8882704548164776201f,
++                         -2.52074962577807006663f,
++                         1.48116647521213171641f,
++                         -0.465725644288844778798f,
++                         0.0596515482674574969533f);
+ #elif LOG_POLY_DEGREE == 4
+-    mantissa = POLY3( frac, 2.61761038894603480148f, -1.75647175389045657003f, 0.688243882994381274313f, -0.107254423828329604454f);
++        mantissa = POLY3(frac,
++                         2.61761038894603480148f,
++                         -1.75647175389045657003f,
++                         0.688243882994381274313f,
++                         -0.107254423828329604454f);
+ #elif LOG_POLY_DEGREE == 3
+-    mantissa = POLY2( frac, 2.28330284476918490682f, -1.04913055217340124191f, 0.204446009836232697516f);
++        mantissa = POLY2(frac,
++                         2.28330284476918490682f,
++                         -1.04913055217340124191f,
++                         0.204446009836232697516f);
+ #else
+ #error
+ #endif
+-    bVal = _mm_add_ps(bVal, _mm_mul_ps(mantissa, _mm_sub_ps(frac, leadingOne)));
+-    _mm_storeu_ps(bPtr, bVal);
++        bVal = _mm_add_ps(bVal, _mm_mul_ps(mantissa, _mm_sub_ps(frac, leadingOne)));
++        _mm_storeu_ps(bPtr, bVal);
+-    aPtr += 4;
+-    bPtr += 4;
+-  }
++        aPtr += 4;
++        bPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  volk_32f_log2_32f_u_generic(bPtr, aPtr, num_points-number);
++    number = quarterPoints * 4;
++    volk_32f_log2_32f_u_generic(bPtr, aPtr, num_points - number);
+ }
+ #endif /* LV_HAVE_SSE4_1 for unaligned */
+@@ -473,56 +584,86 @@ volk_32f_log2_32f_u_sse4_1(float* bVector, const float* aVector, unsigned int nu
+ #include <immintrin.h>
+ #define POLY0_FMAAVX2(x, c0) _mm256_set1_ps(c0)
+-#define POLY1_FMAAVX2(x, c0, c1) _mm256_fmadd_ps(POLY0_FMAAVX2(x, c1), x, _mm256_set1_ps(c0))
+-#define POLY2_FMAAVX2(x, c0, c1, c2) _mm256_fmadd_ps(POLY1_FMAAVX2(x, c1, c2), x, _mm256_set1_ps(c0))
+-#define POLY3_FMAAVX2(x, c0, c1, c2, c3) _mm256_fmadd_ps(POLY2_FMAAVX2(x, c1, c2, c3), x, _mm256_set1_ps(c0))
+-#define POLY4_FMAAVX2(x, c0, c1, c2, c3, c4) _mm256_fmadd_ps(POLY3_FMAAVX2(x, c1, c2, c3, c4), x, _mm256_set1_ps(c0))
+-#define POLY5_FMAAVX2(x, c0, c1, c2, c3, c4, c5) _mm256_fmadd_ps(POLY4_FMAAVX2(x, c1, c2, c3, c4, c5), x, _mm256_set1_ps(c0))
+-
+-static inline void
+-volk_32f_log2_32f_u_avx2_fma(float* bVector, const float* aVector, unsigned int num_points)
++#define POLY1_FMAAVX2(x, c0, c1) \
++    _mm256_fmadd_ps(POLY0_FMAAVX2(x, c1), x, _mm256_set1_ps(c0))
++#define POLY2_FMAAVX2(x, c0, c1, c2) \
++    _mm256_fmadd_ps(POLY1_FMAAVX2(x, c1, c2), x, _mm256_set1_ps(c0))
++#define POLY3_FMAAVX2(x, c0, c1, c2, c3) \
++    _mm256_fmadd_ps(POLY2_FMAAVX2(x, c1, c2, c3), x, _mm256_set1_ps(c0))
++#define POLY4_FMAAVX2(x, c0, c1, c2, c3, c4) \
++    _mm256_fmadd_ps(POLY3_FMAAVX2(x, c1, c2, c3, c4), x, _mm256_set1_ps(c0))
++#define POLY5_FMAAVX2(x, c0, c1, c2, c3, c4, c5) \
++    _mm256_fmadd_ps(POLY4_FMAAVX2(x, c1, c2, c3, c4, c5), x, _mm256_set1_ps(c0))
++
++static inline void volk_32f_log2_32f_u_avx2_fma(float* bVector,
++                                                const float* aVector,
++                                                unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  __m256 aVal, bVal, mantissa, frac, leadingOne;
+-  __m256i bias, exp;
++    __m256 aVal, bVal, mantissa, frac, leadingOne;
++    __m256i bias, exp;
+-  for(;number < eighthPoints; number++){
++    for (; number < eighthPoints; number++) {
+-    aVal = _mm256_loadu_ps(aPtr);
+-    bias = _mm256_set1_epi32(127);
+-    leadingOne = _mm256_set1_ps(1.0f);
+-    exp = _mm256_sub_epi32(_mm256_srli_epi32(_mm256_and_si256(_mm256_castps_si256(aVal), _mm256_set1_epi32(0x7f800000)), 23), bias);
+-    bVal = _mm256_cvtepi32_ps(exp);
++        aVal = _mm256_loadu_ps(aPtr);
++        bias = _mm256_set1_epi32(127);
++        leadingOne = _mm256_set1_ps(1.0f);
++        exp = _mm256_sub_epi32(
++            _mm256_srli_epi32(_mm256_and_si256(_mm256_castps_si256(aVal),
++                                               _mm256_set1_epi32(0x7f800000)),
++                              23),
++            bias);
++        bVal = _mm256_cvtepi32_ps(exp);
+-    // Now to extract mantissa
+-    frac = _mm256_or_ps(leadingOne, _mm256_and_ps(aVal, _mm256_castsi256_ps(_mm256_set1_epi32(0x7fffff))));
++        // Now to extract mantissa
++        frac = _mm256_or_ps(
++            leadingOne,
++            _mm256_and_ps(aVal, _mm256_castsi256_ps(_mm256_set1_epi32(0x7fffff))));
+ #if LOG_POLY_DEGREE == 6
+-    mantissa = POLY5_FMAAVX2( frac, 3.1157899f, -3.3241990f, 2.5988452f, -1.2315303f,  3.1821337e-1f, -3.4436006e-2f);
++        mantissa = POLY5_FMAAVX2(frac,
++                                 3.1157899f,
++                                 -3.3241990f,
++                                 2.5988452f,
++                                 -1.2315303f,
++                                 3.1821337e-1f,
++                                 -3.4436006e-2f);
+ #elif LOG_POLY_DEGREE == 5
+-    mantissa = POLY4_FMAAVX2( frac, 2.8882704548164776201f, -2.52074962577807006663f, 1.48116647521213171641f, -0.465725644288844778798f, 0.0596515482674574969533f);
++        mantissa = POLY4_FMAAVX2(frac,
++                                 2.8882704548164776201f,
++                                 -2.52074962577807006663f,
++                                 1.48116647521213171641f,
++                                 -0.465725644288844778798f,
++                                 0.0596515482674574969533f);
+ #elif LOG_POLY_DEGREE == 4
+-    mantissa = POLY3_FMAAVX2( frac, 2.61761038894603480148f, -1.75647175389045657003f, 0.688243882994381274313f, -0.107254423828329604454f);
++        mantissa = POLY3_FMAAVX2(frac,
++                                 2.61761038894603480148f,
++                                 -1.75647175389045657003f,
++                                 0.688243882994381274313f,
++                                 -0.107254423828329604454f);
+ #elif LOG_POLY_DEGREE == 3
+-    mantissa = POLY2_FMAAVX2( frac, 2.28330284476918490682f, -1.04913055217340124191f, 0.204446009836232697516f);
++        mantissa = POLY2_FMAAVX2(frac,
++                                 2.28330284476918490682f,
++                                 -1.04913055217340124191f,
++                                 0.204446009836232697516f);
+ #else
+ #error
+ #endif
+-    bVal = _mm256_fmadd_ps(mantissa, _mm256_sub_ps(frac, leadingOne), bVal);
+-    _mm256_storeu_ps(bPtr, bVal);
++        bVal = _mm256_fmadd_ps(mantissa, _mm256_sub_ps(frac, leadingOne), bVal);
++        _mm256_storeu_ps(bPtr, bVal);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
++        aPtr += 8;
++        bPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  volk_32f_log2_32f_u_generic(bPtr, aPtr, num_points-number);
++    number = eighthPoints * 8;
++    volk_32f_log2_32f_u_generic(bPtr, aPtr, num_points - number);
+ }
+ #endif /* LV_HAVE_AVX2 && LV_HAVE_FMA for unaligned */
+@@ -531,56 +672,86 @@ volk_32f_log2_32f_u_avx2_fma(float* bVector, const float* aVector, unsigned int
+ #include <immintrin.h>
+ #define POLY0_AVX2(x, c0) _mm256_set1_ps(c0)
+-#define POLY1_AVX2(x, c0, c1) _mm256_add_ps(_mm256_mul_ps(POLY0_AVX2(x, c1), x), _mm256_set1_ps(c0))
+-#define POLY2_AVX2(x, c0, c1, c2) _mm256_add_ps(_mm256_mul_ps(POLY1_AVX2(x, c1, c2), x), _mm256_set1_ps(c0))
+-#define POLY3_AVX2(x, c0, c1, c2, c3) _mm256_add_ps(_mm256_mul_ps(POLY2_AVX2(x, c1, c2, c3), x), _mm256_set1_ps(c0))
+-#define POLY4_AVX2(x, c0, c1, c2, c3, c4) _mm256_add_ps(_mm256_mul_ps(POLY3_AVX2(x, c1, c2, c3, c4), x), _mm256_set1_ps(c0))
+-#define POLY5_AVX2(x, c0, c1, c2, c3, c4, c5) _mm256_add_ps(_mm256_mul_ps(POLY4_AVX2(x, c1, c2, c3, c4, c5), x), _mm256_set1_ps(c0))
++#define POLY1_AVX2(x, c0, c1) \
++    _mm256_add_ps(_mm256_mul_ps(POLY0_AVX2(x, c1), x), _mm256_set1_ps(c0))
++#define POLY2_AVX2(x, c0, c1, c2) \
++    _mm256_add_ps(_mm256_mul_ps(POLY1_AVX2(x, c1, c2), x), _mm256_set1_ps(c0))
++#define POLY3_AVX2(x, c0, c1, c2, c3) \
++    _mm256_add_ps(_mm256_mul_ps(POLY2_AVX2(x, c1, c2, c3), x), _mm256_set1_ps(c0))
++#define POLY4_AVX2(x, c0, c1, c2, c3, c4) \
++    _mm256_add_ps(_mm256_mul_ps(POLY3_AVX2(x, c1, c2, c3, c4), x), _mm256_set1_ps(c0))
++#define POLY5_AVX2(x, c0, c1, c2, c3, c4, c5) \
++    _mm256_add_ps(_mm256_mul_ps(POLY4_AVX2(x, c1, c2, c3, c4, c5), x), _mm256_set1_ps(c0))
+ static inline void
+ volk_32f_log2_32f_u_avx2(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  __m256 aVal, bVal, mantissa, frac, leadingOne;
+-  __m256i bias, exp;
++    __m256 aVal, bVal, mantissa, frac, leadingOne;
++    __m256i bias, exp;
+-  for(;number < eighthPoints; number++){
++    for (; number < eighthPoints; number++) {
+-    aVal = _mm256_loadu_ps(aPtr);
+-    bias = _mm256_set1_epi32(127);
+-    leadingOne = _mm256_set1_ps(1.0f);
+-    exp = _mm256_sub_epi32(_mm256_srli_epi32(_mm256_and_si256(_mm256_castps_si256(aVal), _mm256_set1_epi32(0x7f800000)), 23), bias);
+-    bVal = _mm256_cvtepi32_ps(exp);
++        aVal = _mm256_loadu_ps(aPtr);
++        bias = _mm256_set1_epi32(127);
++        leadingOne = _mm256_set1_ps(1.0f);
++        exp = _mm256_sub_epi32(
++            _mm256_srli_epi32(_mm256_and_si256(_mm256_castps_si256(aVal),
++                                               _mm256_set1_epi32(0x7f800000)),
++                              23),
++            bias);
++        bVal = _mm256_cvtepi32_ps(exp);
+-    // Now to extract mantissa
+-    frac = _mm256_or_ps(leadingOne, _mm256_and_ps(aVal, _mm256_castsi256_ps(_mm256_set1_epi32(0x7fffff))));
++        // Now to extract mantissa
++        frac = _mm256_or_ps(
++            leadingOne,
++            _mm256_and_ps(aVal, _mm256_castsi256_ps(_mm256_set1_epi32(0x7fffff))));
+ #if LOG_POLY_DEGREE == 6
+-    mantissa = POLY5_AVX2( frac, 3.1157899f, -3.3241990f, 2.5988452f, -1.2315303f,  3.1821337e-1f, -3.4436006e-2f);
++        mantissa = POLY5_AVX2(frac,
++                              3.1157899f,
++                              -3.3241990f,
++                              2.5988452f,
++                              -1.2315303f,
++                              3.1821337e-1f,
++                              -3.4436006e-2f);
+ #elif LOG_POLY_DEGREE == 5
+-    mantissa = POLY4_AVX2( frac, 2.8882704548164776201f, -2.52074962577807006663f, 1.48116647521213171641f, -0.465725644288844778798f, 0.0596515482674574969533f);
++        mantissa = POLY4_AVX2(frac,
++                              2.8882704548164776201f,
++                              -2.52074962577807006663f,
++                              1.48116647521213171641f,
++                              -0.465725644288844778798f,
++                              0.0596515482674574969533f);
+ #elif LOG_POLY_DEGREE == 4
+-    mantissa = POLY3_AVX2( frac, 2.61761038894603480148f, -1.75647175389045657003f, 0.688243882994381274313f, -0.107254423828329604454f);
++        mantissa = POLY3_AVX2(frac,
++                              2.61761038894603480148f,
++                              -1.75647175389045657003f,
++                              0.688243882994381274313f,
++                              -0.107254423828329604454f);
+ #elif LOG_POLY_DEGREE == 3
+-    mantissa = POLY2_AVX2( frac, 2.28330284476918490682f, -1.04913055217340124191f, 0.204446009836232697516f);
++        mantissa = POLY2_AVX2(frac,
++                              2.28330284476918490682f,
++                              -1.04913055217340124191f,
++                              0.204446009836232697516f);
+ #else
+ #error
+ #endif
+-    bVal = _mm256_add_ps(_mm256_mul_ps(mantissa, _mm256_sub_ps(frac, leadingOne)), bVal);
+-    _mm256_storeu_ps(bPtr, bVal);
++        bVal =
++            _mm256_add_ps(_mm256_mul_ps(mantissa, _mm256_sub_ps(frac, leadingOne)), bVal);
++        _mm256_storeu_ps(bPtr, bVal);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
++        aPtr += 8;
++        bPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  volk_32f_log2_32f_u_generic(bPtr, aPtr, num_points-number);
++    number = eighthPoints * 8;
++    volk_32f_log2_32f_u_generic(bPtr, aPtr, num_points - number);
+ }
+ #endif /* LV_HAVE_AVX2 for unaligned */
+diff --git a/kernels/volk/volk_32f_null_32f.h b/kernels/volk/volk_32f_null_32f.h
+index 95e8d1a..cbed229 100644
+--- a/kernels/volk/volk_32f_null_32f.h
++++ b/kernels/volk/volk_32f_null_32f.h
+@@ -20,9 +20,9 @@
+  * Boston, MA 02110-1301, USA.
+  */
+-#include <stdio.h>
+-#include <math.h>
+ #include <inttypes.h>
++#include <math.h>
++#include <stdio.h>
+ #ifndef INCLUDED_volk_32f_null_32f_a_H
+ #define INCLUDED_volk_32f_null_32f_a_H
+@@ -32,13 +32,13 @@
+ static inline void
+ volk_32f_null_32f_generic(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-  unsigned int number;
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++    unsigned int number;
+-  for(number = 0; number < num_points; number++){
+-    *bPtr++ = *aPtr++;
+-  }
++    for (number = 0; number < num_points; number++) {
++        *bPtr++ = *aPtr++;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+diff --git a/kernels/volk/volk_32f_s32f_32f_fm_detect_32f.h b/kernels/volk/volk_32f_s32f_32f_fm_detect_32f.h
+index 9879959..3bf7aea 100644
+--- a/kernels/volk/volk_32f_s32f_32f_fm_detect_32f.h
++++ b/kernels/volk/volk_32f_s32f_32f_fm_detect_32f.h
+@@ -30,14 +30,15 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_s32f_32f_fm_detect_32f(float* outputVector, const float* inputVector, const float bound, float* saveValue, unsigned int num_points)
+- * \endcode
++ * void volk_32f_s32f_32f_fm_detect_32f(float* outputVector, const float* inputVector,
++ * const float bound, float* saveValue, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+- * \li inputVector: The input vector containing phase data (must be on the interval (-bound, bound]).
+- * \li bound: The interval that the input phase data is in, which is used to modulo the differentiation.
+- * \li saveValue: A pointer to a float which contains the phase value of the sample before the first input sample.
+- * \li num_points The number of data points.
++ * \li inputVector: The input vector containing phase data (must be on the interval
++ * (-bound, bound]). \li bound: The interval that the input phase data is in, which is
++ * used to modulo the differentiation. \li saveValue: A pointer to a float which contains
++ * the phase value of the sample before the first input sample. \li num_points The number
++ * of data points.
+  *
+  * \b Outputs
+  * \li outputVector: The vector where the results will be stored.
+@@ -62,67 +63,79 @@
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void volk_32f_s32f_32f_fm_detect_32f_a_avx(float* outputVector, const float* inputVector, const float bound, float* saveValue, unsigned int num_points){
+-  if (num_points < 1) {
+-    return;
+-  }
+-  unsigned int number = 1;
+-  unsigned int j = 0;
+-  // num_points-1 keeps Fedora 7's gcc from crashing...
+-  // num_points won't work.  :(
+-  const unsigned int eighthPoints = (num_points-1) / 8;
+-
+-  float* outPtr = outputVector;
+-  const float* inPtr = inputVector;
+-  __m256 upperBound = _mm256_set1_ps(bound);
+-  __m256 lowerBound = _mm256_set1_ps(-bound);
+-  __m256 next3old1;
+-  __m256 next4;
+-  __m256 boundAdjust;
+-  __m256 posBoundAdjust = _mm256_set1_ps(-2*bound); // Subtract when we're above.
+-  __m256 negBoundAdjust = _mm256_set1_ps(2*bound); // Add when we're below.
+-  // Do the first 8 by hand since we're going in from the saveValue:
+-  *outPtr = *inPtr - *saveValue;
+-  if (*outPtr >  bound) *outPtr -= 2*bound;
+-  if (*outPtr < -bound) *outPtr += 2*bound;
+-  inPtr++;
+-  outPtr++;
+-  for (j = 1; j < ( (8 < num_points) ? 8 : num_points); j++) {
+-    *outPtr = *(inPtr) - *(inPtr-1);
+-    if (*outPtr >  bound) *outPtr -= 2*bound;
+-    if (*outPtr < -bound) *outPtr += 2*bound;
+-    inPtr++;
+-    outPtr++;
+-  }
+-
+-  for (; number < eighthPoints; number++) {
+-    // Load data
+-    next3old1 = _mm256_loadu_ps((float*) (inPtr-1));
+-    next4 = _mm256_load_ps(inPtr);
+-    inPtr += 8;
+-    // Subtract and store:
+-    next3old1 = _mm256_sub_ps(next4, next3old1);
+-    // Bound:
+-    boundAdjust = _mm256_cmp_ps(next3old1, upperBound, _CMP_GT_OS);
+-    boundAdjust = _mm256_and_ps(boundAdjust, posBoundAdjust);
+-    next4 = _mm256_cmp_ps(next3old1, lowerBound, _CMP_LT_OS);
+-    next4 = _mm256_and_ps(next4, negBoundAdjust);
+-    boundAdjust = _mm256_or_ps(next4, boundAdjust);
+-    // Make sure we're in the bounding interval:
+-    next3old1 = _mm256_add_ps(next3old1, boundAdjust);
+-    _mm256_store_ps(outPtr,next3old1); // Store the results back into the output
+-    outPtr += 8;
+-  }
+-
+-  for (number = (8 > (eighthPoints*8) ? 8 : (8 * eighthPoints)); number < num_points; number++) {
+-    *outPtr = *(inPtr) - *(inPtr-1);
+-    if (*outPtr >  bound) *outPtr -= 2*bound;
+-    if (*outPtr < -bound) *outPtr += 2*bound;
++static inline void volk_32f_s32f_32f_fm_detect_32f_a_avx(float* outputVector,
++                                                         const float* inputVector,
++                                                         const float bound,
++                                                         float* saveValue,
++                                                         unsigned int num_points)
++{
++    if (num_points < 1) {
++        return;
++    }
++    unsigned int number = 1;
++    unsigned int j = 0;
++    // num_points-1 keeps Fedora 7's gcc from crashing...
++    // num_points won't work.  :(
++    const unsigned int eighthPoints = (num_points - 1) / 8;
++
++    float* outPtr = outputVector;
++    const float* inPtr = inputVector;
++    __m256 upperBound = _mm256_set1_ps(bound);
++    __m256 lowerBound = _mm256_set1_ps(-bound);
++    __m256 next3old1;
++    __m256 next4;
++    __m256 boundAdjust;
++    __m256 posBoundAdjust = _mm256_set1_ps(-2 * bound); // Subtract when we're above.
++    __m256 negBoundAdjust = _mm256_set1_ps(2 * bound);  // Add when we're below.
++    // Do the first 8 by hand since we're going in from the saveValue:
++    *outPtr = *inPtr - *saveValue;
++    if (*outPtr > bound)
++        *outPtr -= 2 * bound;
++    if (*outPtr < -bound)
++        *outPtr += 2 * bound;
+     inPtr++;
+     outPtr++;
+-  }
+-
+-  *saveValue = inputVector[num_points-1];
++    for (j = 1; j < ((8 < num_points) ? 8 : num_points); j++) {
++        *outPtr = *(inPtr) - *(inPtr - 1);
++        if (*outPtr > bound)
++            *outPtr -= 2 * bound;
++        if (*outPtr < -bound)
++            *outPtr += 2 * bound;
++        inPtr++;
++        outPtr++;
++    }
++
++    for (; number < eighthPoints; number++) {
++        // Load data
++        next3old1 = _mm256_loadu_ps((float*)(inPtr - 1));
++        next4 = _mm256_load_ps(inPtr);
++        inPtr += 8;
++        // Subtract and store:
++        next3old1 = _mm256_sub_ps(next4, next3old1);
++        // Bound:
++        boundAdjust = _mm256_cmp_ps(next3old1, upperBound, _CMP_GT_OS);
++        boundAdjust = _mm256_and_ps(boundAdjust, posBoundAdjust);
++        next4 = _mm256_cmp_ps(next3old1, lowerBound, _CMP_LT_OS);
++        next4 = _mm256_and_ps(next4, negBoundAdjust);
++        boundAdjust = _mm256_or_ps(next4, boundAdjust);
++        // Make sure we're in the bounding interval:
++        next3old1 = _mm256_add_ps(next3old1, boundAdjust);
++        _mm256_store_ps(outPtr, next3old1); // Store the results back into the output
++        outPtr += 8;
++    }
++
++    for (number = (8 > (eighthPoints * 8) ? 8 : (8 * eighthPoints)); number < num_points;
++         number++) {
++        *outPtr = *(inPtr) - *(inPtr - 1);
++        if (*outPtr > bound)
++            *outPtr -= 2 * bound;
++        if (*outPtr < -bound)
++            *outPtr += 2 * bound;
++        inPtr++;
++        outPtr++;
++    }
++
++    *saveValue = inputVector[num_points - 1];
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -130,102 +143,122 @@ static inline void volk_32f_s32f_32f_fm_detect_32f_a_avx(float* outputVector, co
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void volk_32f_s32f_32f_fm_detect_32f_a_sse(float* outputVector, const float* inputVector, const float bound, float* saveValue, unsigned int num_points){
+-  if (num_points < 1) {
+-    return;
+-  }
+-  unsigned int number = 1;
+-  unsigned int j = 0;
+-  // num_points-1 keeps Fedora 7's gcc from crashing...
+-  // num_points won't work.  :(
+-  const unsigned int quarterPoints = (num_points-1) / 4;
+-
+-  float* outPtr = outputVector;
+-  const float* inPtr = inputVector;
+-  __m128 upperBound = _mm_set_ps1(bound);
+-  __m128 lowerBound = _mm_set_ps1(-bound);
+-  __m128 next3old1;
+-  __m128 next4;
+-  __m128 boundAdjust;
+-  __m128 posBoundAdjust = _mm_set_ps1(-2*bound); // Subtract when we're above.
+-  __m128 negBoundAdjust = _mm_set_ps1(2*bound); // Add when we're below.
+-  // Do the first 4 by hand since we're going in from the saveValue:
+-  *outPtr = *inPtr - *saveValue;
+-  if (*outPtr >  bound) *outPtr -= 2*bound;
+-  if (*outPtr < -bound) *outPtr += 2*bound;
+-  inPtr++;
+-  outPtr++;
+-  for (j = 1; j < ( (4 < num_points) ? 4 : num_points); j++) {
+-    *outPtr = *(inPtr) - *(inPtr-1);
+-    if (*outPtr >  bound) *outPtr -= 2*bound;
+-    if (*outPtr < -bound) *outPtr += 2*bound;
+-    inPtr++;
+-    outPtr++;
+-  }
+-
+-  for (; number < quarterPoints; number++) {
+-    // Load data
+-    next3old1 = _mm_loadu_ps((float*) (inPtr-1));
+-    next4 = _mm_load_ps(inPtr);
+-    inPtr += 4;
+-    // Subtract and store:
+-    next3old1 = _mm_sub_ps(next4, next3old1);
+-    // Bound:
+-    boundAdjust = _mm_cmpgt_ps(next3old1, upperBound);
+-    boundAdjust = _mm_and_ps(boundAdjust, posBoundAdjust);
+-    next4 = _mm_cmplt_ps(next3old1, lowerBound);
+-    next4 = _mm_and_ps(next4, negBoundAdjust);
+-    boundAdjust = _mm_or_ps(next4, boundAdjust);
+-    // Make sure we're in the bounding interval:
+-    next3old1 = _mm_add_ps(next3old1, boundAdjust);
+-    _mm_store_ps(outPtr,next3old1); // Store the results back into the output
+-    outPtr += 4;
+-  }
+-
+-  for (number = (4 > (quarterPoints*4) ? 4 : (4 * quarterPoints)); number < num_points; number++) {
+-    *outPtr = *(inPtr) - *(inPtr-1);
+-    if (*outPtr >  bound) *outPtr -= 2*bound;
+-    if (*outPtr < -bound) *outPtr += 2*bound;
++static inline void volk_32f_s32f_32f_fm_detect_32f_a_sse(float* outputVector,
++                                                         const float* inputVector,
++                                                         const float bound,
++                                                         float* saveValue,
++                                                         unsigned int num_points)
++{
++    if (num_points < 1) {
++        return;
++    }
++    unsigned int number = 1;
++    unsigned int j = 0;
++    // num_points-1 keeps Fedora 7's gcc from crashing...
++    // num_points won't work.  :(
++    const unsigned int quarterPoints = (num_points - 1) / 4;
++
++    float* outPtr = outputVector;
++    const float* inPtr = inputVector;
++    __m128 upperBound = _mm_set_ps1(bound);
++    __m128 lowerBound = _mm_set_ps1(-bound);
++    __m128 next3old1;
++    __m128 next4;
++    __m128 boundAdjust;
++    __m128 posBoundAdjust = _mm_set_ps1(-2 * bound); // Subtract when we're above.
++    __m128 negBoundAdjust = _mm_set_ps1(2 * bound);  // Add when we're below.
++    // Do the first 4 by hand since we're going in from the saveValue:
++    *outPtr = *inPtr - *saveValue;
++    if (*outPtr > bound)
++        *outPtr -= 2 * bound;
++    if (*outPtr < -bound)
++        *outPtr += 2 * bound;
+     inPtr++;
+     outPtr++;
+-  }
+-
+-  *saveValue = inputVector[num_points-1];
++    for (j = 1; j < ((4 < num_points) ? 4 : num_points); j++) {
++        *outPtr = *(inPtr) - *(inPtr - 1);
++        if (*outPtr > bound)
++            *outPtr -= 2 * bound;
++        if (*outPtr < -bound)
++            *outPtr += 2 * bound;
++        inPtr++;
++        outPtr++;
++    }
++
++    for (; number < quarterPoints; number++) {
++        // Load data
++        next3old1 = _mm_loadu_ps((float*)(inPtr - 1));
++        next4 = _mm_load_ps(inPtr);
++        inPtr += 4;
++        // Subtract and store:
++        next3old1 = _mm_sub_ps(next4, next3old1);
++        // Bound:
++        boundAdjust = _mm_cmpgt_ps(next3old1, upperBound);
++        boundAdjust = _mm_and_ps(boundAdjust, posBoundAdjust);
++        next4 = _mm_cmplt_ps(next3old1, lowerBound);
++        next4 = _mm_and_ps(next4, negBoundAdjust);
++        boundAdjust = _mm_or_ps(next4, boundAdjust);
++        // Make sure we're in the bounding interval:
++        next3old1 = _mm_add_ps(next3old1, boundAdjust);
++        _mm_store_ps(outPtr, next3old1); // Store the results back into the output
++        outPtr += 4;
++    }
++
++    for (number = (4 > (quarterPoints * 4) ? 4 : (4 * quarterPoints));
++         number < num_points;
++         number++) {
++        *outPtr = *(inPtr) - *(inPtr - 1);
++        if (*outPtr > bound)
++            *outPtr -= 2 * bound;
++        if (*outPtr < -bound)
++            *outPtr += 2 * bound;
++        inPtr++;
++        outPtr++;
++    }
++
++    *saveValue = inputVector[num_points - 1];
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32f_s32f_32f_fm_detect_32f_generic(float* outputVector, const float* inputVector, const float bound, float* saveValue, unsigned int num_points){
+-  if (num_points < 1) {
+-    return;
+-  }
+-  unsigned int number = 0;
+-  float* outPtr = outputVector;
+-  const float* inPtr = inputVector;
+-
+-  // Do the first 1 by hand since we're going in from the saveValue:
+-  *outPtr = *inPtr - *saveValue;
+-  if (*outPtr >  bound) *outPtr -= 2*bound;
+-  if (*outPtr < -bound) *outPtr += 2*bound;
+-  inPtr++;
+-  outPtr++;
+-
+-  for (number = 1; number < num_points; number++) {
+-    *outPtr = *(inPtr) - *(inPtr-1);
+-    if (*outPtr >  bound) *outPtr -= 2*bound;
+-    if (*outPtr < -bound) *outPtr += 2*bound;
++static inline void volk_32f_s32f_32f_fm_detect_32f_generic(float* outputVector,
++                                                           const float* inputVector,
++                                                           const float bound,
++                                                           float* saveValue,
++                                                           unsigned int num_points)
++{
++    if (num_points < 1) {
++        return;
++    }
++    unsigned int number = 0;
++    float* outPtr = outputVector;
++    const float* inPtr = inputVector;
++
++    // Do the first 1 by hand since we're going in from the saveValue:
++    *outPtr = *inPtr - *saveValue;
++    if (*outPtr > bound)
++        *outPtr -= 2 * bound;
++    if (*outPtr < -bound)
++        *outPtr += 2 * bound;
+     inPtr++;
+     outPtr++;
+-  }
+-  *saveValue = inputVector[num_points-1];
++    for (number = 1; number < num_points; number++) {
++        *outPtr = *(inPtr) - *(inPtr - 1);
++        if (*outPtr > bound)
++            *outPtr -= 2 * bound;
++        if (*outPtr < -bound)
++            *outPtr += 2 * bound;
++        inPtr++;
++        outPtr++;
++    }
++
++    *saveValue = inputVector[num_points - 1];
+ }
+ #endif /* LV_HAVE_GENERIC */
+-
+-
+ #endif /* INCLUDED_volk_32f_s32f_32f_fm_detect_32f_a_H */
+@@ -238,67 +271,79 @@ static inline void volk_32f_s32f_32f_fm_detect_32f_generic(float* outputVector,
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void volk_32f_s32f_32f_fm_detect_32f_u_avx(float* outputVector, const float* inputVector, const float bound, float* saveValue, unsigned int num_points){
+-  if (num_points < 1) {
+-    return;
+-  }
+-  unsigned int number = 1;
+-  unsigned int j = 0;
+-  // num_points-1 keeps Fedora 7's gcc from crashing...
+-  // num_points won't work.  :(
+-  const unsigned int eighthPoints = (num_points-1) / 8;
+-
+-  float* outPtr = outputVector;
+-  const float* inPtr = inputVector;
+-  __m256 upperBound = _mm256_set1_ps(bound);
+-  __m256 lowerBound = _mm256_set1_ps(-bound);
+-  __m256 next3old1;
+-  __m256 next4;
+-  __m256 boundAdjust;
+-  __m256 posBoundAdjust = _mm256_set1_ps(-2*bound); // Subtract when we're above.
+-  __m256 negBoundAdjust = _mm256_set1_ps(2*bound); // Add when we're below.
+-  // Do the first 8 by hand since we're going in from the saveValue:
+-  *outPtr = *inPtr - *saveValue;
+-  if (*outPtr >  bound) *outPtr -= 2*bound;
+-  if (*outPtr < -bound) *outPtr += 2*bound;
+-  inPtr++;
+-  outPtr++;
+-  for (j = 1; j < ( (8 < num_points) ? 8 : num_points); j++) {
+-    *outPtr = *(inPtr) - *(inPtr-1);
+-    if (*outPtr >  bound) *outPtr -= 2*bound;
+-    if (*outPtr < -bound) *outPtr += 2*bound;
++static inline void volk_32f_s32f_32f_fm_detect_32f_u_avx(float* outputVector,
++                                                         const float* inputVector,
++                                                         const float bound,
++                                                         float* saveValue,
++                                                         unsigned int num_points)
++{
++    if (num_points < 1) {
++        return;
++    }
++    unsigned int number = 1;
++    unsigned int j = 0;
++    // num_points-1 keeps Fedora 7's gcc from crashing...
++    // num_points won't work.  :(
++    const unsigned int eighthPoints = (num_points - 1) / 8;
++
++    float* outPtr = outputVector;
++    const float* inPtr = inputVector;
++    __m256 upperBound = _mm256_set1_ps(bound);
++    __m256 lowerBound = _mm256_set1_ps(-bound);
++    __m256 next3old1;
++    __m256 next4;
++    __m256 boundAdjust;
++    __m256 posBoundAdjust = _mm256_set1_ps(-2 * bound); // Subtract when we're above.
++    __m256 negBoundAdjust = _mm256_set1_ps(2 * bound);  // Add when we're below.
++    // Do the first 8 by hand since we're going in from the saveValue:
++    *outPtr = *inPtr - *saveValue;
++    if (*outPtr > bound)
++        *outPtr -= 2 * bound;
++    if (*outPtr < -bound)
++        *outPtr += 2 * bound;
+     inPtr++;
+     outPtr++;
+-  }
+-
+-  for (; number < eighthPoints; number++) {
+-    // Load data
+-    next3old1 = _mm256_loadu_ps((float*) (inPtr-1));
+-    next4 = _mm256_loadu_ps(inPtr);
+-    inPtr += 8;
+-    // Subtract and store:
+-    next3old1 = _mm256_sub_ps(next4, next3old1);
+-    // Bound:
+-    boundAdjust = _mm256_cmp_ps(next3old1, upperBound, _CMP_GT_OS);
+-    boundAdjust = _mm256_and_ps(boundAdjust, posBoundAdjust);
+-    next4 = _mm256_cmp_ps(next3old1, lowerBound, _CMP_LT_OS);
+-    next4 = _mm256_and_ps(next4, negBoundAdjust);
+-    boundAdjust = _mm256_or_ps(next4, boundAdjust);
+-    // Make sure we're in the bounding interval:
+-    next3old1 = _mm256_add_ps(next3old1, boundAdjust);
+-    _mm256_storeu_ps(outPtr,next3old1); // Store the results back into the output
+-    outPtr += 8;
+-  }
+-
+-  for (number = (8 > (eighthPoints*8) ? 8 : (8 * eighthPoints)); number < num_points; number++) {
+-    *outPtr = *(inPtr) - *(inPtr-1);
+-    if (*outPtr >  bound) *outPtr -= 2*bound;
+-    if (*outPtr < -bound) *outPtr += 2*bound;
+-    inPtr++;
+-    outPtr++;
+-  }
+-
+-  *saveValue = inputVector[num_points-1];
++    for (j = 1; j < ((8 < num_points) ? 8 : num_points); j++) {
++        *outPtr = *(inPtr) - *(inPtr - 1);
++        if (*outPtr > bound)
++            *outPtr -= 2 * bound;
++        if (*outPtr < -bound)
++            *outPtr += 2 * bound;
++        inPtr++;
++        outPtr++;
++    }
++
++    for (; number < eighthPoints; number++) {
++        // Load data
++        next3old1 = _mm256_loadu_ps((float*)(inPtr - 1));
++        next4 = _mm256_loadu_ps(inPtr);
++        inPtr += 8;
++        // Subtract and store:
++        next3old1 = _mm256_sub_ps(next4, next3old1);
++        // Bound:
++        boundAdjust = _mm256_cmp_ps(next3old1, upperBound, _CMP_GT_OS);
++        boundAdjust = _mm256_and_ps(boundAdjust, posBoundAdjust);
++        next4 = _mm256_cmp_ps(next3old1, lowerBound, _CMP_LT_OS);
++        next4 = _mm256_and_ps(next4, negBoundAdjust);
++        boundAdjust = _mm256_or_ps(next4, boundAdjust);
++        // Make sure we're in the bounding interval:
++        next3old1 = _mm256_add_ps(next3old1, boundAdjust);
++        _mm256_storeu_ps(outPtr, next3old1); // Store the results back into the output
++        outPtr += 8;
++    }
++
++    for (number = (8 > (eighthPoints * 8) ? 8 : (8 * eighthPoints)); number < num_points;
++         number++) {
++        *outPtr = *(inPtr) - *(inPtr - 1);
++        if (*outPtr > bound)
++            *outPtr -= 2 * bound;
++        if (*outPtr < -bound)
++            *outPtr += 2 * bound;
++        inPtr++;
++        outPtr++;
++    }
++
++    *saveValue = inputVector[num_points - 1];
+ }
+ #endif /* LV_HAVE_AVX */
+diff --git a/kernels/volk/volk_32f_s32f_calc_spectral_noise_floor_32f.h b/kernels/volk/volk_32f_s32f_calc_spectral_noise_floor_32f.h
+index ae371a2..e7e581f 100644
+--- a/kernels/volk/volk_32f_s32f_calc_spectral_noise_floor_32f.h
++++ b/kernels/volk/volk_32f_s32f_calc_spectral_noise_floor_32f.h
+@@ -35,13 +35,15 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_s32f_calc_spectral_noise_floor_32f(float* noiseFloorAmplitude, const float* realDataPoints, const float spectralExclusionValue, const unsigned int num_points)
+- * \endcode
++ * void volk_32f_s32f_calc_spectral_noise_floor_32f(float* noiseFloorAmplitude, const
++ * float* realDataPoints, const float spectralExclusionValue, const unsigned int
++ * num_points) \endcode
+  *
+  * \b Inputs
+  * \li realDataPoints: The input power spectrum.
+- * \li spectralExclusionValue: The number of dB above the noise floor that a data point must be to be excluded from the noise floor calculation - default value is 20.
+- * \li num_points: The number of data points.
++ * \li spectralExclusionValue: The number of dB above the noise floor that a data point
++ * must be to be excluded from the noise floor calculation - default value is 20. \li
++ * num_points: The number of data points.
+  *
+  * \b Outputs
+  * \li noiseFloorAmplitude: The noise floor of the input spectrum, in dB.
+@@ -59,9 +61,9 @@
+ #ifndef INCLUDED_volk_32f_s32f_calc_spectral_noise_floor_32f_a_H
+ #define INCLUDED_volk_32f_s32f_calc_spectral_noise_floor_32f_a_H
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+ #include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+@@ -72,114 +74,117 @@ volk_32f_s32f_calc_spectral_noise_floor_32f_a_avx(float* noiseFloorAmplitude,
+                                                   const float spectralExclusionValue,
+                                                   const unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  const float* dataPointsPtr = realDataPoints;
+-  __VOLK_ATTR_ALIGNED(32) float avgPointsVector[8];
+-
+-  __m256 dataPointsVal;
+-  __m256 avgPointsVal = _mm256_setzero_ps();
+-  // Calculate the sum (for mean) for all points
+-  for(; number < eighthPoints; number++){
+-
+-    dataPointsVal = _mm256_load_ps(dataPointsPtr);
+-
+-    dataPointsPtr += 8;
+-
+-    avgPointsVal = _mm256_add_ps(avgPointsVal, dataPointsVal);
+-  }
+-
+-  _mm256_store_ps(avgPointsVector, avgPointsVal);
+-
+-  float sumMean = 0.0;
+-  sumMean += avgPointsVector[0];
+-  sumMean += avgPointsVector[1];
+-  sumMean += avgPointsVector[2];
+-  sumMean += avgPointsVector[3];
+-  sumMean += avgPointsVector[4];
+-  sumMean += avgPointsVector[5];
+-  sumMean += avgPointsVector[6];
+-  sumMean += avgPointsVector[7];
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    sumMean += realDataPoints[number];
+-  }
+-
+-  // calculate the spectral mean
+-  // +20 because for the comparison below we only want to throw out bins
+-  // that are significantly higher (and would, thus, affect the mean more
+-  const float meanAmplitude = (sumMean / ((float)num_points)) + spectralExclusionValue;
+-
+-  dataPointsPtr = realDataPoints; // Reset the dataPointsPtr
+-  __m256 vMeanAmplitudeVector = _mm256_set1_ps(meanAmplitude);
+-  __m256 vOnesVector = _mm256_set1_ps(1.0);
+-  __m256 vValidBinCount = _mm256_setzero_ps();
+-  avgPointsVal = _mm256_setzero_ps();
+-  __m256 compareMask;
+-  number = 0;
+-  // Calculate the sum (for mean) for any points which do NOT exceed the mean amplitude
+-  for(; number < eighthPoints; number++){
+-
+-    dataPointsVal = _mm256_load_ps(dataPointsPtr);
+-
+-    dataPointsPtr += 8;
+-
+-    // Identify which items do not exceed the mean amplitude
+-    compareMask = _mm256_cmp_ps(dataPointsVal, vMeanAmplitudeVector, _CMP_LE_OQ);
+-
+-    // Mask off the items that exceed the mean amplitude and add the avg Points that do not exceed the mean amplitude
+-    avgPointsVal = _mm256_add_ps(avgPointsVal, _mm256_and_ps(compareMask, dataPointsVal));
+-
+-    // Count the number of bins which do not exceed the mean amplitude
+-    vValidBinCount = _mm256_add_ps(vValidBinCount, _mm256_and_ps(compareMask, vOnesVector));
+-  }
+-
+-  // Calculate the mean from the remaining data points
+-  _mm256_store_ps(avgPointsVector, avgPointsVal);
+-
+-  sumMean = 0.0;
+-  sumMean += avgPointsVector[0];
+-  sumMean += avgPointsVector[1];
+-  sumMean += avgPointsVector[2];
+-  sumMean += avgPointsVector[3];
+-  sumMean += avgPointsVector[4];
+-  sumMean += avgPointsVector[5];
+-  sumMean += avgPointsVector[6];
+-  sumMean += avgPointsVector[7];
+-
+-  // Calculate the number of valid bins from the remaining count
+-  __VOLK_ATTR_ALIGNED(32) float validBinCountVector[8];
+-  _mm256_store_ps(validBinCountVector, vValidBinCount);
+-
+-  float validBinCount = 0;
+-  validBinCount += validBinCountVector[0];
+-  validBinCount += validBinCountVector[1];
+-  validBinCount += validBinCountVector[2];
+-  validBinCount += validBinCountVector[3];
+-  validBinCount += validBinCountVector[4];
+-  validBinCount += validBinCountVector[5];
+-  validBinCount += validBinCountVector[6];
+-  validBinCount += validBinCountVector[7];
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    if(realDataPoints[number] <= meanAmplitude){
+-      sumMean += realDataPoints[number];
+-      validBinCount += 1.0;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    const float* dataPointsPtr = realDataPoints;
++    __VOLK_ATTR_ALIGNED(32) float avgPointsVector[8];
++
++    __m256 dataPointsVal;
++    __m256 avgPointsVal = _mm256_setzero_ps();
++    // Calculate the sum (for mean) for all points
++    for (; number < eighthPoints; number++) {
++
++        dataPointsVal = _mm256_load_ps(dataPointsPtr);
++
++        dataPointsPtr += 8;
++
++        avgPointsVal = _mm256_add_ps(avgPointsVal, dataPointsVal);
+     }
+-  }
+-  float localNoiseFloorAmplitude = 0;
+-  if(validBinCount > 0.0){
+-    localNoiseFloorAmplitude = sumMean / validBinCount;
+-  }
+-  else{
+-    localNoiseFloorAmplitude = meanAmplitude; // For the odd case that all the amplitudes are equal...
+-  }
++    _mm256_store_ps(avgPointsVector, avgPointsVal);
++
++    float sumMean = 0.0;
++    sumMean += avgPointsVector[0];
++    sumMean += avgPointsVector[1];
++    sumMean += avgPointsVector[2];
++    sumMean += avgPointsVector[3];
++    sumMean += avgPointsVector[4];
++    sumMean += avgPointsVector[5];
++    sumMean += avgPointsVector[6];
++    sumMean += avgPointsVector[7];
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        sumMean += realDataPoints[number];
++    }
++
++    // calculate the spectral mean
++    // +20 because for the comparison below we only want to throw out bins
++    // that are significantly higher (and would, thus, affect the mean more
++    const float meanAmplitude = (sumMean / ((float)num_points)) + spectralExclusionValue;
++
++    dataPointsPtr = realDataPoints; // Reset the dataPointsPtr
++    __m256 vMeanAmplitudeVector = _mm256_set1_ps(meanAmplitude);
++    __m256 vOnesVector = _mm256_set1_ps(1.0);
++    __m256 vValidBinCount = _mm256_setzero_ps();
++    avgPointsVal = _mm256_setzero_ps();
++    __m256 compareMask;
++    number = 0;
++    // Calculate the sum (for mean) for any points which do NOT exceed the mean amplitude
++    for (; number < eighthPoints; number++) {
++
++        dataPointsVal = _mm256_load_ps(dataPointsPtr);
++
++        dataPointsPtr += 8;
++
++        // Identify which items do not exceed the mean amplitude
++        compareMask = _mm256_cmp_ps(dataPointsVal, vMeanAmplitudeVector, _CMP_LE_OQ);
++
++        // Mask off the items that exceed the mean amplitude and add the avg Points that
++        // do not exceed the mean amplitude
++        avgPointsVal =
++            _mm256_add_ps(avgPointsVal, _mm256_and_ps(compareMask, dataPointsVal));
++
++        // Count the number of bins which do not exceed the mean amplitude
++        vValidBinCount =
++            _mm256_add_ps(vValidBinCount, _mm256_and_ps(compareMask, vOnesVector));
++    }
+-  *noiseFloorAmplitude = localNoiseFloorAmplitude;
++    // Calculate the mean from the remaining data points
++    _mm256_store_ps(avgPointsVector, avgPointsVal);
++
++    sumMean = 0.0;
++    sumMean += avgPointsVector[0];
++    sumMean += avgPointsVector[1];
++    sumMean += avgPointsVector[2];
++    sumMean += avgPointsVector[3];
++    sumMean += avgPointsVector[4];
++    sumMean += avgPointsVector[5];
++    sumMean += avgPointsVector[6];
++    sumMean += avgPointsVector[7];
++
++    // Calculate the number of valid bins from the remaining count
++    __VOLK_ATTR_ALIGNED(32) float validBinCountVector[8];
++    _mm256_store_ps(validBinCountVector, vValidBinCount);
++
++    float validBinCount = 0;
++    validBinCount += validBinCountVector[0];
++    validBinCount += validBinCountVector[1];
++    validBinCount += validBinCountVector[2];
++    validBinCount += validBinCountVector[3];
++    validBinCount += validBinCountVector[4];
++    validBinCount += validBinCountVector[5];
++    validBinCount += validBinCountVector[6];
++    validBinCount += validBinCountVector[7];
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        if (realDataPoints[number] <= meanAmplitude) {
++            sumMean += realDataPoints[number];
++            validBinCount += 1.0;
++        }
++    }
++
++    float localNoiseFloorAmplitude = 0;
++    if (validBinCount > 0.0) {
++        localNoiseFloorAmplitude = sumMean / validBinCount;
++    } else {
++        localNoiseFloorAmplitude =
++            meanAmplitude; // For the odd case that all the amplitudes are equal...
++    }
++
++    *noiseFloorAmplitude = localNoiseFloorAmplitude;
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -192,102 +197,103 @@ volk_32f_s32f_calc_spectral_noise_floor_32f_a_sse(float* noiseFloorAmplitude,
+                                                   const float spectralExclusionValue,
+                                                   const unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  const float* dataPointsPtr = realDataPoints;
+-  __VOLK_ATTR_ALIGNED(16) float avgPointsVector[4];
+-
+-  __m128 dataPointsVal;
+-  __m128 avgPointsVal = _mm_setzero_ps();
+-  // Calculate the sum (for mean) for all points
+-  for(; number < quarterPoints; number++){
+-
+-    dataPointsVal = _mm_load_ps(dataPointsPtr);
+-
+-    dataPointsPtr += 4;
+-
+-    avgPointsVal = _mm_add_ps(avgPointsVal, dataPointsVal);
+-  }
+-
+-  _mm_store_ps(avgPointsVector, avgPointsVal);
+-
+-  float sumMean = 0.0;
+-  sumMean += avgPointsVector[0];
+-  sumMean += avgPointsVector[1];
+-  sumMean += avgPointsVector[2];
+-  sumMean += avgPointsVector[3];
+-
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    sumMean += realDataPoints[number];
+-  }
+-
+-  // calculate the spectral mean
+-  // +20 because for the comparison below we only want to throw out bins
+-  // that are significantly higher (and would, thus, affect the mean more
+-  const float meanAmplitude = (sumMean / ((float)num_points)) + spectralExclusionValue;
+-
+-  dataPointsPtr = realDataPoints; // Reset the dataPointsPtr
+-  __m128 vMeanAmplitudeVector = _mm_set_ps1(meanAmplitude);
+-  __m128 vOnesVector = _mm_set_ps1(1.0);
+-  __m128 vValidBinCount = _mm_setzero_ps();
+-  avgPointsVal = _mm_setzero_ps();
+-  __m128 compareMask;
+-  number = 0;
+-  // Calculate the sum (for mean) for any points which do NOT exceed the mean amplitude
+-  for(; number < quarterPoints; number++){
+-
+-    dataPointsVal = _mm_load_ps(dataPointsPtr);
+-
+-    dataPointsPtr += 4;
+-
+-    // Identify which items do not exceed the mean amplitude
+-    compareMask = _mm_cmple_ps(dataPointsVal, vMeanAmplitudeVector);
+-
+-    // Mask off the items that exceed the mean amplitude and add the avg Points that do not exceed the mean amplitude
+-    avgPointsVal = _mm_add_ps(avgPointsVal, _mm_and_ps(compareMask, dataPointsVal));
+-
+-    // Count the number of bins which do not exceed the mean amplitude
+-    vValidBinCount = _mm_add_ps(vValidBinCount, _mm_and_ps(compareMask, vOnesVector));
+-  }
+-
+-  // Calculate the mean from the remaining data points
+-  _mm_store_ps(avgPointsVector, avgPointsVal);
+-
+-  sumMean = 0.0;
+-  sumMean += avgPointsVector[0];
+-  sumMean += avgPointsVector[1];
+-  sumMean += avgPointsVector[2];
+-  sumMean += avgPointsVector[3];
+-
+-  // Calculate the number of valid bins from the remaining count
+-  __VOLK_ATTR_ALIGNED(16) float validBinCountVector[4];
+-  _mm_store_ps(validBinCountVector, vValidBinCount);
+-
+-  float validBinCount = 0;
+-  validBinCount += validBinCountVector[0];
+-  validBinCount += validBinCountVector[1];
+-  validBinCount += validBinCountVector[2];
+-  validBinCount += validBinCountVector[3];
+-
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    if(realDataPoints[number] <= meanAmplitude){
+-      sumMean += realDataPoints[number];
+-      validBinCount += 1.0;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++
++    const float* dataPointsPtr = realDataPoints;
++    __VOLK_ATTR_ALIGNED(16) float avgPointsVector[4];
++
++    __m128 dataPointsVal;
++    __m128 avgPointsVal = _mm_setzero_ps();
++    // Calculate the sum (for mean) for all points
++    for (; number < quarterPoints; number++) {
++
++        dataPointsVal = _mm_load_ps(dataPointsPtr);
++
++        dataPointsPtr += 4;
++
++        avgPointsVal = _mm_add_ps(avgPointsVal, dataPointsVal);
++    }
++
++    _mm_store_ps(avgPointsVector, avgPointsVal);
++
++    float sumMean = 0.0;
++    sumMean += avgPointsVector[0];
++    sumMean += avgPointsVector[1];
++    sumMean += avgPointsVector[2];
++    sumMean += avgPointsVector[3];
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        sumMean += realDataPoints[number];
++    }
++
++    // calculate the spectral mean
++    // +20 because for the comparison below we only want to throw out bins
++    // that are significantly higher (and would, thus, affect the mean more
++    const float meanAmplitude = (sumMean / ((float)num_points)) + spectralExclusionValue;
++
++    dataPointsPtr = realDataPoints; // Reset the dataPointsPtr
++    __m128 vMeanAmplitudeVector = _mm_set_ps1(meanAmplitude);
++    __m128 vOnesVector = _mm_set_ps1(1.0);
++    __m128 vValidBinCount = _mm_setzero_ps();
++    avgPointsVal = _mm_setzero_ps();
++    __m128 compareMask;
++    number = 0;
++    // Calculate the sum (for mean) for any points which do NOT exceed the mean amplitude
++    for (; number < quarterPoints; number++) {
++
++        dataPointsVal = _mm_load_ps(dataPointsPtr);
++
++        dataPointsPtr += 4;
++
++        // Identify which items do not exceed the mean amplitude
++        compareMask = _mm_cmple_ps(dataPointsVal, vMeanAmplitudeVector);
++
++        // Mask off the items that exceed the mean amplitude and add the avg Points that
++        // do not exceed the mean amplitude
++        avgPointsVal = _mm_add_ps(avgPointsVal, _mm_and_ps(compareMask, dataPointsVal));
++
++        // Count the number of bins which do not exceed the mean amplitude
++        vValidBinCount = _mm_add_ps(vValidBinCount, _mm_and_ps(compareMask, vOnesVector));
+     }
+-  }
+-  float localNoiseFloorAmplitude = 0;
+-  if(validBinCount > 0.0){
+-    localNoiseFloorAmplitude = sumMean / validBinCount;
+-  }
+-  else{
+-    localNoiseFloorAmplitude = meanAmplitude; // For the odd case that all the amplitudes are equal...
+-  }
++    // Calculate the mean from the remaining data points
++    _mm_store_ps(avgPointsVector, avgPointsVal);
++
++    sumMean = 0.0;
++    sumMean += avgPointsVector[0];
++    sumMean += avgPointsVector[1];
++    sumMean += avgPointsVector[2];
++    sumMean += avgPointsVector[3];
++
++    // Calculate the number of valid bins from the remaining count
++    __VOLK_ATTR_ALIGNED(16) float validBinCountVector[4];
++    _mm_store_ps(validBinCountVector, vValidBinCount);
++
++    float validBinCount = 0;
++    validBinCount += validBinCountVector[0];
++    validBinCount += validBinCountVector[1];
++    validBinCount += validBinCountVector[2];
++    validBinCount += validBinCountVector[3];
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        if (realDataPoints[number] <= meanAmplitude) {
++            sumMean += realDataPoints[number];
++            validBinCount += 1.0;
++        }
++    }
++
++    float localNoiseFloorAmplitude = 0;
++    if (validBinCount > 0.0) {
++        localNoiseFloorAmplitude = sumMean / validBinCount;
++    } else {
++        localNoiseFloorAmplitude =
++            meanAmplitude; // For the odd case that all the amplitudes are equal...
++    }
+-  *noiseFloorAmplitude = localNoiseFloorAmplitude;
++    *noiseFloorAmplitude = localNoiseFloorAmplitude;
+ }
+ #endif /* LV_HAVE_SSE */
+@@ -300,36 +306,36 @@ volk_32f_s32f_calc_spectral_noise_floor_32f_generic(float* noiseFloorAmplitude,
+                                                     const float spectralExclusionValue,
+                                                     const unsigned int num_points)
+ {
+-  float sumMean = 0.0;
+-  unsigned int number;
+-  // find the sum (for mean), etc
+-  for(number = 0; number < num_points; number++){
+-    // sum (for mean)
+-    sumMean += realDataPoints[number];
+-  }
+-
+-  // calculate the spectral mean
+-  // +20 because for the comparison below we only want to throw out bins
+-  // that are significantly higher (and would, thus, affect the mean more)
+-  const float meanAmplitude = (sumMean / num_points) + spectralExclusionValue;
+-
+-  // now throw out any bins higher than the mean
+-  sumMean = 0.0;
+-  unsigned int newNumDataPoints = num_points;
+-  for(number = 0; number < num_points; number++){
+-    if (realDataPoints[number] <= meanAmplitude)
+-      sumMean += realDataPoints[number];
+-    else
+-      newNumDataPoints--;
+-  }
++    float sumMean = 0.0;
++    unsigned int number;
++    // find the sum (for mean), etc
++    for (number = 0; number < num_points; number++) {
++        // sum (for mean)
++        sumMean += realDataPoints[number];
++    }
++
++    // calculate the spectral mean
++    // +20 because for the comparison below we only want to throw out bins
++    // that are significantly higher (and would, thus, affect the mean more)
++    const float meanAmplitude = (sumMean / num_points) + spectralExclusionValue;
++
++    // now throw out any bins higher than the mean
++    sumMean = 0.0;
++    unsigned int newNumDataPoints = num_points;
++    for (number = 0; number < num_points; number++) {
++        if (realDataPoints[number] <= meanAmplitude)
++            sumMean += realDataPoints[number];
++        else
++            newNumDataPoints--;
++    }
+-  float localNoiseFloorAmplitude = 0.0;
+-  if (newNumDataPoints == 0)             // in the odd case that all
+-    localNoiseFloorAmplitude = meanAmplitude; // amplitudes are equal!
+-  else
+-    localNoiseFloorAmplitude = sumMean / ((float)newNumDataPoints);
++    float localNoiseFloorAmplitude = 0.0;
++    if (newNumDataPoints == 0)                    // in the odd case that all
++        localNoiseFloorAmplitude = meanAmplitude; // amplitudes are equal!
++    else
++        localNoiseFloorAmplitude = sumMean / ((float)newNumDataPoints);
+-  *noiseFloorAmplitude = localNoiseFloorAmplitude;
++    *noiseFloorAmplitude = localNoiseFloorAmplitude;
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -339,9 +345,9 @@ volk_32f_s32f_calc_spectral_noise_floor_32f_generic(float* noiseFloorAmplitude,
+ #ifndef INCLUDED_volk_32f_s32f_calc_spectral_noise_floor_32f_u_H
+ #define INCLUDED_volk_32f_s32f_calc_spectral_noise_floor_32f_u_H
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+ #include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+@@ -352,114 +358,117 @@ volk_32f_s32f_calc_spectral_noise_floor_32f_u_avx(float* noiseFloorAmplitude,
+                                                   const float spectralExclusionValue,
+                                                   const unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  const float* dataPointsPtr = realDataPoints;
+-  __VOLK_ATTR_ALIGNED(16) float avgPointsVector[8];
+-
+-  __m256 dataPointsVal;
+-  __m256 avgPointsVal = _mm256_setzero_ps();
+-  // Calculate the sum (for mean) for all points
+-  for(; number < eighthPoints; number++){
+-
+-    dataPointsVal = _mm256_loadu_ps(dataPointsPtr);
+-
+-    dataPointsPtr += 8;
+-
+-    avgPointsVal = _mm256_add_ps(avgPointsVal, dataPointsVal);
+-  }
+-
+-  _mm256_storeu_ps(avgPointsVector, avgPointsVal);
+-
+-  float sumMean = 0.0;
+-  sumMean += avgPointsVector[0];
+-  sumMean += avgPointsVector[1];
+-  sumMean += avgPointsVector[2];
+-  sumMean += avgPointsVector[3];
+-  sumMean += avgPointsVector[4];
+-  sumMean += avgPointsVector[5];
+-  sumMean += avgPointsVector[6];
+-  sumMean += avgPointsVector[7];
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    sumMean += realDataPoints[number];
+-  }
+-
+-  // calculate the spectral mean
+-  // +20 because for the comparison below we only want to throw out bins
+-  // that are significantly higher (and would, thus, affect the mean more
+-  const float meanAmplitude = (sumMean / ((float)num_points)) + spectralExclusionValue;
+-
+-  dataPointsPtr = realDataPoints; // Reset the dataPointsPtr
+-  __m256 vMeanAmplitudeVector = _mm256_set1_ps(meanAmplitude);
+-  __m256 vOnesVector = _mm256_set1_ps(1.0);
+-  __m256 vValidBinCount = _mm256_setzero_ps();
+-  avgPointsVal = _mm256_setzero_ps();
+-  __m256 compareMask;
+-  number = 0;
+-  // Calculate the sum (for mean) for any points which do NOT exceed the mean amplitude
+-  for(; number < eighthPoints; number++){
+-
+-    dataPointsVal = _mm256_loadu_ps(dataPointsPtr);
+-
+-    dataPointsPtr += 8;
+-
+-    // Identify which items do not exceed the mean amplitude
+-    compareMask = _mm256_cmp_ps(dataPointsVal, vMeanAmplitudeVector, _CMP_LE_OQ);
+-
+-    // Mask off the items that exceed the mean amplitude and add the avg Points that do not exceed the mean amplitude
+-    avgPointsVal = _mm256_add_ps(avgPointsVal, _mm256_and_ps(compareMask, dataPointsVal));
+-
+-    // Count the number of bins which do not exceed the mean amplitude
+-    vValidBinCount = _mm256_add_ps(vValidBinCount, _mm256_and_ps(compareMask, vOnesVector));
+-  }
+-
+-  // Calculate the mean from the remaining data points
+-  _mm256_storeu_ps(avgPointsVector, avgPointsVal);
+-
+-  sumMean = 0.0;
+-  sumMean += avgPointsVector[0];
+-  sumMean += avgPointsVector[1];
+-  sumMean += avgPointsVector[2];
+-  sumMean += avgPointsVector[3];
+-  sumMean += avgPointsVector[4];
+-  sumMean += avgPointsVector[5];
+-  sumMean += avgPointsVector[6];
+-  sumMean += avgPointsVector[7];
+-
+-  // Calculate the number of valid bins from the remaining count
+-  __VOLK_ATTR_ALIGNED(16) float validBinCountVector[8];
+-  _mm256_storeu_ps(validBinCountVector, vValidBinCount);
+-
+-  float validBinCount = 0;
+-  validBinCount += validBinCountVector[0];
+-  validBinCount += validBinCountVector[1];
+-  validBinCount += validBinCountVector[2];
+-  validBinCount += validBinCountVector[3];
+-  validBinCount += validBinCountVector[4];
+-  validBinCount += validBinCountVector[5];
+-  validBinCount += validBinCountVector[6];
+-  validBinCount += validBinCountVector[7];
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    if(realDataPoints[number] <= meanAmplitude){
+-      sumMean += realDataPoints[number];
+-      validBinCount += 1.0;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    const float* dataPointsPtr = realDataPoints;
++    __VOLK_ATTR_ALIGNED(16) float avgPointsVector[8];
++
++    __m256 dataPointsVal;
++    __m256 avgPointsVal = _mm256_setzero_ps();
++    // Calculate the sum (for mean) for all points
++    for (; number < eighthPoints; number++) {
++
++        dataPointsVal = _mm256_loadu_ps(dataPointsPtr);
++
++        dataPointsPtr += 8;
++
++        avgPointsVal = _mm256_add_ps(avgPointsVal, dataPointsVal);
++    }
++
++    _mm256_storeu_ps(avgPointsVector, avgPointsVal);
++
++    float sumMean = 0.0;
++    sumMean += avgPointsVector[0];
++    sumMean += avgPointsVector[1];
++    sumMean += avgPointsVector[2];
++    sumMean += avgPointsVector[3];
++    sumMean += avgPointsVector[4];
++    sumMean += avgPointsVector[5];
++    sumMean += avgPointsVector[6];
++    sumMean += avgPointsVector[7];
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        sumMean += realDataPoints[number];
++    }
++
++    // calculate the spectral mean
++    // +20 because for the comparison below we only want to throw out bins
++    // that are significantly higher (and would, thus, affect the mean more
++    const float meanAmplitude = (sumMean / ((float)num_points)) + spectralExclusionValue;
++
++    dataPointsPtr = realDataPoints; // Reset the dataPointsPtr
++    __m256 vMeanAmplitudeVector = _mm256_set1_ps(meanAmplitude);
++    __m256 vOnesVector = _mm256_set1_ps(1.0);
++    __m256 vValidBinCount = _mm256_setzero_ps();
++    avgPointsVal = _mm256_setzero_ps();
++    __m256 compareMask;
++    number = 0;
++    // Calculate the sum (for mean) for any points which do NOT exceed the mean amplitude
++    for (; number < eighthPoints; number++) {
++
++        dataPointsVal = _mm256_loadu_ps(dataPointsPtr);
++
++        dataPointsPtr += 8;
++
++        // Identify which items do not exceed the mean amplitude
++        compareMask = _mm256_cmp_ps(dataPointsVal, vMeanAmplitudeVector, _CMP_LE_OQ);
++
++        // Mask off the items that exceed the mean amplitude and add the avg Points that
++        // do not exceed the mean amplitude
++        avgPointsVal =
++            _mm256_add_ps(avgPointsVal, _mm256_and_ps(compareMask, dataPointsVal));
++
++        // Count the number of bins which do not exceed the mean amplitude
++        vValidBinCount =
++            _mm256_add_ps(vValidBinCount, _mm256_and_ps(compareMask, vOnesVector));
++    }
++
++    // Calculate the mean from the remaining data points
++    _mm256_storeu_ps(avgPointsVector, avgPointsVal);
++
++    sumMean = 0.0;
++    sumMean += avgPointsVector[0];
++    sumMean += avgPointsVector[1];
++    sumMean += avgPointsVector[2];
++    sumMean += avgPointsVector[3];
++    sumMean += avgPointsVector[4];
++    sumMean += avgPointsVector[5];
++    sumMean += avgPointsVector[6];
++    sumMean += avgPointsVector[7];
++
++    // Calculate the number of valid bins from the remaining count
++    __VOLK_ATTR_ALIGNED(16) float validBinCountVector[8];
++    _mm256_storeu_ps(validBinCountVector, vValidBinCount);
++
++    float validBinCount = 0;
++    validBinCount += validBinCountVector[0];
++    validBinCount += validBinCountVector[1];
++    validBinCount += validBinCountVector[2];
++    validBinCount += validBinCountVector[3];
++    validBinCount += validBinCountVector[4];
++    validBinCount += validBinCountVector[5];
++    validBinCount += validBinCountVector[6];
++    validBinCount += validBinCountVector[7];
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        if (realDataPoints[number] <= meanAmplitude) {
++            sumMean += realDataPoints[number];
++            validBinCount += 1.0;
++        }
+     }
+-  }
+-  float localNoiseFloorAmplitude = 0;
+-  if(validBinCount > 0.0){
+-    localNoiseFloorAmplitude = sumMean / validBinCount;
+-  }
+-  else{
+-    localNoiseFloorAmplitude = meanAmplitude; // For the odd case that all the amplitudes are equal...
+-  }
++    float localNoiseFloorAmplitude = 0;
++    if (validBinCount > 0.0) {
++        localNoiseFloorAmplitude = sumMean / validBinCount;
++    } else {
++        localNoiseFloorAmplitude =
++            meanAmplitude; // For the odd case that all the amplitudes are equal...
++    }
+-  *noiseFloorAmplitude = localNoiseFloorAmplitude;
++    *noiseFloorAmplitude = localNoiseFloorAmplitude;
+ }
+ #endif /* LV_HAVE_AVX */
+ #endif /* INCLUDED_volk_32f_s32f_calc_spectral_noise_floor_32f_u_H */
+diff --git a/kernels/volk/volk_32f_s32f_convert_16i.h b/kernels/volk/volk_32f_s32f_convert_16i.h
+index 27ef4d9..c9469b7 100644
+--- a/kernels/volk/volk_32f_s32f_convert_16i.h
++++ b/kernels/volk/volk_32f_s32f_convert_16i.h
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_s32f_convert_16i(int16_t* outputVector, const float* inputVector, const float scalar, unsigned int num_points)
+- * \endcode
++ * void volk_32f_s32f_convert_16i(int16_t* outputVector, const float* inputVector, const
++ * float scalar, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li inputVector: the input vector of floats.
+@@ -42,11 +42,10 @@
+  * \li outputVector: The output vector.
+  *
+  * \b Example
+- * Convert floats from [-1,1] to 16-bit integers with a scale of 5 to maintain smallest delta
+- *  int N = 10;
+- *   unsigned int alignment = volk_get_alignment();
+- *   float* increasing = (float*)volk_malloc(sizeof(float)*N, alignment);
+- *   int16_t* out = (int16_t*)volk_malloc(sizeof(int16_t)*N, alignment);
++ * Convert floats from [-1,1] to 16-bit integers with a scale of 5 to maintain smallest
++ * delta int N = 10; unsigned int alignment = volk_get_alignment(); float* increasing =
++ * (float*)volk_malloc(sizeof(float)*N, alignment); int16_t* out =
++ * (int16_t*)volk_malloc(sizeof(int16_t)*N, alignment);
+  *
+  *   for(unsigned int ii = 0; ii < N; ++ii){
+  *       increasing[ii] = 2.f * ((float)ii / (float)N) - 1.f;
+@@ -76,55 +75,60 @@
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_32f_s32f_convert_16i_u_avx2(int16_t* outputVector, const float* inputVector,
+-                                 const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_convert_16i_u_avx2(int16_t* outputVector,
++                                                    const float* inputVector,
++                                                    const float scalar,
++                                                    unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-
+-  const unsigned int sixteenthPoints = num_points / 16;
+-
+-  const float* inputVectorPtr = (const float*)inputVector;
+-  int16_t* outputVectorPtr = outputVector;
+-
+-  float min_val = SHRT_MIN;
+-  float max_val = SHRT_MAX;
+-  float r;
+-
+-  __m256 vScalar = _mm256_set1_ps(scalar);
+-  __m256 inputVal1, inputVal2;
+-  __m256i intInputVal1, intInputVal2;
+-  __m256 ret1, ret2;
+-  __m256 vmin_val = _mm256_set1_ps(min_val);
+-  __m256 vmax_val = _mm256_set1_ps(max_val);
+-
+-  for(;number < sixteenthPoints; number++){
+-    inputVal1 = _mm256_loadu_ps(inputVectorPtr); inputVectorPtr += 8;
+-    inputVal2 = _mm256_loadu_ps(inputVectorPtr); inputVectorPtr += 8;
+-
+-    // Scale and clip
+-    ret1 = _mm256_max_ps(_mm256_min_ps(_mm256_mul_ps(inputVal1, vScalar), vmax_val), vmin_val);
+-    ret2 = _mm256_max_ps(_mm256_min_ps(_mm256_mul_ps(inputVal2, vScalar), vmax_val), vmin_val);
+-
+-    intInputVal1 = _mm256_cvtps_epi32(ret1);
+-    intInputVal2 = _mm256_cvtps_epi32(ret2);
+-
+-    intInputVal1 = _mm256_packs_epi32(intInputVal1, intInputVal2);
+-    intInputVal1 = _mm256_permute4x64_epi64(intInputVal1, 0b11011000);
+-
+-    _mm256_storeu_si256((__m256i*)outputVectorPtr, intInputVal1);
+-    outputVectorPtr += 16;
+-  }
+-
+-  number = sixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    r = inputVector[number] * scalar;
+-    if(r > max_val)
+-      r = max_val;
+-    else if(r < min_val)
+-      r = min_val;
+-    outputVector[number] = (int16_t)rintf(r);
+-  }
++    unsigned int number = 0;
++
++    const unsigned int sixteenthPoints = num_points / 16;
++
++    const float* inputVectorPtr = (const float*)inputVector;
++    int16_t* outputVectorPtr = outputVector;
++
++    float min_val = SHRT_MIN;
++    float max_val = SHRT_MAX;
++    float r;
++
++    __m256 vScalar = _mm256_set1_ps(scalar);
++    __m256 inputVal1, inputVal2;
++    __m256i intInputVal1, intInputVal2;
++    __m256 ret1, ret2;
++    __m256 vmin_val = _mm256_set1_ps(min_val);
++    __m256 vmax_val = _mm256_set1_ps(max_val);
++
++    for (; number < sixteenthPoints; number++) {
++        inputVal1 = _mm256_loadu_ps(inputVectorPtr);
++        inputVectorPtr += 8;
++        inputVal2 = _mm256_loadu_ps(inputVectorPtr);
++        inputVectorPtr += 8;
++
++        // Scale and clip
++        ret1 = _mm256_max_ps(_mm256_min_ps(_mm256_mul_ps(inputVal1, vScalar), vmax_val),
++                             vmin_val);
++        ret2 = _mm256_max_ps(_mm256_min_ps(_mm256_mul_ps(inputVal2, vScalar), vmax_val),
++                             vmin_val);
++
++        intInputVal1 = _mm256_cvtps_epi32(ret1);
++        intInputVal2 = _mm256_cvtps_epi32(ret2);
++
++        intInputVal1 = _mm256_packs_epi32(intInputVal1, intInputVal2);
++        intInputVal1 = _mm256_permute4x64_epi64(intInputVal1, 0b11011000);
++
++        _mm256_storeu_si256((__m256i*)outputVectorPtr, intInputVal1);
++        outputVectorPtr += 16;
++    }
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        r = inputVector[number] * scalar;
++        if (r > max_val)
++            r = max_val;
++        else if (r < min_val)
++            r = min_val;
++        outputVector[number] = (int16_t)rintf(r);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -132,54 +136,57 @@ volk_32f_s32f_convert_16i_u_avx2(int16_t* outputVector, const float* inputVector
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32f_s32f_convert_16i_u_avx(int16_t* outputVector, const float* inputVector,
+-                                const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_convert_16i_u_avx(int16_t* outputVector,
++                                                   const float* inputVector,
++                                                   const float scalar,
++                                                   unsigned int num_points)
+ {
+-  unsigned int number = 0;
++    unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    const unsigned int eighthPoints = num_points / 8;
+-  const float* inputVectorPtr = (const float*)inputVector;
+-  int16_t* outputVectorPtr = outputVector;
++    const float* inputVectorPtr = (const float*)inputVector;
++    int16_t* outputVectorPtr = outputVector;
+-  float min_val = SHRT_MIN;
+-  float max_val = SHRT_MAX;
+-  float r;
++    float min_val = SHRT_MIN;
++    float max_val = SHRT_MAX;
++    float r;
+-  __m256 vScalar = _mm256_set1_ps(scalar);
+-  __m256 inputVal, ret;
+-  __m256i intInputVal;
+-  __m128i intInputVal1, intInputVal2;
+-  __m256 vmin_val = _mm256_set1_ps(min_val);
+-  __m256 vmax_val = _mm256_set1_ps(max_val);
++    __m256 vScalar = _mm256_set1_ps(scalar);
++    __m256 inputVal, ret;
++    __m256i intInputVal;
++    __m128i intInputVal1, intInputVal2;
++    __m256 vmin_val = _mm256_set1_ps(min_val);
++    __m256 vmax_val = _mm256_set1_ps(max_val);
+-  for(;number < eighthPoints; number++){
+-    inputVal = _mm256_loadu_ps(inputVectorPtr); inputVectorPtr += 8;
++    for (; number < eighthPoints; number++) {
++        inputVal = _mm256_loadu_ps(inputVectorPtr);
++        inputVectorPtr += 8;
+-    // Scale and clip
+-    ret = _mm256_max_ps(_mm256_min_ps(_mm256_mul_ps(inputVal, vScalar), vmax_val), vmin_val);
++        // Scale and clip
++        ret = _mm256_max_ps(_mm256_min_ps(_mm256_mul_ps(inputVal, vScalar), vmax_val),
++                            vmin_val);
+-    intInputVal = _mm256_cvtps_epi32(ret);
++        intInputVal = _mm256_cvtps_epi32(ret);
+-    intInputVal1 = _mm256_extractf128_si256(intInputVal, 0);
+-    intInputVal2 = _mm256_extractf128_si256(intInputVal, 1);
++        intInputVal1 = _mm256_extractf128_si256(intInputVal, 0);
++        intInputVal2 = _mm256_extractf128_si256(intInputVal, 1);
+-    intInputVal1 = _mm_packs_epi32(intInputVal1, intInputVal2);
++        intInputVal1 = _mm_packs_epi32(intInputVal1, intInputVal2);
+-    _mm_storeu_si128((__m128i*)outputVectorPtr, intInputVal1);
+-    outputVectorPtr += 8;
+-  }
++        _mm_storeu_si128((__m128i*)outputVectorPtr, intInputVal1);
++        outputVectorPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    r = inputVector[number] * scalar;
+-    if(r > max_val)
+-      r = max_val;
+-    else if(r < min_val)
+-      r = min_val;
+-    outputVector[number] = (int16_t)rintf(r);
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        r = inputVector[number] * scalar;
++        if (r > max_val)
++            r = max_val;
++        else if (r < min_val)
++            r = min_val;
++        outputVector[number] = (int16_t)rintf(r);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -187,54 +194,57 @@ volk_32f_s32f_convert_16i_u_avx(int16_t* outputVector, const float* inputVector,
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void
+-volk_32f_s32f_convert_16i_u_sse2(int16_t* outputVector, const float* inputVector,
+-                                 const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_convert_16i_u_sse2(int16_t* outputVector,
++                                                    const float* inputVector,
++                                                    const float scalar,
++                                                    unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  const float* inputVectorPtr = (const float*)inputVector;
+-  int16_t* outputVectorPtr = outputVector;
+-
+-  float min_val = SHRT_MIN;
+-  float max_val = SHRT_MAX;
+-  float r;
+-
+-  __m128 vScalar = _mm_set_ps1(scalar);
+-  __m128 inputVal1, inputVal2;
+-  __m128i intInputVal1, intInputVal2;
+-  __m128 ret1, ret2;
+-  __m128 vmin_val = _mm_set_ps1(min_val);
+-  __m128 vmax_val = _mm_set_ps1(max_val);
+-
+-  for(;number < eighthPoints; number++){
+-    inputVal1 = _mm_loadu_ps(inputVectorPtr); inputVectorPtr += 4;
+-    inputVal2 = _mm_loadu_ps(inputVectorPtr); inputVectorPtr += 4;
+-
+-    // Scale and clip
+-    ret1 = _mm_max_ps(_mm_min_ps(_mm_mul_ps(inputVal1, vScalar), vmax_val), vmin_val);
+-    ret2 = _mm_max_ps(_mm_min_ps(_mm_mul_ps(inputVal2, vScalar), vmax_val), vmin_val);
+-
+-    intInputVal1 = _mm_cvtps_epi32(ret1);
+-    intInputVal2 = _mm_cvtps_epi32(ret2);
+-
+-    intInputVal1 = _mm_packs_epi32(intInputVal1, intInputVal2);
+-
+-    _mm_storeu_si128((__m128i*)outputVectorPtr, intInputVal1);
+-    outputVectorPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    r = inputVector[number] * scalar;
+-    if(r > max_val)
+-      r = max_val;
+-    else if(r < min_val)
+-      r = min_val;
+-    outputVector[number] = (int16_t)rintf(r);
+-  }
++    unsigned int number = 0;
++
++    const unsigned int eighthPoints = num_points / 8;
++
++    const float* inputVectorPtr = (const float*)inputVector;
++    int16_t* outputVectorPtr = outputVector;
++
++    float min_val = SHRT_MIN;
++    float max_val = SHRT_MAX;
++    float r;
++
++    __m128 vScalar = _mm_set_ps1(scalar);
++    __m128 inputVal1, inputVal2;
++    __m128i intInputVal1, intInputVal2;
++    __m128 ret1, ret2;
++    __m128 vmin_val = _mm_set_ps1(min_val);
++    __m128 vmax_val = _mm_set_ps1(max_val);
++
++    for (; number < eighthPoints; number++) {
++        inputVal1 = _mm_loadu_ps(inputVectorPtr);
++        inputVectorPtr += 4;
++        inputVal2 = _mm_loadu_ps(inputVectorPtr);
++        inputVectorPtr += 4;
++
++        // Scale and clip
++        ret1 = _mm_max_ps(_mm_min_ps(_mm_mul_ps(inputVal1, vScalar), vmax_val), vmin_val);
++        ret2 = _mm_max_ps(_mm_min_ps(_mm_mul_ps(inputVal2, vScalar), vmax_val), vmin_val);
++
++        intInputVal1 = _mm_cvtps_epi32(ret1);
++        intInputVal2 = _mm_cvtps_epi32(ret2);
++
++        intInputVal1 = _mm_packs_epi32(intInputVal1, intInputVal2);
++
++        _mm_storeu_si128((__m128i*)outputVectorPtr, intInputVal1);
++        outputVectorPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        r = inputVector[number] * scalar;
++        if (r > max_val)
++            r = max_val;
++        else if (r < min_val)
++            r = min_val;
++        outputVector[number] = (int16_t)rintf(r);
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+@@ -242,76 +252,78 @@ volk_32f_s32f_convert_16i_u_sse2(int16_t* outputVector, const float* inputVector
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32f_s32f_convert_16i_u_sse(int16_t* outputVector, const float* inputVector,
+-                                const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_convert_16i_u_sse(int16_t* outputVector,
++                                                   const float* inputVector,
++                                                   const float scalar,
++                                                   unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  const float* inputVectorPtr = (const float*)inputVector;
+-  int16_t* outputVectorPtr = outputVector;
+-
+-  float min_val = SHRT_MIN;
+-  float max_val = SHRT_MAX;
+-  float r;
+-
+-  __m128 vScalar = _mm_set_ps1(scalar);
+-  __m128 ret;
+-  __m128 vmin_val = _mm_set_ps1(min_val);
+-  __m128 vmax_val = _mm_set_ps1(max_val);
+-
+-  __VOLK_ATTR_ALIGNED(16) float outputFloatBuffer[4];
+-
+-  for(;number < quarterPoints; number++){
+-    ret = _mm_loadu_ps(inputVectorPtr);
+-    inputVectorPtr += 4;
+-
+-    // Scale and clip
+-    ret = _mm_max_ps(_mm_min_ps(_mm_mul_ps(ret, vScalar), vmax_val), vmin_val);
+-
+-    _mm_store_ps(outputFloatBuffer, ret);
+-    *outputVectorPtr++ = (int16_t)rintf(outputFloatBuffer[0]);
+-    *outputVectorPtr++ = (int16_t)rintf(outputFloatBuffer[1]);
+-    *outputVectorPtr++ = (int16_t)rintf(outputFloatBuffer[2]);
+-    *outputVectorPtr++ = (int16_t)rintf(outputFloatBuffer[3]);
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    r = inputVector[number] * scalar;
+-    if(r > max_val)
+-      r = max_val;
+-    else if(r < min_val)
+-      r = min_val;
+-    outputVector[number] = (int16_t)rintf(r);
+-  }
++    unsigned int number = 0;
++
++    const unsigned int quarterPoints = num_points / 4;
++
++    const float* inputVectorPtr = (const float*)inputVector;
++    int16_t* outputVectorPtr = outputVector;
++
++    float min_val = SHRT_MIN;
++    float max_val = SHRT_MAX;
++    float r;
++
++    __m128 vScalar = _mm_set_ps1(scalar);
++    __m128 ret;
++    __m128 vmin_val = _mm_set_ps1(min_val);
++    __m128 vmax_val = _mm_set_ps1(max_val);
++
++    __VOLK_ATTR_ALIGNED(16) float outputFloatBuffer[4];
++
++    for (; number < quarterPoints; number++) {
++        ret = _mm_loadu_ps(inputVectorPtr);
++        inputVectorPtr += 4;
++
++        // Scale and clip
++        ret = _mm_max_ps(_mm_min_ps(_mm_mul_ps(ret, vScalar), vmax_val), vmin_val);
++
++        _mm_store_ps(outputFloatBuffer, ret);
++        *outputVectorPtr++ = (int16_t)rintf(outputFloatBuffer[0]);
++        *outputVectorPtr++ = (int16_t)rintf(outputFloatBuffer[1]);
++        *outputVectorPtr++ = (int16_t)rintf(outputFloatBuffer[2]);
++        *outputVectorPtr++ = (int16_t)rintf(outputFloatBuffer[3]);
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        r = inputVector[number] * scalar;
++        if (r > max_val)
++            r = max_val;
++        else if (r < min_val)
++            r = min_val;
++        outputVector[number] = (int16_t)rintf(r);
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_s32f_convert_16i_generic(int16_t* outputVector, const float* inputVector,
+-                                  const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_convert_16i_generic(int16_t* outputVector,
++                                                     const float* inputVector,
++                                                     const float scalar,
++                                                     unsigned int num_points)
+ {
+-  int16_t* outputVectorPtr = outputVector;
+-  const float* inputVectorPtr = inputVector;
+-  unsigned int number = 0;
+-  float min_val = SHRT_MIN;
+-  float max_val = SHRT_MAX;
+-  float r;
+-
+-  for(number = 0; number < num_points; number++){
+-    r = *inputVectorPtr++  * scalar;
+-    if(r > max_val)
+-      r = max_val;
+-    else if(r < min_val)
+-      r = min_val;
+-    *outputVectorPtr++ = (int16_t)rintf(r);
+-  }
++    int16_t* outputVectorPtr = outputVector;
++    const float* inputVectorPtr = inputVector;
++    unsigned int number = 0;
++    float min_val = SHRT_MIN;
++    float max_val = SHRT_MAX;
++    float r;
++
++    for (number = 0; number < num_points; number++) {
++        r = *inputVectorPtr++ * scalar;
++        if (r > max_val)
++            r = max_val;
++        else if (r < min_val)
++            r = min_val;
++        *outputVectorPtr++ = (int16_t)rintf(r);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -320,63 +332,68 @@ volk_32f_s32f_convert_16i_generic(int16_t* outputVector, const float* inputVecto
+ #ifndef INCLUDED_volk_32f_s32f_convert_16i_a_H
+ #define INCLUDED_volk_32f_s32f_convert_16i_a_H
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+-#include <stdio.h>
+ #include <math.h>
++#include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_32f_s32f_convert_16i_a_avx2(int16_t* outputVector, const float* inputVector,
+-                                 const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_convert_16i_a_avx2(int16_t* outputVector,
++                                                    const float* inputVector,
++                                                    const float scalar,
++                                                    unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-
+-  const unsigned int sixteenthPoints = num_points / 16;
+-
+-  const float* inputVectorPtr = (const float*)inputVector;
+-  int16_t* outputVectorPtr = outputVector;
+-
+-  float min_val = SHRT_MIN;
+-  float max_val = SHRT_MAX;
+-  float r;
+-
+-  __m256 vScalar = _mm256_set1_ps(scalar);
+-  __m256 inputVal1, inputVal2;
+-  __m256i intInputVal1, intInputVal2;
+-  __m256 ret1, ret2;
+-  __m256 vmin_val = _mm256_set1_ps(min_val);
+-  __m256 vmax_val = _mm256_set1_ps(max_val);
+-
+-  for(;number < sixteenthPoints; number++){
+-    inputVal1 = _mm256_load_ps(inputVectorPtr); inputVectorPtr += 8;
+-    inputVal2 = _mm256_load_ps(inputVectorPtr); inputVectorPtr += 8;
+-
+-    // Scale and clip
+-    ret1 = _mm256_max_ps(_mm256_min_ps(_mm256_mul_ps(inputVal1, vScalar), vmax_val), vmin_val);
+-    ret2 = _mm256_max_ps(_mm256_min_ps(_mm256_mul_ps(inputVal2, vScalar), vmax_val), vmin_val);
+-
+-    intInputVal1 = _mm256_cvtps_epi32(ret1);
+-    intInputVal2 = _mm256_cvtps_epi32(ret2);
+-
+-    intInputVal1 = _mm256_packs_epi32(intInputVal1, intInputVal2);
+-    intInputVal1 = _mm256_permute4x64_epi64(intInputVal1, 0b11011000);
+-
+-    _mm256_store_si256((__m256i*)outputVectorPtr, intInputVal1);
+-    outputVectorPtr += 16;
+-  }
+-
+-  number = sixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    r = inputVector[number] * scalar;
+-    if(r > max_val)
+-      r = max_val;
+-    else if(r < min_val)
+-      r = min_val;
+-    outputVector[number] = (int16_t)rintf(r);
+-  }
++    unsigned int number = 0;
++
++    const unsigned int sixteenthPoints = num_points / 16;
++
++    const float* inputVectorPtr = (const float*)inputVector;
++    int16_t* outputVectorPtr = outputVector;
++
++    float min_val = SHRT_MIN;
++    float max_val = SHRT_MAX;
++    float r;
++
++    __m256 vScalar = _mm256_set1_ps(scalar);
++    __m256 inputVal1, inputVal2;
++    __m256i intInputVal1, intInputVal2;
++    __m256 ret1, ret2;
++    __m256 vmin_val = _mm256_set1_ps(min_val);
++    __m256 vmax_val = _mm256_set1_ps(max_val);
++
++    for (; number < sixteenthPoints; number++) {
++        inputVal1 = _mm256_load_ps(inputVectorPtr);
++        inputVectorPtr += 8;
++        inputVal2 = _mm256_load_ps(inputVectorPtr);
++        inputVectorPtr += 8;
++
++        // Scale and clip
++        ret1 = _mm256_max_ps(_mm256_min_ps(_mm256_mul_ps(inputVal1, vScalar), vmax_val),
++                             vmin_val);
++        ret2 = _mm256_max_ps(_mm256_min_ps(_mm256_mul_ps(inputVal2, vScalar), vmax_val),
++                             vmin_val);
++
++        intInputVal1 = _mm256_cvtps_epi32(ret1);
++        intInputVal2 = _mm256_cvtps_epi32(ret2);
++
++        intInputVal1 = _mm256_packs_epi32(intInputVal1, intInputVal2);
++        intInputVal1 = _mm256_permute4x64_epi64(intInputVal1, 0b11011000);
++
++        _mm256_store_si256((__m256i*)outputVectorPtr, intInputVal1);
++        outputVectorPtr += 16;
++    }
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        r = inputVector[number] * scalar;
++        if (r > max_val)
++            r = max_val;
++        else if (r < min_val)
++            r = min_val;
++        outputVector[number] = (int16_t)rintf(r);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -384,108 +401,114 @@ volk_32f_s32f_convert_16i_a_avx2(int16_t* outputVector, const float* inputVector
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32f_s32f_convert_16i_a_avx(int16_t* outputVector, const float* inputVector,
+-                                const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_convert_16i_a_avx(int16_t* outputVector,
++                                                   const float* inputVector,
++                                                   const float scalar,
++                                                   unsigned int num_points)
+ {
+-  unsigned int number = 0;
++    unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    const unsigned int eighthPoints = num_points / 8;
+-  const float* inputVectorPtr = (const float*)inputVector;
+-  int16_t* outputVectorPtr = outputVector;
++    const float* inputVectorPtr = (const float*)inputVector;
++    int16_t* outputVectorPtr = outputVector;
+-  float min_val = SHRT_MIN;
+-  float max_val = SHRT_MAX;
+-  float r;
++    float min_val = SHRT_MIN;
++    float max_val = SHRT_MAX;
++    float r;
+-  __m256 vScalar = _mm256_set1_ps(scalar);
+-  __m256 inputVal, ret;
+-  __m256i intInputVal;
+-  __m128i intInputVal1, intInputVal2;
+-  __m256 vmin_val = _mm256_set1_ps(min_val);
+-  __m256 vmax_val = _mm256_set1_ps(max_val);
++    __m256 vScalar = _mm256_set1_ps(scalar);
++    __m256 inputVal, ret;
++    __m256i intInputVal;
++    __m128i intInputVal1, intInputVal2;
++    __m256 vmin_val = _mm256_set1_ps(min_val);
++    __m256 vmax_val = _mm256_set1_ps(max_val);
+-  for(;number < eighthPoints; number++){
+-    inputVal = _mm256_load_ps(inputVectorPtr); inputVectorPtr += 8;
++    for (; number < eighthPoints; number++) {
++        inputVal = _mm256_load_ps(inputVectorPtr);
++        inputVectorPtr += 8;
+-    // Scale and clip
+-    ret = _mm256_max_ps(_mm256_min_ps(_mm256_mul_ps(inputVal, vScalar), vmax_val), vmin_val);
++        // Scale and clip
++        ret = _mm256_max_ps(_mm256_min_ps(_mm256_mul_ps(inputVal, vScalar), vmax_val),
++                            vmin_val);
+-    intInputVal = _mm256_cvtps_epi32(ret);
++        intInputVal = _mm256_cvtps_epi32(ret);
+-    intInputVal1 = _mm256_extractf128_si256(intInputVal, 0);
+-    intInputVal2 = _mm256_extractf128_si256(intInputVal, 1);
++        intInputVal1 = _mm256_extractf128_si256(intInputVal, 0);
++        intInputVal2 = _mm256_extractf128_si256(intInputVal, 1);
+-    intInputVal1 = _mm_packs_epi32(intInputVal1, intInputVal2);
++        intInputVal1 = _mm_packs_epi32(intInputVal1, intInputVal2);
+-    _mm_store_si128((__m128i*)outputVectorPtr, intInputVal1);
+-    outputVectorPtr += 8;
+-  }
++        _mm_store_si128((__m128i*)outputVectorPtr, intInputVal1);
++        outputVectorPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    r = inputVector[number] * scalar;
+-    if(r > max_val)
+-      r = max_val;
+-    else if(r < min_val)
+-      r = min_val;
+-    outputVector[number] = (int16_t)rintf(r);
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        r = inputVector[number] * scalar;
++        if (r > max_val)
++            r = max_val;
++        else if (r < min_val)
++            r = min_val;
++        outputVector[number] = (int16_t)rintf(r);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void
+-volk_32f_s32f_convert_16i_a_sse2(int16_t* outputVector, const float* inputVector,
+-                                 const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_convert_16i_a_sse2(int16_t* outputVector,
++                                                    const float* inputVector,
++                                                    const float scalar,
++                                                    unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  const float* inputVectorPtr = (const float*)inputVector;
+-  int16_t* outputVectorPtr = outputVector;
+-
+-  float min_val = SHRT_MIN;
+-  float max_val = SHRT_MAX;
+-  float r;
+-
+-  __m128 vScalar = _mm_set_ps1(scalar);
+-  __m128 inputVal1, inputVal2;
+-  __m128i intInputVal1, intInputVal2;
+-  __m128 ret1, ret2;
+-  __m128 vmin_val = _mm_set_ps1(min_val);
+-  __m128 vmax_val = _mm_set_ps1(max_val);
+-
+-  for(;number < eighthPoints; number++){
+-    inputVal1 = _mm_load_ps(inputVectorPtr); inputVectorPtr += 4;
+-    inputVal2 = _mm_load_ps(inputVectorPtr); inputVectorPtr += 4;
+-
+-    // Scale and clip
+-    ret1 = _mm_max_ps(_mm_min_ps(_mm_mul_ps(inputVal1, vScalar), vmax_val), vmin_val);
+-    ret2 = _mm_max_ps(_mm_min_ps(_mm_mul_ps(inputVal2, vScalar), vmax_val), vmin_val);
+-
+-    intInputVal1 = _mm_cvtps_epi32(ret1);
+-    intInputVal2 = _mm_cvtps_epi32(ret2);
+-
+-    intInputVal1 = _mm_packs_epi32(intInputVal1, intInputVal2);
+-
+-    _mm_store_si128((__m128i*)outputVectorPtr, intInputVal1);
+-    outputVectorPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    r = inputVector[number] * scalar;
+-    if(r > max_val)
+-      r = max_val;
+-    else if(r < min_val)
+-      r = min_val;
+-    outputVector[number] = (int16_t)rintf(r);
+-  }
++    unsigned int number = 0;
++
++    const unsigned int eighthPoints = num_points / 8;
++
++    const float* inputVectorPtr = (const float*)inputVector;
++    int16_t* outputVectorPtr = outputVector;
++
++    float min_val = SHRT_MIN;
++    float max_val = SHRT_MAX;
++    float r;
++
++    __m128 vScalar = _mm_set_ps1(scalar);
++    __m128 inputVal1, inputVal2;
++    __m128i intInputVal1, intInputVal2;
++    __m128 ret1, ret2;
++    __m128 vmin_val = _mm_set_ps1(min_val);
++    __m128 vmax_val = _mm_set_ps1(max_val);
++
++    for (; number < eighthPoints; number++) {
++        inputVal1 = _mm_load_ps(inputVectorPtr);
++        inputVectorPtr += 4;
++        inputVal2 = _mm_load_ps(inputVectorPtr);
++        inputVectorPtr += 4;
++
++        // Scale and clip
++        ret1 = _mm_max_ps(_mm_min_ps(_mm_mul_ps(inputVal1, vScalar), vmax_val), vmin_val);
++        ret2 = _mm_max_ps(_mm_min_ps(_mm_mul_ps(inputVal2, vScalar), vmax_val), vmin_val);
++
++        intInputVal1 = _mm_cvtps_epi32(ret1);
++        intInputVal2 = _mm_cvtps_epi32(ret2);
++
++        intInputVal1 = _mm_packs_epi32(intInputVal1, intInputVal2);
++
++        _mm_store_si128((__m128i*)outputVectorPtr, intInputVal1);
++        outputVectorPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        r = inputVector[number] * scalar;
++        if (r > max_val)
++            r = max_val;
++        else if (r < min_val)
++            r = min_val;
++        outputVector[number] = (int16_t)rintf(r);
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+@@ -493,76 +516,78 @@ volk_32f_s32f_convert_16i_a_sse2(int16_t* outputVector, const float* inputVector
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32f_s32f_convert_16i_a_sse(int16_t* outputVector, const float* inputVector,
+-                                const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_convert_16i_a_sse(int16_t* outputVector,
++                                                   const float* inputVector,
++                                                   const float scalar,
++                                                   unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  const float* inputVectorPtr = (const float*)inputVector;
+-  int16_t* outputVectorPtr = outputVector;
+-
+-  float min_val = SHRT_MIN;
+-  float max_val = SHRT_MAX;
+-  float r;
+-
+-  __m128 vScalar = _mm_set_ps1(scalar);
+-  __m128 ret;
+-  __m128 vmin_val = _mm_set_ps1(min_val);
+-  __m128 vmax_val = _mm_set_ps1(max_val);
+-
+-  __VOLK_ATTR_ALIGNED(16) float outputFloatBuffer[4];
+-
+-  for(;number < quarterPoints; number++){
+-    ret = _mm_load_ps(inputVectorPtr);
+-    inputVectorPtr += 4;
+-
+-    // Scale and clip
+-    ret = _mm_max_ps(_mm_min_ps(_mm_mul_ps(ret, vScalar), vmax_val), vmin_val);
+-
+-    _mm_store_ps(outputFloatBuffer, ret);
+-    *outputVectorPtr++ = (int16_t)rintf(outputFloatBuffer[0]);
+-    *outputVectorPtr++ = (int16_t)rintf(outputFloatBuffer[1]);
+-    *outputVectorPtr++ = (int16_t)rintf(outputFloatBuffer[2]);
+-    *outputVectorPtr++ = (int16_t)rintf(outputFloatBuffer[3]);
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    r = inputVector[number] * scalar;
+-    if(r > max_val)
+-      r = max_val;
+-    else if(r < min_val)
+-      r = min_val;
+-    outputVector[number] = (int16_t)rintf(r);
+-  }
++    unsigned int number = 0;
++
++    const unsigned int quarterPoints = num_points / 4;
++
++    const float* inputVectorPtr = (const float*)inputVector;
++    int16_t* outputVectorPtr = outputVector;
++
++    float min_val = SHRT_MIN;
++    float max_val = SHRT_MAX;
++    float r;
++
++    __m128 vScalar = _mm_set_ps1(scalar);
++    __m128 ret;
++    __m128 vmin_val = _mm_set_ps1(min_val);
++    __m128 vmax_val = _mm_set_ps1(max_val);
++
++    __VOLK_ATTR_ALIGNED(16) float outputFloatBuffer[4];
++
++    for (; number < quarterPoints; number++) {
++        ret = _mm_load_ps(inputVectorPtr);
++        inputVectorPtr += 4;
++
++        // Scale and clip
++        ret = _mm_max_ps(_mm_min_ps(_mm_mul_ps(ret, vScalar), vmax_val), vmin_val);
++
++        _mm_store_ps(outputFloatBuffer, ret);
++        *outputVectorPtr++ = (int16_t)rintf(outputFloatBuffer[0]);
++        *outputVectorPtr++ = (int16_t)rintf(outputFloatBuffer[1]);
++        *outputVectorPtr++ = (int16_t)rintf(outputFloatBuffer[2]);
++        *outputVectorPtr++ = (int16_t)rintf(outputFloatBuffer[3]);
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        r = inputVector[number] * scalar;
++        if (r > max_val)
++            r = max_val;
++        else if (r < min_val)
++            r = min_val;
++        outputVector[number] = (int16_t)rintf(r);
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_s32f_convert_16i_a_generic(int16_t* outputVector, const float* inputVector,
+-                                    const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_convert_16i_a_generic(int16_t* outputVector,
++                                                       const float* inputVector,
++                                                       const float scalar,
++                                                       unsigned int num_points)
+ {
+-  int16_t* outputVectorPtr = outputVector;
+-  const float* inputVectorPtr = inputVector;
+-  unsigned int number = 0;
+-  float min_val = SHRT_MIN;
+-  float max_val = SHRT_MAX;
+-  float r;
+-
+-  for(number = 0; number < num_points; number++){
+-    r  = *inputVectorPtr++ * scalar;
+-    if(r < min_val)
+-      r = min_val;
+-    else if(r > max_val)
+-      r = max_val;
+-    *outputVectorPtr++ = (int16_t)rintf(r);
+-  }
++    int16_t* outputVectorPtr = outputVector;
++    const float* inputVectorPtr = inputVector;
++    unsigned int number = 0;
++    float min_val = SHRT_MIN;
++    float max_val = SHRT_MAX;
++    float r;
++
++    for (number = 0; number < num_points; number++) {
++        r = *inputVectorPtr++ * scalar;
++        if (r < min_val)
++            r = min_val;
++        else if (r > max_val)
++            r = max_val;
++        *outputVectorPtr++ = (int16_t)rintf(r);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+diff --git a/kernels/volk/volk_32f_s32f_convert_32i.h b/kernels/volk/volk_32f_s32f_convert_32i.h
+index d2a65a0..d5f7cd4 100644
+--- a/kernels/volk/volk_32f_s32f_convert_32i.h
++++ b/kernels/volk/volk_32f_s32f_convert_32i.h
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_s32f_convert_32i(int32_t* outputVector, const float* inputVector, const float scalar, unsigned int num_points)
+- * \endcode
++ * void volk_32f_s32f_convert_32i(int32_t* outputVector, const float* inputVector, const
++ * float scalar, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li inputVector: the input vector of floats.
+@@ -77,46 +77,49 @@
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32f_s32f_convert_32i_u_avx(int32_t* outputVector, const float* inputVector,
+-                                const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_convert_32i_u_avx(int32_t* outputVector,
++                                                   const float* inputVector,
++                                                   const float scalar,
++                                                   unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  const float* inputVectorPtr = (const float*)inputVector;
+-  int32_t* outputVectorPtr = outputVector;
+-
+-  float min_val = INT_MIN;
+-  float max_val = INT_MAX;
+-  float r;
+-
+-  __m256 vScalar = _mm256_set1_ps(scalar);
+-  __m256 inputVal1;
+-  __m256i intInputVal1;
+-  __m256 vmin_val = _mm256_set1_ps(min_val);
+-  __m256 vmax_val = _mm256_set1_ps(max_val);
+-
+-  for(;number < eighthPoints; number++){
+-    inputVal1 = _mm256_loadu_ps(inputVectorPtr); inputVectorPtr += 8;
+-
+-    inputVal1 = _mm256_max_ps(_mm256_min_ps(_mm256_mul_ps(inputVal1, vScalar), vmax_val), vmin_val);
+-    intInputVal1 = _mm256_cvtps_epi32(inputVal1);
+-
+-    _mm256_storeu_si256((__m256i*)outputVectorPtr, intInputVal1);
+-    outputVectorPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    r = inputVector[number] * scalar;
+-    if(r > max_val)
+-      r = max_val;
+-    else if(r < min_val)
+-      r = min_val;
+-    outputVector[number] = (int32_t)rintf(r);
+-  }
++    unsigned int number = 0;
++
++    const unsigned int eighthPoints = num_points / 8;
++
++    const float* inputVectorPtr = (const float*)inputVector;
++    int32_t* outputVectorPtr = outputVector;
++
++    float min_val = INT_MIN;
++    float max_val = INT_MAX;
++    float r;
++
++    __m256 vScalar = _mm256_set1_ps(scalar);
++    __m256 inputVal1;
++    __m256i intInputVal1;
++    __m256 vmin_val = _mm256_set1_ps(min_val);
++    __m256 vmax_val = _mm256_set1_ps(max_val);
++
++    for (; number < eighthPoints; number++) {
++        inputVal1 = _mm256_loadu_ps(inputVectorPtr);
++        inputVectorPtr += 8;
++
++        inputVal1 = _mm256_max_ps(
++            _mm256_min_ps(_mm256_mul_ps(inputVal1, vScalar), vmax_val), vmin_val);
++        intInputVal1 = _mm256_cvtps_epi32(inputVal1);
++
++        _mm256_storeu_si256((__m256i*)outputVectorPtr, intInputVal1);
++        outputVectorPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        r = inputVector[number] * scalar;
++        if (r > max_val)
++            r = max_val;
++        else if (r < min_val)
++            r = min_val;
++        outputVector[number] = (int32_t)rintf(r);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -124,46 +127,49 @@ volk_32f_s32f_convert_32i_u_avx(int32_t* outputVector, const float* inputVector,
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void
+-volk_32f_s32f_convert_32i_u_sse2(int32_t* outputVector, const float* inputVector,
+-                                 const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_convert_32i_u_sse2(int32_t* outputVector,
++                                                    const float* inputVector,
++                                                    const float scalar,
++                                                    unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  const float* inputVectorPtr = (const float*)inputVector;
+-  int32_t* outputVectorPtr = outputVector;
+-
+-  float min_val = INT_MIN;
+-  float max_val = INT_MAX;
+-  float r;
+-
+-  __m128 vScalar = _mm_set_ps1(scalar);
+-  __m128 inputVal1;
+-  __m128i intInputVal1;
+-  __m128 vmin_val = _mm_set_ps1(min_val);
+-  __m128 vmax_val = _mm_set_ps1(max_val);
+-
+-  for(;number < quarterPoints; number++){
+-    inputVal1 = _mm_loadu_ps(inputVectorPtr); inputVectorPtr += 4;
+-
+-    inputVal1 = _mm_max_ps(_mm_min_ps(_mm_mul_ps(inputVal1, vScalar), vmax_val), vmin_val);
+-    intInputVal1 = _mm_cvtps_epi32(inputVal1);
+-
+-    _mm_storeu_si128((__m128i*)outputVectorPtr, intInputVal1);
+-    outputVectorPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    r = inputVector[number] * scalar;
+-    if(r > max_val)
+-      r = max_val;
+-    else if(r < min_val)
+-      r = min_val;
+-    outputVector[number] = (int32_t)rintf(r);
+-  }
++    unsigned int number = 0;
++
++    const unsigned int quarterPoints = num_points / 4;
++
++    const float* inputVectorPtr = (const float*)inputVector;
++    int32_t* outputVectorPtr = outputVector;
++
++    float min_val = INT_MIN;
++    float max_val = INT_MAX;
++    float r;
++
++    __m128 vScalar = _mm_set_ps1(scalar);
++    __m128 inputVal1;
++    __m128i intInputVal1;
++    __m128 vmin_val = _mm_set_ps1(min_val);
++    __m128 vmax_val = _mm_set_ps1(max_val);
++
++    for (; number < quarterPoints; number++) {
++        inputVal1 = _mm_loadu_ps(inputVectorPtr);
++        inputVectorPtr += 4;
++
++        inputVal1 =
++            _mm_max_ps(_mm_min_ps(_mm_mul_ps(inputVal1, vScalar), vmax_val), vmin_val);
++        intInputVal1 = _mm_cvtps_epi32(inputVal1);
++
++        _mm_storeu_si128((__m128i*)outputVectorPtr, intInputVal1);
++        outputVectorPtr += 4;
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        r = inputVector[number] * scalar;
++        if (r > max_val)
++            r = max_val;
++        else if (r < min_val)
++            r = min_val;
++        outputVector[number] = (int32_t)rintf(r);
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+@@ -172,50 +178,51 @@ volk_32f_s32f_convert_32i_u_sse2(int32_t* outputVector, const float* inputVector
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32f_s32f_convert_32i_u_sse(int32_t* outputVector, const float* inputVector,
+-                                const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_convert_32i_u_sse(int32_t* outputVector,
++                                                   const float* inputVector,
++                                                   const float scalar,
++                                                   unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  const float* inputVectorPtr = (const float*)inputVector;
+-  int32_t* outputVectorPtr = outputVector;
+-
+-  float min_val = INT_MIN;
+-  float max_val = INT_MAX;
+-  float r;
+-
+-  __m128 vScalar = _mm_set_ps1(scalar);
+-  __m128 ret;
+-  __m128 vmin_val = _mm_set_ps1(min_val);
+-  __m128 vmax_val = _mm_set_ps1(max_val);
+-
+-  __VOLK_ATTR_ALIGNED(16) float outputFloatBuffer[4];
+-
+-  for(;number < quarterPoints; number++){
+-    ret = _mm_loadu_ps(inputVectorPtr);
+-    inputVectorPtr += 4;
+-
+-    ret = _mm_max_ps(_mm_min_ps(_mm_mul_ps(ret, vScalar), vmax_val), vmin_val);
+-
+-    _mm_store_ps(outputFloatBuffer, ret);
+-    *outputVectorPtr++ = (int32_t)rintf(outputFloatBuffer[0]);
+-    *outputVectorPtr++ = (int32_t)rintf(outputFloatBuffer[1]);
+-    *outputVectorPtr++ = (int32_t)rintf(outputFloatBuffer[2]);
+-    *outputVectorPtr++ = (int32_t)rintf(outputFloatBuffer[3]);
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    r = inputVector[number] * scalar;
+-    if(r > max_val)
+-      r = max_val;
+-    else if(r < min_val)
+-      r = min_val;
+-    outputVector[number] = (int32_t)rintf(r);
+-  }
++    unsigned int number = 0;
++
++    const unsigned int quarterPoints = num_points / 4;
++
++    const float* inputVectorPtr = (const float*)inputVector;
++    int32_t* outputVectorPtr = outputVector;
++
++    float min_val = INT_MIN;
++    float max_val = INT_MAX;
++    float r;
++
++    __m128 vScalar = _mm_set_ps1(scalar);
++    __m128 ret;
++    __m128 vmin_val = _mm_set_ps1(min_val);
++    __m128 vmax_val = _mm_set_ps1(max_val);
++
++    __VOLK_ATTR_ALIGNED(16) float outputFloatBuffer[4];
++
++    for (; number < quarterPoints; number++) {
++        ret = _mm_loadu_ps(inputVectorPtr);
++        inputVectorPtr += 4;
++
++        ret = _mm_max_ps(_mm_min_ps(_mm_mul_ps(ret, vScalar), vmax_val), vmin_val);
++
++        _mm_store_ps(outputFloatBuffer, ret);
++        *outputVectorPtr++ = (int32_t)rintf(outputFloatBuffer[0]);
++        *outputVectorPtr++ = (int32_t)rintf(outputFloatBuffer[1]);
++        *outputVectorPtr++ = (int32_t)rintf(outputFloatBuffer[2]);
++        *outputVectorPtr++ = (int32_t)rintf(outputFloatBuffer[3]);
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        r = inputVector[number] * scalar;
++        if (r > max_val)
++            r = max_val;
++        else if (r < min_val)
++            r = min_val;
++        outputVector[number] = (int32_t)rintf(r);
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+@@ -223,82 +230,85 @@ volk_32f_s32f_convert_32i_u_sse(int32_t* outputVector, const float* inputVector,
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_s32f_convert_32i_generic(int32_t* outputVector, const float* inputVector,
+-                                  const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_convert_32i_generic(int32_t* outputVector,
++                                                     const float* inputVector,
++                                                     const float scalar,
++                                                     unsigned int num_points)
+ {
+-  int32_t* outputVectorPtr = outputVector;
+-  const float* inputVectorPtr = inputVector;
+-  unsigned int number = 0;
+-  float min_val = INT_MIN;
+-  float max_val = INT_MAX;
+-  float r;
+-
+-  for(number = 0; number < num_points; number++){
+-    r = *inputVectorPtr++ * scalar;
+-    if(r > max_val)
+-      r = max_val;
+-    else if(r < min_val)
+-      r = min_val;
+-    *outputVectorPtr++ = (int32_t)rintf(r);
+-  }
++    int32_t* outputVectorPtr = outputVector;
++    const float* inputVectorPtr = inputVector;
++    unsigned int number = 0;
++    float min_val = INT_MIN;
++    float max_val = INT_MAX;
++    float r;
++
++    for (number = 0; number < num_points; number++) {
++        r = *inputVectorPtr++ * scalar;
++        if (r > max_val)
++            r = max_val;
++        else if (r < min_val)
++            r = min_val;
++        *outputVectorPtr++ = (int32_t)rintf(r);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+-
+ #endif /* INCLUDED_volk_32f_s32f_convert_32i_u_H */
+ #ifndef INCLUDED_volk_32f_s32f_convert_32i_a_H
+ #define INCLUDED_volk_32f_s32f_convert_32i_a_H
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+ #include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32f_s32f_convert_32i_a_avx(int32_t* outputVector, const float* inputVector,
+-                                const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_convert_32i_a_avx(int32_t* outputVector,
++                                                   const float* inputVector,
++                                                   const float scalar,
++                                                   unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  const float* inputVectorPtr = (const float*)inputVector;
+-  int32_t* outputVectorPtr = outputVector;
+-
+-  float min_val = INT_MIN;
+-  float max_val = INT_MAX;
+-  float r;
+-
+-  __m256 vScalar = _mm256_set1_ps(scalar);
+-  __m256 inputVal1;
+-  __m256i intInputVal1;
+-  __m256 vmin_val = _mm256_set1_ps(min_val);
+-  __m256 vmax_val = _mm256_set1_ps(max_val);
+-
+-  for(;number < eighthPoints; number++){
+-    inputVal1 = _mm256_load_ps(inputVectorPtr); inputVectorPtr += 8;
+-
+-    inputVal1 = _mm256_max_ps(_mm256_min_ps(_mm256_mul_ps(inputVal1, vScalar), vmax_val), vmin_val);
+-    intInputVal1 = _mm256_cvtps_epi32(inputVal1);
+-
+-    _mm256_store_si256((__m256i*)outputVectorPtr, intInputVal1);
+-    outputVectorPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    r = inputVector[number] * scalar;
+-    if(r > max_val)
+-      r = max_val;
+-    else if(r < min_val)
+-      r = min_val;
+-    outputVector[number] = (int32_t)rintf(r);
+-  }
++    unsigned int number = 0;
++
++    const unsigned int eighthPoints = num_points / 8;
++
++    const float* inputVectorPtr = (const float*)inputVector;
++    int32_t* outputVectorPtr = outputVector;
++
++    float min_val = INT_MIN;
++    float max_val = INT_MAX;
++    float r;
++
++    __m256 vScalar = _mm256_set1_ps(scalar);
++    __m256 inputVal1;
++    __m256i intInputVal1;
++    __m256 vmin_val = _mm256_set1_ps(min_val);
++    __m256 vmax_val = _mm256_set1_ps(max_val);
++
++    for (; number < eighthPoints; number++) {
++        inputVal1 = _mm256_load_ps(inputVectorPtr);
++        inputVectorPtr += 8;
++
++        inputVal1 = _mm256_max_ps(
++            _mm256_min_ps(_mm256_mul_ps(inputVal1, vScalar), vmax_val), vmin_val);
++        intInputVal1 = _mm256_cvtps_epi32(inputVal1);
++
++        _mm256_store_si256((__m256i*)outputVectorPtr, intInputVal1);
++        outputVectorPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        r = inputVector[number] * scalar;
++        if (r > max_val)
++            r = max_val;
++        else if (r < min_val)
++            r = min_val;
++        outputVector[number] = (int32_t)rintf(r);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -307,46 +317,49 @@ volk_32f_s32f_convert_32i_a_avx(int32_t* outputVector, const float* inputVector,
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void
+-volk_32f_s32f_convert_32i_a_sse2(int32_t* outputVector, const float* inputVector,
+-                                 const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_convert_32i_a_sse2(int32_t* outputVector,
++                                                    const float* inputVector,
++                                                    const float scalar,
++                                                    unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  const float* inputVectorPtr = (const float*)inputVector;
+-  int32_t* outputVectorPtr = outputVector;
+-
+-  float min_val = INT_MIN;
+-  float max_val = INT_MAX;
+-  float r;
+-
+-  __m128 vScalar = _mm_set_ps1(scalar);
+-  __m128 inputVal1;
+-  __m128i intInputVal1;
+-  __m128 vmin_val = _mm_set_ps1(min_val);
+-  __m128 vmax_val = _mm_set_ps1(max_val);
+-
+-  for(;number < quarterPoints; number++){
+-    inputVal1 = _mm_load_ps(inputVectorPtr); inputVectorPtr += 4;
+-
+-    inputVal1 = _mm_max_ps(_mm_min_ps(_mm_mul_ps(inputVal1, vScalar), vmax_val), vmin_val);
+-    intInputVal1 = _mm_cvtps_epi32(inputVal1);
+-
+-    _mm_store_si128((__m128i*)outputVectorPtr, intInputVal1);
+-    outputVectorPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    r = inputVector[number] * scalar;
+-    if(r > max_val)
+-      r = max_val;
+-    else if(r < min_val)
+-      r = min_val;
+-    outputVector[number] = (int32_t)rintf(r);
+-  }
++    unsigned int number = 0;
++
++    const unsigned int quarterPoints = num_points / 4;
++
++    const float* inputVectorPtr = (const float*)inputVector;
++    int32_t* outputVectorPtr = outputVector;
++
++    float min_val = INT_MIN;
++    float max_val = INT_MAX;
++    float r;
++
++    __m128 vScalar = _mm_set_ps1(scalar);
++    __m128 inputVal1;
++    __m128i intInputVal1;
++    __m128 vmin_val = _mm_set_ps1(min_val);
++    __m128 vmax_val = _mm_set_ps1(max_val);
++
++    for (; number < quarterPoints; number++) {
++        inputVal1 = _mm_load_ps(inputVectorPtr);
++        inputVectorPtr += 4;
++
++        inputVal1 =
++            _mm_max_ps(_mm_min_ps(_mm_mul_ps(inputVal1, vScalar), vmax_val), vmin_val);
++        intInputVal1 = _mm_cvtps_epi32(inputVal1);
++
++        _mm_store_si128((__m128i*)outputVectorPtr, intInputVal1);
++        outputVectorPtr += 4;
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        r = inputVector[number] * scalar;
++        if (r > max_val)
++            r = max_val;
++        else if (r < min_val)
++            r = min_val;
++        outputVector[number] = (int32_t)rintf(r);
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+@@ -355,50 +368,51 @@ volk_32f_s32f_convert_32i_a_sse2(int32_t* outputVector, const float* inputVector
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32f_s32f_convert_32i_a_sse(int32_t* outputVector, const float* inputVector,
+-                                const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_convert_32i_a_sse(int32_t* outputVector,
++                                                   const float* inputVector,
++                                                   const float scalar,
++                                                   unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  const float* inputVectorPtr = (const float*)inputVector;
+-  int32_t* outputVectorPtr = outputVector;
+-
+-  float min_val = INT_MIN;
+-  float max_val = INT_MAX;
+-  float r;
+-
+-  __m128 vScalar = _mm_set_ps1(scalar);
+-  __m128 ret;
+-  __m128 vmin_val = _mm_set_ps1(min_val);
+-  __m128 vmax_val = _mm_set_ps1(max_val);
+-
+-  __VOLK_ATTR_ALIGNED(16) float outputFloatBuffer[4];
+-
+-  for(;number < quarterPoints; number++){
+-    ret = _mm_load_ps(inputVectorPtr);
+-    inputVectorPtr += 4;
+-
+-    ret = _mm_max_ps(_mm_min_ps(_mm_mul_ps(ret, vScalar), vmax_val), vmin_val);
+-
+-    _mm_store_ps(outputFloatBuffer, ret);
+-    *outputVectorPtr++ = (int32_t)rintf(outputFloatBuffer[0]);
+-    *outputVectorPtr++ = (int32_t)rintf(outputFloatBuffer[1]);
+-    *outputVectorPtr++ = (int32_t)rintf(outputFloatBuffer[2]);
+-    *outputVectorPtr++ = (int32_t)rintf(outputFloatBuffer[3]);
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    r = inputVector[number] * scalar;
+-    if(r > max_val)
+-      r = max_val;
+-    else if(r < min_val)
+-      r = min_val;
+-    outputVector[number] = (int32_t)rintf(r);
+-  }
++    unsigned int number = 0;
++
++    const unsigned int quarterPoints = num_points / 4;
++
++    const float* inputVectorPtr = (const float*)inputVector;
++    int32_t* outputVectorPtr = outputVector;
++
++    float min_val = INT_MIN;
++    float max_val = INT_MAX;
++    float r;
++
++    __m128 vScalar = _mm_set_ps1(scalar);
++    __m128 ret;
++    __m128 vmin_val = _mm_set_ps1(min_val);
++    __m128 vmax_val = _mm_set_ps1(max_val);
++
++    __VOLK_ATTR_ALIGNED(16) float outputFloatBuffer[4];
++
++    for (; number < quarterPoints; number++) {
++        ret = _mm_load_ps(inputVectorPtr);
++        inputVectorPtr += 4;
++
++        ret = _mm_max_ps(_mm_min_ps(_mm_mul_ps(ret, vScalar), vmax_val), vmin_val);
++
++        _mm_store_ps(outputFloatBuffer, ret);
++        *outputVectorPtr++ = (int32_t)rintf(outputFloatBuffer[0]);
++        *outputVectorPtr++ = (int32_t)rintf(outputFloatBuffer[1]);
++        *outputVectorPtr++ = (int32_t)rintf(outputFloatBuffer[2]);
++        *outputVectorPtr++ = (int32_t)rintf(outputFloatBuffer[3]);
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        r = inputVector[number] * scalar;
++        if (r > max_val)
++            r = max_val;
++        else if (r < min_val)
++            r = min_val;
++        outputVector[number] = (int32_t)rintf(r);
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+@@ -406,25 +420,26 @@ volk_32f_s32f_convert_32i_a_sse(int32_t* outputVector, const float* inputVector,
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_s32f_convert_32i_a_generic(int32_t* outputVector, const float* inputVector,
+-                                    const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_convert_32i_a_generic(int32_t* outputVector,
++                                                       const float* inputVector,
++                                                       const float scalar,
++                                                       unsigned int num_points)
+ {
+-  int32_t* outputVectorPtr = outputVector;
+-  const float* inputVectorPtr = inputVector;
+-  unsigned int number = 0;
+-  float min_val = INT_MIN;
+-  float max_val = INT_MAX;
+-  float r;
+-
+-  for(number = 0; number < num_points; number++){
+-    r = *inputVectorPtr++ * scalar;
+-    if(r > max_val)
+-      r = max_val;
+-    else if(r < min_val)
+-      r = min_val;
+-    *outputVectorPtr++ = (int32_t)rintf(r);
+-  }
++    int32_t* outputVectorPtr = outputVector;
++    const float* inputVectorPtr = inputVector;
++    unsigned int number = 0;
++    float min_val = INT_MIN;
++    float max_val = INT_MAX;
++    float r;
++
++    for (number = 0; number < num_points; number++) {
++        r = *inputVectorPtr++ * scalar;
++        if (r > max_val)
++            r = max_val;
++        else if (r < min_val)
++            r = min_val;
++        *outputVectorPtr++ = (int32_t)rintf(r);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+diff --git a/kernels/volk/volk_32f_s32f_convert_8i.h b/kernels/volk/volk_32f_s32f_convert_8i.h
+index 2a1669c..242c3bd 100644
+--- a/kernels/volk/volk_32f_s32f_convert_8i.h
++++ b/kernels/volk/volk_32f_s32f_convert_8i.h
+@@ -30,7 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_s32f_convert_8i(int8_t* outputVector, const float* inputVector, const float scalar, unsigned int num_points)
++ * void volk_32f_s32f_convert_8i(int8_t* outputVector, const float* inputVector, const
++ float scalar, unsigned int num_points)
+  * \endcode
+  *
+  * \b Inputs
+@@ -42,7 +43,8 @@
+  * \li outputVector: The output vector.
+  *
+  * \b Example
+- * Convert floats from [-1,1] to 16-bit integers with a scale of 5 to maintain smallest delta
++ * Convert floats from [-1,1] to 16-bit integers with a scale of 5 to maintain smallest
++ delta
+  *  int N = 10;
+  *   unsigned int alignment = volk_get_alignment();
+  *   float* increasing = (float*)volk_malloc(sizeof(float)*N, alignment);
+@@ -74,77 +76,86 @@
+ #include <inttypes.h>
+ #include <stdio.h>
+-static inline void
+-volk_32f_s32f_convert_8i_single(int8_t* out, const float in){
+-  float min_val = CHAR_MIN;
+-  float max_val = CHAR_MAX;
+-  if(in > max_val){
+-    *out = (int8_t)(max_val);
+-  }else if(in < min_val){
+-    *out = (int8_t)(min_val);
+-  }else{
+-    *out = (int8_t)(rintf(in));
+-  }
++static inline void volk_32f_s32f_convert_8i_single(int8_t* out, const float in)
++{
++    float min_val = CHAR_MIN;
++    float max_val = CHAR_MAX;
++    if (in > max_val) {
++        *out = (int8_t)(max_val);
++    } else if (in < min_val) {
++        *out = (int8_t)(min_val);
++    } else {
++        *out = (int8_t)(rintf(in));
++    }
+ }
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_32f_s32f_convert_8i_u_avx2(int8_t* outputVector, const float* inputVector,
+-                                const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_convert_8i_u_avx2(int8_t* outputVector,
++                                                   const float* inputVector,
++                                                   const float scalar,
++                                                   unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-
+-  const unsigned int thirtysecondPoints = num_points / 32;
+-
+-  const float* inputVectorPtr = (const float*)inputVector;
+-  int8_t* outputVectorPtr = outputVector;
+-
+-  float min_val = CHAR_MIN;
+-  float max_val = CHAR_MAX;
+-  float r;
+-
+-  __m256 vScalar = _mm256_set1_ps(scalar);
+-  __m256 inputVal1, inputVal2, inputVal3, inputVal4;
+-  __m256i intInputVal1, intInputVal2, intInputVal3, intInputVal4;
+-  __m256 vmin_val = _mm256_set1_ps(min_val);
+-  __m256 vmax_val = _mm256_set1_ps(max_val);
+-  __m256i intInputVal;
+-
+-  for(;number < thirtysecondPoints; number++){
+-    inputVal1 = _mm256_loadu_ps(inputVectorPtr); inputVectorPtr += 8;
+-    inputVal2 = _mm256_loadu_ps(inputVectorPtr); inputVectorPtr += 8;
+-    inputVal3 = _mm256_loadu_ps(inputVectorPtr); inputVectorPtr += 8;
+-    inputVal4 = _mm256_loadu_ps(inputVectorPtr); inputVectorPtr += 8;
+-
+-    inputVal1 = _mm256_max_ps(_mm256_min_ps(_mm256_mul_ps(inputVal1, vScalar), vmax_val), vmin_val);
+-    inputVal2 = _mm256_max_ps(_mm256_min_ps(_mm256_mul_ps(inputVal2, vScalar), vmax_val), vmin_val);
+-    inputVal3 = _mm256_max_ps(_mm256_min_ps(_mm256_mul_ps(inputVal3, vScalar), vmax_val), vmin_val);
+-    inputVal4 = _mm256_max_ps(_mm256_min_ps(_mm256_mul_ps(inputVal4, vScalar), vmax_val), vmin_val);
+-
+-    intInputVal1 = _mm256_cvtps_epi32(inputVal1);
+-    intInputVal2 = _mm256_cvtps_epi32(inputVal2);
+-    intInputVal3 = _mm256_cvtps_epi32(inputVal3);
+-    intInputVal4 = _mm256_cvtps_epi32(inputVal4);
+-
+-    intInputVal1 = _mm256_packs_epi32(intInputVal1, intInputVal2);
+-    intInputVal1 = _mm256_permute4x64_epi64(intInputVal1, 0b11011000);
+-    intInputVal3 = _mm256_packs_epi32(intInputVal3, intInputVal4);
+-    intInputVal3 = _mm256_permute4x64_epi64(intInputVal3, 0b11011000);
+-
+-    intInputVal1 = _mm256_packs_epi16(intInputVal1, intInputVal3);
+-    intInputVal = _mm256_permute4x64_epi64(intInputVal1, 0b11011000);
+-
+-    _mm256_storeu_si256((__m256i*)outputVectorPtr, intInputVal);
+-    outputVectorPtr += 32;
+-  }
+-
+-  number = thirtysecondPoints * 32;
+-  for(; number < num_points; number++){
+-    r = inputVector[number] * scalar;
+-    volk_32f_s32f_convert_8i_single(&outputVector[number], r);
+-  }
++    unsigned int number = 0;
++
++    const unsigned int thirtysecondPoints = num_points / 32;
++
++    const float* inputVectorPtr = (const float*)inputVector;
++    int8_t* outputVectorPtr = outputVector;
++
++    float min_val = CHAR_MIN;
++    float max_val = CHAR_MAX;
++    float r;
++
++    __m256 vScalar = _mm256_set1_ps(scalar);
++    __m256 inputVal1, inputVal2, inputVal3, inputVal4;
++    __m256i intInputVal1, intInputVal2, intInputVal3, intInputVal4;
++    __m256 vmin_val = _mm256_set1_ps(min_val);
++    __m256 vmax_val = _mm256_set1_ps(max_val);
++    __m256i intInputVal;
++
++    for (; number < thirtysecondPoints; number++) {
++        inputVal1 = _mm256_loadu_ps(inputVectorPtr);
++        inputVectorPtr += 8;
++        inputVal2 = _mm256_loadu_ps(inputVectorPtr);
++        inputVectorPtr += 8;
++        inputVal3 = _mm256_loadu_ps(inputVectorPtr);
++        inputVectorPtr += 8;
++        inputVal4 = _mm256_loadu_ps(inputVectorPtr);
++        inputVectorPtr += 8;
++
++        inputVal1 = _mm256_max_ps(
++            _mm256_min_ps(_mm256_mul_ps(inputVal1, vScalar), vmax_val), vmin_val);
++        inputVal2 = _mm256_max_ps(
++            _mm256_min_ps(_mm256_mul_ps(inputVal2, vScalar), vmax_val), vmin_val);
++        inputVal3 = _mm256_max_ps(
++            _mm256_min_ps(_mm256_mul_ps(inputVal3, vScalar), vmax_val), vmin_val);
++        inputVal4 = _mm256_max_ps(
++            _mm256_min_ps(_mm256_mul_ps(inputVal4, vScalar), vmax_val), vmin_val);
++
++        intInputVal1 = _mm256_cvtps_epi32(inputVal1);
++        intInputVal2 = _mm256_cvtps_epi32(inputVal2);
++        intInputVal3 = _mm256_cvtps_epi32(inputVal3);
++        intInputVal4 = _mm256_cvtps_epi32(inputVal4);
++
++        intInputVal1 = _mm256_packs_epi32(intInputVal1, intInputVal2);
++        intInputVal1 = _mm256_permute4x64_epi64(intInputVal1, 0b11011000);
++        intInputVal3 = _mm256_packs_epi32(intInputVal3, intInputVal4);
++        intInputVal3 = _mm256_permute4x64_epi64(intInputVal3, 0b11011000);
++
++        intInputVal1 = _mm256_packs_epi16(intInputVal1, intInputVal3);
++        intInputVal = _mm256_permute4x64_epi64(intInputVal1, 0b11011000);
++
++        _mm256_storeu_si256((__m256i*)outputVectorPtr, intInputVal);
++        outputVectorPtr += 32;
++    }
++
++    number = thirtysecondPoints * 32;
++    for (; number < num_points; number++) {
++        r = inputVector[number] * scalar;
++        volk_32f_s32f_convert_8i_single(&outputVector[number], r);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -153,57 +164,66 @@ volk_32f_s32f_convert_8i_u_avx2(int8_t* outputVector, const float* inputVector,
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void
+-volk_32f_s32f_convert_8i_u_sse2(int8_t* outputVector, const float* inputVector,
+-                                const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_convert_8i_u_sse2(int8_t* outputVector,
++                                                   const float* inputVector,
++                                                   const float scalar,
++                                                   unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-
+-  const unsigned int sixteenthPoints = num_points / 16;
+-
+-  const float* inputVectorPtr = (const float*)inputVector;
+-  int8_t* outputVectorPtr = outputVector;
+-
+-  float min_val = CHAR_MIN;
+-  float max_val = CHAR_MAX;
+-  float r;
+-
+-  __m128 vScalar = _mm_set_ps1(scalar);
+-  __m128 inputVal1, inputVal2, inputVal3, inputVal4;
+-  __m128i intInputVal1, intInputVal2, intInputVal3, intInputVal4;
+-  __m128 vmin_val = _mm_set_ps1(min_val);
+-  __m128 vmax_val = _mm_set_ps1(max_val);
+-
+-  for(;number < sixteenthPoints; number++){
+-    inputVal1 = _mm_loadu_ps(inputVectorPtr); inputVectorPtr += 4;
+-    inputVal2 = _mm_loadu_ps(inputVectorPtr); inputVectorPtr += 4;
+-    inputVal3 = _mm_loadu_ps(inputVectorPtr); inputVectorPtr += 4;
+-    inputVal4 = _mm_loadu_ps(inputVectorPtr); inputVectorPtr += 4;
+-
+-    inputVal1 = _mm_max_ps(_mm_min_ps(_mm_mul_ps(inputVal1, vScalar), vmax_val), vmin_val);
+-    inputVal2 = _mm_max_ps(_mm_min_ps(_mm_mul_ps(inputVal2, vScalar), vmax_val), vmin_val);
+-    inputVal3 = _mm_max_ps(_mm_min_ps(_mm_mul_ps(inputVal3, vScalar), vmax_val), vmin_val);
+-    inputVal4 = _mm_max_ps(_mm_min_ps(_mm_mul_ps(inputVal4, vScalar), vmax_val), vmin_val);
+-
+-    intInputVal1 = _mm_cvtps_epi32(inputVal1);
+-    intInputVal2 = _mm_cvtps_epi32(inputVal2);
+-    intInputVal3 = _mm_cvtps_epi32(inputVal3);
+-    intInputVal4 = _mm_cvtps_epi32(inputVal4);
+-
+-    intInputVal1 = _mm_packs_epi32(intInputVal1, intInputVal2);
+-    intInputVal3 = _mm_packs_epi32(intInputVal3, intInputVal4);
+-
+-    intInputVal1 = _mm_packs_epi16(intInputVal1, intInputVal3);
+-
+-    _mm_storeu_si128((__m128i*)outputVectorPtr, intInputVal1);
+-    outputVectorPtr += 16;
+-  }
++    unsigned int number = 0;
++
++    const unsigned int sixteenthPoints = num_points / 16;
++
++    const float* inputVectorPtr = (const float*)inputVector;
++    int8_t* outputVectorPtr = outputVector;
++
++    float min_val = CHAR_MIN;
++    float max_val = CHAR_MAX;
++    float r;
++
++    __m128 vScalar = _mm_set_ps1(scalar);
++    __m128 inputVal1, inputVal2, inputVal3, inputVal4;
++    __m128i intInputVal1, intInputVal2, intInputVal3, intInputVal4;
++    __m128 vmin_val = _mm_set_ps1(min_val);
++    __m128 vmax_val = _mm_set_ps1(max_val);
++
++    for (; number < sixteenthPoints; number++) {
++        inputVal1 = _mm_loadu_ps(inputVectorPtr);
++        inputVectorPtr += 4;
++        inputVal2 = _mm_loadu_ps(inputVectorPtr);
++        inputVectorPtr += 4;
++        inputVal3 = _mm_loadu_ps(inputVectorPtr);
++        inputVectorPtr += 4;
++        inputVal4 = _mm_loadu_ps(inputVectorPtr);
++        inputVectorPtr += 4;
++
++        inputVal1 =
++            _mm_max_ps(_mm_min_ps(_mm_mul_ps(inputVal1, vScalar), vmax_val), vmin_val);
++        inputVal2 =
++            _mm_max_ps(_mm_min_ps(_mm_mul_ps(inputVal2, vScalar), vmax_val), vmin_val);
++        inputVal3 =
++            _mm_max_ps(_mm_min_ps(_mm_mul_ps(inputVal3, vScalar), vmax_val), vmin_val);
++        inputVal4 =
++            _mm_max_ps(_mm_min_ps(_mm_mul_ps(inputVal4, vScalar), vmax_val), vmin_val);
++
++        intInputVal1 = _mm_cvtps_epi32(inputVal1);
++        intInputVal2 = _mm_cvtps_epi32(inputVal2);
++        intInputVal3 = _mm_cvtps_epi32(inputVal3);
++        intInputVal4 = _mm_cvtps_epi32(inputVal4);
++
++        intInputVal1 = _mm_packs_epi32(intInputVal1, intInputVal2);
++        intInputVal3 = _mm_packs_epi32(intInputVal3, intInputVal4);
++
++        intInputVal1 = _mm_packs_epi16(intInputVal1, intInputVal3);
++
++        _mm_storeu_si128((__m128i*)outputVectorPtr, intInputVal1);
++        outputVectorPtr += 16;
++    }
+-  number = sixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    r = inputVector[number] * scalar;
+-    volk_32f_s32f_convert_8i_single(&outputVector[number], r);
+-  }
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        r = inputVector[number] * scalar;
++        volk_32f_s32f_convert_8i_single(&outputVector[number], r);
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+@@ -212,46 +232,47 @@ volk_32f_s32f_convert_8i_u_sse2(int8_t* outputVector, const float* inputVector,
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32f_s32f_convert_8i_u_sse(int8_t* outputVector, const float* inputVector,
+-                               const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_convert_8i_u_sse(int8_t* outputVector,
++                                                  const float* inputVector,
++                                                  const float scalar,
++                                                  unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  size_t inner_loop;
++    unsigned int number = 0;
++    size_t inner_loop;
+-  const unsigned int quarterPoints = num_points / 4;
++    const unsigned int quarterPoints = num_points / 4;
+-  const float* inputVectorPtr = (const float*)inputVector;
+-  int8_t* outputVectorPtr = outputVector;
++    const float* inputVectorPtr = (const float*)inputVector;
++    int8_t* outputVectorPtr = outputVector;
+-  float min_val = CHAR_MIN;
+-  float max_val = CHAR_MAX;
+-  float r;
++    float min_val = CHAR_MIN;
++    float max_val = CHAR_MAX;
++    float r;
+-  __m128 vScalar = _mm_set_ps1(scalar);
+-  __m128 ret;
+-  __m128 vmin_val = _mm_set_ps1(min_val);
+-  __m128 vmax_val = _mm_set_ps1(max_val);
++    __m128 vScalar = _mm_set_ps1(scalar);
++    __m128 ret;
++    __m128 vmin_val = _mm_set_ps1(min_val);
++    __m128 vmax_val = _mm_set_ps1(max_val);
+-  __VOLK_ATTR_ALIGNED(16) float outputFloatBuffer[4];
++    __VOLK_ATTR_ALIGNED(16) float outputFloatBuffer[4];
+-  for(;number < quarterPoints; number++){
+-    ret = _mm_loadu_ps(inputVectorPtr);
+-    inputVectorPtr += 4;
++    for (; number < quarterPoints; number++) {
++        ret = _mm_loadu_ps(inputVectorPtr);
++        inputVectorPtr += 4;
+-    ret = _mm_max_ps(_mm_min_ps(_mm_mul_ps(ret, vScalar), vmax_val), vmin_val);
++        ret = _mm_max_ps(_mm_min_ps(_mm_mul_ps(ret, vScalar), vmax_val), vmin_val);
+-    _mm_store_ps(outputFloatBuffer, ret);
+-    for (inner_loop = 0; inner_loop < 4; inner_loop++){
+-      *outputVectorPtr++ = (int8_t)(rintf(outputFloatBuffer[inner_loop]));
++        _mm_store_ps(outputFloatBuffer, ret);
++        for (inner_loop = 0; inner_loop < 4; inner_loop++) {
++            *outputVectorPtr++ = (int8_t)(rintf(outputFloatBuffer[inner_loop]));
++        }
+     }
+-  }
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    r = inputVector[number] * scalar;
+-    volk_32f_s32f_convert_8i_single(&outputVector[number], r);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        r = inputVector[number] * scalar;
++        volk_32f_s32f_convert_8i_single(&outputVector[number], r);
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+@@ -259,18 +280,19 @@ volk_32f_s32f_convert_8i_u_sse(int8_t* outputVector, const float* inputVector,
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_s32f_convert_8i_generic(int8_t* outputVector, const float* inputVector,
+- const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_convert_8i_generic(int8_t* outputVector,
++                                                    const float* inputVector,
++                                                    const float scalar,
++                                                    unsigned int num_points)
+ {
+-  const float* inputVectorPtr = inputVector;
+-  unsigned int number = 0;
+-  float r;
+-
+-  for(number = 0; number < num_points; number++){
+-    r = *inputVectorPtr++ * scalar;
+-    volk_32f_s32f_convert_8i_single(&outputVector[number], r);
+-  }
++    const float* inputVectorPtr = inputVector;
++    unsigned int number = 0;
++    float r;
++
++    for (number = 0; number < num_points; number++) {
++        r = *inputVectorPtr++ * scalar;
++        volk_32f_s32f_convert_8i_single(&outputVector[number], r);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -280,68 +302,77 @@ volk_32f_s32f_convert_8i_generic(int8_t* outputVector, const float* inputVector,
+ #ifndef INCLUDED_volk_32f_s32f_convert_8i_a_H
+ #define INCLUDED_volk_32f_s32f_convert_8i_a_H
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+ #include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_32f_s32f_convert_8i_a_avx2(int8_t* outputVector, const float* inputVector,
+-                                const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_convert_8i_a_avx2(int8_t* outputVector,
++                                                   const float* inputVector,
++                                                   const float scalar,
++                                                   unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-
+-  const unsigned int thirtysecondPoints = num_points / 32;
+-
+-  const float* inputVectorPtr = (const float*)inputVector;
+-  int8_t* outputVectorPtr = outputVector;
+-
+-  float min_val = CHAR_MIN;
+-  float max_val = CHAR_MAX;
+-  float r;
+-
+-  __m256 vScalar = _mm256_set1_ps(scalar);
+-  __m256 inputVal1, inputVal2, inputVal3, inputVal4;
+-  __m256i intInputVal1, intInputVal2, intInputVal3, intInputVal4;
+-  __m256 vmin_val = _mm256_set1_ps(min_val);
+-  __m256 vmax_val = _mm256_set1_ps(max_val);
+-  __m256i intInputVal;
+-
+-  for(;number < thirtysecondPoints; number++){
+-    inputVal1 = _mm256_load_ps(inputVectorPtr); inputVectorPtr += 8;
+-    inputVal2 = _mm256_load_ps(inputVectorPtr); inputVectorPtr += 8;
+-    inputVal3 = _mm256_load_ps(inputVectorPtr); inputVectorPtr += 8;
+-    inputVal4 = _mm256_load_ps(inputVectorPtr); inputVectorPtr += 8;
+-
+-    inputVal1 = _mm256_max_ps(_mm256_min_ps(_mm256_mul_ps(inputVal1, vScalar), vmax_val), vmin_val);
+-    inputVal2 = _mm256_max_ps(_mm256_min_ps(_mm256_mul_ps(inputVal2, vScalar), vmax_val), vmin_val);
+-    inputVal3 = _mm256_max_ps(_mm256_min_ps(_mm256_mul_ps(inputVal3, vScalar), vmax_val), vmin_val);
+-    inputVal4 = _mm256_max_ps(_mm256_min_ps(_mm256_mul_ps(inputVal4, vScalar), vmax_val), vmin_val);
+-
+-    intInputVal1 = _mm256_cvtps_epi32(inputVal1);
+-    intInputVal2 = _mm256_cvtps_epi32(inputVal2);
+-    intInputVal3 = _mm256_cvtps_epi32(inputVal3);
+-    intInputVal4 = _mm256_cvtps_epi32(inputVal4);
+-
+-    intInputVal1 = _mm256_packs_epi32(intInputVal1, intInputVal2);
+-    intInputVal1 = _mm256_permute4x64_epi64(intInputVal1, 0b11011000);
+-    intInputVal3 = _mm256_packs_epi32(intInputVal3, intInputVal4);
+-    intInputVal3 = _mm256_permute4x64_epi64(intInputVal3, 0b11011000);
+-
+-    intInputVal1 = _mm256_packs_epi16(intInputVal1, intInputVal3);
+-    intInputVal = _mm256_permute4x64_epi64(intInputVal1, 0b11011000);
+-
+-    _mm256_store_si256((__m256i*)outputVectorPtr, intInputVal);
+-    outputVectorPtr += 32;
+-  }
+-
+-  number = thirtysecondPoints * 32;
+-  for(; number < num_points; number++){
+-    r = inputVector[number] * scalar;
+-    volk_32f_s32f_convert_8i_single(&outputVector[number], r);
+-  }
++    unsigned int number = 0;
++
++    const unsigned int thirtysecondPoints = num_points / 32;
++
++    const float* inputVectorPtr = (const float*)inputVector;
++    int8_t* outputVectorPtr = outputVector;
++
++    float min_val = CHAR_MIN;
++    float max_val = CHAR_MAX;
++    float r;
++
++    __m256 vScalar = _mm256_set1_ps(scalar);
++    __m256 inputVal1, inputVal2, inputVal3, inputVal4;
++    __m256i intInputVal1, intInputVal2, intInputVal3, intInputVal4;
++    __m256 vmin_val = _mm256_set1_ps(min_val);
++    __m256 vmax_val = _mm256_set1_ps(max_val);
++    __m256i intInputVal;
++
++    for (; number < thirtysecondPoints; number++) {
++        inputVal1 = _mm256_load_ps(inputVectorPtr);
++        inputVectorPtr += 8;
++        inputVal2 = _mm256_load_ps(inputVectorPtr);
++        inputVectorPtr += 8;
++        inputVal3 = _mm256_load_ps(inputVectorPtr);
++        inputVectorPtr += 8;
++        inputVal4 = _mm256_load_ps(inputVectorPtr);
++        inputVectorPtr += 8;
++
++        inputVal1 = _mm256_max_ps(
++            _mm256_min_ps(_mm256_mul_ps(inputVal1, vScalar), vmax_val), vmin_val);
++        inputVal2 = _mm256_max_ps(
++            _mm256_min_ps(_mm256_mul_ps(inputVal2, vScalar), vmax_val), vmin_val);
++        inputVal3 = _mm256_max_ps(
++            _mm256_min_ps(_mm256_mul_ps(inputVal3, vScalar), vmax_val), vmin_val);
++        inputVal4 = _mm256_max_ps(
++            _mm256_min_ps(_mm256_mul_ps(inputVal4, vScalar), vmax_val), vmin_val);
++
++        intInputVal1 = _mm256_cvtps_epi32(inputVal1);
++        intInputVal2 = _mm256_cvtps_epi32(inputVal2);
++        intInputVal3 = _mm256_cvtps_epi32(inputVal3);
++        intInputVal4 = _mm256_cvtps_epi32(inputVal4);
++
++        intInputVal1 = _mm256_packs_epi32(intInputVal1, intInputVal2);
++        intInputVal1 = _mm256_permute4x64_epi64(intInputVal1, 0b11011000);
++        intInputVal3 = _mm256_packs_epi32(intInputVal3, intInputVal4);
++        intInputVal3 = _mm256_permute4x64_epi64(intInputVal3, 0b11011000);
++
++        intInputVal1 = _mm256_packs_epi16(intInputVal1, intInputVal3);
++        intInputVal = _mm256_permute4x64_epi64(intInputVal1, 0b11011000);
++
++        _mm256_store_si256((__m256i*)outputVectorPtr, intInputVal);
++        outputVectorPtr += 32;
++    }
++
++    number = thirtysecondPoints * 32;
++    for (; number < num_points; number++) {
++        r = inputVector[number] * scalar;
++        volk_32f_s32f_convert_8i_single(&outputVector[number], r);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -350,57 +381,66 @@ volk_32f_s32f_convert_8i_a_avx2(int8_t* outputVector, const float* inputVector,
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void
+-volk_32f_s32f_convert_8i_a_sse2(int8_t* outputVector, const float* inputVector,
+-                                const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_convert_8i_a_sse2(int8_t* outputVector,
++                                                   const float* inputVector,
++                                                   const float scalar,
++                                                   unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-
+-  const unsigned int sixteenthPoints = num_points / 16;
+-
+-  const float* inputVectorPtr = (const float*)inputVector;
+-  int8_t* outputVectorPtr = outputVector;
+-
+-  float min_val = CHAR_MIN;
+-  float max_val = CHAR_MAX;
+-  float r;
+-
+-  __m128 vScalar = _mm_set_ps1(scalar);
+-  __m128 inputVal1, inputVal2, inputVal3, inputVal4;
+-  __m128i intInputVal1, intInputVal2, intInputVal3, intInputVal4;
+-  __m128 vmin_val = _mm_set_ps1(min_val);
+-  __m128 vmax_val = _mm_set_ps1(max_val);
+-
+-  for(;number < sixteenthPoints; number++){
+-    inputVal1 = _mm_load_ps(inputVectorPtr); inputVectorPtr += 4;
+-    inputVal2 = _mm_load_ps(inputVectorPtr); inputVectorPtr += 4;
+-    inputVal3 = _mm_load_ps(inputVectorPtr); inputVectorPtr += 4;
+-    inputVal4 = _mm_load_ps(inputVectorPtr); inputVectorPtr += 4;
+-
+-    inputVal1 = _mm_max_ps(_mm_min_ps(_mm_mul_ps(inputVal1, vScalar), vmax_val), vmin_val);
+-    inputVal2 = _mm_max_ps(_mm_min_ps(_mm_mul_ps(inputVal2, vScalar), vmax_val), vmin_val);
+-    inputVal3 = _mm_max_ps(_mm_min_ps(_mm_mul_ps(inputVal3, vScalar), vmax_val), vmin_val);
+-    inputVal4 = _mm_max_ps(_mm_min_ps(_mm_mul_ps(inputVal4, vScalar), vmax_val), vmin_val);
+-
+-    intInputVal1 = _mm_cvtps_epi32(inputVal1);
+-    intInputVal2 = _mm_cvtps_epi32(inputVal2);
+-    intInputVal3 = _mm_cvtps_epi32(inputVal3);
+-    intInputVal4 = _mm_cvtps_epi32(inputVal4);
+-
+-    intInputVal1 = _mm_packs_epi32(intInputVal1, intInputVal2);
+-    intInputVal3 = _mm_packs_epi32(intInputVal3, intInputVal4);
+-
+-    intInputVal1 = _mm_packs_epi16(intInputVal1, intInputVal3);
+-
+-    _mm_store_si128((__m128i*)outputVectorPtr, intInputVal1);
+-    outputVectorPtr += 16;
+-  }
++    unsigned int number = 0;
++
++    const unsigned int sixteenthPoints = num_points / 16;
++
++    const float* inputVectorPtr = (const float*)inputVector;
++    int8_t* outputVectorPtr = outputVector;
++
++    float min_val = CHAR_MIN;
++    float max_val = CHAR_MAX;
++    float r;
++
++    __m128 vScalar = _mm_set_ps1(scalar);
++    __m128 inputVal1, inputVal2, inputVal3, inputVal4;
++    __m128i intInputVal1, intInputVal2, intInputVal3, intInputVal4;
++    __m128 vmin_val = _mm_set_ps1(min_val);
++    __m128 vmax_val = _mm_set_ps1(max_val);
++
++    for (; number < sixteenthPoints; number++) {
++        inputVal1 = _mm_load_ps(inputVectorPtr);
++        inputVectorPtr += 4;
++        inputVal2 = _mm_load_ps(inputVectorPtr);
++        inputVectorPtr += 4;
++        inputVal3 = _mm_load_ps(inputVectorPtr);
++        inputVectorPtr += 4;
++        inputVal4 = _mm_load_ps(inputVectorPtr);
++        inputVectorPtr += 4;
++
++        inputVal1 =
++            _mm_max_ps(_mm_min_ps(_mm_mul_ps(inputVal1, vScalar), vmax_val), vmin_val);
++        inputVal2 =
++            _mm_max_ps(_mm_min_ps(_mm_mul_ps(inputVal2, vScalar), vmax_val), vmin_val);
++        inputVal3 =
++            _mm_max_ps(_mm_min_ps(_mm_mul_ps(inputVal3, vScalar), vmax_val), vmin_val);
++        inputVal4 =
++            _mm_max_ps(_mm_min_ps(_mm_mul_ps(inputVal4, vScalar), vmax_val), vmin_val);
++
++        intInputVal1 = _mm_cvtps_epi32(inputVal1);
++        intInputVal2 = _mm_cvtps_epi32(inputVal2);
++        intInputVal3 = _mm_cvtps_epi32(inputVal3);
++        intInputVal4 = _mm_cvtps_epi32(inputVal4);
++
++        intInputVal1 = _mm_packs_epi32(intInputVal1, intInputVal2);
++        intInputVal3 = _mm_packs_epi32(intInputVal3, intInputVal4);
++
++        intInputVal1 = _mm_packs_epi16(intInputVal1, intInputVal3);
++
++        _mm_store_si128((__m128i*)outputVectorPtr, intInputVal1);
++        outputVectorPtr += 16;
++    }
+-  number = sixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    r = inputVector[number] * scalar;
+-    volk_32f_s32f_convert_8i_single(&outputVector[number], r);
+-  }
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        r = inputVector[number] * scalar;
++        volk_32f_s32f_convert_8i_single(&outputVector[number], r);
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+@@ -408,46 +448,47 @@ volk_32f_s32f_convert_8i_a_sse2(int8_t* outputVector, const float* inputVector,
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32f_s32f_convert_8i_a_sse(int8_t* outputVector, const float* inputVector,
+-                               const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_convert_8i_a_sse(int8_t* outputVector,
++                                                  const float* inputVector,
++                                                  const float scalar,
++                                                  unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  size_t inner_loop;
++    unsigned int number = 0;
++    size_t inner_loop;
+-  const unsigned int quarterPoints = num_points / 4;
++    const unsigned int quarterPoints = num_points / 4;
+-  const float* inputVectorPtr = (const float*)inputVector;
++    const float* inputVectorPtr = (const float*)inputVector;
+-  float min_val = CHAR_MIN;
+-  float max_val = CHAR_MAX;
+-  float r;
++    float min_val = CHAR_MIN;
++    float max_val = CHAR_MAX;
++    float r;
+-  int8_t* outputVectorPtr = outputVector;
+-  __m128 vScalar = _mm_set_ps1(scalar);
+-  __m128 ret;
+-  __m128 vmin_val = _mm_set_ps1(min_val);
+-  __m128 vmax_val = _mm_set_ps1(max_val);
++    int8_t* outputVectorPtr = outputVector;
++    __m128 vScalar = _mm_set_ps1(scalar);
++    __m128 ret;
++    __m128 vmin_val = _mm_set_ps1(min_val);
++    __m128 vmax_val = _mm_set_ps1(max_val);
+-  __VOLK_ATTR_ALIGNED(16) float outputFloatBuffer[4];
++    __VOLK_ATTR_ALIGNED(16) float outputFloatBuffer[4];
+-  for(;number < quarterPoints; number++){
+-    ret = _mm_load_ps(inputVectorPtr);
+-    inputVectorPtr += 4;
++    for (; number < quarterPoints; number++) {
++        ret = _mm_load_ps(inputVectorPtr);
++        inputVectorPtr += 4;
+-    ret = _mm_max_ps(_mm_min_ps(_mm_mul_ps(ret, vScalar), vmax_val), vmin_val);
++        ret = _mm_max_ps(_mm_min_ps(_mm_mul_ps(ret, vScalar), vmax_val), vmin_val);
+-    _mm_store_ps(outputFloatBuffer, ret);
+-    for (inner_loop = 0; inner_loop < 4; inner_loop++){
+-      *outputVectorPtr++ = (int8_t)(rintf(outputFloatBuffer[inner_loop]));
++        _mm_store_ps(outputFloatBuffer, ret);
++        for (inner_loop = 0; inner_loop < 4; inner_loop++) {
++            *outputVectorPtr++ = (int8_t)(rintf(outputFloatBuffer[inner_loop]));
++        }
+     }
+-  }
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    r = inputVector[number] * scalar;
+-    volk_32f_s32f_convert_8i_single(&outputVector[number], r);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        r = inputVector[number] * scalar;
++        volk_32f_s32f_convert_8i_single(&outputVector[number], r);
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+@@ -455,18 +496,19 @@ volk_32f_s32f_convert_8i_a_sse(int8_t* outputVector, const float* inputVector,
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_s32f_convert_8i_a_generic(int8_t* outputVector, const float* inputVector,
+-                                   const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_convert_8i_a_generic(int8_t* outputVector,
++                                                      const float* inputVector,
++                                                      const float scalar,
++                                                      unsigned int num_points)
+ {
+-  const float* inputVectorPtr = inputVector;
+-  unsigned int number = 0;
+-  float r;
+-
+-  for(number = 0; number < num_points; number++){
+-    r = *inputVectorPtr++ * scalar;
+-    volk_32f_s32f_convert_8i_single(&outputVector[number], r);
+-  }
++    const float* inputVectorPtr = inputVector;
++    unsigned int number = 0;
++    float r;
++
++    for (number = 0; number < num_points; number++) {
++        r = *inputVectorPtr++ * scalar;
++        volk_32f_s32f_convert_8i_single(&outputVector[number], r);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+diff --git a/kernels/volk/volk_32f_s32f_mod_rangepuppet_32f.h b/kernels/volk/volk_32f_s32f_mod_rangepuppet_32f.h
+index 6ace77b..28d7ab5 100644
+--- a/kernels/volk/volk_32f_s32f_mod_rangepuppet_32f.h
++++ b/kernels/volk/volk_32f_s32f_mod_rangepuppet_32f.h
+@@ -4,42 +4,77 @@
+ #include <volk/volk_32f_s32f_s32f_mod_range_32f.h>
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32f_s32f_mod_rangepuppet_32f_generic(float *output, const float *input, float bound, unsigned int num_points){
+-  volk_32f_s32f_s32f_mod_range_32f_generic(output, input, bound-3.141f, bound, num_points);
++static inline void volk_32f_s32f_mod_rangepuppet_32f_generic(float* output,
++                                                             const float* input,
++                                                             float bound,
++                                                             unsigned int num_points)
++{
++    volk_32f_s32f_s32f_mod_range_32f_generic(
++        output, input, bound - 3.141f, bound, num_points);
+ }
+ #endif
+ #ifdef LV_HAVE_SSE
+-static inline void volk_32f_s32f_mod_rangepuppet_32f_u_sse(float *output, const float *input, float bound, unsigned int num_points){
+-  volk_32f_s32f_s32f_mod_range_32f_u_sse(output, input, bound-3.141f, bound, num_points);
++static inline void volk_32f_s32f_mod_rangepuppet_32f_u_sse(float* output,
++                                                           const float* input,
++                                                           float bound,
++                                                           unsigned int num_points)
++{
++    volk_32f_s32f_s32f_mod_range_32f_u_sse(
++        output, input, bound - 3.141f, bound, num_points);
+ }
+ #endif
+ #ifdef LV_HAVE_SSE
+-static inline void volk_32f_s32f_mod_rangepuppet_32f_a_sse(float *output, const float *input, float bound, unsigned int num_points){
+-  volk_32f_s32f_s32f_mod_range_32f_a_sse(output, input, bound-3.141f, bound, num_points);
++static inline void volk_32f_s32f_mod_rangepuppet_32f_a_sse(float* output,
++                                                           const float* input,
++                                                           float bound,
++                                                           unsigned int num_points)
++{
++    volk_32f_s32f_s32f_mod_range_32f_a_sse(
++        output, input, bound - 3.141f, bound, num_points);
+ }
+ #endif
+ #ifdef LV_HAVE_SSE2
+-static inline void volk_32f_s32f_mod_rangepuppet_32f_u_sse2(float *output, const float *input, float bound, unsigned int num_points){
+-  volk_32f_s32f_s32f_mod_range_32f_u_sse2(output, input, bound-3.141f, bound, num_points);
++static inline void volk_32f_s32f_mod_rangepuppet_32f_u_sse2(float* output,
++                                                            const float* input,
++                                                            float bound,
++                                                            unsigned int num_points)
++{
++    volk_32f_s32f_s32f_mod_range_32f_u_sse2(
++        output, input, bound - 3.141f, bound, num_points);
+ }
+ #endif
+ #ifdef LV_HAVE_SSE2
+-static inline void volk_32f_s32f_mod_rangepuppet_32f_a_sse2(float *output, const float *input, float bound, unsigned int num_points){
+-  volk_32f_s32f_s32f_mod_range_32f_a_sse2(output, input, bound-3.141f, bound, num_points);
++static inline void volk_32f_s32f_mod_rangepuppet_32f_a_sse2(float* output,
++                                                            const float* input,
++                                                            float bound,
++                                                            unsigned int num_points)
++{
++    volk_32f_s32f_s32f_mod_range_32f_a_sse2(
++        output, input, bound - 3.141f, bound, num_points);
+ }
+ #endif
+ #ifdef LV_HAVE_AVX
+-static inline void volk_32f_s32f_mod_rangepuppet_32f_u_avx(float *output, const float *input, float bound, unsigned int num_points){
+-  volk_32f_s32f_s32f_mod_range_32f_u_avx(output, input, bound-3.141f, bound, num_points);
++static inline void volk_32f_s32f_mod_rangepuppet_32f_u_avx(float* output,
++                                                           const float* input,
++                                                           float bound,
++                                                           unsigned int num_points)
++{
++    volk_32f_s32f_s32f_mod_range_32f_u_avx(
++        output, input, bound - 3.141f, bound, num_points);
+ }
+ #endif
+ #ifdef LV_HAVE_AVX
+-static inline void volk_32f_s32f_mod_rangepuppet_32f_a_avx(float *output, const float *input, float bound, unsigned int num_points){
+-  volk_32f_s32f_s32f_mod_range_32f_a_avx(output, input, bound-3.141f, bound, num_points);
++static inline void volk_32f_s32f_mod_rangepuppet_32f_a_avx(float* output,
++                                                           const float* input,
++                                                           float bound,
++                                                           unsigned int num_points)
++{
++    volk_32f_s32f_s32f_mod_range_32f_a_avx(
++        output, input, bound - 3.141f, bound, num_points);
+ }
+ #endif
+ #endif
+diff --git a/kernels/volk/volk_32f_s32f_multiply_32f.h b/kernels/volk/volk_32f_s32f_multiply_32f.h
+index 97c7f69..dcc9c6b 100644
+--- a/kernels/volk/volk_32f_s32f_multiply_32f.h
++++ b/kernels/volk/volk_32f_s32f_multiply_32f.h
+@@ -29,8 +29,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_s32f_multiply_32f(float* cVector, const float* aVector, const float scalar, unsigned int num_points)
+- * \endcode
++ * void volk_32f_s32f_multiply_32f(float* cVector, const float* aVector, const float
++ * scalar, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li aVector: The input vector of floats.
+@@ -75,84 +75,87 @@
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32f_s32f_multiply_32f_u_sse(float* cVector, const float* aVector,
+-                                 const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_multiply_32f_u_sse(float* cVector,
++                                                    const float* aVector,
++                                                    const float scalar,
++                                                    unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
+-  __m128 aVal, bVal, cVal;
+-  bVal = _mm_set_ps1(scalar);
+-  for(;number < quarterPoints; number++){
+-    aVal = _mm_loadu_ps(aPtr);
++    __m128 aVal, bVal, cVal;
++    bVal = _mm_set_ps1(scalar);
++    for (; number < quarterPoints; number++) {
++        aVal = _mm_loadu_ps(aPtr);
+-    cVal = _mm_mul_ps(aVal, bVal);
++        cVal = _mm_mul_ps(aVal, bVal);
+-    _mm_storeu_ps(cPtr,cVal); // Store the results back into the C container
++        _mm_storeu_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 4;
+-    cPtr += 4;
+-  }
++        aPtr += 4;
++        cPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) * scalar;
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) * scalar;
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32f_s32f_multiply_32f_u_avx(float* cVector, const float* aVector,
+-                                 const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_multiply_32f_u_avx(float* cVector,
++                                                    const float* aVector,
++                                                    const float scalar,
++                                                    unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
+-  __m256 aVal, bVal, cVal;
+-  bVal = _mm256_set1_ps(scalar);
+-  for(;number < eighthPoints; number++){
++    __m256 aVal, bVal, cVal;
++    bVal = _mm256_set1_ps(scalar);
++    for (; number < eighthPoints; number++) {
+-    aVal = _mm256_loadu_ps(aPtr);
++        aVal = _mm256_loadu_ps(aPtr);
+-    cVal = _mm256_mul_ps(aVal, bVal);
++        cVal = _mm256_mul_ps(aVal, bVal);
+-    _mm256_storeu_ps(cPtr,cVal); // Store the results back into the C container
++        _mm256_storeu_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 8;
+-    cPtr += 8;
+-  }
++        aPtr += 8;
++        cPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) * scalar;
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) * scalar;
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_s32f_multiply_32f_generic(float* cVector, const float* aVector,
+-                                   const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_multiply_32f_generic(float* cVector,
++                                                      const float* aVector,
++                                                      const float scalar,
++                                                      unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const float* inputPtr = aVector;
+-  float* outputPtr = cVector;
+-  for(number = 0; number < num_points; number++){
+-    *outputPtr = (*inputPtr) * scalar;
+-    inputPtr++;
+-    outputPtr++;
+-  }
++    unsigned int number = 0;
++    const float* inputPtr = aVector;
++    float* outputPtr = cVector;
++    for (number = 0; number < num_points; number++) {
++        *outputPtr = (*inputPtr) * scalar;
++        inputPtr++;
++        outputPtr++;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -168,126 +171,132 @@ volk_32f_s32f_multiply_32f_generic(float* cVector, const float* aVector,
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32f_s32f_multiply_32f_a_sse(float* cVector, const float* aVector,
+-                                 const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_multiply_32f_a_sse(float* cVector,
++                                                    const float* aVector,
++                                                    const float scalar,
++                                                    unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
+-  __m128 aVal, bVal, cVal;
+-  bVal = _mm_set_ps1(scalar);
+-  for(;number < quarterPoints; number++){
+-    aVal = _mm_load_ps(aPtr);
++    __m128 aVal, bVal, cVal;
++    bVal = _mm_set_ps1(scalar);
++    for (; number < quarterPoints; number++) {
++        aVal = _mm_load_ps(aPtr);
+-    cVal = _mm_mul_ps(aVal, bVal);
++        cVal = _mm_mul_ps(aVal, bVal);
+-    _mm_store_ps(cPtr,cVal); // Store the results back into the C container
++        _mm_store_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 4;
+-    cPtr += 4;
+-  }
++        aPtr += 4;
++        cPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) * scalar;
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) * scalar;
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32f_s32f_multiply_32f_a_avx(float* cVector, const float* aVector,
+-                                 const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_multiply_32f_a_avx(float* cVector,
++                                                    const float* aVector,
++                                                    const float scalar,
++                                                    unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
+-  __m256 aVal, bVal, cVal;
+-  bVal = _mm256_set1_ps(scalar);
+-  for(;number < eighthPoints; number++){
+-    aVal = _mm256_load_ps(aPtr);
++    __m256 aVal, bVal, cVal;
++    bVal = _mm256_set1_ps(scalar);
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_load_ps(aPtr);
+-    cVal = _mm256_mul_ps(aVal, bVal);
++        cVal = _mm256_mul_ps(aVal, bVal);
+-    _mm256_store_ps(cPtr,cVal); // Store the results back into the C container
++        _mm256_store_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 8;
+-    cPtr += 8;
+-  }
++        aPtr += 8;
++        cPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) * scalar;
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) * scalar;
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_32f_s32f_multiply_32f_u_neon(float* cVector, const float* aVector,
+-                                  const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_multiply_32f_u_neon(float* cVector,
++                                                     const float* aVector,
++                                                     const float scalar,
++                                                     unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const float* inputPtr = aVector;
+-  float* outputPtr = cVector;
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  float32x4_t aVal, cVal;
+-
+-  for(number = 0; number < quarterPoints; number++){
+-    aVal = vld1q_f32(inputPtr); // Load into NEON regs
+-    cVal = vmulq_n_f32 (aVal, scalar); // Do the multiply
+-    vst1q_f32(outputPtr, cVal); // Store results back to output
+-    inputPtr += 4;
+-    outputPtr += 4;
+-  }
+-  for(number = quarterPoints * 4; number < num_points; number++){
+-    *outputPtr++ = (*inputPtr++) * scalar;
+-  }
++    unsigned int number = 0;
++    const float* inputPtr = aVector;
++    float* outputPtr = cVector;
++    const unsigned int quarterPoints = num_points / 4;
++
++    float32x4_t aVal, cVal;
++
++    for (number = 0; number < quarterPoints; number++) {
++        aVal = vld1q_f32(inputPtr);       // Load into NEON regs
++        cVal = vmulq_n_f32(aVal, scalar); // Do the multiply
++        vst1q_f32(outputPtr, cVal);       // Store results back to output
++        inputPtr += 4;
++        outputPtr += 4;
++    }
++    for (number = quarterPoints * 4; number < num_points; number++) {
++        *outputPtr++ = (*inputPtr++) * scalar;
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_s32f_multiply_32f_a_generic(float* cVector, const float* aVector,
+-                                     const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_multiply_32f_a_generic(float* cVector,
++                                                        const float* aVector,
++                                                        const float scalar,
++                                                        unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const float* inputPtr = aVector;
+-  float* outputPtr = cVector;
+-  for(number = 0; number < num_points; number++){
+-    *outputPtr = (*inputPtr) * scalar;
+-    inputPtr++;
+-    outputPtr++;
+-  }
++    unsigned int number = 0;
++    const float* inputPtr = aVector;
++    float* outputPtr = cVector;
++    for (number = 0; number < num_points; number++) {
++        *outputPtr = (*inputPtr) * scalar;
++        inputPtr++;
++        outputPtr++;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_ORC
+-extern void
+-volk_32f_s32f_multiply_32f_a_orc_impl(float* dst, const float* src,
+-                                      const float scalar, unsigned int num_points);
++extern void volk_32f_s32f_multiply_32f_a_orc_impl(float* dst,
++                                                  const float* src,
++                                                  const float scalar,
++                                                  unsigned int num_points);
+-static inline void
+-volk_32f_s32f_multiply_32f_u_orc(float* cVector, const float* aVector,
+-                                 const float scalar, unsigned int num_points)
++static inline void volk_32f_s32f_multiply_32f_u_orc(float* cVector,
++                                                    const float* aVector,
++                                                    const float scalar,
++                                                    unsigned int num_points)
+ {
+-  volk_32f_s32f_multiply_32f_a_orc_impl(cVector, aVector, scalar, num_points);
++    volk_32f_s32f_multiply_32f_a_orc_impl(cVector, aVector, scalar, num_points);
+ }
+ #endif /* LV_HAVE_GENERIC */
+diff --git a/kernels/volk/volk_32f_s32f_normalize.h b/kernels/volk/volk_32f_s32f_normalize.h
+index 404d534..0a05492 100644
+--- a/kernels/volk/volk_32f_s32f_normalize.h
++++ b/kernels/volk/volk_32f_s32f_normalize.h
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_s32f_normalize(float* vecBuffer, const float scalar, unsigned int num_points)
+- * \endcode
++ * void volk_32f_s32f_normalize(float* vecBuffer, const float scalar, unsigned int
++ * num_points) \endcode
+  *
+  * \b Inputs
+  * \li vecBuffer: The buffer of values to be vectorized.
+@@ -76,84 +76,99 @@
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void volk_32f_s32f_normalize_a_avx(float* vecBuffer, const float scalar, unsigned int num_points){
+-  unsigned int number = 0;
+-  float* inputPtr = vecBuffer;
++static inline void volk_32f_s32f_normalize_a_avx(float* vecBuffer,
++                                                 const float scalar,
++                                                 unsigned int num_points)
++{
++    unsigned int number = 0;
++    float* inputPtr = vecBuffer;
+-  const float invScalar = 1.0 / scalar;
+-  __m256 vecScalar = _mm256_set1_ps(invScalar);
++    const float invScalar = 1.0 / scalar;
++    __m256 vecScalar = _mm256_set1_ps(invScalar);
+-  __m256 input1;
++    __m256 input1;
+-  const uint64_t eighthPoints = num_points / 8;
+-  for(;number < eighthPoints; number++){
++    const uint64_t eighthPoints = num_points / 8;
++    for (; number < eighthPoints; number++) {
+-    input1 = _mm256_load_ps(inputPtr);
++        input1 = _mm256_load_ps(inputPtr);
+-    input1 = _mm256_mul_ps(input1, vecScalar);
++        input1 = _mm256_mul_ps(input1, vecScalar);
+-    _mm256_store_ps(inputPtr, input1);
++        _mm256_store_ps(inputPtr, input1);
+-    inputPtr += 8;
+-  }
++        inputPtr += 8;
++    }
+-  number = eighthPoints*8;
+-  for(; number < num_points; number++){
+-    *inputPtr *= invScalar;
+-    inputPtr++;
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *inputPtr *= invScalar;
++        inputPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void volk_32f_s32f_normalize_a_sse(float* vecBuffer, const float scalar, unsigned int num_points){
+-  unsigned int number = 0;
+-  float* inputPtr = vecBuffer;
++static inline void volk_32f_s32f_normalize_a_sse(float* vecBuffer,
++                                                 const float scalar,
++                                                 unsigned int num_points)
++{
++    unsigned int number = 0;
++    float* inputPtr = vecBuffer;
+-  const float invScalar = 1.0 / scalar;
+-  __m128 vecScalar = _mm_set_ps1(invScalar);
++    const float invScalar = 1.0 / scalar;
++    __m128 vecScalar = _mm_set_ps1(invScalar);
+-  __m128 input1;
++    __m128 input1;
+-  const uint64_t quarterPoints = num_points / 4;
+-  for(;number < quarterPoints; number++){
++    const uint64_t quarterPoints = num_points / 4;
++    for (; number < quarterPoints; number++) {
+-    input1 = _mm_load_ps(inputPtr);
++        input1 = _mm_load_ps(inputPtr);
+-    input1 = _mm_mul_ps(input1, vecScalar);
++        input1 = _mm_mul_ps(input1, vecScalar);
+-    _mm_store_ps(inputPtr, input1);
++        _mm_store_ps(inputPtr, input1);
+-    inputPtr += 4;
+-  }
++        inputPtr += 4;
++    }
+-  number = quarterPoints*4;
+-  for(; number < num_points; number++){
+-    *inputPtr *= invScalar;
+-    inputPtr++;
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *inputPtr *= invScalar;
++        inputPtr++;
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32f_s32f_normalize_generic(float* vecBuffer, const float scalar, unsigned int num_points){
+-  unsigned int number = 0;
+-  float* inputPtr = vecBuffer;
+-  const float invScalar = 1.0 / scalar;
+-  for(number = 0; number < num_points; number++){
+-    *inputPtr *= invScalar;
+-    inputPtr++;
+-  }
++static inline void volk_32f_s32f_normalize_generic(float* vecBuffer,
++                                                   const float scalar,
++                                                   unsigned int num_points)
++{
++    unsigned int number = 0;
++    float* inputPtr = vecBuffer;
++    const float invScalar = 1.0 / scalar;
++    for (number = 0; number < num_points; number++) {
++        *inputPtr *= invScalar;
++        inputPtr++;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_ORC
+-extern void volk_32f_s32f_normalize_a_orc_impl(float* dst, float* src, const float scalar, unsigned int num_points);
+-static inline void volk_32f_s32f_normalize_u_orc(float* vecBuffer, const float scalar, unsigned int num_points){
++extern void volk_32f_s32f_normalize_a_orc_impl(float* dst,
++                                               float* src,
++                                               const float scalar,
++                                               unsigned int num_points);
++static inline void volk_32f_s32f_normalize_u_orc(float* vecBuffer,
++                                                 const float scalar,
++                                                 unsigned int num_points)
++{
+     float invscalar = 1.0 / scalar;
+     volk_32f_s32f_normalize_a_orc_impl(vecBuffer, vecBuffer, invscalar, num_points);
+ }
+@@ -169,32 +184,35 @@ static inline void volk_32f_s32f_normalize_u_orc(float* vecBuffer, const float s
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void volk_32f_s32f_normalize_u_avx(float* vecBuffer, const float scalar, unsigned int num_points){
+-  unsigned int number = 0;
+-  float* inputPtr = vecBuffer;
++static inline void volk_32f_s32f_normalize_u_avx(float* vecBuffer,
++                                                 const float scalar,
++                                                 unsigned int num_points)
++{
++    unsigned int number = 0;
++    float* inputPtr = vecBuffer;
+-  const float invScalar = 1.0 / scalar;
+-  __m256 vecScalar = _mm256_set1_ps(invScalar);
++    const float invScalar = 1.0 / scalar;
++    __m256 vecScalar = _mm256_set1_ps(invScalar);
+-  __m256 input1;
++    __m256 input1;
+-  const uint64_t eighthPoints = num_points / 8;
+-  for(;number < eighthPoints; number++){
++    const uint64_t eighthPoints = num_points / 8;
++    for (; number < eighthPoints; number++) {
+-    input1 = _mm256_loadu_ps(inputPtr);
++        input1 = _mm256_loadu_ps(inputPtr);
+-    input1 = _mm256_mul_ps(input1, vecScalar);
++        input1 = _mm256_mul_ps(input1, vecScalar);
+-    _mm256_storeu_ps(inputPtr, input1);
++        _mm256_storeu_ps(inputPtr, input1);
+-    inputPtr += 8;
+-  }
++        inputPtr += 8;
++    }
+-  number = eighthPoints*8;
+-  for(; number < num_points; number++){
+-    *inputPtr *= invScalar;
+-    inputPtr++;
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *inputPtr *= invScalar;
++        inputPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+diff --git a/kernels/volk/volk_32f_s32f_power_32f.h b/kernels/volk/volk_32f_s32f_power_32f.h
+index 070efdc..9b6fdf4 100644
+--- a/kernels/volk/volk_32f_s32f_power_32f.h
++++ b/kernels/volk/volk_32f_s32f_power_32f.h
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_s32f_power_32f(float* cVector, const float* aVector, const float power, unsigned int num_points)
+- * \endcode
++ * void volk_32f_s32f_power_32f(float* cVector, const float* aVector, const float power,
++ * unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li aVector: The input vector of floats.
+@@ -72,8 +72,8 @@
+ #define INCLUDED_volk_32f_s32f_power_32f_a_H
+ #include <inttypes.h>
+-#include <stdio.h>
+ #include <math.h>
++#include <stdio.h>
+ #ifdef LV_HAVE_SSE4_1
+ #include <tmmintrin.h>
+@@ -82,49 +82,51 @@
+ #include <simdmath.h>
+ #endif /* LV_HAVE_LIB_SIMDMATH */
+-static inline void
+-volk_32f_s32f_power_32f_a_sse4_1(float* cVector, const float* aVector,
+-                                 const float power, unsigned int num_points)
++static inline void volk_32f_s32f_power_32f_a_sse4_1(float* cVector,
++                                                    const float* aVector,
++                                                    const float power,
++                                                    unsigned int num_points)
+ {
+-  unsigned int number = 0;
++    unsigned int number = 0;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
+ #ifdef LV_HAVE_LIB_SIMDMATH
+-  const unsigned int quarterPoints = num_points / 4;
+-  __m128 vPower = _mm_set_ps1(power);
+-  __m128 zeroValue = _mm_setzero_ps();
+-  __m128 signMask;
+-  __m128 negatedValues;
+-  __m128 negativeOneToPower = _mm_set_ps1(powf(-1, power));
+-  __m128 onesMask = _mm_set_ps1(1);
++    const unsigned int quarterPoints = num_points / 4;
++    __m128 vPower = _mm_set_ps1(power);
++    __m128 zeroValue = _mm_setzero_ps();
++    __m128 signMask;
++    __m128 negatedValues;
++    __m128 negativeOneToPower = _mm_set_ps1(powf(-1, power));
++    __m128 onesMask = _mm_set_ps1(1);
+-  __m128 aVal, cVal;
+-  for(;number < quarterPoints; number++){
++    __m128 aVal, cVal;
++    for (; number < quarterPoints; number++) {
+-    aVal = _mm_load_ps(aPtr);
+-    signMask = _mm_cmplt_ps(aVal, zeroValue);
+-    negatedValues = _mm_sub_ps(zeroValue, aVal);
+-    aVal = _mm_blendv_ps(aVal, negatedValues, signMask);
++        aVal = _mm_load_ps(aPtr);
++        signMask = _mm_cmplt_ps(aVal, zeroValue);
++        negatedValues = _mm_sub_ps(zeroValue, aVal);
++        aVal = _mm_blendv_ps(aVal, negatedValues, signMask);
+-    // powf4 doesn't support negative values in the base, so we mask them off and then apply the negative after
+-    cVal = powf4(aVal, vPower); // Takes each input value to the specified power
++        // powf4 doesn't support negative values in the base, so we mask them off and then
++        // apply the negative after
++        cVal = powf4(aVal, vPower); // Takes each input value to the specified power
+-    cVal = _mm_mul_ps( _mm_blendv_ps(onesMask, negativeOneToPower, signMask), cVal);
++        cVal = _mm_mul_ps(_mm_blendv_ps(onesMask, negativeOneToPower, signMask), cVal);
+-    _mm_store_ps(cPtr,cVal); // Store the results back into the C container
++        _mm_store_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 4;
+-    cPtr += 4;
+-  }
++        aPtr += 4;
++        cPtr += 4;
++    }
+-  number = quarterPoints * 4;
++    number = quarterPoints * 4;
+ #endif /* LV_HAVE_LIB_SIMDMATH */
+-  for(;number < num_points; number++){
+-    *cPtr++ = powf((*aPtr++), power);
+-  }
++    for (; number < num_points; number++) {
++        *cPtr++ = powf((*aPtr++), power);
++    }
+ }
+ #endif /* LV_HAVE_SSE4_1 */
+@@ -137,49 +139,54 @@ volk_32f_s32f_power_32f_a_sse4_1(float* cVector, const float* aVector,
+ #include <simdmath.h>
+ #endif /* LV_HAVE_LIB_SIMDMATH */
+-static inline void
+-volk_32f_s32f_power_32f_a_sse(float* cVector, const float* aVector,
+-                              const float power, unsigned int num_points)
++static inline void volk_32f_s32f_power_32f_a_sse(float* cVector,
++                                                 const float* aVector,
++                                                 const float power,
++                                                 unsigned int num_points)
+ {
+-  unsigned int number = 0;
++    unsigned int number = 0;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
+ #ifdef LV_HAVE_LIB_SIMDMATH
+-  const unsigned int quarterPoints = num_points / 4;
+-  __m128 vPower = _mm_set_ps1(power);
+-  __m128 zeroValue = _mm_setzero_ps();
+-  __m128 signMask;
+-  __m128 negatedValues;
+-  __m128 negativeOneToPower = _mm_set_ps1(powf(-1, power));
+-  __m128 onesMask = _mm_set_ps1(1);
+-
+-  __m128 aVal, cVal;
+-  for(;number < quarterPoints; number++){
+-
+-    aVal = _mm_load_ps(aPtr);
+-    signMask = _mm_cmplt_ps(aVal, zeroValue);
+-    negatedValues = _mm_sub_ps(zeroValue, aVal);
+-    aVal = _mm_or_ps(_mm_andnot_ps(signMask, aVal), _mm_and_ps(signMask, negatedValues) );
+-
+-    // powf4 doesn't support negative values in the base, so we mask them off and then apply the negative after
+-    cVal = powf4(aVal, vPower); // Takes each input value to the specified power
+-
+-    cVal = _mm_mul_ps( _mm_or_ps( _mm_andnot_ps(signMask, onesMask), _mm_and_ps(signMask, negativeOneToPower) ), cVal);
+-
+-    _mm_store_ps(cPtr,cVal); // Store the results back into the C container
+-
+-    aPtr += 4;
+-    cPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
++    const unsigned int quarterPoints = num_points / 4;
++    __m128 vPower = _mm_set_ps1(power);
++    __m128 zeroValue = _mm_setzero_ps();
++    __m128 signMask;
++    __m128 negatedValues;
++    __m128 negativeOneToPower = _mm_set_ps1(powf(-1, power));
++    __m128 onesMask = _mm_set_ps1(1);
++
++    __m128 aVal, cVal;
++    for (; number < quarterPoints; number++) {
++
++        aVal = _mm_load_ps(aPtr);
++        signMask = _mm_cmplt_ps(aVal, zeroValue);
++        negatedValues = _mm_sub_ps(zeroValue, aVal);
++        aVal =
++            _mm_or_ps(_mm_andnot_ps(signMask, aVal), _mm_and_ps(signMask, negatedValues));
++
++        // powf4 doesn't support negative values in the base, so we mask them off and then
++        // apply the negative after
++        cVal = powf4(aVal, vPower); // Takes each input value to the specified power
++
++        cVal = _mm_mul_ps(_mm_or_ps(_mm_andnot_ps(signMask, onesMask),
++                                    _mm_and_ps(signMask, negativeOneToPower)),
++                          cVal);
++
++        _mm_store_ps(cPtr, cVal); // Store the results back into the C container
++
++        aPtr += 4;
++        cPtr += 4;
++    }
++
++    number = quarterPoints * 4;
+ #endif /* LV_HAVE_LIB_SIMDMATH */
+-  for(;number < num_points; number++){
+-    *cPtr++ = powf((*aPtr++), power);
+-  }
++    for (; number < num_points; number++) {
++        *cPtr++ = powf((*aPtr++), power);
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+@@ -187,17 +194,18 @@ volk_32f_s32f_power_32f_a_sse(float* cVector, const float* aVector,
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_s32f_power_32f_generic(float* cVector, const float* aVector,
+-                                const float power, unsigned int num_points)
++static inline void volk_32f_s32f_power_32f_generic(float* cVector,
++                                                   const float* aVector,
++                                                   const float power,
++                                                   unsigned int num_points)
+ {
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  unsigned int number = 0;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    unsigned int number = 0;
+-  for(number = 0; number < num_points; number++){
+-    *cPtr++ = powf((*aPtr++), power);
+-  }
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = powf((*aPtr++), power);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+diff --git a/kernels/volk/volk_32f_s32f_s32f_mod_range_32f.h b/kernels/volk/volk_32f_s32f_s32f_mod_range_32f.h
+index 53b4937..d7f23fe 100644
+--- a/kernels/volk/volk_32f_s32f_s32f_mod_range_32f.h
++++ b/kernels/volk/volk_32f_s32f_s32f_mod_range_32f.h
+@@ -25,8 +25,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_s32f_s32f_mod_range_32f(float* outputVector, const float* inputVector, const float lower_bound, const float upper_bound, unsigned int num_points)
+- * \endcode
++ * void volk_32f_s32f_s32f_mod_range_32f(float* outputVector, const float* inputVector,
++ * const float lower_bound, const float upper_bound, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li inputVector: The input vector
+@@ -46,117 +46,129 @@
+ #ifdef LV_HAVE_AVX
+ #include <xmmintrin.h>
+-static inline void volk_32f_s32f_s32f_mod_range_32f_u_avx(float* outputVector, const float* inputVector, const float lower_bound, const float upper_bound, unsigned int num_points){
+-  __m256 lower = _mm256_set1_ps(lower_bound);
+-  __m256 upper = _mm256_set1_ps(upper_bound);
+-  __m256 distance = _mm256_sub_ps(upper,lower);
+-  float dist = upper_bound - lower_bound;
+-  __m256 input, output;
+-  __m256 is_smaller, is_bigger;
+-  __m256 excess, adj;
+-
+-  const float *inPtr = inputVector;
+-  float *outPtr = outputVector;
+-  size_t eight_points = num_points / 8;
+-  size_t counter;
+-  for(counter = 0; counter < eight_points; counter++) {
+-    input = _mm256_loadu_ps(inPtr);
+-    // calculate mask: input < lower, input > upper
+-    is_smaller = _mm256_cmp_ps(input, lower, _CMP_LT_OQ); //0x11: Less than, ordered, non-signalling
+-    is_bigger = _mm256_cmp_ps(input, upper, _CMP_GT_OQ); //0x1e: greater than, ordered, non-signalling
+-    // find out how far we are out-of-bound â€“ positive values!
+-    excess = _mm256_and_ps(_mm256_sub_ps(lower, input), is_smaller);
+-    excess = _mm256_or_ps(_mm256_and_ps(_mm256_sub_ps(input, upper), is_bigger), excess);
+-    // how many do we have to add? (int(excess/distance+1)*distance)
+-    excess = _mm256_div_ps(excess, distance);
+-    // round down
+-    excess = _mm256_cvtepi32_ps(_mm256_cvttps_epi32(excess));
+-    // plus 1
+-    adj = _mm256_set1_ps(1.0f);
+-    excess = _mm256_add_ps(excess, adj);
+-    // get the sign right, adj is still {1.0f,1.0f,1.0f,1.0f}
+-    adj = _mm256_and_ps(adj, is_smaller);
+-    adj = _mm256_or_ps(_mm256_and_ps(_mm256_set1_ps(-1.0f), is_bigger), adj);
+-    // scale by distance, sign
+-    excess = _mm256_mul_ps(_mm256_mul_ps(excess, adj), distance);
+-    output = _mm256_add_ps(input, excess);
+-    _mm256_storeu_ps(outPtr, output);
+-    inPtr += 8;
+-    outPtr += 8;
+-  }
+-
+-  size_t cnt;
+-  for(cnt = eight_points * 8; cnt < num_points; cnt++){
+-    float val = inputVector[cnt];
+-    if(val < lower_bound){
+-      float excess = lower_bound - val;
+-      signed int count = (int)(excess/dist);
+-      outputVector[cnt] = val + (count+1)*dist;
++static inline void volk_32f_s32f_s32f_mod_range_32f_u_avx(float* outputVector,
++                                                          const float* inputVector,
++                                                          const float lower_bound,
++                                                          const float upper_bound,
++                                                          unsigned int num_points)
++{
++    __m256 lower = _mm256_set1_ps(lower_bound);
++    __m256 upper = _mm256_set1_ps(upper_bound);
++    __m256 distance = _mm256_sub_ps(upper, lower);
++    float dist = upper_bound - lower_bound;
++    __m256 input, output;
++    __m256 is_smaller, is_bigger;
++    __m256 excess, adj;
++
++    const float* inPtr = inputVector;
++    float* outPtr = outputVector;
++    size_t eight_points = num_points / 8;
++    size_t counter;
++    for (counter = 0; counter < eight_points; counter++) {
++        input = _mm256_loadu_ps(inPtr);
++        // calculate mask: input < lower, input > upper
++        is_smaller = _mm256_cmp_ps(
++            input, lower, _CMP_LT_OQ); // 0x11: Less than, ordered, non-signalling
++        is_bigger = _mm256_cmp_ps(
++            input, upper, _CMP_GT_OQ); // 0x1e: greater than, ordered, non-signalling
++        // find out how far we are out-of-bound â€“ positive values!
++        excess = _mm256_and_ps(_mm256_sub_ps(lower, input), is_smaller);
++        excess =
++            _mm256_or_ps(_mm256_and_ps(_mm256_sub_ps(input, upper), is_bigger), excess);
++        // how many do we have to add? (int(excess/distance+1)*distance)
++        excess = _mm256_div_ps(excess, distance);
++        // round down
++        excess = _mm256_cvtepi32_ps(_mm256_cvttps_epi32(excess));
++        // plus 1
++        adj = _mm256_set1_ps(1.0f);
++        excess = _mm256_add_ps(excess, adj);
++        // get the sign right, adj is still {1.0f,1.0f,1.0f,1.0f}
++        adj = _mm256_and_ps(adj, is_smaller);
++        adj = _mm256_or_ps(_mm256_and_ps(_mm256_set1_ps(-1.0f), is_bigger), adj);
++        // scale by distance, sign
++        excess = _mm256_mul_ps(_mm256_mul_ps(excess, adj), distance);
++        output = _mm256_add_ps(input, excess);
++        _mm256_storeu_ps(outPtr, output);
++        inPtr += 8;
++        outPtr += 8;
+     }
+-    else if(val > upper_bound){
+-      float excess = val - upper_bound;
+-      signed int count = (int)(excess/dist);
+-      outputVector[cnt] = val - (count+1)*dist;
++
++    size_t cnt;
++    for (cnt = eight_points * 8; cnt < num_points; cnt++) {
++        float val = inputVector[cnt];
++        if (val < lower_bound) {
++            float excess = lower_bound - val;
++            signed int count = (int)(excess / dist);
++            outputVector[cnt] = val + (count + 1) * dist;
++        } else if (val > upper_bound) {
++            float excess = val - upper_bound;
++            signed int count = (int)(excess / dist);
++            outputVector[cnt] = val - (count + 1) * dist;
++        } else
++            outputVector[cnt] = val;
+     }
+-    else
+-      outputVector[cnt] = val;
+-  }
+ }
+-static inline void volk_32f_s32f_s32f_mod_range_32f_a_avx(float* outputVector, const float* inputVector, const float lower_bound, const float upper_bound, unsigned int num_points){
+-  __m256 lower = _mm256_set1_ps(lower_bound);
+-  __m256 upper = _mm256_set1_ps(upper_bound);
+-  __m256 distance = _mm256_sub_ps(upper,lower);
+-  float dist = upper_bound - lower_bound;
+-  __m256 input, output;
+-  __m256 is_smaller, is_bigger;
+-  __m256 excess, adj;
+-
+-  const float *inPtr = inputVector;
+-  float *outPtr = outputVector;
+-  size_t eight_points = num_points / 8;
+-  size_t counter;
+-  for(counter = 0; counter < eight_points; counter++) {
+-    input = _mm256_load_ps(inPtr);
+-    // calculate mask: input < lower, input > upper
+-    is_smaller = _mm256_cmp_ps(input, lower, _CMP_LT_OQ); //0x11: Less than, ordered, non-signalling
+-    is_bigger = _mm256_cmp_ps(input, upper, _CMP_GT_OQ); //0x1e: greater than, ordered, non-signalling
+-    // find out how far we are out-of-bound â€“ positive values!
+-    excess = _mm256_and_ps(_mm256_sub_ps(lower, input), is_smaller);
+-    excess = _mm256_or_ps(_mm256_and_ps(_mm256_sub_ps(input, upper), is_bigger), excess);
+-    // how many do we have to add? (int(excess/distance+1)*distance)
+-    excess = _mm256_div_ps(excess, distance);
+-    // round down
+-    excess = _mm256_cvtepi32_ps(_mm256_cvttps_epi32(excess));
+-    // plus 1
+-    adj = _mm256_set1_ps(1.0f);
+-    excess = _mm256_add_ps(excess, adj);
+-    // get the sign right, adj is still {1.0f,1.0f,1.0f,1.0f}
+-    adj = _mm256_and_ps(adj, is_smaller);
+-    adj = _mm256_or_ps(_mm256_and_ps(_mm256_set1_ps(-1.0f), is_bigger), adj);
+-    // scale by distance, sign
+-    excess = _mm256_mul_ps(_mm256_mul_ps(excess, adj), distance);
+-    output = _mm256_add_ps(input, excess);
+-    _mm256_store_ps(outPtr, output);
+-    inPtr += 8;
+-    outPtr += 8;
+-  }
+-
+-  size_t cnt;
+-  for(cnt = eight_points * 8; cnt < num_points; cnt++){
+-    float val = inputVector[cnt];
+-    if(val < lower_bound){
+-      float excess = lower_bound - val;
+-      signed int count = (int)(excess/dist);
+-      outputVector[cnt] = val + (count+1)*dist;
++static inline void volk_32f_s32f_s32f_mod_range_32f_a_avx(float* outputVector,
++                                                          const float* inputVector,
++                                                          const float lower_bound,
++                                                          const float upper_bound,
++                                                          unsigned int num_points)
++{
++    __m256 lower = _mm256_set1_ps(lower_bound);
++    __m256 upper = _mm256_set1_ps(upper_bound);
++    __m256 distance = _mm256_sub_ps(upper, lower);
++    float dist = upper_bound - lower_bound;
++    __m256 input, output;
++    __m256 is_smaller, is_bigger;
++    __m256 excess, adj;
++
++    const float* inPtr = inputVector;
++    float* outPtr = outputVector;
++    size_t eight_points = num_points / 8;
++    size_t counter;
++    for (counter = 0; counter < eight_points; counter++) {
++        input = _mm256_load_ps(inPtr);
++        // calculate mask: input < lower, input > upper
++        is_smaller = _mm256_cmp_ps(
++            input, lower, _CMP_LT_OQ); // 0x11: Less than, ordered, non-signalling
++        is_bigger = _mm256_cmp_ps(
++            input, upper, _CMP_GT_OQ); // 0x1e: greater than, ordered, non-signalling
++        // find out how far we are out-of-bound â€“ positive values!
++        excess = _mm256_and_ps(_mm256_sub_ps(lower, input), is_smaller);
++        excess =
++            _mm256_or_ps(_mm256_and_ps(_mm256_sub_ps(input, upper), is_bigger), excess);
++        // how many do we have to add? (int(excess/distance+1)*distance)
++        excess = _mm256_div_ps(excess, distance);
++        // round down
++        excess = _mm256_cvtepi32_ps(_mm256_cvttps_epi32(excess));
++        // plus 1
++        adj = _mm256_set1_ps(1.0f);
++        excess = _mm256_add_ps(excess, adj);
++        // get the sign right, adj is still {1.0f,1.0f,1.0f,1.0f}
++        adj = _mm256_and_ps(adj, is_smaller);
++        adj = _mm256_or_ps(_mm256_and_ps(_mm256_set1_ps(-1.0f), is_bigger), adj);
++        // scale by distance, sign
++        excess = _mm256_mul_ps(_mm256_mul_ps(excess, adj), distance);
++        output = _mm256_add_ps(input, excess);
++        _mm256_store_ps(outPtr, output);
++        inPtr += 8;
++        outPtr += 8;
+     }
+-    else if(val > upper_bound){
+-      float excess = val - upper_bound;
+-      signed int count = (int)(excess/dist);
+-      outputVector[cnt] = val - (count+1)*dist;
++
++    size_t cnt;
++    for (cnt = eight_points * 8; cnt < num_points; cnt++) {
++        float val = inputVector[cnt];
++        if (val < lower_bound) {
++            float excess = lower_bound - val;
++            signed int count = (int)(excess / dist);
++            outputVector[cnt] = val + (count + 1) * dist;
++        } else if (val > upper_bound) {
++            float excess = val - upper_bound;
++            signed int count = (int)(excess / dist);
++            outputVector[cnt] = val - (count + 1) * dist;
++        } else
++            outputVector[cnt] = val;
+     }
+-    else
+-      outputVector[cnt] = val;
+-  }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -164,268 +176,282 @@ static inline void volk_32f_s32f_s32f_mod_range_32f_a_avx(float* outputVector, c
+ #ifdef LV_HAVE_SSE2
+ #include <xmmintrin.h>
+-static inline void volk_32f_s32f_s32f_mod_range_32f_u_sse2(float* outputVector, const float* inputVector, const float lower_bound, const float upper_bound, unsigned int num_points){
+-  __m128 lower = _mm_set_ps1(lower_bound);
+-  __m128 upper = _mm_set_ps1(upper_bound);
+-  __m128 distance = _mm_sub_ps(upper,lower);
+-  float dist = upper_bound - lower_bound;
+-  __m128 input, output;
+-  __m128 is_smaller, is_bigger;
+-  __m128 excess, adj;
+-
+-  const float *inPtr = inputVector;
+-  float *outPtr = outputVector;
+-  size_t quarter_points = num_points / 4;
+-  size_t counter;
+-  for(counter = 0; counter < quarter_points; counter++) {
+-    input = _mm_load_ps(inPtr);
+-    // calculate mask: input < lower, input > upper
+-    is_smaller = _mm_cmplt_ps(input, lower);
+-    is_bigger = _mm_cmpgt_ps(input, upper);
+-    // find out how far we are out-of-bound â€“ positive values!
+-    excess = _mm_and_ps(_mm_sub_ps(lower, input), is_smaller);
+-    excess = _mm_or_ps(_mm_and_ps(_mm_sub_ps(input, upper), is_bigger), excess);
+-    // how many do we have to add? (int(excess/distance+1)*distance)
+-    excess = _mm_div_ps(excess, distance);
+-    // round down
+-    excess = _mm_cvtepi32_ps(_mm_cvttps_epi32(excess));
+-    // plus 1
+-    adj = _mm_set_ps1(1.0f);
+-    excess = _mm_add_ps(excess, adj);
+-    // get the sign right, adj is still {1.0f,1.0f,1.0f,1.0f}
+-    adj = _mm_and_ps(adj, is_smaller);
+-    adj = _mm_or_ps(_mm_and_ps(_mm_set_ps1(-1.0f), is_bigger), adj);
+-    // scale by distance, sign
+-    excess = _mm_mul_ps(_mm_mul_ps(excess, adj), distance);
+-    output = _mm_add_ps(input, excess);
+-    _mm_store_ps(outPtr, output);
+-    inPtr += 4;
+-    outPtr += 4;
+-  }
+-
+-  size_t cnt;
+-  for(cnt = quarter_points * 4; cnt < num_points; cnt++){
+-    float val = inputVector[cnt];
+-    if(val < lower_bound){
+-      float excess = lower_bound - val;
+-      signed int count = (int)(excess/dist);
+-      outputVector[cnt] = val + (count+1)*dist;
++static inline void volk_32f_s32f_s32f_mod_range_32f_u_sse2(float* outputVector,
++                                                           const float* inputVector,
++                                                           const float lower_bound,
++                                                           const float upper_bound,
++                                                           unsigned int num_points)
++{
++    __m128 lower = _mm_set_ps1(lower_bound);
++    __m128 upper = _mm_set_ps1(upper_bound);
++    __m128 distance = _mm_sub_ps(upper, lower);
++    float dist = upper_bound - lower_bound;
++    __m128 input, output;
++    __m128 is_smaller, is_bigger;
++    __m128 excess, adj;
++
++    const float* inPtr = inputVector;
++    float* outPtr = outputVector;
++    size_t quarter_points = num_points / 4;
++    size_t counter;
++    for (counter = 0; counter < quarter_points; counter++) {
++        input = _mm_load_ps(inPtr);
++        // calculate mask: input < lower, input > upper
++        is_smaller = _mm_cmplt_ps(input, lower);
++        is_bigger = _mm_cmpgt_ps(input, upper);
++        // find out how far we are out-of-bound â€“ positive values!
++        excess = _mm_and_ps(_mm_sub_ps(lower, input), is_smaller);
++        excess = _mm_or_ps(_mm_and_ps(_mm_sub_ps(input, upper), is_bigger), excess);
++        // how many do we have to add? (int(excess/distance+1)*distance)
++        excess = _mm_div_ps(excess, distance);
++        // round down
++        excess = _mm_cvtepi32_ps(_mm_cvttps_epi32(excess));
++        // plus 1
++        adj = _mm_set_ps1(1.0f);
++        excess = _mm_add_ps(excess, adj);
++        // get the sign right, adj is still {1.0f,1.0f,1.0f,1.0f}
++        adj = _mm_and_ps(adj, is_smaller);
++        adj = _mm_or_ps(_mm_and_ps(_mm_set_ps1(-1.0f), is_bigger), adj);
++        // scale by distance, sign
++        excess = _mm_mul_ps(_mm_mul_ps(excess, adj), distance);
++        output = _mm_add_ps(input, excess);
++        _mm_store_ps(outPtr, output);
++        inPtr += 4;
++        outPtr += 4;
+     }
+-    else if(val > upper_bound){
+-      float excess = val - upper_bound;
+-      signed int count = (int)(excess/dist);
+-      outputVector[cnt] = val - (count+1)*dist;
++
++    size_t cnt;
++    for (cnt = quarter_points * 4; cnt < num_points; cnt++) {
++        float val = inputVector[cnt];
++        if (val < lower_bound) {
++            float excess = lower_bound - val;
++            signed int count = (int)(excess / dist);
++            outputVector[cnt] = val + (count + 1) * dist;
++        } else if (val > upper_bound) {
++            float excess = val - upper_bound;
++            signed int count = (int)(excess / dist);
++            outputVector[cnt] = val - (count + 1) * dist;
++        } else
++            outputVector[cnt] = val;
+     }
+-    else
+-      outputVector[cnt] = val;
+-  }
+ }
+-static inline void volk_32f_s32f_s32f_mod_range_32f_a_sse2(float* outputVector, const float* inputVector, const float lower_bound, const float upper_bound, unsigned int num_points){
+-  __m128 lower = _mm_set_ps1(lower_bound);
+-  __m128 upper = _mm_set_ps1(upper_bound);
+-  __m128 distance = _mm_sub_ps(upper,lower);
+-  __m128 input, output;
+-  __m128 is_smaller, is_bigger;
+-  __m128 excess, adj;
+-
+-  const float *inPtr = inputVector;
+-  float *outPtr = outputVector;
+-  size_t quarter_points = num_points / 4;
+-  size_t counter;
+-  for(counter = 0; counter < quarter_points; counter++) {
+-    input = _mm_load_ps(inPtr);
+-    // calculate mask: input < lower, input > upper
+-    is_smaller = _mm_cmplt_ps(input, lower);
+-    is_bigger = _mm_cmpgt_ps(input, upper);
+-    // find out how far we are out-of-bound â€“ positive values!
+-    excess = _mm_and_ps(_mm_sub_ps(lower, input), is_smaller);
+-    excess = _mm_or_ps(_mm_and_ps(_mm_sub_ps(input, upper), is_bigger), excess);
+-    // how many do we have to add? (int(excess/distance+1)*distance)
+-    excess = _mm_div_ps(excess, distance);
+-    // round down â€“ for some reason, SSE doesn't come with a 4x float -> 4x int32 conversion.
+-    excess = _mm_cvtepi32_ps(_mm_cvttps_epi32(excess));
+-    // plus 1
+-    adj = _mm_set_ps1(1.0f);
+-    excess = _mm_add_ps(excess, adj);
+-    // get the sign right, adj is still {1.0f,1.0f,1.0f,1.0f}
+-    adj = _mm_and_ps(adj, is_smaller);
+-    adj = _mm_or_ps(_mm_and_ps(_mm_set_ps1(-1.0f), is_bigger), adj);
+-    // scale by distance, sign
+-    excess = _mm_mul_ps(_mm_mul_ps(excess, adj), distance);
+-    output = _mm_add_ps(input, excess);
+-    _mm_store_ps(outPtr, output);
+-    inPtr += 4;
+-    outPtr += 4;
+-  }
+-
+-  float dist = upper_bound - lower_bound;
+-  size_t cnt;
+-  for(cnt = quarter_points * 4; cnt < num_points; cnt++){
+-    float val = inputVector[cnt];
+-    if(val < lower_bound){
+-      float excess = lower_bound - val;
+-      signed int count = (int)(excess/dist);
+-      outputVector[cnt] = val + (count+1)*dist;
++static inline void volk_32f_s32f_s32f_mod_range_32f_a_sse2(float* outputVector,
++                                                           const float* inputVector,
++                                                           const float lower_bound,
++                                                           const float upper_bound,
++                                                           unsigned int num_points)
++{
++    __m128 lower = _mm_set_ps1(lower_bound);
++    __m128 upper = _mm_set_ps1(upper_bound);
++    __m128 distance = _mm_sub_ps(upper, lower);
++    __m128 input, output;
++    __m128 is_smaller, is_bigger;
++    __m128 excess, adj;
++
++    const float* inPtr = inputVector;
++    float* outPtr = outputVector;
++    size_t quarter_points = num_points / 4;
++    size_t counter;
++    for (counter = 0; counter < quarter_points; counter++) {
++        input = _mm_load_ps(inPtr);
++        // calculate mask: input < lower, input > upper
++        is_smaller = _mm_cmplt_ps(input, lower);
++        is_bigger = _mm_cmpgt_ps(input, upper);
++        // find out how far we are out-of-bound â€“ positive values!
++        excess = _mm_and_ps(_mm_sub_ps(lower, input), is_smaller);
++        excess = _mm_or_ps(_mm_and_ps(_mm_sub_ps(input, upper), is_bigger), excess);
++        // how many do we have to add? (int(excess/distance+1)*distance)
++        excess = _mm_div_ps(excess, distance);
++        // round down â€“ for some reason, SSE doesn't come with a 4x float -> 4x int32
++        // conversion.
++        excess = _mm_cvtepi32_ps(_mm_cvttps_epi32(excess));
++        // plus 1
++        adj = _mm_set_ps1(1.0f);
++        excess = _mm_add_ps(excess, adj);
++        // get the sign right, adj is still {1.0f,1.0f,1.0f,1.0f}
++        adj = _mm_and_ps(adj, is_smaller);
++        adj = _mm_or_ps(_mm_and_ps(_mm_set_ps1(-1.0f), is_bigger), adj);
++        // scale by distance, sign
++        excess = _mm_mul_ps(_mm_mul_ps(excess, adj), distance);
++        output = _mm_add_ps(input, excess);
++        _mm_store_ps(outPtr, output);
++        inPtr += 4;
++        outPtr += 4;
+     }
+-    else if(val > upper_bound){
+-      float excess = val - upper_bound;
+-      signed int count = (int)(excess/dist);
+-      outputVector[cnt] = val - (count+1)*dist;
++
++    float dist = upper_bound - lower_bound;
++    size_t cnt;
++    for (cnt = quarter_points * 4; cnt < num_points; cnt++) {
++        float val = inputVector[cnt];
++        if (val < lower_bound) {
++            float excess = lower_bound - val;
++            signed int count = (int)(excess / dist);
++            outputVector[cnt] = val + (count + 1) * dist;
++        } else if (val > upper_bound) {
++            float excess = val - upper_bound;
++            signed int count = (int)(excess / dist);
++            outputVector[cnt] = val - (count + 1) * dist;
++        } else
++            outputVector[cnt] = val;
+     }
+-    else
+-      outputVector[cnt] = val;
+-  }
+ }
+ #endif /* LV_HAVE_SSE2 */
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void volk_32f_s32f_s32f_mod_range_32f_u_sse(float* outputVector, const float* inputVector, const float lower_bound, const float upper_bound, unsigned int num_points){
+-  __m128 lower = _mm_set_ps1(lower_bound);
+-  __m128 upper = _mm_set_ps1(upper_bound);
+-  __m128 distance = _mm_sub_ps(upper,lower);
+-  float dist = upper_bound - lower_bound;
+-  __m128 input, output;
+-  __m128 is_smaller, is_bigger;
+-  __m128 excess, adj;
+-  __m128i rounddown;
+-
+-  const float *inPtr = inputVector;
+-  float *outPtr = outputVector;
+-  size_t quarter_points = num_points / 4;
+-  size_t counter;
+-  for(counter = 0; counter < quarter_points; counter++) {
+-    input = _mm_load_ps(inPtr);
+-    // calculate mask: input < lower, input > upper
+-    is_smaller = _mm_cmplt_ps(input, lower);
+-    is_bigger = _mm_cmpgt_ps(input, upper);
+-    // find out how far we are out-of-bound â€“ positive values!
+-    excess = _mm_and_ps(_mm_sub_ps(lower, input), is_smaller);
+-    excess = _mm_or_ps(_mm_and_ps(_mm_sub_ps(input, upper), is_bigger), excess);
+-    // how many do we have to add? (int(excess/distance+1)*distance)
+-    excess = _mm_div_ps(excess, distance);
+-    // round down â€“ for some reason
+-    rounddown = _mm_cvttps_epi32(excess);
+-    excess = _mm_cvtepi32_ps(rounddown);
+-    // plus 1
+-    adj = _mm_set_ps1(1.0f);
+-    excess = _mm_add_ps(excess, adj);
+-    // get the sign right, adj is still {1.0f,1.0f,1.0f,1.0f}
+-    adj = _mm_and_ps(adj, is_smaller);
+-    adj = _mm_or_ps(_mm_and_ps(_mm_set_ps1(-1.0f), is_bigger), adj);
+-    // scale by distance, sign
+-    excess = _mm_mul_ps(_mm_mul_ps(excess, adj), distance);
+-    output = _mm_add_ps(input, excess);
+-    _mm_store_ps(outPtr, output);
+-    inPtr += 4;
+-    outPtr += 4;
+-  }
+-
+-  size_t cnt;
+-  for(cnt = quarter_points * 4; cnt < num_points; cnt++){
+-    float val = inputVector[cnt];
+-    if(val < lower_bound){
+-      float excess = lower_bound - val;
+-      signed int count = (int)(excess/dist);
+-      outputVector[cnt] = val + (count+1)*dist;
++static inline void volk_32f_s32f_s32f_mod_range_32f_u_sse(float* outputVector,
++                                                          const float* inputVector,
++                                                          const float lower_bound,
++                                                          const float upper_bound,
++                                                          unsigned int num_points)
++{
++    __m128 lower = _mm_set_ps1(lower_bound);
++    __m128 upper = _mm_set_ps1(upper_bound);
++    __m128 distance = _mm_sub_ps(upper, lower);
++    float dist = upper_bound - lower_bound;
++    __m128 input, output;
++    __m128 is_smaller, is_bigger;
++    __m128 excess, adj;
++    __m128i rounddown;
++
++    const float* inPtr = inputVector;
++    float* outPtr = outputVector;
++    size_t quarter_points = num_points / 4;
++    size_t counter;
++    for (counter = 0; counter < quarter_points; counter++) {
++        input = _mm_load_ps(inPtr);
++        // calculate mask: input < lower, input > upper
++        is_smaller = _mm_cmplt_ps(input, lower);
++        is_bigger = _mm_cmpgt_ps(input, upper);
++        // find out how far we are out-of-bound â€“ positive values!
++        excess = _mm_and_ps(_mm_sub_ps(lower, input), is_smaller);
++        excess = _mm_or_ps(_mm_and_ps(_mm_sub_ps(input, upper), is_bigger), excess);
++        // how many do we have to add? (int(excess/distance+1)*distance)
++        excess = _mm_div_ps(excess, distance);
++        // round down â€“ for some reason
++        rounddown = _mm_cvttps_epi32(excess);
++        excess = _mm_cvtepi32_ps(rounddown);
++        // plus 1
++        adj = _mm_set_ps1(1.0f);
++        excess = _mm_add_ps(excess, adj);
++        // get the sign right, adj is still {1.0f,1.0f,1.0f,1.0f}
++        adj = _mm_and_ps(adj, is_smaller);
++        adj = _mm_or_ps(_mm_and_ps(_mm_set_ps1(-1.0f), is_bigger), adj);
++        // scale by distance, sign
++        excess = _mm_mul_ps(_mm_mul_ps(excess, adj), distance);
++        output = _mm_add_ps(input, excess);
++        _mm_store_ps(outPtr, output);
++        inPtr += 4;
++        outPtr += 4;
+     }
+-    else if(val > upper_bound){
+-      float excess = val - upper_bound;
+-      signed int count = (int)(excess/dist);
+-      outputVector[cnt] = val - (count+1)*dist;
++
++    size_t cnt;
++    for (cnt = quarter_points * 4; cnt < num_points; cnt++) {
++        float val = inputVector[cnt];
++        if (val < lower_bound) {
++            float excess = lower_bound - val;
++            signed int count = (int)(excess / dist);
++            outputVector[cnt] = val + (count + 1) * dist;
++        } else if (val > upper_bound) {
++            float excess = val - upper_bound;
++            signed int count = (int)(excess / dist);
++            outputVector[cnt] = val - (count + 1) * dist;
++        } else
++            outputVector[cnt] = val;
+     }
+-    else
+-      outputVector[cnt] = val;
+-  }
+ }
+-static inline void volk_32f_s32f_s32f_mod_range_32f_a_sse(float* outputVector, const float* inputVector, const float lower_bound, const float upper_bound, unsigned int num_points){
+-  __m128 lower = _mm_set_ps1(lower_bound);
+-  __m128 upper = _mm_set_ps1(upper_bound);
+-  __m128 distance = _mm_sub_ps(upper,lower);
+-  __m128 input, output;
+-  __m128 is_smaller, is_bigger;
+-  __m128 excess, adj;
+-  __m128i rounddown;
+-
+-  const float *inPtr = inputVector;
+-  float *outPtr = outputVector;
+-  size_t quarter_points = num_points / 4;
+-  size_t counter;
+-  for(counter = 0; counter < quarter_points; counter++) {
+-    input = _mm_load_ps(inPtr);
+-    // calculate mask: input < lower, input > upper
+-    is_smaller = _mm_cmplt_ps(input, lower);
+-    is_bigger = _mm_cmpgt_ps(input, upper);
+-    // find out how far we are out-of-bound â€“ positive values!
+-    excess = _mm_and_ps(_mm_sub_ps(lower, input), is_smaller);
+-    excess = _mm_or_ps(_mm_and_ps(_mm_sub_ps(input, upper), is_bigger), excess);
+-    // how many do we have to add? (int(excess/distance+1)*distance)
+-    excess = _mm_div_ps(excess, distance);
+-    // round down
+-    rounddown = _mm_cvttps_epi32(excess);
+-    excess = _mm_cvtepi32_ps(rounddown);
+-    // plus 1
+-    adj = _mm_set_ps1(1.0f);
+-    excess = _mm_add_ps(excess, adj);
+-    // get the sign right, adj is still {1.0f,1.0f,1.0f,1.0f}
+-    adj = _mm_and_ps(adj, is_smaller);
+-    adj = _mm_or_ps(_mm_and_ps(_mm_set_ps1(-1.0f), is_bigger), adj);
+-    // scale by distance, sign
+-    excess = _mm_mul_ps(_mm_mul_ps(excess, adj), distance);
+-    output = _mm_add_ps(input, excess);
+-    _mm_store_ps(outPtr, output);
+-    inPtr += 4;
+-    outPtr += 4;
+-  }
+-
+-  float dist = upper_bound - lower_bound;
+-  size_t cnt;
+-  for(cnt = quarter_points * 4; cnt < num_points; cnt++){
+-    float val = inputVector[cnt];
+-    if(val < lower_bound){
+-      float excess = lower_bound - val;
+-      signed int count = (int)(excess/dist);
+-      outputVector[cnt] = val + (count+1)*dist;
++static inline void volk_32f_s32f_s32f_mod_range_32f_a_sse(float* outputVector,
++                                                          const float* inputVector,
++                                                          const float lower_bound,
++                                                          const float upper_bound,
++                                                          unsigned int num_points)
++{
++    __m128 lower = _mm_set_ps1(lower_bound);
++    __m128 upper = _mm_set_ps1(upper_bound);
++    __m128 distance = _mm_sub_ps(upper, lower);
++    __m128 input, output;
++    __m128 is_smaller, is_bigger;
++    __m128 excess, adj;
++    __m128i rounddown;
++
++    const float* inPtr = inputVector;
++    float* outPtr = outputVector;
++    size_t quarter_points = num_points / 4;
++    size_t counter;
++    for (counter = 0; counter < quarter_points; counter++) {
++        input = _mm_load_ps(inPtr);
++        // calculate mask: input < lower, input > upper
++        is_smaller = _mm_cmplt_ps(input, lower);
++        is_bigger = _mm_cmpgt_ps(input, upper);
++        // find out how far we are out-of-bound â€“ positive values!
++        excess = _mm_and_ps(_mm_sub_ps(lower, input), is_smaller);
++        excess = _mm_or_ps(_mm_and_ps(_mm_sub_ps(input, upper), is_bigger), excess);
++        // how many do we have to add? (int(excess/distance+1)*distance)
++        excess = _mm_div_ps(excess, distance);
++        // round down
++        rounddown = _mm_cvttps_epi32(excess);
++        excess = _mm_cvtepi32_ps(rounddown);
++        // plus 1
++        adj = _mm_set_ps1(1.0f);
++        excess = _mm_add_ps(excess, adj);
++        // get the sign right, adj is still {1.0f,1.0f,1.0f,1.0f}
++        adj = _mm_and_ps(adj, is_smaller);
++        adj = _mm_or_ps(_mm_and_ps(_mm_set_ps1(-1.0f), is_bigger), adj);
++        // scale by distance, sign
++        excess = _mm_mul_ps(_mm_mul_ps(excess, adj), distance);
++        output = _mm_add_ps(input, excess);
++        _mm_store_ps(outPtr, output);
++        inPtr += 4;
++        outPtr += 4;
+     }
+-    else if(val > upper_bound){
+-      float excess = val - upper_bound;
+-      signed int count = (int)(excess/dist);
+-      outputVector[cnt] = val - (count+1)*dist;
++
++    float dist = upper_bound - lower_bound;
++    size_t cnt;
++    for (cnt = quarter_points * 4; cnt < num_points; cnt++) {
++        float val = inputVector[cnt];
++        if (val < lower_bound) {
++            float excess = lower_bound - val;
++            signed int count = (int)(excess / dist);
++            outputVector[cnt] = val + (count + 1) * dist;
++        } else if (val > upper_bound) {
++            float excess = val - upper_bound;
++            signed int count = (int)(excess / dist);
++            outputVector[cnt] = val - (count + 1) * dist;
++        } else
++            outputVector[cnt] = val;
+     }
+-    else
+-      outputVector[cnt] = val;
+-  }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32f_s32f_s32f_mod_range_32f_generic(float* outputVector, const float* inputVector, const float lower_bound, const float upper_bound, unsigned int num_points){
+-  float* outPtr = outputVector;
+-  const float *inPtr;
+-  float distance = upper_bound - lower_bound;
+-
+-  for(inPtr = inputVector; inPtr < inputVector + num_points; inPtr++){
+-    float val = *inPtr;
+-    if(val < lower_bound){
+-      float excess = lower_bound - val;
+-      signed int count = (int)(excess/distance);
+-      *outPtr = val + (count+1)*distance;
+-    }
+-    else if(val > upper_bound){
+-      float excess = val - upper_bound;
+-      signed int count = (int)(excess/distance);
+-      *outPtr = val - (count+1)*distance;
++static inline void volk_32f_s32f_s32f_mod_range_32f_generic(float* outputVector,
++                                                            const float* inputVector,
++                                                            const float lower_bound,
++                                                            const float upper_bound,
++                                                            unsigned int num_points)
++{
++    float* outPtr = outputVector;
++    const float* inPtr;
++    float distance = upper_bound - lower_bound;
++
++    for (inPtr = inputVector; inPtr < inputVector + num_points; inPtr++) {
++        float val = *inPtr;
++        if (val < lower_bound) {
++            float excess = lower_bound - val;
++            signed int count = (int)(excess / distance);
++            *outPtr = val + (count + 1) * distance;
++        } else if (val > upper_bound) {
++            float excess = val - upper_bound;
++            signed int count = (int)(excess / distance);
++            *outPtr = val - (count + 1) * distance;
++        } else
++            *outPtr = val;
++        outPtr++;
+     }
+-    else
+-      *outPtr = val;
+-    outPtr++;
+-  }
+ }
+ #endif /* LV_HAVE_GENERIC */
+-
+-
+ #endif /* INCLUDED_VOLK_32F_S32F_S32F_MOD_RANGE_32F_A_H */
+diff --git a/kernels/volk/volk_32f_s32f_stddev_32f.h b/kernels/volk/volk_32f_s32f_stddev_32f.h
+index 4f3dc1c..0a1c32b 100644
+--- a/kernels/volk/volk_32f_s32f_stddev_32f.h
++++ b/kernels/volk/volk_32f_s32f_stddev_32f.h
+@@ -29,8 +29,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_s32f_stddev_32f(float* stddev, const float* inputBuffer, const float mean, unsigned int num_points)
+- * \endcode
++ * void volk_32f_s32f_stddev_32f(float* stddev, const float* inputBuffer, const float
++ * mean, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li inputBuffer: The input vector of floats.
+@@ -68,65 +68,72 @@
+ #ifndef INCLUDED_volk_32f_s32f_stddev_32f_a_H
+ #define INCLUDED_volk_32f_s32f_stddev_32f_a_H
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+-#include <stdio.h>
+ #include <math.h>
++#include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_SSE4_1
+ #include <smmintrin.h>
+-static inline void
+-volk_32f_s32f_stddev_32f_a_sse4_1(float* stddev, const float* inputBuffer,
+-                                  const float mean, unsigned int num_points)
++static inline void volk_32f_s32f_stddev_32f_a_sse4_1(float* stddev,
++                                                     const float* inputBuffer,
++                                                     const float mean,
++                                                     unsigned int num_points)
+ {
+-  float returnValue = 0;
+-  if(num_points > 0){
+-    unsigned int number = 0;
+-    const unsigned int sixteenthPoints = num_points / 16;
+-
+-    const float* aPtr = inputBuffer;
+-
+-    __VOLK_ATTR_ALIGNED(16) float squareBuffer[4];
+-
+-    __m128 squareAccumulator = _mm_setzero_ps();
+-    __m128 aVal1, aVal2, aVal3, aVal4;
+-    __m128 cVal1, cVal2, cVal3, cVal4;
+-    for(;number < sixteenthPoints; number++) {
+-      aVal1 = _mm_load_ps(aPtr); aPtr += 4;
+-      cVal1 = _mm_dp_ps(aVal1, aVal1, 0xF1);
+-
+-      aVal2 = _mm_load_ps(aPtr); aPtr += 4;
+-      cVal2 = _mm_dp_ps(aVal2, aVal2, 0xF2);
+-
+-      aVal3 = _mm_load_ps(aPtr); aPtr += 4;
+-      cVal3 = _mm_dp_ps(aVal3, aVal3, 0xF4);
+-
+-      aVal4 = _mm_load_ps(aPtr); aPtr += 4;
+-      cVal4 = _mm_dp_ps(aVal4, aVal4, 0xF8);
+-
+-      cVal1 = _mm_or_ps(cVal1, cVal2);
+-      cVal3 = _mm_or_ps(cVal3, cVal4);
+-      cVal1 = _mm_or_ps(cVal1, cVal3);
+-
+-      squareAccumulator = _mm_add_ps(squareAccumulator, cVal1); // squareAccumulator += x^2
++    float returnValue = 0;
++    if (num_points > 0) {
++        unsigned int number = 0;
++        const unsigned int sixteenthPoints = num_points / 16;
++
++        const float* aPtr = inputBuffer;
++
++        __VOLK_ATTR_ALIGNED(16) float squareBuffer[4];
++
++        __m128 squareAccumulator = _mm_setzero_ps();
++        __m128 aVal1, aVal2, aVal3, aVal4;
++        __m128 cVal1, cVal2, cVal3, cVal4;
++        for (; number < sixteenthPoints; number++) {
++            aVal1 = _mm_load_ps(aPtr);
++            aPtr += 4;
++            cVal1 = _mm_dp_ps(aVal1, aVal1, 0xF1);
++
++            aVal2 = _mm_load_ps(aPtr);
++            aPtr += 4;
++            cVal2 = _mm_dp_ps(aVal2, aVal2, 0xF2);
++
++            aVal3 = _mm_load_ps(aPtr);
++            aPtr += 4;
++            cVal3 = _mm_dp_ps(aVal3, aVal3, 0xF4);
++
++            aVal4 = _mm_load_ps(aPtr);
++            aPtr += 4;
++            cVal4 = _mm_dp_ps(aVal4, aVal4, 0xF8);
++
++            cVal1 = _mm_or_ps(cVal1, cVal2);
++            cVal3 = _mm_or_ps(cVal3, cVal4);
++            cVal1 = _mm_or_ps(cVal1, cVal3);
++
++            squareAccumulator =
++                _mm_add_ps(squareAccumulator, cVal1); // squareAccumulator += x^2
++        }
++        _mm_store_ps(squareBuffer,
++                     squareAccumulator); // Store the results back into the C container
++        returnValue = squareBuffer[0];
++        returnValue += squareBuffer[1];
++        returnValue += squareBuffer[2];
++        returnValue += squareBuffer[3];
++
++        number = sixteenthPoints * 16;
++        for (; number < num_points; number++) {
++            returnValue += (*aPtr) * (*aPtr);
++            aPtr++;
++        }
++        returnValue /= num_points;
++        returnValue -= (mean * mean);
++        returnValue = sqrtf(returnValue);
+     }
+-    _mm_store_ps(squareBuffer,squareAccumulator); // Store the results back into the C container
+-    returnValue = squareBuffer[0];
+-    returnValue += squareBuffer[1];
+-    returnValue += squareBuffer[2];
+-    returnValue += squareBuffer[3];
+-
+-    number = sixteenthPoints * 16;
+-    for(;number < num_points; number++){
+-      returnValue += (*aPtr) * (*aPtr);
+-      aPtr++;
+-    }
+-    returnValue /= num_points;
+-    returnValue -= (mean * mean);
+-    returnValue = sqrtf(returnValue);
+-  }
+-  *stddev = returnValue;
++    *stddev = returnValue;
+ }
+ #endif /* LV_HAVE_SSE4_1 */
+@@ -134,43 +141,45 @@ volk_32f_s32f_stddev_32f_a_sse4_1(float* stddev, const float* inputBuffer,
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32f_s32f_stddev_32f_a_sse(float* stddev, const float* inputBuffer,
+-                               const float mean, unsigned int num_points)
++static inline void volk_32f_s32f_stddev_32f_a_sse(float* stddev,
++                                                  const float* inputBuffer,
++                                                  const float mean,
++                                                  unsigned int num_points)
+ {
+-  float returnValue = 0;
+-  if(num_points > 0){
+-    unsigned int number = 0;
+-    const unsigned int quarterPoints = num_points / 4;
+-
+-    const float* aPtr = inputBuffer;
+-
+-    __VOLK_ATTR_ALIGNED(16) float squareBuffer[4];
+-
+-    __m128 squareAccumulator = _mm_setzero_ps();
+-    __m128 aVal = _mm_setzero_ps();
+-    for(;number < quarterPoints; number++) {
+-      aVal = _mm_load_ps(aPtr);                     // aVal = x
+-      aVal = _mm_mul_ps(aVal, aVal);                // squareAccumulator += x^2
+-      squareAccumulator = _mm_add_ps(squareAccumulator, aVal);
+-      aPtr += 4;
+-    }
+-    _mm_store_ps(squareBuffer,squareAccumulator); // Store the results back into the C container
+-    returnValue = squareBuffer[0];
+-    returnValue += squareBuffer[1];
+-    returnValue += squareBuffer[2];
+-    returnValue += squareBuffer[3];
+-
+-    number = quarterPoints * 4;
+-    for(;number < num_points; number++){
+-      returnValue += (*aPtr) * (*aPtr);
+-      aPtr++;
++    float returnValue = 0;
++    if (num_points > 0) {
++        unsigned int number = 0;
++        const unsigned int quarterPoints = num_points / 4;
++
++        const float* aPtr = inputBuffer;
++
++        __VOLK_ATTR_ALIGNED(16) float squareBuffer[4];
++
++        __m128 squareAccumulator = _mm_setzero_ps();
++        __m128 aVal = _mm_setzero_ps();
++        for (; number < quarterPoints; number++) {
++            aVal = _mm_load_ps(aPtr);      // aVal = x
++            aVal = _mm_mul_ps(aVal, aVal); // squareAccumulator += x^2
++            squareAccumulator = _mm_add_ps(squareAccumulator, aVal);
++            aPtr += 4;
++        }
++        _mm_store_ps(squareBuffer,
++                     squareAccumulator); // Store the results back into the C container
++        returnValue = squareBuffer[0];
++        returnValue += squareBuffer[1];
++        returnValue += squareBuffer[2];
++        returnValue += squareBuffer[3];
++
++        number = quarterPoints * 4;
++        for (; number < num_points; number++) {
++            returnValue += (*aPtr) * (*aPtr);
++            aPtr++;
++        }
++        returnValue /= num_points;
++        returnValue -= (mean * mean);
++        returnValue = sqrtf(returnValue);
+     }
+-    returnValue /= num_points;
+-    returnValue -= (mean * mean);
+-    returnValue = sqrtf(returnValue);
+-  }
+-  *stddev = returnValue;
++    *stddev = returnValue;
+ }
+ #endif /* LV_HAVE_SSE */
+@@ -178,86 +187,93 @@ volk_32f_s32f_stddev_32f_a_sse(float* stddev, const float* inputBuffer,
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32f_s32f_stddev_32f_a_avx(float* stddev, const float* inputBuffer,
+-                               const float mean, unsigned int num_points)
++static inline void volk_32f_s32f_stddev_32f_a_avx(float* stddev,
++                                                  const float* inputBuffer,
++                                                  const float mean,
++                                                  unsigned int num_points)
+ {
+-  float stdDev = 0;
+-  if(num_points > 0){
+-    unsigned int number = 0;
+-    const unsigned int thirtySecondthPoints = num_points / 32;
+-
+-    const float* aPtr = inputBuffer;
+-    __VOLK_ATTR_ALIGNED(32) float squareBuffer[8];
+-
+-    __m256 squareAccumulator = _mm256_setzero_ps();
+-    __m256 aVal1, aVal2, aVal3, aVal4;
+-    __m256 cVal1, cVal2, cVal3, cVal4;
+-    for(;number < thirtySecondthPoints; number++) {
+-      aVal1 = _mm256_load_ps(aPtr); aPtr += 8;
+-      cVal1 = _mm256_dp_ps(aVal1, aVal1, 0xF1);
+-
+-      aVal2 = _mm256_load_ps(aPtr); aPtr += 8;
+-      cVal2 = _mm256_dp_ps(aVal2, aVal2, 0xF2);
+-
+-      aVal3 = _mm256_load_ps(aPtr); aPtr += 8;
+-      cVal3 = _mm256_dp_ps(aVal3, aVal3, 0xF4);
+-
+-      aVal4 = _mm256_load_ps(aPtr); aPtr += 8;
+-      cVal4 = _mm256_dp_ps(aVal4, aVal4, 0xF8);
+-
+-      cVal1 = _mm256_or_ps(cVal1, cVal2);
+-      cVal3 = _mm256_or_ps(cVal3, cVal4);
+-      cVal1 = _mm256_or_ps(cVal1, cVal3);
+-
+-      squareAccumulator = _mm256_add_ps(squareAccumulator, cVal1); // squareAccumulator += x^2
++    float stdDev = 0;
++    if (num_points > 0) {
++        unsigned int number = 0;
++        const unsigned int thirtySecondthPoints = num_points / 32;
++
++        const float* aPtr = inputBuffer;
++        __VOLK_ATTR_ALIGNED(32) float squareBuffer[8];
++
++        __m256 squareAccumulator = _mm256_setzero_ps();
++        __m256 aVal1, aVal2, aVal3, aVal4;
++        __m256 cVal1, cVal2, cVal3, cVal4;
++        for (; number < thirtySecondthPoints; number++) {
++            aVal1 = _mm256_load_ps(aPtr);
++            aPtr += 8;
++            cVal1 = _mm256_dp_ps(aVal1, aVal1, 0xF1);
++
++            aVal2 = _mm256_load_ps(aPtr);
++            aPtr += 8;
++            cVal2 = _mm256_dp_ps(aVal2, aVal2, 0xF2);
++
++            aVal3 = _mm256_load_ps(aPtr);
++            aPtr += 8;
++            cVal3 = _mm256_dp_ps(aVal3, aVal3, 0xF4);
++
++            aVal4 = _mm256_load_ps(aPtr);
++            aPtr += 8;
++            cVal4 = _mm256_dp_ps(aVal4, aVal4, 0xF8);
++
++            cVal1 = _mm256_or_ps(cVal1, cVal2);
++            cVal3 = _mm256_or_ps(cVal3, cVal4);
++            cVal1 = _mm256_or_ps(cVal1, cVal3);
++
++            squareAccumulator =
++                _mm256_add_ps(squareAccumulator, cVal1); // squareAccumulator += x^2
++        }
++        _mm256_store_ps(squareBuffer,
++                        squareAccumulator); // Store the results back into the C container
++        stdDev = squareBuffer[0];
++        stdDev += squareBuffer[1];
++        stdDev += squareBuffer[2];
++        stdDev += squareBuffer[3];
++        stdDev += squareBuffer[4];
++        stdDev += squareBuffer[5];
++        stdDev += squareBuffer[6];
++        stdDev += squareBuffer[7];
++
++        number = thirtySecondthPoints * 32;
++        for (; number < num_points; number++) {
++            stdDev += (*aPtr) * (*aPtr);
++            aPtr++;
++        }
++        stdDev /= num_points;
++        stdDev -= (mean * mean);
++        stdDev = sqrtf(stdDev);
+     }
+-    _mm256_store_ps(squareBuffer,squareAccumulator); // Store the results back into the C container
+-    stdDev = squareBuffer[0];
+-    stdDev += squareBuffer[1];
+-    stdDev += squareBuffer[2];
+-    stdDev += squareBuffer[3];
+-    stdDev += squareBuffer[4];
+-    stdDev += squareBuffer[5];
+-    stdDev += squareBuffer[6];
+-    stdDev += squareBuffer[7];
+-
+-    number = thirtySecondthPoints * 32;
+-    for(;number < num_points; number++){
+-      stdDev += (*aPtr) * (*aPtr);
+-      aPtr++;
+-    }
+-    stdDev /= num_points;
+-    stdDev -= (mean * mean);
+-    stdDev = sqrtf(stdDev);
+-  }
+-  *stddev = stdDev;
+-
++    *stddev = stdDev;
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_s32f_stddev_32f_generic(float* stddev, const float* inputBuffer,
+-                                 const float mean, unsigned int num_points)
++static inline void volk_32f_s32f_stddev_32f_generic(float* stddev,
++                                                    const float* inputBuffer,
++                                                    const float mean,
++                                                    unsigned int num_points)
+ {
+-  float returnValue = 0;
+-  if(num_points > 0){
+-    const float* aPtr = inputBuffer;
+-    unsigned int number = 0;
+-
+-    for(number = 0; number < num_points; number++){
+-      returnValue += (*aPtr) * (*aPtr);
+-      aPtr++;
++    float returnValue = 0;
++    if (num_points > 0) {
++        const float* aPtr = inputBuffer;
++        unsigned int number = 0;
++
++        for (number = 0; number < num_points; number++) {
++            returnValue += (*aPtr) * (*aPtr);
++            aPtr++;
++        }
++
++        returnValue /= num_points;
++        returnValue -= (mean * mean);
++        returnValue = sqrtf(returnValue);
+     }
+-
+-    returnValue /= num_points;
+-    returnValue -= (mean * mean);
+-    returnValue = sqrtf(returnValue);
+-  }
+-  *stddev = returnValue;
++    *stddev = returnValue;
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -268,69 +284,76 @@ volk_32f_s32f_stddev_32f_generic(float* stddev, const float* inputBuffer,
+ #ifndef INCLUDED_volk_32f_s32f_stddev_32f_u_H
+ #define INCLUDED_volk_32f_s32f_stddev_32f_u_H
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+-#include <stdio.h>
+ #include <math.h>
++#include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32f_s32f_stddev_32f_u_avx(float* stddev, const float* inputBuffer,
+-                               const float mean, unsigned int num_points)
++static inline void volk_32f_s32f_stddev_32f_u_avx(float* stddev,
++                                                  const float* inputBuffer,
++                                                  const float mean,
++                                                  unsigned int num_points)
+ {
+-  float stdDev = 0;
+-  if(num_points > 0){
+-    unsigned int number = 0;
+-    const unsigned int thirtySecondthPoints = num_points / 32;
+-
+-    const float* aPtr = inputBuffer;
+-    __VOLK_ATTR_ALIGNED(32) float squareBuffer[8];
+-
+-    __m256 squareAccumulator = _mm256_setzero_ps();
+-    __m256 aVal1, aVal2, aVal3, aVal4;
+-    __m256 cVal1, cVal2, cVal3, cVal4;
+-    for(;number < thirtySecondthPoints; number++) {
+-      aVal1 = _mm256_loadu_ps(aPtr); aPtr += 8;
+-      cVal1 = _mm256_dp_ps(aVal1, aVal1, 0xF1);
+-
+-      aVal2 = _mm256_loadu_ps(aPtr); aPtr += 8;
+-      cVal2 = _mm256_dp_ps(aVal2, aVal2, 0xF2);
+-
+-      aVal3 = _mm256_loadu_ps(aPtr); aPtr += 8;
+-      cVal3 = _mm256_dp_ps(aVal3, aVal3, 0xF4);
+-
+-      aVal4 = _mm256_loadu_ps(aPtr); aPtr += 8;
+-      cVal4 = _mm256_dp_ps(aVal4, aVal4, 0xF8);
+-
+-      cVal1 = _mm256_or_ps(cVal1, cVal2);
+-      cVal3 = _mm256_or_ps(cVal3, cVal4);
+-      cVal1 = _mm256_or_ps(cVal1, cVal3);
+-
+-      squareAccumulator = _mm256_add_ps(squareAccumulator, cVal1); // squareAccumulator += x^2
++    float stdDev = 0;
++    if (num_points > 0) {
++        unsigned int number = 0;
++        const unsigned int thirtySecondthPoints = num_points / 32;
++
++        const float* aPtr = inputBuffer;
++        __VOLK_ATTR_ALIGNED(32) float squareBuffer[8];
++
++        __m256 squareAccumulator = _mm256_setzero_ps();
++        __m256 aVal1, aVal2, aVal3, aVal4;
++        __m256 cVal1, cVal2, cVal3, cVal4;
++        for (; number < thirtySecondthPoints; number++) {
++            aVal1 = _mm256_loadu_ps(aPtr);
++            aPtr += 8;
++            cVal1 = _mm256_dp_ps(aVal1, aVal1, 0xF1);
++
++            aVal2 = _mm256_loadu_ps(aPtr);
++            aPtr += 8;
++            cVal2 = _mm256_dp_ps(aVal2, aVal2, 0xF2);
++
++            aVal3 = _mm256_loadu_ps(aPtr);
++            aPtr += 8;
++            cVal3 = _mm256_dp_ps(aVal3, aVal3, 0xF4);
++
++            aVal4 = _mm256_loadu_ps(aPtr);
++            aPtr += 8;
++            cVal4 = _mm256_dp_ps(aVal4, aVal4, 0xF8);
++
++            cVal1 = _mm256_or_ps(cVal1, cVal2);
++            cVal3 = _mm256_or_ps(cVal3, cVal4);
++            cVal1 = _mm256_or_ps(cVal1, cVal3);
++
++            squareAccumulator =
++                _mm256_add_ps(squareAccumulator, cVal1); // squareAccumulator += x^2
++        }
++        _mm256_storeu_ps(
++            squareBuffer,
++            squareAccumulator); // Store the results back into the C container
++        stdDev = squareBuffer[0];
++        stdDev += squareBuffer[1];
++        stdDev += squareBuffer[2];
++        stdDev += squareBuffer[3];
++        stdDev += squareBuffer[4];
++        stdDev += squareBuffer[5];
++        stdDev += squareBuffer[6];
++        stdDev += squareBuffer[7];
++
++        number = thirtySecondthPoints * 32;
++        for (; number < num_points; number++) {
++            stdDev += (*aPtr) * (*aPtr);
++            aPtr++;
++        }
++        stdDev /= num_points;
++        stdDev -= (mean * mean);
++        stdDev = sqrtf(stdDev);
+     }
+-    _mm256_storeu_ps(squareBuffer,squareAccumulator); // Store the results back into the C container
+-    stdDev = squareBuffer[0];
+-    stdDev += squareBuffer[1];
+-    stdDev += squareBuffer[2];
+-    stdDev += squareBuffer[3];
+-    stdDev += squareBuffer[4];
+-    stdDev += squareBuffer[5];
+-    stdDev += squareBuffer[6];
+-    stdDev += squareBuffer[7];
+-
+-    number = thirtySecondthPoints * 32;
+-    for(;number < num_points; number++){
+-      stdDev += (*aPtr) * (*aPtr);
+-      aPtr++;
+-    }
+-    stdDev /= num_points;
+-    stdDev -= (mean * mean);
+-    stdDev = sqrtf(stdDev);
+-  }
+-  *stddev = stdDev;
+-
++    *stddev = stdDev;
+ }
+ #endif /* LV_HAVE_AVX */
+diff --git a/kernels/volk/volk_32f_sin_32f.h b/kernels/volk/volk_32f_sin_32f.h
+index 3780086..e65f25a 100644
+--- a/kernels/volk/volk_32f_sin_32f.h
++++ b/kernels/volk/volk_32f_sin_32f.h
+@@ -69,9 +69,9 @@
+  * \endcode
+  */
+-#include <stdio.h>
+-#include <math.h>
+ #include <inttypes.h>
++#include <math.h>
++#include <stdio.h>
+ #ifndef INCLUDED_volk_32f_sin_32f_a_H
+ #define INCLUDED_volk_32f_sin_32f_a_H
+@@ -83,72 +83,93 @@
+ static inline void
+ volk_32f_sin_32f_a_avx2_fma(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int eighthPoints = num_points / 8;
+-  unsigned int i = 0;
+-
+-  __m256 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones, fzeroes;
+-  __m256 sine, cosine, condition1, condition2;
+-  __m256i q, r, ones, twos, fours;
+-
+-  m4pi = _mm256_set1_ps(1.273239545);
+-  pio4A = _mm256_set1_ps(0.78515625);
+-  pio4B = _mm256_set1_ps(0.241876e-3);
+-  ffours = _mm256_set1_ps(4.0);
+-  ftwos = _mm256_set1_ps(2.0);
+-  fones = _mm256_set1_ps(1.0);
+-  fzeroes = _mm256_setzero_ps();
+-  ones = _mm256_set1_epi32(1);
+-  twos = _mm256_set1_epi32(2);
+-  fours = _mm256_set1_epi32(4);
+-
+-  cp1 = _mm256_set1_ps(1.0);
+-  cp2 = _mm256_set1_ps(0.83333333e-1);
+-  cp3 = _mm256_set1_ps(0.2777778e-2);
+-  cp4 = _mm256_set1_ps(0.49603e-4);
+-  cp5 = _mm256_set1_ps(0.551e-6);
+-
+-  for(;number < eighthPoints; number++) {
+-    aVal = _mm256_load_ps(aPtr);
+-    s = _mm256_sub_ps(aVal, _mm256_and_ps(_mm256_mul_ps(aVal, ftwos), _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS)));
+-    q = _mm256_cvtps_epi32(_mm256_floor_ps(_mm256_mul_ps(s, m4pi)));
+-    r = _mm256_add_epi32(q, _mm256_and_si256(q, ones));
+-
+-    s = _mm256_fnmadd_ps(_mm256_cvtepi32_ps(r), pio4A, s);
+-    s = _mm256_fnmadd_ps(_mm256_cvtepi32_ps(r), pio4B, s);
+-
+-    s = _mm256_div_ps(s, _mm256_set1_ps(8.0));    // The constant is 2^N, for 3 times argument reduction
+-    s = _mm256_mul_ps(s, s);
+-    // Evaluate Taylor series
+-    s = _mm256_mul_ps(_mm256_fmadd_ps(_mm256_fmsub_ps(_mm256_fmadd_ps(_mm256_fmsub_ps(s, cp5, cp4), s, cp3), s, cp2), s, cp1), s);
+-
+-    for(i = 0; i < 3; i++) {
+-      s = _mm256_mul_ps(s, _mm256_sub_ps(ffours, s));
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int eighthPoints = num_points / 8;
++    unsigned int i = 0;
++
++    __m256 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones,
++        fzeroes;
++    __m256 sine, cosine, condition1, condition2;
++    __m256i q, r, ones, twos, fours;
++
++    m4pi = _mm256_set1_ps(1.273239545);
++    pio4A = _mm256_set1_ps(0.78515625);
++    pio4B = _mm256_set1_ps(0.241876e-3);
++    ffours = _mm256_set1_ps(4.0);
++    ftwos = _mm256_set1_ps(2.0);
++    fones = _mm256_set1_ps(1.0);
++    fzeroes = _mm256_setzero_ps();
++    ones = _mm256_set1_epi32(1);
++    twos = _mm256_set1_epi32(2);
++    fours = _mm256_set1_epi32(4);
++
++    cp1 = _mm256_set1_ps(1.0);
++    cp2 = _mm256_set1_ps(0.83333333e-1);
++    cp3 = _mm256_set1_ps(0.2777778e-2);
++    cp4 = _mm256_set1_ps(0.49603e-4);
++    cp5 = _mm256_set1_ps(0.551e-6);
++
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_load_ps(aPtr);
++        s = _mm256_sub_ps(aVal,
++                          _mm256_and_ps(_mm256_mul_ps(aVal, ftwos),
++                                        _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS)));
++        q = _mm256_cvtps_epi32(_mm256_floor_ps(_mm256_mul_ps(s, m4pi)));
++        r = _mm256_add_epi32(q, _mm256_and_si256(q, ones));
++
++        s = _mm256_fnmadd_ps(_mm256_cvtepi32_ps(r), pio4A, s);
++        s = _mm256_fnmadd_ps(_mm256_cvtepi32_ps(r), pio4B, s);
++
++        s = _mm256_div_ps(
++            s,
++            _mm256_set1_ps(8.0)); // The constant is 2^N, for 3 times argument reduction
++        s = _mm256_mul_ps(s, s);
++        // Evaluate Taylor series
++        s = _mm256_mul_ps(
++            _mm256_fmadd_ps(
++                _mm256_fmsub_ps(
++                    _mm256_fmadd_ps(_mm256_fmsub_ps(s, cp5, cp4), s, cp3), s, cp2),
++                s,
++                cp1),
++            s);
++
++        for (i = 0; i < 3; i++) {
++            s = _mm256_mul_ps(s, _mm256_sub_ps(ffours, s));
++        }
++        s = _mm256_div_ps(s, ftwos);
++
++        sine = _mm256_sqrt_ps(_mm256_mul_ps(_mm256_sub_ps(ftwos, s), s));
++        cosine = _mm256_sub_ps(fones, s);
++
++        condition1 = _mm256_cmp_ps(
++            _mm256_cvtepi32_ps(_mm256_and_si256(_mm256_add_epi32(q, ones), twos)),
++            fzeroes,
++            _CMP_NEQ_UQ);
++        condition2 = _mm256_cmp_ps(
++            _mm256_cmp_ps(
++                _mm256_cvtepi32_ps(_mm256_and_si256(q, fours)), fzeroes, _CMP_NEQ_UQ),
++            _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS),
++            _CMP_NEQ_UQ);
++        // Need this condition only for cos
++        // condition3 = _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q,
++        // twos), fours)), fzeroes);
++
++        sine =
++            _mm256_add_ps(sine, _mm256_and_ps(_mm256_sub_ps(cosine, sine), condition1));
++        sine = _mm256_sub_ps(
++            sine, _mm256_and_ps(_mm256_mul_ps(sine, _mm256_set1_ps(2.0f)), condition2));
++        _mm256_store_ps(bPtr, sine);
++        aPtr += 8;
++        bPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *bPtr++ = sin(*aPtr++);
+     }
+-    s = _mm256_div_ps(s, ftwos);
+-
+-    sine = _mm256_sqrt_ps(_mm256_mul_ps(_mm256_sub_ps(ftwos, s), s));
+-    cosine = _mm256_sub_ps(fones, s);
+-
+-    condition1 = _mm256_cmp_ps(_mm256_cvtepi32_ps(_mm256_and_si256(_mm256_add_epi32(q, ones), twos)), fzeroes, _CMP_NEQ_UQ);
+-    condition2 = _mm256_cmp_ps(_mm256_cmp_ps(_mm256_cvtepi32_ps(_mm256_and_si256(q, fours)), fzeroes, _CMP_NEQ_UQ), _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS), _CMP_NEQ_UQ);
+-    // Need this condition only for cos
+-    //condition3 = _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q, twos), fours)), fzeroes);
+-
+-    sine = _mm256_add_ps(sine, _mm256_and_ps(_mm256_sub_ps(cosine, sine), condition1));
+-    sine = _mm256_sub_ps(sine, _mm256_and_ps(_mm256_mul_ps(sine, _mm256_set1_ps(2.0f)), condition2));
+-    _mm256_store_ps(bPtr, sine);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++) {
+-    *bPtr++ = sin(*aPtr++);
+-  }
+ }
+ #endif /* LV_HAVE_AVX2 && LV_HAVE_FMA for aligned */
+@@ -159,72 +180,100 @@ volk_32f_sin_32f_a_avx2_fma(float* bVector, const float* aVector, unsigned int n
+ static inline void
+ volk_32f_sin_32f_a_avx2(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int eighthPoints = num_points / 8;
+-  unsigned int i = 0;
+-
+-  __m256 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones, fzeroes;
+-  __m256 sine, cosine, condition1, condition2;
+-  __m256i q, r, ones, twos, fours;
+-
+-  m4pi = _mm256_set1_ps(1.273239545);
+-  pio4A = _mm256_set1_ps(0.78515625);
+-  pio4B = _mm256_set1_ps(0.241876e-3);
+-  ffours = _mm256_set1_ps(4.0);
+-  ftwos = _mm256_set1_ps(2.0);
+-  fones = _mm256_set1_ps(1.0);
+-  fzeroes = _mm256_setzero_ps();
+-  ones = _mm256_set1_epi32(1);
+-  twos = _mm256_set1_epi32(2);
+-  fours = _mm256_set1_epi32(4);
+-
+-  cp1 = _mm256_set1_ps(1.0);
+-  cp2 = _mm256_set1_ps(0.83333333e-1);
+-  cp3 = _mm256_set1_ps(0.2777778e-2);
+-  cp4 = _mm256_set1_ps(0.49603e-4);
+-  cp5 = _mm256_set1_ps(0.551e-6);
+-
+-  for(;number < eighthPoints; number++) {
+-    aVal = _mm256_load_ps(aPtr);
+-    s = _mm256_sub_ps(aVal, _mm256_and_ps(_mm256_mul_ps(aVal, ftwos), _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS)));
+-    q = _mm256_cvtps_epi32(_mm256_floor_ps(_mm256_mul_ps(s, m4pi)));
+-    r = _mm256_add_epi32(q, _mm256_and_si256(q, ones));
+-
+-    s = _mm256_sub_ps(s, _mm256_mul_ps(_mm256_cvtepi32_ps(r), pio4A));
+-    s = _mm256_sub_ps(s, _mm256_mul_ps(_mm256_cvtepi32_ps(r), pio4B));
+-
+-    s = _mm256_div_ps(s, _mm256_set1_ps(8.0));    // The constant is 2^N, for 3 times argument reduction
+-    s = _mm256_mul_ps(s, s);
+-    // Evaluate Taylor series
+-    s = _mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(s, cp5), cp4), s), cp3), s), cp2), s), cp1), s);
+-
+-    for(i = 0; i < 3; i++) {
+-      s = _mm256_mul_ps(s, _mm256_sub_ps(ffours, s));
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int eighthPoints = num_points / 8;
++    unsigned int i = 0;
++
++    __m256 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones,
++        fzeroes;
++    __m256 sine, cosine, condition1, condition2;
++    __m256i q, r, ones, twos, fours;
++
++    m4pi = _mm256_set1_ps(1.273239545);
++    pio4A = _mm256_set1_ps(0.78515625);
++    pio4B = _mm256_set1_ps(0.241876e-3);
++    ffours = _mm256_set1_ps(4.0);
++    ftwos = _mm256_set1_ps(2.0);
++    fones = _mm256_set1_ps(1.0);
++    fzeroes = _mm256_setzero_ps();
++    ones = _mm256_set1_epi32(1);
++    twos = _mm256_set1_epi32(2);
++    fours = _mm256_set1_epi32(4);
++
++    cp1 = _mm256_set1_ps(1.0);
++    cp2 = _mm256_set1_ps(0.83333333e-1);
++    cp3 = _mm256_set1_ps(0.2777778e-2);
++    cp4 = _mm256_set1_ps(0.49603e-4);
++    cp5 = _mm256_set1_ps(0.551e-6);
++
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_load_ps(aPtr);
++        s = _mm256_sub_ps(aVal,
++                          _mm256_and_ps(_mm256_mul_ps(aVal, ftwos),
++                                        _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS)));
++        q = _mm256_cvtps_epi32(_mm256_floor_ps(_mm256_mul_ps(s, m4pi)));
++        r = _mm256_add_epi32(q, _mm256_and_si256(q, ones));
++
++        s = _mm256_sub_ps(s, _mm256_mul_ps(_mm256_cvtepi32_ps(r), pio4A));
++        s = _mm256_sub_ps(s, _mm256_mul_ps(_mm256_cvtepi32_ps(r), pio4B));
++
++        s = _mm256_div_ps(
++            s,
++            _mm256_set1_ps(8.0)); // The constant is 2^N, for 3 times argument reduction
++        s = _mm256_mul_ps(s, s);
++        // Evaluate Taylor series
++        s = _mm256_mul_ps(
++            _mm256_add_ps(
++                _mm256_mul_ps(
++                    _mm256_sub_ps(
++                        _mm256_mul_ps(
++                            _mm256_add_ps(
++                                _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(s, cp5), cp4),
++                                              s),
++                                cp3),
++                            s),
++                        cp2),
++                    s),
++                cp1),
++            s);
++
++        for (i = 0; i < 3; i++) {
++            s = _mm256_mul_ps(s, _mm256_sub_ps(ffours, s));
++        }
++        s = _mm256_div_ps(s, ftwos);
++
++        sine = _mm256_sqrt_ps(_mm256_mul_ps(_mm256_sub_ps(ftwos, s), s));
++        cosine = _mm256_sub_ps(fones, s);
++
++        condition1 = _mm256_cmp_ps(
++            _mm256_cvtepi32_ps(_mm256_and_si256(_mm256_add_epi32(q, ones), twos)),
++            fzeroes,
++            _CMP_NEQ_UQ);
++        condition2 = _mm256_cmp_ps(
++            _mm256_cmp_ps(
++                _mm256_cvtepi32_ps(_mm256_and_si256(q, fours)), fzeroes, _CMP_NEQ_UQ),
++            _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS),
++            _CMP_NEQ_UQ);
++        // Need this condition only for cos
++        // condition3 = _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q,
++        // twos), fours)), fzeroes);
++
++        sine =
++            _mm256_add_ps(sine, _mm256_and_ps(_mm256_sub_ps(cosine, sine), condition1));
++        sine = _mm256_sub_ps(
++            sine, _mm256_and_ps(_mm256_mul_ps(sine, _mm256_set1_ps(2.0f)), condition2));
++        _mm256_store_ps(bPtr, sine);
++        aPtr += 8;
++        bPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *bPtr++ = sin(*aPtr++);
+     }
+-    s = _mm256_div_ps(s, ftwos);
+-
+-    sine = _mm256_sqrt_ps(_mm256_mul_ps(_mm256_sub_ps(ftwos, s), s));
+-    cosine = _mm256_sub_ps(fones, s);
+-
+-    condition1 = _mm256_cmp_ps(_mm256_cvtepi32_ps(_mm256_and_si256(_mm256_add_epi32(q, ones), twos)), fzeroes, _CMP_NEQ_UQ);
+-    condition2 = _mm256_cmp_ps(_mm256_cmp_ps(_mm256_cvtepi32_ps(_mm256_and_si256(q, fours)), fzeroes, _CMP_NEQ_UQ), _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS), _CMP_NEQ_UQ);
+-    // Need this condition only for cos
+-    //condition3 = _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q, twos), fours)), fzeroes);
+-
+-    sine = _mm256_add_ps(sine, _mm256_and_ps(_mm256_sub_ps(cosine, sine), condition1));
+-    sine = _mm256_sub_ps(sine, _mm256_and_ps(_mm256_mul_ps(sine, _mm256_set1_ps(2.0f)), condition2));
+-    _mm256_store_ps(bPtr, sine);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++) {
+-    *bPtr++ = sin(*aPtr++);
+-  }
+ }
+ #endif /* LV_HAVE_AVX2 for aligned */
+@@ -235,72 +284,91 @@ volk_32f_sin_32f_a_avx2(float* bVector, const float* aVector, unsigned int num_p
+ static inline void
+ volk_32f_sin_32f_a_sse4_1(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int quarterPoints = num_points / 4;
+-  unsigned int i = 0;
+-
+-  __m128 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones, fzeroes;
+-  __m128 sine, cosine, condition1, condition2;
+-  __m128i q, r, ones, twos, fours;
+-
+-  m4pi = _mm_set1_ps(1.273239545);
+-  pio4A = _mm_set1_ps(0.78515625);
+-  pio4B = _mm_set1_ps(0.241876e-3);
+-  ffours = _mm_set1_ps(4.0);
+-  ftwos = _mm_set1_ps(2.0);
+-  fones = _mm_set1_ps(1.0);
+-  fzeroes = _mm_setzero_ps();
+-  ones = _mm_set1_epi32(1);
+-  twos = _mm_set1_epi32(2);
+-  fours = _mm_set1_epi32(4);
+-
+-  cp1 = _mm_set1_ps(1.0);
+-  cp2 = _mm_set1_ps(0.83333333e-1);
+-  cp3 = _mm_set1_ps(0.2777778e-2);
+-  cp4 = _mm_set1_ps(0.49603e-4);
+-  cp5 = _mm_set1_ps(0.551e-6);
+-
+-  for(;number < quarterPoints; number++) {
+-    aVal = _mm_load_ps(aPtr);
+-    s = _mm_sub_ps(aVal, _mm_and_ps(_mm_mul_ps(aVal, ftwos), _mm_cmplt_ps(aVal, fzeroes)));
+-    q = _mm_cvtps_epi32(_mm_floor_ps(_mm_mul_ps(s, m4pi)));
+-    r = _mm_add_epi32(q, _mm_and_si128(q, ones));
+-
+-    s = _mm_sub_ps(s, _mm_mul_ps(_mm_cvtepi32_ps(r), pio4A));
+-    s = _mm_sub_ps(s, _mm_mul_ps(_mm_cvtepi32_ps(r), pio4B));
+-
+-    s = _mm_div_ps(s, _mm_set1_ps(8.0));    // The constant is 2^N, for 3 times argument reduction
+-    s = _mm_mul_ps(s, s);
+-    // Evaluate Taylor series
+-    s = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(s, cp5), cp4), s), cp3), s), cp2), s), cp1), s);
+-
+-    for(i = 0; i < 3; i++) {
+-      s = _mm_mul_ps(s, _mm_sub_ps(ffours, s));
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int quarterPoints = num_points / 4;
++    unsigned int i = 0;
++
++    __m128 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones,
++        fzeroes;
++    __m128 sine, cosine, condition1, condition2;
++    __m128i q, r, ones, twos, fours;
++
++    m4pi = _mm_set1_ps(1.273239545);
++    pio4A = _mm_set1_ps(0.78515625);
++    pio4B = _mm_set1_ps(0.241876e-3);
++    ffours = _mm_set1_ps(4.0);
++    ftwos = _mm_set1_ps(2.0);
++    fones = _mm_set1_ps(1.0);
++    fzeroes = _mm_setzero_ps();
++    ones = _mm_set1_epi32(1);
++    twos = _mm_set1_epi32(2);
++    fours = _mm_set1_epi32(4);
++
++    cp1 = _mm_set1_ps(1.0);
++    cp2 = _mm_set1_ps(0.83333333e-1);
++    cp3 = _mm_set1_ps(0.2777778e-2);
++    cp4 = _mm_set1_ps(0.49603e-4);
++    cp5 = _mm_set1_ps(0.551e-6);
++
++    for (; number < quarterPoints; number++) {
++        aVal = _mm_load_ps(aPtr);
++        s = _mm_sub_ps(aVal,
++                       _mm_and_ps(_mm_mul_ps(aVal, ftwos), _mm_cmplt_ps(aVal, fzeroes)));
++        q = _mm_cvtps_epi32(_mm_floor_ps(_mm_mul_ps(s, m4pi)));
++        r = _mm_add_epi32(q, _mm_and_si128(q, ones));
++
++        s = _mm_sub_ps(s, _mm_mul_ps(_mm_cvtepi32_ps(r), pio4A));
++        s = _mm_sub_ps(s, _mm_mul_ps(_mm_cvtepi32_ps(r), pio4B));
++
++        s = _mm_div_ps(
++            s, _mm_set1_ps(8.0)); // The constant is 2^N, for 3 times argument reduction
++        s = _mm_mul_ps(s, s);
++        // Evaluate Taylor series
++        s = _mm_mul_ps(
++            _mm_add_ps(
++                _mm_mul_ps(
++                    _mm_sub_ps(
++                        _mm_mul_ps(
++                            _mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(s, cp5), cp4), s),
++                                       cp3),
++                            s),
++                        cp2),
++                    s),
++                cp1),
++            s);
++
++        for (i = 0; i < 3; i++) {
++            s = _mm_mul_ps(s, _mm_sub_ps(ffours, s));
++        }
++        s = _mm_div_ps(s, ftwos);
++
++        sine = _mm_sqrt_ps(_mm_mul_ps(_mm_sub_ps(ftwos, s), s));
++        cosine = _mm_sub_ps(fones, s);
++
++        condition1 = _mm_cmpneq_ps(
++            _mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q, ones), twos)), fzeroes);
++        condition2 = _mm_cmpneq_ps(
++            _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(q, fours)), fzeroes),
++            _mm_cmplt_ps(aVal, fzeroes));
++        // Need this condition only for cos
++        // condition3 = _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q,
++        // twos), fours)), fzeroes);
++
++        sine = _mm_add_ps(sine, _mm_and_ps(_mm_sub_ps(cosine, sine), condition1));
++        sine =
++            _mm_sub_ps(sine, _mm_and_ps(_mm_mul_ps(sine, _mm_set1_ps(2.0f)), condition2));
++        _mm_store_ps(bPtr, sine);
++        aPtr += 4;
++        bPtr += 4;
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *bPtr++ = sinf(*aPtr++);
+     }
+-    s = _mm_div_ps(s, ftwos);
+-
+-    sine = _mm_sqrt_ps(_mm_mul_ps(_mm_sub_ps(ftwos, s), s));
+-    cosine = _mm_sub_ps(fones, s);
+-
+-    condition1 = _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q, ones), twos)), fzeroes);
+-    condition2 = _mm_cmpneq_ps(_mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(q, fours)), fzeroes), _mm_cmplt_ps(aVal, fzeroes));
+-    // Need this condition only for cos
+-    //condition3 = _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q, twos), fours)), fzeroes);
+-
+-    sine = _mm_add_ps(sine, _mm_and_ps(_mm_sub_ps(cosine, sine), condition1));
+-    sine = _mm_sub_ps(sine, _mm_and_ps(_mm_mul_ps(sine, _mm_set1_ps(2.0f)), condition2));
+-    _mm_store_ps(bPtr, sine);
+-    aPtr += 4;
+-    bPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++) {
+-    *bPtr++ = sinf(*aPtr++);
+-  }
+ }
+ #endif /* LV_HAVE_SSE4_1 for aligned */
+@@ -317,72 +385,93 @@ volk_32f_sin_32f_a_sse4_1(float* bVector, const float* aVector, unsigned int num
+ static inline void
+ volk_32f_sin_32f_u_avx2_fma(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int eighthPoints = num_points / 8;
+-  unsigned int i = 0;
+-
+-  __m256 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones, fzeroes;
+-  __m256 sine, cosine, condition1, condition2;
+-  __m256i q, r, ones, twos, fours;
+-
+-  m4pi = _mm256_set1_ps(1.273239545);
+-  pio4A = _mm256_set1_ps(0.78515625);
+-  pio4B = _mm256_set1_ps(0.241876e-3);
+-  ffours = _mm256_set1_ps(4.0);
+-  ftwos = _mm256_set1_ps(2.0);
+-  fones = _mm256_set1_ps(1.0);
+-  fzeroes = _mm256_setzero_ps();
+-  ones = _mm256_set1_epi32(1);
+-  twos = _mm256_set1_epi32(2);
+-  fours = _mm256_set1_epi32(4);
+-
+-  cp1 = _mm256_set1_ps(1.0);
+-  cp2 = _mm256_set1_ps(0.83333333e-1);
+-  cp3 = _mm256_set1_ps(0.2777778e-2);
+-  cp4 = _mm256_set1_ps(0.49603e-4);
+-  cp5 = _mm256_set1_ps(0.551e-6);
+-
+-  for(;number < eighthPoints; number++) {
+-    aVal = _mm256_loadu_ps(aPtr);
+-    s = _mm256_sub_ps(aVal, _mm256_and_ps(_mm256_mul_ps(aVal, ftwos), _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS)));
+-    q = _mm256_cvtps_epi32(_mm256_floor_ps(_mm256_mul_ps(s, m4pi)));
+-    r = _mm256_add_epi32(q, _mm256_and_si256(q, ones));
+-
+-    s = _mm256_fnmadd_ps(_mm256_cvtepi32_ps(r), pio4A, s);
+-    s = _mm256_fnmadd_ps(_mm256_cvtepi32_ps(r), pio4B, s);
+-
+-    s = _mm256_div_ps(s, _mm256_set1_ps(8.0));    // The constant is 2^N, for 3 times argument reduction
+-    s = _mm256_mul_ps(s, s);
+-    // Evaluate Taylor series
+-    s = _mm256_mul_ps(_mm256_fmadd_ps(_mm256_fmsub_ps(_mm256_fmadd_ps(_mm256_fmsub_ps(s, cp5, cp4), s, cp3), s, cp2), s, cp1), s);
+-
+-    for(i = 0; i < 3; i++) {
+-      s = _mm256_mul_ps(s, _mm256_sub_ps(ffours, s));
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int eighthPoints = num_points / 8;
++    unsigned int i = 0;
++
++    __m256 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones,
++        fzeroes;
++    __m256 sine, cosine, condition1, condition2;
++    __m256i q, r, ones, twos, fours;
++
++    m4pi = _mm256_set1_ps(1.273239545);
++    pio4A = _mm256_set1_ps(0.78515625);
++    pio4B = _mm256_set1_ps(0.241876e-3);
++    ffours = _mm256_set1_ps(4.0);
++    ftwos = _mm256_set1_ps(2.0);
++    fones = _mm256_set1_ps(1.0);
++    fzeroes = _mm256_setzero_ps();
++    ones = _mm256_set1_epi32(1);
++    twos = _mm256_set1_epi32(2);
++    fours = _mm256_set1_epi32(4);
++
++    cp1 = _mm256_set1_ps(1.0);
++    cp2 = _mm256_set1_ps(0.83333333e-1);
++    cp3 = _mm256_set1_ps(0.2777778e-2);
++    cp4 = _mm256_set1_ps(0.49603e-4);
++    cp5 = _mm256_set1_ps(0.551e-6);
++
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_loadu_ps(aPtr);
++        s = _mm256_sub_ps(aVal,
++                          _mm256_and_ps(_mm256_mul_ps(aVal, ftwos),
++                                        _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS)));
++        q = _mm256_cvtps_epi32(_mm256_floor_ps(_mm256_mul_ps(s, m4pi)));
++        r = _mm256_add_epi32(q, _mm256_and_si256(q, ones));
++
++        s = _mm256_fnmadd_ps(_mm256_cvtepi32_ps(r), pio4A, s);
++        s = _mm256_fnmadd_ps(_mm256_cvtepi32_ps(r), pio4B, s);
++
++        s = _mm256_div_ps(
++            s,
++            _mm256_set1_ps(8.0)); // The constant is 2^N, for 3 times argument reduction
++        s = _mm256_mul_ps(s, s);
++        // Evaluate Taylor series
++        s = _mm256_mul_ps(
++            _mm256_fmadd_ps(
++                _mm256_fmsub_ps(
++                    _mm256_fmadd_ps(_mm256_fmsub_ps(s, cp5, cp4), s, cp3), s, cp2),
++                s,
++                cp1),
++            s);
++
++        for (i = 0; i < 3; i++) {
++            s = _mm256_mul_ps(s, _mm256_sub_ps(ffours, s));
++        }
++        s = _mm256_div_ps(s, ftwos);
++
++        sine = _mm256_sqrt_ps(_mm256_mul_ps(_mm256_sub_ps(ftwos, s), s));
++        cosine = _mm256_sub_ps(fones, s);
++
++        condition1 = _mm256_cmp_ps(
++            _mm256_cvtepi32_ps(_mm256_and_si256(_mm256_add_epi32(q, ones), twos)),
++            fzeroes,
++            _CMP_NEQ_UQ);
++        condition2 = _mm256_cmp_ps(
++            _mm256_cmp_ps(
++                _mm256_cvtepi32_ps(_mm256_and_si256(q, fours)), fzeroes, _CMP_NEQ_UQ),
++            _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS),
++            _CMP_NEQ_UQ);
++        // Need this condition only for cos
++        // condition3 = _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q,
++        // twos), fours)), fzeroes);
++
++        sine =
++            _mm256_add_ps(sine, _mm256_and_ps(_mm256_sub_ps(cosine, sine), condition1));
++        sine = _mm256_sub_ps(
++            sine, _mm256_and_ps(_mm256_mul_ps(sine, _mm256_set1_ps(2.0f)), condition2));
++        _mm256_storeu_ps(bPtr, sine);
++        aPtr += 8;
++        bPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *bPtr++ = sin(*aPtr++);
+     }
+-    s = _mm256_div_ps(s, ftwos);
+-
+-    sine = _mm256_sqrt_ps(_mm256_mul_ps(_mm256_sub_ps(ftwos, s), s));
+-    cosine = _mm256_sub_ps(fones, s);
+-
+-    condition1 = _mm256_cmp_ps(_mm256_cvtepi32_ps(_mm256_and_si256(_mm256_add_epi32(q, ones), twos)), fzeroes, _CMP_NEQ_UQ);
+-    condition2 = _mm256_cmp_ps(_mm256_cmp_ps(_mm256_cvtepi32_ps(_mm256_and_si256(q, fours)), fzeroes, _CMP_NEQ_UQ), _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS), _CMP_NEQ_UQ);
+-    // Need this condition only for cos
+-    //condition3 = _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q, twos), fours)), fzeroes);
+-
+-    sine = _mm256_add_ps(sine, _mm256_and_ps(_mm256_sub_ps(cosine, sine), condition1));
+-    sine = _mm256_sub_ps(sine, _mm256_and_ps(_mm256_mul_ps(sine, _mm256_set1_ps(2.0f)), condition2));
+-    _mm256_storeu_ps(bPtr, sine);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++) {
+-    *bPtr++ = sin(*aPtr++);
+-  }
+ }
+ #endif /* LV_HAVE_AVX2 && LV_HAVE_FMA for unaligned */
+@@ -393,72 +482,100 @@ volk_32f_sin_32f_u_avx2_fma(float* bVector, const float* aVector, unsigned int n
+ static inline void
+ volk_32f_sin_32f_u_avx2(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int eighthPoints = num_points / 8;
+-  unsigned int i = 0;
+-
+-  __m256 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones, fzeroes;
+-  __m256 sine, cosine, condition1, condition2;
+-  __m256i q, r, ones, twos, fours;
+-
+-  m4pi = _mm256_set1_ps(1.273239545);
+-  pio4A = _mm256_set1_ps(0.78515625);
+-  pio4B = _mm256_set1_ps(0.241876e-3);
+-  ffours = _mm256_set1_ps(4.0);
+-  ftwos = _mm256_set1_ps(2.0);
+-  fones = _mm256_set1_ps(1.0);
+-  fzeroes = _mm256_setzero_ps();
+-  ones = _mm256_set1_epi32(1);
+-  twos = _mm256_set1_epi32(2);
+-  fours = _mm256_set1_epi32(4);
+-
+-  cp1 = _mm256_set1_ps(1.0);
+-  cp2 = _mm256_set1_ps(0.83333333e-1);
+-  cp3 = _mm256_set1_ps(0.2777778e-2);
+-  cp4 = _mm256_set1_ps(0.49603e-4);
+-  cp5 = _mm256_set1_ps(0.551e-6);
+-
+-  for(;number < eighthPoints; number++) {
+-    aVal = _mm256_loadu_ps(aPtr);
+-    s = _mm256_sub_ps(aVal, _mm256_and_ps(_mm256_mul_ps(aVal, ftwos), _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS)));
+-    q = _mm256_cvtps_epi32(_mm256_floor_ps(_mm256_mul_ps(s, m4pi)));
+-    r = _mm256_add_epi32(q, _mm256_and_si256(q, ones));
+-
+-    s = _mm256_sub_ps(s, _mm256_mul_ps(_mm256_cvtepi32_ps(r), pio4A));
+-    s = _mm256_sub_ps(s, _mm256_mul_ps(_mm256_cvtepi32_ps(r), pio4B));
+-
+-    s = _mm256_div_ps(s, _mm256_set1_ps(8.0));    // The constant is 2^N, for 3 times argument reduction
+-    s = _mm256_mul_ps(s, s);
+-    // Evaluate Taylor series
+-    s = _mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(s, cp5), cp4), s), cp3), s), cp2), s), cp1), s);
+-
+-    for(i = 0; i < 3; i++) {
+-      s = _mm256_mul_ps(s, _mm256_sub_ps(ffours, s));
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int eighthPoints = num_points / 8;
++    unsigned int i = 0;
++
++    __m256 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones,
++        fzeroes;
++    __m256 sine, cosine, condition1, condition2;
++    __m256i q, r, ones, twos, fours;
++
++    m4pi = _mm256_set1_ps(1.273239545);
++    pio4A = _mm256_set1_ps(0.78515625);
++    pio4B = _mm256_set1_ps(0.241876e-3);
++    ffours = _mm256_set1_ps(4.0);
++    ftwos = _mm256_set1_ps(2.0);
++    fones = _mm256_set1_ps(1.0);
++    fzeroes = _mm256_setzero_ps();
++    ones = _mm256_set1_epi32(1);
++    twos = _mm256_set1_epi32(2);
++    fours = _mm256_set1_epi32(4);
++
++    cp1 = _mm256_set1_ps(1.0);
++    cp2 = _mm256_set1_ps(0.83333333e-1);
++    cp3 = _mm256_set1_ps(0.2777778e-2);
++    cp4 = _mm256_set1_ps(0.49603e-4);
++    cp5 = _mm256_set1_ps(0.551e-6);
++
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_loadu_ps(aPtr);
++        s = _mm256_sub_ps(aVal,
++                          _mm256_and_ps(_mm256_mul_ps(aVal, ftwos),
++                                        _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS)));
++        q = _mm256_cvtps_epi32(_mm256_floor_ps(_mm256_mul_ps(s, m4pi)));
++        r = _mm256_add_epi32(q, _mm256_and_si256(q, ones));
++
++        s = _mm256_sub_ps(s, _mm256_mul_ps(_mm256_cvtepi32_ps(r), pio4A));
++        s = _mm256_sub_ps(s, _mm256_mul_ps(_mm256_cvtepi32_ps(r), pio4B));
++
++        s = _mm256_div_ps(
++            s,
++            _mm256_set1_ps(8.0)); // The constant is 2^N, for 3 times argument reduction
++        s = _mm256_mul_ps(s, s);
++        // Evaluate Taylor series
++        s = _mm256_mul_ps(
++            _mm256_add_ps(
++                _mm256_mul_ps(
++                    _mm256_sub_ps(
++                        _mm256_mul_ps(
++                            _mm256_add_ps(
++                                _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(s, cp5), cp4),
++                                              s),
++                                cp3),
++                            s),
++                        cp2),
++                    s),
++                cp1),
++            s);
++
++        for (i = 0; i < 3; i++) {
++            s = _mm256_mul_ps(s, _mm256_sub_ps(ffours, s));
++        }
++        s = _mm256_div_ps(s, ftwos);
++
++        sine = _mm256_sqrt_ps(_mm256_mul_ps(_mm256_sub_ps(ftwos, s), s));
++        cosine = _mm256_sub_ps(fones, s);
++
++        condition1 = _mm256_cmp_ps(
++            _mm256_cvtepi32_ps(_mm256_and_si256(_mm256_add_epi32(q, ones), twos)),
++            fzeroes,
++            _CMP_NEQ_UQ);
++        condition2 = _mm256_cmp_ps(
++            _mm256_cmp_ps(
++                _mm256_cvtepi32_ps(_mm256_and_si256(q, fours)), fzeroes, _CMP_NEQ_UQ),
++            _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS),
++            _CMP_NEQ_UQ);
++        // Need this condition only for cos
++        // condition3 = _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q,
++        // twos), fours)), fzeroes);
++
++        sine =
++            _mm256_add_ps(sine, _mm256_and_ps(_mm256_sub_ps(cosine, sine), condition1));
++        sine = _mm256_sub_ps(
++            sine, _mm256_and_ps(_mm256_mul_ps(sine, _mm256_set1_ps(2.0f)), condition2));
++        _mm256_storeu_ps(bPtr, sine);
++        aPtr += 8;
++        bPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *bPtr++ = sin(*aPtr++);
+     }
+-    s = _mm256_div_ps(s, ftwos);
+-
+-    sine = _mm256_sqrt_ps(_mm256_mul_ps(_mm256_sub_ps(ftwos, s), s));
+-    cosine = _mm256_sub_ps(fones, s);
+-
+-    condition1 = _mm256_cmp_ps(_mm256_cvtepi32_ps(_mm256_and_si256(_mm256_add_epi32(q, ones), twos)), fzeroes, _CMP_NEQ_UQ);
+-    condition2 = _mm256_cmp_ps(_mm256_cmp_ps(_mm256_cvtepi32_ps(_mm256_and_si256(q, fours)), fzeroes, _CMP_NEQ_UQ), _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS), _CMP_NEQ_UQ);
+-    // Need this condition only for cos
+-    //condition3 = _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q, twos), fours)), fzeroes);
+-
+-    sine = _mm256_add_ps(sine, _mm256_and_ps(_mm256_sub_ps(cosine, sine), condition1));
+-    sine = _mm256_sub_ps(sine, _mm256_and_ps(_mm256_mul_ps(sine, _mm256_set1_ps(2.0f)), condition2));
+-    _mm256_storeu_ps(bPtr, sine);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++) {
+-    *bPtr++ = sin(*aPtr++);
+-  }
+ }
+ #endif /* LV_HAVE_AVX2 for unaligned */
+@@ -470,70 +587,88 @@ volk_32f_sin_32f_u_avx2(float* bVector, const float* aVector, unsigned int num_p
+ static inline void
+ volk_32f_sin_32f_u_sse4_1(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int quarterPoints = num_points / 4;
+-  unsigned int i = 0;
+-
+-  __m128 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones, fzeroes;
+-  __m128 sine, cosine, condition1, condition2;
+-  __m128i q, r, ones, twos, fours;
+-
+-  m4pi = _mm_set1_ps(1.273239545);
+-  pio4A = _mm_set1_ps(0.78515625);
+-  pio4B = _mm_set1_ps(0.241876e-3);
+-  ffours = _mm_set1_ps(4.0);
+-  ftwos = _mm_set1_ps(2.0);
+-  fones = _mm_set1_ps(1.0);
+-  fzeroes = _mm_setzero_ps();
+-  ones = _mm_set1_epi32(1);
+-  twos = _mm_set1_epi32(2);
+-  fours = _mm_set1_epi32(4);
+-
+-  cp1 = _mm_set1_ps(1.0);
+-  cp2 = _mm_set1_ps(0.83333333e-1);
+-  cp3 = _mm_set1_ps(0.2777778e-2);
+-  cp4 = _mm_set1_ps(0.49603e-4);
+-  cp5 = _mm_set1_ps(0.551e-6);
+-
+-  for(;number < quarterPoints; number++) {
+-    aVal = _mm_loadu_ps(aPtr);
+-    s = _mm_sub_ps(aVal, _mm_and_ps(_mm_mul_ps(aVal, ftwos), _mm_cmplt_ps(aVal, fzeroes)));
+-    q = _mm_cvtps_epi32(_mm_floor_ps(_mm_mul_ps(s, m4pi)));
+-    r = _mm_add_epi32(q, _mm_and_si128(q, ones));
+-
+-    s = _mm_sub_ps(s, _mm_mul_ps(_mm_cvtepi32_ps(r), pio4A));
+-    s = _mm_sub_ps(s, _mm_mul_ps(_mm_cvtepi32_ps(r), pio4B));
+-
+-    s = _mm_div_ps(s, _mm_set1_ps(8.0));    // The constant is 2^N, for 3 times argument reduction
+-    s = _mm_mul_ps(s, s);
+-    // Evaluate Taylor series
+-    s = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(s, cp5), cp4), s), cp3), s), cp2), s), cp1), s);
+-
+-    for(i = 0; i < 3; i++) {
+-      s = _mm_mul_ps(s, _mm_sub_ps(ffours, s));
+-    }
+-    s = _mm_div_ps(s, ftwos);
+-
+-    sine = _mm_sqrt_ps(_mm_mul_ps(_mm_sub_ps(ftwos, s), s));
+-    cosine = _mm_sub_ps(fones, s);
+-
+-    condition1 = _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q, ones), twos)), fzeroes);
+-    condition2 = _mm_cmpneq_ps(_mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(q, fours)), fzeroes), _mm_cmplt_ps(aVal, fzeroes));
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
+-    sine = _mm_add_ps(sine, _mm_and_ps(_mm_sub_ps(cosine, sine), condition1));
+-    sine = _mm_sub_ps(sine, _mm_and_ps(_mm_mul_ps(sine, _mm_set1_ps(2.0f)), condition2));
+-    _mm_storeu_ps(bPtr, sine);
+-    aPtr += 4;
+-    bPtr += 4;
+-  }
++    unsigned int number = 0;
++    unsigned int quarterPoints = num_points / 4;
++    unsigned int i = 0;
++
++    __m128 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones,
++        fzeroes;
++    __m128 sine, cosine, condition1, condition2;
++    __m128i q, r, ones, twos, fours;
++
++    m4pi = _mm_set1_ps(1.273239545);
++    pio4A = _mm_set1_ps(0.78515625);
++    pio4B = _mm_set1_ps(0.241876e-3);
++    ffours = _mm_set1_ps(4.0);
++    ftwos = _mm_set1_ps(2.0);
++    fones = _mm_set1_ps(1.0);
++    fzeroes = _mm_setzero_ps();
++    ones = _mm_set1_epi32(1);
++    twos = _mm_set1_epi32(2);
++    fours = _mm_set1_epi32(4);
++
++    cp1 = _mm_set1_ps(1.0);
++    cp2 = _mm_set1_ps(0.83333333e-1);
++    cp3 = _mm_set1_ps(0.2777778e-2);
++    cp4 = _mm_set1_ps(0.49603e-4);
++    cp5 = _mm_set1_ps(0.551e-6);
++
++    for (; number < quarterPoints; number++) {
++        aVal = _mm_loadu_ps(aPtr);
++        s = _mm_sub_ps(aVal,
++                       _mm_and_ps(_mm_mul_ps(aVal, ftwos), _mm_cmplt_ps(aVal, fzeroes)));
++        q = _mm_cvtps_epi32(_mm_floor_ps(_mm_mul_ps(s, m4pi)));
++        r = _mm_add_epi32(q, _mm_and_si128(q, ones));
++
++        s = _mm_sub_ps(s, _mm_mul_ps(_mm_cvtepi32_ps(r), pio4A));
++        s = _mm_sub_ps(s, _mm_mul_ps(_mm_cvtepi32_ps(r), pio4B));
++
++        s = _mm_div_ps(
++            s, _mm_set1_ps(8.0)); // The constant is 2^N, for 3 times argument reduction
++        s = _mm_mul_ps(s, s);
++        // Evaluate Taylor series
++        s = _mm_mul_ps(
++            _mm_add_ps(
++                _mm_mul_ps(
++                    _mm_sub_ps(
++                        _mm_mul_ps(
++                            _mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(s, cp5), cp4), s),
++                                       cp3),
++                            s),
++                        cp2),
++                    s),
++                cp1),
++            s);
++
++        for (i = 0; i < 3; i++) {
++            s = _mm_mul_ps(s, _mm_sub_ps(ffours, s));
++        }
++        s = _mm_div_ps(s, ftwos);
++
++        sine = _mm_sqrt_ps(_mm_mul_ps(_mm_sub_ps(ftwos, s), s));
++        cosine = _mm_sub_ps(fones, s);
++
++        condition1 = _mm_cmpneq_ps(
++            _mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q, ones), twos)), fzeroes);
++        condition2 = _mm_cmpneq_ps(
++            _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(q, fours)), fzeroes),
++            _mm_cmplt_ps(aVal, fzeroes));
++
++        sine = _mm_add_ps(sine, _mm_and_ps(_mm_sub_ps(cosine, sine), condition1));
++        sine =
++            _mm_sub_ps(sine, _mm_and_ps(_mm_mul_ps(sine, _mm_set1_ps(2.0f)), condition2));
++        _mm_storeu_ps(bPtr, sine);
++        aPtr += 4;
++        bPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    *bPtr++ = sinf(*aPtr++);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *bPtr++ = sinf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_SSE4_1 for unaligned */
+@@ -544,14 +679,13 @@ volk_32f_sin_32f_u_sse4_1(float* bVector, const float* aVector, unsigned int num
+ static inline void
+ volk_32f_sin_32f_generic(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++) {
+-    *bPtr++ = sinf(*aPtr++);
+-  }
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++    unsigned int number = 0;
++    for (number = 0; number < num_points; number++) {
++        *bPtr++ = sinf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -562,30 +696,29 @@ volk_32f_sin_32f_generic(float* bVector, const float* aVector, unsigned int num_
+ #include <volk/volk_neon_intrinsics.h>
+ static inline void
+-volk_32f_sin_32f_neon(float* bVector, const float* aVector,
+-                      unsigned int num_points)
++volk_32f_sin_32f_neon(float* bVector, const float* aVector, unsigned int num_points)
+ {
+     unsigned int number = 0;
+     unsigned int quarter_points = num_points / 4;
+     float* bVectorPtr = bVector;
+     const float* aVectorPtr = aVector;
+-    
++
+     float32x4_t b_vec;
+     float32x4_t a_vec;
+-    
+-    for(number = 0; number < quarter_points; number++) {
++
++    for (number = 0; number < quarter_points; number++) {
+         a_vec = vld1q_f32(aVectorPtr);
+         // Prefetch next one, speeds things up
+-        __VOLK_PREFETCH(aVectorPtr+4);
++        __VOLK_PREFETCH(aVectorPtr + 4);
+         b_vec = _vsinq_f32(a_vec);
+         vst1q_f32(bVectorPtr, b_vec);
+         // move pointers ahead
+-        bVectorPtr+=4;
+-        aVectorPtr+=4;
++        bVectorPtr += 4;
++        aVectorPtr += 4;
+     }
+-    
++
+     // Deal with the rest
+-    for(number = quarter_points * 4; number < num_points; number++) {
++    for (number = quarter_points * 4; number < num_points; number++) {
+         *bVectorPtr++ = sinf(*aVectorPtr++);
+     }
+ }
+diff --git a/kernels/volk/volk_32f_sqrt_32f.h b/kernels/volk/volk_32f_sqrt_32f.h
+index 84160af..667d356 100644
+--- a/kernels/volk/volk_32f_sqrt_32f.h
++++ b/kernels/volk/volk_32f_sqrt_32f.h
+@@ -66,8 +66,8 @@
+ #define INCLUDED_volk_32f_sqrt_32f_a_H
+ #include <inttypes.h>
+-#include <stdio.h>
+ #include <math.h>
++#include <stdio.h>
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+@@ -75,28 +75,28 @@
+ static inline void
+ volk_32f_sqrt_32f_a_sse(float* cVector, const float* aVector, unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
+-  __m128 aVal, cVal;
+-  for(;number < quarterPoints; number++) {
+-    aVal = _mm_load_ps(aPtr);
++    __m128 aVal, cVal;
++    for (; number < quarterPoints; number++) {
++        aVal = _mm_load_ps(aPtr);
+-    cVal = _mm_sqrt_ps(aVal);
++        cVal = _mm_sqrt_ps(aVal);
+-    _mm_store_ps(cPtr,cVal); // Store the results back into the C container
++        _mm_store_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 4;
+-    cPtr += 4;
+-  }
++        aPtr += 4;
++        cPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++) {
+-    *cPtr++ = sqrtf(*aPtr++);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *cPtr++ = sqrtf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+@@ -107,28 +107,28 @@ volk_32f_sqrt_32f_a_sse(float* cVector, const float* aVector, unsigned int num_p
+ static inline void
+ volk_32f_sqrt_32f_a_avx(float* cVector, const float* aVector, unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
+-  __m256 aVal, cVal;
+-  for(;number < eighthPoints; number++) {
+-    aVal = _mm256_load_ps(aPtr);
++    __m256 aVal, cVal;
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_load_ps(aPtr);
+-    cVal = _mm256_sqrt_ps(aVal);
++        cVal = _mm256_sqrt_ps(aVal);
+-    _mm256_store_ps(cPtr,cVal); // Store the results back into the C container
++        _mm256_store_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 8;
+-    cPtr += 8;
+-  }
++        aPtr += 8;
++        cPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++) {
+-    *cPtr++ = sqrtf(*aPtr++);
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *cPtr++ = sqrtf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -140,24 +140,24 @@ volk_32f_sqrt_32f_a_avx(float* cVector, const float* aVector, unsigned int num_p
+ static inline void
+ volk_32f_sqrt_32f_neon(float* cVector, const float* aVector, unsigned int num_points)
+ {
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  unsigned int number = 0;
+-  unsigned int quarter_points = num_points / 4;
+-  float32x4_t in_vec, out_vec;
+-
+-  for(number = 0; number < quarter_points; number++) {
+-    in_vec = vld1q_f32(aPtr);
+-    // note that armv8 has vsqrt_f32 which will be much better
+-    out_vec = vrecpeq_f32(vrsqrteq_f32(in_vec) );
+-    vst1q_f32(cPtr, out_vec);
+-    aPtr += 4;
+-    cPtr += 4;
+-  }
+-
+-  for(number = quarter_points * 4; number < num_points; number++) {
+-    *cPtr++ = sqrtf(*aPtr++);
+-  }
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    unsigned int number = 0;
++    unsigned int quarter_points = num_points / 4;
++    float32x4_t in_vec, out_vec;
++
++    for (number = 0; number < quarter_points; number++) {
++        in_vec = vld1q_f32(aPtr);
++        // note that armv8 has vsqrt_f32 which will be much better
++        out_vec = vrecpeq_f32(vrsqrteq_f32(in_vec));
++        vst1q_f32(cPtr, out_vec);
++        aPtr += 4;
++        cPtr += 4;
++    }
++
++    for (number = quarter_points * 4; number < num_points; number++) {
++        *cPtr++ = sqrtf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+@@ -168,13 +168,13 @@ volk_32f_sqrt_32f_neon(float* cVector, const float* aVector, unsigned int num_po
+ static inline void
+ volk_32f_sqrt_32f_generic(float* cVector, const float* aVector, unsigned int num_points)
+ {
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  unsigned int number = 0;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    unsigned int number = 0;
+-  for(number = 0; number < num_points; number++) {
+-    *cPtr++ = sqrtf(*aPtr++);
+-  }
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = sqrtf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -182,13 +182,12 @@ volk_32f_sqrt_32f_generic(float* cVector, const float* aVector, unsigned int num
+ #ifdef LV_HAVE_ORC
+-extern void
+-volk_32f_sqrt_32f_a_orc_impl(float *, const float*, unsigned int);
++extern void volk_32f_sqrt_32f_a_orc_impl(float*, const float*, unsigned int);
+ static inline void
+ volk_32f_sqrt_32f_u_orc(float* cVector, const float* aVector, unsigned int num_points)
+ {
+-  volk_32f_sqrt_32f_a_orc_impl(cVector, aVector, num_points);
++    volk_32f_sqrt_32f_a_orc_impl(cVector, aVector, num_points);
+ }
+ #endif /* LV_HAVE_ORC */
+@@ -199,36 +198,36 @@ volk_32f_sqrt_32f_u_orc(float* cVector, const float* aVector, unsigned int num_p
+ #define INCLUDED_volk_32f_sqrt_32f_u_H
+ #include <inttypes.h>
+-#include <stdio.h>
+ #include <math.h>
++#include <stdio.h>
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+ static inline void
+ volk_32f_sqrt_32f_u_avx(float* cVector, const float* aVector, unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
+-  __m256 aVal, cVal;
+-  for(;number < eighthPoints; number++) {
+-    aVal = _mm256_loadu_ps(aPtr);
++    __m256 aVal, cVal;
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_loadu_ps(aPtr);
+-    cVal = _mm256_sqrt_ps(aVal);
++        cVal = _mm256_sqrt_ps(aVal);
+-    _mm256_storeu_ps(cPtr,cVal); // Store the results back into the C container
++        _mm256_storeu_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 8;
+-    cPtr += 8;
+-  }
++        aPtr += 8;
++        cPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++) {
+-    *cPtr++ = sqrtf(*aPtr++);
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *cPtr++ = sqrtf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+diff --git a/kernels/volk/volk_32f_stddev_and_mean_32f_x2.h b/kernels/volk/volk_32f_stddev_and_mean_32f_x2.h
+index 8e996e2..6ad0f17 100644
+--- a/kernels/volk/volk_32f_stddev_and_mean_32f_x2.h
++++ b/kernels/volk/volk_32f_stddev_and_mean_32f_x2.h
+@@ -29,8 +29,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_stddev_and_mean_32f_x2(float* stddev, float* mean, const float* inputBuffer, unsigned int num_points)
+- * \endcode
++ * void volk_32f_stddev_and_mean_32f_x2(float* stddev, float* mean, const float*
++ * inputBuffer, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li inputBuffer: The buffer of points.
+@@ -41,10 +41,8 @@
+  * \li mean: The mean of the input buffer.
+  *
+  * \b Example
+- * Generate random numbers with c++11's normal distribution and estimate the mean and standard deviation
+- * \code
+- *   int N = 1000;
+- *   unsigned int alignment = volk_get_alignment();
++ * Generate random numbers with c++11's normal distribution and estimate the mean and
++ * standard deviation \code int N = 1000; unsigned int alignment = volk_get_alignment();
+  *   float* rand_numbers = (float*)volk_malloc(sizeof(float)*N, alignment);
+  *   float* mean = (float*)volk_malloc(sizeof(float), alignment);
+  *   float* stddev = (float*)volk_malloc(sizeof(float), alignment);
+@@ -71,88 +69,94 @@
+ #ifndef INCLUDED_volk_32f_stddev_and_mean_32f_x2_a_H
+ #define INCLUDED_volk_32f_stddev_and_mean_32f_x2_a_H
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+-#include <stdio.h>
+ #include <math.h>
++#include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32f_stddev_and_mean_32f_x2_a_avx(float* stddev, float* mean,
+-                                         const float* inputBuffer,
+-                                         unsigned int num_points)
++static inline void volk_32f_stddev_and_mean_32f_x2_a_avx(float* stddev,
++                                                         float* mean,
++                                                         const float* inputBuffer,
++                                                         unsigned int num_points)
+ {
+-  float stdDev = 0;
+-  float newMean = 0;
+-  if(num_points > 0){
+-    unsigned int number = 0;
+-    const unsigned int thirtySecondthPoints = num_points / 32;
+-
+-    const float* aPtr = inputBuffer;
+-    __VOLK_ATTR_ALIGNED(32) float meanBuffer[8];
+-    __VOLK_ATTR_ALIGNED(32) float squareBuffer[8];
+-
+-    __m256 accumulator = _mm256_setzero_ps();
+-    __m256 squareAccumulator = _mm256_setzero_ps();
+-    __m256 aVal1, aVal2, aVal3, aVal4;
+-    __m256 cVal1, cVal2, cVal3, cVal4;
+-    for(;number < thirtySecondthPoints; number++) {
+-      aVal1 = _mm256_load_ps(aPtr); aPtr += 8;
+-      cVal1 = _mm256_dp_ps(aVal1, aVal1, 0xF1);
+-      accumulator = _mm256_add_ps(accumulator, aVal1);  // accumulator += x
+-
+-      aVal2 = _mm256_load_ps(aPtr); aPtr += 8;
+-      cVal2 = _mm256_dp_ps(aVal2, aVal2, 0xF2);
+-      accumulator = _mm256_add_ps(accumulator, aVal2);  // accumulator += x
+-
+-      aVal3 = _mm256_load_ps(aPtr); aPtr += 8;
+-      cVal3 = _mm256_dp_ps(aVal3, aVal3, 0xF4);
+-      accumulator = _mm256_add_ps(accumulator, aVal3);  // accumulator += x
+-
+-      aVal4 = _mm256_load_ps(aPtr); aPtr += 8;
+-      cVal4 = _mm256_dp_ps(aVal4, aVal4, 0xF8);
+-      accumulator = _mm256_add_ps(accumulator, aVal4);  // accumulator += x
+-
+-      cVal1 = _mm256_or_ps(cVal1, cVal2);
+-      cVal3 = _mm256_or_ps(cVal3, cVal4);
+-      cVal1 = _mm256_or_ps(cVal1, cVal3);
+-
+-      squareAccumulator = _mm256_add_ps(squareAccumulator, cVal1); // squareAccumulator += x^2
+-    }
+-    _mm256_store_ps(meanBuffer,accumulator); // Store the results back into the C container
+-    _mm256_store_ps(squareBuffer,squareAccumulator); // Store the results back into the C container
+-    newMean = meanBuffer[0];
+-    newMean += meanBuffer[1];
+-    newMean += meanBuffer[2];
+-    newMean += meanBuffer[3];
+-    newMean += meanBuffer[4];
+-    newMean += meanBuffer[5];
+-    newMean += meanBuffer[6];
+-    newMean += meanBuffer[7];
+-    stdDev = squareBuffer[0];
+-    stdDev += squareBuffer[1];
+-    stdDev += squareBuffer[2];
+-    stdDev += squareBuffer[3];
+-    stdDev += squareBuffer[4];
+-    stdDev += squareBuffer[5];
+-    stdDev += squareBuffer[6];
+-    stdDev += squareBuffer[7];
+-
+-    number = thirtySecondthPoints * 32;
+-    for(;number < num_points; number++){
+-      stdDev += (*aPtr) * (*aPtr);
+-      newMean += *aPtr++;
++    float stdDev = 0;
++    float newMean = 0;
++    if (num_points > 0) {
++        unsigned int number = 0;
++        const unsigned int thirtySecondthPoints = num_points / 32;
++
++        const float* aPtr = inputBuffer;
++        __VOLK_ATTR_ALIGNED(32) float meanBuffer[8];
++        __VOLK_ATTR_ALIGNED(32) float squareBuffer[8];
++
++        __m256 accumulator = _mm256_setzero_ps();
++        __m256 squareAccumulator = _mm256_setzero_ps();
++        __m256 aVal1, aVal2, aVal3, aVal4;
++        __m256 cVal1, cVal2, cVal3, cVal4;
++        for (; number < thirtySecondthPoints; number++) {
++            aVal1 = _mm256_load_ps(aPtr);
++            aPtr += 8;
++            cVal1 = _mm256_dp_ps(aVal1, aVal1, 0xF1);
++            accumulator = _mm256_add_ps(accumulator, aVal1); // accumulator += x
++
++            aVal2 = _mm256_load_ps(aPtr);
++            aPtr += 8;
++            cVal2 = _mm256_dp_ps(aVal2, aVal2, 0xF2);
++            accumulator = _mm256_add_ps(accumulator, aVal2); // accumulator += x
++
++            aVal3 = _mm256_load_ps(aPtr);
++            aPtr += 8;
++            cVal3 = _mm256_dp_ps(aVal3, aVal3, 0xF4);
++            accumulator = _mm256_add_ps(accumulator, aVal3); // accumulator += x
++
++            aVal4 = _mm256_load_ps(aPtr);
++            aPtr += 8;
++            cVal4 = _mm256_dp_ps(aVal4, aVal4, 0xF8);
++            accumulator = _mm256_add_ps(accumulator, aVal4); // accumulator += x
++
++            cVal1 = _mm256_or_ps(cVal1, cVal2);
++            cVal3 = _mm256_or_ps(cVal3, cVal4);
++            cVal1 = _mm256_or_ps(cVal1, cVal3);
++
++            squareAccumulator =
++                _mm256_add_ps(squareAccumulator, cVal1); // squareAccumulator += x^2
++        }
++        _mm256_store_ps(meanBuffer,
++                        accumulator); // Store the results back into the C container
++        _mm256_store_ps(squareBuffer,
++                        squareAccumulator); // Store the results back into the C container
++        newMean = meanBuffer[0];
++        newMean += meanBuffer[1];
++        newMean += meanBuffer[2];
++        newMean += meanBuffer[3];
++        newMean += meanBuffer[4];
++        newMean += meanBuffer[5];
++        newMean += meanBuffer[6];
++        newMean += meanBuffer[7];
++        stdDev = squareBuffer[0];
++        stdDev += squareBuffer[1];
++        stdDev += squareBuffer[2];
++        stdDev += squareBuffer[3];
++        stdDev += squareBuffer[4];
++        stdDev += squareBuffer[5];
++        stdDev += squareBuffer[6];
++        stdDev += squareBuffer[7];
++
++        number = thirtySecondthPoints * 32;
++        for (; number < num_points; number++) {
++            stdDev += (*aPtr) * (*aPtr);
++            newMean += *aPtr++;
++        }
++        newMean /= num_points;
++        stdDev /= num_points;
++        stdDev -= (newMean * newMean);
++        stdDev = sqrtf(stdDev);
+     }
+-    newMean /= num_points;
+-    stdDev /= num_points;
+-    stdDev -= (newMean * newMean);
+-    stdDev = sqrtf(stdDev);
+-  }
+-  *stddev = stdDev;
+-  *mean = newMean;
+-
++    *stddev = stdDev;
++    *mean = newMean;
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -160,151 +164,164 @@ volk_32f_stddev_and_mean_32f_x2_a_avx(float* stddev, float* mean,
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32f_stddev_and_mean_32f_x2_u_avx(float* stddev, float* mean,
+-                                         const float* inputBuffer,
+-                                         unsigned int num_points)
++static inline void volk_32f_stddev_and_mean_32f_x2_u_avx(float* stddev,
++                                                         float* mean,
++                                                         const float* inputBuffer,
++                                                         unsigned int num_points)
+ {
+-  float stdDev = 0;
+-  float newMean = 0;
+-  if(num_points > 0){
+-    unsigned int number = 0;
+-    const unsigned int thirtySecondthPoints = num_points / 32;
+-
+-    const float* aPtr = inputBuffer;
+-    __VOLK_ATTR_ALIGNED(32) float meanBuffer[8];
+-    __VOLK_ATTR_ALIGNED(32) float squareBuffer[8];
+-
+-    __m256 accumulator = _mm256_setzero_ps();
+-    __m256 squareAccumulator = _mm256_setzero_ps();
+-    __m256 aVal1, aVal2, aVal3, aVal4;
+-    __m256 cVal1, cVal2, cVal3, cVal4;
+-    for(;number < thirtySecondthPoints; number++) {
+-      aVal1 = _mm256_loadu_ps(aPtr); aPtr += 8;
+-      cVal1 = _mm256_dp_ps(aVal1, aVal1, 0xF1);
+-      accumulator = _mm256_add_ps(accumulator, aVal1);  // accumulator += x
+-
+-      aVal2 = _mm256_loadu_ps(aPtr); aPtr += 8;
+-      cVal2 = _mm256_dp_ps(aVal2, aVal2, 0xF2);
+-      accumulator = _mm256_add_ps(accumulator, aVal2);  // accumulator += x
+-
+-      aVal3 = _mm256_loadu_ps(aPtr); aPtr += 8;
+-      cVal3 = _mm256_dp_ps(aVal3, aVal3, 0xF4);
+-      accumulator = _mm256_add_ps(accumulator, aVal3);  // accumulator += x
+-
+-      aVal4 = _mm256_loadu_ps(aPtr); aPtr += 8;
+-      cVal4 = _mm256_dp_ps(aVal4, aVal4, 0xF8);
+-      accumulator = _mm256_add_ps(accumulator, aVal4);  // accumulator += x
+-
+-      cVal1 = _mm256_or_ps(cVal1, cVal2);
+-      cVal3 = _mm256_or_ps(cVal3, cVal4);
+-      cVal1 = _mm256_or_ps(cVal1, cVal3);
+-
+-      squareAccumulator = _mm256_add_ps(squareAccumulator, cVal1); // squareAccumulator += x^2
+-    }
+-    _mm256_store_ps(meanBuffer,accumulator); // Store the results back into the C container
+-    _mm256_store_ps(squareBuffer,squareAccumulator); // Store the results back into the C container
+-    newMean = meanBuffer[0];
+-    newMean += meanBuffer[1];
+-    newMean += meanBuffer[2];
+-    newMean += meanBuffer[3];
+-    newMean += meanBuffer[4];
+-    newMean += meanBuffer[5];
+-    newMean += meanBuffer[6];
+-    newMean += meanBuffer[7];
+-    stdDev = squareBuffer[0];
+-    stdDev += squareBuffer[1];
+-    stdDev += squareBuffer[2];
+-    stdDev += squareBuffer[3];
+-    stdDev += squareBuffer[4];
+-    stdDev += squareBuffer[5];
+-    stdDev += squareBuffer[6];
+-    stdDev += squareBuffer[7];
+-
+-    number = thirtySecondthPoints * 32;
+-    for(;number < num_points; number++){
+-      stdDev += (*aPtr) * (*aPtr);
+-      newMean += *aPtr++;
++    float stdDev = 0;
++    float newMean = 0;
++    if (num_points > 0) {
++        unsigned int number = 0;
++        const unsigned int thirtySecondthPoints = num_points / 32;
++
++        const float* aPtr = inputBuffer;
++        __VOLK_ATTR_ALIGNED(32) float meanBuffer[8];
++        __VOLK_ATTR_ALIGNED(32) float squareBuffer[8];
++
++        __m256 accumulator = _mm256_setzero_ps();
++        __m256 squareAccumulator = _mm256_setzero_ps();
++        __m256 aVal1, aVal2, aVal3, aVal4;
++        __m256 cVal1, cVal2, cVal3, cVal4;
++        for (; number < thirtySecondthPoints; number++) {
++            aVal1 = _mm256_loadu_ps(aPtr);
++            aPtr += 8;
++            cVal1 = _mm256_dp_ps(aVal1, aVal1, 0xF1);
++            accumulator = _mm256_add_ps(accumulator, aVal1); // accumulator += x
++
++            aVal2 = _mm256_loadu_ps(aPtr);
++            aPtr += 8;
++            cVal2 = _mm256_dp_ps(aVal2, aVal2, 0xF2);
++            accumulator = _mm256_add_ps(accumulator, aVal2); // accumulator += x
++
++            aVal3 = _mm256_loadu_ps(aPtr);
++            aPtr += 8;
++            cVal3 = _mm256_dp_ps(aVal3, aVal3, 0xF4);
++            accumulator = _mm256_add_ps(accumulator, aVal3); // accumulator += x
++
++            aVal4 = _mm256_loadu_ps(aPtr);
++            aPtr += 8;
++            cVal4 = _mm256_dp_ps(aVal4, aVal4, 0xF8);
++            accumulator = _mm256_add_ps(accumulator, aVal4); // accumulator += x
++
++            cVal1 = _mm256_or_ps(cVal1, cVal2);
++            cVal3 = _mm256_or_ps(cVal3, cVal4);
++            cVal1 = _mm256_or_ps(cVal1, cVal3);
++
++            squareAccumulator =
++                _mm256_add_ps(squareAccumulator, cVal1); // squareAccumulator += x^2
++        }
++        _mm256_store_ps(meanBuffer,
++                        accumulator); // Store the results back into the C container
++        _mm256_store_ps(squareBuffer,
++                        squareAccumulator); // Store the results back into the C container
++        newMean = meanBuffer[0];
++        newMean += meanBuffer[1];
++        newMean += meanBuffer[2];
++        newMean += meanBuffer[3];
++        newMean += meanBuffer[4];
++        newMean += meanBuffer[5];
++        newMean += meanBuffer[6];
++        newMean += meanBuffer[7];
++        stdDev = squareBuffer[0];
++        stdDev += squareBuffer[1];
++        stdDev += squareBuffer[2];
++        stdDev += squareBuffer[3];
++        stdDev += squareBuffer[4];
++        stdDev += squareBuffer[5];
++        stdDev += squareBuffer[6];
++        stdDev += squareBuffer[7];
++
++        number = thirtySecondthPoints * 32;
++        for (; number < num_points; number++) {
++            stdDev += (*aPtr) * (*aPtr);
++            newMean += *aPtr++;
++        }
++        newMean /= num_points;
++        stdDev /= num_points;
++        stdDev -= (newMean * newMean);
++        stdDev = sqrtf(stdDev);
+     }
+-    newMean /= num_points;
+-    stdDev /= num_points;
+-    stdDev -= (newMean * newMean);
+-    stdDev = sqrtf(stdDev);
+-  }
+-  *stddev = stdDev;
+-  *mean = newMean;
+-
++    *stddev = stdDev;
++    *mean = newMean;
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_SSE4_1
+ #include <smmintrin.h>
+-static inline void
+-volk_32f_stddev_and_mean_32f_x2_a_sse4_1(float* stddev, float* mean,
+-                                         const float* inputBuffer,
+-                                         unsigned int num_points)
++static inline void volk_32f_stddev_and_mean_32f_x2_a_sse4_1(float* stddev,
++                                                            float* mean,
++                                                            const float* inputBuffer,
++                                                            unsigned int num_points)
+ {
+-  float returnValue = 0;
+-  float newMean = 0;
+-  if(num_points > 0){
+-    unsigned int number = 0;
+-    const unsigned int sixteenthPoints = num_points / 16;
+-
+-    const float* aPtr = inputBuffer;
+-    __VOLK_ATTR_ALIGNED(16) float meanBuffer[4];
+-    __VOLK_ATTR_ALIGNED(16) float squareBuffer[4];
+-
+-    __m128 accumulator = _mm_setzero_ps();
+-    __m128 squareAccumulator = _mm_setzero_ps();
+-    __m128 aVal1, aVal2, aVal3, aVal4;
+-    __m128 cVal1, cVal2, cVal3, cVal4;
+-    for(;number < sixteenthPoints; number++) {
+-      aVal1 = _mm_load_ps(aPtr); aPtr += 4;
+-      cVal1 = _mm_dp_ps(aVal1, aVal1, 0xF1);
+-      accumulator = _mm_add_ps(accumulator, aVal1);  // accumulator += x
+-
+-      aVal2 = _mm_load_ps(aPtr); aPtr += 4;
+-      cVal2 = _mm_dp_ps(aVal2, aVal2, 0xF2);
+-      accumulator = _mm_add_ps(accumulator, aVal2);  // accumulator += x
+-
+-      aVal3 = _mm_load_ps(aPtr); aPtr += 4;
+-      cVal3 = _mm_dp_ps(aVal3, aVal3, 0xF4);
+-      accumulator = _mm_add_ps(accumulator, aVal3);  // accumulator += x
+-
+-      aVal4 = _mm_load_ps(aPtr); aPtr += 4;
+-      cVal4 = _mm_dp_ps(aVal4, aVal4, 0xF8);
+-      accumulator = _mm_add_ps(accumulator, aVal4);  // accumulator += x
+-
+-      cVal1 = _mm_or_ps(cVal1, cVal2);
+-      cVal3 = _mm_or_ps(cVal3, cVal4);
+-      cVal1 = _mm_or_ps(cVal1, cVal3);
+-
+-      squareAccumulator = _mm_add_ps(squareAccumulator, cVal1); // squareAccumulator += x^2
+-    }
+-    _mm_store_ps(meanBuffer,accumulator); // Store the results back into the C container
+-    _mm_store_ps(squareBuffer,squareAccumulator); // Store the results back into the C container
+-    newMean = meanBuffer[0];
+-    newMean += meanBuffer[1];
+-    newMean += meanBuffer[2];
+-    newMean += meanBuffer[3];
+-    returnValue = squareBuffer[0];
+-    returnValue += squareBuffer[1];
+-    returnValue += squareBuffer[2];
+-    returnValue += squareBuffer[3];
+-
+-    number = sixteenthPoints * 16;
+-    for(;number < num_points; number++){
+-      returnValue += (*aPtr) * (*aPtr);
+-      newMean += *aPtr++;
++    float returnValue = 0;
++    float newMean = 0;
++    if (num_points > 0) {
++        unsigned int number = 0;
++        const unsigned int sixteenthPoints = num_points / 16;
++
++        const float* aPtr = inputBuffer;
++        __VOLK_ATTR_ALIGNED(16) float meanBuffer[4];
++        __VOLK_ATTR_ALIGNED(16) float squareBuffer[4];
++
++        __m128 accumulator = _mm_setzero_ps();
++        __m128 squareAccumulator = _mm_setzero_ps();
++        __m128 aVal1, aVal2, aVal3, aVal4;
++        __m128 cVal1, cVal2, cVal3, cVal4;
++        for (; number < sixteenthPoints; number++) {
++            aVal1 = _mm_load_ps(aPtr);
++            aPtr += 4;
++            cVal1 = _mm_dp_ps(aVal1, aVal1, 0xF1);
++            accumulator = _mm_add_ps(accumulator, aVal1); // accumulator += x
++
++            aVal2 = _mm_load_ps(aPtr);
++            aPtr += 4;
++            cVal2 = _mm_dp_ps(aVal2, aVal2, 0xF2);
++            accumulator = _mm_add_ps(accumulator, aVal2); // accumulator += x
++
++            aVal3 = _mm_load_ps(aPtr);
++            aPtr += 4;
++            cVal3 = _mm_dp_ps(aVal3, aVal3, 0xF4);
++            accumulator = _mm_add_ps(accumulator, aVal3); // accumulator += x
++
++            aVal4 = _mm_load_ps(aPtr);
++            aPtr += 4;
++            cVal4 = _mm_dp_ps(aVal4, aVal4, 0xF8);
++            accumulator = _mm_add_ps(accumulator, aVal4); // accumulator += x
++
++            cVal1 = _mm_or_ps(cVal1, cVal2);
++            cVal3 = _mm_or_ps(cVal3, cVal4);
++            cVal1 = _mm_or_ps(cVal1, cVal3);
++
++            squareAccumulator =
++                _mm_add_ps(squareAccumulator, cVal1); // squareAccumulator += x^2
++        }
++        _mm_store_ps(meanBuffer,
++                     accumulator); // Store the results back into the C container
++        _mm_store_ps(squareBuffer,
++                     squareAccumulator); // Store the results back into the C container
++        newMean = meanBuffer[0];
++        newMean += meanBuffer[1];
++        newMean += meanBuffer[2];
++        newMean += meanBuffer[3];
++        returnValue = squareBuffer[0];
++        returnValue += squareBuffer[1];
++        returnValue += squareBuffer[2];
++        returnValue += squareBuffer[3];
++
++        number = sixteenthPoints * 16;
++        for (; number < num_points; number++) {
++            returnValue += (*aPtr) * (*aPtr);
++            newMean += *aPtr++;
++        }
++        newMean /= num_points;
++        returnValue /= num_points;
++        returnValue -= (newMean * newMean);
++        returnValue = sqrtf(returnValue);
+     }
+-    newMean /= num_points;
+-    returnValue /= num_points;
+-    returnValue -= (newMean * newMean);
+-    returnValue = sqrtf(returnValue);
+-  }
+-  *stddev = returnValue;
+-  *mean = newMean;
++    *stddev = returnValue;
++    *mean = newMean;
+ }
+ #endif /* LV_HAVE_SSE4_1 */
+@@ -312,86 +329,86 @@ volk_32f_stddev_and_mean_32f_x2_a_sse4_1(float* stddev, float* mean,
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32f_stddev_and_mean_32f_x2_a_sse(float* stddev, float* mean,
+-                                      const float* inputBuffer,
+-                                      unsigned int num_points)
++static inline void volk_32f_stddev_and_mean_32f_x2_a_sse(float* stddev,
++                                                         float* mean,
++                                                         const float* inputBuffer,
++                                                         unsigned int num_points)
+ {
+-  float returnValue = 0;
+-  float newMean = 0;
+-  if(num_points > 0){
+-    unsigned int number = 0;
+-    const unsigned int quarterPoints = num_points / 4;
+-
+-    const float* aPtr = inputBuffer;
+-    __VOLK_ATTR_ALIGNED(16) float meanBuffer[4];
+-    __VOLK_ATTR_ALIGNED(16) float squareBuffer[4];
+-
+-    __m128 accumulator = _mm_setzero_ps();
+-    __m128 squareAccumulator = _mm_setzero_ps();
+-    __m128 aVal = _mm_setzero_ps();
+-    for(;number < quarterPoints; number++) {
+-      aVal = _mm_load_ps(aPtr);                     // aVal = x
+-      accumulator = _mm_add_ps(accumulator, aVal);  // accumulator += x
+-      aVal = _mm_mul_ps(aVal, aVal);                // squareAccumulator += x^2
+-      squareAccumulator = _mm_add_ps(squareAccumulator, aVal);
+-      aPtr += 4;
++    float returnValue = 0;
++    float newMean = 0;
++    if (num_points > 0) {
++        unsigned int number = 0;
++        const unsigned int quarterPoints = num_points / 4;
++
++        const float* aPtr = inputBuffer;
++        __VOLK_ATTR_ALIGNED(16) float meanBuffer[4];
++        __VOLK_ATTR_ALIGNED(16) float squareBuffer[4];
++
++        __m128 accumulator = _mm_setzero_ps();
++        __m128 squareAccumulator = _mm_setzero_ps();
++        __m128 aVal = _mm_setzero_ps();
++        for (; number < quarterPoints; number++) {
++            aVal = _mm_load_ps(aPtr);                    // aVal = x
++            accumulator = _mm_add_ps(accumulator, aVal); // accumulator += x
++            aVal = _mm_mul_ps(aVal, aVal);               // squareAccumulator += x^2
++            squareAccumulator = _mm_add_ps(squareAccumulator, aVal);
++            aPtr += 4;
++        }
++        _mm_store_ps(meanBuffer,
++                     accumulator); // Store the results back into the C container
++        _mm_store_ps(squareBuffer,
++                     squareAccumulator); // Store the results back into the C container
++        newMean = meanBuffer[0];
++        newMean += meanBuffer[1];
++        newMean += meanBuffer[2];
++        newMean += meanBuffer[3];
++        returnValue = squareBuffer[0];
++        returnValue += squareBuffer[1];
++        returnValue += squareBuffer[2];
++        returnValue += squareBuffer[3];
++
++        number = quarterPoints * 4;
++        for (; number < num_points; number++) {
++            returnValue += (*aPtr) * (*aPtr);
++            newMean += *aPtr++;
++        }
++        newMean /= num_points;
++        returnValue /= num_points;
++        returnValue -= (newMean * newMean);
++        returnValue = sqrtf(returnValue);
+     }
+-    _mm_store_ps(meanBuffer,accumulator); // Store the results back into the C container
+-    _mm_store_ps(squareBuffer,squareAccumulator); // Store the results back into the C container
+-    newMean = meanBuffer[0];
+-    newMean += meanBuffer[1];
+-    newMean += meanBuffer[2];
+-    newMean += meanBuffer[3];
+-    returnValue = squareBuffer[0];
+-    returnValue += squareBuffer[1];
+-    returnValue += squareBuffer[2];
+-    returnValue += squareBuffer[3];
+-
+-    number = quarterPoints * 4;
+-    for(;number < num_points; number++){
+-      returnValue += (*aPtr) * (*aPtr);
+-      newMean += *aPtr++;
+-    }
+-    newMean /= num_points;
+-    returnValue /= num_points;
+-    returnValue -= (newMean * newMean);
+-    returnValue = sqrtf(returnValue);
+-  }
+-  *stddev = returnValue;
+-  *mean = newMean;
++    *stddev = returnValue;
++    *mean = newMean;
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_stddev_and_mean_32f_x2_generic(float* stddev, float* mean,
+-                                        const float* inputBuffer,
+-                                        unsigned int num_points)
++static inline void volk_32f_stddev_and_mean_32f_x2_generic(float* stddev,
++                                                           float* mean,
++                                                           const float* inputBuffer,
++                                                           unsigned int num_points)
+ {
+-  float returnValue = 0;
+-  float newMean = 0;
+-  if(num_points > 0){
+-    const float* aPtr = inputBuffer;
+-    unsigned int number = 0;
+-
+-    for(number = 0; number < num_points; number++){
+-      returnValue += (*aPtr) * (*aPtr);
+-      newMean += *aPtr++;
++    float returnValue = 0;
++    float newMean = 0;
++    if (num_points > 0) {
++        const float* aPtr = inputBuffer;
++        unsigned int number = 0;
++
++        for (number = 0; number < num_points; number++) {
++            returnValue += (*aPtr) * (*aPtr);
++            newMean += *aPtr++;
++        }
++        newMean /= num_points;
++        returnValue /= num_points;
++        returnValue -= (newMean * newMean);
++        returnValue = sqrtf(returnValue);
+     }
+-    newMean /= num_points;
+-    returnValue /= num_points;
+-    returnValue -= (newMean * newMean);
+-    returnValue = sqrtf(returnValue);
+-  }
+-  *stddev = returnValue;
+-  *mean = newMean;
++    *stddev = returnValue;
++    *mean = newMean;
+ }
+ #endif /* LV_HAVE_GENERIC */
+-
+-
+ #endif /* INCLUDED_volk_32f_stddev_and_mean_32f_x2_a_H */
+diff --git a/kernels/volk/volk_32f_tan_32f.h b/kernels/volk/volk_32f_tan_32f.h
+index 239b745..a623a66 100644
+--- a/kernels/volk/volk_32f_tan_32f.h
++++ b/kernels/volk/volk_32f_tan_32f.h
+@@ -71,9 +71,9 @@
+  * \endcode
+  */
+-#include <stdio.h>
+-#include <math.h>
+ #include <inttypes.h>
++#include <math.h>
++#include <stdio.h>
+ #ifndef INCLUDED_volk_32f_tan_32f_a_H
+ #define INCLUDED_volk_32f_tan_32f_a_H
+@@ -82,78 +82,102 @@
+ #include <immintrin.h>
+ static inline void
+-volk_32f_tan_32f_a_avx2_fma(float* bVector, const float* aVector,
+-                          unsigned int num_points)
++volk_32f_tan_32f_a_avx2_fma(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int eighthPoints = num_points / 8;
+-  unsigned int i = 0;
+-
+-  __m256 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones, fzeroes;
+-  __m256 sine, cosine, tangent, condition1, condition2, condition3;
+-  __m256i q, r, ones, twos, fours;
+-
+-  m4pi = _mm256_set1_ps(1.273239545);
+-  pio4A = _mm256_set1_ps(0.78515625);
+-  pio4B = _mm256_set1_ps(0.241876e-3);
+-  ffours = _mm256_set1_ps(4.0);
+-  ftwos = _mm256_set1_ps(2.0);
+-  fones = _mm256_set1_ps(1.0);
+-  fzeroes = _mm256_setzero_ps();
+-  ones = _mm256_set1_epi32(1);
+-  twos = _mm256_set1_epi32(2);
+-  fours = _mm256_set1_epi32(4);
+-
+-  cp1 = _mm256_set1_ps(1.0);
+-  cp2 = _mm256_set1_ps(0.83333333e-1);
+-  cp3 = _mm256_set1_ps(0.2777778e-2);
+-  cp4 = _mm256_set1_ps(0.49603e-4);
+-  cp5 = _mm256_set1_ps(0.551e-6);
+-
+-  for(;number < eighthPoints; number++){
+-    aVal = _mm256_load_ps(aPtr);
+-    s = _mm256_sub_ps(aVal, _mm256_and_ps(_mm256_mul_ps(aVal, ftwos), _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS)));
+-    q = _mm256_cvtps_epi32(_mm256_floor_ps(_mm256_mul_ps(s, m4pi)));
+-    r = _mm256_add_epi32(q, _mm256_and_si256(q, ones));
+-
+-    s = _mm256_fnmadd_ps(_mm256_cvtepi32_ps(r), pio4A, s);
+-    s = _mm256_fnmadd_ps(_mm256_cvtepi32_ps(r), pio4B, s);
+-
+-    s = _mm256_div_ps(s, _mm256_set1_ps(8.0));    // The constant is 2^N, for 3 times argument reduction
+-    s = _mm256_mul_ps(s, s);
+-    // Evaluate Taylor series
+-    s = _mm256_mul_ps(_mm256_fmadd_ps(_mm256_fmsub_ps(_mm256_fmadd_ps(_mm256_fmsub_ps(s, cp5, cp4), s, cp3), s, cp2), s, cp1), s);
+-
+-    for(i = 0; i < 3; i++){
+-      s = _mm256_mul_ps(s, _mm256_sub_ps(ffours, s));
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int eighthPoints = num_points / 8;
++    unsigned int i = 0;
++
++    __m256 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones,
++        fzeroes;
++    __m256 sine, cosine, tangent, condition1, condition2, condition3;
++    __m256i q, r, ones, twos, fours;
++
++    m4pi = _mm256_set1_ps(1.273239545);
++    pio4A = _mm256_set1_ps(0.78515625);
++    pio4B = _mm256_set1_ps(0.241876e-3);
++    ffours = _mm256_set1_ps(4.0);
++    ftwos = _mm256_set1_ps(2.0);
++    fones = _mm256_set1_ps(1.0);
++    fzeroes = _mm256_setzero_ps();
++    ones = _mm256_set1_epi32(1);
++    twos = _mm256_set1_epi32(2);
++    fours = _mm256_set1_epi32(4);
++
++    cp1 = _mm256_set1_ps(1.0);
++    cp2 = _mm256_set1_ps(0.83333333e-1);
++    cp3 = _mm256_set1_ps(0.2777778e-2);
++    cp4 = _mm256_set1_ps(0.49603e-4);
++    cp5 = _mm256_set1_ps(0.551e-6);
++
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_load_ps(aPtr);
++        s = _mm256_sub_ps(aVal,
++                          _mm256_and_ps(_mm256_mul_ps(aVal, ftwos),
++                                        _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS)));
++        q = _mm256_cvtps_epi32(_mm256_floor_ps(_mm256_mul_ps(s, m4pi)));
++        r = _mm256_add_epi32(q, _mm256_and_si256(q, ones));
++
++        s = _mm256_fnmadd_ps(_mm256_cvtepi32_ps(r), pio4A, s);
++        s = _mm256_fnmadd_ps(_mm256_cvtepi32_ps(r), pio4B, s);
++
++        s = _mm256_div_ps(
++            s,
++            _mm256_set1_ps(8.0)); // The constant is 2^N, for 3 times argument reduction
++        s = _mm256_mul_ps(s, s);
++        // Evaluate Taylor series
++        s = _mm256_mul_ps(
++            _mm256_fmadd_ps(
++                _mm256_fmsub_ps(
++                    _mm256_fmadd_ps(_mm256_fmsub_ps(s, cp5, cp4), s, cp3), s, cp2),
++                s,
++                cp1),
++            s);
++
++        for (i = 0; i < 3; i++) {
++            s = _mm256_mul_ps(s, _mm256_sub_ps(ffours, s));
++        }
++        s = _mm256_div_ps(s, ftwos);
++
++        sine = _mm256_sqrt_ps(_mm256_mul_ps(_mm256_sub_ps(ftwos, s), s));
++        cosine = _mm256_sub_ps(fones, s);
++
++        condition1 = _mm256_cmp_ps(
++            _mm256_cvtepi32_ps(_mm256_and_si256(_mm256_add_epi32(q, ones), twos)),
++            fzeroes,
++            _CMP_NEQ_UQ);
++        condition2 = _mm256_cmp_ps(
++            _mm256_cmp_ps(
++                _mm256_cvtepi32_ps(_mm256_and_si256(q, fours)), fzeroes, _CMP_NEQ_UQ),
++            _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS),
++            _CMP_NEQ_UQ);
++        condition3 = _mm256_cmp_ps(
++            _mm256_cvtepi32_ps(_mm256_and_si256(_mm256_add_epi32(q, twos), fours)),
++            fzeroes,
++            _CMP_NEQ_UQ);
++
++        __m256 temp = cosine;
++        cosine =
++            _mm256_add_ps(cosine, _mm256_and_ps(_mm256_sub_ps(sine, cosine), condition1));
++        sine = _mm256_add_ps(sine, _mm256_and_ps(_mm256_sub_ps(temp, sine), condition1));
++        sine = _mm256_sub_ps(
++            sine, _mm256_and_ps(_mm256_mul_ps(sine, _mm256_set1_ps(2.0f)), condition2));
++        cosine = _mm256_sub_ps(
++            cosine,
++            _mm256_and_ps(_mm256_mul_ps(cosine, _mm256_set1_ps(2.0f)), condition3));
++        tangent = _mm256_div_ps(sine, cosine);
++        _mm256_store_ps(bPtr, tangent);
++        aPtr += 8;
++        bPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *bPtr++ = tan(*aPtr++);
+     }
+-    s = _mm256_div_ps(s, ftwos);
+-
+-    sine = _mm256_sqrt_ps(_mm256_mul_ps(_mm256_sub_ps(ftwos, s), s));
+-    cosine = _mm256_sub_ps(fones, s);
+-
+-    condition1 = _mm256_cmp_ps(_mm256_cvtepi32_ps(_mm256_and_si256(_mm256_add_epi32(q, ones), twos)), fzeroes, _CMP_NEQ_UQ);
+-    condition2 = _mm256_cmp_ps(_mm256_cmp_ps(_mm256_cvtepi32_ps(_mm256_and_si256(q, fours)), fzeroes, _CMP_NEQ_UQ), _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS), _CMP_NEQ_UQ);
+-    condition3 = _mm256_cmp_ps(_mm256_cvtepi32_ps(_mm256_and_si256(_mm256_add_epi32(q, twos), fours)), fzeroes, _CMP_NEQ_UQ);
+-
+-    __m256 temp = cosine;
+-    cosine = _mm256_add_ps(cosine, _mm256_and_ps(_mm256_sub_ps(sine, cosine), condition1));
+-    sine = _mm256_add_ps(sine, _mm256_and_ps(_mm256_sub_ps(temp, sine), condition1));
+-    sine = _mm256_sub_ps(sine, _mm256_and_ps(_mm256_mul_ps(sine, _mm256_set1_ps(2.0f)), condition2));
+-    cosine = _mm256_sub_ps(cosine, _mm256_and_ps(_mm256_mul_ps(cosine, _mm256_set1_ps(2.0f)), condition3));
+-    tangent = _mm256_div_ps(sine, cosine);
+-    _mm256_store_ps(bPtr, tangent);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *bPtr++ = tan(*aPtr++);
+-  }
+ }
+ #endif /* LV_HAVE_AVX2 && LV_HAVE_FMA for aligned */
+@@ -162,78 +186,109 @@ volk_32f_tan_32f_a_avx2_fma(float* bVector, const float* aVector,
+ #include <immintrin.h>
+ static inline void
+-volk_32f_tan_32f_a_avx2(float* bVector, const float* aVector,
+-                          unsigned int num_points)
++volk_32f_tan_32f_a_avx2(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int eighthPoints = num_points / 8;
+-  unsigned int i = 0;
+-
+-  __m256 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones, fzeroes;
+-  __m256 sine, cosine, tangent, condition1, condition2, condition3;
+-  __m256i q, r, ones, twos, fours;
+-
+-  m4pi = _mm256_set1_ps(1.273239545);
+-  pio4A = _mm256_set1_ps(0.78515625);
+-  pio4B = _mm256_set1_ps(0.241876e-3);
+-  ffours = _mm256_set1_ps(4.0);
+-  ftwos = _mm256_set1_ps(2.0);
+-  fones = _mm256_set1_ps(1.0);
+-  fzeroes = _mm256_setzero_ps();
+-  ones = _mm256_set1_epi32(1);
+-  twos = _mm256_set1_epi32(2);
+-  fours = _mm256_set1_epi32(4);
+-
+-  cp1 = _mm256_set1_ps(1.0);
+-  cp2 = _mm256_set1_ps(0.83333333e-1);
+-  cp3 = _mm256_set1_ps(0.2777778e-2);
+-  cp4 = _mm256_set1_ps(0.49603e-4);
+-  cp5 = _mm256_set1_ps(0.551e-6);
+-
+-  for(;number < eighthPoints; number++){
+-    aVal = _mm256_load_ps(aPtr);
+-    s = _mm256_sub_ps(aVal, _mm256_and_ps(_mm256_mul_ps(aVal, ftwos), _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS)));
+-    q = _mm256_cvtps_epi32(_mm256_floor_ps(_mm256_mul_ps(s, m4pi)));
+-    r = _mm256_add_epi32(q, _mm256_and_si256(q, ones));
+-
+-    s = _mm256_sub_ps(s, _mm256_mul_ps(_mm256_cvtepi32_ps(r), pio4A));
+-    s = _mm256_sub_ps(s, _mm256_mul_ps(_mm256_cvtepi32_ps(r), pio4B));
+-
+-    s = _mm256_div_ps(s, _mm256_set1_ps(8.0));    // The constant is 2^N, for 3 times argument reduction
+-    s = _mm256_mul_ps(s, s);
+-    // Evaluate Taylor series
+-    s = _mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(s, cp5), cp4), s), cp3), s), cp2), s), cp1), s);
+-
+-    for(i = 0; i < 3; i++){
+-      s = _mm256_mul_ps(s, _mm256_sub_ps(ffours, s));
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int eighthPoints = num_points / 8;
++    unsigned int i = 0;
++
++    __m256 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones,
++        fzeroes;
++    __m256 sine, cosine, tangent, condition1, condition2, condition3;
++    __m256i q, r, ones, twos, fours;
++
++    m4pi = _mm256_set1_ps(1.273239545);
++    pio4A = _mm256_set1_ps(0.78515625);
++    pio4B = _mm256_set1_ps(0.241876e-3);
++    ffours = _mm256_set1_ps(4.0);
++    ftwos = _mm256_set1_ps(2.0);
++    fones = _mm256_set1_ps(1.0);
++    fzeroes = _mm256_setzero_ps();
++    ones = _mm256_set1_epi32(1);
++    twos = _mm256_set1_epi32(2);
++    fours = _mm256_set1_epi32(4);
++
++    cp1 = _mm256_set1_ps(1.0);
++    cp2 = _mm256_set1_ps(0.83333333e-1);
++    cp3 = _mm256_set1_ps(0.2777778e-2);
++    cp4 = _mm256_set1_ps(0.49603e-4);
++    cp5 = _mm256_set1_ps(0.551e-6);
++
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_load_ps(aPtr);
++        s = _mm256_sub_ps(aVal,
++                          _mm256_and_ps(_mm256_mul_ps(aVal, ftwos),
++                                        _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS)));
++        q = _mm256_cvtps_epi32(_mm256_floor_ps(_mm256_mul_ps(s, m4pi)));
++        r = _mm256_add_epi32(q, _mm256_and_si256(q, ones));
++
++        s = _mm256_sub_ps(s, _mm256_mul_ps(_mm256_cvtepi32_ps(r), pio4A));
++        s = _mm256_sub_ps(s, _mm256_mul_ps(_mm256_cvtepi32_ps(r), pio4B));
++
++        s = _mm256_div_ps(
++            s,
++            _mm256_set1_ps(8.0)); // The constant is 2^N, for 3 times argument reduction
++        s = _mm256_mul_ps(s, s);
++        // Evaluate Taylor series
++        s = _mm256_mul_ps(
++            _mm256_add_ps(
++                _mm256_mul_ps(
++                    _mm256_sub_ps(
++                        _mm256_mul_ps(
++                            _mm256_add_ps(
++                                _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(s, cp5), cp4),
++                                              s),
++                                cp3),
++                            s),
++                        cp2),
++                    s),
++                cp1),
++            s);
++
++        for (i = 0; i < 3; i++) {
++            s = _mm256_mul_ps(s, _mm256_sub_ps(ffours, s));
++        }
++        s = _mm256_div_ps(s, ftwos);
++
++        sine = _mm256_sqrt_ps(_mm256_mul_ps(_mm256_sub_ps(ftwos, s), s));
++        cosine = _mm256_sub_ps(fones, s);
++
++        condition1 = _mm256_cmp_ps(
++            _mm256_cvtepi32_ps(_mm256_and_si256(_mm256_add_epi32(q, ones), twos)),
++            fzeroes,
++            _CMP_NEQ_UQ);
++        condition2 = _mm256_cmp_ps(
++            _mm256_cmp_ps(
++                _mm256_cvtepi32_ps(_mm256_and_si256(q, fours)), fzeroes, _CMP_NEQ_UQ),
++            _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS),
++            _CMP_NEQ_UQ);
++        condition3 = _mm256_cmp_ps(
++            _mm256_cvtepi32_ps(_mm256_and_si256(_mm256_add_epi32(q, twos), fours)),
++            fzeroes,
++            _CMP_NEQ_UQ);
++
++        __m256 temp = cosine;
++        cosine =
++            _mm256_add_ps(cosine, _mm256_and_ps(_mm256_sub_ps(sine, cosine), condition1));
++        sine = _mm256_add_ps(sine, _mm256_and_ps(_mm256_sub_ps(temp, sine), condition1));
++        sine = _mm256_sub_ps(
++            sine, _mm256_and_ps(_mm256_mul_ps(sine, _mm256_set1_ps(2.0f)), condition2));
++        cosine = _mm256_sub_ps(
++            cosine,
++            _mm256_and_ps(_mm256_mul_ps(cosine, _mm256_set1_ps(2.0f)), condition3));
++        tangent = _mm256_div_ps(sine, cosine);
++        _mm256_store_ps(bPtr, tangent);
++        aPtr += 8;
++        bPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *bPtr++ = tan(*aPtr++);
+     }
+-    s = _mm256_div_ps(s, ftwos);
+-
+-    sine = _mm256_sqrt_ps(_mm256_mul_ps(_mm256_sub_ps(ftwos, s), s));
+-    cosine = _mm256_sub_ps(fones, s);
+-
+-    condition1 = _mm256_cmp_ps(_mm256_cvtepi32_ps(_mm256_and_si256(_mm256_add_epi32(q, ones), twos)), fzeroes, _CMP_NEQ_UQ);
+-    condition2 = _mm256_cmp_ps(_mm256_cmp_ps(_mm256_cvtepi32_ps(_mm256_and_si256(q, fours)), fzeroes, _CMP_NEQ_UQ), _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS), _CMP_NEQ_UQ);
+-    condition3 = _mm256_cmp_ps(_mm256_cvtepi32_ps(_mm256_and_si256(_mm256_add_epi32(q, twos), fours)), fzeroes, _CMP_NEQ_UQ);
+-
+-    __m256 temp = cosine;
+-    cosine = _mm256_add_ps(cosine, _mm256_and_ps(_mm256_sub_ps(sine, cosine), condition1));
+-    sine = _mm256_add_ps(sine, _mm256_and_ps(_mm256_sub_ps(temp, sine), condition1));
+-    sine = _mm256_sub_ps(sine, _mm256_and_ps(_mm256_mul_ps(sine, _mm256_set1_ps(2.0f)), condition2));
+-    cosine = _mm256_sub_ps(cosine, _mm256_and_ps(_mm256_mul_ps(cosine, _mm256_set1_ps(2.0f)), condition3));
+-    tangent = _mm256_div_ps(sine, cosine);
+-    _mm256_store_ps(bPtr, tangent);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *bPtr++ = tan(*aPtr++);
+-  }
+ }
+ #endif /* LV_HAVE_AVX2 for aligned */
+@@ -242,78 +297,97 @@ volk_32f_tan_32f_a_avx2(float* bVector, const float* aVector,
+ #include <smmintrin.h>
+ static inline void
+-volk_32f_tan_32f_a_sse4_1(float* bVector, const float* aVector,
+-                          unsigned int num_points)
++volk_32f_tan_32f_a_sse4_1(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int quarterPoints = num_points / 4;
+-  unsigned int i = 0;
+-
+-  __m128 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones, fzeroes;
+-  __m128 sine, cosine, tangent, condition1, condition2, condition3;
+-  __m128i q, r, ones, twos, fours;
+-
+-  m4pi = _mm_set1_ps(1.273239545);
+-  pio4A = _mm_set1_ps(0.78515625);
+-  pio4B = _mm_set1_ps(0.241876e-3);
+-  ffours = _mm_set1_ps(4.0);
+-  ftwos = _mm_set1_ps(2.0);
+-  fones = _mm_set1_ps(1.0);
+-  fzeroes = _mm_setzero_ps();
+-  ones = _mm_set1_epi32(1);
+-  twos = _mm_set1_epi32(2);
+-  fours = _mm_set1_epi32(4);
+-
+-  cp1 = _mm_set1_ps(1.0);
+-  cp2 = _mm_set1_ps(0.83333333e-1);
+-  cp3 = _mm_set1_ps(0.2777778e-2);
+-  cp4 = _mm_set1_ps(0.49603e-4);
+-  cp5 = _mm_set1_ps(0.551e-6);
+-
+-  for(;number < quarterPoints; number++){
+-    aVal = _mm_load_ps(aPtr);
+-    s = _mm_sub_ps(aVal, _mm_and_ps(_mm_mul_ps(aVal, ftwos), _mm_cmplt_ps(aVal, fzeroes)));
+-    q = _mm_cvtps_epi32(_mm_floor_ps(_mm_mul_ps(s, m4pi)));
+-    r = _mm_add_epi32(q, _mm_and_si128(q, ones));
+-
+-    s = _mm_sub_ps(s, _mm_mul_ps(_mm_cvtepi32_ps(r), pio4A));
+-    s = _mm_sub_ps(s, _mm_mul_ps(_mm_cvtepi32_ps(r), pio4B));
+-
+-    s = _mm_div_ps(s, _mm_set1_ps(8.0));    // The constant is 2^N, for 3 times argument reduction
+-    s = _mm_mul_ps(s, s);
+-    // Evaluate Taylor series
+-    s = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(s, cp5), cp4), s), cp3), s), cp2), s), cp1), s);
+-
+-    for(i = 0; i < 3; i++){
+-      s = _mm_mul_ps(s, _mm_sub_ps(ffours, s));
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int quarterPoints = num_points / 4;
++    unsigned int i = 0;
++
++    __m128 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones,
++        fzeroes;
++    __m128 sine, cosine, tangent, condition1, condition2, condition3;
++    __m128i q, r, ones, twos, fours;
++
++    m4pi = _mm_set1_ps(1.273239545);
++    pio4A = _mm_set1_ps(0.78515625);
++    pio4B = _mm_set1_ps(0.241876e-3);
++    ffours = _mm_set1_ps(4.0);
++    ftwos = _mm_set1_ps(2.0);
++    fones = _mm_set1_ps(1.0);
++    fzeroes = _mm_setzero_ps();
++    ones = _mm_set1_epi32(1);
++    twos = _mm_set1_epi32(2);
++    fours = _mm_set1_epi32(4);
++
++    cp1 = _mm_set1_ps(1.0);
++    cp2 = _mm_set1_ps(0.83333333e-1);
++    cp3 = _mm_set1_ps(0.2777778e-2);
++    cp4 = _mm_set1_ps(0.49603e-4);
++    cp5 = _mm_set1_ps(0.551e-6);
++
++    for (; number < quarterPoints; number++) {
++        aVal = _mm_load_ps(aPtr);
++        s = _mm_sub_ps(aVal,
++                       _mm_and_ps(_mm_mul_ps(aVal, ftwos), _mm_cmplt_ps(aVal, fzeroes)));
++        q = _mm_cvtps_epi32(_mm_floor_ps(_mm_mul_ps(s, m4pi)));
++        r = _mm_add_epi32(q, _mm_and_si128(q, ones));
++
++        s = _mm_sub_ps(s, _mm_mul_ps(_mm_cvtepi32_ps(r), pio4A));
++        s = _mm_sub_ps(s, _mm_mul_ps(_mm_cvtepi32_ps(r), pio4B));
++
++        s = _mm_div_ps(
++            s, _mm_set1_ps(8.0)); // The constant is 2^N, for 3 times argument reduction
++        s = _mm_mul_ps(s, s);
++        // Evaluate Taylor series
++        s = _mm_mul_ps(
++            _mm_add_ps(
++                _mm_mul_ps(
++                    _mm_sub_ps(
++                        _mm_mul_ps(
++                            _mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(s, cp5), cp4), s),
++                                       cp3),
++                            s),
++                        cp2),
++                    s),
++                cp1),
++            s);
++
++        for (i = 0; i < 3; i++) {
++            s = _mm_mul_ps(s, _mm_sub_ps(ffours, s));
++        }
++        s = _mm_div_ps(s, ftwos);
++
++        sine = _mm_sqrt_ps(_mm_mul_ps(_mm_sub_ps(ftwos, s), s));
++        cosine = _mm_sub_ps(fones, s);
++
++        condition1 = _mm_cmpneq_ps(
++            _mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q, ones), twos)), fzeroes);
++        condition2 = _mm_cmpneq_ps(
++            _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(q, fours)), fzeroes),
++            _mm_cmplt_ps(aVal, fzeroes));
++        condition3 = _mm_cmpneq_ps(
++            _mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q, twos), fours)), fzeroes);
++
++        __m128 temp = cosine;
++        cosine = _mm_add_ps(cosine, _mm_and_ps(_mm_sub_ps(sine, cosine), condition1));
++        sine = _mm_add_ps(sine, _mm_and_ps(_mm_sub_ps(temp, sine), condition1));
++        sine =
++            _mm_sub_ps(sine, _mm_and_ps(_mm_mul_ps(sine, _mm_set1_ps(2.0f)), condition2));
++        cosine = _mm_sub_ps(
++            cosine, _mm_and_ps(_mm_mul_ps(cosine, _mm_set1_ps(2.0f)), condition3));
++        tangent = _mm_div_ps(sine, cosine);
++        _mm_store_ps(bPtr, tangent);
++        aPtr += 4;
++        bPtr += 4;
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *bPtr++ = tanf(*aPtr++);
+     }
+-    s = _mm_div_ps(s, ftwos);
+-
+-    sine = _mm_sqrt_ps(_mm_mul_ps(_mm_sub_ps(ftwos, s), s));
+-    cosine = _mm_sub_ps(fones, s);
+-
+-    condition1 = _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q, ones), twos)), fzeroes);
+-    condition2 = _mm_cmpneq_ps(_mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(q, fours)), fzeroes), _mm_cmplt_ps(aVal, fzeroes));
+-    condition3 = _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q, twos), fours)), fzeroes);
+-
+-    __m128 temp = cosine;
+-    cosine = _mm_add_ps(cosine, _mm_and_ps(_mm_sub_ps(sine, cosine), condition1));
+-    sine = _mm_add_ps(sine, _mm_and_ps(_mm_sub_ps(temp, sine), condition1));
+-    sine = _mm_sub_ps(sine, _mm_and_ps(_mm_mul_ps(sine, _mm_set1_ps(2.0f)), condition2));
+-    cosine = _mm_sub_ps(cosine, _mm_and_ps(_mm_mul_ps(cosine, _mm_set1_ps(2.0f)), condition3));
+-    tangent = _mm_div_ps(sine, cosine);
+-    _mm_store_ps(bPtr, tangent);
+-    aPtr += 4;
+-    bPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    *bPtr++ = tanf(*aPtr++);
+-  }
+ }
+ #endif /* LV_HAVE_SSE4_1 for aligned */
+@@ -328,78 +402,102 @@ volk_32f_tan_32f_a_sse4_1(float* bVector, const float* aVector,
+ #include <immintrin.h>
+ static inline void
+-volk_32f_tan_32f_u_avx2_fma(float* bVector, const float* aVector,
+-                          unsigned int num_points)
++volk_32f_tan_32f_u_avx2_fma(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int eighthPoints = num_points / 8;
+-  unsigned int i = 0;
+-
+-  __m256 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones, fzeroes;
+-  __m256 sine, cosine, tangent, condition1, condition2, condition3;
+-  __m256i q, r, ones, twos, fours;
+-
+-  m4pi = _mm256_set1_ps(1.273239545);
+-  pio4A = _mm256_set1_ps(0.78515625);
+-  pio4B = _mm256_set1_ps(0.241876e-3);
+-  ffours = _mm256_set1_ps(4.0);
+-  ftwos = _mm256_set1_ps(2.0);
+-  fones = _mm256_set1_ps(1.0);
+-  fzeroes = _mm256_setzero_ps();
+-  ones = _mm256_set1_epi32(1);
+-  twos = _mm256_set1_epi32(2);
+-  fours = _mm256_set1_epi32(4);
+-
+-  cp1 = _mm256_set1_ps(1.0);
+-  cp2 = _mm256_set1_ps(0.83333333e-1);
+-  cp3 = _mm256_set1_ps(0.2777778e-2);
+-  cp4 = _mm256_set1_ps(0.49603e-4);
+-  cp5 = _mm256_set1_ps(0.551e-6);
+-
+-  for(;number < eighthPoints; number++){
+-    aVal = _mm256_loadu_ps(aPtr);
+-    s = _mm256_sub_ps(aVal, _mm256_and_ps(_mm256_mul_ps(aVal, ftwos), _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS)));
+-    q = _mm256_cvtps_epi32(_mm256_floor_ps(_mm256_mul_ps(s, m4pi)));
+-    r = _mm256_add_epi32(q, _mm256_and_si256(q, ones));
+-
+-    s = _mm256_fnmadd_ps(_mm256_cvtepi32_ps(r), pio4A, s);
+-    s = _mm256_fnmadd_ps(_mm256_cvtepi32_ps(r), pio4B, s);
+-
+-    s = _mm256_div_ps(s, _mm256_set1_ps(8.0));    // The constant is 2^N, for 3 times argument reduction
+-    s = _mm256_mul_ps(s, s);
+-    // Evaluate Taylor series
+-    s = _mm256_mul_ps(_mm256_fmadd_ps(_mm256_fmsub_ps(_mm256_fmadd_ps(_mm256_fmsub_ps(s, cp5, cp4), s, cp3), s, cp2), s, cp1), s);
+-
+-    for(i = 0; i < 3; i++){
+-      s = _mm256_mul_ps(s, _mm256_sub_ps(ffours, s));
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int eighthPoints = num_points / 8;
++    unsigned int i = 0;
++
++    __m256 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones,
++        fzeroes;
++    __m256 sine, cosine, tangent, condition1, condition2, condition3;
++    __m256i q, r, ones, twos, fours;
++
++    m4pi = _mm256_set1_ps(1.273239545);
++    pio4A = _mm256_set1_ps(0.78515625);
++    pio4B = _mm256_set1_ps(0.241876e-3);
++    ffours = _mm256_set1_ps(4.0);
++    ftwos = _mm256_set1_ps(2.0);
++    fones = _mm256_set1_ps(1.0);
++    fzeroes = _mm256_setzero_ps();
++    ones = _mm256_set1_epi32(1);
++    twos = _mm256_set1_epi32(2);
++    fours = _mm256_set1_epi32(4);
++
++    cp1 = _mm256_set1_ps(1.0);
++    cp2 = _mm256_set1_ps(0.83333333e-1);
++    cp3 = _mm256_set1_ps(0.2777778e-2);
++    cp4 = _mm256_set1_ps(0.49603e-4);
++    cp5 = _mm256_set1_ps(0.551e-6);
++
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_loadu_ps(aPtr);
++        s = _mm256_sub_ps(aVal,
++                          _mm256_and_ps(_mm256_mul_ps(aVal, ftwos),
++                                        _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS)));
++        q = _mm256_cvtps_epi32(_mm256_floor_ps(_mm256_mul_ps(s, m4pi)));
++        r = _mm256_add_epi32(q, _mm256_and_si256(q, ones));
++
++        s = _mm256_fnmadd_ps(_mm256_cvtepi32_ps(r), pio4A, s);
++        s = _mm256_fnmadd_ps(_mm256_cvtepi32_ps(r), pio4B, s);
++
++        s = _mm256_div_ps(
++            s,
++            _mm256_set1_ps(8.0)); // The constant is 2^N, for 3 times argument reduction
++        s = _mm256_mul_ps(s, s);
++        // Evaluate Taylor series
++        s = _mm256_mul_ps(
++            _mm256_fmadd_ps(
++                _mm256_fmsub_ps(
++                    _mm256_fmadd_ps(_mm256_fmsub_ps(s, cp5, cp4), s, cp3), s, cp2),
++                s,
++                cp1),
++            s);
++
++        for (i = 0; i < 3; i++) {
++            s = _mm256_mul_ps(s, _mm256_sub_ps(ffours, s));
++        }
++        s = _mm256_div_ps(s, ftwos);
++
++        sine = _mm256_sqrt_ps(_mm256_mul_ps(_mm256_sub_ps(ftwos, s), s));
++        cosine = _mm256_sub_ps(fones, s);
++
++        condition1 = _mm256_cmp_ps(
++            _mm256_cvtepi32_ps(_mm256_and_si256(_mm256_add_epi32(q, ones), twos)),
++            fzeroes,
++            _CMP_NEQ_UQ);
++        condition2 = _mm256_cmp_ps(
++            _mm256_cmp_ps(
++                _mm256_cvtepi32_ps(_mm256_and_si256(q, fours)), fzeroes, _CMP_NEQ_UQ),
++            _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS),
++            _CMP_NEQ_UQ);
++        condition3 = _mm256_cmp_ps(
++            _mm256_cvtepi32_ps(_mm256_and_si256(_mm256_add_epi32(q, twos), fours)),
++            fzeroes,
++            _CMP_NEQ_UQ);
++
++        __m256 temp = cosine;
++        cosine =
++            _mm256_add_ps(cosine, _mm256_and_ps(_mm256_sub_ps(sine, cosine), condition1));
++        sine = _mm256_add_ps(sine, _mm256_and_ps(_mm256_sub_ps(temp, sine), condition1));
++        sine = _mm256_sub_ps(
++            sine, _mm256_and_ps(_mm256_mul_ps(sine, _mm256_set1_ps(2.0f)), condition2));
++        cosine = _mm256_sub_ps(
++            cosine,
++            _mm256_and_ps(_mm256_mul_ps(cosine, _mm256_set1_ps(2.0f)), condition3));
++        tangent = _mm256_div_ps(sine, cosine);
++        _mm256_storeu_ps(bPtr, tangent);
++        aPtr += 8;
++        bPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *bPtr++ = tan(*aPtr++);
+     }
+-    s = _mm256_div_ps(s, ftwos);
+-
+-    sine = _mm256_sqrt_ps(_mm256_mul_ps(_mm256_sub_ps(ftwos, s), s));
+-    cosine = _mm256_sub_ps(fones, s);
+-
+-    condition1 = _mm256_cmp_ps(_mm256_cvtepi32_ps(_mm256_and_si256(_mm256_add_epi32(q, ones), twos)), fzeroes, _CMP_NEQ_UQ);
+-    condition2 = _mm256_cmp_ps(_mm256_cmp_ps(_mm256_cvtepi32_ps(_mm256_and_si256(q, fours)), fzeroes, _CMP_NEQ_UQ), _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS), _CMP_NEQ_UQ);
+-    condition3 = _mm256_cmp_ps(_mm256_cvtepi32_ps(_mm256_and_si256(_mm256_add_epi32(q, twos), fours)), fzeroes, _CMP_NEQ_UQ);
+-
+-    __m256 temp = cosine;
+-    cosine = _mm256_add_ps(cosine, _mm256_and_ps(_mm256_sub_ps(sine, cosine), condition1));
+-    sine = _mm256_add_ps(sine, _mm256_and_ps(_mm256_sub_ps(temp, sine), condition1));
+-    sine = _mm256_sub_ps(sine, _mm256_and_ps(_mm256_mul_ps(sine, _mm256_set1_ps(2.0f)), condition2));
+-    cosine = _mm256_sub_ps(cosine, _mm256_and_ps(_mm256_mul_ps(cosine, _mm256_set1_ps(2.0f)), condition3));
+-    tangent = _mm256_div_ps(sine, cosine);
+-    _mm256_storeu_ps(bPtr, tangent);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *bPtr++ = tan(*aPtr++);
+-  }
+ }
+ #endif /* LV_HAVE_AVX2 && LV_HAVE_FMA for unaligned */
+@@ -408,78 +506,109 @@ volk_32f_tan_32f_u_avx2_fma(float* bVector, const float* aVector,
+ #include <immintrin.h>
+ static inline void
+-volk_32f_tan_32f_u_avx2(float* bVector, const float* aVector,
+-                          unsigned int num_points)
++volk_32f_tan_32f_u_avx2(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int eighthPoints = num_points / 8;
+-  unsigned int i = 0;
+-
+-  __m256 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones, fzeroes;
+-  __m256 sine, cosine, tangent, condition1, condition2, condition3;
+-  __m256i q, r, ones, twos, fours;
+-
+-  m4pi = _mm256_set1_ps(1.273239545);
+-  pio4A = _mm256_set1_ps(0.78515625);
+-  pio4B = _mm256_set1_ps(0.241876e-3);
+-  ffours = _mm256_set1_ps(4.0);
+-  ftwos = _mm256_set1_ps(2.0);
+-  fones = _mm256_set1_ps(1.0);
+-  fzeroes = _mm256_setzero_ps();
+-  ones = _mm256_set1_epi32(1);
+-  twos = _mm256_set1_epi32(2);
+-  fours = _mm256_set1_epi32(4);
+-
+-  cp1 = _mm256_set1_ps(1.0);
+-  cp2 = _mm256_set1_ps(0.83333333e-1);
+-  cp3 = _mm256_set1_ps(0.2777778e-2);
+-  cp4 = _mm256_set1_ps(0.49603e-4);
+-  cp5 = _mm256_set1_ps(0.551e-6);
+-
+-  for(;number < eighthPoints; number++){
+-    aVal = _mm256_loadu_ps(aPtr);
+-    s = _mm256_sub_ps(aVal, _mm256_and_ps(_mm256_mul_ps(aVal, ftwos), _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS)));
+-    q = _mm256_cvtps_epi32(_mm256_floor_ps(_mm256_mul_ps(s, m4pi)));
+-    r = _mm256_add_epi32(q, _mm256_and_si256(q, ones));
+-
+-    s = _mm256_sub_ps(s, _mm256_mul_ps(_mm256_cvtepi32_ps(r), pio4A));
+-    s = _mm256_sub_ps(s, _mm256_mul_ps(_mm256_cvtepi32_ps(r), pio4B));
+-
+-    s = _mm256_div_ps(s, _mm256_set1_ps(8.0));    // The constant is 2^N, for 3 times argument reduction
+-    s = _mm256_mul_ps(s, s);
+-    // Evaluate Taylor series
+-    s = _mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(_mm256_add_ps(_mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(s, cp5), cp4), s), cp3), s), cp2), s), cp1), s);
+-
+-    for(i = 0; i < 3; i++){
+-      s = _mm256_mul_ps(s, _mm256_sub_ps(ffours, s));
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int eighthPoints = num_points / 8;
++    unsigned int i = 0;
++
++    __m256 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones,
++        fzeroes;
++    __m256 sine, cosine, tangent, condition1, condition2, condition3;
++    __m256i q, r, ones, twos, fours;
++
++    m4pi = _mm256_set1_ps(1.273239545);
++    pio4A = _mm256_set1_ps(0.78515625);
++    pio4B = _mm256_set1_ps(0.241876e-3);
++    ffours = _mm256_set1_ps(4.0);
++    ftwos = _mm256_set1_ps(2.0);
++    fones = _mm256_set1_ps(1.0);
++    fzeroes = _mm256_setzero_ps();
++    ones = _mm256_set1_epi32(1);
++    twos = _mm256_set1_epi32(2);
++    fours = _mm256_set1_epi32(4);
++
++    cp1 = _mm256_set1_ps(1.0);
++    cp2 = _mm256_set1_ps(0.83333333e-1);
++    cp3 = _mm256_set1_ps(0.2777778e-2);
++    cp4 = _mm256_set1_ps(0.49603e-4);
++    cp5 = _mm256_set1_ps(0.551e-6);
++
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_loadu_ps(aPtr);
++        s = _mm256_sub_ps(aVal,
++                          _mm256_and_ps(_mm256_mul_ps(aVal, ftwos),
++                                        _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS)));
++        q = _mm256_cvtps_epi32(_mm256_floor_ps(_mm256_mul_ps(s, m4pi)));
++        r = _mm256_add_epi32(q, _mm256_and_si256(q, ones));
++
++        s = _mm256_sub_ps(s, _mm256_mul_ps(_mm256_cvtepi32_ps(r), pio4A));
++        s = _mm256_sub_ps(s, _mm256_mul_ps(_mm256_cvtepi32_ps(r), pio4B));
++
++        s = _mm256_div_ps(
++            s,
++            _mm256_set1_ps(8.0)); // The constant is 2^N, for 3 times argument reduction
++        s = _mm256_mul_ps(s, s);
++        // Evaluate Taylor series
++        s = _mm256_mul_ps(
++            _mm256_add_ps(
++                _mm256_mul_ps(
++                    _mm256_sub_ps(
++                        _mm256_mul_ps(
++                            _mm256_add_ps(
++                                _mm256_mul_ps(_mm256_sub_ps(_mm256_mul_ps(s, cp5), cp4),
++                                              s),
++                                cp3),
++                            s),
++                        cp2),
++                    s),
++                cp1),
++            s);
++
++        for (i = 0; i < 3; i++) {
++            s = _mm256_mul_ps(s, _mm256_sub_ps(ffours, s));
++        }
++        s = _mm256_div_ps(s, ftwos);
++
++        sine = _mm256_sqrt_ps(_mm256_mul_ps(_mm256_sub_ps(ftwos, s), s));
++        cosine = _mm256_sub_ps(fones, s);
++
++        condition1 = _mm256_cmp_ps(
++            _mm256_cvtepi32_ps(_mm256_and_si256(_mm256_add_epi32(q, ones), twos)),
++            fzeroes,
++            _CMP_NEQ_UQ);
++        condition2 = _mm256_cmp_ps(
++            _mm256_cmp_ps(
++                _mm256_cvtepi32_ps(_mm256_and_si256(q, fours)), fzeroes, _CMP_NEQ_UQ),
++            _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS),
++            _CMP_NEQ_UQ);
++        condition3 = _mm256_cmp_ps(
++            _mm256_cvtepi32_ps(_mm256_and_si256(_mm256_add_epi32(q, twos), fours)),
++            fzeroes,
++            _CMP_NEQ_UQ);
++
++        __m256 temp = cosine;
++        cosine =
++            _mm256_add_ps(cosine, _mm256_and_ps(_mm256_sub_ps(sine, cosine), condition1));
++        sine = _mm256_add_ps(sine, _mm256_and_ps(_mm256_sub_ps(temp, sine), condition1));
++        sine = _mm256_sub_ps(
++            sine, _mm256_and_ps(_mm256_mul_ps(sine, _mm256_set1_ps(2.0f)), condition2));
++        cosine = _mm256_sub_ps(
++            cosine,
++            _mm256_and_ps(_mm256_mul_ps(cosine, _mm256_set1_ps(2.0f)), condition3));
++        tangent = _mm256_div_ps(sine, cosine);
++        _mm256_storeu_ps(bPtr, tangent);
++        aPtr += 8;
++        bPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *bPtr++ = tan(*aPtr++);
+     }
+-    s = _mm256_div_ps(s, ftwos);
+-
+-    sine = _mm256_sqrt_ps(_mm256_mul_ps(_mm256_sub_ps(ftwos, s), s));
+-    cosine = _mm256_sub_ps(fones, s);
+-
+-    condition1 = _mm256_cmp_ps(_mm256_cvtepi32_ps(_mm256_and_si256(_mm256_add_epi32(q, ones), twos)), fzeroes, _CMP_NEQ_UQ);
+-    condition2 = _mm256_cmp_ps(_mm256_cmp_ps(_mm256_cvtepi32_ps(_mm256_and_si256(q, fours)), fzeroes, _CMP_NEQ_UQ), _mm256_cmp_ps(aVal, fzeroes, _CMP_LT_OS), _CMP_NEQ_UQ);
+-    condition3 = _mm256_cmp_ps(_mm256_cvtepi32_ps(_mm256_and_si256(_mm256_add_epi32(q, twos), fours)), fzeroes, _CMP_NEQ_UQ);
+-
+-    __m256 temp = cosine;
+-    cosine = _mm256_add_ps(cosine, _mm256_and_ps(_mm256_sub_ps(sine, cosine), condition1));
+-    sine = _mm256_add_ps(sine, _mm256_and_ps(_mm256_sub_ps(temp, sine), condition1));
+-    sine = _mm256_sub_ps(sine, _mm256_and_ps(_mm256_mul_ps(sine, _mm256_set1_ps(2.0f)), condition2));
+-    cosine = _mm256_sub_ps(cosine, _mm256_and_ps(_mm256_mul_ps(cosine, _mm256_set1_ps(2.0f)), condition3));
+-    tangent = _mm256_div_ps(sine, cosine);
+-    _mm256_storeu_ps(bPtr, tangent);
+-    aPtr += 8;
+-    bPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *bPtr++ = tan(*aPtr++);
+-  }
+ }
+ #endif /* LV_HAVE_AVX2 for unaligned */
+@@ -491,75 +620,95 @@ volk_32f_tan_32f_u_avx2(float* bVector, const float* aVector,
+ static inline void
+ volk_32f_tan_32f_u_sse4_1(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int quarterPoints = num_points / 4;
+-  unsigned int i = 0;
+-
+-  __m128 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones, fzeroes;
+-  __m128 sine, cosine, tangent, condition1, condition2, condition3;
+-  __m128i q, r, ones, twos, fours;
+-
+-  m4pi = _mm_set1_ps(1.273239545);
+-  pio4A = _mm_set1_ps(0.78515625);
+-  pio4B = _mm_set1_ps(0.241876e-3);
+-  ffours = _mm_set1_ps(4.0);
+-  ftwos = _mm_set1_ps(2.0);
+-  fones = _mm_set1_ps(1.0);
+-  fzeroes = _mm_setzero_ps();
+-  ones = _mm_set1_epi32(1);
+-  twos = _mm_set1_epi32(2);
+-  fours = _mm_set1_epi32(4);
+-
+-  cp1 = _mm_set1_ps(1.0);
+-  cp2 = _mm_set1_ps(0.83333333e-1);
+-  cp3 = _mm_set1_ps(0.2777778e-2);
+-  cp4 = _mm_set1_ps(0.49603e-4);
+-  cp5 = _mm_set1_ps(0.551e-6);
+-
+-  for(;number < quarterPoints; number++){
+-    aVal = _mm_loadu_ps(aPtr);
+-    s = _mm_sub_ps(aVal, _mm_and_ps(_mm_mul_ps(aVal, ftwos), _mm_cmplt_ps(aVal, fzeroes)));
+-    q = _mm_cvtps_epi32(_mm_floor_ps(_mm_mul_ps(s, m4pi)));
+-    r = _mm_add_epi32(q, _mm_and_si128(q, ones));
+-
+-    s = _mm_sub_ps(s, _mm_mul_ps(_mm_cvtepi32_ps(r), pio4A));
+-    s = _mm_sub_ps(s, _mm_mul_ps(_mm_cvtepi32_ps(r), pio4B));
+-
+-    s = _mm_div_ps(s, _mm_set1_ps(8.0));    // The constant is 2^N, for 3 times argument reduction
+-    s = _mm_mul_ps(s, s);
+-    // Evaluate Taylor series
+-    s = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(_mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(s, cp5), cp4), s), cp3), s), cp2), s), cp1), s);
+-
+-    for(i = 0; i < 3; i++){
+-      s = _mm_mul_ps(s, _mm_sub_ps(ffours, s));
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int quarterPoints = num_points / 4;
++    unsigned int i = 0;
++
++    __m128 aVal, s, m4pi, pio4A, pio4B, cp1, cp2, cp3, cp4, cp5, ffours, ftwos, fones,
++        fzeroes;
++    __m128 sine, cosine, tangent, condition1, condition2, condition3;
++    __m128i q, r, ones, twos, fours;
++
++    m4pi = _mm_set1_ps(1.273239545);
++    pio4A = _mm_set1_ps(0.78515625);
++    pio4B = _mm_set1_ps(0.241876e-3);
++    ffours = _mm_set1_ps(4.0);
++    ftwos = _mm_set1_ps(2.0);
++    fones = _mm_set1_ps(1.0);
++    fzeroes = _mm_setzero_ps();
++    ones = _mm_set1_epi32(1);
++    twos = _mm_set1_epi32(2);
++    fours = _mm_set1_epi32(4);
++
++    cp1 = _mm_set1_ps(1.0);
++    cp2 = _mm_set1_ps(0.83333333e-1);
++    cp3 = _mm_set1_ps(0.2777778e-2);
++    cp4 = _mm_set1_ps(0.49603e-4);
++    cp5 = _mm_set1_ps(0.551e-6);
++
++    for (; number < quarterPoints; number++) {
++        aVal = _mm_loadu_ps(aPtr);
++        s = _mm_sub_ps(aVal,
++                       _mm_and_ps(_mm_mul_ps(aVal, ftwos), _mm_cmplt_ps(aVal, fzeroes)));
++        q = _mm_cvtps_epi32(_mm_floor_ps(_mm_mul_ps(s, m4pi)));
++        r = _mm_add_epi32(q, _mm_and_si128(q, ones));
++
++        s = _mm_sub_ps(s, _mm_mul_ps(_mm_cvtepi32_ps(r), pio4A));
++        s = _mm_sub_ps(s, _mm_mul_ps(_mm_cvtepi32_ps(r), pio4B));
++
++        s = _mm_div_ps(
++            s, _mm_set1_ps(8.0)); // The constant is 2^N, for 3 times argument reduction
++        s = _mm_mul_ps(s, s);
++        // Evaluate Taylor series
++        s = _mm_mul_ps(
++            _mm_add_ps(
++                _mm_mul_ps(
++                    _mm_sub_ps(
++                        _mm_mul_ps(
++                            _mm_add_ps(_mm_mul_ps(_mm_sub_ps(_mm_mul_ps(s, cp5), cp4), s),
++                                       cp3),
++                            s),
++                        cp2),
++                    s),
++                cp1),
++            s);
++
++        for (i = 0; i < 3; i++) {
++            s = _mm_mul_ps(s, _mm_sub_ps(ffours, s));
++        }
++        s = _mm_div_ps(s, ftwos);
++
++        sine = _mm_sqrt_ps(_mm_mul_ps(_mm_sub_ps(ftwos, s), s));
++        cosine = _mm_sub_ps(fones, s);
++
++        condition1 = _mm_cmpneq_ps(
++            _mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q, ones), twos)), fzeroes);
++        condition2 = _mm_cmpneq_ps(
++            _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(q, fours)), fzeroes),
++            _mm_cmplt_ps(aVal, fzeroes));
++        condition3 = _mm_cmpneq_ps(
++            _mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q, twos), fours)), fzeroes);
++
++        __m128 temp = cosine;
++        cosine = _mm_add_ps(cosine, _mm_and_ps(_mm_sub_ps(sine, cosine), condition1));
++        sine = _mm_add_ps(sine, _mm_and_ps(_mm_sub_ps(temp, sine), condition1));
++        sine =
++            _mm_sub_ps(sine, _mm_and_ps(_mm_mul_ps(sine, _mm_set1_ps(2.0f)), condition2));
++        cosine = _mm_sub_ps(
++            cosine, _mm_and_ps(_mm_mul_ps(cosine, _mm_set1_ps(2.0f)), condition3));
++        tangent = _mm_div_ps(sine, cosine);
++        _mm_storeu_ps(bPtr, tangent);
++        aPtr += 4;
++        bPtr += 4;
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *bPtr++ = tanf(*aPtr++);
+     }
+-    s = _mm_div_ps(s, ftwos);
+-
+-    sine = _mm_sqrt_ps(_mm_mul_ps(_mm_sub_ps(ftwos, s), s));
+-    cosine = _mm_sub_ps(fones, s);
+-
+-    condition1 = _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q, ones), twos)), fzeroes);
+-    condition2 = _mm_cmpneq_ps(_mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(q, fours)), fzeroes), _mm_cmplt_ps(aVal, fzeroes));
+-    condition3 = _mm_cmpneq_ps(_mm_cvtepi32_ps(_mm_and_si128(_mm_add_epi32(q, twos), fours)), fzeroes);
+-
+-    __m128 temp = cosine;
+-    cosine = _mm_add_ps(cosine, _mm_and_ps(_mm_sub_ps(sine, cosine), condition1));
+-    sine = _mm_add_ps(sine, _mm_and_ps(_mm_sub_ps(temp, sine), condition1));
+-    sine = _mm_sub_ps(sine, _mm_and_ps(_mm_mul_ps(sine, _mm_set1_ps(2.0f)), condition2));
+-    cosine = _mm_sub_ps(cosine, _mm_and_ps(_mm_mul_ps(cosine, _mm_set1_ps(2.0f)), condition3));
+-    tangent = _mm_div_ps(sine, cosine);
+-    _mm_storeu_ps(bPtr, tangent);
+-    aPtr += 4;
+-    bPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    *bPtr++ = tanf(*aPtr++);
+-  }
+ }
+ #endif /* LV_HAVE_SSE4_1 for unaligned */
+@@ -568,16 +717,15 @@ volk_32f_tan_32f_u_sse4_1(float* bVector, const float* aVector, unsigned int num
+ #ifdef LV_HAVE_GENERIC
+ static inline void
+-volk_32f_tan_32f_generic(float* bVector, const float* aVector,
+-                         unsigned int num_points)
++volk_32f_tan_32f_generic(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-  unsigned int number = 0;
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++    unsigned int number = 0;
+-  for(; number < num_points; number++){
+-    *bPtr++ = tanf(*aPtr++);
+-  }
++    for (; number < num_points; number++) {
++        *bPtr++ = tanf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -587,30 +735,29 @@ volk_32f_tan_32f_generic(float* bVector, const float* aVector,
+ #include <volk/volk_neon_intrinsics.h>
+ static inline void
+-volk_32f_tan_32f_neon(float* bVector, const float* aVector,
+-                      unsigned int num_points)
++volk_32f_tan_32f_neon(float* bVector, const float* aVector, unsigned int num_points)
+ {
+     unsigned int number = 0;
+     unsigned int quarter_points = num_points / 4;
+     float* bVectorPtr = bVector;
+     const float* aVectorPtr = aVector;
+-    
++
+     float32x4_t b_vec;
+     float32x4_t a_vec;
+-    
+-    for(number = 0; number < quarter_points; number++) {
++
++    for (number = 0; number < quarter_points; number++) {
+         a_vec = vld1q_f32(aVectorPtr);
+         // Prefetch next one, speeds things up
+-        __VOLK_PREFETCH(aVectorPtr+4);
++        __VOLK_PREFETCH(aVectorPtr + 4);
+         b_vec = _vtanq_f32(a_vec);
+         vst1q_f32(bVectorPtr, b_vec);
+         // move pointers ahead
+-        bVectorPtr+=4;
+-        aVectorPtr+=4;
++        bVectorPtr += 4;
++        aVectorPtr += 4;
+     }
+-    
++
+     // Deal with the rest
+-    for(number = quarter_points * 4; number < num_points; number++) {
++    for (number = quarter_points * 4; number < num_points; number++) {
+         *bVectorPtr++ = tanf(*aVectorPtr++);
+     }
+ }
+diff --git a/kernels/volk/volk_32f_tanh_32f.h b/kernels/volk/volk_32f_tanh_32f.h
+index d49432d..f157d39 100644
+--- a/kernels/volk/volk_32f_tanh_32f.h
++++ b/kernels/volk/volk_32f_tanh_32f.h
+@@ -69,22 +69,21 @@
+ #define INCLUDED_volk_32f_tanh_32f_a_H
+ #include <inttypes.h>
+-#include <stdio.h>
+ #include <math.h>
++#include <stdio.h>
+ #include <string.h>
+ #ifdef LV_HAVE_GENERIC
+ static inline void
+-volk_32f_tanh_32f_generic(float* cVector, const float* aVector,
+-                          unsigned int num_points)
++volk_32f_tanh_32f_generic(float* cVector, const float* aVector, unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  for(; number < num_points; number++) {
+-    *cPtr++ = tanhf(*aPtr++);
+-  }
++    unsigned int number = 0;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    for (; number < num_points; number++) {
++        *cPtr++ = tanhf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -93,81 +92,88 @@ volk_32f_tanh_32f_generic(float* cVector, const float* aVector,
+ #ifdef LV_HAVE_GENERIC
+ static inline void
+-volk_32f_tanh_32f_series(float* cVector, const float* aVector,
+-                         unsigned int num_points)
++volk_32f_tanh_32f_series(float* cVector, const float* aVector, unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  for(; number < num_points; number++) {
+-    if(*aPtr > 4.97)
+-      *cPtr++ = 1;
+-    else if(*aPtr <= -4.97)
+-      *cPtr++ = -1;
+-    else {
+-      float x2 = (*aPtr) * (*aPtr);
+-      float a = (*aPtr) * (135135.0f + x2 * (17325.0f + x2 * (378.0f + x2)));
+-      float b = 135135.0f + x2 * (62370.0f + x2 * (3150.0f + x2 * 28.0f));
+-      *cPtr++ = a / b;
+-      aPtr++;
++    unsigned int number = 0;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    for (; number < num_points; number++) {
++        if (*aPtr > 4.97)
++            *cPtr++ = 1;
++        else if (*aPtr <= -4.97)
++            *cPtr++ = -1;
++        else {
++            float x2 = (*aPtr) * (*aPtr);
++            float a = (*aPtr) * (135135.0f + x2 * (17325.0f + x2 * (378.0f + x2)));
++            float b = 135135.0f + x2 * (62370.0f + x2 * (3150.0f + x2 * 28.0f));
++            *cPtr++ = a / b;
++            aPtr++;
++        }
+     }
+-  }
+ }
+ #endif /* LV_HAVE_GENERIC */
+-
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+ static inline void
+-volk_32f_tanh_32f_a_sse(float* cVector, const float* aVector,
+-                        unsigned int num_points)
++volk_32f_tanh_32f_a_sse(float* cVector, const float* aVector, unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-
+-  __m128 aVal, cVal, x2, a, b;
+-  __m128 const1, const2, const3, const4, const5, const6;
+-  const1 = _mm_set_ps1(135135.0f);
+-  const2 = _mm_set_ps1(17325.0f);
+-  const3 = _mm_set_ps1(378.0f);
+-  const4 = _mm_set_ps1(62370.0f);
+-  const5 = _mm_set_ps1(3150.0f);
+-  const6 = _mm_set_ps1(28.0f);
+-  for(;number < quarterPoints; number++){
+-
+-    aVal = _mm_load_ps(aPtr);
+-    x2 = _mm_mul_ps(aVal, aVal);
+-    a  = _mm_mul_ps(aVal, _mm_add_ps(const1, _mm_mul_ps(x2, _mm_add_ps(const2, _mm_mul_ps(x2, _mm_add_ps(const3, x2))))));
+-    b  = _mm_add_ps(const1, _mm_mul_ps(x2, _mm_add_ps(const4, _mm_mul_ps(x2, _mm_add_ps(const5, _mm_mul_ps(x2, const6))))));
+-
+-    cVal = _mm_div_ps(a, b);
+-
+-    _mm_store_ps(cPtr, cVal); // Store the results back into the C container
+-
+-    aPtr += 4;
+-    cPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++) {
+-    if(*aPtr > 4.97)
+-      *cPtr++ = 1;
+-    else if(*aPtr <= -4.97)
+-      *cPtr++ = -1;
+-    else {
+-      float x2 = (*aPtr) * (*aPtr);
+-      float a = (*aPtr) * (135135.0f + x2 * (17325.0f + x2 * (378.0f + x2)));
+-      float b = 135135.0f + x2 * (62370.0f + x2 * (3150.0f + x2 * 28.0f));
+-      *cPtr++ = a / b;
+-      aPtr++;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++
++    __m128 aVal, cVal, x2, a, b;
++    __m128 const1, const2, const3, const4, const5, const6;
++    const1 = _mm_set_ps1(135135.0f);
++    const2 = _mm_set_ps1(17325.0f);
++    const3 = _mm_set_ps1(378.0f);
++    const4 = _mm_set_ps1(62370.0f);
++    const5 = _mm_set_ps1(3150.0f);
++    const6 = _mm_set_ps1(28.0f);
++    for (; number < quarterPoints; number++) {
++
++        aVal = _mm_load_ps(aPtr);
++        x2 = _mm_mul_ps(aVal, aVal);
++        a = _mm_mul_ps(
++            aVal,
++            _mm_add_ps(
++                const1,
++                _mm_mul_ps(x2,
++                           _mm_add_ps(const2, _mm_mul_ps(x2, _mm_add_ps(const3, x2))))));
++        b = _mm_add_ps(
++            const1,
++            _mm_mul_ps(
++                x2,
++                _mm_add_ps(const4,
++                           _mm_mul_ps(x2, _mm_add_ps(const5, _mm_mul_ps(x2, const6))))));
++
++        cVal = _mm_div_ps(a, b);
++
++        _mm_store_ps(cPtr, cVal); // Store the results back into the C container
++
++        aPtr += 4;
++        cPtr += 4;
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        if (*aPtr > 4.97)
++            *cPtr++ = 1;
++        else if (*aPtr <= -4.97)
++            *cPtr++ = -1;
++        else {
++            float x2 = (*aPtr) * (*aPtr);
++            float a = (*aPtr) * (135135.0f + x2 * (17325.0f + x2 * (378.0f + x2)));
++            float b = 135135.0f + x2 * (62370.0f + x2 * (3150.0f + x2 * 28.0f));
++            *cPtr++ = a / b;
++            aPtr++;
++        }
+     }
+-  }
+ }
+ #endif /* LV_HAVE_SSE */
+@@ -176,52 +182,65 @@ volk_32f_tanh_32f_a_sse(float* cVector, const float* aVector,
+ #include <immintrin.h>
+ static inline void
+-volk_32f_tanh_32f_a_avx(float* cVector, const float* aVector,
+-                        unsigned int num_points)
++volk_32f_tanh_32f_a_avx(float* cVector, const float* aVector, unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-
+-  __m256 aVal, cVal, x2, a, b;
+-  __m256 const1, const2, const3, const4, const5, const6;
+-  const1 = _mm256_set1_ps(135135.0f);
+-  const2 = _mm256_set1_ps(17325.0f);
+-  const3 = _mm256_set1_ps(378.0f);
+-  const4 = _mm256_set1_ps(62370.0f);
+-  const5 = _mm256_set1_ps(3150.0f);
+-  const6 = _mm256_set1_ps(28.0f);
+-  for(;number < eighthPoints; number++){
+-
+-    aVal = _mm256_load_ps(aPtr);
+-    x2 = _mm256_mul_ps(aVal, aVal);
+-    a  = _mm256_mul_ps(aVal, _mm256_add_ps(const1, _mm256_mul_ps(x2, _mm256_add_ps(const2, _mm256_mul_ps(x2, _mm256_add_ps(const3, x2))))));
+-    b  = _mm256_add_ps(const1, _mm256_mul_ps(x2, _mm256_add_ps(const4, _mm256_mul_ps(x2, _mm256_add_ps(const5, _mm256_mul_ps(x2, const6))))));
+-
+-    cVal = _mm256_div_ps(a, b);
+-
+-    _mm256_store_ps(cPtr, cVal); // Store the results back into the C container
+-
+-    aPtr += 8;
+-    cPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++) {
+-    if(*aPtr > 4.97)
+-      *cPtr++ = 1;
+-    else if(*aPtr <= -4.97)
+-      *cPtr++ = -1;
+-    else {
+-      float x2 = (*aPtr) * (*aPtr);
+-      float a = (*aPtr) * (135135.0f + x2 * (17325.0f + x2 * (378.0f + x2)));
+-      float b = 135135.0f + x2 * (62370.0f + x2 * (3150.0f + x2 * 28.0f));
+-      *cPtr++ = a / b;
+-      aPtr++;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++
++    __m256 aVal, cVal, x2, a, b;
++    __m256 const1, const2, const3, const4, const5, const6;
++    const1 = _mm256_set1_ps(135135.0f);
++    const2 = _mm256_set1_ps(17325.0f);
++    const3 = _mm256_set1_ps(378.0f);
++    const4 = _mm256_set1_ps(62370.0f);
++    const5 = _mm256_set1_ps(3150.0f);
++    const6 = _mm256_set1_ps(28.0f);
++    for (; number < eighthPoints; number++) {
++
++        aVal = _mm256_load_ps(aPtr);
++        x2 = _mm256_mul_ps(aVal, aVal);
++        a = _mm256_mul_ps(
++            aVal,
++            _mm256_add_ps(
++                const1,
++                _mm256_mul_ps(
++                    x2,
++                    _mm256_add_ps(const2,
++                                  _mm256_mul_ps(x2, _mm256_add_ps(const3, x2))))));
++        b = _mm256_add_ps(
++            const1,
++            _mm256_mul_ps(
++                x2,
++                _mm256_add_ps(
++                    const4,
++                    _mm256_mul_ps(x2,
++                                  _mm256_add_ps(const5, _mm256_mul_ps(x2, const6))))));
++
++        cVal = _mm256_div_ps(a, b);
++
++        _mm256_store_ps(cPtr, cVal); // Store the results back into the C container
++
++        aPtr += 8;
++        cPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        if (*aPtr > 4.97)
++            *cPtr++ = 1;
++        else if (*aPtr <= -4.97)
++            *cPtr++ = -1;
++        else {
++            float x2 = (*aPtr) * (*aPtr);
++            float a = (*aPtr) * (135135.0f + x2 * (17325.0f + x2 * (378.0f + x2)));
++            float b = 135135.0f + x2 * (62370.0f + x2 * (3150.0f + x2 * 28.0f));
++            *cPtr++ = a / b;
++            aPtr++;
++        }
+     }
+-  }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -229,52 +248,55 @@ volk_32f_tanh_32f_a_avx(float* cVector, const float* aVector,
+ #include <immintrin.h>
+ static inline void
+-volk_32f_tanh_32f_a_avx_fma(float* cVector, const float* aVector,
+-                        unsigned int num_points)
++volk_32f_tanh_32f_a_avx_fma(float* cVector, const float* aVector, unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-
+-  __m256 aVal, cVal, x2, a, b;
+-  __m256 const1, const2, const3, const4, const5, const6;
+-  const1 = _mm256_set1_ps(135135.0f);
+-  const2 = _mm256_set1_ps(17325.0f);
+-  const3 = _mm256_set1_ps(378.0f);
+-  const4 = _mm256_set1_ps(62370.0f);
+-  const5 = _mm256_set1_ps(3150.0f);
+-  const6 = _mm256_set1_ps(28.0f);
+-  for(;number < eighthPoints; number++){
+-
+-    aVal = _mm256_load_ps(aPtr);
+-    x2 = _mm256_mul_ps(aVal, aVal);
+-    a  = _mm256_mul_ps(aVal, _mm256_fmadd_ps(x2, _mm256_fmadd_ps(x2, _mm256_add_ps(const3, x2), const2),const1));
+-    b  = _mm256_fmadd_ps(x2, _mm256_fmadd_ps(x2, _mm256_fmadd_ps(x2, const6, const5), const4), const1);
+-
+-    cVal = _mm256_div_ps(a, b);
+-
+-    _mm256_store_ps(cPtr, cVal); // Store the results back into the C container
+-
+-    aPtr += 8;
+-    cPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++) {
+-    if(*aPtr > 4.97)
+-      *cPtr++ = 1;
+-    else if(*aPtr <= -4.97)
+-      *cPtr++ = -1;
+-    else {
+-      float x2 = (*aPtr) * (*aPtr);
+-      float a = (*aPtr) * (135135.0f + x2 * (17325.0f + x2 * (378.0f + x2)));
+-      float b = 135135.0f + x2 * (62370.0f + x2 * (3150.0f + x2 * 28.0f));
+-      *cPtr++ = a / b;
+-      aPtr++;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++
++    __m256 aVal, cVal, x2, a, b;
++    __m256 const1, const2, const3, const4, const5, const6;
++    const1 = _mm256_set1_ps(135135.0f);
++    const2 = _mm256_set1_ps(17325.0f);
++    const3 = _mm256_set1_ps(378.0f);
++    const4 = _mm256_set1_ps(62370.0f);
++    const5 = _mm256_set1_ps(3150.0f);
++    const6 = _mm256_set1_ps(28.0f);
++    for (; number < eighthPoints; number++) {
++
++        aVal = _mm256_load_ps(aPtr);
++        x2 = _mm256_mul_ps(aVal, aVal);
++        a = _mm256_mul_ps(
++            aVal,
++            _mm256_fmadd_ps(
++                x2, _mm256_fmadd_ps(x2, _mm256_add_ps(const3, x2), const2), const1));
++        b = _mm256_fmadd_ps(
++            x2, _mm256_fmadd_ps(x2, _mm256_fmadd_ps(x2, const6, const5), const4), const1);
++
++        cVal = _mm256_div_ps(a, b);
++
++        _mm256_store_ps(cPtr, cVal); // Store the results back into the C container
++
++        aPtr += 8;
++        cPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        if (*aPtr > 4.97)
++            *cPtr++ = 1;
++        else if (*aPtr <= -4.97)
++            *cPtr++ = -1;
++        else {
++            float x2 = (*aPtr) * (*aPtr);
++            float a = (*aPtr) * (135135.0f + x2 * (17325.0f + x2 * (378.0f + x2)));
++            float b = 135135.0f + x2 * (62370.0f + x2 * (3150.0f + x2 * 28.0f));
++            *cPtr++ = a / b;
++            aPtr++;
++        }
+     }
+-  }
+ }
+ #endif /* LV_HAVE_AVX && LV_HAVE_FMA */
+@@ -285,8 +307,8 @@ volk_32f_tanh_32f_a_avx_fma(float* cVector, const float* aVector,
+ #define INCLUDED_volk_32f_tanh_32f_u_H
+ #include <inttypes.h>
+-#include <stdio.h>
+ #include <math.h>
++#include <stdio.h>
+ #include <string.h>
+@@ -294,52 +316,61 @@ volk_32f_tanh_32f_a_avx_fma(float* cVector, const float* aVector,
+ #include <xmmintrin.h>
+ static inline void
+-volk_32f_tanh_32f_u_sse(float* cVector, const float* aVector,
+-                        unsigned int num_points)
++volk_32f_tanh_32f_u_sse(float* cVector, const float* aVector, unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-
+-  __m128 aVal, cVal, x2, a, b;
+-  __m128 const1, const2, const3, const4, const5, const6;
+-  const1 = _mm_set_ps1(135135.0f);
+-  const2 = _mm_set_ps1(17325.0f);
+-  const3 = _mm_set_ps1(378.0f);
+-  const4 = _mm_set_ps1(62370.0f);
+-  const5 = _mm_set_ps1(3150.0f);
+-  const6 = _mm_set_ps1(28.0f);
+-  for(;number < quarterPoints; number++){
+-
+-    aVal = _mm_loadu_ps(aPtr);
+-    x2 = _mm_mul_ps(aVal, aVal);
+-    a  = _mm_mul_ps(aVal, _mm_add_ps(const1, _mm_mul_ps(x2, _mm_add_ps(const2, _mm_mul_ps(x2, _mm_add_ps(const3, x2))))));
+-    b  = _mm_add_ps(const1, _mm_mul_ps(x2, _mm_add_ps(const4, _mm_mul_ps(x2, _mm_add_ps(const5, _mm_mul_ps(x2, const6))))));
+-
+-    cVal = _mm_div_ps(a, b);
+-
+-    _mm_storeu_ps(cPtr, cVal); // Store the results back into the C container
+-
+-    aPtr += 4;
+-    cPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++) {
+-    if(*aPtr > 4.97)
+-      *cPtr++ = 1;
+-    else if(*aPtr <= -4.97)
+-      *cPtr++ = -1;
+-    else {
+-      float x2 = (*aPtr) * (*aPtr);
+-      float a = (*aPtr) * (135135.0f + x2 * (17325.0f + x2 * (378.0f + x2)));
+-      float b = 135135.0f + x2 * (62370.0f + x2 * (3150.0f + x2 * 28.0f));
+-      *cPtr++ = a / b;
+-      aPtr++;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++
++    __m128 aVal, cVal, x2, a, b;
++    __m128 const1, const2, const3, const4, const5, const6;
++    const1 = _mm_set_ps1(135135.0f);
++    const2 = _mm_set_ps1(17325.0f);
++    const3 = _mm_set_ps1(378.0f);
++    const4 = _mm_set_ps1(62370.0f);
++    const5 = _mm_set_ps1(3150.0f);
++    const6 = _mm_set_ps1(28.0f);
++    for (; number < quarterPoints; number++) {
++
++        aVal = _mm_loadu_ps(aPtr);
++        x2 = _mm_mul_ps(aVal, aVal);
++        a = _mm_mul_ps(
++            aVal,
++            _mm_add_ps(
++                const1,
++                _mm_mul_ps(x2,
++                           _mm_add_ps(const2, _mm_mul_ps(x2, _mm_add_ps(const3, x2))))));
++        b = _mm_add_ps(
++            const1,
++            _mm_mul_ps(
++                x2,
++                _mm_add_ps(const4,
++                           _mm_mul_ps(x2, _mm_add_ps(const5, _mm_mul_ps(x2, const6))))));
++
++        cVal = _mm_div_ps(a, b);
++
++        _mm_storeu_ps(cPtr, cVal); // Store the results back into the C container
++
++        aPtr += 4;
++        cPtr += 4;
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        if (*aPtr > 4.97)
++            *cPtr++ = 1;
++        else if (*aPtr <= -4.97)
++            *cPtr++ = -1;
++        else {
++            float x2 = (*aPtr) * (*aPtr);
++            float a = (*aPtr) * (135135.0f + x2 * (17325.0f + x2 * (378.0f + x2)));
++            float b = 135135.0f + x2 * (62370.0f + x2 * (3150.0f + x2 * 28.0f));
++            *cPtr++ = a / b;
++            aPtr++;
++        }
+     }
+-  }
+ }
+ #endif /* LV_HAVE_SSE */
+@@ -348,52 +379,65 @@ volk_32f_tanh_32f_u_sse(float* cVector, const float* aVector,
+ #include <immintrin.h>
+ static inline void
+-volk_32f_tanh_32f_u_avx(float* cVector, const float* aVector,
+-                        unsigned int num_points)
++volk_32f_tanh_32f_u_avx(float* cVector, const float* aVector, unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-
+-  __m256 aVal, cVal, x2, a, b;
+-  __m256 const1, const2, const3, const4, const5, const6;
+-  const1 = _mm256_set1_ps(135135.0f);
+-  const2 = _mm256_set1_ps(17325.0f);
+-  const3 = _mm256_set1_ps(378.0f);
+-  const4 = _mm256_set1_ps(62370.0f);
+-  const5 = _mm256_set1_ps(3150.0f);
+-  const6 = _mm256_set1_ps(28.0f);
+-  for(;number < eighthPoints; number++){
+-
+-    aVal = _mm256_loadu_ps(aPtr);
+-    x2 = _mm256_mul_ps(aVal, aVal);
+-    a  = _mm256_mul_ps(aVal, _mm256_add_ps(const1, _mm256_mul_ps(x2, _mm256_add_ps(const2, _mm256_mul_ps(x2, _mm256_add_ps(const3, x2))))));
+-    b  = _mm256_add_ps(const1, _mm256_mul_ps(x2, _mm256_add_ps(const4, _mm256_mul_ps(x2, _mm256_add_ps(const5, _mm256_mul_ps(x2, const6))))));
+-
+-    cVal = _mm256_div_ps(a, b);
+-
+-    _mm256_storeu_ps(cPtr, cVal); // Store the results back into the C container
+-
+-    aPtr += 8;
+-    cPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++) {
+-    if(*aPtr > 4.97)
+-      *cPtr++ = 1;
+-    else if(*aPtr <= -4.97)
+-      *cPtr++ = -1;
+-    else {
+-      float x2 = (*aPtr) * (*aPtr);
+-      float a = (*aPtr) * (135135.0f + x2 * (17325.0f + x2 * (378.0f + x2)));
+-      float b = 135135.0f + x2 * (62370.0f + x2 * (3150.0f + x2 * 28.0f));
+-      *cPtr++ = a / b;
+-      aPtr++;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++
++    __m256 aVal, cVal, x2, a, b;
++    __m256 const1, const2, const3, const4, const5, const6;
++    const1 = _mm256_set1_ps(135135.0f);
++    const2 = _mm256_set1_ps(17325.0f);
++    const3 = _mm256_set1_ps(378.0f);
++    const4 = _mm256_set1_ps(62370.0f);
++    const5 = _mm256_set1_ps(3150.0f);
++    const6 = _mm256_set1_ps(28.0f);
++    for (; number < eighthPoints; number++) {
++
++        aVal = _mm256_loadu_ps(aPtr);
++        x2 = _mm256_mul_ps(aVal, aVal);
++        a = _mm256_mul_ps(
++            aVal,
++            _mm256_add_ps(
++                const1,
++                _mm256_mul_ps(
++                    x2,
++                    _mm256_add_ps(const2,
++                                  _mm256_mul_ps(x2, _mm256_add_ps(const3, x2))))));
++        b = _mm256_add_ps(
++            const1,
++            _mm256_mul_ps(
++                x2,
++                _mm256_add_ps(
++                    const4,
++                    _mm256_mul_ps(x2,
++                                  _mm256_add_ps(const5, _mm256_mul_ps(x2, const6))))));
++
++        cVal = _mm256_div_ps(a, b);
++
++        _mm256_storeu_ps(cPtr, cVal); // Store the results back into the C container
++
++        aPtr += 8;
++        cPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        if (*aPtr > 4.97)
++            *cPtr++ = 1;
++        else if (*aPtr <= -4.97)
++            *cPtr++ = -1;
++        else {
++            float x2 = (*aPtr) * (*aPtr);
++            float a = (*aPtr) * (135135.0f + x2 * (17325.0f + x2 * (378.0f + x2)));
++            float b = 135135.0f + x2 * (62370.0f + x2 * (3150.0f + x2 * 28.0f));
++            *cPtr++ = a / b;
++            aPtr++;
++        }
+     }
+-  }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -401,52 +445,55 @@ volk_32f_tanh_32f_u_avx(float* cVector, const float* aVector,
+ #include <immintrin.h>
+ static inline void
+-volk_32f_tanh_32f_u_avx_fma(float* cVector, const float* aVector,
+-                        unsigned int num_points)
++volk_32f_tanh_32f_u_avx_fma(float* cVector, const float* aVector, unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-
+-  __m256 aVal, cVal, x2, a, b;
+-  __m256 const1, const2, const3, const4, const5, const6;
+-  const1 = _mm256_set1_ps(135135.0f);
+-  const2 = _mm256_set1_ps(17325.0f);
+-  const3 = _mm256_set1_ps(378.0f);
+-  const4 = _mm256_set1_ps(62370.0f);
+-  const5 = _mm256_set1_ps(3150.0f);
+-  const6 = _mm256_set1_ps(28.0f);
+-  for(;number < eighthPoints; number++){
+-
+-    aVal = _mm256_loadu_ps(aPtr);
+-    x2 = _mm256_mul_ps(aVal, aVal);
+-    a  = _mm256_mul_ps(aVal, _mm256_fmadd_ps(x2, _mm256_fmadd_ps(x2, _mm256_add_ps(const3, x2), const2),const1));
+-    b  = _mm256_fmadd_ps(x2, _mm256_fmadd_ps(x2, _mm256_fmadd_ps(x2, const6, const5), const4), const1);
+-
+-    cVal = _mm256_div_ps(a, b);
+-
+-    _mm256_storeu_ps(cPtr, cVal); // Store the results back into the C container
+-
+-    aPtr += 8;
+-    cPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++) {
+-    if(*aPtr > 4.97)
+-      *cPtr++ = 1;
+-    else if(*aPtr <= -4.97)
+-      *cPtr++ = -1;
+-    else {
+-      float x2 = (*aPtr) * (*aPtr);
+-      float a = (*aPtr) * (135135.0f + x2 * (17325.0f + x2 * (378.0f + x2)));
+-      float b = 135135.0f + x2 * (62370.0f + x2 * (3150.0f + x2 * 28.0f));
+-      *cPtr++ = a / b;
+-      aPtr++;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++
++    __m256 aVal, cVal, x2, a, b;
++    __m256 const1, const2, const3, const4, const5, const6;
++    const1 = _mm256_set1_ps(135135.0f);
++    const2 = _mm256_set1_ps(17325.0f);
++    const3 = _mm256_set1_ps(378.0f);
++    const4 = _mm256_set1_ps(62370.0f);
++    const5 = _mm256_set1_ps(3150.0f);
++    const6 = _mm256_set1_ps(28.0f);
++    for (; number < eighthPoints; number++) {
++
++        aVal = _mm256_loadu_ps(aPtr);
++        x2 = _mm256_mul_ps(aVal, aVal);
++        a = _mm256_mul_ps(
++            aVal,
++            _mm256_fmadd_ps(
++                x2, _mm256_fmadd_ps(x2, _mm256_add_ps(const3, x2), const2), const1));
++        b = _mm256_fmadd_ps(
++            x2, _mm256_fmadd_ps(x2, _mm256_fmadd_ps(x2, const6, const5), const4), const1);
++
++        cVal = _mm256_div_ps(a, b);
++
++        _mm256_storeu_ps(cPtr, cVal); // Store the results back into the C container
++
++        aPtr += 8;
++        cPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        if (*aPtr > 4.97)
++            *cPtr++ = 1;
++        else if (*aPtr <= -4.97)
++            *cPtr++ = -1;
++        else {
++            float x2 = (*aPtr) * (*aPtr);
++            float a = (*aPtr) * (135135.0f + x2 * (17325.0f + x2 * (378.0f + x2)));
++            float b = 135135.0f + x2 * (62370.0f + x2 * (3150.0f + x2 * 28.0f));
++            *cPtr++ = a / b;
++            aPtr++;
++        }
+     }
+-  }
+ }
+ #endif /* LV_HAVE_AVX && LV_HAVE_FMA */
+diff --git a/kernels/volk/volk_32f_x2_add_32f.h b/kernels/volk/volk_32f_x2_add_32f.h
+index ce18092..e4b7e93 100644
+--- a/kernels/volk/volk_32f_x2_add_32f.h
++++ b/kernels/volk/volk_32f_x2_add_32f.h
+@@ -31,8 +31,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_x2_add_32f(float* cVector, const float* aVector, const float* bVector, unsigned int num_points)
+- * \endcode
++ * void volk_32f_x2_add_32f(float* cVector, const float* aVector, const float* bVector,
++ * unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li aVector: First vector of input points.
+@@ -44,7 +44,8 @@
+  *
+  * \b Example
+  *
+- * The follow example adds the increasing and decreasing vectors such that the result of every summation pair is 10
++ * The follow example adds the increasing and decreasing vectors such that the result of
++ * every summation pair is 10
+  *
+  * \code
+  *   int N = 10;
+@@ -79,37 +80,38 @@
+ #ifdef LV_HAVE_AVX512F
+ #include <immintrin.h>
+-static inline void
+-volk_32f_x2_add_32f_u_avx512f(float* cVector, const float* aVector,
+-                          const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_add_32f_u_avx512f(float* cVector,
++                                                 const float* aVector,
++                                                 const float* bVector,
++                                                 unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m512 aVal, bVal, cVal;
+-  for(;number < sixteenthPoints; number++){
++    __m512 aVal, bVal, cVal;
++    for (; number < sixteenthPoints; number++) {
+-    aVal = _mm512_loadu_ps(aPtr);
+-    bVal = _mm512_loadu_ps(bPtr);
++        aVal = _mm512_loadu_ps(aPtr);
++        bVal = _mm512_loadu_ps(bPtr);
+-    cVal = _mm512_add_ps(aVal, bVal);
++        cVal = _mm512_add_ps(aVal, bVal);
+-    _mm512_storeu_ps(cPtr,cVal); // Store the results back into the C container
++        _mm512_storeu_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 16;
+-    bPtr += 16;
+-    cPtr += 16;
+-  }
++        aPtr += 16;
++        bPtr += 16;
++        cPtr += 16;
++    }
+-  number = sixteenthPoints * 16;
++    number = sixteenthPoints * 16;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) + (*bPtr++);
+-  }
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) + (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX512F */
+@@ -118,35 +120,36 @@ volk_32f_x2_add_32f_u_avx512f(float* cVector, const float* aVector,
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32f_x2_add_32f_u_avx(float* cVector, const float* aVector,
+-                          const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_add_32f_u_avx(float* cVector,
++                                             const float* aVector,
++                                             const float* bVector,
++                                             unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
+-  __m256 aVal, bVal, cVal;
+-  for(;number < eighthPoints; number++){
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
++    __m256 aVal, bVal, cVal;
++    for (; number < eighthPoints; number++) {
+-    aVal = _mm256_loadu_ps(aPtr);
+-    bVal = _mm256_loadu_ps(bPtr);
++        aVal = _mm256_loadu_ps(aPtr);
++        bVal = _mm256_loadu_ps(bPtr);
+-    cVal = _mm256_add_ps(aVal, bVal);
++        cVal = _mm256_add_ps(aVal, bVal);
+-    _mm256_storeu_ps(cPtr,cVal); // Store the results back into the C container
++        _mm256_storeu_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 8;
+-    bPtr += 8;
+-    cPtr += 8;
+-  }
++        aPtr += 8;
++        bPtr += 8;
++        cPtr += 8;
++    }
+-  number = eighthPoints * 8;
++    number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) + (*bPtr++);
+-  }
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) + (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -154,54 +157,56 @@ volk_32f_x2_add_32f_u_avx(float* cVector, const float* aVector,
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32f_x2_add_32f_u_sse(float* cVector, const float* aVector,
+-                          const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_add_32f_u_sse(float* cVector,
++                                             const float* aVector,
++                                             const float* bVector,
++                                             unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m128 aVal, bVal, cVal;
+-  for(;number < quarterPoints; number++){
++    __m128 aVal, bVal, cVal;
++    for (; number < quarterPoints; number++) {
+-    aVal = _mm_loadu_ps(aPtr);
+-    bVal = _mm_loadu_ps(bPtr);
++        aVal = _mm_loadu_ps(aPtr);
++        bVal = _mm_loadu_ps(bPtr);
+-    cVal = _mm_add_ps(aVal, bVal);
++        cVal = _mm_add_ps(aVal, bVal);
+-    _mm_storeu_ps(cPtr,cVal); // Store the results back into the C container
++        _mm_storeu_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 4;
+-    bPtr += 4;
+-    cPtr += 4;
+-  }
++        aPtr += 4;
++        bPtr += 4;
++        cPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) + (*bPtr++);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) + (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_x2_add_32f_generic(float* cVector, const float* aVector,
+-                            const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_add_32f_generic(float* cVector,
++                                               const float* aVector,
++                                               const float* bVector,
++                                               unsigned int num_points)
+ {
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    *cPtr++ = (*aPtr++) + (*bPtr++);
+-  }
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) + (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -216,37 +221,38 @@ volk_32f_x2_add_32f_generic(float* cVector, const float* aVector,
+ #ifdef LV_HAVE_AVX512F
+ #include <immintrin.h>
+-static inline void
+-volk_32f_x2_add_32f_a_avx512f(float* cVector, const float* aVector,
+-                          const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_add_32f_a_avx512f(float* cVector,
++                                                 const float* aVector,
++                                                 const float* bVector,
++                                                 unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m512 aVal, bVal, cVal;
+-  for(;number < sixteenthPoints; number++){
++    __m512 aVal, bVal, cVal;
++    for (; number < sixteenthPoints; number++) {
+-    aVal = _mm512_load_ps(aPtr);
+-    bVal = _mm512_load_ps(bPtr);
++        aVal = _mm512_load_ps(aPtr);
++        bVal = _mm512_load_ps(bPtr);
+-    cVal = _mm512_add_ps(aVal, bVal);
++        cVal = _mm512_add_ps(aVal, bVal);
+-    _mm512_store_ps(cPtr,cVal); // Store the results back into the C container
++        _mm512_store_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 16;
+-    bPtr += 16;
+-    cPtr += 16;
+-  }
++        aPtr += 16;
++        bPtr += 16;
++        cPtr += 16;
++    }
+-  number = sixteenthPoints * 16;
++    number = sixteenthPoints * 16;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) + (*bPtr++);
+-  }
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) + (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX512F */
+@@ -255,70 +261,73 @@ volk_32f_x2_add_32f_a_avx512f(float* cVector, const float* aVector,
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32f_x2_add_32f_a_avx(float* cVector, const float* aVector,
+-                          const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_add_32f_a_avx(float* cVector,
++                                             const float* aVector,
++                                             const float* bVector,
++                                             unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m256 aVal, bVal, cVal;
+-  for(;number < eighthPoints; number++){
++    __m256 aVal, bVal, cVal;
++    for (; number < eighthPoints; number++) {
+-    aVal = _mm256_load_ps(aPtr);
+-    bVal = _mm256_load_ps(bPtr);
++        aVal = _mm256_load_ps(aPtr);
++        bVal = _mm256_load_ps(bPtr);
+-    cVal = _mm256_add_ps(aVal, bVal);
++        cVal = _mm256_add_ps(aVal, bVal);
+-    _mm256_store_ps(cPtr,cVal); // Store the results back into the C container
++        _mm256_store_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 8;
+-    bPtr += 8;
+-    cPtr += 8;
+-  }
++        aPtr += 8;
++        bPtr += 8;
++        cPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) + (*bPtr++);
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) + (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32f_x2_add_32f_a_sse(float* cVector, const float* aVector, const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_add_32f_a_sse(float* cVector,
++                                             const float* aVector,
++                                             const float* bVector,
++                                             unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m128 aVal, bVal, cVal;
+-  for(;number < quarterPoints; number++){
+-    aVal = _mm_load_ps(aPtr);
+-    bVal = _mm_load_ps(bPtr);
++    __m128 aVal, bVal, cVal;
++    for (; number < quarterPoints; number++) {
++        aVal = _mm_load_ps(aPtr);
++        bVal = _mm_load_ps(bPtr);
+-    cVal = _mm_add_ps(aVal, bVal);
++        cVal = _mm_add_ps(aVal, bVal);
+-    _mm_store_ps(cPtr,cVal); // Store the results back into the C container
++        _mm_store_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 4;
+-    bPtr += 4;
+-    cPtr += 4;
+-  }
++        aPtr += 4;
++        bPtr += 4;
++        cPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) + (*bPtr++);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) + (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+@@ -326,78 +335,89 @@ volk_32f_x2_add_32f_a_sse(float* cVector, const float* aVector, const float* bVe
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_32f_x2_add_32f_u_neon(float* cVector, const float* aVector,
+-                           const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_add_32f_u_neon(float* cVector,
++                                              const float* aVector,
++                                              const float* bVector,
++                                              unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
+-  float32x4_t aVal, bVal, cVal;
+-  for(number=0; number < quarterPoints; number++){
+-    // Load in to NEON registers
+-    aVal = vld1q_f32(aPtr);
+-    bVal = vld1q_f32(bPtr);
+-    __VOLK_PREFETCH(aPtr+4);
+-    __VOLK_PREFETCH(bPtr+4);
+-
+-    // vector add
+-    cVal = vaddq_f32(aVal, bVal);
+-    // Store the results back into the C container
+-    vst1q_f32(cPtr,cVal);
+-
+-    aPtr += 4; // q uses quadwords, 4 floats per vadd
+-    bPtr += 4;
+-    cPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4; // should be = num_points
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) + (*bPtr++);
+-  }
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
++    float32x4_t aVal, bVal, cVal;
++    for (number = 0; number < quarterPoints; number++) {
++        // Load in to NEON registers
++        aVal = vld1q_f32(aPtr);
++        bVal = vld1q_f32(bPtr);
++        __VOLK_PREFETCH(aPtr + 4);
++        __VOLK_PREFETCH(bPtr + 4);
++
++        // vector add
++        cVal = vaddq_f32(aVal, bVal);
++        // Store the results back into the C container
++        vst1q_f32(cPtr, cVal);
++
++        aPtr += 4; // q uses quadwords, 4 floats per vadd
++        bPtr += 4;
++        cPtr += 4;
++    }
++
++    number = quarterPoints * 4; // should be = num_points
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) + (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_NEONV7
+-extern void volk_32f_x2_add_32f_a_neonasm(float* cVector, const float* aVector, const float* bVector, unsigned int num_points);
++extern void volk_32f_x2_add_32f_a_neonasm(float* cVector,
++                                          const float* aVector,
++                                          const float* bVector,
++                                          unsigned int num_points);
+ #endif /* LV_HAVE_NEONV7 */
+ #ifdef LV_HAVE_NEONV7
+-extern void volk_32f_x2_add_32f_a_neonpipeline(float* cVector, const float* aVector, const float* bVector, unsigned int num_points);
++extern void volk_32f_x2_add_32f_a_neonpipeline(float* cVector,
++                                               const float* aVector,
++                                               const float* bVector,
++                                               unsigned int num_points);
+ #endif /* LV_HAVE_NEONV7 */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_x2_add_32f_a_generic(float* cVector, const float* aVector,
+-                              const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_add_32f_a_generic(float* cVector,
++                                                 const float* aVector,
++                                                 const float* bVector,
++                                                 unsigned int num_points)
+ {
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    *cPtr++ = (*aPtr++) + (*bPtr++);
+-  }
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) + (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_ORC
+-extern void
+-volk_32f_x2_add_32f_a_orc_impl(float* cVector, const float* aVector,
+-                               const float* bVector, unsigned int num_points);
++extern void volk_32f_x2_add_32f_a_orc_impl(float* cVector,
++                                           const float* aVector,
++                                           const float* bVector,
++                                           unsigned int num_points);
+-static inline void
+-volk_32f_x2_add_32f_u_orc(float* cVector, const float* aVector,
+-                          const float* bVector, unsigned int num_points){
+-  volk_32f_x2_add_32f_a_orc_impl(cVector, aVector, bVector, num_points);
++static inline void volk_32f_x2_add_32f_u_orc(float* cVector,
++                                             const float* aVector,
++                                             const float* bVector,
++                                             unsigned int num_points)
++{
++    volk_32f_x2_add_32f_a_orc_impl(cVector, aVector, bVector, num_points);
+ }
+ #endif /* LV_HAVE_ORC */
+diff --git a/kernels/volk/volk_32f_x2_divide_32f.h b/kernels/volk/volk_32f_x2_divide_32f.h
+index 130767f..8b80365 100644
+--- a/kernels/volk/volk_32f_x2_divide_32f.h
++++ b/kernels/volk/volk_32f_x2_divide_32f.h
+@@ -31,8 +31,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_x2_divide_32f(float* cVector, const float* aVector, const float* bVector, unsigned int num_points)
+- * \endcode
++ * void volk_32f_x2_divide_32f(float* cVector, const float* aVector, const float* bVector,
++ * unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li aVector: First vector of input points.
+@@ -77,35 +77,36 @@
+ #ifdef LV_HAVE_AVX512F
+ #include <immintrin.h>
+-static inline void
+-volk_32f_x2_divide_32f_a_avx512f(float* cVector, const float* aVector,
+-                             const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_divide_32f_a_avx512f(float* cVector,
++                                                    const float* aVector,
++                                                    const float* bVector,
++                                                    unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m512 aVal, bVal, cVal;
+-  for(;number < sixteenthPoints; number++){
+-    aVal = _mm512_load_ps(aPtr);
+-    bVal = _mm512_load_ps(bPtr);
++    __m512 aVal, bVal, cVal;
++    for (; number < sixteenthPoints; number++) {
++        aVal = _mm512_load_ps(aPtr);
++        bVal = _mm512_load_ps(bPtr);
+-    cVal = _mm512_div_ps(aVal, bVal);
++        cVal = _mm512_div_ps(aVal, bVal);
+-    _mm512_store_ps(cPtr,cVal); // Store the results back into the C container
++        _mm512_store_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 16;
+-    bPtr += 16;
+-    cPtr += 16;
+-  }
++        aPtr += 16;
++        bPtr += 16;
++        cPtr += 16;
++    }
+-  number = sixteenthPoints * 16;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) / (*bPtr++);
+-  }
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) / (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX512F */
+@@ -113,35 +114,36 @@ volk_32f_x2_divide_32f_a_avx512f(float* cVector, const float* aVector,
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32f_x2_divide_32f_a_avx(float* cVector, const float* aVector,
+-                             const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_divide_32f_a_avx(float* cVector,
++                                                const float* aVector,
++                                                const float* bVector,
++                                                unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m256 aVal, bVal, cVal;
+-  for(;number < eighthPoints; number++){
+-    aVal = _mm256_load_ps(aPtr);
+-    bVal = _mm256_load_ps(bPtr);
++    __m256 aVal, bVal, cVal;
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_load_ps(aPtr);
++        bVal = _mm256_load_ps(bPtr);
+-    cVal = _mm256_div_ps(aVal, bVal);
++        cVal = _mm256_div_ps(aVal, bVal);
+-    _mm256_store_ps(cPtr,cVal); // Store the results back into the C container
++        _mm256_store_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 8;
+-    bPtr += 8;
+-    cPtr += 8;
+-  }
++        aPtr += 8;
++        bPtr += 8;
++        cPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) / (*bPtr++);
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) / (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -149,35 +151,36 @@ volk_32f_x2_divide_32f_a_avx(float* cVector, const float* aVector,
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32f_x2_divide_32f_a_sse(float* cVector, const float* aVector,
+-                             const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_divide_32f_a_sse(float* cVector,
++                                                const float* aVector,
++                                                const float* bVector,
++                                                unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m128 aVal, bVal, cVal;
+-  for(;number < quarterPoints; number++){
+-    aVal = _mm_load_ps(aPtr);
+-    bVal = _mm_load_ps(bPtr);
++    __m128 aVal, bVal, cVal;
++    for (; number < quarterPoints; number++) {
++        aVal = _mm_load_ps(aPtr);
++        bVal = _mm_load_ps(bPtr);
+-    cVal = _mm_div_ps(aVal, bVal);
++        cVal = _mm_div_ps(aVal, bVal);
+-    _mm_store_ps(cPtr,cVal); // Store the results back into the C container
++        _mm_store_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 4;
+-    bPtr += 4;
+-    cPtr += 4;
+-  }
++        aPtr += 4;
++        bPtr += 4;
++        cPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) / (*bPtr++);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) / (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+@@ -185,54 +188,55 @@ volk_32f_x2_divide_32f_a_sse(float* cVector, const float* aVector,
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_32f_x2_divide_32f_neon(float* cVector, const float* aVector,
+-                          const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_divide_32f_neon(float* cVector,
++                                               const float* aVector,
++                                               const float* bVector,
++                                               unsigned int num_points)
+ {
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr = bVector;
+-
+-  float32x4x4_t aVal, bVal, bInv, cVal;
+-
+-  const unsigned int eighthPoints = num_points / 16;
+-  unsigned int number = 0;
+-  for(; number < eighthPoints; number++){
+-    aVal = vld4q_f32(aPtr);
+-    aPtr += 16;
+-    bVal = vld4q_f32(bPtr);
+-    bPtr += 16;
+-
+-    __VOLK_PREFETCH(aPtr+16);
+-    __VOLK_PREFETCH(bPtr+16);
+-
+-    bInv.val[0] = vrecpeq_f32(bVal.val[0]);
+-    bInv.val[0] = vmulq_f32(bInv.val[0], vrecpsq_f32(bInv.val[0], bVal.val[0]));
+-    bInv.val[0] = vmulq_f32(bInv.val[0], vrecpsq_f32(bInv.val[0], bVal.val[0]));
+-    cVal.val[0] = vmulq_f32(aVal.val[0], bInv.val[0]);
+-
+-    bInv.val[1] = vrecpeq_f32(bVal.val[1]);
+-    bInv.val[1] = vmulq_f32(bInv.val[1], vrecpsq_f32(bInv.val[1], bVal.val[1]));
+-    bInv.val[1] = vmulq_f32(bInv.val[1], vrecpsq_f32(bInv.val[1], bVal.val[1]));
+-    cVal.val[1] = vmulq_f32(aVal.val[1], bInv.val[1]);
+-
+-    bInv.val[2] = vrecpeq_f32(bVal.val[2]);
+-    bInv.val[2] = vmulq_f32(bInv.val[2], vrecpsq_f32(bInv.val[2], bVal.val[2]));
+-    bInv.val[2] = vmulq_f32(bInv.val[2], vrecpsq_f32(bInv.val[2], bVal.val[2]));
+-    cVal.val[2] = vmulq_f32(aVal.val[2], bInv.val[2]);
+-
+-    bInv.val[3] = vrecpeq_f32(bVal.val[3]);
+-    bInv.val[3] = vmulq_f32(bInv.val[3], vrecpsq_f32(bInv.val[3], bVal.val[3]));
+-    bInv.val[3] = vmulq_f32(bInv.val[3], vrecpsq_f32(bInv.val[3], bVal.val[3]));
+-    cVal.val[3] = vmulq_f32(aVal.val[3], bInv.val[3]);
+-
+-    vst4q_f32(cPtr, cVal);
+-    cPtr += 16;
+-  }
+-
+-  for(number = eighthPoints * 16; number < num_points; number++){
+-    *cPtr++ = (*aPtr++) / (*bPtr++);
+-  }
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
++
++    float32x4x4_t aVal, bVal, bInv, cVal;
++
++    const unsigned int eighthPoints = num_points / 16;
++    unsigned int number = 0;
++    for (; number < eighthPoints; number++) {
++        aVal = vld4q_f32(aPtr);
++        aPtr += 16;
++        bVal = vld4q_f32(bPtr);
++        bPtr += 16;
++
++        __VOLK_PREFETCH(aPtr + 16);
++        __VOLK_PREFETCH(bPtr + 16);
++
++        bInv.val[0] = vrecpeq_f32(bVal.val[0]);
++        bInv.val[0] = vmulq_f32(bInv.val[0], vrecpsq_f32(bInv.val[0], bVal.val[0]));
++        bInv.val[0] = vmulq_f32(bInv.val[0], vrecpsq_f32(bInv.val[0], bVal.val[0]));
++        cVal.val[0] = vmulq_f32(aVal.val[0], bInv.val[0]);
++
++        bInv.val[1] = vrecpeq_f32(bVal.val[1]);
++        bInv.val[1] = vmulq_f32(bInv.val[1], vrecpsq_f32(bInv.val[1], bVal.val[1]));
++        bInv.val[1] = vmulq_f32(bInv.val[1], vrecpsq_f32(bInv.val[1], bVal.val[1]));
++        cVal.val[1] = vmulq_f32(aVal.val[1], bInv.val[1]);
++
++        bInv.val[2] = vrecpeq_f32(bVal.val[2]);
++        bInv.val[2] = vmulq_f32(bInv.val[2], vrecpsq_f32(bInv.val[2], bVal.val[2]));
++        bInv.val[2] = vmulq_f32(bInv.val[2], vrecpsq_f32(bInv.val[2], bVal.val[2]));
++        cVal.val[2] = vmulq_f32(aVal.val[2], bInv.val[2]);
++
++        bInv.val[3] = vrecpeq_f32(bVal.val[3]);
++        bInv.val[3] = vmulq_f32(bInv.val[3], vrecpsq_f32(bInv.val[3], bVal.val[3]));
++        bInv.val[3] = vmulq_f32(bInv.val[3], vrecpsq_f32(bInv.val[3], bVal.val[3]));
++        cVal.val[3] = vmulq_f32(aVal.val[3], bInv.val[3]);
++
++        vst4q_f32(cPtr, cVal);
++        cPtr += 16;
++    }
++
++    for (number = eighthPoints * 16; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) / (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+@@ -240,38 +244,40 @@ volk_32f_x2_divide_32f_neon(float* cVector, const float* aVector,
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_x2_divide_32f_generic(float* cVector, const float* aVector,
+-                               const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_divide_32f_generic(float* cVector,
++                                                  const float* aVector,
++                                                  const float* bVector,
++                                                  unsigned int num_points)
+ {
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    *cPtr++ = (*aPtr++) / (*bPtr++);
+-  }
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) / (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_ORC
+-extern void
+-volk_32f_x2_divide_32f_a_orc_impl(float* cVector, const float* aVector,
+-                                  const float* bVector, unsigned int num_points);
++extern void volk_32f_x2_divide_32f_a_orc_impl(float* cVector,
++                                              const float* aVector,
++                                              const float* bVector,
++                                              unsigned int num_points);
+-static inline void
+-volk_32f_x2_divide_32f_u_orc(float* cVector, const float* aVector,
+-                             const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_divide_32f_u_orc(float* cVector,
++                                                const float* aVector,
++                                                const float* bVector,
++                                                unsigned int num_points)
+ {
+-  volk_32f_x2_divide_32f_a_orc_impl(cVector, aVector, bVector, num_points);
++    volk_32f_x2_divide_32f_a_orc_impl(cVector, aVector, bVector, num_points);
+ }
+ #endif /* LV_HAVE_ORC */
+-
+ #endif /* INCLUDED_volk_32f_x2_divide_32f_a_H */
+@@ -284,35 +290,36 @@ volk_32f_x2_divide_32f_u_orc(float* cVector, const float* aVector,
+ #ifdef LV_HAVE_AVX512F
+ #include <immintrin.h>
+-static inline void
+-volk_32f_x2_divide_32f_u_avx512f(float* cVector, const float* aVector,
+-                             const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_divide_32f_u_avx512f(float* cVector,
++                                                    const float* aVector,
++                                                    const float* bVector,
++                                                    unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m512 aVal, bVal, cVal;
+-  for(;number < sixteenthPoints; number++){
+-    aVal = _mm512_loadu_ps(aPtr);
+-    bVal = _mm512_loadu_ps(bPtr);
++    __m512 aVal, bVal, cVal;
++    for (; number < sixteenthPoints; number++) {
++        aVal = _mm512_loadu_ps(aPtr);
++        bVal = _mm512_loadu_ps(bPtr);
+-    cVal = _mm512_div_ps(aVal, bVal);
++        cVal = _mm512_div_ps(aVal, bVal);
+-    _mm512_storeu_ps(cPtr,cVal); // Store the results back into the C container
++        _mm512_storeu_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 16;
+-    bPtr += 16;
+-    cPtr += 16;
+-  }
++        aPtr += 16;
++        bPtr += 16;
++        cPtr += 16;
++    }
+-  number = sixteenthPoints * 16;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) / (*bPtr++);
+-  }
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) / (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX512F */
+@@ -320,35 +327,36 @@ volk_32f_x2_divide_32f_u_avx512f(float* cVector, const float* aVector,
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32f_x2_divide_32f_u_avx(float* cVector, const float* aVector,
+-                             const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_divide_32f_u_avx(float* cVector,
++                                                const float* aVector,
++                                                const float* bVector,
++                                                unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m256 aVal, bVal, cVal;
+-  for(;number < eighthPoints; number++){
+-    aVal = _mm256_loadu_ps(aPtr);
+-    bVal = _mm256_loadu_ps(bPtr);
++    __m256 aVal, bVal, cVal;
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_loadu_ps(aPtr);
++        bVal = _mm256_loadu_ps(bPtr);
+-    cVal = _mm256_div_ps(aVal, bVal);
++        cVal = _mm256_div_ps(aVal, bVal);
+-    _mm256_storeu_ps(cPtr,cVal); // Store the results back into the C container
++        _mm256_storeu_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 8;
+-    bPtr += 8;
+-    cPtr += 8;
+-  }
++        aPtr += 8;
++        bPtr += 8;
++        cPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) / (*bPtr++);
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) / (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+diff --git a/kernels/volk/volk_32f_x2_dot_prod_16i.h b/kernels/volk/volk_32f_x2_dot_prod_16i.h
+index c1b5a82..4da7db6 100644
+--- a/kernels/volk/volk_32f_x2_dot_prod_16i.h
++++ b/kernels/volk/volk_32f_x2_dot_prod_16i.h
+@@ -33,8 +33,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_x2_dot_prod_16i(int16_t* result, const float* input, const float* taps, unsigned int num_points)
+- * \endcode
++ * void volk_32f_x2_dot_prod_16i(int16_t* result, const float* input, const float* taps,
++ * unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li input: vector of floats.
+@@ -58,25 +58,29 @@
+ #ifndef INCLUDED_volk_32f_x2_dot_prod_16i_H
+ #define INCLUDED_volk_32f_x2_dot_prod_16i_H
+-#include <volk/volk_common.h>
+ #include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32f_x2_dot_prod_16i_generic(int16_t* result, const float* input, const float* taps, unsigned int num_points) {
++static inline void volk_32f_x2_dot_prod_16i_generic(int16_t* result,
++                                                    const float* input,
++                                                    const float* taps,
++                                                    unsigned int num_points)
++{
+-  float dotProduct = 0;
+-  const float* aPtr = input;
+-  const float* bPtr=  taps;
+-  unsigned int number = 0;
++    float dotProduct = 0;
++    const float* aPtr = input;
++    const float* bPtr = taps;
++    unsigned int number = 0;
+-  for(number = 0; number < num_points; number++){
+-    dotProduct += ((*aPtr++) * (*bPtr++));
+-  }
++    for (number = 0; number < num_points; number++) {
++        dotProduct += ((*aPtr++) * (*bPtr++));
++    }
+-  *result = (int16_t)dotProduct;
++    *result = (int16_t)dotProduct;
+ }
+ #endif /*LV_HAVE_GENERIC*/
+@@ -84,68 +88,73 @@ static inline void volk_32f_x2_dot_prod_16i_generic(int16_t* result, const float
+ #ifdef LV_HAVE_SSE
+-static inline void volk_32f_x2_dot_prod_16i_a_sse(int16_t* result, const  float* input, const  float* taps, unsigned int num_points) {
+-
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
+-
+-  float dotProduct = 0;
+-  const float* aPtr = input;
+-  const float* bPtr = taps;
+-
+-  __m128 a0Val, a1Val, a2Val, a3Val;
+-  __m128 b0Val, b1Val, b2Val, b3Val;
+-  __m128 c0Val, c1Val, c2Val, c3Val;
+-
+-  __m128 dotProdVal0 = _mm_setzero_ps();
+-  __m128 dotProdVal1 = _mm_setzero_ps();
+-  __m128 dotProdVal2 = _mm_setzero_ps();
+-  __m128 dotProdVal3 = _mm_setzero_ps();
+-
+-  for(;number < sixteenthPoints; number++){
+-
+-    a0Val = _mm_load_ps(aPtr);
+-    a1Val = _mm_load_ps(aPtr+4);
+-    a2Val = _mm_load_ps(aPtr+8);
+-    a3Val = _mm_load_ps(aPtr+12);
+-    b0Val = _mm_load_ps(bPtr);
+-    b1Val = _mm_load_ps(bPtr+4);
+-    b2Val = _mm_load_ps(bPtr+8);
+-    b3Val = _mm_load_ps(bPtr+12);
+-
+-    c0Val = _mm_mul_ps(a0Val, b0Val);
+-    c1Val = _mm_mul_ps(a1Val, b1Val);
+-    c2Val = _mm_mul_ps(a2Val, b2Val);
+-    c3Val = _mm_mul_ps(a3Val, b3Val);
+-
+-    dotProdVal0 = _mm_add_ps(c0Val, dotProdVal0);
+-    dotProdVal1 = _mm_add_ps(c1Val, dotProdVal1);
+-    dotProdVal2 = _mm_add_ps(c2Val, dotProdVal2);
+-    dotProdVal3 = _mm_add_ps(c3Val, dotProdVal3);
+-
+-    aPtr += 16;
+-    bPtr += 16;
+-  }
+-
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal1);
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal2);
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal3);
+-
+-  __VOLK_ATTR_ALIGNED(16) float dotProductVector[4];
+-
+-  _mm_store_ps(dotProductVector,dotProdVal0); // Store the results back into the dot product vector
+-
+-  dotProduct = dotProductVector[0];
+-  dotProduct += dotProductVector[1];
+-  dotProduct += dotProductVector[2];
+-  dotProduct += dotProductVector[3];
+-
+-  number = sixteenthPoints*16;
+-  for(;number < num_points; number++){
+-    dotProduct += ((*aPtr++) * (*bPtr++));
+-  }
+-
+-  *result = (short)dotProduct;
++static inline void volk_32f_x2_dot_prod_16i_a_sse(int16_t* result,
++                                                  const float* input,
++                                                  const float* taps,
++                                                  unsigned int num_points)
++{
++
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
++
++    float dotProduct = 0;
++    const float* aPtr = input;
++    const float* bPtr = taps;
++
++    __m128 a0Val, a1Val, a2Val, a3Val;
++    __m128 b0Val, b1Val, b2Val, b3Val;
++    __m128 c0Val, c1Val, c2Val, c3Val;
++
++    __m128 dotProdVal0 = _mm_setzero_ps();
++    __m128 dotProdVal1 = _mm_setzero_ps();
++    __m128 dotProdVal2 = _mm_setzero_ps();
++    __m128 dotProdVal3 = _mm_setzero_ps();
++
++    for (; number < sixteenthPoints; number++) {
++
++        a0Val = _mm_load_ps(aPtr);
++        a1Val = _mm_load_ps(aPtr + 4);
++        a2Val = _mm_load_ps(aPtr + 8);
++        a3Val = _mm_load_ps(aPtr + 12);
++        b0Val = _mm_load_ps(bPtr);
++        b1Val = _mm_load_ps(bPtr + 4);
++        b2Val = _mm_load_ps(bPtr + 8);
++        b3Val = _mm_load_ps(bPtr + 12);
++
++        c0Val = _mm_mul_ps(a0Val, b0Val);
++        c1Val = _mm_mul_ps(a1Val, b1Val);
++        c2Val = _mm_mul_ps(a2Val, b2Val);
++        c3Val = _mm_mul_ps(a3Val, b3Val);
++
++        dotProdVal0 = _mm_add_ps(c0Val, dotProdVal0);
++        dotProdVal1 = _mm_add_ps(c1Val, dotProdVal1);
++        dotProdVal2 = _mm_add_ps(c2Val, dotProdVal2);
++        dotProdVal3 = _mm_add_ps(c3Val, dotProdVal3);
++
++        aPtr += 16;
++        bPtr += 16;
++    }
++
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal1);
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal2);
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal3);
++
++    __VOLK_ATTR_ALIGNED(16) float dotProductVector[4];
++
++    _mm_store_ps(dotProductVector,
++                 dotProdVal0); // Store the results back into the dot product vector
++
++    dotProduct = dotProductVector[0];
++    dotProduct += dotProductVector[1];
++    dotProduct += dotProductVector[2];
++    dotProduct += dotProductVector[3];
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        dotProduct += ((*aPtr++) * (*bPtr++));
++    }
++
++    *result = (short)dotProduct;
+ }
+ #endif /*LV_HAVE_SSE*/
+@@ -153,66 +162,71 @@ static inline void volk_32f_x2_dot_prod_16i_a_sse(int16_t* result, const  float*
+ #if LV_HAVE_AVX2 && LV_HAVE_FMA
+-static inline void volk_32f_x2_dot_prod_16i_a_avx2_fma(int16_t* result, const  float* input, const  float* taps, unsigned int num_points) {
+-
+-  unsigned int number = 0;
+-  const unsigned int thirtysecondPoints = num_points / 32;
+-
+-  float dotProduct = 0;
+-  const float* aPtr = input;
+-  const float* bPtr = taps;
+-
+-  __m256 a0Val, a1Val, a2Val, a3Val;
+-  __m256 b0Val, b1Val, b2Val, b3Val;
+-
+-  __m256 dotProdVal0 = _mm256_setzero_ps();
+-  __m256 dotProdVal1 = _mm256_setzero_ps();
+-  __m256 dotProdVal2 = _mm256_setzero_ps();
+-  __m256 dotProdVal3 = _mm256_setzero_ps();
+-
+-  for(;number < thirtysecondPoints; number++){
+-
+-    a0Val = _mm256_load_ps(aPtr);
+-    a1Val = _mm256_load_ps(aPtr+8);
+-    a2Val = _mm256_load_ps(aPtr+16);
+-    a3Val = _mm256_load_ps(aPtr+24);
+-    b0Val = _mm256_load_ps(bPtr);
+-    b1Val = _mm256_load_ps(bPtr+8);
+-    b2Val = _mm256_load_ps(bPtr+16);
+-    b3Val = _mm256_load_ps(bPtr+24);
+-
+-    dotProdVal0 = _mm256_fmadd_ps(a0Val, b0Val, dotProdVal0);
+-    dotProdVal1 = _mm256_fmadd_ps(a1Val, b1Val, dotProdVal1);
+-    dotProdVal2 = _mm256_fmadd_ps(a2Val, b2Val, dotProdVal2);
+-    dotProdVal3 = _mm256_fmadd_ps(a3Val, b3Val, dotProdVal3);
+-
+-    aPtr += 32;
+-    bPtr += 32;
+-  }
+-
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal1);
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal2);
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal3);
+-
+-  __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
+-
+-  _mm256_store_ps(dotProductVector,dotProdVal0); // Store the results back into the dot product vector
+-
+-  dotProduct = dotProductVector[0];
+-  dotProduct += dotProductVector[1];
+-  dotProduct += dotProductVector[2];
+-  dotProduct += dotProductVector[3];
+-  dotProduct += dotProductVector[4];
+-  dotProduct += dotProductVector[5];
+-  dotProduct += dotProductVector[6];
+-  dotProduct += dotProductVector[7];
+-
+-  number = thirtysecondPoints*32;
+-  for(;number < num_points; number++){
+-    dotProduct += ((*aPtr++) * (*bPtr++));
+-  }
+-
+-  *result = (short)dotProduct;
++static inline void volk_32f_x2_dot_prod_16i_a_avx2_fma(int16_t* result,
++                                                       const float* input,
++                                                       const float* taps,
++                                                       unsigned int num_points)
++{
++
++    unsigned int number = 0;
++    const unsigned int thirtysecondPoints = num_points / 32;
++
++    float dotProduct = 0;
++    const float* aPtr = input;
++    const float* bPtr = taps;
++
++    __m256 a0Val, a1Val, a2Val, a3Val;
++    __m256 b0Val, b1Val, b2Val, b3Val;
++
++    __m256 dotProdVal0 = _mm256_setzero_ps();
++    __m256 dotProdVal1 = _mm256_setzero_ps();
++    __m256 dotProdVal2 = _mm256_setzero_ps();
++    __m256 dotProdVal3 = _mm256_setzero_ps();
++
++    for (; number < thirtysecondPoints; number++) {
++
++        a0Val = _mm256_load_ps(aPtr);
++        a1Val = _mm256_load_ps(aPtr + 8);
++        a2Val = _mm256_load_ps(aPtr + 16);
++        a3Val = _mm256_load_ps(aPtr + 24);
++        b0Val = _mm256_load_ps(bPtr);
++        b1Val = _mm256_load_ps(bPtr + 8);
++        b2Val = _mm256_load_ps(bPtr + 16);
++        b3Val = _mm256_load_ps(bPtr + 24);
++
++        dotProdVal0 = _mm256_fmadd_ps(a0Val, b0Val, dotProdVal0);
++        dotProdVal1 = _mm256_fmadd_ps(a1Val, b1Val, dotProdVal1);
++        dotProdVal2 = _mm256_fmadd_ps(a2Val, b2Val, dotProdVal2);
++        dotProdVal3 = _mm256_fmadd_ps(a3Val, b3Val, dotProdVal3);
++
++        aPtr += 32;
++        bPtr += 32;
++    }
++
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal1);
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal2);
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal3);
++
++    __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
++
++    _mm256_store_ps(dotProductVector,
++                    dotProdVal0); // Store the results back into the dot product vector
++
++    dotProduct = dotProductVector[0];
++    dotProduct += dotProductVector[1];
++    dotProduct += dotProductVector[2];
++    dotProduct += dotProductVector[3];
++    dotProduct += dotProductVector[4];
++    dotProduct += dotProductVector[5];
++    dotProduct += dotProductVector[6];
++    dotProduct += dotProductVector[7];
++
++    number = thirtysecondPoints * 32;
++    for (; number < num_points; number++) {
++        dotProduct += ((*aPtr++) * (*bPtr++));
++    }
++
++    *result = (short)dotProduct;
+ }
+ #endif /*LV_HAVE_AVX2 && LV_HAVE_FMA*/
+@@ -220,146 +234,156 @@ static inline void volk_32f_x2_dot_prod_16i_a_avx2_fma(int16_t* result, const  f
+ #ifdef LV_HAVE_AVX
+-static inline void volk_32f_x2_dot_prod_16i_a_avx(int16_t* result, const  float* input, const  float* taps, unsigned int num_points) {
+-
+-  unsigned int number = 0;
+-  const unsigned int thirtysecondPoints = num_points / 32;
+-
+-  float dotProduct = 0;
+-  const float* aPtr = input;
+-  const float* bPtr = taps;
+-
+-  __m256 a0Val, a1Val, a2Val, a3Val;
+-  __m256 b0Val, b1Val, b2Val, b3Val;
+-  __m256 c0Val, c1Val, c2Val, c3Val;
+-
+-  __m256 dotProdVal0 = _mm256_setzero_ps();
+-  __m256 dotProdVal1 = _mm256_setzero_ps();
+-  __m256 dotProdVal2 = _mm256_setzero_ps();
+-  __m256 dotProdVal3 = _mm256_setzero_ps();
+-
+-  for(;number < thirtysecondPoints; number++){
+-
+-    a0Val = _mm256_load_ps(aPtr);
+-    a1Val = _mm256_load_ps(aPtr+8);
+-    a2Val = _mm256_load_ps(aPtr+16);
+-    a3Val = _mm256_load_ps(aPtr+24);
+-    b0Val = _mm256_load_ps(bPtr);
+-    b1Val = _mm256_load_ps(bPtr+8);
+-    b2Val = _mm256_load_ps(bPtr+16);
+-    b3Val = _mm256_load_ps(bPtr+24);
+-
+-    c0Val = _mm256_mul_ps(a0Val, b0Val);
+-    c1Val = _mm256_mul_ps(a1Val, b1Val);
+-    c2Val = _mm256_mul_ps(a2Val, b2Val);
+-    c3Val = _mm256_mul_ps(a3Val, b3Val);
+-
+-    dotProdVal0 = _mm256_add_ps(c0Val, dotProdVal0);
+-    dotProdVal1 = _mm256_add_ps(c1Val, dotProdVal1);
+-    dotProdVal2 = _mm256_add_ps(c2Val, dotProdVal2);
+-    dotProdVal3 = _mm256_add_ps(c3Val, dotProdVal3);
+-
+-    aPtr += 32;
+-    bPtr += 32;
+-  }
+-
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal1);
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal2);
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal3);
+-
+-  __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
+-
+-  _mm256_store_ps(dotProductVector,dotProdVal0); // Store the results back into the dot product vector
+-
+-  dotProduct = dotProductVector[0];
+-  dotProduct += dotProductVector[1];
+-  dotProduct += dotProductVector[2];
+-  dotProduct += dotProductVector[3];
+-  dotProduct += dotProductVector[4];
+-  dotProduct += dotProductVector[5];
+-  dotProduct += dotProductVector[6];
+-  dotProduct += dotProductVector[7];
+-
+-  number = thirtysecondPoints*32;
+-  for(;number < num_points; number++){
+-    dotProduct += ((*aPtr++) * (*bPtr++));
+-  }
+-
+-  *result = (short)dotProduct;
++static inline void volk_32f_x2_dot_prod_16i_a_avx(int16_t* result,
++                                                  const float* input,
++                                                  const float* taps,
++                                                  unsigned int num_points)
++{
++
++    unsigned int number = 0;
++    const unsigned int thirtysecondPoints = num_points / 32;
++
++    float dotProduct = 0;
++    const float* aPtr = input;
++    const float* bPtr = taps;
++
++    __m256 a0Val, a1Val, a2Val, a3Val;
++    __m256 b0Val, b1Val, b2Val, b3Val;
++    __m256 c0Val, c1Val, c2Val, c3Val;
++
++    __m256 dotProdVal0 = _mm256_setzero_ps();
++    __m256 dotProdVal1 = _mm256_setzero_ps();
++    __m256 dotProdVal2 = _mm256_setzero_ps();
++    __m256 dotProdVal3 = _mm256_setzero_ps();
++
++    for (; number < thirtysecondPoints; number++) {
++
++        a0Val = _mm256_load_ps(aPtr);
++        a1Val = _mm256_load_ps(aPtr + 8);
++        a2Val = _mm256_load_ps(aPtr + 16);
++        a3Val = _mm256_load_ps(aPtr + 24);
++        b0Val = _mm256_load_ps(bPtr);
++        b1Val = _mm256_load_ps(bPtr + 8);
++        b2Val = _mm256_load_ps(bPtr + 16);
++        b3Val = _mm256_load_ps(bPtr + 24);
++
++        c0Val = _mm256_mul_ps(a0Val, b0Val);
++        c1Val = _mm256_mul_ps(a1Val, b1Val);
++        c2Val = _mm256_mul_ps(a2Val, b2Val);
++        c3Val = _mm256_mul_ps(a3Val, b3Val);
++
++        dotProdVal0 = _mm256_add_ps(c0Val, dotProdVal0);
++        dotProdVal1 = _mm256_add_ps(c1Val, dotProdVal1);
++        dotProdVal2 = _mm256_add_ps(c2Val, dotProdVal2);
++        dotProdVal3 = _mm256_add_ps(c3Val, dotProdVal3);
++
++        aPtr += 32;
++        bPtr += 32;
++    }
++
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal1);
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal2);
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal3);
++
++    __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
++
++    _mm256_store_ps(dotProductVector,
++                    dotProdVal0); // Store the results back into the dot product vector
++
++    dotProduct = dotProductVector[0];
++    dotProduct += dotProductVector[1];
++    dotProduct += dotProductVector[2];
++    dotProduct += dotProductVector[3];
++    dotProduct += dotProductVector[4];
++    dotProduct += dotProductVector[5];
++    dotProduct += dotProductVector[6];
++    dotProduct += dotProductVector[7];
++
++    number = thirtysecondPoints * 32;
++    for (; number < num_points; number++) {
++        dotProduct += ((*aPtr++) * (*bPtr++));
++    }
++
++    *result = (short)dotProduct;
+ }
+ #endif /*LV_HAVE_AVX*/
+ #ifdef LV_HAVE_AVX512F
+-static inline void volk_32f_x2_dot_prod_16i_a_avx512f(int16_t* result, const  float* input, const  float* taps, unsigned int num_points) {
+-
+-  unsigned int number = 0;
+-  const unsigned int sixtyfourthPoints = num_points / 64;
+-
+-  float dotProduct = 0;
+-  const float* aPtr = input;
+-  const float* bPtr = taps;
+-
+-  __m512 a0Val, a1Val, a2Val, a3Val;
+-  __m512 b0Val, b1Val, b2Val, b3Val;
+-
+-  __m512 dotProdVal0 = _mm512_setzero_ps();
+-  __m512 dotProdVal1 = _mm512_setzero_ps();
+-  __m512 dotProdVal2 = _mm512_setzero_ps();
+-  __m512 dotProdVal3 = _mm512_setzero_ps();
+-
+-  for(;number < sixtyfourthPoints; number++){
+-
+-    a0Val = _mm512_load_ps(aPtr);
+-    a1Val = _mm512_load_ps(aPtr+16);
+-    a2Val = _mm512_load_ps(aPtr+32);
+-    a3Val = _mm512_load_ps(aPtr+48);
+-    b0Val = _mm512_load_ps(bPtr);
+-    b1Val = _mm512_load_ps(bPtr+16);
+-    b2Val = _mm512_load_ps(bPtr+32);
+-    b3Val = _mm512_load_ps(bPtr+48);
+-
+-    dotProdVal0 = _mm512_fmadd_ps(a0Val, b0Val, dotProdVal0);
+-    dotProdVal1 = _mm512_fmadd_ps(a1Val, b1Val, dotProdVal1);
+-    dotProdVal2 = _mm512_fmadd_ps(a2Val, b2Val, dotProdVal2);
+-    dotProdVal3 = _mm512_fmadd_ps(a3Val, b3Val, dotProdVal3);
+-
+-    aPtr += 64;
+-    bPtr += 64;
+-  }
+-
+-  dotProdVal0 = _mm512_add_ps(dotProdVal0, dotProdVal1);
+-  dotProdVal0 = _mm512_add_ps(dotProdVal0, dotProdVal2);
+-  dotProdVal0 = _mm512_add_ps(dotProdVal0, dotProdVal3);
+-
+-  __VOLK_ATTR_ALIGNED(64) float dotProductVector[16];
+-
+-  _mm512_store_ps(dotProductVector,dotProdVal0); // Store the results back into the dot product vector
+-
+-  dotProduct = dotProductVector[0];
+-  dotProduct += dotProductVector[1];
+-  dotProduct += dotProductVector[2];
+-  dotProduct += dotProductVector[3];
+-  dotProduct += dotProductVector[4];
+-  dotProduct += dotProductVector[5];
+-  dotProduct += dotProductVector[6];
+-  dotProduct += dotProductVector[7];
+-  dotProduct += dotProductVector[8];
+-  dotProduct += dotProductVector[9];
+-  dotProduct += dotProductVector[10];
+-  dotProduct += dotProductVector[11];
+-  dotProduct += dotProductVector[12];
+-  dotProduct += dotProductVector[13];
+-  dotProduct += dotProductVector[14];
+-  dotProduct += dotProductVector[15];
+-
+-  number = sixtyfourthPoints*64;
+-  for(;number < num_points; number++){
+-    dotProduct += ((*aPtr++) * (*bPtr++));
+-  }
+-
+-  *result = (short)dotProduct;
++static inline void volk_32f_x2_dot_prod_16i_a_avx512f(int16_t* result,
++                                                      const float* input,
++                                                      const float* taps,
++                                                      unsigned int num_points)
++{
++
++    unsigned int number = 0;
++    const unsigned int sixtyfourthPoints = num_points / 64;
++
++    float dotProduct = 0;
++    const float* aPtr = input;
++    const float* bPtr = taps;
++
++    __m512 a0Val, a1Val, a2Val, a3Val;
++    __m512 b0Val, b1Val, b2Val, b3Val;
++
++    __m512 dotProdVal0 = _mm512_setzero_ps();
++    __m512 dotProdVal1 = _mm512_setzero_ps();
++    __m512 dotProdVal2 = _mm512_setzero_ps();
++    __m512 dotProdVal3 = _mm512_setzero_ps();
++
++    for (; number < sixtyfourthPoints; number++) {
++
++        a0Val = _mm512_load_ps(aPtr);
++        a1Val = _mm512_load_ps(aPtr + 16);
++        a2Val = _mm512_load_ps(aPtr + 32);
++        a3Val = _mm512_load_ps(aPtr + 48);
++        b0Val = _mm512_load_ps(bPtr);
++        b1Val = _mm512_load_ps(bPtr + 16);
++        b2Val = _mm512_load_ps(bPtr + 32);
++        b3Val = _mm512_load_ps(bPtr + 48);
++
++        dotProdVal0 = _mm512_fmadd_ps(a0Val, b0Val, dotProdVal0);
++        dotProdVal1 = _mm512_fmadd_ps(a1Val, b1Val, dotProdVal1);
++        dotProdVal2 = _mm512_fmadd_ps(a2Val, b2Val, dotProdVal2);
++        dotProdVal3 = _mm512_fmadd_ps(a3Val, b3Val, dotProdVal3);
++
++        aPtr += 64;
++        bPtr += 64;
++    }
++
++    dotProdVal0 = _mm512_add_ps(dotProdVal0, dotProdVal1);
++    dotProdVal0 = _mm512_add_ps(dotProdVal0, dotProdVal2);
++    dotProdVal0 = _mm512_add_ps(dotProdVal0, dotProdVal3);
++
++    __VOLK_ATTR_ALIGNED(64) float dotProductVector[16];
++
++    _mm512_store_ps(dotProductVector,
++                    dotProdVal0); // Store the results back into the dot product vector
++
++    dotProduct = dotProductVector[0];
++    dotProduct += dotProductVector[1];
++    dotProduct += dotProductVector[2];
++    dotProduct += dotProductVector[3];
++    dotProduct += dotProductVector[4];
++    dotProduct += dotProductVector[5];
++    dotProduct += dotProductVector[6];
++    dotProduct += dotProductVector[7];
++    dotProduct += dotProductVector[8];
++    dotProduct += dotProductVector[9];
++    dotProduct += dotProductVector[10];
++    dotProduct += dotProductVector[11];
++    dotProduct += dotProductVector[12];
++    dotProduct += dotProductVector[13];
++    dotProduct += dotProductVector[14];
++    dotProduct += dotProductVector[15];
++
++    number = sixtyfourthPoints * 64;
++    for (; number < num_points; number++) {
++        dotProduct += ((*aPtr++) * (*bPtr++));
++    }
++
++    *result = (short)dotProduct;
+ }
+ #endif /*LV_HAVE_AVX512F*/
+@@ -367,68 +391,73 @@ static inline void volk_32f_x2_dot_prod_16i_a_avx512f(int16_t* result, const  fl
+ #ifdef LV_HAVE_SSE
+-static inline void volk_32f_x2_dot_prod_16i_u_sse(int16_t* result, const  float* input, const  float* taps, unsigned int num_points) {
+-
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
+-
+-  float dotProduct = 0;
+-  const float* aPtr = input;
+-  const float* bPtr = taps;
+-
+-  __m128 a0Val, a1Val, a2Val, a3Val;
+-  __m128 b0Val, b1Val, b2Val, b3Val;
+-  __m128 c0Val, c1Val, c2Val, c3Val;
+-
+-  __m128 dotProdVal0 = _mm_setzero_ps();
+-  __m128 dotProdVal1 = _mm_setzero_ps();
+-  __m128 dotProdVal2 = _mm_setzero_ps();
+-  __m128 dotProdVal3 = _mm_setzero_ps();
+-
+-  for(;number < sixteenthPoints; number++){
+-
+-    a0Val = _mm_loadu_ps(aPtr);
+-    a1Val = _mm_loadu_ps(aPtr+4);
+-    a2Val = _mm_loadu_ps(aPtr+8);
+-    a3Val = _mm_loadu_ps(aPtr+12);
+-    b0Val = _mm_loadu_ps(bPtr);
+-    b1Val = _mm_loadu_ps(bPtr+4);
+-    b2Val = _mm_loadu_ps(bPtr+8);
+-    b3Val = _mm_loadu_ps(bPtr+12);
+-
+-    c0Val = _mm_mul_ps(a0Val, b0Val);
+-    c1Val = _mm_mul_ps(a1Val, b1Val);
+-    c2Val = _mm_mul_ps(a2Val, b2Val);
+-    c3Val = _mm_mul_ps(a3Val, b3Val);
+-
+-    dotProdVal0 = _mm_add_ps(c0Val, dotProdVal0);
+-    dotProdVal1 = _mm_add_ps(c1Val, dotProdVal1);
+-    dotProdVal2 = _mm_add_ps(c2Val, dotProdVal2);
+-    dotProdVal3 = _mm_add_ps(c3Val, dotProdVal3);
+-
+-    aPtr += 16;
+-    bPtr += 16;
+-  }
+-
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal1);
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal2);
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal3);
+-
+-  __VOLK_ATTR_ALIGNED(16) float dotProductVector[4];
+-
+-  _mm_store_ps(dotProductVector,dotProdVal0); // Store the results back into the dot product vector
+-
+-  dotProduct = dotProductVector[0];
+-  dotProduct += dotProductVector[1];
+-  dotProduct += dotProductVector[2];
+-  dotProduct += dotProductVector[3];
+-
+-  number = sixteenthPoints*16;
+-  for(;number < num_points; number++){
+-    dotProduct += ((*aPtr++) * (*bPtr++));
+-  }
+-
+-  *result = (short)dotProduct;
++static inline void volk_32f_x2_dot_prod_16i_u_sse(int16_t* result,
++                                                  const float* input,
++                                                  const float* taps,
++                                                  unsigned int num_points)
++{
++
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
++
++    float dotProduct = 0;
++    const float* aPtr = input;
++    const float* bPtr = taps;
++
++    __m128 a0Val, a1Val, a2Val, a3Val;
++    __m128 b0Val, b1Val, b2Val, b3Val;
++    __m128 c0Val, c1Val, c2Val, c3Val;
++
++    __m128 dotProdVal0 = _mm_setzero_ps();
++    __m128 dotProdVal1 = _mm_setzero_ps();
++    __m128 dotProdVal2 = _mm_setzero_ps();
++    __m128 dotProdVal3 = _mm_setzero_ps();
++
++    for (; number < sixteenthPoints; number++) {
++
++        a0Val = _mm_loadu_ps(aPtr);
++        a1Val = _mm_loadu_ps(aPtr + 4);
++        a2Val = _mm_loadu_ps(aPtr + 8);
++        a3Val = _mm_loadu_ps(aPtr + 12);
++        b0Val = _mm_loadu_ps(bPtr);
++        b1Val = _mm_loadu_ps(bPtr + 4);
++        b2Val = _mm_loadu_ps(bPtr + 8);
++        b3Val = _mm_loadu_ps(bPtr + 12);
++
++        c0Val = _mm_mul_ps(a0Val, b0Val);
++        c1Val = _mm_mul_ps(a1Val, b1Val);
++        c2Val = _mm_mul_ps(a2Val, b2Val);
++        c3Val = _mm_mul_ps(a3Val, b3Val);
++
++        dotProdVal0 = _mm_add_ps(c0Val, dotProdVal0);
++        dotProdVal1 = _mm_add_ps(c1Val, dotProdVal1);
++        dotProdVal2 = _mm_add_ps(c2Val, dotProdVal2);
++        dotProdVal3 = _mm_add_ps(c3Val, dotProdVal3);
++
++        aPtr += 16;
++        bPtr += 16;
++    }
++
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal1);
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal2);
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal3);
++
++    __VOLK_ATTR_ALIGNED(16) float dotProductVector[4];
++
++    _mm_store_ps(dotProductVector,
++                 dotProdVal0); // Store the results back into the dot product vector
++
++    dotProduct = dotProductVector[0];
++    dotProduct += dotProductVector[1];
++    dotProduct += dotProductVector[2];
++    dotProduct += dotProductVector[3];
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        dotProduct += ((*aPtr++) * (*bPtr++));
++    }
++
++    *result = (short)dotProduct;
+ }
+ #endif /*LV_HAVE_SSE*/
+@@ -436,66 +465,71 @@ static inline void volk_32f_x2_dot_prod_16i_u_sse(int16_t* result, const  float*
+ #if LV_HAVE_AVX2 && LV_HAVE_FMA
+-static inline void volk_32f_x2_dot_prod_16i_u_avx2_fma(int16_t* result, const  float* input, const  float* taps, unsigned int num_points) {
+-
+-  unsigned int number = 0;
+-  const unsigned int thirtysecondPoints = num_points / 32;
+-
+-  float dotProduct = 0;
+-  const float* aPtr = input;
+-  const float* bPtr = taps;
+-
+-  __m256 a0Val, a1Val, a2Val, a3Val;
+-  __m256 b0Val, b1Val, b2Val, b3Val;
+-
+-  __m256 dotProdVal0 = _mm256_setzero_ps();
+-  __m256 dotProdVal1 = _mm256_setzero_ps();
+-  __m256 dotProdVal2 = _mm256_setzero_ps();
+-  __m256 dotProdVal3 = _mm256_setzero_ps();
+-
+-  for(;number < thirtysecondPoints; number++){
+-
+-    a0Val = _mm256_loadu_ps(aPtr);
+-    a1Val = _mm256_loadu_ps(aPtr+8);
+-    a2Val = _mm256_loadu_ps(aPtr+16);
+-    a3Val = _mm256_loadu_ps(aPtr+24);
+-    b0Val = _mm256_loadu_ps(bPtr);
+-    b1Val = _mm256_loadu_ps(bPtr+8);
+-    b2Val = _mm256_loadu_ps(bPtr+16);
+-    b3Val = _mm256_loadu_ps(bPtr+24);
+-
+-    dotProdVal0 = _mm256_fmadd_ps(a0Val, b0Val, dotProdVal0);
+-    dotProdVal1 = _mm256_fmadd_ps(a1Val, b1Val, dotProdVal1);
+-    dotProdVal2 = _mm256_fmadd_ps(a2Val, b2Val, dotProdVal2);
+-    dotProdVal3 = _mm256_fmadd_ps(a3Val, b3Val, dotProdVal3);
+-
+-    aPtr += 32;
+-    bPtr += 32;
+-  }
+-
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal1);
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal2);
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal3);
+-
+-  __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
+-
+-  _mm256_store_ps(dotProductVector,dotProdVal0); // Store the results back into the dot product vector
+-
+-  dotProduct = dotProductVector[0];
+-  dotProduct += dotProductVector[1];
+-  dotProduct += dotProductVector[2];
+-  dotProduct += dotProductVector[3];
+-  dotProduct += dotProductVector[4];
+-  dotProduct += dotProductVector[5];
+-  dotProduct += dotProductVector[6];
+-  dotProduct += dotProductVector[7];
+-
+-  number = thirtysecondPoints*32;
+-  for(;number < num_points; number++){
+-    dotProduct += ((*aPtr++) * (*bPtr++));
+-  }
+-
+-  *result = (short)dotProduct;
++static inline void volk_32f_x2_dot_prod_16i_u_avx2_fma(int16_t* result,
++                                                       const float* input,
++                                                       const float* taps,
++                                                       unsigned int num_points)
++{
++
++    unsigned int number = 0;
++    const unsigned int thirtysecondPoints = num_points / 32;
++
++    float dotProduct = 0;
++    const float* aPtr = input;
++    const float* bPtr = taps;
++
++    __m256 a0Val, a1Val, a2Val, a3Val;
++    __m256 b0Val, b1Val, b2Val, b3Val;
++
++    __m256 dotProdVal0 = _mm256_setzero_ps();
++    __m256 dotProdVal1 = _mm256_setzero_ps();
++    __m256 dotProdVal2 = _mm256_setzero_ps();
++    __m256 dotProdVal3 = _mm256_setzero_ps();
++
++    for (; number < thirtysecondPoints; number++) {
++
++        a0Val = _mm256_loadu_ps(aPtr);
++        a1Val = _mm256_loadu_ps(aPtr + 8);
++        a2Val = _mm256_loadu_ps(aPtr + 16);
++        a3Val = _mm256_loadu_ps(aPtr + 24);
++        b0Val = _mm256_loadu_ps(bPtr);
++        b1Val = _mm256_loadu_ps(bPtr + 8);
++        b2Val = _mm256_loadu_ps(bPtr + 16);
++        b3Val = _mm256_loadu_ps(bPtr + 24);
++
++        dotProdVal0 = _mm256_fmadd_ps(a0Val, b0Val, dotProdVal0);
++        dotProdVal1 = _mm256_fmadd_ps(a1Val, b1Val, dotProdVal1);
++        dotProdVal2 = _mm256_fmadd_ps(a2Val, b2Val, dotProdVal2);
++        dotProdVal3 = _mm256_fmadd_ps(a3Val, b3Val, dotProdVal3);
++
++        aPtr += 32;
++        bPtr += 32;
++    }
++
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal1);
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal2);
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal3);
++
++    __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
++
++    _mm256_store_ps(dotProductVector,
++                    dotProdVal0); // Store the results back into the dot product vector
++
++    dotProduct = dotProductVector[0];
++    dotProduct += dotProductVector[1];
++    dotProduct += dotProductVector[2];
++    dotProduct += dotProductVector[3];
++    dotProduct += dotProductVector[4];
++    dotProduct += dotProductVector[5];
++    dotProduct += dotProductVector[6];
++    dotProduct += dotProductVector[7];
++
++    number = thirtysecondPoints * 32;
++    for (; number < num_points; number++) {
++        dotProduct += ((*aPtr++) * (*bPtr++));
++    }
++
++    *result = (short)dotProduct;
+ }
+ #endif /*LV_HAVE_AVX2 && lV_HAVE_FMA*/
+@@ -503,146 +537,156 @@ static inline void volk_32f_x2_dot_prod_16i_u_avx2_fma(int16_t* result, const  f
+ #ifdef LV_HAVE_AVX
+-static inline void volk_32f_x2_dot_prod_16i_u_avx(int16_t* result, const  float* input, const  float* taps, unsigned int num_points) {
+-
+-  unsigned int number = 0;
+-  const unsigned int thirtysecondPoints = num_points / 32;
+-
+-  float dotProduct = 0;
+-  const float* aPtr = input;
+-  const float* bPtr = taps;
+-
+-  __m256 a0Val, a1Val, a2Val, a3Val;
+-  __m256 b0Val, b1Val, b2Val, b3Val;
+-  __m256 c0Val, c1Val, c2Val, c3Val;
+-
+-  __m256 dotProdVal0 = _mm256_setzero_ps();
+-  __m256 dotProdVal1 = _mm256_setzero_ps();
+-  __m256 dotProdVal2 = _mm256_setzero_ps();
+-  __m256 dotProdVal3 = _mm256_setzero_ps();
+-
+-  for(;number < thirtysecondPoints; number++){
+-
+-    a0Val = _mm256_loadu_ps(aPtr);
+-    a1Val = _mm256_loadu_ps(aPtr+8);
+-    a2Val = _mm256_loadu_ps(aPtr+16);
+-    a3Val = _mm256_loadu_ps(aPtr+24);
+-    b0Val = _mm256_loadu_ps(bPtr);
+-    b1Val = _mm256_loadu_ps(bPtr+8);
+-    b2Val = _mm256_loadu_ps(bPtr+16);
+-    b3Val = _mm256_loadu_ps(bPtr+24);
+-
+-    c0Val = _mm256_mul_ps(a0Val, b0Val);
+-    c1Val = _mm256_mul_ps(a1Val, b1Val);
+-    c2Val = _mm256_mul_ps(a2Val, b2Val);
+-    c3Val = _mm256_mul_ps(a3Val, b3Val);
+-
+-    dotProdVal0 = _mm256_add_ps(c0Val, dotProdVal0);
+-    dotProdVal1 = _mm256_add_ps(c1Val, dotProdVal1);
+-    dotProdVal2 = _mm256_add_ps(c2Val, dotProdVal2);
+-    dotProdVal3 = _mm256_add_ps(c3Val, dotProdVal3);
+-
+-    aPtr += 32;
+-    bPtr += 32;
+-  }
+-
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal1);
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal2);
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal3);
+-
+-  __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
+-
+-  _mm256_store_ps(dotProductVector,dotProdVal0); // Store the results back into the dot product vector
+-
+-  dotProduct = dotProductVector[0];
+-  dotProduct += dotProductVector[1];
+-  dotProduct += dotProductVector[2];
+-  dotProduct += dotProductVector[3];
+-  dotProduct += dotProductVector[4];
+-  dotProduct += dotProductVector[5];
+-  dotProduct += dotProductVector[6];
+-  dotProduct += dotProductVector[7];
+-
+-  number = thirtysecondPoints*32;
+-  for(;number < num_points; number++){
+-    dotProduct += ((*aPtr++) * (*bPtr++));
+-  }
+-
+-  *result = (short)dotProduct;
++static inline void volk_32f_x2_dot_prod_16i_u_avx(int16_t* result,
++                                                  const float* input,
++                                                  const float* taps,
++                                                  unsigned int num_points)
++{
++
++    unsigned int number = 0;
++    const unsigned int thirtysecondPoints = num_points / 32;
++
++    float dotProduct = 0;
++    const float* aPtr = input;
++    const float* bPtr = taps;
++
++    __m256 a0Val, a1Val, a2Val, a3Val;
++    __m256 b0Val, b1Val, b2Val, b3Val;
++    __m256 c0Val, c1Val, c2Val, c3Val;
++
++    __m256 dotProdVal0 = _mm256_setzero_ps();
++    __m256 dotProdVal1 = _mm256_setzero_ps();
++    __m256 dotProdVal2 = _mm256_setzero_ps();
++    __m256 dotProdVal3 = _mm256_setzero_ps();
++
++    for (; number < thirtysecondPoints; number++) {
++
++        a0Val = _mm256_loadu_ps(aPtr);
++        a1Val = _mm256_loadu_ps(aPtr + 8);
++        a2Val = _mm256_loadu_ps(aPtr + 16);
++        a3Val = _mm256_loadu_ps(aPtr + 24);
++        b0Val = _mm256_loadu_ps(bPtr);
++        b1Val = _mm256_loadu_ps(bPtr + 8);
++        b2Val = _mm256_loadu_ps(bPtr + 16);
++        b3Val = _mm256_loadu_ps(bPtr + 24);
++
++        c0Val = _mm256_mul_ps(a0Val, b0Val);
++        c1Val = _mm256_mul_ps(a1Val, b1Val);
++        c2Val = _mm256_mul_ps(a2Val, b2Val);
++        c3Val = _mm256_mul_ps(a3Val, b3Val);
++
++        dotProdVal0 = _mm256_add_ps(c0Val, dotProdVal0);
++        dotProdVal1 = _mm256_add_ps(c1Val, dotProdVal1);
++        dotProdVal2 = _mm256_add_ps(c2Val, dotProdVal2);
++        dotProdVal3 = _mm256_add_ps(c3Val, dotProdVal3);
++
++        aPtr += 32;
++        bPtr += 32;
++    }
++
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal1);
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal2);
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal3);
++
++    __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
++
++    _mm256_store_ps(dotProductVector,
++                    dotProdVal0); // Store the results back into the dot product vector
++
++    dotProduct = dotProductVector[0];
++    dotProduct += dotProductVector[1];
++    dotProduct += dotProductVector[2];
++    dotProduct += dotProductVector[3];
++    dotProduct += dotProductVector[4];
++    dotProduct += dotProductVector[5];
++    dotProduct += dotProductVector[6];
++    dotProduct += dotProductVector[7];
++
++    number = thirtysecondPoints * 32;
++    for (; number < num_points; number++) {
++        dotProduct += ((*aPtr++) * (*bPtr++));
++    }
++
++    *result = (short)dotProduct;
+ }
+ #endif /*LV_HAVE_AVX*/
+ #ifdef LV_HAVE_AVX512F
+-static inline void volk_32f_x2_dot_prod_16i_u_avx512f(int16_t* result, const  float* input, const  float* taps, unsigned int num_points) {
+-
+-  unsigned int number = 0;
+-  const unsigned int sixtyfourthPoints = num_points / 64;
+-
+-  float dotProduct = 0;
+-  const float* aPtr = input;
+-  const float* bPtr = taps;
+-
+-  __m512 a0Val, a1Val, a2Val, a3Val;
+-  __m512 b0Val, b1Val, b2Val, b3Val;
+-
+-  __m512 dotProdVal0 = _mm512_setzero_ps();
+-  __m512 dotProdVal1 = _mm512_setzero_ps();
+-  __m512 dotProdVal2 = _mm512_setzero_ps();
+-  __m512 dotProdVal3 = _mm512_setzero_ps();
+-
+-  for(;number < sixtyfourthPoints; number++){
+-
+-    a0Val = _mm512_loadu_ps(aPtr);
+-    a1Val = _mm512_loadu_ps(aPtr+16);
+-    a2Val = _mm512_loadu_ps(aPtr+32);
+-    a3Val = _mm512_loadu_ps(aPtr+48);
+-    b0Val = _mm512_loadu_ps(bPtr);
+-    b1Val = _mm512_loadu_ps(bPtr+16);
+-    b2Val = _mm512_loadu_ps(bPtr+32);
+-    b3Val = _mm512_loadu_ps(bPtr+48);
+-
+-    dotProdVal0 = _mm512_fmadd_ps(a0Val, b0Val, dotProdVal0);
+-    dotProdVal1 = _mm512_fmadd_ps(a1Val, b1Val, dotProdVal1);
+-    dotProdVal2 = _mm512_fmadd_ps(a2Val, b2Val, dotProdVal2);
+-    dotProdVal3 = _mm512_fmadd_ps(a3Val, b3Val, dotProdVal3);
+-
+-    aPtr += 64;
+-    bPtr += 64;
+-  }
+-
+-  dotProdVal0 = _mm512_add_ps(dotProdVal0, dotProdVal1);
+-  dotProdVal0 = _mm512_add_ps(dotProdVal0, dotProdVal2);
+-  dotProdVal0 = _mm512_add_ps(dotProdVal0, dotProdVal3);
+-
+-  __VOLK_ATTR_ALIGNED(64) float dotProductVector[16];
+-
+-  _mm512_storeu_ps(dotProductVector,dotProdVal0); // Store the results back into the dot product vector
+-
+-  dotProduct = dotProductVector[0];
+-  dotProduct += dotProductVector[1];
+-  dotProduct += dotProductVector[2];
+-  dotProduct += dotProductVector[3];
+-  dotProduct += dotProductVector[4];
+-  dotProduct += dotProductVector[5];
+-  dotProduct += dotProductVector[6];
+-  dotProduct += dotProductVector[7];
+-  dotProduct += dotProductVector[8];
+-  dotProduct += dotProductVector[9];
+-  dotProduct += dotProductVector[10];
+-  dotProduct += dotProductVector[11];
+-  dotProduct += dotProductVector[12];
+-  dotProduct += dotProductVector[13];
+-  dotProduct += dotProductVector[14];
+-  dotProduct += dotProductVector[15];
+-
+-  number = sixtyfourthPoints*64;
+-  for(;number < num_points; number++){
+-    dotProduct += ((*aPtr++) * (*bPtr++));
+-  }
+-
+-  *result = (short)dotProduct;
++static inline void volk_32f_x2_dot_prod_16i_u_avx512f(int16_t* result,
++                                                      const float* input,
++                                                      const float* taps,
++                                                      unsigned int num_points)
++{
++
++    unsigned int number = 0;
++    const unsigned int sixtyfourthPoints = num_points / 64;
++
++    float dotProduct = 0;
++    const float* aPtr = input;
++    const float* bPtr = taps;
++
++    __m512 a0Val, a1Val, a2Val, a3Val;
++    __m512 b0Val, b1Val, b2Val, b3Val;
++
++    __m512 dotProdVal0 = _mm512_setzero_ps();
++    __m512 dotProdVal1 = _mm512_setzero_ps();
++    __m512 dotProdVal2 = _mm512_setzero_ps();
++    __m512 dotProdVal3 = _mm512_setzero_ps();
++
++    for (; number < sixtyfourthPoints; number++) {
++
++        a0Val = _mm512_loadu_ps(aPtr);
++        a1Val = _mm512_loadu_ps(aPtr + 16);
++        a2Val = _mm512_loadu_ps(aPtr + 32);
++        a3Val = _mm512_loadu_ps(aPtr + 48);
++        b0Val = _mm512_loadu_ps(bPtr);
++        b1Val = _mm512_loadu_ps(bPtr + 16);
++        b2Val = _mm512_loadu_ps(bPtr + 32);
++        b3Val = _mm512_loadu_ps(bPtr + 48);
++
++        dotProdVal0 = _mm512_fmadd_ps(a0Val, b0Val, dotProdVal0);
++        dotProdVal1 = _mm512_fmadd_ps(a1Val, b1Val, dotProdVal1);
++        dotProdVal2 = _mm512_fmadd_ps(a2Val, b2Val, dotProdVal2);
++        dotProdVal3 = _mm512_fmadd_ps(a3Val, b3Val, dotProdVal3);
++
++        aPtr += 64;
++        bPtr += 64;
++    }
++
++    dotProdVal0 = _mm512_add_ps(dotProdVal0, dotProdVal1);
++    dotProdVal0 = _mm512_add_ps(dotProdVal0, dotProdVal2);
++    dotProdVal0 = _mm512_add_ps(dotProdVal0, dotProdVal3);
++
++    __VOLK_ATTR_ALIGNED(64) float dotProductVector[16];
++
++    _mm512_storeu_ps(dotProductVector,
++                     dotProdVal0); // Store the results back into the dot product vector
++
++    dotProduct = dotProductVector[0];
++    dotProduct += dotProductVector[1];
++    dotProduct += dotProductVector[2];
++    dotProduct += dotProductVector[3];
++    dotProduct += dotProductVector[4];
++    dotProduct += dotProductVector[5];
++    dotProduct += dotProductVector[6];
++    dotProduct += dotProductVector[7];
++    dotProduct += dotProductVector[8];
++    dotProduct += dotProductVector[9];
++    dotProduct += dotProductVector[10];
++    dotProduct += dotProductVector[11];
++    dotProduct += dotProductVector[12];
++    dotProduct += dotProductVector[13];
++    dotProduct += dotProductVector[14];
++    dotProduct += dotProductVector[15];
++
++    number = sixtyfourthPoints * 64;
++    for (; number < num_points; number++) {
++        dotProduct += ((*aPtr++) * (*bPtr++));
++    }
++
++    *result = (short)dotProduct;
+ }
+ #endif /*LV_HAVE_AVX512F*/
+diff --git a/kernels/volk/volk_32f_x2_dot_prod_32f.h b/kernels/volk/volk_32f_x2_dot_prod_32f.h
+index ea0f7ba..7854031 100644
+--- a/kernels/volk/volk_32f_x2_dot_prod_32f.h
++++ b/kernels/volk/volk_32f_x2_dot_prod_32f.h
+@@ -33,8 +33,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_x2_dot_prod_32f(float* result, const float* input, const float* taps, unsigned int num_points)
+- * \endcode
++ * void volk_32f_x2_dot_prod_32f(float* result, const float* input, const float* taps,
++ * unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li input: vector of floats.
+@@ -45,10 +45,8 @@
+  * \li result: pointer to a float value to hold the dot product result.
+  *
+  * \b Example
+- * Take the dot product of an increasing vector and a vector of ones. The result is the sum of integers (0,9).
+- * \code
+- *   int N = 10;
+- *   unsigned int alignment = volk_get_alignment();
++ * Take the dot product of an increasing vector and a vector of ones. The result is the
++ * sum of integers (0,9). \code int N = 10; unsigned int alignment = volk_get_alignment();
+  *   float* increasing = (float*)volk_malloc(sizeof(float)*N, alignment);
+  *   float* ones = (float*)volk_malloc(sizeof(float)*N, alignment);
+  *   float* out = (float*)volk_malloc(sizeof(float)*1, alignment);
+@@ -73,25 +71,29 @@
+ #ifndef INCLUDED_volk_32f_x2_dot_prod_32f_u_H
+ #define INCLUDED_volk_32f_x2_dot_prod_32f_u_H
++#include <stdio.h>
+ #include <volk/volk_common.h>
+-#include<stdio.h>
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32f_x2_dot_prod_32f_generic(float * result, const float * input, const float * taps, unsigned int num_points) {
++static inline void volk_32f_x2_dot_prod_32f_generic(float* result,
++                                                    const float* input,
++                                                    const float* taps,
++                                                    unsigned int num_points)
++{
+-  float dotProduct = 0;
+-  const float* aPtr = input;
+-  const float* bPtr=  taps;
+-  unsigned int number = 0;
++    float dotProduct = 0;
++    const float* aPtr = input;
++    const float* bPtr = taps;
++    unsigned int number = 0;
+-  for(number = 0; number < num_points; number++){
+-    dotProduct += ((*aPtr++) * (*bPtr++));
+-  }
++    for (number = 0; number < num_points; number++) {
++        dotProduct += ((*aPtr++) * (*bPtr++));
++    }
+-  *result = dotProduct;
++    *result = dotProduct;
+ }
+ #endif /*LV_HAVE_GENERIC*/
+@@ -100,69 +102,73 @@ static inline void volk_32f_x2_dot_prod_32f_generic(float * result, const float
+ #ifdef LV_HAVE_SSE
+-static inline void volk_32f_x2_dot_prod_32f_u_sse( float* result, const  float* input, const  float* taps, unsigned int num_points) {
+-
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
+-
+-  float dotProduct = 0;
+-  const float* aPtr = input;
+-  const float* bPtr = taps;
++static inline void volk_32f_x2_dot_prod_32f_u_sse(float* result,
++                                                  const float* input,
++                                                  const float* taps,
++                                                  unsigned int num_points)
++{
+-  __m128 a0Val, a1Val, a2Val, a3Val;
+-  __m128 b0Val, b1Val, b2Val, b3Val;
+-  __m128 c0Val, c1Val, c2Val, c3Val;
+-
+-  __m128 dotProdVal0 = _mm_setzero_ps();
+-  __m128 dotProdVal1 = _mm_setzero_ps();
+-  __m128 dotProdVal2 = _mm_setzero_ps();
+-  __m128 dotProdVal3 = _mm_setzero_ps();
+-
+-  for(;number < sixteenthPoints; number++){
+-
+-    a0Val = _mm_loadu_ps(aPtr);
+-    a1Val = _mm_loadu_ps(aPtr+4);
+-    a2Val = _mm_loadu_ps(aPtr+8);
+-    a3Val = _mm_loadu_ps(aPtr+12);
+-    b0Val = _mm_loadu_ps(bPtr);
+-    b1Val = _mm_loadu_ps(bPtr+4);
+-    b2Val = _mm_loadu_ps(bPtr+8);
+-    b3Val = _mm_loadu_ps(bPtr+12);
+-
+-    c0Val = _mm_mul_ps(a0Val, b0Val);
+-    c1Val = _mm_mul_ps(a1Val, b1Val);
+-    c2Val = _mm_mul_ps(a2Val, b2Val);
+-    c3Val = _mm_mul_ps(a3Val, b3Val);
+-
+-    dotProdVal0 = _mm_add_ps(c0Val, dotProdVal0);
+-    dotProdVal1 = _mm_add_ps(c1Val, dotProdVal1);
+-    dotProdVal2 = _mm_add_ps(c2Val, dotProdVal2);
+-    dotProdVal3 = _mm_add_ps(c3Val, dotProdVal3);
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
+-    aPtr += 16;
+-    bPtr += 16;
+-  }
++    float dotProduct = 0;
++    const float* aPtr = input;
++    const float* bPtr = taps;
++
++    __m128 a0Val, a1Val, a2Val, a3Val;
++    __m128 b0Val, b1Val, b2Val, b3Val;
++    __m128 c0Val, c1Val, c2Val, c3Val;
++
++    __m128 dotProdVal0 = _mm_setzero_ps();
++    __m128 dotProdVal1 = _mm_setzero_ps();
++    __m128 dotProdVal2 = _mm_setzero_ps();
++    __m128 dotProdVal3 = _mm_setzero_ps();
++
++    for (; number < sixteenthPoints; number++) {
++
++        a0Val = _mm_loadu_ps(aPtr);
++        a1Val = _mm_loadu_ps(aPtr + 4);
++        a2Val = _mm_loadu_ps(aPtr + 8);
++        a3Val = _mm_loadu_ps(aPtr + 12);
++        b0Val = _mm_loadu_ps(bPtr);
++        b1Val = _mm_loadu_ps(bPtr + 4);
++        b2Val = _mm_loadu_ps(bPtr + 8);
++        b3Val = _mm_loadu_ps(bPtr + 12);
++
++        c0Val = _mm_mul_ps(a0Val, b0Val);
++        c1Val = _mm_mul_ps(a1Val, b1Val);
++        c2Val = _mm_mul_ps(a2Val, b2Val);
++        c3Val = _mm_mul_ps(a3Val, b3Val);
++
++        dotProdVal0 = _mm_add_ps(c0Val, dotProdVal0);
++        dotProdVal1 = _mm_add_ps(c1Val, dotProdVal1);
++        dotProdVal2 = _mm_add_ps(c2Val, dotProdVal2);
++        dotProdVal3 = _mm_add_ps(c3Val, dotProdVal3);
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal1);
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal2);
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal3);
++        aPtr += 16;
++        bPtr += 16;
++    }
+-  __VOLK_ATTR_ALIGNED(16) float dotProductVector[4];
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal1);
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal2);
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal3);
+-  _mm_store_ps(dotProductVector,dotProdVal0); // Store the results back into the dot product vector
++    __VOLK_ATTR_ALIGNED(16) float dotProductVector[4];
+-  dotProduct = dotProductVector[0];
+-  dotProduct += dotProductVector[1];
+-  dotProduct += dotProductVector[2];
+-  dotProduct += dotProductVector[3];
++    _mm_store_ps(dotProductVector,
++                 dotProdVal0); // Store the results back into the dot product vector
+-  number = sixteenthPoints*16;
+-  for(;number < num_points; number++){
+-    dotProduct += ((*aPtr++) * (*bPtr++));
+-  }
++    dotProduct = dotProductVector[0];
++    dotProduct += dotProductVector[1];
++    dotProduct += dotProductVector[2];
++    dotProduct += dotProductVector[3];
+-  *result = dotProduct;
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        dotProduct += ((*aPtr++) * (*bPtr++));
++    }
++    *result = dotProduct;
+ }
+ #endif /*LV_HAVE_SSE*/
+@@ -171,127 +177,145 @@ static inline void volk_32f_x2_dot_prod_32f_u_sse( float* result, const  float*
+ #include <pmmintrin.h>
+-static inline void volk_32f_x2_dot_prod_32f_u_sse3(float * result, const float * input, const float * taps, unsigned int num_points) {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
+-
+-  float dotProduct = 0;
+-  const float* aPtr = input;
+-  const float* bPtr = taps;
+-
+-  __m128 a0Val, a1Val, a2Val, a3Val;
+-  __m128 b0Val, b1Val, b2Val, b3Val;
+-  __m128 c0Val, c1Val, c2Val, c3Val;
+-
+-  __m128 dotProdVal0 = _mm_setzero_ps();
+-  __m128 dotProdVal1 = _mm_setzero_ps();
+-  __m128 dotProdVal2 = _mm_setzero_ps();
+-  __m128 dotProdVal3 = _mm_setzero_ps();
+-
+-  for(;number < sixteenthPoints; number++){
+-
+-    a0Val = _mm_loadu_ps(aPtr);
+-    a1Val = _mm_loadu_ps(aPtr+4);
+-    a2Val = _mm_loadu_ps(aPtr+8);
+-    a3Val = _mm_loadu_ps(aPtr+12);
+-    b0Val = _mm_loadu_ps(bPtr);
+-    b1Val = _mm_loadu_ps(bPtr+4);
+-    b2Val = _mm_loadu_ps(bPtr+8);
+-    b3Val = _mm_loadu_ps(bPtr+12);
+-
+-    c0Val = _mm_mul_ps(a0Val, b0Val);
+-    c1Val = _mm_mul_ps(a1Val, b1Val);
+-    c2Val = _mm_mul_ps(a2Val, b2Val);
+-    c3Val = _mm_mul_ps(a3Val, b3Val);
+-
+-    dotProdVal0 = _mm_add_ps(dotProdVal0, c0Val);
+-    dotProdVal1 = _mm_add_ps(dotProdVal1, c1Val);
+-    dotProdVal2 = _mm_add_ps(dotProdVal2, c2Val);
+-    dotProdVal3 = _mm_add_ps(dotProdVal3, c3Val);
+-
+-    aPtr += 16;
+-    bPtr += 16;
+-  }
+-
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal1);
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal2);
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal3);
+-
+-  __VOLK_ATTR_ALIGNED(16) float dotProductVector[4];
+-  _mm_store_ps(dotProductVector,dotProdVal0); // Store the results back into the dot product vector
+-
+-  dotProduct = dotProductVector[0];
+-  dotProduct += dotProductVector[1];
+-  dotProduct += dotProductVector[2];
+-  dotProduct += dotProductVector[3];
+-
+-  number = sixteenthPoints*16;
+-  for(;number < num_points; number++){
+-    dotProduct += ((*aPtr++) * (*bPtr++));
+-  }
+-
+-  *result = dotProduct;
+-}
+-
+-#endif /*LV_HAVE_SSE3*/
++static inline void volk_32f_x2_dot_prod_32f_u_sse3(float* result,
++                                                   const float* input,
++                                                   const float* taps,
++                                                   unsigned int num_points)
++{
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
+-#ifdef LV_HAVE_SSE4_1
++    float dotProduct = 0;
++    const float* aPtr = input;
++    const float* bPtr = taps;
++
++    __m128 a0Val, a1Val, a2Val, a3Val;
++    __m128 b0Val, b1Val, b2Val, b3Val;
++    __m128 c0Val, c1Val, c2Val, c3Val;
++
++    __m128 dotProdVal0 = _mm_setzero_ps();
++    __m128 dotProdVal1 = _mm_setzero_ps();
++    __m128 dotProdVal2 = _mm_setzero_ps();
++    __m128 dotProdVal3 = _mm_setzero_ps();
++
++    for (; number < sixteenthPoints; number++) {
++
++        a0Val = _mm_loadu_ps(aPtr);
++        a1Val = _mm_loadu_ps(aPtr + 4);
++        a2Val = _mm_loadu_ps(aPtr + 8);
++        a3Val = _mm_loadu_ps(aPtr + 12);
++        b0Val = _mm_loadu_ps(bPtr);
++        b1Val = _mm_loadu_ps(bPtr + 4);
++        b2Val = _mm_loadu_ps(bPtr + 8);
++        b3Val = _mm_loadu_ps(bPtr + 12);
++
++        c0Val = _mm_mul_ps(a0Val, b0Val);
++        c1Val = _mm_mul_ps(a1Val, b1Val);
++        c2Val = _mm_mul_ps(a2Val, b2Val);
++        c3Val = _mm_mul_ps(a3Val, b3Val);
++
++        dotProdVal0 = _mm_add_ps(dotProdVal0, c0Val);
++        dotProdVal1 = _mm_add_ps(dotProdVal1, c1Val);
++        dotProdVal2 = _mm_add_ps(dotProdVal2, c2Val);
++        dotProdVal3 = _mm_add_ps(dotProdVal3, c3Val);
+-#include <smmintrin.h>
++        aPtr += 16;
++        bPtr += 16;
++    }
+-static inline void volk_32f_x2_dot_prod_32f_u_sse4_1(float * result, const float * input, const float* taps, unsigned int num_points) {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal1);
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal2);
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal3);
+-  float dotProduct = 0;
+-  const float* aPtr = input;
+-  const float* bPtr = taps;
++    __VOLK_ATTR_ALIGNED(16) float dotProductVector[4];
++    _mm_store_ps(dotProductVector,
++                 dotProdVal0); // Store the results back into the dot product vector
+-  __m128 aVal1, bVal1, cVal1;
+-  __m128 aVal2, bVal2, cVal2;
+-  __m128 aVal3, bVal3, cVal3;
+-  __m128 aVal4, bVal4, cVal4;
++    dotProduct = dotProductVector[0];
++    dotProduct += dotProductVector[1];
++    dotProduct += dotProductVector[2];
++    dotProduct += dotProductVector[3];
+-  __m128 dotProdVal = _mm_setzero_ps();
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        dotProduct += ((*aPtr++) * (*bPtr++));
++    }
+-  for(;number < sixteenthPoints; number++){
++    *result = dotProduct;
++}
+-    aVal1 = _mm_loadu_ps(aPtr); aPtr += 4;
+-    aVal2 = _mm_loadu_ps(aPtr); aPtr += 4;
+-    aVal3 = _mm_loadu_ps(aPtr); aPtr += 4;
+-    aVal4 = _mm_loadu_ps(aPtr); aPtr += 4;
++#endif /*LV_HAVE_SSE3*/
+-    bVal1 = _mm_loadu_ps(bPtr); bPtr += 4;
+-    bVal2 = _mm_loadu_ps(bPtr); bPtr += 4;
+-    bVal3 = _mm_loadu_ps(bPtr); bPtr += 4;
+-    bVal4 = _mm_loadu_ps(bPtr); bPtr += 4;
++#ifdef LV_HAVE_SSE4_1
+-    cVal1 = _mm_dp_ps(aVal1, bVal1, 0xF1);
+-    cVal2 = _mm_dp_ps(aVal2, bVal2, 0xF2);
+-    cVal3 = _mm_dp_ps(aVal3, bVal3, 0xF4);
+-    cVal4 = _mm_dp_ps(aVal4, bVal4, 0xF8);
++#include <smmintrin.h>
+-    cVal1 = _mm_or_ps(cVal1, cVal2);
+-    cVal3 = _mm_or_ps(cVal3, cVal4);
+-    cVal1 = _mm_or_ps(cVal1, cVal3);
++static inline void volk_32f_x2_dot_prod_32f_u_sse4_1(float* result,
++                                                     const float* input,
++                                                     const float* taps,
++                                                     unsigned int num_points)
++{
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
+-    dotProdVal = _mm_add_ps(dotProdVal, cVal1);
+-  }
++    float dotProduct = 0;
++    const float* aPtr = input;
++    const float* bPtr = taps;
++
++    __m128 aVal1, bVal1, cVal1;
++    __m128 aVal2, bVal2, cVal2;
++    __m128 aVal3, bVal3, cVal3;
++    __m128 aVal4, bVal4, cVal4;
++
++    __m128 dotProdVal = _mm_setzero_ps();
++
++    for (; number < sixteenthPoints; number++) {
++
++        aVal1 = _mm_loadu_ps(aPtr);
++        aPtr += 4;
++        aVal2 = _mm_loadu_ps(aPtr);
++        aPtr += 4;
++        aVal3 = _mm_loadu_ps(aPtr);
++        aPtr += 4;
++        aVal4 = _mm_loadu_ps(aPtr);
++        aPtr += 4;
++
++        bVal1 = _mm_loadu_ps(bPtr);
++        bPtr += 4;
++        bVal2 = _mm_loadu_ps(bPtr);
++        bPtr += 4;
++        bVal3 = _mm_loadu_ps(bPtr);
++        bPtr += 4;
++        bVal4 = _mm_loadu_ps(bPtr);
++        bPtr += 4;
++
++        cVal1 = _mm_dp_ps(aVal1, bVal1, 0xF1);
++        cVal2 = _mm_dp_ps(aVal2, bVal2, 0xF2);
++        cVal3 = _mm_dp_ps(aVal3, bVal3, 0xF4);
++        cVal4 = _mm_dp_ps(aVal4, bVal4, 0xF8);
++
++        cVal1 = _mm_or_ps(cVal1, cVal2);
++        cVal3 = _mm_or_ps(cVal3, cVal4);
++        cVal1 = _mm_or_ps(cVal1, cVal3);
++
++        dotProdVal = _mm_add_ps(dotProdVal, cVal1);
++    }
+-  __VOLK_ATTR_ALIGNED(16) float dotProductVector[4];
+-  _mm_store_ps(dotProductVector, dotProdVal); // Store the results back into the dot product vector
++    __VOLK_ATTR_ALIGNED(16) float dotProductVector[4];
++    _mm_store_ps(dotProductVector,
++                 dotProdVal); // Store the results back into the dot product vector
+-  dotProduct = dotProductVector[0];
+-  dotProduct += dotProductVector[1];
+-  dotProduct += dotProductVector[2];
+-  dotProduct += dotProductVector[3];
++    dotProduct = dotProductVector[0];
++    dotProduct += dotProductVector[1];
++    dotProduct += dotProductVector[2];
++    dotProduct += dotProductVector[3];
+-  number = sixteenthPoints * 16;
+-  for(;number < num_points; number++){
+-    dotProduct += ((*aPtr++) * (*bPtr++));
+-  }
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        dotProduct += ((*aPtr++) * (*bPtr++));
++    }
+-  *result = dotProduct;
++    *result = dotProduct;
+ }
+ #endif /*LV_HAVE_SSE4_1*/
+@@ -300,147 +324,154 @@ static inline void volk_32f_x2_dot_prod_32f_u_sse4_1(float * result, const float
+ #include <immintrin.h>
+-static inline void volk_32f_x2_dot_prod_32f_u_avx( float* result, const  float* input, const  float* taps, unsigned int num_points) {
++static inline void volk_32f_x2_dot_prod_32f_u_avx(float* result,
++                                                  const float* input,
++                                                  const float* taps,
++                                                  unsigned int num_points)
++{
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
+-
+-  float dotProduct = 0;
+-  const float* aPtr = input;
+-  const float* bPtr = taps;
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
+-  __m256 a0Val, a1Val;
+-  __m256 b0Val, b1Val;
+-  __m256 c0Val, c1Val;
++    float dotProduct = 0;
++    const float* aPtr = input;
++    const float* bPtr = taps;
+-  __m256 dotProdVal0 = _mm256_setzero_ps();
+-  __m256 dotProdVal1 = _mm256_setzero_ps();
++    __m256 a0Val, a1Val;
++    __m256 b0Val, b1Val;
++    __m256 c0Val, c1Val;
+-  for(;number < sixteenthPoints; number++){
++    __m256 dotProdVal0 = _mm256_setzero_ps();
++    __m256 dotProdVal1 = _mm256_setzero_ps();
+-    a0Val = _mm256_loadu_ps(aPtr);
+-    a1Val = _mm256_loadu_ps(aPtr+8);
+-    b0Val = _mm256_loadu_ps(bPtr);
+-    b1Val = _mm256_loadu_ps(bPtr+8);
++    for (; number < sixteenthPoints; number++) {
+-    c0Val = _mm256_mul_ps(a0Val, b0Val);
+-    c1Val = _mm256_mul_ps(a1Val, b1Val);
++        a0Val = _mm256_loadu_ps(aPtr);
++        a1Val = _mm256_loadu_ps(aPtr + 8);
++        b0Val = _mm256_loadu_ps(bPtr);
++        b1Val = _mm256_loadu_ps(bPtr + 8);
+-    dotProdVal0 = _mm256_add_ps(c0Val, dotProdVal0);
+-    dotProdVal1 = _mm256_add_ps(c1Val, dotProdVal1);
++        c0Val = _mm256_mul_ps(a0Val, b0Val);
++        c1Val = _mm256_mul_ps(a1Val, b1Val);
+-    aPtr += 16;
+-    bPtr += 16;
+-  }
++        dotProdVal0 = _mm256_add_ps(c0Val, dotProdVal0);
++        dotProdVal1 = _mm256_add_ps(c1Val, dotProdVal1);
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal1);
++        aPtr += 16;
++        bPtr += 16;
++    }
+-  __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal1);
+-  _mm256_storeu_ps(dotProductVector,dotProdVal0); // Store the results back into the dot product vector
++    __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
+-  dotProduct = dotProductVector[0];
+-  dotProduct += dotProductVector[1];
+-  dotProduct += dotProductVector[2];
+-  dotProduct += dotProductVector[3];
+-  dotProduct += dotProductVector[4];
+-  dotProduct += dotProductVector[5];
+-  dotProduct += dotProductVector[6];
+-  dotProduct += dotProductVector[7];
++    _mm256_storeu_ps(dotProductVector,
++                     dotProdVal0); // Store the results back into the dot product vector
+-  number = sixteenthPoints*16;
+-  for(;number < num_points; number++){
+-    dotProduct += ((*aPtr++) * (*bPtr++));
+-  }
++    dotProduct = dotProductVector[0];
++    dotProduct += dotProductVector[1];
++    dotProduct += dotProductVector[2];
++    dotProduct += dotProductVector[3];
++    dotProduct += dotProductVector[4];
++    dotProduct += dotProductVector[5];
++    dotProduct += dotProductVector[6];
++    dotProduct += dotProductVector[7];
+-  *result = dotProduct;
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        dotProduct += ((*aPtr++) * (*bPtr++));
++    }
++    *result = dotProduct;
+ }
+ #endif /*LV_HAVE_AVX*/
+ #if LV_HAVE_AVX2 && LV_HAVE_FMA
+ #include <immintrin.h>
+-static inline void volk_32f_x2_dot_prod_32f_u_avx2_fma(float * result, const float * input, const float* taps, unsigned int num_points){
+-  unsigned int number;
+-  const unsigned int eighthPoints = num_points / 8;
++static inline void volk_32f_x2_dot_prod_32f_u_avx2_fma(float* result,
++                                                       const float* input,
++                                                       const float* taps,
++                                                       unsigned int num_points)
++{
++    unsigned int number;
++    const unsigned int eighthPoints = num_points / 8;
+-  const float* aPtr = input;
+-  const float* bPtr = taps;
+-
+-  __m256 dotProdVal = _mm256_setzero_ps();
+-  __m256 aVal1, bVal1;
++    const float* aPtr = input;
++    const float* bPtr = taps;
+-  for (number = 0; number < eighthPoints; number++ ) {
++    __m256 dotProdVal = _mm256_setzero_ps();
++    __m256 aVal1, bVal1;
+-    aVal1 = _mm256_loadu_ps(aPtr);
+-    bVal1 = _mm256_loadu_ps(bPtr);
+-    aPtr += 8;
+-    bPtr += 8;
++    for (number = 0; number < eighthPoints; number++) {
+-    dotProdVal = _mm256_fmadd_ps(aVal1, bVal1, dotProdVal);
+-  }
++        aVal1 = _mm256_loadu_ps(aPtr);
++        bVal1 = _mm256_loadu_ps(bPtr);
++        aPtr += 8;
++        bPtr += 8;
+-  __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
+-  _mm256_storeu_ps(dotProductVector, dotProdVal); // Store the results back into the dot product vector
+-  _mm256_zeroupper();
++        dotProdVal = _mm256_fmadd_ps(aVal1, bVal1, dotProdVal);
++    }
+-  float dotProduct =
+-    dotProductVector[0] + dotProductVector[1] +
+-    dotProductVector[2] + dotProductVector[3] +
+-    dotProductVector[4] + dotProductVector[5] +
+-    dotProductVector[6] + dotProductVector[7];
++    __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
++    _mm256_storeu_ps(dotProductVector,
++                     dotProdVal); // Store the results back into the dot product vector
++    _mm256_zeroupper();
+-  for(number = eighthPoints * 8; number < num_points; number++){
+-    dotProduct += ((*aPtr++) * (*bPtr++));
+-  }
++    float dotProduct = dotProductVector[0] + dotProductVector[1] + dotProductVector[2] +
++                       dotProductVector[3] + dotProductVector[4] + dotProductVector[5] +
++                       dotProductVector[6] + dotProductVector[7];
+-  *result = dotProduct;
++    for (number = eighthPoints * 8; number < num_points; number++) {
++        dotProduct += ((*aPtr++) * (*bPtr++));
++    }
++    *result = dotProduct;
+ }
+ #endif /* LV_HAVE_AVX2 && LV_HAVE_FMA */
+ #if LV_HAVE_AVX512F
+ #include <immintrin.h>
+-static inline void volk_32f_x2_dot_prod_32f_u_avx512f(float * result, const float * input, const float* taps, unsigned int num_points){
+-  unsigned int number;
+-  const unsigned int sixteenthPoints = num_points / 16;
+-
+-  const float* aPtr = input;
+-  const float* bPtr = taps;
++static inline void volk_32f_x2_dot_prod_32f_u_avx512f(float* result,
++                                                      const float* input,
++                                                      const float* taps,
++                                                      unsigned int num_points)
++{
++    unsigned int number;
++    const unsigned int sixteenthPoints = num_points / 16;
+-  __m512 dotProdVal = _mm512_setzero_ps();
+-  __m512 aVal1, bVal1;
++    const float* aPtr = input;
++    const float* bPtr = taps;
+-  for (number = 0; number < sixteenthPoints; number++ ) {
++    __m512 dotProdVal = _mm512_setzero_ps();
++    __m512 aVal1, bVal1;
+-    aVal1 = _mm512_loadu_ps(aPtr);
+-    bVal1 = _mm512_loadu_ps(bPtr);
+-    aPtr += 16;
+-    bPtr += 16;
++    for (number = 0; number < sixteenthPoints; number++) {
+-    dotProdVal = _mm512_fmadd_ps(aVal1, bVal1, dotProdVal);
+-  }
++        aVal1 = _mm512_loadu_ps(aPtr);
++        bVal1 = _mm512_loadu_ps(bPtr);
++        aPtr += 16;
++        bPtr += 16;
+-  __VOLK_ATTR_ALIGNED(64) float dotProductVector[16];
+-  _mm512_storeu_ps(dotProductVector, dotProdVal); // Store the results back into the dot product vector
++        dotProdVal = _mm512_fmadd_ps(aVal1, bVal1, dotProdVal);
++    }
+-  float dotProduct =
+-    dotProductVector[0] + dotProductVector[1] +
+-    dotProductVector[2] + dotProductVector[3] +
+-    dotProductVector[4] + dotProductVector[5] +
+-    dotProductVector[6] + dotProductVector[7] +
+-    dotProductVector[8] + dotProductVector[9] +
+-    dotProductVector[10] + dotProductVector[11] +
+-    dotProductVector[12] + dotProductVector[13] +
+-    dotProductVector[14] + dotProductVector[15];
++    __VOLK_ATTR_ALIGNED(64) float dotProductVector[16];
++    _mm512_storeu_ps(dotProductVector,
++                     dotProdVal); // Store the results back into the dot product vector
+-  for(number = sixteenthPoints * 16; number < num_points; number++){
+-    dotProduct += ((*aPtr++) * (*bPtr++));
+-  }
++    float dotProduct = dotProductVector[0] + dotProductVector[1] + dotProductVector[2] +
++                       dotProductVector[3] + dotProductVector[4] + dotProductVector[5] +
++                       dotProductVector[6] + dotProductVector[7] + dotProductVector[8] +
++                       dotProductVector[9] + dotProductVector[10] + dotProductVector[11] +
++                       dotProductVector[12] + dotProductVector[13] +
++                       dotProductVector[14] + dotProductVector[15];
+-  *result = dotProduct;
++    for (number = sixteenthPoints * 16; number < num_points; number++) {
++        dotProduct += ((*aPtr++) * (*bPtr++));
++    }
++    *result = dotProduct;
+ }
+ #endif /* LV_HAVE_AVX512F */
+@@ -449,25 +480,29 @@ static inline void volk_32f_x2_dot_prod_32f_u_avx512f(float * result, const floa
+ #ifndef INCLUDED_volk_32f_x2_dot_prod_32f_a_H
+ #define INCLUDED_volk_32f_x2_dot_prod_32f_a_H
++#include <stdio.h>
+ #include <volk/volk_common.h>
+-#include<stdio.h>
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32f_x2_dot_prod_32f_a_generic(float * result, const float * input, const float * taps, unsigned int num_points) {
++static inline void volk_32f_x2_dot_prod_32f_a_generic(float* result,
++                                                      const float* input,
++                                                      const float* taps,
++                                                      unsigned int num_points)
++{
+-  float dotProduct = 0;
+-  const float* aPtr = input;
+-  const float* bPtr=  taps;
+-  unsigned int number = 0;
++    float dotProduct = 0;
++    const float* aPtr = input;
++    const float* bPtr = taps;
++    unsigned int number = 0;
+-  for(number = 0; number < num_points; number++){
+-    dotProduct += ((*aPtr++) * (*bPtr++));
+-  }
++    for (number = 0; number < num_points; number++) {
++        dotProduct += ((*aPtr++) * (*bPtr++));
++    }
+-  *result = dotProduct;
++    *result = dotProduct;
+ }
+ #endif /*LV_HAVE_GENERIC*/
+@@ -476,69 +511,73 @@ static inline void volk_32f_x2_dot_prod_32f_a_generic(float * result, const floa
+ #ifdef LV_HAVE_SSE
+-static inline void volk_32f_x2_dot_prod_32f_a_sse( float* result, const  float* input, const  float* taps, unsigned int num_points) {
+-
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
+-
+-  float dotProduct = 0;
+-  const float* aPtr = input;
+-  const float* bPtr = taps;
+-
+-  __m128 a0Val, a1Val, a2Val, a3Val;
+-  __m128 b0Val, b1Val, b2Val, b3Val;
+-  __m128 c0Val, c1Val, c2Val, c3Val;
+-
+-  __m128 dotProdVal0 = _mm_setzero_ps();
+-  __m128 dotProdVal1 = _mm_setzero_ps();
+-  __m128 dotProdVal2 = _mm_setzero_ps();
+-  __m128 dotProdVal3 = _mm_setzero_ps();
++static inline void volk_32f_x2_dot_prod_32f_a_sse(float* result,
++                                                  const float* input,
++                                                  const float* taps,
++                                                  unsigned int num_points)
++{
+-  for(;number < sixteenthPoints; number++){
+-
+-    a0Val = _mm_load_ps(aPtr);
+-    a1Val = _mm_load_ps(aPtr+4);
+-    a2Val = _mm_load_ps(aPtr+8);
+-    a3Val = _mm_load_ps(aPtr+12);
+-    b0Val = _mm_load_ps(bPtr);
+-    b1Val = _mm_load_ps(bPtr+4);
+-    b2Val = _mm_load_ps(bPtr+8);
+-    b3Val = _mm_load_ps(bPtr+12);
+-
+-    c0Val = _mm_mul_ps(a0Val, b0Val);
+-    c1Val = _mm_mul_ps(a1Val, b1Val);
+-    c2Val = _mm_mul_ps(a2Val, b2Val);
+-    c3Val = _mm_mul_ps(a3Val, b3Val);
+-
+-    dotProdVal0 = _mm_add_ps(c0Val, dotProdVal0);
+-    dotProdVal1 = _mm_add_ps(c1Val, dotProdVal1);
+-    dotProdVal2 = _mm_add_ps(c2Val, dotProdVal2);
+-    dotProdVal3 = _mm_add_ps(c3Val, dotProdVal3);
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
+-    aPtr += 16;
+-    bPtr += 16;
+-  }
++    float dotProduct = 0;
++    const float* aPtr = input;
++    const float* bPtr = taps;
++
++    __m128 a0Val, a1Val, a2Val, a3Val;
++    __m128 b0Val, b1Val, b2Val, b3Val;
++    __m128 c0Val, c1Val, c2Val, c3Val;
++
++    __m128 dotProdVal0 = _mm_setzero_ps();
++    __m128 dotProdVal1 = _mm_setzero_ps();
++    __m128 dotProdVal2 = _mm_setzero_ps();
++    __m128 dotProdVal3 = _mm_setzero_ps();
++
++    for (; number < sixteenthPoints; number++) {
++
++        a0Val = _mm_load_ps(aPtr);
++        a1Val = _mm_load_ps(aPtr + 4);
++        a2Val = _mm_load_ps(aPtr + 8);
++        a3Val = _mm_load_ps(aPtr + 12);
++        b0Val = _mm_load_ps(bPtr);
++        b1Val = _mm_load_ps(bPtr + 4);
++        b2Val = _mm_load_ps(bPtr + 8);
++        b3Val = _mm_load_ps(bPtr + 12);
++
++        c0Val = _mm_mul_ps(a0Val, b0Val);
++        c1Val = _mm_mul_ps(a1Val, b1Val);
++        c2Val = _mm_mul_ps(a2Val, b2Val);
++        c3Val = _mm_mul_ps(a3Val, b3Val);
++
++        dotProdVal0 = _mm_add_ps(c0Val, dotProdVal0);
++        dotProdVal1 = _mm_add_ps(c1Val, dotProdVal1);
++        dotProdVal2 = _mm_add_ps(c2Val, dotProdVal2);
++        dotProdVal3 = _mm_add_ps(c3Val, dotProdVal3);
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal1);
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal2);
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal3);
++        aPtr += 16;
++        bPtr += 16;
++    }
+-  __VOLK_ATTR_ALIGNED(16) float dotProductVector[4];
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal1);
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal2);
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal3);
+-  _mm_store_ps(dotProductVector,dotProdVal0); // Store the results back into the dot product vector
++    __VOLK_ATTR_ALIGNED(16) float dotProductVector[4];
+-  dotProduct = dotProductVector[0];
+-  dotProduct += dotProductVector[1];
+-  dotProduct += dotProductVector[2];
+-  dotProduct += dotProductVector[3];
++    _mm_store_ps(dotProductVector,
++                 dotProdVal0); // Store the results back into the dot product vector
+-  number = sixteenthPoints*16;
+-  for(;number < num_points; number++){
+-    dotProduct += ((*aPtr++) * (*bPtr++));
+-  }
++    dotProduct = dotProductVector[0];
++    dotProduct += dotProductVector[1];
++    dotProduct += dotProductVector[2];
++    dotProduct += dotProductVector[3];
+-  *result = dotProduct;
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        dotProduct += ((*aPtr++) * (*bPtr++));
++    }
++    *result = dotProduct;
+ }
+ #endif /*LV_HAVE_SSE*/
+@@ -547,127 +586,145 @@ static inline void volk_32f_x2_dot_prod_32f_a_sse( float* result, const  float*
+ #include <pmmintrin.h>
+-static inline void volk_32f_x2_dot_prod_32f_a_sse3(float * result, const float * input, const float * taps, unsigned int num_points) {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
+-
+-  float dotProduct = 0;
+-  const float* aPtr = input;
+-  const float* bPtr = taps;
+-
+-  __m128 a0Val, a1Val, a2Val, a3Val;
+-  __m128 b0Val, b1Val, b2Val, b3Val;
+-  __m128 c0Val, c1Val, c2Val, c3Val;
+-
+-  __m128 dotProdVal0 = _mm_setzero_ps();
+-  __m128 dotProdVal1 = _mm_setzero_ps();
+-  __m128 dotProdVal2 = _mm_setzero_ps();
+-  __m128 dotProdVal3 = _mm_setzero_ps();
+-
+-  for(;number < sixteenthPoints; number++){
+-
+-    a0Val = _mm_load_ps(aPtr);
+-    a1Val = _mm_load_ps(aPtr+4);
+-    a2Val = _mm_load_ps(aPtr+8);
+-    a3Val = _mm_load_ps(aPtr+12);
+-    b0Val = _mm_load_ps(bPtr);
+-    b1Val = _mm_load_ps(bPtr+4);
+-    b2Val = _mm_load_ps(bPtr+8);
+-    b3Val = _mm_load_ps(bPtr+12);
+-
+-    c0Val = _mm_mul_ps(a0Val, b0Val);
+-    c1Val = _mm_mul_ps(a1Val, b1Val);
+-    c2Val = _mm_mul_ps(a2Val, b2Val);
+-    c3Val = _mm_mul_ps(a3Val, b3Val);
+-
+-    dotProdVal0 = _mm_add_ps(dotProdVal0, c0Val);
+-    dotProdVal1 = _mm_add_ps(dotProdVal1, c1Val);
+-    dotProdVal2 = _mm_add_ps(dotProdVal2, c2Val);
+-    dotProdVal3 = _mm_add_ps(dotProdVal3, c3Val);
+-
+-    aPtr += 16;
+-    bPtr += 16;
+-  }
+-
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal1);
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal2);
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal3);
+-
+-  __VOLK_ATTR_ALIGNED(16) float dotProductVector[4];
+-  _mm_store_ps(dotProductVector,dotProdVal0); // Store the results back into the dot product vector
+-
+-  dotProduct = dotProductVector[0];
+-  dotProduct += dotProductVector[1];
+-  dotProduct += dotProductVector[2];
+-  dotProduct += dotProductVector[3];
+-
+-  number = sixteenthPoints*16;
+-  for(;number < num_points; number++){
+-    dotProduct += ((*aPtr++) * (*bPtr++));
+-  }
+-
+-  *result = dotProduct;
+-}
+-
+-#endif /*LV_HAVE_SSE3*/
++static inline void volk_32f_x2_dot_prod_32f_a_sse3(float* result,
++                                                   const float* input,
++                                                   const float* taps,
++                                                   unsigned int num_points)
++{
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
+-#ifdef LV_HAVE_SSE4_1
++    float dotProduct = 0;
++    const float* aPtr = input;
++    const float* bPtr = taps;
++
++    __m128 a0Val, a1Val, a2Val, a3Val;
++    __m128 b0Val, b1Val, b2Val, b3Val;
++    __m128 c0Val, c1Val, c2Val, c3Val;
++
++    __m128 dotProdVal0 = _mm_setzero_ps();
++    __m128 dotProdVal1 = _mm_setzero_ps();
++    __m128 dotProdVal2 = _mm_setzero_ps();
++    __m128 dotProdVal3 = _mm_setzero_ps();
++
++    for (; number < sixteenthPoints; number++) {
++
++        a0Val = _mm_load_ps(aPtr);
++        a1Val = _mm_load_ps(aPtr + 4);
++        a2Val = _mm_load_ps(aPtr + 8);
++        a3Val = _mm_load_ps(aPtr + 12);
++        b0Val = _mm_load_ps(bPtr);
++        b1Val = _mm_load_ps(bPtr + 4);
++        b2Val = _mm_load_ps(bPtr + 8);
++        b3Val = _mm_load_ps(bPtr + 12);
++
++        c0Val = _mm_mul_ps(a0Val, b0Val);
++        c1Val = _mm_mul_ps(a1Val, b1Val);
++        c2Val = _mm_mul_ps(a2Val, b2Val);
++        c3Val = _mm_mul_ps(a3Val, b3Val);
++
++        dotProdVal0 = _mm_add_ps(dotProdVal0, c0Val);
++        dotProdVal1 = _mm_add_ps(dotProdVal1, c1Val);
++        dotProdVal2 = _mm_add_ps(dotProdVal2, c2Val);
++        dotProdVal3 = _mm_add_ps(dotProdVal3, c3Val);
+-#include <smmintrin.h>
++        aPtr += 16;
++        bPtr += 16;
++    }
+-static inline void volk_32f_x2_dot_prod_32f_a_sse4_1(float * result, const float * input, const float* taps, unsigned int num_points) {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal1);
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal2);
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal3);
+-  float dotProduct = 0;
+-  const float* aPtr = input;
+-  const float* bPtr = taps;
++    __VOLK_ATTR_ALIGNED(16) float dotProductVector[4];
++    _mm_store_ps(dotProductVector,
++                 dotProdVal0); // Store the results back into the dot product vector
+-  __m128 aVal1, bVal1, cVal1;
+-  __m128 aVal2, bVal2, cVal2;
+-  __m128 aVal3, bVal3, cVal3;
+-  __m128 aVal4, bVal4, cVal4;
++    dotProduct = dotProductVector[0];
++    dotProduct += dotProductVector[1];
++    dotProduct += dotProductVector[2];
++    dotProduct += dotProductVector[3];
+-  __m128 dotProdVal = _mm_setzero_ps();
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        dotProduct += ((*aPtr++) * (*bPtr++));
++    }
+-  for(;number < sixteenthPoints; number++){
++    *result = dotProduct;
++}
+-    aVal1 = _mm_load_ps(aPtr); aPtr += 4;
+-    aVal2 = _mm_load_ps(aPtr); aPtr += 4;
+-    aVal3 = _mm_load_ps(aPtr); aPtr += 4;
+-    aVal4 = _mm_load_ps(aPtr); aPtr += 4;
++#endif /*LV_HAVE_SSE3*/
+-    bVal1 = _mm_load_ps(bPtr); bPtr += 4;
+-    bVal2 = _mm_load_ps(bPtr); bPtr += 4;
+-    bVal3 = _mm_load_ps(bPtr); bPtr += 4;
+-    bVal4 = _mm_load_ps(bPtr); bPtr += 4;
++#ifdef LV_HAVE_SSE4_1
+-    cVal1 = _mm_dp_ps(aVal1, bVal1, 0xF1);
+-    cVal2 = _mm_dp_ps(aVal2, bVal2, 0xF2);
+-    cVal3 = _mm_dp_ps(aVal3, bVal3, 0xF4);
+-    cVal4 = _mm_dp_ps(aVal4, bVal4, 0xF8);
++#include <smmintrin.h>
+-    cVal1 = _mm_or_ps(cVal1, cVal2);
+-    cVal3 = _mm_or_ps(cVal3, cVal4);
+-    cVal1 = _mm_or_ps(cVal1, cVal3);
++static inline void volk_32f_x2_dot_prod_32f_a_sse4_1(float* result,
++                                                     const float* input,
++                                                     const float* taps,
++                                                     unsigned int num_points)
++{
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
+-    dotProdVal = _mm_add_ps(dotProdVal, cVal1);
+-  }
++    float dotProduct = 0;
++    const float* aPtr = input;
++    const float* bPtr = taps;
++
++    __m128 aVal1, bVal1, cVal1;
++    __m128 aVal2, bVal2, cVal2;
++    __m128 aVal3, bVal3, cVal3;
++    __m128 aVal4, bVal4, cVal4;
++
++    __m128 dotProdVal = _mm_setzero_ps();
++
++    for (; number < sixteenthPoints; number++) {
++
++        aVal1 = _mm_load_ps(aPtr);
++        aPtr += 4;
++        aVal2 = _mm_load_ps(aPtr);
++        aPtr += 4;
++        aVal3 = _mm_load_ps(aPtr);
++        aPtr += 4;
++        aVal4 = _mm_load_ps(aPtr);
++        aPtr += 4;
++
++        bVal1 = _mm_load_ps(bPtr);
++        bPtr += 4;
++        bVal2 = _mm_load_ps(bPtr);
++        bPtr += 4;
++        bVal3 = _mm_load_ps(bPtr);
++        bPtr += 4;
++        bVal4 = _mm_load_ps(bPtr);
++        bPtr += 4;
++
++        cVal1 = _mm_dp_ps(aVal1, bVal1, 0xF1);
++        cVal2 = _mm_dp_ps(aVal2, bVal2, 0xF2);
++        cVal3 = _mm_dp_ps(aVal3, bVal3, 0xF4);
++        cVal4 = _mm_dp_ps(aVal4, bVal4, 0xF8);
++
++        cVal1 = _mm_or_ps(cVal1, cVal2);
++        cVal3 = _mm_or_ps(cVal3, cVal4);
++        cVal1 = _mm_or_ps(cVal1, cVal3);
++
++        dotProdVal = _mm_add_ps(dotProdVal, cVal1);
++    }
+-  __VOLK_ATTR_ALIGNED(16) float dotProductVector[4];
+-  _mm_store_ps(dotProductVector, dotProdVal); // Store the results back into the dot product vector
++    __VOLK_ATTR_ALIGNED(16) float dotProductVector[4];
++    _mm_store_ps(dotProductVector,
++                 dotProdVal); // Store the results back into the dot product vector
+-  dotProduct = dotProductVector[0];
+-  dotProduct += dotProductVector[1];
+-  dotProduct += dotProductVector[2];
+-  dotProduct += dotProductVector[3];
++    dotProduct = dotProductVector[0];
++    dotProduct += dotProductVector[1];
++    dotProduct += dotProductVector[2];
++    dotProduct += dotProductVector[3];
+-  number = sixteenthPoints * 16;
+-  for(;number < num_points; number++){
+-    dotProduct += ((*aPtr++) * (*bPtr++));
+-  }
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        dotProduct += ((*aPtr++) * (*bPtr++));
++    }
+-  *result = dotProduct;
++    *result = dotProduct;
+ }
+ #endif /*LV_HAVE_SSE4_1*/
+@@ -676,159 +733,170 @@ static inline void volk_32f_x2_dot_prod_32f_a_sse4_1(float * result, const float
+ #include <immintrin.h>
+-static inline void volk_32f_x2_dot_prod_32f_a_avx( float* result, const  float* input, const  float* taps, unsigned int num_points) {
++static inline void volk_32f_x2_dot_prod_32f_a_avx(float* result,
++                                                  const float* input,
++                                                  const float* taps,
++                                                  unsigned int num_points)
++{
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
+-
+-  float dotProduct = 0;
+-  const float* aPtr = input;
+-  const float* bPtr = taps;
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
+-  __m256 a0Val, a1Val;
+-  __m256 b0Val, b1Val;
+-  __m256 c0Val, c1Val;
++    float dotProduct = 0;
++    const float* aPtr = input;
++    const float* bPtr = taps;
+-  __m256 dotProdVal0 = _mm256_setzero_ps();
+-  __m256 dotProdVal1 = _mm256_setzero_ps();
++    __m256 a0Val, a1Val;
++    __m256 b0Val, b1Val;
++    __m256 c0Val, c1Val;
+-  for(;number < sixteenthPoints; number++){
++    __m256 dotProdVal0 = _mm256_setzero_ps();
++    __m256 dotProdVal1 = _mm256_setzero_ps();
+-    a0Val = _mm256_load_ps(aPtr);
+-    a1Val = _mm256_load_ps(aPtr+8);
+-    b0Val = _mm256_load_ps(bPtr);
+-    b1Val = _mm256_load_ps(bPtr+8);
++    for (; number < sixteenthPoints; number++) {
+-    c0Val = _mm256_mul_ps(a0Val, b0Val);
+-    c1Val = _mm256_mul_ps(a1Val, b1Val);
++        a0Val = _mm256_load_ps(aPtr);
++        a1Val = _mm256_load_ps(aPtr + 8);
++        b0Val = _mm256_load_ps(bPtr);
++        b1Val = _mm256_load_ps(bPtr + 8);
+-    dotProdVal0 = _mm256_add_ps(c0Val, dotProdVal0);
+-    dotProdVal1 = _mm256_add_ps(c1Val, dotProdVal1);
++        c0Val = _mm256_mul_ps(a0Val, b0Val);
++        c1Val = _mm256_mul_ps(a1Val, b1Val);
+-    aPtr += 16;
+-    bPtr += 16;
+-  }
++        dotProdVal0 = _mm256_add_ps(c0Val, dotProdVal0);
++        dotProdVal1 = _mm256_add_ps(c1Val, dotProdVal1);
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal1);
++        aPtr += 16;
++        bPtr += 16;
++    }
+-  __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal1);
+-  _mm256_store_ps(dotProductVector,dotProdVal0); // Store the results back into the dot product vector
++    __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
+-  dotProduct = dotProductVector[0];
+-  dotProduct += dotProductVector[1];
+-  dotProduct += dotProductVector[2];
+-  dotProduct += dotProductVector[3];
+-  dotProduct += dotProductVector[4];
+-  dotProduct += dotProductVector[5];
+-  dotProduct += dotProductVector[6];
+-  dotProduct += dotProductVector[7];
++    _mm256_store_ps(dotProductVector,
++                    dotProdVal0); // Store the results back into the dot product vector
+-  number = sixteenthPoints*16;
+-  for(;number < num_points; number++){
+-    dotProduct += ((*aPtr++) * (*bPtr++));
+-  }
++    dotProduct = dotProductVector[0];
++    dotProduct += dotProductVector[1];
++    dotProduct += dotProductVector[2];
++    dotProduct += dotProductVector[3];
++    dotProduct += dotProductVector[4];
++    dotProduct += dotProductVector[5];
++    dotProduct += dotProductVector[6];
++    dotProduct += dotProductVector[7];
+-  *result = dotProduct;
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        dotProduct += ((*aPtr++) * (*bPtr++));
++    }
++    *result = dotProduct;
+ }
+ #endif /*LV_HAVE_AVX*/
+ #if LV_HAVE_AVX2 && LV_HAVE_FMA
+ #include <immintrin.h>
+-static inline void volk_32f_x2_dot_prod_32f_a_avx2_fma(float * result, const float * input, const float* taps, unsigned int num_points){
+-  unsigned int number;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  const float* aPtr = input;
+-  const float* bPtr = taps;
++static inline void volk_32f_x2_dot_prod_32f_a_avx2_fma(float* result,
++                                                       const float* input,
++                                                       const float* taps,
++                                                       unsigned int num_points)
++{
++    unsigned int number;
++    const unsigned int eighthPoints = num_points / 8;
+-  __m256 dotProdVal = _mm256_setzero_ps();
+-  __m256 aVal1, bVal1;
++    const float* aPtr = input;
++    const float* bPtr = taps;
+-  for (number = 0; number < eighthPoints; number++ ) {
++    __m256 dotProdVal = _mm256_setzero_ps();
++    __m256 aVal1, bVal1;
+-    aVal1 = _mm256_load_ps(aPtr);
+-    bVal1 = _mm256_load_ps(bPtr);
+-    aPtr += 8;
+-    bPtr += 8;
++    for (number = 0; number < eighthPoints; number++) {
+-    dotProdVal = _mm256_fmadd_ps(aVal1, bVal1, dotProdVal);
+-  }
++        aVal1 = _mm256_load_ps(aPtr);
++        bVal1 = _mm256_load_ps(bPtr);
++        aPtr += 8;
++        bPtr += 8;
+-  __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
+-  _mm256_store_ps(dotProductVector, dotProdVal); // Store the results back into the dot product vector
+-  _mm256_zeroupper();
++        dotProdVal = _mm256_fmadd_ps(aVal1, bVal1, dotProdVal);
++    }
+-  float dotProduct =
+-    dotProductVector[0] + dotProductVector[1] +
+-    dotProductVector[2] + dotProductVector[3] +
+-    dotProductVector[4] + dotProductVector[5] +
+-    dotProductVector[6] + dotProductVector[7];
++    __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
++    _mm256_store_ps(dotProductVector,
++                    dotProdVal); // Store the results back into the dot product vector
++    _mm256_zeroupper();
+-  for(number = eighthPoints * 8; number < num_points; number++){
+-    dotProduct += ((*aPtr++) * (*bPtr++));
+-  }
++    float dotProduct = dotProductVector[0] + dotProductVector[1] + dotProductVector[2] +
++                       dotProductVector[3] + dotProductVector[4] + dotProductVector[5] +
++                       dotProductVector[6] + dotProductVector[7];
+-  *result = dotProduct;
++    for (number = eighthPoints * 8; number < num_points; number++) {
++        dotProduct += ((*aPtr++) * (*bPtr++));
++    }
++    *result = dotProduct;
+ }
+ #endif /* LV_HAVE_AVX2 && LV_HAVE_FMA */
+ #if LV_HAVE_AVX512F
+ #include <immintrin.h>
+-static inline void volk_32f_x2_dot_prod_32f_a_avx512f(float * result, const float * input, const float* taps, unsigned int num_points){
+-  unsigned int number;
+-  const unsigned int sixteenthPoints = num_points / 16;
+-
+-  const float* aPtr = input;
+-  const float* bPtr = taps;
++static inline void volk_32f_x2_dot_prod_32f_a_avx512f(float* result,
++                                                      const float* input,
++                                                      const float* taps,
++                                                      unsigned int num_points)
++{
++    unsigned int number;
++    const unsigned int sixteenthPoints = num_points / 16;
+-  __m512 dotProdVal = _mm512_setzero_ps();
+-  __m512 aVal1, bVal1;
++    const float* aPtr = input;
++    const float* bPtr = taps;
+-  for (number = 0; number < sixteenthPoints; number++ ) {
++    __m512 dotProdVal = _mm512_setzero_ps();
++    __m512 aVal1, bVal1;
+-    aVal1 = _mm512_load_ps(aPtr);
+-    bVal1 = _mm512_load_ps(bPtr);
+-    aPtr += 16;
+-    bPtr += 16;
++    for (number = 0; number < sixteenthPoints; number++) {
+-    dotProdVal = _mm512_fmadd_ps(aVal1, bVal1, dotProdVal);
+-  }
++        aVal1 = _mm512_load_ps(aPtr);
++        bVal1 = _mm512_load_ps(bPtr);
++        aPtr += 16;
++        bPtr += 16;
+-  __VOLK_ATTR_ALIGNED(64) float dotProductVector[16];
+-  _mm512_store_ps(dotProductVector, dotProdVal); // Store the results back into the dot product vector
++        dotProdVal = _mm512_fmadd_ps(aVal1, bVal1, dotProdVal);
++    }
+-  float dotProduct =
+-    dotProductVector[0] + dotProductVector[1] +
+-    dotProductVector[2] + dotProductVector[3] +
+-    dotProductVector[4] + dotProductVector[5] +
+-    dotProductVector[6] + dotProductVector[7] +
+-    dotProductVector[8] + dotProductVector[9] +
+-    dotProductVector[10] + dotProductVector[11] +
+-    dotProductVector[12] + dotProductVector[13] +
+-    dotProductVector[14] + dotProductVector[15];
++    __VOLK_ATTR_ALIGNED(64) float dotProductVector[16];
++    _mm512_store_ps(dotProductVector,
++                    dotProdVal); // Store the results back into the dot product vector
+-  for(number = sixteenthPoints * 16; number < num_points; number++){
+-    dotProduct += ((*aPtr++) * (*bPtr++));
+-  }
++    float dotProduct = dotProductVector[0] + dotProductVector[1] + dotProductVector[2] +
++                       dotProductVector[3] + dotProductVector[4] + dotProductVector[5] +
++                       dotProductVector[6] + dotProductVector[7] + dotProductVector[8] +
++                       dotProductVector[9] + dotProductVector[10] + dotProductVector[11] +
++                       dotProductVector[12] + dotProductVector[13] +
++                       dotProductVector[14] + dotProductVector[15];
+-  *result = dotProduct;
++    for (number = sixteenthPoints * 16; number < num_points; number++) {
++        dotProduct += ((*aPtr++) * (*bPtr++));
++    }
++    *result = dotProduct;
+ }
+ #endif /* LV_HAVE_AVX512F */
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void volk_32f_x2_dot_prod_32f_neonopts(float * result, const float * input, const float * taps, unsigned int num_points) {
++static inline void volk_32f_x2_dot_prod_32f_neonopts(float* result,
++                                                     const float* input,
++                                                     const float* taps,
++                                                     unsigned int num_points)
++{
+     unsigned int quarter_points = num_points / 16;
+     float dotProduct = 0;
+     const float* aPtr = input;
+-    const float* bPtr=  taps;
++    const float* bPtr = taps;
+     unsigned int number = 0;
+     float32x4x4_t a_val, b_val, accumulator0;
+@@ -838,7 +906,7 @@ static inline void volk_32f_x2_dot_prod_32f_neonopts(float * result, const float
+     accumulator0.val[3] = vdupq_n_f32(0);
+     // factor of 4 loop unroll with independent accumulators
+     // uses 12 out of 16 neon q registers
+-    for( number = 0; number < quarter_points; ++number) {
++    for (number = 0; number < quarter_points; ++number) {
+         a_val = vld4q_f32(aPtr);
+         b_val = vld4q_f32(bPtr);
+         accumulator0.val[0] = vmlaq_f32(accumulator0.val[0], a_val.val[0], b_val.val[0]);
+@@ -855,8 +923,8 @@ static inline void volk_32f_x2_dot_prod_32f_neonopts(float * result, const float
+     vst1q_f32(accumulator, accumulator0.val[0]);
+     dotProduct = accumulator[0] + accumulator[1] + accumulator[2] + accumulator[3];
+-    for(number = quarter_points*16; number < num_points; number++){
+-      dotProduct += ((*aPtr++) * (*bPtr++));
++    for (number = quarter_points * 16; number < num_points; number++) {
++        dotProduct += ((*aPtr++) * (*bPtr++));
+     }
+     *result = dotProduct;
+@@ -865,26 +933,30 @@ static inline void volk_32f_x2_dot_prod_32f_neonopts(float * result, const float
+ #endif
+-
+-
+ #ifdef LV_HAVE_NEON
+-static inline void volk_32f_x2_dot_prod_32f_neon(float * result, const float * input, const float * taps, unsigned int num_points) {
++static inline void volk_32f_x2_dot_prod_32f_neon(float* result,
++                                                 const float* input,
++                                                 const float* taps,
++                                                 unsigned int num_points)
++{
+     unsigned int quarter_points = num_points / 8;
+     float dotProduct = 0;
+     const float* aPtr = input;
+-    const float* bPtr=  taps;
++    const float* bPtr = taps;
+     unsigned int number = 0;
+     float32x4x2_t a_val, b_val, accumulator_val;
+     accumulator_val.val[0] = vdupq_n_f32(0);
+     accumulator_val.val[1] = vdupq_n_f32(0);
+     // factor of 2 loop unroll with independent accumulators
+-    for( number = 0; number < quarter_points; ++number) {
++    for (number = 0; number < quarter_points; ++number) {
+         a_val = vld2q_f32(aPtr);
+         b_val = vld2q_f32(bPtr);
+-        accumulator_val.val[0] = vmlaq_f32(accumulator_val.val[0], a_val.val[0], b_val.val[0]);
+-        accumulator_val.val[1] = vmlaq_f32(accumulator_val.val[1], a_val.val[1], b_val.val[1]);
++        accumulator_val.val[0] =
++            vmlaq_f32(accumulator_val.val[0], a_val.val[0], b_val.val[0]);
++        accumulator_val.val[1] =
++            vmlaq_f32(accumulator_val.val[1], a_val.val[1], b_val.val[1]);
+         aPtr += 8;
+         bPtr += 8;
+     }
+@@ -893,8 +965,8 @@ static inline void volk_32f_x2_dot_prod_32f_neon(float * result, const float * i
+     vst1q_f32(accumulator, accumulator_val.val[0]);
+     dotProduct = accumulator[0] + accumulator[1] + accumulator[2] + accumulator[3];
+-    for(number = quarter_points*8; number < num_points; number++){
+-      dotProduct += ((*aPtr++) * (*bPtr++));
++    for (number = quarter_points * 8; number < num_points; number++) {
++        dotProduct += ((*aPtr++) * (*bPtr++));
+     }
+     *result = dotProduct;
+@@ -903,11 +975,17 @@ static inline void volk_32f_x2_dot_prod_32f_neon(float * result, const float * i
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_NEONV7
+-extern void volk_32f_x2_dot_prod_32f_a_neonasm(float* cVector, const float* aVector, const float* bVector, unsigned int num_points);
++extern void volk_32f_x2_dot_prod_32f_a_neonasm(float* cVector,
++                                               const float* aVector,
++                                               const float* bVector,
++                                               unsigned int num_points);
+ #endif /* LV_HAVE_NEONV7 */
+ #ifdef LV_HAVE_NEONV7
+-extern void volk_32f_x2_dot_prod_32f_a_neonasm_opts(float* cVector, const float* aVector, const float* bVector, unsigned int num_points);
++extern void volk_32f_x2_dot_prod_32f_a_neonasm_opts(float* cVector,
++                                                    const float* aVector,
++                                                    const float* bVector,
++                                                    unsigned int num_points);
+ #endif /* LV_HAVE_NEONV7 */
+ #endif /*INCLUDED_volk_32f_x2_dot_prod_32f_a_H*/
+diff --git a/kernels/volk/volk_32f_x2_fm_detectpuppet_32f.h b/kernels/volk/volk_32f_x2_fm_detectpuppet_32f.h
+index e1da185..3a3caca 100644
+--- a/kernels/volk/volk_32f_x2_fm_detectpuppet_32f.h
++++ b/kernels/volk/volk_32f_x2_fm_detectpuppet_32f.h
+@@ -28,32 +28,44 @@
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void volk_32f_x2_fm_detectpuppet_32f_a_avx(float* outputVector, const float* inputVector, float* saveValue, unsigned int num_points)
++static inline void volk_32f_x2_fm_detectpuppet_32f_a_avx(float* outputVector,
++                                                         const float* inputVector,
++                                                         float* saveValue,
++                                                         unsigned int num_points)
+ {
+-  const float bound = 1.0f;
++    const float bound = 1.0f;
+-  volk_32f_s32f_32f_fm_detect_32f_a_avx(outputVector, inputVector, bound, saveValue, num_points);
++    volk_32f_s32f_32f_fm_detect_32f_a_avx(
++        outputVector, inputVector, bound, saveValue, num_points);
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void volk_32f_x2_fm_detectpuppet_32f_a_sse(float* outputVector, const float* inputVector, float* saveValue, unsigned int num_points)
++static inline void volk_32f_x2_fm_detectpuppet_32f_a_sse(float* outputVector,
++                                                         const float* inputVector,
++                                                         float* saveValue,
++                                                         unsigned int num_points)
+ {
+-  const float bound = 1.0f;
++    const float bound = 1.0f;
+-  volk_32f_s32f_32f_fm_detect_32f_a_sse(outputVector, inputVector, bound, saveValue, num_points);
++    volk_32f_s32f_32f_fm_detect_32f_a_sse(
++        outputVector, inputVector, bound, saveValue, num_points);
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32f_x2_fm_detectpuppet_32f_generic(float* outputVector, const float* inputVector, float* saveValue, unsigned int num_points)
++static inline void volk_32f_x2_fm_detectpuppet_32f_generic(float* outputVector,
++                                                           const float* inputVector,
++                                                           float* saveValue,
++                                                           unsigned int num_points)
+ {
+-  const float bound = 1.0f;
++    const float bound = 1.0f;
+-  volk_32f_s32f_32f_fm_detect_32f_generic(outputVector, inputVector, bound, saveValue, num_points);
++    volk_32f_s32f_32f_fm_detect_32f_generic(
++        outputVector, inputVector, bound, saveValue, num_points);
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -69,11 +81,15 @@ static inline void volk_32f_x2_fm_detectpuppet_32f_generic(float* outputVector,
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void volk_32f_x2_fm_detectpuppet_32f_u_avx(float* outputVector, const float* inputVector, float* saveValue, unsigned int num_points)
++static inline void volk_32f_x2_fm_detectpuppet_32f_u_avx(float* outputVector,
++                                                         const float* inputVector,
++                                                         float* saveValue,
++                                                         unsigned int num_points)
+ {
+-  const float bound = 1.0f;
++    const float bound = 1.0f;
+-  volk_32f_s32f_32f_fm_detect_32f_u_avx(outputVector, inputVector, bound, saveValue, num_points);
++    volk_32f_s32f_32f_fm_detect_32f_u_avx(
++        outputVector, inputVector, bound, saveValue, num_points);
+ }
+ #endif /* LV_HAVE_AVX */
+ #endif /* INCLUDED_volk_32f_x2_fm_detectpuppet_32f_u_H */
+diff --git a/kernels/volk/volk_32f_x2_interleave_32fc.h b/kernels/volk/volk_32f_x2_interleave_32fc.h
+index ef8ada2..d0cc6dd 100644
+--- a/kernels/volk/volk_32f_x2_interleave_32fc.h
++++ b/kernels/volk/volk_32f_x2_interleave_32fc.h
+@@ -33,8 +33,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_x2_interleave_32fc(lv_32fc_t* complexVector, const float* iBuffer, const float* qBuffer, unsigned int num_points)
+- * \endcode
++ * void volk_32f_x2_interleave_32fc(lv_32fc_t* complexVector, const float* iBuffer, const
++ * float* qBuffer, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li iBuffer: Input vector of samples for the real part.
+@@ -79,44 +79,45 @@
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32f_x2_interleave_32fc_a_avx(lv_32fc_t* complexVector, const float* iBuffer,
+-                                  const float* qBuffer, unsigned int num_points)
++static inline void volk_32f_x2_interleave_32fc_a_avx(lv_32fc_t* complexVector,
++                                                     const float* iBuffer,
++                                                     const float* qBuffer,
++                                                     unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  float* complexVectorPtr = (float*)complexVector;
+-  const float* iBufferPtr = iBuffer;
+-  const float* qBufferPtr = qBuffer;
+-
+-  const uint64_t eighthPoints = num_points / 8;
+-
+-  __m256 iValue, qValue, cplxValue1, cplxValue2, cplxValue;
+-  for(;number < eighthPoints; number++){
+-    iValue = _mm256_load_ps(iBufferPtr);
+-    qValue = _mm256_load_ps(qBufferPtr);
+-
+-    // Interleaves the lower two values in the i and q variables into one buffer
+-    cplxValue1 = _mm256_unpacklo_ps(iValue, qValue);
+-    // Interleaves the upper two values in the i and q variables into one buffer
+-    cplxValue2 = _mm256_unpackhi_ps(iValue, qValue);
+-
+-    cplxValue = _mm256_permute2f128_ps(cplxValue1, cplxValue2, 0x20);
+-    _mm256_store_ps(complexVectorPtr, cplxValue);
+-    complexVectorPtr += 8;
+-
+-    cplxValue = _mm256_permute2f128_ps(cplxValue1, cplxValue2, 0x31);
+-    _mm256_store_ps(complexVectorPtr, cplxValue);
+-    complexVectorPtr += 8;
+-
+-    iBufferPtr += 8;
+-    qBufferPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    *complexVectorPtr++ = *iBufferPtr++;
+-    *complexVectorPtr++ = *qBufferPtr++;
+-  }
++    unsigned int number = 0;
++    float* complexVectorPtr = (float*)complexVector;
++    const float* iBufferPtr = iBuffer;
++    const float* qBufferPtr = qBuffer;
++
++    const uint64_t eighthPoints = num_points / 8;
++
++    __m256 iValue, qValue, cplxValue1, cplxValue2, cplxValue;
++    for (; number < eighthPoints; number++) {
++        iValue = _mm256_load_ps(iBufferPtr);
++        qValue = _mm256_load_ps(qBufferPtr);
++
++        // Interleaves the lower two values in the i and q variables into one buffer
++        cplxValue1 = _mm256_unpacklo_ps(iValue, qValue);
++        // Interleaves the upper two values in the i and q variables into one buffer
++        cplxValue2 = _mm256_unpackhi_ps(iValue, qValue);
++
++        cplxValue = _mm256_permute2f128_ps(cplxValue1, cplxValue2, 0x20);
++        _mm256_store_ps(complexVectorPtr, cplxValue);
++        complexVectorPtr += 8;
++
++        cplxValue = _mm256_permute2f128_ps(cplxValue1, cplxValue2, 0x31);
++        _mm256_store_ps(complexVectorPtr, cplxValue);
++        complexVectorPtr += 8;
++
++        iBufferPtr += 8;
++        qBufferPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *complexVectorPtr++ = *iBufferPtr++;
++        *complexVectorPtr++ = *qBufferPtr++;
++    }
+ }
+ #endif /* LV_HAV_AVX */
+@@ -124,41 +125,42 @@ volk_32f_x2_interleave_32fc_a_avx(lv_32fc_t* complexVector, const float* iBuffer
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32f_x2_interleave_32fc_a_sse(lv_32fc_t* complexVector, const float* iBuffer,
+-                                  const float* qBuffer, unsigned int num_points)
++static inline void volk_32f_x2_interleave_32fc_a_sse(lv_32fc_t* complexVector,
++                                                     const float* iBuffer,
++                                                     const float* qBuffer,
++                                                     unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  float* complexVectorPtr = (float*)complexVector;
+-  const float* iBufferPtr = iBuffer;
+-  const float* qBufferPtr = qBuffer;
+-
+-  const uint64_t quarterPoints = num_points / 4;
+-
+-  __m128 iValue, qValue, cplxValue;
+-  for(;number < quarterPoints; number++){
+-    iValue = _mm_load_ps(iBufferPtr);
+-    qValue = _mm_load_ps(qBufferPtr);
+-
+-    // Interleaves the lower two values in the i and q variables into one buffer
+-    cplxValue = _mm_unpacklo_ps(iValue, qValue);
+-    _mm_store_ps(complexVectorPtr, cplxValue);
+-    complexVectorPtr += 4;
+-
+-    // Interleaves the upper two values in the i and q variables into one buffer
+-    cplxValue = _mm_unpackhi_ps(iValue, qValue);
+-    _mm_store_ps(complexVectorPtr, cplxValue);
+-    complexVectorPtr += 4;
+-
+-    iBufferPtr += 4;
+-    qBufferPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    *complexVectorPtr++ = *iBufferPtr++;
+-    *complexVectorPtr++ = *qBufferPtr++;
+-  }
++    unsigned int number = 0;
++    float* complexVectorPtr = (float*)complexVector;
++    const float* iBufferPtr = iBuffer;
++    const float* qBufferPtr = qBuffer;
++
++    const uint64_t quarterPoints = num_points / 4;
++
++    __m128 iValue, qValue, cplxValue;
++    for (; number < quarterPoints; number++) {
++        iValue = _mm_load_ps(iBufferPtr);
++        qValue = _mm_load_ps(qBufferPtr);
++
++        // Interleaves the lower two values in the i and q variables into one buffer
++        cplxValue = _mm_unpacklo_ps(iValue, qValue);
++        _mm_store_ps(complexVectorPtr, cplxValue);
++        complexVectorPtr += 4;
++
++        // Interleaves the upper two values in the i and q variables into one buffer
++        cplxValue = _mm_unpackhi_ps(iValue, qValue);
++        _mm_store_ps(complexVectorPtr, cplxValue);
++        complexVectorPtr += 4;
++
++        iBufferPtr += 4;
++        qBufferPtr += 4;
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *complexVectorPtr++ = *iBufferPtr++;
++        *complexVectorPtr++ = *qBufferPtr++;
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+@@ -166,52 +168,53 @@ volk_32f_x2_interleave_32fc_a_sse(lv_32fc_t* complexVector, const float* iBuffer
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_32f_x2_interleave_32fc_neon(lv_32fc_t* complexVector, const float* iBuffer,
+-                                 const float* qBuffer, unsigned int num_points)
++static inline void volk_32f_x2_interleave_32fc_neon(lv_32fc_t* complexVector,
++                                                    const float* iBuffer,
++                                                    const float* qBuffer,
++                                                    unsigned int num_points)
+ {
+-  unsigned int quarter_points = num_points / 4;
+-  unsigned int number;
+-  float* complexVectorPtr = (float*) complexVector;
+-
+-  float32x4x2_t complex_vec;
+-  for(number=0; number < quarter_points; ++number) {
+-    complex_vec.val[0] = vld1q_f32(iBuffer);
+-    complex_vec.val[1] = vld1q_f32(qBuffer);
+-    vst2q_f32(complexVectorPtr, complex_vec);
+-    iBuffer += 4;
+-    qBuffer += 4;
+-    complexVectorPtr += 8;
+-  }
+-
+-  for(number=quarter_points * 4; number < num_points; ++number) {
+-    *complexVectorPtr++ = *iBuffer++;
+-    *complexVectorPtr++ = *qBuffer++;
+-  }
++    unsigned int quarter_points = num_points / 4;
++    unsigned int number;
++    float* complexVectorPtr = (float*)complexVector;
++
++    float32x4x2_t complex_vec;
++    for (number = 0; number < quarter_points; ++number) {
++        complex_vec.val[0] = vld1q_f32(iBuffer);
++        complex_vec.val[1] = vld1q_f32(qBuffer);
++        vst2q_f32(complexVectorPtr, complex_vec);
++        iBuffer += 4;
++        qBuffer += 4;
++        complexVectorPtr += 8;
++    }
++
++    for (number = quarter_points * 4; number < num_points; ++number) {
++        *complexVectorPtr++ = *iBuffer++;
++        *complexVectorPtr++ = *qBuffer++;
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_x2_interleave_32fc_generic(lv_32fc_t* complexVector, const float* iBuffer,
+-                                    const float* qBuffer, unsigned int num_points)
++static inline void volk_32f_x2_interleave_32fc_generic(lv_32fc_t* complexVector,
++                                                       const float* iBuffer,
++                                                       const float* qBuffer,
++                                                       unsigned int num_points)
+ {
+-  float* complexVectorPtr = (float*)complexVector;
+-  const float* iBufferPtr = iBuffer;
+-  const float* qBufferPtr = qBuffer;
+-  unsigned int number;
+-
+-  for(number = 0; number < num_points; number++){
+-    *complexVectorPtr++ = *iBufferPtr++;
+-    *complexVectorPtr++ = *qBufferPtr++;
+-  }
++    float* complexVectorPtr = (float*)complexVector;
++    const float* iBufferPtr = iBuffer;
++    const float* qBufferPtr = qBuffer;
++    unsigned int number;
++
++    for (number = 0; number < num_points; number++) {
++        *complexVectorPtr++ = *iBufferPtr++;
++        *complexVectorPtr++ = *qBufferPtr++;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+-
+ #endif /* INCLUDED_volk_32f_x2_interleave_32fc_a_H */
+ #ifndef INCLUDED_volk_32f_x2_interleave_32fc_u_H
+@@ -223,44 +226,45 @@ volk_32f_x2_interleave_32fc_generic(lv_32fc_t* complexVector, const float* iBuff
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32f_x2_interleave_32fc_u_avx(lv_32fc_t* complexVector, const float* iBuffer,
+-                                  const float* qBuffer, unsigned int num_points)
++static inline void volk_32f_x2_interleave_32fc_u_avx(lv_32fc_t* complexVector,
++                                                     const float* iBuffer,
++                                                     const float* qBuffer,
++                                                     unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  float* complexVectorPtr = (float*)complexVector;
+-  const float* iBufferPtr = iBuffer;
+-  const float* qBufferPtr = qBuffer;
+-
+-  const uint64_t eighthPoints = num_points / 8;
+-
+-  __m256 iValue, qValue, cplxValue1, cplxValue2, cplxValue;
+-  for(;number < eighthPoints; number++){
+-    iValue = _mm256_loadu_ps(iBufferPtr);
+-    qValue = _mm256_loadu_ps(qBufferPtr);
+-
+-    // Interleaves the lower two values in the i and q variables into one buffer
+-    cplxValue1 = _mm256_unpacklo_ps(iValue, qValue);
+-    // Interleaves the upper two values in the i and q variables into one buffer
+-    cplxValue2 = _mm256_unpackhi_ps(iValue, qValue);
+-
+-    cplxValue = _mm256_permute2f128_ps(cplxValue1, cplxValue2, 0x20);
+-    _mm256_storeu_ps(complexVectorPtr, cplxValue);
+-    complexVectorPtr += 8;
+-
+-    cplxValue = _mm256_permute2f128_ps(cplxValue1, cplxValue2, 0x31);
+-    _mm256_storeu_ps(complexVectorPtr, cplxValue);
+-    complexVectorPtr += 8;
+-
+-    iBufferPtr += 8;
+-    qBufferPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    *complexVectorPtr++ = *iBufferPtr++;
+-    *complexVectorPtr++ = *qBufferPtr++;
+-  }
++    unsigned int number = 0;
++    float* complexVectorPtr = (float*)complexVector;
++    const float* iBufferPtr = iBuffer;
++    const float* qBufferPtr = qBuffer;
++
++    const uint64_t eighthPoints = num_points / 8;
++
++    __m256 iValue, qValue, cplxValue1, cplxValue2, cplxValue;
++    for (; number < eighthPoints; number++) {
++        iValue = _mm256_loadu_ps(iBufferPtr);
++        qValue = _mm256_loadu_ps(qBufferPtr);
++
++        // Interleaves the lower two values in the i and q variables into one buffer
++        cplxValue1 = _mm256_unpacklo_ps(iValue, qValue);
++        // Interleaves the upper two values in the i and q variables into one buffer
++        cplxValue2 = _mm256_unpackhi_ps(iValue, qValue);
++
++        cplxValue = _mm256_permute2f128_ps(cplxValue1, cplxValue2, 0x20);
++        _mm256_storeu_ps(complexVectorPtr, cplxValue);
++        complexVectorPtr += 8;
++
++        cplxValue = _mm256_permute2f128_ps(cplxValue1, cplxValue2, 0x31);
++        _mm256_storeu_ps(complexVectorPtr, cplxValue);
++        complexVectorPtr += 8;
++
++        iBufferPtr += 8;
++        qBufferPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *complexVectorPtr++ = *iBufferPtr++;
++        *complexVectorPtr++ = *qBufferPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+diff --git a/kernels/volk/volk_32f_x2_max_32f.h b/kernels/volk/volk_32f_x2_max_32f.h
+index 82086a6..c7eb67f 100644
+--- a/kernels/volk/volk_32f_x2_max_32f.h
++++ b/kernels/volk/volk_32f_x2_max_32f.h
+@@ -32,8 +32,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_x2_max_32f(float* cVector, const float* aVector, const float* bVector, unsigned int num_points)
+- * \endcode
++ * void volk_32f_x2_max_32f(float* cVector, const float* aVector, const float* bVector,
++ * unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li aVector: First input vector.
+@@ -77,176 +77,183 @@
+ #ifdef LV_HAVE_AVX512F
+ #include <immintrin.h>
+-static inline void
+-volk_32f_x2_max_32f_a_avx512f(float* cVector, const float* aVector,
+-                          const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_max_32f_a_avx512f(float* cVector,
++                                                 const float* aVector,
++                                                 const float* bVector,
++                                                 unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m512 aVal, bVal, cVal;
+-  for(;number < sixteenthPoints; number++){
+-    aVal = _mm512_load_ps(aPtr);
+-    bVal = _mm512_load_ps(bPtr);
++    __m512 aVal, bVal, cVal;
++    for (; number < sixteenthPoints; number++) {
++        aVal = _mm512_load_ps(aPtr);
++        bVal = _mm512_load_ps(bPtr);
+-    cVal = _mm512_max_ps(aVal, bVal);
++        cVal = _mm512_max_ps(aVal, bVal);
+-    _mm512_store_ps(cPtr,cVal); // Store the results back into the C container
++        _mm512_store_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 16;
+-    bPtr += 16;
+-    cPtr += 16;
+-  }
++        aPtr += 16;
++        bPtr += 16;
++        cPtr += 16;
++    }
+-  number = sixteenthPoints * 16;
+-  for(;number < num_points; number++){
+-    const float a = *aPtr++;
+-    const float b = *bPtr++;
+-    *cPtr++ = ( a > b ? a : b);
+-  }
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        const float a = *aPtr++;
++        const float b = *bPtr++;
++        *cPtr++ = (a > b ? a : b);
++    }
+ }
+ #endif /* LV_HAVE_AVX512F */
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32f_x2_max_32f_a_sse(float* cVector, const float* aVector,
+-                          const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_max_32f_a_sse(float* cVector,
++                                             const float* aVector,
++                                             const float* bVector,
++                                             unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m128 aVal, bVal, cVal;
+-  for(;number < quarterPoints; number++){
+-    aVal = _mm_load_ps(aPtr);
+-    bVal = _mm_load_ps(bPtr);
++    __m128 aVal, bVal, cVal;
++    for (; number < quarterPoints; number++) {
++        aVal = _mm_load_ps(aPtr);
++        bVal = _mm_load_ps(bPtr);
+-    cVal = _mm_max_ps(aVal, bVal);
++        cVal = _mm_max_ps(aVal, bVal);
+-    _mm_store_ps(cPtr,cVal); // Store the results back into the C container
++        _mm_store_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 4;
+-    bPtr += 4;
+-    cPtr += 4;
+-  }
++        aPtr += 4;
++        bPtr += 4;
++        cPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    const float a = *aPtr++;
+-    const float b = *bPtr++;
+-    *cPtr++ = ( a > b ? a : b);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        const float a = *aPtr++;
++        const float b = *bPtr++;
++        *cPtr++ = (a > b ? a : b);
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32f_x2_max_32f_a_avx(float* cVector, const float* aVector,
+-                          const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_max_32f_a_avx(float* cVector,
++                                             const float* aVector,
++                                             const float* bVector,
++                                             unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m256 aVal, bVal, cVal;
+-  for(;number < eighthPoints; number++){
+-    aVal = _mm256_load_ps(aPtr);
+-    bVal = _mm256_load_ps(bPtr);
++    __m256 aVal, bVal, cVal;
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_load_ps(aPtr);
++        bVal = _mm256_load_ps(bPtr);
+-    cVal = _mm256_max_ps(aVal, bVal);
++        cVal = _mm256_max_ps(aVal, bVal);
+-    _mm256_store_ps(cPtr,cVal); // Store the results back into the C container
++        _mm256_store_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 8;
+-    bPtr += 8;
+-    cPtr += 8;
+-  }
++        aPtr += 8;
++        bPtr += 8;
++        cPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    const float a = *aPtr++;
+-    const float b = *bPtr++;
+-    *cPtr++ = ( a > b ? a : b);
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        const float a = *aPtr++;
++        const float b = *bPtr++;
++        *cPtr++ = (a > b ? a : b);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_32f_x2_max_32f_neon(float* cVector, const float* aVector,
+-                         const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_max_32f_neon(float* cVector,
++                                            const float* aVector,
++                                            const float* bVector,
++                                            unsigned int num_points)
+ {
+-  unsigned int quarter_points = num_points / 4;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
+-  unsigned int number = 0;
+-
+-  float32x4_t a_vec, b_vec, c_vec;
+-  for(number = 0; number < quarter_points; number++){
+-    a_vec = vld1q_f32(aPtr);
+-    b_vec = vld1q_f32(bPtr);
+-    c_vec = vmaxq_f32(a_vec, b_vec);
+-    vst1q_f32(cPtr, c_vec);
+-    aPtr += 4;
+-    bPtr += 4;
+-    cPtr += 4;
+-  }
+-
+-  for(number = quarter_points*4; number < num_points; number++){
+-    const float a = *aPtr++;
+-    const float b = *bPtr++;
+-    *cPtr++ = ( a > b ? a : b);
+-  }
++    unsigned int quarter_points = num_points / 4;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
++    unsigned int number = 0;
++
++    float32x4_t a_vec, b_vec, c_vec;
++    for (number = 0; number < quarter_points; number++) {
++        a_vec = vld1q_f32(aPtr);
++        b_vec = vld1q_f32(bPtr);
++        c_vec = vmaxq_f32(a_vec, b_vec);
++        vst1q_f32(cPtr, c_vec);
++        aPtr += 4;
++        bPtr += 4;
++        cPtr += 4;
++    }
++
++    for (number = quarter_points * 4; number < num_points; number++) {
++        const float a = *aPtr++;
++        const float b = *bPtr++;
++        *cPtr++ = (a > b ? a : b);
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_x2_max_32f_generic(float* cVector, const float* aVector,
+-                            const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_max_32f_generic(float* cVector,
++                                               const float* aVector,
++                                               const float* bVector,
++                                               unsigned int num_points)
+ {
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    const float a = *aPtr++;
+-    const float b = *bPtr++;
+-    *cPtr++ = ( a > b ? a : b);
+-  }
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        const float a = *aPtr++;
++        const float b = *bPtr++;
++        *cPtr++ = (a > b ? a : b);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_ORC
+-extern void
+-volk_32f_x2_max_32f_a_orc_impl(float* cVector, const float* aVector,
+-                               const float* bVector, unsigned int num_points);
+-
+-static inline void
+-volk_32f_x2_max_32f_u_orc(float* cVector, const float* aVector,
+-                          const float* bVector, unsigned int num_points)
++extern void volk_32f_x2_max_32f_a_orc_impl(float* cVector,
++                                           const float* aVector,
++                                           const float* bVector,
++                                           unsigned int num_points);
++
++static inline void volk_32f_x2_max_32f_u_orc(float* cVector,
++                                             const float* aVector,
++                                             const float* bVector,
++                                             unsigned int num_points)
+ {
+-  volk_32f_x2_max_32f_a_orc_impl(cVector, aVector, bVector, num_points);
++    volk_32f_x2_max_32f_a_orc_impl(cVector, aVector, bVector, num_points);
+ }
+ #endif /* LV_HAVE_ORC */
+@@ -263,74 +270,76 @@ volk_32f_x2_max_32f_u_orc(float* cVector, const float* aVector,
+ #ifdef LV_HAVE_AVX512F
+ #include <immintrin.h>
+-static inline void
+-volk_32f_x2_max_32f_u_avx512f(float* cVector, const float* aVector,
+-                          const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_max_32f_u_avx512f(float* cVector,
++                                                 const float* aVector,
++                                                 const float* bVector,
++                                                 unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m512 aVal, bVal, cVal;
+-  for(;number < sixteenthPoints; number++){
+-    aVal = _mm512_loadu_ps(aPtr);
+-    bVal = _mm512_loadu_ps(bPtr);
++    __m512 aVal, bVal, cVal;
++    for (; number < sixteenthPoints; number++) {
++        aVal = _mm512_loadu_ps(aPtr);
++        bVal = _mm512_loadu_ps(bPtr);
+-    cVal = _mm512_max_ps(aVal, bVal);
++        cVal = _mm512_max_ps(aVal, bVal);
+-    _mm512_storeu_ps(cPtr,cVal); // Store the results back into the C container
++        _mm512_storeu_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 16;
+-    bPtr += 16;
+-    cPtr += 16;
+-  }
++        aPtr += 16;
++        bPtr += 16;
++        cPtr += 16;
++    }
+-  number = sixteenthPoints * 16;
+-  for(;number < num_points; number++){
+-    const float a = *aPtr++;
+-    const float b = *bPtr++;
+-    *cPtr++ = ( a > b ? a : b);
+-  }
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        const float a = *aPtr++;
++        const float b = *bPtr++;
++        *cPtr++ = (a > b ? a : b);
++    }
+ }
+ #endif /* LV_HAVE_AVX512F */
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32f_x2_max_32f_u_avx(float* cVector, const float* aVector,
+-                          const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_max_32f_u_avx(float* cVector,
++                                             const float* aVector,
++                                             const float* bVector,
++                                             unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m256 aVal, bVal, cVal;
+-  for(;number < eighthPoints; number++){
+-    aVal = _mm256_loadu_ps(aPtr);
+-    bVal = _mm256_loadu_ps(bPtr);
++    __m256 aVal, bVal, cVal;
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_loadu_ps(aPtr);
++        bVal = _mm256_loadu_ps(bPtr);
+-    cVal = _mm256_max_ps(aVal, bVal);
++        cVal = _mm256_max_ps(aVal, bVal);
+-    _mm256_storeu_ps(cPtr,cVal); // Store the results back into the C container
++        _mm256_storeu_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 8;
+-    bPtr += 8;
+-    cPtr += 8;
+-  }
++        aPtr += 8;
++        bPtr += 8;
++        cPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    const float a = *aPtr++;
+-    const float b = *bPtr++;
+-    *cPtr++ = ( a > b ? a : b);
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        const float a = *aPtr++;
++        const float b = *bPtr++;
++        *cPtr++ = (a > b ? a : b);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+diff --git a/kernels/volk/volk_32f_x2_min_32f.h b/kernels/volk/volk_32f_x2_min_32f.h
+index 454eb76..aecd11a 100644
+--- a/kernels/volk/volk_32f_x2_min_32f.h
++++ b/kernels/volk/volk_32f_x2_min_32f.h
+@@ -32,8 +32,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_x2_min_32f(float* cVector, const float* aVector, const float* bVector, unsigned int num_points)
+- * \endcode
++ * void volk_32f_x2_min_32f(float* cVector, const float* aVector, const float* bVector,
++ * unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li aVector: First input vector.
+@@ -77,37 +77,38 @@
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32f_x2_min_32f_a_sse(float* cVector, const float* aVector,
+-                          const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_min_32f_a_sse(float* cVector,
++                                             const float* aVector,
++                                             const float* bVector,
++                                             unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m128 aVal, bVal, cVal;
+-  for(;number < quarterPoints; number++){
+-    aVal = _mm_load_ps(aPtr);
+-    bVal = _mm_load_ps(bPtr);
++    __m128 aVal, bVal, cVal;
++    for (; number < quarterPoints; number++) {
++        aVal = _mm_load_ps(aPtr);
++        bVal = _mm_load_ps(bPtr);
+-    cVal = _mm_min_ps(aVal, bVal);
++        cVal = _mm_min_ps(aVal, bVal);
+-    _mm_store_ps(cPtr,cVal); // Store the results back into the C container
++        _mm_store_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 4;
+-    bPtr += 4;
+-    cPtr += 4;
+-  }
++        aPtr += 4;
++        bPtr += 4;
++        cPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    const float a = *aPtr++;
+-    const float b = *bPtr++;
+-    *cPtr++ = ( a < b ? a : b);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        const float a = *aPtr++;
++        const float b = *bPtr++;
++        *cPtr++ = (a < b ? a : b);
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+@@ -115,143 +116,149 @@ volk_32f_x2_min_32f_a_sse(float* cVector, const float* aVector,
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_32f_x2_min_32f_neon(float* cVector, const float* aVector,
+-                         const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_min_32f_neon(float* cVector,
++                                            const float* aVector,
++                                            const float* bVector,
++                                            unsigned int num_points)
+ {
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
+-  unsigned int number = 0;
+-  unsigned int quarter_points = num_points / 4;
+-
+-  float32x4_t a_vec, b_vec, c_vec;
+-  for(number = 0; number < quarter_points; number++){
+-    a_vec = vld1q_f32(aPtr);
+-    b_vec = vld1q_f32(bPtr);
+-
+-    c_vec = vminq_f32(a_vec, b_vec);
+-
+-    vst1q_f32(cPtr, c_vec);
+-    aPtr += 4;
+-    bPtr += 4;
+-    cPtr += 4;
+-  }
+-
+-  for(number = quarter_points*4; number < num_points; number++){
+-    const float a = *aPtr++;
+-    const float b = *bPtr++;
+-    *cPtr++ = ( a < b ? a : b);
+-  }
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
++    unsigned int number = 0;
++    unsigned int quarter_points = num_points / 4;
++
++    float32x4_t a_vec, b_vec, c_vec;
++    for (number = 0; number < quarter_points; number++) {
++        a_vec = vld1q_f32(aPtr);
++        b_vec = vld1q_f32(bPtr);
++
++        c_vec = vminq_f32(a_vec, b_vec);
++
++        vst1q_f32(cPtr, c_vec);
++        aPtr += 4;
++        bPtr += 4;
++        cPtr += 4;
++    }
++
++    for (number = quarter_points * 4; number < num_points; number++) {
++        const float a = *aPtr++;
++        const float b = *bPtr++;
++        *cPtr++ = (a < b ? a : b);
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_x2_min_32f_generic(float* cVector, const float* aVector,
+-                            const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_min_32f_generic(float* cVector,
++                                               const float* aVector,
++                                               const float* bVector,
++                                               unsigned int num_points)
+ {
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    const float a = *aPtr++;
+-    const float b = *bPtr++;
+-    *cPtr++ = ( a < b ? a : b);
+-  }
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        const float a = *aPtr++;
++        const float b = *bPtr++;
++        *cPtr++ = (a < b ? a : b);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_ORC
+-extern void
+-volk_32f_x2_min_32f_a_orc_impl(float* cVector, const float* aVector,
+-                               const float* bVector, unsigned int num_points);
++extern void volk_32f_x2_min_32f_a_orc_impl(float* cVector,
++                                           const float* aVector,
++                                           const float* bVector,
++                                           unsigned int num_points);
+-static inline void
+-volk_32f_x2_min_32f_u_orc(float* cVector, const float* aVector,
+-                          const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_min_32f_u_orc(float* cVector,
++                                             const float* aVector,
++                                             const float* bVector,
++                                             unsigned int num_points)
+ {
+-  volk_32f_x2_min_32f_a_orc_impl(cVector, aVector, bVector, num_points);
++    volk_32f_x2_min_32f_a_orc_impl(cVector, aVector, bVector, num_points);
+ }
+ #endif /* LV_HAVE_ORC */
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32f_x2_min_32f_a_avx(float* cVector, const float* aVector,
+-                          const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_min_32f_a_avx(float* cVector,
++                                             const float* aVector,
++                                             const float* bVector,
++                                             unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m256 aVal, bVal, cVal;
+-  for(;number < eighthPoints; number++){
+-    aVal = _mm256_load_ps(aPtr);
+-    bVal = _mm256_load_ps(bPtr);
++    __m256 aVal, bVal, cVal;
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_load_ps(aPtr);
++        bVal = _mm256_load_ps(bPtr);
+-    cVal = _mm256_min_ps(aVal, bVal);
++        cVal = _mm256_min_ps(aVal, bVal);
+-    _mm256_store_ps(cPtr,cVal); // Store the results back into the C container
++        _mm256_store_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 8;
+-    bPtr += 8;
+-    cPtr += 8;
+-  }
++        aPtr += 8;
++        bPtr += 8;
++        cPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    const float a = *aPtr++;
+-    const float b = *bPtr++;
+-    *cPtr++ = ( a < b ? a : b);
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        const float a = *aPtr++;
++        const float b = *bPtr++;
++        *cPtr++ = (a < b ? a : b);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_AVX512F
+ #include <immintrin.h>
+-static inline void
+-volk_32f_x2_min_32f_a_avx512f(float* cVector, const float* aVector,
+-                          const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_min_32f_a_avx512f(float* cVector,
++                                                 const float* aVector,
++                                                 const float* bVector,
++                                                 unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m512 aVal, bVal, cVal;
+-  for(;number < sixteenthPoints; number++){
+-    aVal = _mm512_load_ps(aPtr);
+-    bVal = _mm512_load_ps(bPtr);
++    __m512 aVal, bVal, cVal;
++    for (; number < sixteenthPoints; number++) {
++        aVal = _mm512_load_ps(aPtr);
++        bVal = _mm512_load_ps(bPtr);
+-    cVal = _mm512_min_ps(aVal, bVal);
++        cVal = _mm512_min_ps(aVal, bVal);
+-    _mm512_store_ps(cPtr,cVal); // Store the results back into the C container
++        _mm512_store_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 16;
+-    bPtr += 16;
+-    cPtr += 16;
+-  }
++        aPtr += 16;
++        bPtr += 16;
++        cPtr += 16;
++    }
+-  number = sixteenthPoints * 16;
+-  for(;number < num_points; number++){
+-    const float a = *aPtr++;
+-    const float b = *bPtr++;
+-    *cPtr++ = ( a < b ? a : b);
+-  }
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        const float a = *aPtr++;
++        const float b = *bPtr++;
++        *cPtr++ = (a < b ? a : b);
++    }
+ }
+ #endif /* LV_HAVE_AVX512F */
+@@ -267,74 +274,76 @@ volk_32f_x2_min_32f_a_avx512f(float* cVector, const float* aVector,
+ #ifdef LV_HAVE_AVX512F
+ #include <immintrin.h>
+-static inline void
+-volk_32f_x2_min_32f_u_avx512f(float* cVector, const float* aVector,
+-                          const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_min_32f_u_avx512f(float* cVector,
++                                                 const float* aVector,
++                                                 const float* bVector,
++                                                 unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m512 aVal, bVal, cVal;
+-  for(;number < sixteenthPoints; number++){
+-    aVal = _mm512_loadu_ps(aPtr);
+-    bVal = _mm512_loadu_ps(bPtr);
++    __m512 aVal, bVal, cVal;
++    for (; number < sixteenthPoints; number++) {
++        aVal = _mm512_loadu_ps(aPtr);
++        bVal = _mm512_loadu_ps(bPtr);
+-    cVal = _mm512_min_ps(aVal, bVal);
++        cVal = _mm512_min_ps(aVal, bVal);
+-    _mm512_storeu_ps(cPtr,cVal); // Store the results back into the C container
++        _mm512_storeu_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 16;
+-    bPtr += 16;
+-    cPtr += 16;
+-  }
++        aPtr += 16;
++        bPtr += 16;
++        cPtr += 16;
++    }
+-  number = sixteenthPoints * 16;
+-  for(;number < num_points; number++){
+-    const float a = *aPtr++;
+-    const float b = *bPtr++;
+-    *cPtr++ = ( a < b ? a : b);
+-  }
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        const float a = *aPtr++;
++        const float b = *bPtr++;
++        *cPtr++ = (a < b ? a : b);
++    }
+ }
+ #endif /* LV_HAVE_AVX512F */
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32f_x2_min_32f_u_avx(float* cVector, const float* aVector,
+-                          const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_min_32f_u_avx(float* cVector,
++                                             const float* aVector,
++                                             const float* bVector,
++                                             unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m256 aVal, bVal, cVal;
+-  for(;number < eighthPoints; number++){
+-    aVal = _mm256_loadu_ps(aPtr);
+-    bVal = _mm256_loadu_ps(bPtr);
++    __m256 aVal, bVal, cVal;
++    for (; number < eighthPoints; number++) {
++        aVal = _mm256_loadu_ps(aPtr);
++        bVal = _mm256_loadu_ps(bPtr);
+-    cVal = _mm256_min_ps(aVal, bVal);
++        cVal = _mm256_min_ps(aVal, bVal);
+-    _mm256_storeu_ps(cPtr,cVal); // Store the results back into the C container
++        _mm256_storeu_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 8;
+-    bPtr += 8;
+-    cPtr += 8;
+-  }
++        aPtr += 8;
++        bPtr += 8;
++        cPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    const float a = *aPtr++;
+-    const float b = *bPtr++;
+-    *cPtr++ = ( a < b ? a : b);
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        const float a = *aPtr++;
++        const float b = *bPtr++;
++        *cPtr++ = (a < b ? a : b);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+diff --git a/kernels/volk/volk_32f_x2_multiply_32f.h b/kernels/volk/volk_32f_x2_multiply_32f.h
+index deb9ae3..eebba18 100644
+--- a/kernels/volk/volk_32f_x2_multiply_32f.h
++++ b/kernels/volk/volk_32f_x2_multiply_32f.h
+@@ -31,8 +31,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_x2_multiply_32f(float* cVector, const float* aVector, const float* bVector, unsigned int num_points)
+- * \endcode
++ * void volk_32f_x2_multiply_32f(float* cVector, const float* aVector, const float*
++ * bVector, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li aVector: First input vector.
+@@ -77,126 +77,130 @@
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32f_x2_multiply_32f_u_sse(float* cVector, const float* aVector,
+-                               const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_multiply_32f_u_sse(float* cVector,
++                                                  const float* aVector,
++                                                  const float* bVector,
++                                                  unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m128 aVal, bVal, cVal;
+-  for(;number < quarterPoints; number++){
++    __m128 aVal, bVal, cVal;
++    for (; number < quarterPoints; number++) {
+-    aVal = _mm_loadu_ps(aPtr);
+-    bVal = _mm_loadu_ps(bPtr);
++        aVal = _mm_loadu_ps(aPtr);
++        bVal = _mm_loadu_ps(bPtr);
+-    cVal = _mm_mul_ps(aVal, bVal);
++        cVal = _mm_mul_ps(aVal, bVal);
+-    _mm_storeu_ps(cPtr,cVal); // Store the results back into the C container
++        _mm_storeu_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 4;
+-    bPtr += 4;
+-    cPtr += 4;
+-  }
++        aPtr += 4;
++        bPtr += 4;
++        cPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) * (*bPtr++);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) * (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_AVX512F
+ #include <immintrin.h>
+-static inline void
+-volk_32f_x2_multiply_32f_u_avx512f(float* cVector, const float* aVector,
+-                               const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_multiply_32f_u_avx512f(float* cVector,
++                                                      const float* aVector,
++                                                      const float* bVector,
++                                                      unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m512 aVal, bVal, cVal;
+-  for(;number < sixteenthPoints; number++){
++    __m512 aVal, bVal, cVal;
++    for (; number < sixteenthPoints; number++) {
+-    aVal = _mm512_loadu_ps(aPtr);
+-    bVal = _mm512_loadu_ps(bPtr);
++        aVal = _mm512_loadu_ps(aPtr);
++        bVal = _mm512_loadu_ps(bPtr);
+-    cVal = _mm512_mul_ps(aVal, bVal);
++        cVal = _mm512_mul_ps(aVal, bVal);
+-    _mm512_storeu_ps(cPtr,cVal); // Store the results back into the C container
++        _mm512_storeu_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 16;
+-    bPtr += 16;
+-    cPtr += 16;
+-  }
++        aPtr += 16;
++        bPtr += 16;
++        cPtr += 16;
++    }
+-  number = sixteenthPoints * 16;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) * (*bPtr++);
+-  }
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) * (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX512F */
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32f_x2_multiply_32f_u_avx(float* cVector, const float* aVector,
+-                               const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_multiply_32f_u_avx(float* cVector,
++                                                  const float* aVector,
++                                                  const float* bVector,
++                                                  unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m256 aVal, bVal, cVal;
+-  for(;number < eighthPoints; number++){
++    __m256 aVal, bVal, cVal;
++    for (; number < eighthPoints; number++) {
+-    aVal = _mm256_loadu_ps(aPtr);
+-    bVal = _mm256_loadu_ps(bPtr);
++        aVal = _mm256_loadu_ps(aPtr);
++        bVal = _mm256_loadu_ps(bPtr);
+-    cVal = _mm256_mul_ps(aVal, bVal);
++        cVal = _mm256_mul_ps(aVal, bVal);
+-    _mm256_storeu_ps(cPtr,cVal); // Store the results back into the C container
++        _mm256_storeu_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 8;
+-    bPtr += 8;
+-    cPtr += 8;
+-  }
++        aPtr += 8;
++        bPtr += 8;
++        cPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) * (*bPtr++);
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) * (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_x2_multiply_32f_generic(float* cVector, const float* aVector,
+-                                 const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_multiply_32f_generic(float* cVector,
++                                                    const float* aVector,
++                                                    const float* bVector,
++                                                    unsigned int num_points)
+ {
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    *cPtr++ = (*aPtr++) * (*bPtr++);
+-  }
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) * (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -213,72 +217,74 @@ volk_32f_x2_multiply_32f_generic(float* cVector, const float* aVector,
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32f_x2_multiply_32f_a_sse(float* cVector, const float* aVector,
+-                               const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_multiply_32f_a_sse(float* cVector,
++                                                  const float* aVector,
++                                                  const float* bVector,
++                                                  unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m128 aVal, bVal, cVal;
+-  for(;number < quarterPoints; number++){
++    __m128 aVal, bVal, cVal;
++    for (; number < quarterPoints; number++) {
+-    aVal = _mm_load_ps(aPtr);
+-    bVal = _mm_load_ps(bPtr);
++        aVal = _mm_load_ps(aPtr);
++        bVal = _mm_load_ps(bPtr);
+-    cVal = _mm_mul_ps(aVal, bVal);
++        cVal = _mm_mul_ps(aVal, bVal);
+-    _mm_store_ps(cPtr,cVal); // Store the results back into the C container
++        _mm_store_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 4;
+-    bPtr += 4;
+-    cPtr += 4;
+-  }
++        aPtr += 4;
++        bPtr += 4;
++        cPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) * (*bPtr++);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) * (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_AVX512F
+ #include <immintrin.h>
+-static inline void
+-volk_32f_x2_multiply_32f_a_avx512f(float* cVector, const float* aVector,
+-                               const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_multiply_32f_a_avx512f(float* cVector,
++                                                      const float* aVector,
++                                                      const float* bVector,
++                                                      unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m512 aVal, bVal, cVal;
+-  for(;number < sixteenthPoints; number++){
++    __m512 aVal, bVal, cVal;
++    for (; number < sixteenthPoints; number++) {
+-    aVal = _mm512_load_ps(aPtr);
+-    bVal = _mm512_load_ps(bPtr);
++        aVal = _mm512_load_ps(aPtr);
++        bVal = _mm512_load_ps(bPtr);
+-    cVal = _mm512_mul_ps(aVal, bVal);
++        cVal = _mm512_mul_ps(aVal, bVal);
+-    _mm512_store_ps(cPtr,cVal); // Store the results back into the C container
++        _mm512_store_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 16;
+-    bPtr += 16;
+-    cPtr += 16;
+-  }
++        aPtr += 16;
++        bPtr += 16;
++        cPtr += 16;
++    }
+-  number = sixteenthPoints * 16;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) * (*bPtr++);
+-  }
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) * (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX512F */
+@@ -286,36 +292,37 @@ volk_32f_x2_multiply_32f_a_avx512f(float* cVector, const float* aVector,
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32f_x2_multiply_32f_a_avx(float* cVector, const float* aVector,
+-                               const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_multiply_32f_a_avx(float* cVector,
++                                                  const float* aVector,
++                                                  const float* bVector,
++                                                  unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m256 aVal, bVal, cVal;
+-  for(;number < eighthPoints; number++){
++    __m256 aVal, bVal, cVal;
++    for (; number < eighthPoints; number++) {
+-    aVal = _mm256_load_ps(aPtr);
+-    bVal = _mm256_load_ps(bPtr);
++        aVal = _mm256_load_ps(aPtr);
++        bVal = _mm256_load_ps(bPtr);
+-    cVal = _mm256_mul_ps(aVal, bVal);
++        cVal = _mm256_mul_ps(aVal, bVal);
+-    _mm256_store_ps(cPtr,cVal); // Store the results back into the C container
++        _mm256_store_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 8;
+-    bPtr += 8;
+-    cPtr += 8;
+-  }
++        aPtr += 8;
++        bPtr += 8;
++        cPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) * (*bPtr++);
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) * (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -323,57 +330,61 @@ volk_32f_x2_multiply_32f_a_avx(float* cVector, const float* aVector,
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_32f_x2_multiply_32f_neon(float* cVector, const float* aVector,
+-                              const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_multiply_32f_neon(float* cVector,
++                                                 const float* aVector,
++                                                 const float* bVector,
++                                                 unsigned int num_points)
+ {
+-  const unsigned int quarter_points = num_points / 4;
+-  unsigned int number;
+-  float32x4_t avec, bvec, cvec;
+-  for(number=0; number < quarter_points; ++number) {
+-    avec = vld1q_f32(aVector);
+-    bvec = vld1q_f32(bVector);
+-    cvec = vmulq_f32(avec, bvec);
+-    vst1q_f32(cVector, cvec);
+-    aVector += 4;
+-    bVector += 4;
+-    cVector += 4;
+-  }
+-  for(number=quarter_points*4; number < num_points; ++number) {
+-    *cVector++ = *aVector++ * *bVector++;
+-  }
++    const unsigned int quarter_points = num_points / 4;
++    unsigned int number;
++    float32x4_t avec, bvec, cvec;
++    for (number = 0; number < quarter_points; ++number) {
++        avec = vld1q_f32(aVector);
++        bvec = vld1q_f32(bVector);
++        cvec = vmulq_f32(avec, bvec);
++        vst1q_f32(cVector, cvec);
++        aVector += 4;
++        bVector += 4;
++        cVector += 4;
++    }
++    for (number = quarter_points * 4; number < num_points; ++number) {
++        *cVector++ = *aVector++ * *bVector++;
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_x2_multiply_32f_a_generic(float* cVector, const float* aVector,
+-                                   const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_multiply_32f_a_generic(float* cVector,
++                                                      const float* aVector,
++                                                      const float* bVector,
++                                                      unsigned int num_points)
+ {
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr=  bVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    *cPtr++ = (*aPtr++) * (*bPtr++);
+-  }
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) * (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_ORC
+-extern void
+-volk_32f_x2_multiply_32f_a_orc_impl(float* cVector, const float* aVector,
+-                                    const float* bVector, unsigned int num_points);
+-
+-static inline void
+-volk_32f_x2_multiply_32f_u_orc(float* cVector, const float* aVector,
+-                               const float* bVector, unsigned int num_points)
++extern void volk_32f_x2_multiply_32f_a_orc_impl(float* cVector,
++                                                const float* aVector,
++                                                const float* bVector,
++                                                unsigned int num_points);
++
++static inline void volk_32f_x2_multiply_32f_u_orc(float* cVector,
++                                                  const float* aVector,
++                                                  const float* bVector,
++                                                  unsigned int num_points)
+ {
+-  volk_32f_x2_multiply_32f_a_orc_impl(cVector, aVector, bVector, num_points);
++    volk_32f_x2_multiply_32f_a_orc_impl(cVector, aVector, bVector, num_points);
+ }
+ #endif /* LV_HAVE_ORC */
+diff --git a/kernels/volk/volk_32f_x2_pow_32f.h b/kernels/volk/volk_32f_x2_pow_32f.h
+index daa7f4e..106c57b 100644
+--- a/kernels/volk/volk_32f_x2_pow_32f.h
++++ b/kernels/volk/volk_32f_x2_pow_32f.h
+@@ -31,8 +31,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_x2_pow_32f(float* cVector, const float* bVector, const float* aVector, unsigned int num_points)
+- * \endcode
++ * void volk_32f_x2_pow_32f(float* cVector, const float* bVector, const float* aVector,
++ * unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li bVector: The input vector of indices (power values).
+@@ -71,10 +71,10 @@
+ #ifndef INCLUDED_volk_32f_x2_pow_32f_a_H
+ #define INCLUDED_volk_32f_x2_pow_32f_a_H
+-#include <stdio.h>
+-#include <stdlib.h>
+ #include <inttypes.h>
+ #include <math.h>
++#include <stdio.h>
++#include <stdlib.h>
+ #define POW_POLY_DEGREE 3
+@@ -82,99 +82,130 @@
+ #include <immintrin.h>
+ #define POLY0_AVX2_FMA(x, c0) _mm256_set1_ps(c0)
+-#define POLY1_AVX2_FMA(x, c0, c1) _mm256_fmadd_ps(POLY0_AVX2_FMA(x, c1), x, _mm256_set1_ps(c0))
+-#define POLY2_AVX2_FMA(x, c0, c1, c2) _mm256_fmadd_ps(POLY1_AVX2_FMA(x, c1, c2), x, _mm256_set1_ps(c0))
+-#define POLY3_AVX2_FMA(x, c0, c1, c2, c3) _mm256_fmadd_ps(POLY2_AVX2_FMA(x, c1, c2, c3), x, _mm256_set1_ps(c0))
+-#define POLY4_AVX2_FMA(x, c0, c1, c2, c3, c4) _mm256_fmadd_ps(POLY3_AVX2_FMA(x, c1, c2, c3, c4), x, _mm256_set1_ps(c0))
+-#define POLY5_AVX2_FMA(x, c0, c1, c2, c3, c4, c5) _mm256_fmadd_ps(POLY4_AVX2_FMA(x, c1, c2, c3, c4, c5), x, _mm256_set1_ps(c0))
+-
+-static inline void
+-volk_32f_x2_pow_32f_a_avx2_fma(float* cVector, const float* bVector,
+-                             const float* aVector, unsigned int num_points)
++#define POLY1_AVX2_FMA(x, c0, c1) \
++    _mm256_fmadd_ps(POLY0_AVX2_FMA(x, c1), x, _mm256_set1_ps(c0))
++#define POLY2_AVX2_FMA(x, c0, c1, c2) \
++    _mm256_fmadd_ps(POLY1_AVX2_FMA(x, c1, c2), x, _mm256_set1_ps(c0))
++#define POLY3_AVX2_FMA(x, c0, c1, c2, c3) \
++    _mm256_fmadd_ps(POLY2_AVX2_FMA(x, c1, c2, c3), x, _mm256_set1_ps(c0))
++#define POLY4_AVX2_FMA(x, c0, c1, c2, c3, c4) \
++    _mm256_fmadd_ps(POLY3_AVX2_FMA(x, c1, c2, c3, c4), x, _mm256_set1_ps(c0))
++#define POLY5_AVX2_FMA(x, c0, c1, c2, c3, c4, c5) \
++    _mm256_fmadd_ps(POLY4_AVX2_FMA(x, c1, c2, c3, c4, c5), x, _mm256_set1_ps(c0))
++
++static inline void volk_32f_x2_pow_32f_a_avx2_fma(float* cVector,
++                                                  const float* bVector,
++                                                  const float* aVector,
++                                                  unsigned int num_points)
+ {
+-  float* cPtr = cVector;
+-  const float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  __m256 aVal, bVal, cVal, logarithm, mantissa, frac, leadingOne;
+-  __m256 tmp, fx, mask, pow2n, z, y;
+-  __m256 one, exp_hi, exp_lo, ln2, log2EF, half, exp_C1, exp_C2;
+-  __m256 exp_p0, exp_p1, exp_p2, exp_p3, exp_p4, exp_p5;
+-  __m256i bias, exp, emm0, pi32_0x7f;
+-
+-  one = _mm256_set1_ps(1.0);
+-  exp_hi = _mm256_set1_ps(88.3762626647949);
+-  exp_lo = _mm256_set1_ps(-88.3762626647949);
+-  ln2 = _mm256_set1_ps(0.6931471805);
+-  log2EF = _mm256_set1_ps(1.44269504088896341);
+-  half = _mm256_set1_ps(0.5);
+-  exp_C1 = _mm256_set1_ps(0.693359375);
+-  exp_C2 = _mm256_set1_ps(-2.12194440e-4);
+-  pi32_0x7f = _mm256_set1_epi32(0x7f);
+-
+-  exp_p0 = _mm256_set1_ps(1.9875691500e-4);
+-  exp_p1 = _mm256_set1_ps(1.3981999507e-3);
+-  exp_p2 = _mm256_set1_ps(8.3334519073e-3);
+-  exp_p3 = _mm256_set1_ps(4.1665795894e-2);
+-  exp_p4 = _mm256_set1_ps(1.6666665459e-1);
+-  exp_p5 = _mm256_set1_ps(5.0000001201e-1);
+-
+-  for(;number < eighthPoints; number++){
+-    // First compute the logarithm
+-    aVal = _mm256_load_ps(aPtr);
+-    bias = _mm256_set1_epi32(127);
+-    leadingOne = _mm256_set1_ps(1.0f);
+-    exp = _mm256_sub_epi32(_mm256_srli_epi32(_mm256_and_si256(_mm256_castps_si256(aVal), _mm256_set1_epi32(0x7f800000)), 23), bias);
+-    logarithm = _mm256_cvtepi32_ps(exp);
+-
+-    frac = _mm256_or_ps(leadingOne, _mm256_and_ps(aVal, _mm256_castsi256_ps(_mm256_set1_epi32(0x7fffff))));
++    float* cPtr = cVector;
++    const float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    __m256 aVal, bVal, cVal, logarithm, mantissa, frac, leadingOne;
++    __m256 tmp, fx, mask, pow2n, z, y;
++    __m256 one, exp_hi, exp_lo, ln2, log2EF, half, exp_C1, exp_C2;
++    __m256 exp_p0, exp_p1, exp_p2, exp_p3, exp_p4, exp_p5;
++    __m256i bias, exp, emm0, pi32_0x7f;
++
++    one = _mm256_set1_ps(1.0);
++    exp_hi = _mm256_set1_ps(88.3762626647949);
++    exp_lo = _mm256_set1_ps(-88.3762626647949);
++    ln2 = _mm256_set1_ps(0.6931471805);
++    log2EF = _mm256_set1_ps(1.44269504088896341);
++    half = _mm256_set1_ps(0.5);
++    exp_C1 = _mm256_set1_ps(0.693359375);
++    exp_C2 = _mm256_set1_ps(-2.12194440e-4);
++    pi32_0x7f = _mm256_set1_epi32(0x7f);
++
++    exp_p0 = _mm256_set1_ps(1.9875691500e-4);
++    exp_p1 = _mm256_set1_ps(1.3981999507e-3);
++    exp_p2 = _mm256_set1_ps(8.3334519073e-3);
++    exp_p3 = _mm256_set1_ps(4.1665795894e-2);
++    exp_p4 = _mm256_set1_ps(1.6666665459e-1);
++    exp_p5 = _mm256_set1_ps(5.0000001201e-1);
++
++    for (; number < eighthPoints; number++) {
++        // First compute the logarithm
++        aVal = _mm256_load_ps(aPtr);
++        bias = _mm256_set1_epi32(127);
++        leadingOne = _mm256_set1_ps(1.0f);
++        exp = _mm256_sub_epi32(
++            _mm256_srli_epi32(_mm256_and_si256(_mm256_castps_si256(aVal),
++                                               _mm256_set1_epi32(0x7f800000)),
++                              23),
++            bias);
++        logarithm = _mm256_cvtepi32_ps(exp);
++
++        frac = _mm256_or_ps(
++            leadingOne,
++            _mm256_and_ps(aVal, _mm256_castsi256_ps(_mm256_set1_epi32(0x7fffff))));
+ #if POW_POLY_DEGREE == 6
+-    mantissa = POLY5_AVX2_FMA( frac, 3.1157899f, -3.3241990f, 2.5988452f, -1.2315303f,  3.1821337e-1f, -3.4436006e-2f);
++        mantissa = POLY5_AVX2_FMA(frac,
++                                  3.1157899f,
++                                  -3.3241990f,
++                                  2.5988452f,
++                                  -1.2315303f,
++                                  3.1821337e-1f,
++                                  -3.4436006e-2f);
+ #elif POW_POLY_DEGREE == 5
+-    mantissa = POLY4_AVX2_FMA( frac, 2.8882704548164776201f, -2.52074962577807006663f, 1.48116647521213171641f, -0.465725644288844778798f, 0.0596515482674574969533f);
++        mantissa = POLY4_AVX2_FMA(frac,
++                                  2.8882704548164776201f,
++                                  -2.52074962577807006663f,
++                                  1.48116647521213171641f,
++                                  -0.465725644288844778798f,
++                                  0.0596515482674574969533f);
+ #elif POW_POLY_DEGREE == 4
+-    mantissa = POLY3_AVX2_FMA( frac, 2.61761038894603480148f, -1.75647175389045657003f, 0.688243882994381274313f, -0.107254423828329604454f);
++        mantissa = POLY3_AVX2_FMA(frac,
++                                  2.61761038894603480148f,
++                                  -1.75647175389045657003f,
++                                  0.688243882994381274313f,
++                                  -0.107254423828329604454f);
+ #elif POW_POLY_DEGREE == 3
+-    mantissa = POLY2_AVX2_FMA( frac, 2.28330284476918490682f, -1.04913055217340124191f, 0.204446009836232697516f);
++        mantissa = POLY2_AVX2_FMA(frac,
++                                  2.28330284476918490682f,
++                                  -1.04913055217340124191f,
++                                  0.204446009836232697516f);
+ #else
+ #error
+ #endif
+-    logarithm = _mm256_fmadd_ps(mantissa, _mm256_sub_ps(frac, leadingOne), logarithm);
+-    logarithm = _mm256_mul_ps(logarithm, ln2);
++        logarithm = _mm256_fmadd_ps(mantissa, _mm256_sub_ps(frac, leadingOne), logarithm);
++        logarithm = _mm256_mul_ps(logarithm, ln2);
+-    // Now calculate b*lna
+-    bVal = _mm256_load_ps(bPtr);
+-    bVal = _mm256_mul_ps(bVal, logarithm);
++        // Now calculate b*lna
++        bVal = _mm256_load_ps(bPtr);
++        bVal = _mm256_mul_ps(bVal, logarithm);
+-    // Now compute exp(b*lna)
+-    bVal = _mm256_max_ps(_mm256_min_ps(bVal, exp_hi), exp_lo);
++        // Now compute exp(b*lna)
++        bVal = _mm256_max_ps(_mm256_min_ps(bVal, exp_hi), exp_lo);
+-    fx = _mm256_fmadd_ps(bVal, log2EF, half);
++        fx = _mm256_fmadd_ps(bVal, log2EF, half);
+-    emm0 = _mm256_cvttps_epi32(fx);
+-    tmp = _mm256_cvtepi32_ps(emm0);
++        emm0 = _mm256_cvttps_epi32(fx);
++        tmp = _mm256_cvtepi32_ps(emm0);
+-    mask = _mm256_and_ps(_mm256_cmp_ps(tmp, fx, _CMP_GT_OS), one);
+-    fx = _mm256_sub_ps(tmp, mask);
++        mask = _mm256_and_ps(_mm256_cmp_ps(tmp, fx, _CMP_GT_OS), one);
++        fx = _mm256_sub_ps(tmp, mask);
+-    tmp = _mm256_fnmadd_ps(fx, exp_C1, bVal);
+-    bVal = _mm256_fnmadd_ps(fx, exp_C2, tmp);
+-    z = _mm256_mul_ps(bVal, bVal);
++        tmp = _mm256_fnmadd_ps(fx, exp_C1, bVal);
++        bVal = _mm256_fnmadd_ps(fx, exp_C2, tmp);
++        z = _mm256_mul_ps(bVal, bVal);
+-    y = _mm256_fmadd_ps(exp_p0, bVal, exp_p1);
+-    y = _mm256_fmadd_ps(y, bVal, exp_p2);
+-    y = _mm256_fmadd_ps(y, bVal, exp_p3);
+-    y = _mm256_fmadd_ps(y, bVal, exp_p4);
+-    y = _mm256_fmadd_ps(y, bVal, exp_p5);
+-    y = _mm256_fmadd_ps(y, z, bVal);
+-    y = _mm256_add_ps(y, one);
++        y = _mm256_fmadd_ps(exp_p0, bVal, exp_p1);
++        y = _mm256_fmadd_ps(y, bVal, exp_p2);
++        y = _mm256_fmadd_ps(y, bVal, exp_p3);
++        y = _mm256_fmadd_ps(y, bVal, exp_p4);
++        y = _mm256_fmadd_ps(y, bVal, exp_p5);
++        y = _mm256_fmadd_ps(y, z, bVal);
++        y = _mm256_add_ps(y, one);
+-    emm0 = _mm256_slli_epi32(_mm256_add_epi32(_mm256_cvttps_epi32(fx), pi32_0x7f), 23);
++        emm0 =
++            _mm256_slli_epi32(_mm256_add_epi32(_mm256_cvttps_epi32(fx), pi32_0x7f), 23);
+         pow2n = _mm256_castsi256_ps(emm0);
+         cVal = _mm256_mul_ps(y, pow2n);
+@@ -184,12 +215,12 @@ volk_32f_x2_pow_32f_a_avx2_fma(float* cVector, const float* bVector,
+         aPtr += 8;
+         bPtr += 8;
+         cPtr += 8;
+-  }
++    }
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *cPtr++ = pow(*aPtr++, *bPtr++);
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *cPtr++ = pow(*aPtr++, *bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 && LV_HAVE_FMA for aligned */
+@@ -198,99 +229,131 @@ volk_32f_x2_pow_32f_a_avx2_fma(float* cVector, const float* bVector,
+ #include <immintrin.h>
+ #define POLY0_AVX2(x, c0) _mm256_set1_ps(c0)
+-#define POLY1_AVX2(x, c0, c1) _mm256_add_ps(_mm256_mul_ps(POLY0_AVX2(x, c1), x), _mm256_set1_ps(c0))
+-#define POLY2_AVX2(x, c0, c1, c2) _mm256_add_ps(_mm256_mul_ps(POLY1_AVX2(x, c1, c2), x), _mm256_set1_ps(c0))
+-#define POLY3_AVX2(x, c0, c1, c2, c3) _mm256_add_ps(_mm256_mul_ps(POLY2_AVX2(x, c1, c2, c3), x), _mm256_set1_ps(c0))
+-#define POLY4_AVX2(x, c0, c1, c2, c3, c4) _mm256_add_ps(_mm256_mul_ps(POLY3_AVX2(x, c1, c2, c3, c4), x), _mm256_set1_ps(c0))
+-#define POLY5_AVX2(x, c0, c1, c2, c3, c4, c5) _mm256_add_ps(_mm256_mul_ps(POLY4_AVX2(x, c1, c2, c3, c4, c5), x), _mm256_set1_ps(c0))
+-
+-static inline void
+-volk_32f_x2_pow_32f_a_avx2(float* cVector, const float* bVector,
+-                             const float* aVector, unsigned int num_points)
++#define POLY1_AVX2(x, c0, c1) \
++    _mm256_add_ps(_mm256_mul_ps(POLY0_AVX2(x, c1), x), _mm256_set1_ps(c0))
++#define POLY2_AVX2(x, c0, c1, c2) \
++    _mm256_add_ps(_mm256_mul_ps(POLY1_AVX2(x, c1, c2), x), _mm256_set1_ps(c0))
++#define POLY3_AVX2(x, c0, c1, c2, c3) \
++    _mm256_add_ps(_mm256_mul_ps(POLY2_AVX2(x, c1, c2, c3), x), _mm256_set1_ps(c0))
++#define POLY4_AVX2(x, c0, c1, c2, c3, c4) \
++    _mm256_add_ps(_mm256_mul_ps(POLY3_AVX2(x, c1, c2, c3, c4), x), _mm256_set1_ps(c0))
++#define POLY5_AVX2(x, c0, c1, c2, c3, c4, c5) \
++    _mm256_add_ps(_mm256_mul_ps(POLY4_AVX2(x, c1, c2, c3, c4, c5), x), _mm256_set1_ps(c0))
++
++static inline void volk_32f_x2_pow_32f_a_avx2(float* cVector,
++                                              const float* bVector,
++                                              const float* aVector,
++                                              unsigned int num_points)
+ {
+-  float* cPtr = cVector;
+-  const float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  __m256 aVal, bVal, cVal, logarithm, mantissa, frac, leadingOne;
+-  __m256 tmp, fx, mask, pow2n, z, y;
+-  __m256 one, exp_hi, exp_lo, ln2, log2EF, half, exp_C1, exp_C2;
+-  __m256 exp_p0, exp_p1, exp_p2, exp_p3, exp_p4, exp_p5;
+-  __m256i bias, exp, emm0, pi32_0x7f;
+-
+-  one = _mm256_set1_ps(1.0);
+-  exp_hi = _mm256_set1_ps(88.3762626647949);
+-  exp_lo = _mm256_set1_ps(-88.3762626647949);
+-  ln2 = _mm256_set1_ps(0.6931471805);
+-  log2EF = _mm256_set1_ps(1.44269504088896341);
+-  half = _mm256_set1_ps(0.5);
+-  exp_C1 = _mm256_set1_ps(0.693359375);
+-  exp_C2 = _mm256_set1_ps(-2.12194440e-4);
+-  pi32_0x7f = _mm256_set1_epi32(0x7f);
+-
+-  exp_p0 = _mm256_set1_ps(1.9875691500e-4);
+-  exp_p1 = _mm256_set1_ps(1.3981999507e-3);
+-  exp_p2 = _mm256_set1_ps(8.3334519073e-3);
+-  exp_p3 = _mm256_set1_ps(4.1665795894e-2);
+-  exp_p4 = _mm256_set1_ps(1.6666665459e-1);
+-  exp_p5 = _mm256_set1_ps(5.0000001201e-1);
+-
+-  for(;number < eighthPoints; number++){
+-    // First compute the logarithm
+-    aVal = _mm256_load_ps(aPtr);
+-    bias = _mm256_set1_epi32(127);
+-    leadingOne = _mm256_set1_ps(1.0f);
+-    exp = _mm256_sub_epi32(_mm256_srli_epi32(_mm256_and_si256(_mm256_castps_si256(aVal), _mm256_set1_epi32(0x7f800000)), 23), bias);
+-    logarithm = _mm256_cvtepi32_ps(exp);
+-
+-    frac = _mm256_or_ps(leadingOne, _mm256_and_ps(aVal, _mm256_castsi256_ps(_mm256_set1_epi32(0x7fffff))));
++    float* cPtr = cVector;
++    const float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    __m256 aVal, bVal, cVal, logarithm, mantissa, frac, leadingOne;
++    __m256 tmp, fx, mask, pow2n, z, y;
++    __m256 one, exp_hi, exp_lo, ln2, log2EF, half, exp_C1, exp_C2;
++    __m256 exp_p0, exp_p1, exp_p2, exp_p3, exp_p4, exp_p5;
++    __m256i bias, exp, emm0, pi32_0x7f;
++
++    one = _mm256_set1_ps(1.0);
++    exp_hi = _mm256_set1_ps(88.3762626647949);
++    exp_lo = _mm256_set1_ps(-88.3762626647949);
++    ln2 = _mm256_set1_ps(0.6931471805);
++    log2EF = _mm256_set1_ps(1.44269504088896341);
++    half = _mm256_set1_ps(0.5);
++    exp_C1 = _mm256_set1_ps(0.693359375);
++    exp_C2 = _mm256_set1_ps(-2.12194440e-4);
++    pi32_0x7f = _mm256_set1_epi32(0x7f);
++
++    exp_p0 = _mm256_set1_ps(1.9875691500e-4);
++    exp_p1 = _mm256_set1_ps(1.3981999507e-3);
++    exp_p2 = _mm256_set1_ps(8.3334519073e-3);
++    exp_p3 = _mm256_set1_ps(4.1665795894e-2);
++    exp_p4 = _mm256_set1_ps(1.6666665459e-1);
++    exp_p5 = _mm256_set1_ps(5.0000001201e-1);
++
++    for (; number < eighthPoints; number++) {
++        // First compute the logarithm
++        aVal = _mm256_load_ps(aPtr);
++        bias = _mm256_set1_epi32(127);
++        leadingOne = _mm256_set1_ps(1.0f);
++        exp = _mm256_sub_epi32(
++            _mm256_srli_epi32(_mm256_and_si256(_mm256_castps_si256(aVal),
++                                               _mm256_set1_epi32(0x7f800000)),
++                              23),
++            bias);
++        logarithm = _mm256_cvtepi32_ps(exp);
++
++        frac = _mm256_or_ps(
++            leadingOne,
++            _mm256_and_ps(aVal, _mm256_castsi256_ps(_mm256_set1_epi32(0x7fffff))));
+ #if POW_POLY_DEGREE == 6
+-    mantissa = POLY5_AVX2( frac, 3.1157899f, -3.3241990f, 2.5988452f, -1.2315303f,  3.1821337e-1f, -3.4436006e-2f);
++        mantissa = POLY5_AVX2(frac,
++                              3.1157899f,
++                              -3.3241990f,
++                              2.5988452f,
++                              -1.2315303f,
++                              3.1821337e-1f,
++                              -3.4436006e-2f);
+ #elif POW_POLY_DEGREE == 5
+-    mantissa = POLY4_AVX2( frac, 2.8882704548164776201f, -2.52074962577807006663f, 1.48116647521213171641f, -0.465725644288844778798f, 0.0596515482674574969533f);
++        mantissa = POLY4_AVX2(frac,
++                              2.8882704548164776201f,
++                              -2.52074962577807006663f,
++                              1.48116647521213171641f,
++                              -0.465725644288844778798f,
++                              0.0596515482674574969533f);
+ #elif POW_POLY_DEGREE == 4
+-    mantissa = POLY3_AVX2( frac, 2.61761038894603480148f, -1.75647175389045657003f, 0.688243882994381274313f, -0.107254423828329604454f);
++        mantissa = POLY3_AVX2(frac,
++                              2.61761038894603480148f,
++                              -1.75647175389045657003f,
++                              0.688243882994381274313f,
++                              -0.107254423828329604454f);
+ #elif POW_POLY_DEGREE == 3
+-    mantissa = POLY2_AVX2( frac, 2.28330284476918490682f, -1.04913055217340124191f, 0.204446009836232697516f);
++        mantissa = POLY2_AVX2(frac,
++                              2.28330284476918490682f,
++                              -1.04913055217340124191f,
++                              0.204446009836232697516f);
+ #else
+ #error
+ #endif
+-    logarithm = _mm256_add_ps(_mm256_mul_ps(mantissa, _mm256_sub_ps(frac, leadingOne)), logarithm);
+-    logarithm = _mm256_mul_ps(logarithm, ln2);
++        logarithm = _mm256_add_ps(
++            _mm256_mul_ps(mantissa, _mm256_sub_ps(frac, leadingOne)), logarithm);
++        logarithm = _mm256_mul_ps(logarithm, ln2);
+-    // Now calculate b*lna
+-    bVal = _mm256_load_ps(bPtr);
+-    bVal = _mm256_mul_ps(bVal, logarithm);
++        // Now calculate b*lna
++        bVal = _mm256_load_ps(bPtr);
++        bVal = _mm256_mul_ps(bVal, logarithm);
+-    // Now compute exp(b*lna)
+-    bVal = _mm256_max_ps(_mm256_min_ps(bVal, exp_hi), exp_lo);
++        // Now compute exp(b*lna)
++        bVal = _mm256_max_ps(_mm256_min_ps(bVal, exp_hi), exp_lo);
+-    fx = _mm256_add_ps(_mm256_mul_ps(bVal, log2EF), half);
++        fx = _mm256_add_ps(_mm256_mul_ps(bVal, log2EF), half);
+-    emm0 = _mm256_cvttps_epi32(fx);
+-    tmp = _mm256_cvtepi32_ps(emm0);
++        emm0 = _mm256_cvttps_epi32(fx);
++        tmp = _mm256_cvtepi32_ps(emm0);
+-    mask = _mm256_and_ps(_mm256_cmp_ps(tmp, fx, _CMP_GT_OS), one);
+-    fx = _mm256_sub_ps(tmp, mask);
++        mask = _mm256_and_ps(_mm256_cmp_ps(tmp, fx, _CMP_GT_OS), one);
++        fx = _mm256_sub_ps(tmp, mask);
+-    tmp = _mm256_sub_ps(bVal, _mm256_mul_ps(fx, exp_C1));
+-    bVal = _mm256_sub_ps(tmp, _mm256_mul_ps(fx, exp_C2));
+-    z = _mm256_mul_ps(bVal, bVal);
++        tmp = _mm256_sub_ps(bVal, _mm256_mul_ps(fx, exp_C1));
++        bVal = _mm256_sub_ps(tmp, _mm256_mul_ps(fx, exp_C2));
++        z = _mm256_mul_ps(bVal, bVal);
+-    y = _mm256_add_ps(_mm256_mul_ps(exp_p0, bVal), exp_p1);
+-    y = _mm256_add_ps(_mm256_mul_ps(y, bVal), exp_p2);
+-    y = _mm256_add_ps(_mm256_mul_ps(y, bVal), exp_p3);
+-    y = _mm256_add_ps(_mm256_mul_ps(y, bVal), exp_p4);
+-    y = _mm256_add_ps(_mm256_mul_ps(y, bVal), exp_p5);
+-    y = _mm256_add_ps(_mm256_mul_ps(y, z), bVal);
+-    y = _mm256_add_ps(y, one);
++        y = _mm256_add_ps(_mm256_mul_ps(exp_p0, bVal), exp_p1);
++        y = _mm256_add_ps(_mm256_mul_ps(y, bVal), exp_p2);
++        y = _mm256_add_ps(_mm256_mul_ps(y, bVal), exp_p3);
++        y = _mm256_add_ps(_mm256_mul_ps(y, bVal), exp_p4);
++        y = _mm256_add_ps(_mm256_mul_ps(y, bVal), exp_p5);
++        y = _mm256_add_ps(_mm256_mul_ps(y, z), bVal);
++        y = _mm256_add_ps(y, one);
+-    emm0 = _mm256_slli_epi32(_mm256_add_epi32(_mm256_cvttps_epi32(fx), pi32_0x7f), 23);
++        emm0 =
++            _mm256_slli_epi32(_mm256_add_epi32(_mm256_cvttps_epi32(fx), pi32_0x7f), 23);
+         pow2n = _mm256_castsi256_ps(emm0);
+         cVal = _mm256_mul_ps(y, pow2n);
+@@ -300,12 +363,12 @@ volk_32f_x2_pow_32f_a_avx2(float* cVector, const float* bVector,
+         aPtr += 8;
+         bPtr += 8;
+         cPtr += 8;
+-  }
++    }
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *cPtr++ = pow(*aPtr++, *bPtr++);
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *cPtr++ = pow(*aPtr++, *bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 for aligned */
+@@ -317,97 +380,124 @@ volk_32f_x2_pow_32f_a_avx2(float* cVector, const float* bVector,
+ #define POLY0(x, c0) _mm_set1_ps(c0)
+ #define POLY1(x, c0, c1) _mm_add_ps(_mm_mul_ps(POLY0(x, c1), x), _mm_set1_ps(c0))
+ #define POLY2(x, c0, c1, c2) _mm_add_ps(_mm_mul_ps(POLY1(x, c1, c2), x), _mm_set1_ps(c0))
+-#define POLY3(x, c0, c1, c2, c3) _mm_add_ps(_mm_mul_ps(POLY2(x, c1, c2, c3), x), _mm_set1_ps(c0))
+-#define POLY4(x, c0, c1, c2, c3, c4) _mm_add_ps(_mm_mul_ps(POLY3(x, c1, c2, c3, c4), x), _mm_set1_ps(c0))
+-#define POLY5(x, c0, c1, c2, c3, c4, c5) _mm_add_ps(_mm_mul_ps(POLY4(x, c1, c2, c3, c4, c5), x), _mm_set1_ps(c0))
+-
+-static inline void
+-volk_32f_x2_pow_32f_a_sse4_1(float* cVector, const float* bVector,
+-                             const float* aVector, unsigned int num_points)
++#define POLY3(x, c0, c1, c2, c3) \
++    _mm_add_ps(_mm_mul_ps(POLY2(x, c1, c2, c3), x), _mm_set1_ps(c0))
++#define POLY4(x, c0, c1, c2, c3, c4) \
++    _mm_add_ps(_mm_mul_ps(POLY3(x, c1, c2, c3, c4), x), _mm_set1_ps(c0))
++#define POLY5(x, c0, c1, c2, c3, c4, c5) \
++    _mm_add_ps(_mm_mul_ps(POLY4(x, c1, c2, c3, c4, c5), x), _mm_set1_ps(c0))
++
++static inline void volk_32f_x2_pow_32f_a_sse4_1(float* cVector,
++                                                const float* bVector,
++                                                const float* aVector,
++                                                unsigned int num_points)
+ {
+-  float* cPtr = cVector;
+-  const float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  __m128 aVal, bVal, cVal, logarithm, mantissa, frac, leadingOne;
+-  __m128 tmp, fx, mask, pow2n, z, y;
+-  __m128 one, exp_hi, exp_lo, ln2, log2EF, half, exp_C1, exp_C2;
+-  __m128 exp_p0, exp_p1, exp_p2, exp_p3, exp_p4, exp_p5;
+-  __m128i bias, exp, emm0, pi32_0x7f;
+-
+-  one = _mm_set1_ps(1.0);
+-  exp_hi = _mm_set1_ps(88.3762626647949);
+-  exp_lo = _mm_set1_ps(-88.3762626647949);
+-  ln2 = _mm_set1_ps(0.6931471805);
+-  log2EF = _mm_set1_ps(1.44269504088896341);
+-  half = _mm_set1_ps(0.5);
+-  exp_C1 = _mm_set1_ps(0.693359375);
+-  exp_C2 = _mm_set1_ps(-2.12194440e-4);
+-  pi32_0x7f = _mm_set1_epi32(0x7f);
+-
+-  exp_p0 = _mm_set1_ps(1.9875691500e-4);
+-  exp_p1 = _mm_set1_ps(1.3981999507e-3);
+-  exp_p2 = _mm_set1_ps(8.3334519073e-3);
+-  exp_p3 = _mm_set1_ps(4.1665795894e-2);
+-  exp_p4 = _mm_set1_ps(1.6666665459e-1);
+-  exp_p5 = _mm_set1_ps(5.0000001201e-1);
+-
+-  for(;number < quarterPoints; number++){
+-    // First compute the logarithm
+-    aVal = _mm_load_ps(aPtr);
+-    bias = _mm_set1_epi32(127);
+-    leadingOne = _mm_set1_ps(1.0f);
+-    exp = _mm_sub_epi32(_mm_srli_epi32(_mm_and_si128(_mm_castps_si128(aVal), _mm_set1_epi32(0x7f800000)), 23), bias);
+-    logarithm = _mm_cvtepi32_ps(exp);
+-
+-    frac = _mm_or_ps(leadingOne, _mm_and_ps(aVal, _mm_castsi128_ps(_mm_set1_epi32(0x7fffff))));
++    float* cPtr = cVector;
++    const float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++
++    __m128 aVal, bVal, cVal, logarithm, mantissa, frac, leadingOne;
++    __m128 tmp, fx, mask, pow2n, z, y;
++    __m128 one, exp_hi, exp_lo, ln2, log2EF, half, exp_C1, exp_C2;
++    __m128 exp_p0, exp_p1, exp_p2, exp_p3, exp_p4, exp_p5;
++    __m128i bias, exp, emm0, pi32_0x7f;
++
++    one = _mm_set1_ps(1.0);
++    exp_hi = _mm_set1_ps(88.3762626647949);
++    exp_lo = _mm_set1_ps(-88.3762626647949);
++    ln2 = _mm_set1_ps(0.6931471805);
++    log2EF = _mm_set1_ps(1.44269504088896341);
++    half = _mm_set1_ps(0.5);
++    exp_C1 = _mm_set1_ps(0.693359375);
++    exp_C2 = _mm_set1_ps(-2.12194440e-4);
++    pi32_0x7f = _mm_set1_epi32(0x7f);
++
++    exp_p0 = _mm_set1_ps(1.9875691500e-4);
++    exp_p1 = _mm_set1_ps(1.3981999507e-3);
++    exp_p2 = _mm_set1_ps(8.3334519073e-3);
++    exp_p3 = _mm_set1_ps(4.1665795894e-2);
++    exp_p4 = _mm_set1_ps(1.6666665459e-1);
++    exp_p5 = _mm_set1_ps(5.0000001201e-1);
++
++    for (; number < quarterPoints; number++) {
++        // First compute the logarithm
++        aVal = _mm_load_ps(aPtr);
++        bias = _mm_set1_epi32(127);
++        leadingOne = _mm_set1_ps(1.0f);
++        exp = _mm_sub_epi32(
++            _mm_srli_epi32(
++                _mm_and_si128(_mm_castps_si128(aVal), _mm_set1_epi32(0x7f800000)), 23),
++            bias);
++        logarithm = _mm_cvtepi32_ps(exp);
++
++        frac = _mm_or_ps(leadingOne,
++                         _mm_and_ps(aVal, _mm_castsi128_ps(_mm_set1_epi32(0x7fffff))));
+ #if POW_POLY_DEGREE == 6
+-    mantissa = POLY5( frac, 3.1157899f, -3.3241990f, 2.5988452f, -1.2315303f,  3.1821337e-1f, -3.4436006e-2f);
++        mantissa = POLY5(frac,
++                         3.1157899f,
++                         -3.3241990f,
++                         2.5988452f,
++                         -1.2315303f,
++                         3.1821337e-1f,
++                         -3.4436006e-2f);
+ #elif POW_POLY_DEGREE == 5
+-    mantissa = POLY4( frac, 2.8882704548164776201f, -2.52074962577807006663f, 1.48116647521213171641f, -0.465725644288844778798f, 0.0596515482674574969533f);
++        mantissa = POLY4(frac,
++                         2.8882704548164776201f,
++                         -2.52074962577807006663f,
++                         1.48116647521213171641f,
++                         -0.465725644288844778798f,
++                         0.0596515482674574969533f);
+ #elif POW_POLY_DEGREE == 4
+-    mantissa = POLY3( frac, 2.61761038894603480148f, -1.75647175389045657003f, 0.688243882994381274313f, -0.107254423828329604454f);
++        mantissa = POLY3(frac,
++                         2.61761038894603480148f,
++                         -1.75647175389045657003f,
++                         0.688243882994381274313f,
++                         -0.107254423828329604454f);
+ #elif POW_POLY_DEGREE == 3
+-    mantissa = POLY2( frac, 2.28330284476918490682f, -1.04913055217340124191f, 0.204446009836232697516f);
++        mantissa = POLY2(frac,
++                         2.28330284476918490682f,
++                         -1.04913055217340124191f,
++                         0.204446009836232697516f);
+ #else
+ #error
+ #endif
+-    logarithm = _mm_add_ps(logarithm, _mm_mul_ps(mantissa, _mm_sub_ps(frac, leadingOne)));
+-    logarithm = _mm_mul_ps(logarithm, ln2);
++        logarithm =
++            _mm_add_ps(logarithm, _mm_mul_ps(mantissa, _mm_sub_ps(frac, leadingOne)));
++        logarithm = _mm_mul_ps(logarithm, ln2);
+-    // Now calculate b*lna
+-    bVal = _mm_load_ps(bPtr);
+-    bVal = _mm_mul_ps(bVal, logarithm);
++        // Now calculate b*lna
++        bVal = _mm_load_ps(bPtr);
++        bVal = _mm_mul_ps(bVal, logarithm);
+-    // Now compute exp(b*lna)
+-    bVal = _mm_max_ps(_mm_min_ps(bVal, exp_hi), exp_lo);
++        // Now compute exp(b*lna)
++        bVal = _mm_max_ps(_mm_min_ps(bVal, exp_hi), exp_lo);
+-    fx = _mm_add_ps(_mm_mul_ps(bVal, log2EF), half);
++        fx = _mm_add_ps(_mm_mul_ps(bVal, log2EF), half);
+-    emm0 = _mm_cvttps_epi32(fx);
+-    tmp = _mm_cvtepi32_ps(emm0);
++        emm0 = _mm_cvttps_epi32(fx);
++        tmp = _mm_cvtepi32_ps(emm0);
+-    mask = _mm_and_ps(_mm_cmpgt_ps(tmp, fx), one);
+-    fx = _mm_sub_ps(tmp, mask);
++        mask = _mm_and_ps(_mm_cmpgt_ps(tmp, fx), one);
++        fx = _mm_sub_ps(tmp, mask);
+-    tmp = _mm_mul_ps(fx, exp_C1);
+-    z = _mm_mul_ps(fx, exp_C2);
+-    bVal = _mm_sub_ps(_mm_sub_ps(bVal, tmp), z);
+-    z = _mm_mul_ps(bVal, bVal);
++        tmp = _mm_mul_ps(fx, exp_C1);
++        z = _mm_mul_ps(fx, exp_C2);
++        bVal = _mm_sub_ps(_mm_sub_ps(bVal, tmp), z);
++        z = _mm_mul_ps(bVal, bVal);
+-    y = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(exp_p0, bVal), exp_p1), bVal);
+-    y = _mm_add_ps(_mm_mul_ps(_mm_add_ps(y, exp_p2), bVal), exp_p3);
+-    y = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(y, bVal), exp_p4), bVal);
+-    y = _mm_add_ps(_mm_mul_ps(_mm_add_ps(y, exp_p5), z), bVal);
+-    y = _mm_add_ps(y, one);
++        y = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(exp_p0, bVal), exp_p1), bVal);
++        y = _mm_add_ps(_mm_mul_ps(_mm_add_ps(y, exp_p2), bVal), exp_p3);
++        y = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(y, bVal), exp_p4), bVal);
++        y = _mm_add_ps(_mm_mul_ps(_mm_add_ps(y, exp_p5), z), bVal);
++        y = _mm_add_ps(y, one);
+-    emm0 = _mm_slli_epi32(_mm_add_epi32(_mm_cvttps_epi32(fx), pi32_0x7f), 23);
++        emm0 = _mm_slli_epi32(_mm_add_epi32(_mm_cvttps_epi32(fx), pi32_0x7f), 23);
+         pow2n = _mm_castsi128_ps(emm0);
+         cVal = _mm_mul_ps(y, pow2n);
+@@ -417,12 +507,12 @@ volk_32f_x2_pow_32f_a_sse4_1(float* cVector, const float* bVector,
+         aPtr += 4;
+         bPtr += 4;
+         cPtr += 4;
+-  }
++    }
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    *cPtr++ = powf(*aPtr++, *bPtr++);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *cPtr++ = powf(*aPtr++, *bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_SSE4_1 for aligned */
+@@ -432,27 +522,28 @@ volk_32f_x2_pow_32f_a_sse4_1(float* cVector, const float* bVector,
+ #ifndef INCLUDED_volk_32f_x2_pow_32f_u_H
+ #define INCLUDED_volk_32f_x2_pow_32f_u_H
+-#include <stdio.h>
+-#include <stdlib.h>
+ #include <inttypes.h>
+ #include <math.h>
++#include <stdio.h>
++#include <stdlib.h>
+ #define POW_POLY_DEGREE 3
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_x2_pow_32f_generic(float* cVector, const float* bVector,
+-                            const float* aVector, unsigned int num_points)
++static inline void volk_32f_x2_pow_32f_generic(float* cVector,
++                                               const float* bVector,
++                                               const float* aVector,
++                                               unsigned int num_points)
+ {
+-  float* cPtr = cVector;
+-  const float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    *cPtr++ = powf(*aPtr++, *bPtr++);
+-  }
++    float* cPtr = cVector;
++    const float* bPtr = bVector;
++    const float* aPtr = aVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = powf(*aPtr++, *bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -463,112 +554,139 @@ volk_32f_x2_pow_32f_generic(float* cVector, const float* bVector,
+ #define POLY0(x, c0) _mm_set1_ps(c0)
+ #define POLY1(x, c0, c1) _mm_add_ps(_mm_mul_ps(POLY0(x, c1), x), _mm_set1_ps(c0))
+ #define POLY2(x, c0, c1, c2) _mm_add_ps(_mm_mul_ps(POLY1(x, c1, c2), x), _mm_set1_ps(c0))
+-#define POLY3(x, c0, c1, c2, c3) _mm_add_ps(_mm_mul_ps(POLY2(x, c1, c2, c3), x), _mm_set1_ps(c0))
+-#define POLY4(x, c0, c1, c2, c3, c4) _mm_add_ps(_mm_mul_ps(POLY3(x, c1, c2, c3, c4), x), _mm_set1_ps(c0))
+-#define POLY5(x, c0, c1, c2, c3, c4, c5) _mm_add_ps(_mm_mul_ps(POLY4(x, c1, c2, c3, c4, c5), x), _mm_set1_ps(c0))
+-
+-static inline void
+-volk_32f_x2_pow_32f_u_sse4_1(float* cVector, const float* bVector,
+-                             const float* aVector, unsigned int num_points)
++#define POLY3(x, c0, c1, c2, c3) \
++    _mm_add_ps(_mm_mul_ps(POLY2(x, c1, c2, c3), x), _mm_set1_ps(c0))
++#define POLY4(x, c0, c1, c2, c3, c4) \
++    _mm_add_ps(_mm_mul_ps(POLY3(x, c1, c2, c3, c4), x), _mm_set1_ps(c0))
++#define POLY5(x, c0, c1, c2, c3, c4, c5) \
++    _mm_add_ps(_mm_mul_ps(POLY4(x, c1, c2, c3, c4, c5), x), _mm_set1_ps(c0))
++
++static inline void volk_32f_x2_pow_32f_u_sse4_1(float* cVector,
++                                                const float* bVector,
++                                                const float* aVector,
++                                                unsigned int num_points)
+ {
+-  float* cPtr = cVector;
+-  const float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  __m128 aVal, bVal, cVal, logarithm, mantissa, frac, leadingOne;
+-  __m128 tmp, fx, mask, pow2n, z, y;
+-  __m128 one, exp_hi, exp_lo, ln2, log2EF, half, exp_C1, exp_C2;
+-  __m128 exp_p0, exp_p1, exp_p2, exp_p3, exp_p4, exp_p5;
+-  __m128i bias, exp, emm0, pi32_0x7f;
+-
+-  one = _mm_set1_ps(1.0);
+-  exp_hi = _mm_set1_ps(88.3762626647949);
+-  exp_lo = _mm_set1_ps(-88.3762626647949);
+-  ln2 = _mm_set1_ps(0.6931471805);
+-  log2EF = _mm_set1_ps(1.44269504088896341);
+-  half = _mm_set1_ps(0.5);
+-  exp_C1 = _mm_set1_ps(0.693359375);
+-  exp_C2 = _mm_set1_ps(-2.12194440e-4);
+-  pi32_0x7f = _mm_set1_epi32(0x7f);
+-
+-  exp_p0 = _mm_set1_ps(1.9875691500e-4);
+-  exp_p1 = _mm_set1_ps(1.3981999507e-3);
+-  exp_p2 = _mm_set1_ps(8.3334519073e-3);
+-  exp_p3 = _mm_set1_ps(4.1665795894e-2);
+-  exp_p4 = _mm_set1_ps(1.6666665459e-1);
+-  exp_p5 = _mm_set1_ps(5.0000001201e-1);
+-
+-  for(;number < quarterPoints; number++){
+-    // First compute the logarithm
+-    aVal = _mm_loadu_ps(aPtr);
+-    bias = _mm_set1_epi32(127);
+-    leadingOne = _mm_set1_ps(1.0f);
+-    exp = _mm_sub_epi32(_mm_srli_epi32(_mm_and_si128(_mm_castps_si128(aVal), _mm_set1_epi32(0x7f800000)), 23), bias);
+-    logarithm = _mm_cvtepi32_ps(exp);
+-
+-    frac = _mm_or_ps(leadingOne, _mm_and_ps(aVal, _mm_castsi128_ps(_mm_set1_epi32(0x7fffff))));
++    float* cPtr = cVector;
++    const float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++
++    __m128 aVal, bVal, cVal, logarithm, mantissa, frac, leadingOne;
++    __m128 tmp, fx, mask, pow2n, z, y;
++    __m128 one, exp_hi, exp_lo, ln2, log2EF, half, exp_C1, exp_C2;
++    __m128 exp_p0, exp_p1, exp_p2, exp_p3, exp_p4, exp_p5;
++    __m128i bias, exp, emm0, pi32_0x7f;
++
++    one = _mm_set1_ps(1.0);
++    exp_hi = _mm_set1_ps(88.3762626647949);
++    exp_lo = _mm_set1_ps(-88.3762626647949);
++    ln2 = _mm_set1_ps(0.6931471805);
++    log2EF = _mm_set1_ps(1.44269504088896341);
++    half = _mm_set1_ps(0.5);
++    exp_C1 = _mm_set1_ps(0.693359375);
++    exp_C2 = _mm_set1_ps(-2.12194440e-4);
++    pi32_0x7f = _mm_set1_epi32(0x7f);
++
++    exp_p0 = _mm_set1_ps(1.9875691500e-4);
++    exp_p1 = _mm_set1_ps(1.3981999507e-3);
++    exp_p2 = _mm_set1_ps(8.3334519073e-3);
++    exp_p3 = _mm_set1_ps(4.1665795894e-2);
++    exp_p4 = _mm_set1_ps(1.6666665459e-1);
++    exp_p5 = _mm_set1_ps(5.0000001201e-1);
++
++    for (; number < quarterPoints; number++) {
++        // First compute the logarithm
++        aVal = _mm_loadu_ps(aPtr);
++        bias = _mm_set1_epi32(127);
++        leadingOne = _mm_set1_ps(1.0f);
++        exp = _mm_sub_epi32(
++            _mm_srli_epi32(
++                _mm_and_si128(_mm_castps_si128(aVal), _mm_set1_epi32(0x7f800000)), 23),
++            bias);
++        logarithm = _mm_cvtepi32_ps(exp);
++
++        frac = _mm_or_ps(leadingOne,
++                         _mm_and_ps(aVal, _mm_castsi128_ps(_mm_set1_epi32(0x7fffff))));
+ #if POW_POLY_DEGREE == 6
+-    mantissa = POLY5( frac, 3.1157899f, -3.3241990f, 2.5988452f, -1.2315303f,  3.1821337e-1f, -3.4436006e-2f);
++        mantissa = POLY5(frac,
++                         3.1157899f,
++                         -3.3241990f,
++                         2.5988452f,
++                         -1.2315303f,
++                         3.1821337e-1f,
++                         -3.4436006e-2f);
+ #elif POW_POLY_DEGREE == 5
+-    mantissa = POLY4( frac, 2.8882704548164776201f, -2.52074962577807006663f, 1.48116647521213171641f, -0.465725644288844778798f, 0.0596515482674574969533f);
++        mantissa = POLY4(frac,
++                         2.8882704548164776201f,
++                         -2.52074962577807006663f,
++                         1.48116647521213171641f,
++                         -0.465725644288844778798f,
++                         0.0596515482674574969533f);
+ #elif POW_POLY_DEGREE == 4
+-    mantissa = POLY3( frac, 2.61761038894603480148f, -1.75647175389045657003f, 0.688243882994381274313f, -0.107254423828329604454f);
++        mantissa = POLY3(frac,
++                         2.61761038894603480148f,
++                         -1.75647175389045657003f,
++                         0.688243882994381274313f,
++                         -0.107254423828329604454f);
+ #elif POW_POLY_DEGREE == 3
+-    mantissa = POLY2( frac, 2.28330284476918490682f, -1.04913055217340124191f, 0.204446009836232697516f);
++        mantissa = POLY2(frac,
++                         2.28330284476918490682f,
++                         -1.04913055217340124191f,
++                         0.204446009836232697516f);
+ #else
+ #error
+ #endif
+-    logarithm = _mm_add_ps(logarithm, _mm_mul_ps(mantissa, _mm_sub_ps(frac, leadingOne)));
+-    logarithm = _mm_mul_ps(logarithm, ln2);
++        logarithm =
++            _mm_add_ps(logarithm, _mm_mul_ps(mantissa, _mm_sub_ps(frac, leadingOne)));
++        logarithm = _mm_mul_ps(logarithm, ln2);
+-    // Now calculate b*lna
+-    bVal = _mm_loadu_ps(bPtr);
+-    bVal = _mm_mul_ps(bVal, logarithm);
++        // Now calculate b*lna
++        bVal = _mm_loadu_ps(bPtr);
++        bVal = _mm_mul_ps(bVal, logarithm);
+-    // Now compute exp(b*lna)
+-    bVal = _mm_max_ps(_mm_min_ps(bVal, exp_hi), exp_lo);
++        // Now compute exp(b*lna)
++        bVal = _mm_max_ps(_mm_min_ps(bVal, exp_hi), exp_lo);
+-    fx = _mm_add_ps(_mm_mul_ps(bVal, log2EF), half);
++        fx = _mm_add_ps(_mm_mul_ps(bVal, log2EF), half);
+-    emm0 = _mm_cvttps_epi32(fx);
+-    tmp = _mm_cvtepi32_ps(emm0);
++        emm0 = _mm_cvttps_epi32(fx);
++        tmp = _mm_cvtepi32_ps(emm0);
+-    mask = _mm_and_ps(_mm_cmpgt_ps(tmp, fx), one);
+-    fx = _mm_sub_ps(tmp, mask);
++        mask = _mm_and_ps(_mm_cmpgt_ps(tmp, fx), one);
++        fx = _mm_sub_ps(tmp, mask);
+-    tmp = _mm_mul_ps(fx, exp_C1);
+-    z = _mm_mul_ps(fx, exp_C2);
+-    bVal = _mm_sub_ps(_mm_sub_ps(bVal, tmp), z);
+-    z = _mm_mul_ps(bVal, bVal);
++        tmp = _mm_mul_ps(fx, exp_C1);
++        z = _mm_mul_ps(fx, exp_C2);
++        bVal = _mm_sub_ps(_mm_sub_ps(bVal, tmp), z);
++        z = _mm_mul_ps(bVal, bVal);
+-    y = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(exp_p0, bVal), exp_p1), bVal);
+-    y = _mm_add_ps(_mm_mul_ps(_mm_add_ps(y, exp_p2), bVal), exp_p3);
+-    y = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(y, bVal), exp_p4), bVal);
+-    y = _mm_add_ps(_mm_mul_ps(_mm_add_ps(y, exp_p5), z), bVal);
+-    y = _mm_add_ps(y, one);
++        y = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(exp_p0, bVal), exp_p1), bVal);
++        y = _mm_add_ps(_mm_mul_ps(_mm_add_ps(y, exp_p2), bVal), exp_p3);
++        y = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(y, bVal), exp_p4), bVal);
++        y = _mm_add_ps(_mm_mul_ps(_mm_add_ps(y, exp_p5), z), bVal);
++        y = _mm_add_ps(y, one);
+-    emm0 = _mm_slli_epi32(_mm_add_epi32(_mm_cvttps_epi32(fx), pi32_0x7f), 23);
++        emm0 = _mm_slli_epi32(_mm_add_epi32(_mm_cvttps_epi32(fx), pi32_0x7f), 23);
+-    pow2n = _mm_castsi128_ps(emm0);
+-    cVal = _mm_mul_ps(y, pow2n);
++        pow2n = _mm_castsi128_ps(emm0);
++        cVal = _mm_mul_ps(y, pow2n);
+-    _mm_storeu_ps(cPtr, cVal);
++        _mm_storeu_ps(cPtr, cVal);
+-    aPtr += 4;
+-    bPtr += 4;
+-    cPtr += 4;
+-  }
++        aPtr += 4;
++        bPtr += 4;
++        cPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    *cPtr++ = powf(*aPtr++, *bPtr++);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *cPtr++ = powf(*aPtr++, *bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_SSE4_1 for unaligned */
+@@ -577,100 +695,131 @@ volk_32f_x2_pow_32f_u_sse4_1(float* cVector, const float* bVector,
+ #include <immintrin.h>
+ #define POLY0_AVX2_FMA(x, c0) _mm256_set1_ps(c0)
+-#define POLY1_AVX2_FMA(x, c0, c1) _mm256_fmadd_ps(POLY0_AVX2_FMA(x, c1), x, _mm256_set1_ps(c0))
+-#define POLY2_AVX2_FMA(x, c0, c1, c2) _mm256_fmadd_ps(POLY1_AVX2_FMA(x, c1, c2), x, _mm256_set1_ps(c0))
+-#define POLY3_AVX2_FMA(x, c0, c1, c2, c3) _mm256_fmadd_ps(POLY2_AVX2_FMA(x, c1, c2, c3), x, _mm256_set1_ps(c0))
+-#define POLY4_AVX2_FMA(x, c0, c1, c2, c3, c4) _mm256_fmadd_ps(POLY3_AVX2_FMA(x, c1, c2, c3, c4), x, _mm256_set1_ps(c0))
+-#define POLY5_AVX2_FMA(x, c0, c1, c2, c3, c4, c5) _mm256_fmadd_ps(POLY4_AVX2_FMA(x, c1, c2, c3, c4, c5), x, _mm256_set1_ps(c0))
+-
+-static inline void
+-volk_32f_x2_pow_32f_u_avx2_fma(float* cVector, const float* bVector,
+-                             const float* aVector, unsigned int num_points)
++#define POLY1_AVX2_FMA(x, c0, c1) \
++    _mm256_fmadd_ps(POLY0_AVX2_FMA(x, c1), x, _mm256_set1_ps(c0))
++#define POLY2_AVX2_FMA(x, c0, c1, c2) \
++    _mm256_fmadd_ps(POLY1_AVX2_FMA(x, c1, c2), x, _mm256_set1_ps(c0))
++#define POLY3_AVX2_FMA(x, c0, c1, c2, c3) \
++    _mm256_fmadd_ps(POLY2_AVX2_FMA(x, c1, c2, c3), x, _mm256_set1_ps(c0))
++#define POLY4_AVX2_FMA(x, c0, c1, c2, c3, c4) \
++    _mm256_fmadd_ps(POLY3_AVX2_FMA(x, c1, c2, c3, c4), x, _mm256_set1_ps(c0))
++#define POLY5_AVX2_FMA(x, c0, c1, c2, c3, c4, c5) \
++    _mm256_fmadd_ps(POLY4_AVX2_FMA(x, c1, c2, c3, c4, c5), x, _mm256_set1_ps(c0))
++
++static inline void volk_32f_x2_pow_32f_u_avx2_fma(float* cVector,
++                                                  const float* bVector,
++                                                  const float* aVector,
++                                                  unsigned int num_points)
+ {
+-  float* cPtr = cVector;
+-  const float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  __m256 aVal, bVal, cVal, logarithm, mantissa, frac, leadingOne;
+-  __m256 tmp, fx, mask, pow2n, z, y;
+-  __m256 one, exp_hi, exp_lo, ln2, log2EF, half, exp_C1, exp_C2;
+-  __m256 exp_p0, exp_p1, exp_p2, exp_p3, exp_p4, exp_p5;
+-  __m256i bias, exp, emm0, pi32_0x7f;
+-
+-  one = _mm256_set1_ps(1.0);
+-  exp_hi = _mm256_set1_ps(88.3762626647949);
+-  exp_lo = _mm256_set1_ps(-88.3762626647949);
+-  ln2 = _mm256_set1_ps(0.6931471805);
+-  log2EF = _mm256_set1_ps(1.44269504088896341);
+-  half = _mm256_set1_ps(0.5);
+-  exp_C1 = _mm256_set1_ps(0.693359375);
+-  exp_C2 = _mm256_set1_ps(-2.12194440e-4);
+-  pi32_0x7f = _mm256_set1_epi32(0x7f);
+-
+-  exp_p0 = _mm256_set1_ps(1.9875691500e-4);
+-  exp_p1 = _mm256_set1_ps(1.3981999507e-3);
+-  exp_p2 = _mm256_set1_ps(8.3334519073e-3);
+-  exp_p3 = _mm256_set1_ps(4.1665795894e-2);
+-  exp_p4 = _mm256_set1_ps(1.6666665459e-1);
+-  exp_p5 = _mm256_set1_ps(5.0000001201e-1);
+-
+-  for(;number < eighthPoints; number++){
+-    // First compute the logarithm
+-    aVal = _mm256_loadu_ps(aPtr);
+-    bias = _mm256_set1_epi32(127);
+-    leadingOne = _mm256_set1_ps(1.0f);
+-    exp = _mm256_sub_epi32(_mm256_srli_epi32(_mm256_and_si256(_mm256_castps_si256(aVal), _mm256_set1_epi32(0x7f800000)), 23), bias);
+-    logarithm = _mm256_cvtepi32_ps(exp);
+-
+-    frac = _mm256_or_ps(leadingOne, _mm256_and_ps(aVal, _mm256_castsi256_ps(_mm256_set1_epi32(0x7fffff))));
++    float* cPtr = cVector;
++    const float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    __m256 aVal, bVal, cVal, logarithm, mantissa, frac, leadingOne;
++    __m256 tmp, fx, mask, pow2n, z, y;
++    __m256 one, exp_hi, exp_lo, ln2, log2EF, half, exp_C1, exp_C2;
++    __m256 exp_p0, exp_p1, exp_p2, exp_p3, exp_p4, exp_p5;
++    __m256i bias, exp, emm0, pi32_0x7f;
++
++    one = _mm256_set1_ps(1.0);
++    exp_hi = _mm256_set1_ps(88.3762626647949);
++    exp_lo = _mm256_set1_ps(-88.3762626647949);
++    ln2 = _mm256_set1_ps(0.6931471805);
++    log2EF = _mm256_set1_ps(1.44269504088896341);
++    half = _mm256_set1_ps(0.5);
++    exp_C1 = _mm256_set1_ps(0.693359375);
++    exp_C2 = _mm256_set1_ps(-2.12194440e-4);
++    pi32_0x7f = _mm256_set1_epi32(0x7f);
++
++    exp_p0 = _mm256_set1_ps(1.9875691500e-4);
++    exp_p1 = _mm256_set1_ps(1.3981999507e-3);
++    exp_p2 = _mm256_set1_ps(8.3334519073e-3);
++    exp_p3 = _mm256_set1_ps(4.1665795894e-2);
++    exp_p4 = _mm256_set1_ps(1.6666665459e-1);
++    exp_p5 = _mm256_set1_ps(5.0000001201e-1);
++
++    for (; number < eighthPoints; number++) {
++        // First compute the logarithm
++        aVal = _mm256_loadu_ps(aPtr);
++        bias = _mm256_set1_epi32(127);
++        leadingOne = _mm256_set1_ps(1.0f);
++        exp = _mm256_sub_epi32(
++            _mm256_srli_epi32(_mm256_and_si256(_mm256_castps_si256(aVal),
++                                               _mm256_set1_epi32(0x7f800000)),
++                              23),
++            bias);
++        logarithm = _mm256_cvtepi32_ps(exp);
++
++        frac = _mm256_or_ps(
++            leadingOne,
++            _mm256_and_ps(aVal, _mm256_castsi256_ps(_mm256_set1_epi32(0x7fffff))));
+ #if POW_POLY_DEGREE == 6
+-    mantissa = POLY5_AVX2_FMA( frac, 3.1157899f, -3.3241990f, 2.5988452f, -1.2315303f,  3.1821337e-1f, -3.4436006e-2f);
++        mantissa = POLY5_AVX2_FMA(frac,
++                                  3.1157899f,
++                                  -3.3241990f,
++                                  2.5988452f,
++                                  -1.2315303f,
++                                  3.1821337e-1f,
++                                  -3.4436006e-2f);
+ #elif POW_POLY_DEGREE == 5
+-    mantissa = POLY4_AVX2_FMA( frac, 2.8882704548164776201f, -2.52074962577807006663f, 1.48116647521213171641f, -0.465725644288844778798f, 0.0596515482674574969533f);
++        mantissa = POLY4_AVX2_FMA(frac,
++                                  2.8882704548164776201f,
++                                  -2.52074962577807006663f,
++                                  1.48116647521213171641f,
++                                  -0.465725644288844778798f,
++                                  0.0596515482674574969533f);
+ #elif POW_POLY_DEGREE == 4
+-    mantissa = POLY3_AVX2_FMA( frac, 2.61761038894603480148f, -1.75647175389045657003f, 0.688243882994381274313f, -0.107254423828329604454f);
++        mantissa = POLY3_AVX2_FMA(frac,
++                                  2.61761038894603480148f,
++                                  -1.75647175389045657003f,
++                                  0.688243882994381274313f,
++                                  -0.107254423828329604454f);
+ #elif POW_POLY_DEGREE == 3
+-    mantissa = POLY2_AVX2_FMA( frac, 2.28330284476918490682f, -1.04913055217340124191f, 0.204446009836232697516f);
++        mantissa = POLY2_AVX2_FMA(frac,
++                                  2.28330284476918490682f,
++                                  -1.04913055217340124191f,
++                                  0.204446009836232697516f);
+ #else
+ #error
+ #endif
+-    logarithm = _mm256_fmadd_ps(mantissa, _mm256_sub_ps(frac, leadingOne), logarithm);
+-    logarithm = _mm256_mul_ps(logarithm, ln2);
++        logarithm = _mm256_fmadd_ps(mantissa, _mm256_sub_ps(frac, leadingOne), logarithm);
++        logarithm = _mm256_mul_ps(logarithm, ln2);
+-    // Now calculate b*lna
+-    bVal = _mm256_loadu_ps(bPtr);
+-    bVal = _mm256_mul_ps(bVal, logarithm);
++        // Now calculate b*lna
++        bVal = _mm256_loadu_ps(bPtr);
++        bVal = _mm256_mul_ps(bVal, logarithm);
+-    // Now compute exp(b*lna)
+-    bVal = _mm256_max_ps(_mm256_min_ps(bVal, exp_hi), exp_lo);
++        // Now compute exp(b*lna)
++        bVal = _mm256_max_ps(_mm256_min_ps(bVal, exp_hi), exp_lo);
+-    fx = _mm256_fmadd_ps(bVal, log2EF, half);
++        fx = _mm256_fmadd_ps(bVal, log2EF, half);
+-    emm0 = _mm256_cvttps_epi32(fx);
+-    tmp = _mm256_cvtepi32_ps(emm0);
++        emm0 = _mm256_cvttps_epi32(fx);
++        tmp = _mm256_cvtepi32_ps(emm0);
+-    mask = _mm256_and_ps(_mm256_cmp_ps(tmp, fx, _CMP_GT_OS), one);
+-    fx = _mm256_sub_ps(tmp, mask);
++        mask = _mm256_and_ps(_mm256_cmp_ps(tmp, fx, _CMP_GT_OS), one);
++        fx = _mm256_sub_ps(tmp, mask);
+-    tmp = _mm256_fnmadd_ps(fx, exp_C1, bVal);
+-    bVal = _mm256_fnmadd_ps(fx, exp_C2, tmp);
+-    z = _mm256_mul_ps(bVal, bVal);
++        tmp = _mm256_fnmadd_ps(fx, exp_C1, bVal);
++        bVal = _mm256_fnmadd_ps(fx, exp_C2, tmp);
++        z = _mm256_mul_ps(bVal, bVal);
+-    y = _mm256_fmadd_ps(exp_p0, bVal, exp_p1);
+-    y = _mm256_fmadd_ps(y, bVal, exp_p2);
+-    y = _mm256_fmadd_ps(y, bVal, exp_p3);
+-    y = _mm256_fmadd_ps(y, bVal, exp_p4);
+-    y = _mm256_fmadd_ps(y, bVal, exp_p5);
+-    y = _mm256_fmadd_ps(y, z, bVal);
+-    y = _mm256_add_ps(y, one);
++        y = _mm256_fmadd_ps(exp_p0, bVal, exp_p1);
++        y = _mm256_fmadd_ps(y, bVal, exp_p2);
++        y = _mm256_fmadd_ps(y, bVal, exp_p3);
++        y = _mm256_fmadd_ps(y, bVal, exp_p4);
++        y = _mm256_fmadd_ps(y, bVal, exp_p5);
++        y = _mm256_fmadd_ps(y, z, bVal);
++        y = _mm256_add_ps(y, one);
+-    emm0 = _mm256_slli_epi32(_mm256_add_epi32(_mm256_cvttps_epi32(fx), pi32_0x7f), 23);
++        emm0 =
++            _mm256_slli_epi32(_mm256_add_epi32(_mm256_cvttps_epi32(fx), pi32_0x7f), 23);
+         pow2n = _mm256_castsi256_ps(emm0);
+         cVal = _mm256_mul_ps(y, pow2n);
+@@ -680,12 +829,12 @@ volk_32f_x2_pow_32f_u_avx2_fma(float* cVector, const float* bVector,
+         aPtr += 8;
+         bPtr += 8;
+         cPtr += 8;
+-  }
++    }
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *cPtr++ = pow(*aPtr++, *bPtr++);
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *cPtr++ = pow(*aPtr++, *bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 && LV_HAVE_FMA for unaligned */
+@@ -694,99 +843,131 @@ volk_32f_x2_pow_32f_u_avx2_fma(float* cVector, const float* bVector,
+ #include <immintrin.h>
+ #define POLY0_AVX2(x, c0) _mm256_set1_ps(c0)
+-#define POLY1_AVX2(x, c0, c1) _mm256_add_ps(_mm256_mul_ps(POLY0_AVX2(x, c1), x), _mm256_set1_ps(c0))
+-#define POLY2_AVX2(x, c0, c1, c2) _mm256_add_ps(_mm256_mul_ps(POLY1_AVX2(x, c1, c2), x), _mm256_set1_ps(c0))
+-#define POLY3_AVX2(x, c0, c1, c2, c3) _mm256_add_ps(_mm256_mul_ps(POLY2_AVX2(x, c1, c2, c3), x), _mm256_set1_ps(c0))
+-#define POLY4_AVX2(x, c0, c1, c2, c3, c4) _mm256_add_ps(_mm256_mul_ps(POLY3_AVX2(x, c1, c2, c3, c4), x), _mm256_set1_ps(c0))
+-#define POLY5_AVX2(x, c0, c1, c2, c3, c4, c5) _mm256_add_ps(_mm256_mul_ps(POLY4_AVX2(x, c1, c2, c3, c4, c5), x), _mm256_set1_ps(c0))
+-
+-static inline void
+-volk_32f_x2_pow_32f_u_avx2(float* cVector, const float* bVector,
+-                             const float* aVector, unsigned int num_points)
++#define POLY1_AVX2(x, c0, c1) \
++    _mm256_add_ps(_mm256_mul_ps(POLY0_AVX2(x, c1), x), _mm256_set1_ps(c0))
++#define POLY2_AVX2(x, c0, c1, c2) \
++    _mm256_add_ps(_mm256_mul_ps(POLY1_AVX2(x, c1, c2), x), _mm256_set1_ps(c0))
++#define POLY3_AVX2(x, c0, c1, c2, c3) \
++    _mm256_add_ps(_mm256_mul_ps(POLY2_AVX2(x, c1, c2, c3), x), _mm256_set1_ps(c0))
++#define POLY4_AVX2(x, c0, c1, c2, c3, c4) \
++    _mm256_add_ps(_mm256_mul_ps(POLY3_AVX2(x, c1, c2, c3, c4), x), _mm256_set1_ps(c0))
++#define POLY5_AVX2(x, c0, c1, c2, c3, c4, c5) \
++    _mm256_add_ps(_mm256_mul_ps(POLY4_AVX2(x, c1, c2, c3, c4, c5), x), _mm256_set1_ps(c0))
++
++static inline void volk_32f_x2_pow_32f_u_avx2(float* cVector,
++                                              const float* bVector,
++                                              const float* aVector,
++                                              unsigned int num_points)
+ {
+-  float* cPtr = cVector;
+-  const float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  __m256 aVal, bVal, cVal, logarithm, mantissa, frac, leadingOne;
+-  __m256 tmp, fx, mask, pow2n, z, y;
+-  __m256 one, exp_hi, exp_lo, ln2, log2EF, half, exp_C1, exp_C2;
+-  __m256 exp_p0, exp_p1, exp_p2, exp_p3, exp_p4, exp_p5;
+-  __m256i bias, exp, emm0, pi32_0x7f;
+-
+-  one = _mm256_set1_ps(1.0);
+-  exp_hi = _mm256_set1_ps(88.3762626647949);
+-  exp_lo = _mm256_set1_ps(-88.3762626647949);
+-  ln2 = _mm256_set1_ps(0.6931471805);
+-  log2EF = _mm256_set1_ps(1.44269504088896341);
+-  half = _mm256_set1_ps(0.5);
+-  exp_C1 = _mm256_set1_ps(0.693359375);
+-  exp_C2 = _mm256_set1_ps(-2.12194440e-4);
+-  pi32_0x7f = _mm256_set1_epi32(0x7f);
+-
+-  exp_p0 = _mm256_set1_ps(1.9875691500e-4);
+-  exp_p1 = _mm256_set1_ps(1.3981999507e-3);
+-  exp_p2 = _mm256_set1_ps(8.3334519073e-3);
+-  exp_p3 = _mm256_set1_ps(4.1665795894e-2);
+-  exp_p4 = _mm256_set1_ps(1.6666665459e-1);
+-  exp_p5 = _mm256_set1_ps(5.0000001201e-1);
+-
+-  for(;number < eighthPoints; number++){
+-    // First compute the logarithm
+-    aVal = _mm256_loadu_ps(aPtr);
+-    bias = _mm256_set1_epi32(127);
+-    leadingOne = _mm256_set1_ps(1.0f);
+-    exp = _mm256_sub_epi32(_mm256_srli_epi32(_mm256_and_si256(_mm256_castps_si256(aVal), _mm256_set1_epi32(0x7f800000)), 23), bias);
+-    logarithm = _mm256_cvtepi32_ps(exp);
+-
+-    frac = _mm256_or_ps(leadingOne, _mm256_and_ps(aVal, _mm256_castsi256_ps(_mm256_set1_epi32(0x7fffff))));
++    float* cPtr = cVector;
++    const float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    __m256 aVal, bVal, cVal, logarithm, mantissa, frac, leadingOne;
++    __m256 tmp, fx, mask, pow2n, z, y;
++    __m256 one, exp_hi, exp_lo, ln2, log2EF, half, exp_C1, exp_C2;
++    __m256 exp_p0, exp_p1, exp_p2, exp_p3, exp_p4, exp_p5;
++    __m256i bias, exp, emm0, pi32_0x7f;
++
++    one = _mm256_set1_ps(1.0);
++    exp_hi = _mm256_set1_ps(88.3762626647949);
++    exp_lo = _mm256_set1_ps(-88.3762626647949);
++    ln2 = _mm256_set1_ps(0.6931471805);
++    log2EF = _mm256_set1_ps(1.44269504088896341);
++    half = _mm256_set1_ps(0.5);
++    exp_C1 = _mm256_set1_ps(0.693359375);
++    exp_C2 = _mm256_set1_ps(-2.12194440e-4);
++    pi32_0x7f = _mm256_set1_epi32(0x7f);
++
++    exp_p0 = _mm256_set1_ps(1.9875691500e-4);
++    exp_p1 = _mm256_set1_ps(1.3981999507e-3);
++    exp_p2 = _mm256_set1_ps(8.3334519073e-3);
++    exp_p3 = _mm256_set1_ps(4.1665795894e-2);
++    exp_p4 = _mm256_set1_ps(1.6666665459e-1);
++    exp_p5 = _mm256_set1_ps(5.0000001201e-1);
++
++    for (; number < eighthPoints; number++) {
++        // First compute the logarithm
++        aVal = _mm256_loadu_ps(aPtr);
++        bias = _mm256_set1_epi32(127);
++        leadingOne = _mm256_set1_ps(1.0f);
++        exp = _mm256_sub_epi32(
++            _mm256_srli_epi32(_mm256_and_si256(_mm256_castps_si256(aVal),
++                                               _mm256_set1_epi32(0x7f800000)),
++                              23),
++            bias);
++        logarithm = _mm256_cvtepi32_ps(exp);
++
++        frac = _mm256_or_ps(
++            leadingOne,
++            _mm256_and_ps(aVal, _mm256_castsi256_ps(_mm256_set1_epi32(0x7fffff))));
+ #if POW_POLY_DEGREE == 6
+-    mantissa = POLY5_AVX2( frac, 3.1157899f, -3.3241990f, 2.5988452f, -1.2315303f,  3.1821337e-1f, -3.4436006e-2f);
++        mantissa = POLY5_AVX2(frac,
++                              3.1157899f,
++                              -3.3241990f,
++                              2.5988452f,
++                              -1.2315303f,
++                              3.1821337e-1f,
++                              -3.4436006e-2f);
+ #elif POW_POLY_DEGREE == 5
+-    mantissa = POLY4_AVX2( frac, 2.8882704548164776201f, -2.52074962577807006663f, 1.48116647521213171641f, -0.465725644288844778798f, 0.0596515482674574969533f);
++        mantissa = POLY4_AVX2(frac,
++                              2.8882704548164776201f,
++                              -2.52074962577807006663f,
++                              1.48116647521213171641f,
++                              -0.465725644288844778798f,
++                              0.0596515482674574969533f);
+ #elif POW_POLY_DEGREE == 4
+-    mantissa = POLY3_AVX2( frac, 2.61761038894603480148f, -1.75647175389045657003f, 0.688243882994381274313f, -0.107254423828329604454f);
++        mantissa = POLY3_AVX2(frac,
++                              2.61761038894603480148f,
++                              -1.75647175389045657003f,
++                              0.688243882994381274313f,
++                              -0.107254423828329604454f);
+ #elif POW_POLY_DEGREE == 3
+-    mantissa = POLY2_AVX2( frac, 2.28330284476918490682f, -1.04913055217340124191f, 0.204446009836232697516f);
++        mantissa = POLY2_AVX2(frac,
++                              2.28330284476918490682f,
++                              -1.04913055217340124191f,
++                              0.204446009836232697516f);
+ #else
+ #error
+ #endif
+-    logarithm = _mm256_add_ps(_mm256_mul_ps(mantissa, _mm256_sub_ps(frac, leadingOne)), logarithm);
+-    logarithm = _mm256_mul_ps(logarithm, ln2);
++        logarithm = _mm256_add_ps(
++            _mm256_mul_ps(mantissa, _mm256_sub_ps(frac, leadingOne)), logarithm);
++        logarithm = _mm256_mul_ps(logarithm, ln2);
+-    // Now calculate b*lna
+-    bVal = _mm256_loadu_ps(bPtr);
+-    bVal = _mm256_mul_ps(bVal, logarithm);
++        // Now calculate b*lna
++        bVal = _mm256_loadu_ps(bPtr);
++        bVal = _mm256_mul_ps(bVal, logarithm);
+-    // Now compute exp(b*lna)
+-    bVal = _mm256_max_ps(_mm256_min_ps(bVal, exp_hi), exp_lo);
++        // Now compute exp(b*lna)
++        bVal = _mm256_max_ps(_mm256_min_ps(bVal, exp_hi), exp_lo);
+-    fx = _mm256_add_ps(_mm256_mul_ps(bVal, log2EF), half);
++        fx = _mm256_add_ps(_mm256_mul_ps(bVal, log2EF), half);
+-    emm0 = _mm256_cvttps_epi32(fx);
+-    tmp = _mm256_cvtepi32_ps(emm0);
++        emm0 = _mm256_cvttps_epi32(fx);
++        tmp = _mm256_cvtepi32_ps(emm0);
+-    mask = _mm256_and_ps(_mm256_cmp_ps(tmp, fx, _CMP_GT_OS), one);
+-    fx = _mm256_sub_ps(tmp, mask);
++        mask = _mm256_and_ps(_mm256_cmp_ps(tmp, fx, _CMP_GT_OS), one);
++        fx = _mm256_sub_ps(tmp, mask);
+-    tmp = _mm256_sub_ps(bVal, _mm256_mul_ps(fx, exp_C1));
+-    bVal = _mm256_sub_ps(tmp, _mm256_mul_ps(fx, exp_C2));
+-    z = _mm256_mul_ps(bVal, bVal);
++        tmp = _mm256_sub_ps(bVal, _mm256_mul_ps(fx, exp_C1));
++        bVal = _mm256_sub_ps(tmp, _mm256_mul_ps(fx, exp_C2));
++        z = _mm256_mul_ps(bVal, bVal);
+-    y = _mm256_add_ps(_mm256_mul_ps(exp_p0, bVal), exp_p1);
+-    y = _mm256_add_ps(_mm256_mul_ps(y, bVal), exp_p2);
+-    y = _mm256_add_ps(_mm256_mul_ps(y, bVal), exp_p3);
+-    y = _mm256_add_ps(_mm256_mul_ps(y, bVal), exp_p4);
+-    y = _mm256_add_ps(_mm256_mul_ps(y, bVal), exp_p5);
+-    y = _mm256_add_ps(_mm256_mul_ps(y, z), bVal);
+-    y = _mm256_add_ps(y, one);
++        y = _mm256_add_ps(_mm256_mul_ps(exp_p0, bVal), exp_p1);
++        y = _mm256_add_ps(_mm256_mul_ps(y, bVal), exp_p2);
++        y = _mm256_add_ps(_mm256_mul_ps(y, bVal), exp_p3);
++        y = _mm256_add_ps(_mm256_mul_ps(y, bVal), exp_p4);
++        y = _mm256_add_ps(_mm256_mul_ps(y, bVal), exp_p5);
++        y = _mm256_add_ps(_mm256_mul_ps(y, z), bVal);
++        y = _mm256_add_ps(y, one);
+-    emm0 = _mm256_slli_epi32(_mm256_add_epi32(_mm256_cvttps_epi32(fx), pi32_0x7f), 23);
++        emm0 =
++            _mm256_slli_epi32(_mm256_add_epi32(_mm256_cvttps_epi32(fx), pi32_0x7f), 23);
+         pow2n = _mm256_castsi256_ps(emm0);
+         cVal = _mm256_mul_ps(y, pow2n);
+@@ -796,12 +977,12 @@ volk_32f_x2_pow_32f_u_avx2(float* cVector, const float* bVector,
+         aPtr += 8;
+         bPtr += 8;
+         cPtr += 8;
+-  }
++    }
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *cPtr++ = pow(*aPtr++, *bPtr++);
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *cPtr++ = pow(*aPtr++, *bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 for unaligned */
+diff --git a/kernels/volk/volk_32f_x2_s32f_interleave_16ic.h b/kernels/volk/volk_32f_x2_s32f_interleave_16ic.h
+index 8021faf..04e5892 100644
+--- a/kernels/volk/volk_32f_x2_s32f_interleave_16ic.h
++++ b/kernels/volk/volk_32f_x2_s32f_interleave_16ic.h
+@@ -32,8 +32,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_x2_s32f_interleave_16ic(lv_16sc_t* complexVector, const float* iBuffer, const float* qBuffer, const float scalar, unsigned int num_points)
+- * \endcode
++ * void volk_32f_x2_s32f_interleave_16ic(lv_16sc_t* complexVector, const float* iBuffer,
++ * const float* qBuffer, const float scalar, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li iBuffer: Input vector of samples for the real part.
+@@ -75,60 +75,62 @@
+ #ifndef INCLUDED_volk_32f_x2_s32f_interleave_16ic_a_H
+ #define INCLUDED_volk_32f_x2_s32f_interleave_16ic_a_H
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+ #include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_32f_x2_s32f_interleave_16ic_a_avx2(lv_16sc_t* complexVector, const float* iBuffer,
+-                                        const float* qBuffer, const float scalar, unsigned int num_points)
++static inline void volk_32f_x2_s32f_interleave_16ic_a_avx2(lv_16sc_t* complexVector,
++                                                           const float* iBuffer,
++                                                           const float* qBuffer,
++                                                           const float scalar,
++                                                           unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const float* iBufferPtr = iBuffer;
+-  const float* qBufferPtr = qBuffer;
++    unsigned int number = 0;
++    const float* iBufferPtr = iBuffer;
++    const float* qBufferPtr = qBuffer;
+-  __m256 vScalar = _mm256_set1_ps(scalar);
++    __m256 vScalar = _mm256_set1_ps(scalar);
+-  const unsigned int eighthPoints = num_points / 8;
++    const unsigned int eighthPoints = num_points / 8;
+-  __m256 iValue, qValue, cplxValue1, cplxValue2;
+-  __m256i intValue1, intValue2;
++    __m256 iValue, qValue, cplxValue1, cplxValue2;
++    __m256i intValue1, intValue2;
+-  int16_t* complexVectorPtr = (int16_t*)complexVector;
++    int16_t* complexVectorPtr = (int16_t*)complexVector;
+-  for(;number < eighthPoints; number++){
+-    iValue = _mm256_load_ps(iBufferPtr);
+-    qValue = _mm256_load_ps(qBufferPtr);
++    for (; number < eighthPoints; number++) {
++        iValue = _mm256_load_ps(iBufferPtr);
++        qValue = _mm256_load_ps(qBufferPtr);
+-    // Interleaves the lower two values in the i and q variables into one buffer
+-    cplxValue1 = _mm256_unpacklo_ps(iValue, qValue);
+-    cplxValue1 = _mm256_mul_ps(cplxValue1, vScalar);
++        // Interleaves the lower two values in the i and q variables into one buffer
++        cplxValue1 = _mm256_unpacklo_ps(iValue, qValue);
++        cplxValue1 = _mm256_mul_ps(cplxValue1, vScalar);
+-    // Interleaves the upper two values in the i and q variables into one buffer
+-    cplxValue2 = _mm256_unpackhi_ps(iValue, qValue);
+-    cplxValue2 = _mm256_mul_ps(cplxValue2, vScalar);
++        // Interleaves the upper two values in the i and q variables into one buffer
++        cplxValue2 = _mm256_unpackhi_ps(iValue, qValue);
++        cplxValue2 = _mm256_mul_ps(cplxValue2, vScalar);
+-    intValue1 = _mm256_cvtps_epi32(cplxValue1);
+-    intValue2 = _mm256_cvtps_epi32(cplxValue2);
++        intValue1 = _mm256_cvtps_epi32(cplxValue1);
++        intValue2 = _mm256_cvtps_epi32(cplxValue2);
+-    intValue1 = _mm256_packs_epi32(intValue1, intValue2);
++        intValue1 = _mm256_packs_epi32(intValue1, intValue2);
+-    _mm256_store_si256((__m256i*)complexVectorPtr, intValue1);
+-    complexVectorPtr += 16;
++        _mm256_store_si256((__m256i*)complexVectorPtr, intValue1);
++        complexVectorPtr += 16;
+-    iBufferPtr += 8;
+-    qBufferPtr += 8;
+-  }
++        iBufferPtr += 8;
++        qBufferPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  complexVectorPtr = (int16_t*)(&complexVector[number]);
+-  for(; number < num_points; number++){
+-    *complexVectorPtr++ = (int16_t)rintf(*iBufferPtr++ * scalar);
+-    *complexVectorPtr++ = (int16_t)rintf(*qBufferPtr++ * scalar);
+-  }
++    number = eighthPoints * 8;
++    complexVectorPtr = (int16_t*)(&complexVector[number]);
++    for (; number < num_points; number++) {
++        *complexVectorPtr++ = (int16_t)rintf(*iBufferPtr++ * scalar);
++        *complexVectorPtr++ = (int16_t)rintf(*qBufferPtr++ * scalar);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -136,53 +138,55 @@ volk_32f_x2_s32f_interleave_16ic_a_avx2(lv_16sc_t* complexVector, const float* i
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void
+-volk_32f_x2_s32f_interleave_16ic_a_sse2(lv_16sc_t* complexVector, const float* iBuffer,
+-                                        const float* qBuffer, const float scalar, unsigned int num_points)
++static inline void volk_32f_x2_s32f_interleave_16ic_a_sse2(lv_16sc_t* complexVector,
++                                                           const float* iBuffer,
++                                                           const float* qBuffer,
++                                                           const float scalar,
++                                                           unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const float* iBufferPtr = iBuffer;
+-  const float* qBufferPtr = qBuffer;
++    unsigned int number = 0;
++    const float* iBufferPtr = iBuffer;
++    const float* qBufferPtr = qBuffer;
+-  __m128 vScalar = _mm_set_ps1(scalar);
++    __m128 vScalar = _mm_set_ps1(scalar);
+-  const unsigned int quarterPoints = num_points / 4;
++    const unsigned int quarterPoints = num_points / 4;
+-  __m128 iValue, qValue, cplxValue1, cplxValue2;
+-  __m128i intValue1, intValue2;
++    __m128 iValue, qValue, cplxValue1, cplxValue2;
++    __m128i intValue1, intValue2;
+-  int16_t* complexVectorPtr = (int16_t*)complexVector;
++    int16_t* complexVectorPtr = (int16_t*)complexVector;
+-  for(;number < quarterPoints; number++){
+-    iValue = _mm_load_ps(iBufferPtr);
+-    qValue = _mm_load_ps(qBufferPtr);
++    for (; number < quarterPoints; number++) {
++        iValue = _mm_load_ps(iBufferPtr);
++        qValue = _mm_load_ps(qBufferPtr);
+-    // Interleaves the lower two values in the i and q variables into one buffer
+-    cplxValue1 = _mm_unpacklo_ps(iValue, qValue);
+-    cplxValue1 = _mm_mul_ps(cplxValue1, vScalar);
++        // Interleaves the lower two values in the i and q variables into one buffer
++        cplxValue1 = _mm_unpacklo_ps(iValue, qValue);
++        cplxValue1 = _mm_mul_ps(cplxValue1, vScalar);
+-    // Interleaves the upper two values in the i and q variables into one buffer
+-    cplxValue2 = _mm_unpackhi_ps(iValue, qValue);
+-    cplxValue2 = _mm_mul_ps(cplxValue2, vScalar);
++        // Interleaves the upper two values in the i and q variables into one buffer
++        cplxValue2 = _mm_unpackhi_ps(iValue, qValue);
++        cplxValue2 = _mm_mul_ps(cplxValue2, vScalar);
+-    intValue1 = _mm_cvtps_epi32(cplxValue1);
+-    intValue2 = _mm_cvtps_epi32(cplxValue2);
++        intValue1 = _mm_cvtps_epi32(cplxValue1);
++        intValue2 = _mm_cvtps_epi32(cplxValue2);
+-    intValue1 = _mm_packs_epi32(intValue1, intValue2);
++        intValue1 = _mm_packs_epi32(intValue1, intValue2);
+-    _mm_store_si128((__m128i*)complexVectorPtr, intValue1);
+-    complexVectorPtr += 8;
++        _mm_store_si128((__m128i*)complexVectorPtr, intValue1);
++        complexVectorPtr += 8;
+-    iBufferPtr += 4;
+-    qBufferPtr += 4;
+-  }
++        iBufferPtr += 4;
++        qBufferPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  complexVectorPtr = (int16_t*)(&complexVector[number]);
+-  for(; number < num_points; number++){
+-    *complexVectorPtr++ = (int16_t)rintf(*iBufferPtr++ * scalar);
+-    *complexVectorPtr++ = (int16_t)rintf(*qBufferPtr++ * scalar);
+-  }
++    number = quarterPoints * 4;
++    complexVectorPtr = (int16_t*)(&complexVector[number]);
++    for (; number < num_points; number++) {
++        *complexVectorPtr++ = (int16_t)rintf(*iBufferPtr++ * scalar);
++        *complexVectorPtr++ = (int16_t)rintf(*qBufferPtr++ * scalar);
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+@@ -190,79 +194,83 @@ volk_32f_x2_s32f_interleave_16ic_a_sse2(lv_16sc_t* complexVector, const float* i
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32f_x2_s32f_interleave_16ic_a_sse(lv_16sc_t* complexVector, const float* iBuffer,
+-                                       const float* qBuffer, const float scalar, unsigned int num_points)
++static inline void volk_32f_x2_s32f_interleave_16ic_a_sse(lv_16sc_t* complexVector,
++                                                          const float* iBuffer,
++                                                          const float* qBuffer,
++                                                          const float scalar,
++                                                          unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const float* iBufferPtr = iBuffer;
+-  const float* qBufferPtr = qBuffer;
++    unsigned int number = 0;
++    const float* iBufferPtr = iBuffer;
++    const float* qBufferPtr = qBuffer;
+-  __m128 vScalar = _mm_set_ps1(scalar);
++    __m128 vScalar = _mm_set_ps1(scalar);
+-  const unsigned int quarterPoints = num_points / 4;
++    const unsigned int quarterPoints = num_points / 4;
+-  __m128 iValue, qValue, cplxValue;
++    __m128 iValue, qValue, cplxValue;
+-  int16_t* complexVectorPtr = (int16_t*)complexVector;
++    int16_t* complexVectorPtr = (int16_t*)complexVector;
+-  __VOLK_ATTR_ALIGNED(16) float floatBuffer[4];
++    __VOLK_ATTR_ALIGNED(16) float floatBuffer[4];
+-  for(;number < quarterPoints; number++){
+-    iValue = _mm_load_ps(iBufferPtr);
+-    qValue = _mm_load_ps(qBufferPtr);
++    for (; number < quarterPoints; number++) {
++        iValue = _mm_load_ps(iBufferPtr);
++        qValue = _mm_load_ps(qBufferPtr);
+-    // Interleaves the lower two values in the i and q variables into one buffer
+-    cplxValue = _mm_unpacklo_ps(iValue, qValue);
+-    cplxValue = _mm_mul_ps(cplxValue, vScalar);
++        // Interleaves the lower two values in the i and q variables into one buffer
++        cplxValue = _mm_unpacklo_ps(iValue, qValue);
++        cplxValue = _mm_mul_ps(cplxValue, vScalar);
+-    _mm_store_ps(floatBuffer, cplxValue);
++        _mm_store_ps(floatBuffer, cplxValue);
+-    *complexVectorPtr++ = (int16_t)rintf(floatBuffer[0]);
+-    *complexVectorPtr++ = (int16_t)rintf(floatBuffer[1]);
+-    *complexVectorPtr++ = (int16_t)rintf(floatBuffer[2]);
+-    *complexVectorPtr++ = (int16_t)rintf(floatBuffer[3]);
++        *complexVectorPtr++ = (int16_t)rintf(floatBuffer[0]);
++        *complexVectorPtr++ = (int16_t)rintf(floatBuffer[1]);
++        *complexVectorPtr++ = (int16_t)rintf(floatBuffer[2]);
++        *complexVectorPtr++ = (int16_t)rintf(floatBuffer[3]);
+-    // Interleaves the upper two values in the i and q variables into one buffer
+-    cplxValue = _mm_unpackhi_ps(iValue, qValue);
+-    cplxValue = _mm_mul_ps(cplxValue, vScalar);
++        // Interleaves the upper two values in the i and q variables into one buffer
++        cplxValue = _mm_unpackhi_ps(iValue, qValue);
++        cplxValue = _mm_mul_ps(cplxValue, vScalar);
+-    _mm_store_ps(floatBuffer, cplxValue);
++        _mm_store_ps(floatBuffer, cplxValue);
+-    *complexVectorPtr++ = (int16_t)rintf(floatBuffer[0]);
+-    *complexVectorPtr++ = (int16_t)rintf(floatBuffer[1]);
+-    *complexVectorPtr++ = (int16_t)rintf(floatBuffer[2]);
+-    *complexVectorPtr++ = (int16_t)rintf(floatBuffer[3]);
++        *complexVectorPtr++ = (int16_t)rintf(floatBuffer[0]);
++        *complexVectorPtr++ = (int16_t)rintf(floatBuffer[1]);
++        *complexVectorPtr++ = (int16_t)rintf(floatBuffer[2]);
++        *complexVectorPtr++ = (int16_t)rintf(floatBuffer[3]);
+-    iBufferPtr += 4;
+-    qBufferPtr += 4;
+-  }
++        iBufferPtr += 4;
++        qBufferPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  complexVectorPtr = (int16_t*)(&complexVector[number]);
+-  for(; number < num_points; number++){
+-    *complexVectorPtr++ = (int16_t)rintf(*iBufferPtr++ * scalar);
+-    *complexVectorPtr++ = (int16_t)rintf(*qBufferPtr++ * scalar);
+-  }
++    number = quarterPoints * 4;
++    complexVectorPtr = (int16_t*)(&complexVector[number]);
++    for (; number < num_points; number++) {
++        *complexVectorPtr++ = (int16_t)rintf(*iBufferPtr++ * scalar);
++        *complexVectorPtr++ = (int16_t)rintf(*qBufferPtr++ * scalar);
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_x2_s32f_interleave_16ic_generic(lv_16sc_t* complexVector, const float* iBuffer,
+-                                         const float* qBuffer, const float scalar, unsigned int num_points)
++static inline void volk_32f_x2_s32f_interleave_16ic_generic(lv_16sc_t* complexVector,
++                                                            const float* iBuffer,
++                                                            const float* qBuffer,
++                                                            const float scalar,
++                                                            unsigned int num_points)
+ {
+-  int16_t* complexVectorPtr = (int16_t*)complexVector;
+-  const float* iBufferPtr = iBuffer;
+-  const float* qBufferPtr = qBuffer;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    *complexVectorPtr++ = (int16_t)rintf(*iBufferPtr++ * scalar);
+-    *complexVectorPtr++ = (int16_t)rintf(*qBufferPtr++ * scalar);
+-  }
++    int16_t* complexVectorPtr = (int16_t*)complexVector;
++    const float* iBufferPtr = iBuffer;
++    const float* qBufferPtr = qBuffer;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        *complexVectorPtr++ = (int16_t)rintf(*iBufferPtr++ * scalar);
++        *complexVectorPtr++ = (int16_t)rintf(*qBufferPtr++ * scalar);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -272,60 +280,62 @@ volk_32f_x2_s32f_interleave_16ic_generic(lv_16sc_t* complexVector, const float*
+ #ifndef INCLUDED_volk_32f_x2_s32f_interleave_16ic_u_H
+ #define INCLUDED_volk_32f_x2_s32f_interleave_16ic_u_H
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+ #include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_32f_x2_s32f_interleave_16ic_u_avx2(lv_16sc_t* complexVector, const float* iBuffer,
+-                                        const float* qBuffer, const float scalar, unsigned int num_points)
++static inline void volk_32f_x2_s32f_interleave_16ic_u_avx2(lv_16sc_t* complexVector,
++                                                           const float* iBuffer,
++                                                           const float* qBuffer,
++                                                           const float scalar,
++                                                           unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const float* iBufferPtr = iBuffer;
+-  const float* qBufferPtr = qBuffer;
++    unsigned int number = 0;
++    const float* iBufferPtr = iBuffer;
++    const float* qBufferPtr = qBuffer;
+-  __m256 vScalar = _mm256_set1_ps(scalar);
++    __m256 vScalar = _mm256_set1_ps(scalar);
+-  const unsigned int eighthPoints = num_points / 8;
++    const unsigned int eighthPoints = num_points / 8;
+-  __m256 iValue, qValue, cplxValue1, cplxValue2;
+-  __m256i intValue1, intValue2;
++    __m256 iValue, qValue, cplxValue1, cplxValue2;
++    __m256i intValue1, intValue2;
+-  int16_t* complexVectorPtr = (int16_t*)complexVector;
++    int16_t* complexVectorPtr = (int16_t*)complexVector;
+-  for(;number < eighthPoints; number++){
+-    iValue = _mm256_loadu_ps(iBufferPtr);
+-    qValue = _mm256_loadu_ps(qBufferPtr);
++    for (; number < eighthPoints; number++) {
++        iValue = _mm256_loadu_ps(iBufferPtr);
++        qValue = _mm256_loadu_ps(qBufferPtr);
+-    // Interleaves the lower two values in the i and q variables into one buffer
+-    cplxValue1 = _mm256_unpacklo_ps(iValue, qValue);
+-    cplxValue1 = _mm256_mul_ps(cplxValue1, vScalar);
++        // Interleaves the lower two values in the i and q variables into one buffer
++        cplxValue1 = _mm256_unpacklo_ps(iValue, qValue);
++        cplxValue1 = _mm256_mul_ps(cplxValue1, vScalar);
+-    // Interleaves the upper two values in the i and q variables into one buffer
+-    cplxValue2 = _mm256_unpackhi_ps(iValue, qValue);
+-    cplxValue2 = _mm256_mul_ps(cplxValue2, vScalar);
++        // Interleaves the upper two values in the i and q variables into one buffer
++        cplxValue2 = _mm256_unpackhi_ps(iValue, qValue);
++        cplxValue2 = _mm256_mul_ps(cplxValue2, vScalar);
+-    intValue1 = _mm256_cvtps_epi32(cplxValue1);
+-    intValue2 = _mm256_cvtps_epi32(cplxValue2);
++        intValue1 = _mm256_cvtps_epi32(cplxValue1);
++        intValue2 = _mm256_cvtps_epi32(cplxValue2);
+-    intValue1 = _mm256_packs_epi32(intValue1, intValue2);
++        intValue1 = _mm256_packs_epi32(intValue1, intValue2);
+-    _mm256_storeu_si256((__m256i*)complexVectorPtr, intValue1);
+-    complexVectorPtr += 16;
++        _mm256_storeu_si256((__m256i*)complexVectorPtr, intValue1);
++        complexVectorPtr += 16;
+-    iBufferPtr += 8;
+-    qBufferPtr += 8;
+-  }
++        iBufferPtr += 8;
++        qBufferPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  complexVectorPtr = (int16_t*)(&complexVector[number]);
+-  for(; number < num_points; number++){
+-    *complexVectorPtr++ = (int16_t)rintf(*iBufferPtr++ * scalar);
+-    *complexVectorPtr++ = (int16_t)rintf(*qBufferPtr++ * scalar);
+-  }
++    number = eighthPoints * 8;
++    complexVectorPtr = (int16_t*)(&complexVector[number]);
++    for (; number < num_points; number++) {
++        *complexVectorPtr++ = (int16_t)rintf(*iBufferPtr++ * scalar);
++        *complexVectorPtr++ = (int16_t)rintf(*qBufferPtr++ * scalar);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+diff --git a/kernels/volk/volk_32f_x2_subtract_32f.h b/kernels/volk/volk_32f_x2_subtract_32f.h
+index bdfa0a1..359974c 100644
+--- a/kernels/volk/volk_32f_x2_subtract_32f.h
++++ b/kernels/volk/volk_32f_x2_subtract_32f.h
+@@ -31,8 +31,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_x2_subtract_32f(float* cVector, const float* aVector, const float* bVector, unsigned int num_points)
+- * \endcode
++ * void volk_32f_x2_subtract_32f(float* cVector, const float* aVector, const float*
++ * bVector, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li aVector: The initial vector.
+@@ -77,126 +77,130 @@
+ #ifdef LV_HAVE_AVX512F
+ #include <immintrin.h>
+-static inline void
+-volk_32f_x2_subtract_32f_a_avx512f(float* cVector, const float* aVector,
+-                               const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_subtract_32f_a_avx512f(float* cVector,
++                                                      const float* aVector,
++                                                      const float* bVector,
++                                                      unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr = bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m512 aVal, bVal, cVal;
+-  for(;number < sixteenthPoints; number++){
++    __m512 aVal, bVal, cVal;
++    for (; number < sixteenthPoints; number++) {
+-    aVal = _mm512_load_ps(aPtr);
+-    bVal = _mm512_load_ps(bPtr);
++        aVal = _mm512_load_ps(aPtr);
++        bVal = _mm512_load_ps(bPtr);
+-    cVal = _mm512_sub_ps(aVal, bVal);
++        cVal = _mm512_sub_ps(aVal, bVal);
+-    _mm512_store_ps(cPtr,cVal); // Store the results back into the C container
++        _mm512_store_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 16;
+-    bPtr += 16;
+-    cPtr += 16;
+-  }
++        aPtr += 16;
++        bPtr += 16;
++        cPtr += 16;
++    }
+-  number = sixteenthPoints *16;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) - (*bPtr++);
+-  }
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) - (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX512F */
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32f_x2_subtract_32f_a_avx(float* cVector, const float* aVector,
+-                               const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_subtract_32f_a_avx(float* cVector,
++                                                  const float* aVector,
++                                                  const float* bVector,
++                                                  unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr = bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m256 aVal, bVal, cVal;
+-  for(;number < eighthPoints; number++){
++    __m256 aVal, bVal, cVal;
++    for (; number < eighthPoints; number++) {
+-    aVal = _mm256_load_ps(aPtr);
+-    bVal = _mm256_load_ps(bPtr);
++        aVal = _mm256_load_ps(aPtr);
++        bVal = _mm256_load_ps(bPtr);
+-    cVal = _mm256_sub_ps(aVal, bVal);
++        cVal = _mm256_sub_ps(aVal, bVal);
+-    _mm256_store_ps(cPtr,cVal); // Store the results back into the C container
++        _mm256_store_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 8;
+-    bPtr += 8;
+-    cPtr += 8;
+-  }
++        aPtr += 8;
++        bPtr += 8;
++        cPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) - (*bPtr++);
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) - (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32f_x2_subtract_32f_a_sse(float* cVector, const float* aVector,
+-                               const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_subtract_32f_a_sse(float* cVector,
++                                                  const float* aVector,
++                                                  const float* bVector,
++                                                  unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr = bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m128 aVal, bVal, cVal;
+-  for(;number < quarterPoints; number++){
++    __m128 aVal, bVal, cVal;
++    for (; number < quarterPoints; number++) {
+-    aVal = _mm_load_ps(aPtr);
+-    bVal = _mm_load_ps(bPtr);
++        aVal = _mm_load_ps(aPtr);
++        bVal = _mm_load_ps(bPtr);
+-    cVal = _mm_sub_ps(aVal, bVal);
++        cVal = _mm_sub_ps(aVal, bVal);
+-    _mm_store_ps(cPtr,cVal); // Store the results back into the C container
++        _mm_store_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 4;
+-    bPtr += 4;
+-    cPtr += 4;
+-  }
++        aPtr += 4;
++        bPtr += 4;
++        cPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) - (*bPtr++);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) - (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_x2_subtract_32f_generic(float* cVector, const float* aVector,
+-                                 const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_subtract_32f_generic(float* cVector,
++                                                    const float* aVector,
++                                                    const float* bVector,
++                                                    unsigned int num_points)
+ {
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr = bVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    *cPtr++ = (*aPtr++) - (*bPtr++);
+-  }
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) - (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -204,45 +208,48 @@ volk_32f_x2_subtract_32f_generic(float* cVector, const float* aVector,
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_32f_x2_subtract_32f_neon(float* cVector, const float* aVector,
+-                              const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_subtract_32f_neon(float* cVector,
++                                                 const float* aVector,
++                                                 const float* bVector,
++                                                 unsigned int num_points)
+ {
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr = bVector;
+-  unsigned int number = 0;
+-  unsigned int quarter_points = num_points / 4;
+-
+-  float32x4_t a_vec, b_vec, c_vec;
+-
+-  for(number = 0; number < quarter_points; number++){
+-    a_vec = vld1q_f32(aPtr);
+-    b_vec = vld1q_f32(bPtr);
+-    c_vec = vsubq_f32(a_vec, b_vec);
+-    vst1q_f32(cPtr, c_vec);
+-    aPtr += 4;
+-    bPtr += 4;
+-    cPtr += 4;
+-  }
+-
+-  for(number = quarter_points * 4; number < num_points; number++){
+-    *cPtr++ = (*aPtr++) - (*bPtr++);
+-  }
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
++    unsigned int number = 0;
++    unsigned int quarter_points = num_points / 4;
++
++    float32x4_t a_vec, b_vec, c_vec;
++
++    for (number = 0; number < quarter_points; number++) {
++        a_vec = vld1q_f32(aPtr);
++        b_vec = vld1q_f32(bPtr);
++        c_vec = vsubq_f32(a_vec, b_vec);
++        vst1q_f32(cPtr, c_vec);
++        aPtr += 4;
++        bPtr += 4;
++        cPtr += 4;
++    }
++
++    for (number = quarter_points * 4; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) - (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_ORC
+-extern void
+-volk_32f_x2_subtract_32f_a_orc_impl(float* cVector, const float* aVector,
+-                                    const float* bVector, unsigned int num_points);
+-
+-static inline void
+-volk_32f_x2_subtract_32f_u_orc(float* cVector, const float* aVector,
+-                               const float* bVector, unsigned int num_points)
++extern void volk_32f_x2_subtract_32f_a_orc_impl(float* cVector,
++                                                const float* aVector,
++                                                const float* bVector,
++                                                unsigned int num_points);
++
++static inline void volk_32f_x2_subtract_32f_u_orc(float* cVector,
++                                                  const float* aVector,
++                                                  const float* bVector,
++                                                  unsigned int num_points)
+ {
+-  volk_32f_x2_subtract_32f_a_orc_impl(cVector, aVector, bVector, num_points);
++    volk_32f_x2_subtract_32f_a_orc_impl(cVector, aVector, bVector, num_points);
+ }
+ #endif /* LV_HAVE_ORC */
+@@ -259,36 +266,37 @@ volk_32f_x2_subtract_32f_u_orc(float* cVector, const float* aVector,
+ #ifdef LV_HAVE_AVX512F
+ #include <immintrin.h>
+-static inline void
+-volk_32f_x2_subtract_32f_u_avx512f(float* cVector, const float* aVector,
+-                               const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_subtract_32f_u_avx512f(float* cVector,
++                                                      const float* aVector,
++                                                      const float* bVector,
++                                                      unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr = bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m512 aVal, bVal, cVal;
+-  for(;number < sixteenthPoints; number++){
++    __m512 aVal, bVal, cVal;
++    for (; number < sixteenthPoints; number++) {
+-    aVal = _mm512_loadu_ps(aPtr);
+-    bVal = _mm512_loadu_ps(bPtr);
++        aVal = _mm512_loadu_ps(aPtr);
++        bVal = _mm512_loadu_ps(bPtr);
+-    cVal = _mm512_sub_ps(aVal, bVal);
++        cVal = _mm512_sub_ps(aVal, bVal);
+-    _mm512_storeu_ps(cPtr,cVal); // Store the results back into the C container
++        _mm512_storeu_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 16;
+-    bPtr += 16;
+-    cPtr += 16;
+-  }
++        aPtr += 16;
++        bPtr += 16;
++        cPtr += 16;
++    }
+-  number = sixteenthPoints *16;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) - (*bPtr++);
+-  }
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) - (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX512F */
+@@ -296,36 +304,37 @@ volk_32f_x2_subtract_32f_u_avx512f(float* cVector, const float* aVector,
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32f_x2_subtract_32f_u_avx(float* cVector, const float* aVector,
+-                               const float* bVector, unsigned int num_points)
++static inline void volk_32f_x2_subtract_32f_u_avx(float* cVector,
++                                                  const float* aVector,
++                                                  const float* bVector,
++                                                  unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  float* cPtr = cVector;
+-  const float* aPtr = aVector;
+-  const float* bPtr = bVector;
++    float* cPtr = cVector;
++    const float* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m256 aVal, bVal, cVal;
+-  for(;number < eighthPoints; number++){
++    __m256 aVal, bVal, cVal;
++    for (; number < eighthPoints; number++) {
+-    aVal = _mm256_loadu_ps(aPtr);
+-    bVal = _mm256_loadu_ps(bPtr);
++        aVal = _mm256_loadu_ps(aPtr);
++        bVal = _mm256_loadu_ps(bPtr);
+-    cVal = _mm256_sub_ps(aVal, bVal);
++        cVal = _mm256_sub_ps(aVal, bVal);
+-    _mm256_storeu_ps(cPtr,cVal); // Store the results back into the C container
++        _mm256_storeu_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 8;
+-    bPtr += 8;
+-    cPtr += 8;
+-  }
++        aPtr += 8;
++        bPtr += 8;
++        cPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) - (*bPtr++);
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) - (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+diff --git a/kernels/volk/volk_32f_x3_sum_of_poly_32f.h b/kernels/volk/volk_32f_x3_sum_of_poly_32f.h
+index e74a385..b0b1466 100644
+--- a/kernels/volk/volk_32f_x3_sum_of_poly_32f.h
++++ b/kernels/volk/volk_32f_x3_sum_of_poly_32f.h
+@@ -30,12 +30,13 @@
+  * multiply by the rectangle/bin width.
+  *
+  * Expressed as a formula, this function calculates
+- * \f$ \sum f(x) = \sum (c_0 + c_1 \cdot x + c_2 \cdot x^2 + c_3 \cdot x^3 + c_4 \cdot x^4)\f$
++ * \f$ \sum f(x) = \sum (c_0 + c_1 \cdot x + c_2 \cdot x^2 + c_3 \cdot x^3 + c_4 \cdot
++ * x^4)\f$
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32f_x3_sum_of_poly_32f(float* target, float* src0, float* center_point_array, float* cutoff, unsigned int num_points)
+- * \endcode
++ * void volk_32f_x3_sum_of_poly_32f(float* target, float* src0, float* center_point_array,
++ * float* cutoff, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li src0: x values
+@@ -53,9 +54,10 @@
+  * \code
+  *   int npoints = 4096;
+  *   float* coefficients = (float*)volk_malloc(sizeof(float) * 5, volk_get_alignment());
+- *   float* input        = (float*)volk_malloc(sizeof(float) * npoints, volk_get_alignment());
+- *   float* result       = (float*)volk_malloc(sizeof(float), volk_get_alignment());
+- *   float* cutoff       = (float*)volk_malloc(sizeof(float), volk_get_alignment());
++ *   float* input        = (float*)volk_malloc(sizeof(float) * npoints,
++ * volk_get_alignment()); float* result       = (float*)volk_malloc(sizeof(float),
++ * volk_get_alignment()); float* cutoff       = (float*)volk_malloc(sizeof(float),
++ * volk_get_alignment());
+  *   // load precomputed Taylor series coefficients
+  *   coefficients[0] = 4.48168907033806f;            // c1
+  *   coefficients[1] = coefficients[0] * 0.5f;       // c2
+@@ -82,288 +84,291 @@
+ #ifndef INCLUDED_volk_32f_x3_sum_of_poly_32f_a_H
+ #define INCLUDED_volk_32f_x3_sum_of_poly_32f_a_H
+-#include<inttypes.h>
+-#include<stdio.h>
+-#include<volk/volk_complex.h>
++#include <inttypes.h>
++#include <stdio.h>
++#include <volk/volk_complex.h>
+ #ifndef MAX
+-#define MAX(X,Y) ((X) > (Y)?(X):(Y))
++#define MAX(X, Y) ((X) > (Y) ? (X) : (Y))
+ #endif
+ #ifdef LV_HAVE_SSE3
+-#include<xmmintrin.h>
+-#include<pmmintrin.h>
+-
+-static inline void
+-volk_32f_x3_sum_of_poly_32f_a_sse3(float* target, float* src0, float* center_point_array,
+-                                   float* cutoff, unsigned int num_points)
++#include <pmmintrin.h>
++#include <xmmintrin.h>
++
++static inline void volk_32f_x3_sum_of_poly_32f_a_sse3(float* target,
++                                                      float* src0,
++                                                      float* center_point_array,
++                                                      float* cutoff,
++                                                      unsigned int num_points)
+ {
+-  float result = 0.0f;
+-  float fst    = 0.0f;
+-  float sq     = 0.0f;
+-  float thrd   = 0.0f;
+-  float frth   = 0.0f;
+-
+-  __m128 xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10;
+-
+-  xmm9  = _mm_setzero_ps();
+-  xmm1  = _mm_setzero_ps();
+-  xmm0  = _mm_load1_ps(&center_point_array[0]);
+-  xmm6  = _mm_load1_ps(&center_point_array[1]);
+-  xmm7  = _mm_load1_ps(&center_point_array[2]);
+-  xmm8  = _mm_load1_ps(&center_point_array[3]);
+-  xmm10 = _mm_load1_ps(cutoff);
+-
+-  int bound = num_points/8;
+-  int leftovers = num_points - 8*bound;
+-  int i = 0;
+-  for(; i < bound; ++i) {
+-    // 1st
+-    xmm2 = _mm_load_ps(src0);
+-    xmm2 = _mm_max_ps(xmm10, xmm2);
+-    xmm3 = _mm_mul_ps(xmm2, xmm2);
+-    xmm4 = _mm_mul_ps(xmm2, xmm3);
+-    xmm5 = _mm_mul_ps(xmm3, xmm3);
+-
+-    xmm2 = _mm_mul_ps(xmm2, xmm0);
+-    xmm3 = _mm_mul_ps(xmm3, xmm6);
+-    xmm4 = _mm_mul_ps(xmm4, xmm7);
+-    xmm5 = _mm_mul_ps(xmm5, xmm8);
+-
+-    xmm2 = _mm_add_ps(xmm2, xmm3);
+-    xmm3 = _mm_add_ps(xmm4, xmm5);
+-
+-    src0 += 4;
+-
+-    xmm9 = _mm_add_ps(xmm2, xmm9);
+-    xmm9 = _mm_add_ps(xmm3, xmm9);
+-
+-    // 2nd
+-    xmm2 = _mm_load_ps(src0);
+-    xmm2 = _mm_max_ps(xmm10, xmm2);
+-    xmm3 = _mm_mul_ps(xmm2, xmm2);
+-    xmm4 = _mm_mul_ps(xmm2, xmm3);
+-    xmm5 = _mm_mul_ps(xmm3, xmm3);
+-
+-    xmm2 = _mm_mul_ps(xmm2, xmm0);
+-    xmm3 = _mm_mul_ps(xmm3, xmm6);
+-    xmm4 = _mm_mul_ps(xmm4, xmm7);
+-    xmm5 = _mm_mul_ps(xmm5, xmm8);
+-
+-    xmm2 = _mm_add_ps(xmm2, xmm3);
+-    xmm3 = _mm_add_ps(xmm4, xmm5);
+-
+-    src0 += 4;
+-
+-    xmm1 = _mm_add_ps(xmm2, xmm1);
+-    xmm1 = _mm_add_ps(xmm3, xmm1);
+-  }
+-  xmm2 = _mm_hadd_ps(xmm9, xmm1);
+-  xmm3 = _mm_hadd_ps(xmm2, xmm2);
+-  xmm4 = _mm_hadd_ps(xmm3, xmm3);
+-  _mm_store_ss(&result, xmm4);
+-
+-  for(i = 0; i < leftovers; ++i) {
+-    fst  = *src0++;
+-    fst  = MAX(fst, *cutoff);
+-    sq   = fst * fst;
+-    thrd = fst * sq;
+-    frth = sq * sq;
+-    result += (center_point_array[0] * fst +
+-             center_point_array[1] * sq +
+-             center_point_array[2] * thrd +
+-             center_point_array[3] * frth);
+-  }
+-
+-  result += (float)(num_points) * center_point_array[4];
+-  *target = result;
++    float result = 0.0f;
++    float fst = 0.0f;
++    float sq = 0.0f;
++    float thrd = 0.0f;
++    float frth = 0.0f;
++
++    __m128 xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9, xmm10;
++
++    xmm9 = _mm_setzero_ps();
++    xmm1 = _mm_setzero_ps();
++    xmm0 = _mm_load1_ps(&center_point_array[0]);
++    xmm6 = _mm_load1_ps(&center_point_array[1]);
++    xmm7 = _mm_load1_ps(&center_point_array[2]);
++    xmm8 = _mm_load1_ps(&center_point_array[3]);
++    xmm10 = _mm_load1_ps(cutoff);
++
++    int bound = num_points / 8;
++    int leftovers = num_points - 8 * bound;
++    int i = 0;
++    for (; i < bound; ++i) {
++        // 1st
++        xmm2 = _mm_load_ps(src0);
++        xmm2 = _mm_max_ps(xmm10, xmm2);
++        xmm3 = _mm_mul_ps(xmm2, xmm2);
++        xmm4 = _mm_mul_ps(xmm2, xmm3);
++        xmm5 = _mm_mul_ps(xmm3, xmm3);
++
++        xmm2 = _mm_mul_ps(xmm2, xmm0);
++        xmm3 = _mm_mul_ps(xmm3, xmm6);
++        xmm4 = _mm_mul_ps(xmm4, xmm7);
++        xmm5 = _mm_mul_ps(xmm5, xmm8);
++
++        xmm2 = _mm_add_ps(xmm2, xmm3);
++        xmm3 = _mm_add_ps(xmm4, xmm5);
++
++        src0 += 4;
++
++        xmm9 = _mm_add_ps(xmm2, xmm9);
++        xmm9 = _mm_add_ps(xmm3, xmm9);
++
++        // 2nd
++        xmm2 = _mm_load_ps(src0);
++        xmm2 = _mm_max_ps(xmm10, xmm2);
++        xmm3 = _mm_mul_ps(xmm2, xmm2);
++        xmm4 = _mm_mul_ps(xmm2, xmm3);
++        xmm5 = _mm_mul_ps(xmm3, xmm3);
++
++        xmm2 = _mm_mul_ps(xmm2, xmm0);
++        xmm3 = _mm_mul_ps(xmm3, xmm6);
++        xmm4 = _mm_mul_ps(xmm4, xmm7);
++        xmm5 = _mm_mul_ps(xmm5, xmm8);
++
++        xmm2 = _mm_add_ps(xmm2, xmm3);
++        xmm3 = _mm_add_ps(xmm4, xmm5);
++
++        src0 += 4;
++
++        xmm1 = _mm_add_ps(xmm2, xmm1);
++        xmm1 = _mm_add_ps(xmm3, xmm1);
++    }
++    xmm2 = _mm_hadd_ps(xmm9, xmm1);
++    xmm3 = _mm_hadd_ps(xmm2, xmm2);
++    xmm4 = _mm_hadd_ps(xmm3, xmm3);
++    _mm_store_ss(&result, xmm4);
++
++    for (i = 0; i < leftovers; ++i) {
++        fst = *src0++;
++        fst = MAX(fst, *cutoff);
++        sq = fst * fst;
++        thrd = fst * sq;
++        frth = sq * sq;
++        result += (center_point_array[0] * fst + center_point_array[1] * sq +
++                   center_point_array[2] * thrd + center_point_array[3] * frth);
++    }
++
++    result += (float)(num_points)*center_point_array[4];
++    *target = result;
+ }
+ #endif /*LV_HAVE_SSE3*/
+ #if LV_HAVE_AVX && LV_HAVE_FMA
+-#include<immintrin.h>
++#include <immintrin.h>
+-static inline void
+-volk_32f_x3_sum_of_poly_32f_a_avx2_fma(float* target, float* src0, float* center_point_array,
+-                                  float* cutoff, unsigned int num_points)
++static inline void volk_32f_x3_sum_of_poly_32f_a_avx2_fma(float* target,
++                                                          float* src0,
++                                                          float* center_point_array,
++                                                          float* cutoff,
++                                                          unsigned int num_points)
+ {
+-  const unsigned int eighth_points = num_points / 8;
+-  float fst = 0.0;
+-  float sq = 0.0;
+-  float thrd = 0.0;
+-  float frth = 0.0;
+-
+-  __m256 cpa0, cpa1, cpa2, cpa3, cutoff_vec;
+-  __m256 target_vec;
+-  __m256 x_to_1, x_to_2, x_to_3, x_to_4;
+-
+-  cpa0 = _mm256_set1_ps(center_point_array[0]);
+-  cpa1 = _mm256_set1_ps(center_point_array[1]);
+-  cpa2 = _mm256_set1_ps(center_point_array[2]);
+-  cpa3 = _mm256_set1_ps(center_point_array[3]);
+-  cutoff_vec = _mm256_set1_ps(*cutoff);
+-  target_vec = _mm256_setzero_ps();
+-
+-  unsigned int i;
+-
+-  for(i = 0; i < eighth_points; ++i) {
+-    x_to_1 = _mm256_load_ps(src0);
+-    x_to_1 = _mm256_max_ps(x_to_1, cutoff_vec);
+-    x_to_2 = _mm256_mul_ps(x_to_1, x_to_1); // x^2
+-    x_to_3 = _mm256_mul_ps(x_to_1, x_to_2); // x^3
+-    // x^1 * x^3 is slightly faster than x^2 * x^2
+-    x_to_4 = _mm256_mul_ps(x_to_1, x_to_3); // x^4
+-
+-    x_to_2 = _mm256_mul_ps(x_to_2, cpa1); // cpa[1] * x^2
+-    x_to_4 = _mm256_mul_ps(x_to_4, cpa3); // cpa[3] * x^4
+-
+-    x_to_1 = _mm256_fmadd_ps(x_to_1, cpa0, x_to_2);
+-    x_to_3 = _mm256_fmadd_ps(x_to_3, cpa2, x_to_4);
+-    // this is slightly faster than result += (x_to_1 + x_to_3)
+-    target_vec = _mm256_add_ps(x_to_1, target_vec);
+-    target_vec = _mm256_add_ps(x_to_3, target_vec);
+-
+-    src0 += 8;
+-  }
+-
+-  // the hadd for vector reduction has very very slight impact @ 50k iters
+-  __VOLK_ATTR_ALIGNED(32) float temp_results[8];
+-  target_vec = _mm256_hadd_ps(target_vec, target_vec); // x0+x1 | x2+x3 | x0+x1 | x2+x3 || x4+x5 | x6+x7 | x4+x5 | x6+x7
+-  _mm256_store_ps(temp_results, target_vec);
+-  *target = temp_results[0] + temp_results[1] + temp_results[4] + temp_results[5];
+-
+-  for(i = eighth_points*8; i < num_points; ++i) {
+-    fst  = *src0++;
+-    fst  = MAX(fst, *cutoff);
+-    sq   = fst * fst;
+-    thrd = fst * sq;
+-    frth = sq * sq;
+-    *target += (center_point_array[0] * fst +
+-                center_point_array[1] * sq +
+-                center_point_array[2] * thrd +
+-                center_point_array[3] * frth);
+-  }
+-  *target += (float)(num_points) * center_point_array[4];
++    const unsigned int eighth_points = num_points / 8;
++    float fst = 0.0;
++    float sq = 0.0;
++    float thrd = 0.0;
++    float frth = 0.0;
++
++    __m256 cpa0, cpa1, cpa2, cpa3, cutoff_vec;
++    __m256 target_vec;
++    __m256 x_to_1, x_to_2, x_to_3, x_to_4;
++
++    cpa0 = _mm256_set1_ps(center_point_array[0]);
++    cpa1 = _mm256_set1_ps(center_point_array[1]);
++    cpa2 = _mm256_set1_ps(center_point_array[2]);
++    cpa3 = _mm256_set1_ps(center_point_array[3]);
++    cutoff_vec = _mm256_set1_ps(*cutoff);
++    target_vec = _mm256_setzero_ps();
++
++    unsigned int i;
++
++    for (i = 0; i < eighth_points; ++i) {
++        x_to_1 = _mm256_load_ps(src0);
++        x_to_1 = _mm256_max_ps(x_to_1, cutoff_vec);
++        x_to_2 = _mm256_mul_ps(x_to_1, x_to_1); // x^2
++        x_to_3 = _mm256_mul_ps(x_to_1, x_to_2); // x^3
++        // x^1 * x^3 is slightly faster than x^2 * x^2
++        x_to_4 = _mm256_mul_ps(x_to_1, x_to_3); // x^4
++
++        x_to_2 = _mm256_mul_ps(x_to_2, cpa1); // cpa[1] * x^2
++        x_to_4 = _mm256_mul_ps(x_to_4, cpa3); // cpa[3] * x^4
++
++        x_to_1 = _mm256_fmadd_ps(x_to_1, cpa0, x_to_2);
++        x_to_3 = _mm256_fmadd_ps(x_to_3, cpa2, x_to_4);
++        // this is slightly faster than result += (x_to_1 + x_to_3)
++        target_vec = _mm256_add_ps(x_to_1, target_vec);
++        target_vec = _mm256_add_ps(x_to_3, target_vec);
++
++        src0 += 8;
++    }
++
++    // the hadd for vector reduction has very very slight impact @ 50k iters
++    __VOLK_ATTR_ALIGNED(32) float temp_results[8];
++    target_vec = _mm256_hadd_ps(
++        target_vec,
++        target_vec); // x0+x1 | x2+x3 | x0+x1 | x2+x3 || x4+x5 | x6+x7 | x4+x5 | x6+x7
++    _mm256_store_ps(temp_results, target_vec);
++    *target = temp_results[0] + temp_results[1] + temp_results[4] + temp_results[5];
++
++    for (i = eighth_points * 8; i < num_points; ++i) {
++        fst = *src0++;
++        fst = MAX(fst, *cutoff);
++        sq = fst * fst;
++        thrd = fst * sq;
++        frth = sq * sq;
++        *target += (center_point_array[0] * fst + center_point_array[1] * sq +
++                    center_point_array[2] * thrd + center_point_array[3] * frth);
++    }
++    *target += (float)(num_points)*center_point_array[4];
+ }
+ #endif // LV_HAVE_AVX && LV_HAVE_FMA
+ #ifdef LV_HAVE_AVX
+-#include<immintrin.h>
++#include <immintrin.h>
+-static inline void
+-volk_32f_x3_sum_of_poly_32f_a_avx(float* target, float* src0, float* center_point_array,
+-                                  float* cutoff, unsigned int num_points)
++static inline void volk_32f_x3_sum_of_poly_32f_a_avx(float* target,
++                                                     float* src0,
++                                                     float* center_point_array,
++                                                     float* cutoff,
++                                                     unsigned int num_points)
+ {
+-  const unsigned int eighth_points = num_points / 8;
+-  float fst = 0.0;
+-  float sq = 0.0;
+-  float thrd = 0.0;
+-  float frth = 0.0;
+-
+-  __m256 cpa0, cpa1, cpa2, cpa3, cutoff_vec;
+-  __m256 target_vec;
+-  __m256 x_to_1, x_to_2, x_to_3, x_to_4;
+-
+-  cpa0 = _mm256_set1_ps(center_point_array[0]);
+-  cpa1 = _mm256_set1_ps(center_point_array[1]);
+-  cpa2 = _mm256_set1_ps(center_point_array[2]);
+-  cpa3 = _mm256_set1_ps(center_point_array[3]);
+-  cutoff_vec = _mm256_set1_ps(*cutoff);
+-  target_vec = _mm256_setzero_ps();
+-
+-  unsigned int i;
+-
+-  for(i = 0; i < eighth_points; ++i) {
+-    x_to_1 = _mm256_load_ps(src0);
+-    x_to_1 = _mm256_max_ps(x_to_1, cutoff_vec);
+-    x_to_2 = _mm256_mul_ps(x_to_1, x_to_1); // x^2
+-    x_to_3 = _mm256_mul_ps(x_to_1, x_to_2); // x^3
+-    // x^1 * x^3 is slightly faster than x^2 * x^2
+-    x_to_4 = _mm256_mul_ps(x_to_1, x_to_3); // x^4
+-
+-    x_to_1 = _mm256_mul_ps(x_to_1, cpa0); // cpa[0] * x^1
+-    x_to_2 = _mm256_mul_ps(x_to_2, cpa1); // cpa[1] * x^2
+-    x_to_3 = _mm256_mul_ps(x_to_3, cpa2); // cpa[2] * x^3
+-    x_to_4 = _mm256_mul_ps(x_to_4, cpa3); // cpa[3] * x^4
+-
+-    x_to_1 = _mm256_add_ps(x_to_1, x_to_2);
+-    x_to_3 = _mm256_add_ps(x_to_3, x_to_4);
+-    // this is slightly faster than result += (x_to_1 + x_to_3)
+-    target_vec = _mm256_add_ps(x_to_1, target_vec);
+-    target_vec = _mm256_add_ps(x_to_3, target_vec);
+-
+-    src0 += 8;
+-  }
+-
+-  // the hadd for vector reduction has very very slight impact @ 50k iters
+-  __VOLK_ATTR_ALIGNED(32) float temp_results[8];
+-  target_vec = _mm256_hadd_ps(target_vec, target_vec); // x0+x1 | x2+x3 | x0+x1 | x2+x3 || x4+x5 | x6+x7 | x4+x5 | x6+x7
+-  _mm256_store_ps(temp_results, target_vec);
+-  *target = temp_results[0] + temp_results[1] + temp_results[4] + temp_results[5];
+-
+-  for(i = eighth_points*8; i < num_points; ++i) {
+-    fst  = *src0++;
+-    fst  = MAX(fst, *cutoff);
+-    sq   = fst * fst;
+-    thrd = fst * sq;
+-    frth = sq * sq;
+-    *target += (center_point_array[0] * fst +
+-                center_point_array[1] * sq +
+-                center_point_array[2] * thrd +
+-                center_point_array[3] * frth);
+-  }
+-  *target += (float)(num_points) * center_point_array[4];
++    const unsigned int eighth_points = num_points / 8;
++    float fst = 0.0;
++    float sq = 0.0;
++    float thrd = 0.0;
++    float frth = 0.0;
++
++    __m256 cpa0, cpa1, cpa2, cpa3, cutoff_vec;
++    __m256 target_vec;
++    __m256 x_to_1, x_to_2, x_to_3, x_to_4;
++
++    cpa0 = _mm256_set1_ps(center_point_array[0]);
++    cpa1 = _mm256_set1_ps(center_point_array[1]);
++    cpa2 = _mm256_set1_ps(center_point_array[2]);
++    cpa3 = _mm256_set1_ps(center_point_array[3]);
++    cutoff_vec = _mm256_set1_ps(*cutoff);
++    target_vec = _mm256_setzero_ps();
++
++    unsigned int i;
++
++    for (i = 0; i < eighth_points; ++i) {
++        x_to_1 = _mm256_load_ps(src0);
++        x_to_1 = _mm256_max_ps(x_to_1, cutoff_vec);
++        x_to_2 = _mm256_mul_ps(x_to_1, x_to_1); // x^2
++        x_to_3 = _mm256_mul_ps(x_to_1, x_to_2); // x^3
++        // x^1 * x^3 is slightly faster than x^2 * x^2
++        x_to_4 = _mm256_mul_ps(x_to_1, x_to_3); // x^4
++
++        x_to_1 = _mm256_mul_ps(x_to_1, cpa0); // cpa[0] * x^1
++        x_to_2 = _mm256_mul_ps(x_to_2, cpa1); // cpa[1] * x^2
++        x_to_3 = _mm256_mul_ps(x_to_3, cpa2); // cpa[2] * x^3
++        x_to_4 = _mm256_mul_ps(x_to_4, cpa3); // cpa[3] * x^4
++
++        x_to_1 = _mm256_add_ps(x_to_1, x_to_2);
++        x_to_3 = _mm256_add_ps(x_to_3, x_to_4);
++        // this is slightly faster than result += (x_to_1 + x_to_3)
++        target_vec = _mm256_add_ps(x_to_1, target_vec);
++        target_vec = _mm256_add_ps(x_to_3, target_vec);
++
++        src0 += 8;
++    }
++
++    // the hadd for vector reduction has very very slight impact @ 50k iters
++    __VOLK_ATTR_ALIGNED(32) float temp_results[8];
++    target_vec = _mm256_hadd_ps(
++        target_vec,
++        target_vec); // x0+x1 | x2+x3 | x0+x1 | x2+x3 || x4+x5 | x6+x7 | x4+x5 | x6+x7
++    _mm256_store_ps(temp_results, target_vec);
++    *target = temp_results[0] + temp_results[1] + temp_results[4] + temp_results[5];
++
++    for (i = eighth_points * 8; i < num_points; ++i) {
++        fst = *src0++;
++        fst = MAX(fst, *cutoff);
++        sq = fst * fst;
++        thrd = fst * sq;
++        frth = sq * sq;
++        *target += (center_point_array[0] * fst + center_point_array[1] * sq +
++                    center_point_array[2] * thrd + center_point_array[3] * frth);
++    }
++    *target += (float)(num_points)*center_point_array[4];
+ }
+ #endif // LV_HAVE_AVX
+-
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32f_x3_sum_of_poly_32f_generic(float* target, float* src0, float* center_point_array,
+-                                    float* cutoff, unsigned int num_points)
++static inline void volk_32f_x3_sum_of_poly_32f_generic(float* target,
++                                                       float* src0,
++                                                       float* center_point_array,
++                                                       float* cutoff,
++                                                       unsigned int num_points)
+ {
+-  const unsigned int eighth_points = num_points / 8;
+-
+-  float result[8] = {0.0f,0.0f,0.0f,0.0f, 0.0f,0.0f,0.0f,0.0f};
+-  float fst  = 0.0f;
+-  float sq   = 0.0f;
+-  float thrd = 0.0f;
+-  float frth = 0.0f;
+-
+-  unsigned int i = 0;
+-  unsigned int k = 0;
+-  for(i = 0; i < eighth_points; ++i) {
+-    for(k = 0; k < 8; ++k) {
+-      fst  = *src0++;
+-      fst  = MAX(fst, *cutoff);
+-      sq   = fst * fst;
+-      thrd = fst * sq;
+-      frth = fst * thrd;
+-      result[k] += center_point_array[0] * fst  + center_point_array[1] * sq;
+-      result[k] += center_point_array[2] * thrd + center_point_array[3] * frth;
++    const unsigned int eighth_points = num_points / 8;
++
++    float result[8] = { 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
++    float fst = 0.0f;
++    float sq = 0.0f;
++    float thrd = 0.0f;
++    float frth = 0.0f;
++
++    unsigned int i = 0;
++    unsigned int k = 0;
++    for (i = 0; i < eighth_points; ++i) {
++        for (k = 0; k < 8; ++k) {
++            fst = *src0++;
++            fst = MAX(fst, *cutoff);
++            sq = fst * fst;
++            thrd = fst * sq;
++            frth = fst * thrd;
++            result[k] += center_point_array[0] * fst + center_point_array[1] * sq;
++            result[k] += center_point_array[2] * thrd + center_point_array[3] * frth;
++        }
+     }
+-  }
+-  for(k = 0; k < 8; k+=2)
+-    result[k] = result[k]+result[k+1];
+-
+-  *target = result[0] + result[2] + result[4] + result[6];
+-
+-  for(i = eighth_points*8; i < num_points; ++i) {
+-    fst  = *src0++;
+-    fst  = MAX(fst, *cutoff);
+-    sq   = fst * fst;
+-    thrd = fst * sq;
+-    frth = fst * thrd;
+-    *target += (center_point_array[0] * fst +
+-                center_point_array[1] * sq +
+-                center_point_array[2] * thrd +
+-                center_point_array[3] * frth);
+-  }
+-  *target += (float)(num_points) * center_point_array[4];
++    for (k = 0; k < 8; k += 2)
++        result[k] = result[k] + result[k + 1];
++
++    *target = result[0] + result[2] + result[4] + result[6];
++
++    for (i = eighth_points * 8; i < num_points; ++i) {
++        fst = *src0++;
++        fst = MAX(fst, *cutoff);
++        sq = fst * fst;
++        thrd = fst * sq;
++        frth = fst * thrd;
++        *target += (center_point_array[0] * fst + center_point_array[1] * sq +
++                    center_point_array[2] * thrd + center_point_array[3] * frth);
++    }
++    *target += (float)(num_points)*center_point_array[4];
+ }
+ #endif /*LV_HAVE_GENERIC*/
+@@ -372,51 +377,52 @@ volk_32f_x3_sum_of_poly_32f_generic(float* target, float* src0, float* center_po
+ #include <arm_neon.h>
+ static inline void
+-volk_32f_x3_sum_of_poly_32f_a_neon(float* __restrict target, float* __restrict src0,
++volk_32f_x3_sum_of_poly_32f_a_neon(float* __restrict target,
++                                   float* __restrict src0,
+                                    float* __restrict center_point_array,
+-                                   float* __restrict cutoff, unsigned int num_points)
++                                   float* __restrict cutoff,
++                                   unsigned int num_points)
+ {
+-  unsigned int i;
+-  float zero[4] = {0.0f, 0.0f, 0.0f, 0.0f };
+-
+-  float32x2_t x_to_1, x_to_2, x_to_3, x_to_4;
+-  float32x2_t cutoff_vector;
+-  float32x2x2_t x_low, x_high;
+-  float32x4_t x_qvector, c_qvector, cpa_qvector;
+-  float accumulator;
+-  float res_accumulators[4];
+-
+-  c_qvector = vld1q_f32( zero );
+-  // load the cutoff in to a vector
+-  cutoff_vector = vdup_n_f32( *cutoff );
+-  // ... center point array
+-  cpa_qvector = vld1q_f32( center_point_array );
+-
+-  for(i=0; i < num_points; ++i) {
+-    // load x  (src0)
+-    x_to_1 = vdup_n_f32( *src0++ );
+-
+-    // Get a vector of max(src0, cutoff)
+-    x_to_1 = vmax_f32(x_to_1,  cutoff_vector ); // x^1
+-    x_to_2 = vmul_f32(x_to_1, x_to_1); // x^2
+-    x_to_3 = vmul_f32(x_to_2, x_to_1); // x^3
+-    x_to_4 = vmul_f32(x_to_3, x_to_1); // x^4
+-    // zip up doubles to interleave
+-    x_low = vzip_f32(x_to_1, x_to_2); // [x^2 | x^1 || x^2 | x^1]
+-    x_high = vzip_f32(x_to_3, x_to_4); // [x^4 | x^3 || x^4 | x^3]
+-    // float32x4_t vcombine_f32(float32x2_t low, float32x2_t high); // VMOV d0,d0
+-    x_qvector = vcombine_f32(x_low.val[0], x_high.val[0]);
+-    // now we finally have [x^4 | x^3 | x^2 | x] !
+-
+-    c_qvector = vmlaq_f32(c_qvector, x_qvector, cpa_qvector);
+-
+-  }
+-  // there should be better vector reduction techniques
+-  vst1q_f32(res_accumulators, c_qvector );
+-  accumulator = res_accumulators[0] + res_accumulators[1] +
+-          res_accumulators[2] + res_accumulators[3];
+-
+-  *target = accumulator + (float)num_points * center_point_array[4];
++    unsigned int i;
++    float zero[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
++
++    float32x2_t x_to_1, x_to_2, x_to_3, x_to_4;
++    float32x2_t cutoff_vector;
++    float32x2x2_t x_low, x_high;
++    float32x4_t x_qvector, c_qvector, cpa_qvector;
++    float accumulator;
++    float res_accumulators[4];
++
++    c_qvector = vld1q_f32(zero);
++    // load the cutoff in to a vector
++    cutoff_vector = vdup_n_f32(*cutoff);
++    // ... center point array
++    cpa_qvector = vld1q_f32(center_point_array);
++
++    for (i = 0; i < num_points; ++i) {
++        // load x  (src0)
++        x_to_1 = vdup_n_f32(*src0++);
++
++        // Get a vector of max(src0, cutoff)
++        x_to_1 = vmax_f32(x_to_1, cutoff_vector); // x^1
++        x_to_2 = vmul_f32(x_to_1, x_to_1);        // x^2
++        x_to_3 = vmul_f32(x_to_2, x_to_1);        // x^3
++        x_to_4 = vmul_f32(x_to_3, x_to_1);        // x^4
++        // zip up doubles to interleave
++        x_low = vzip_f32(x_to_1, x_to_2);  // [x^2 | x^1 || x^2 | x^1]
++        x_high = vzip_f32(x_to_3, x_to_4); // [x^4 | x^3 || x^4 | x^3]
++        // float32x4_t vcombine_f32(float32x2_t low, float32x2_t high); // VMOV d0,d0
++        x_qvector = vcombine_f32(x_low.val[0], x_high.val[0]);
++        // now we finally have [x^4 | x^3 | x^2 | x] !
++
++        c_qvector = vmlaq_f32(c_qvector, x_qvector, cpa_qvector);
++    }
++    // there should be better vector reduction techniques
++    vst1q_f32(res_accumulators, c_qvector);
++    accumulator = res_accumulators[0] + res_accumulators[1] + res_accumulators[2] +
++                  res_accumulators[3];
++
++    *target = accumulator + (float)num_points * center_point_array[4];
+ }
+ #endif /* LV_HAVE_NEON */
+@@ -425,82 +431,82 @@ volk_32f_x3_sum_of_poly_32f_a_neon(float* __restrict target, float* __restrict s
+ #ifdef LV_HAVE_NEON
+ static inline void
+-volk_32f_x3_sum_of_poly_32f_neonvert(float* __restrict target, float* __restrict src0,
++volk_32f_x3_sum_of_poly_32f_neonvert(float* __restrict target,
++                                     float* __restrict src0,
+                                      float* __restrict center_point_array,
+-                                     float* __restrict cutoff, unsigned int num_points)
++                                     float* __restrict cutoff,
++                                     unsigned int num_points)
+ {
+-  unsigned int i;
+-  float zero[4] = {0.0f, 0.0f, 0.0f, 0.0f };
+-
+-  float accumulator;
+-
+-  float32x4_t accumulator1_vec, accumulator2_vec, accumulator3_vec, accumulator4_vec;
+-  accumulator1_vec = vld1q_f32(zero);
+-  accumulator2_vec = vld1q_f32(zero);
+-  accumulator3_vec = vld1q_f32(zero);
+-  accumulator4_vec = vld1q_f32(zero);
+-  float32x4_t x_to_1, x_to_2, x_to_3, x_to_4;
+-  float32x4_t cutoff_vector, cpa_0, cpa_1, cpa_2, cpa_3;
+-
+-  // load the cutoff in to a vector
+-  cutoff_vector = vdupq_n_f32( *cutoff );
+-  // ... center point array
+-  cpa_0 = vdupq_n_f32(center_point_array[0]);
+-  cpa_1 = vdupq_n_f32(center_point_array[1]);
+-  cpa_2 = vdupq_n_f32(center_point_array[2]);
+-  cpa_3 = vdupq_n_f32(center_point_array[3]);
+-
+-  // nathan is not sure why this is slower *and* wrong compared to neonvertfma
+-  for(i=0; i < num_points/4; ++i) {
+-    // load x
+-    x_to_1 = vld1q_f32( src0 );
+-
+-    // Get a vector of max(src0, cutoff)
+-    x_to_1 = vmaxq_f32(x_to_1,  cutoff_vector ); // x^1
+-    x_to_2 = vmulq_f32(x_to_1, x_to_1); // x^2
+-    x_to_3 = vmulq_f32(x_to_2, x_to_1); // x^3
+-    x_to_4 = vmulq_f32(x_to_3, x_to_1); // x^4
+-    x_to_1 = vmulq_f32(x_to_1, cpa_0);
+-    x_to_2 = vmulq_f32(x_to_2, cpa_1);
+-    x_to_3 = vmulq_f32(x_to_3, cpa_2);
+-    x_to_4 = vmulq_f32(x_to_4, cpa_3);
+-    accumulator1_vec = vaddq_f32(accumulator1_vec, x_to_1);
+-    accumulator2_vec = vaddq_f32(accumulator2_vec, x_to_2);
+-    accumulator3_vec = vaddq_f32(accumulator3_vec, x_to_3);
+-    accumulator4_vec = vaddq_f32(accumulator4_vec, x_to_4);
+-
+-    src0 += 4;
+-  }
+-  accumulator1_vec = vaddq_f32(accumulator1_vec, accumulator2_vec);
+-  accumulator3_vec = vaddq_f32(accumulator3_vec, accumulator4_vec);
+-  accumulator1_vec = vaddq_f32(accumulator1_vec, accumulator3_vec);
+-
+-  __VOLK_ATTR_ALIGNED(32) float res_accumulators[4];
+-  vst1q_f32(res_accumulators, accumulator1_vec );
+-  accumulator = res_accumulators[0] + res_accumulators[1] +
+-          res_accumulators[2] + res_accumulators[3];
+-
+-  float fst = 0.0;
+-  float sq = 0.0;
+-  float thrd = 0.0;
+-  float frth = 0.0;
+-
+-  for(i = 4*num_points/4; i < num_points; ++i) {
+-    fst = src0[i];
+-    fst = MAX(fst, *cutoff);
+-
+-    sq = fst * fst;
+-    thrd = fst * sq;
+-    frth = sq * sq;
+-    //fith = sq * thrd;
+-
+-    accumulator += (center_point_array[0] * fst +
+-                    center_point_array[1] * sq +
+-                    center_point_array[2] * thrd +
+-                    center_point_array[3] * frth); //+
+-  }
+-
+-  *target = accumulator + (float)num_points * center_point_array[4];
++    unsigned int i;
++    float zero[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
++
++    float accumulator;
++
++    float32x4_t accumulator1_vec, accumulator2_vec, accumulator3_vec, accumulator4_vec;
++    accumulator1_vec = vld1q_f32(zero);
++    accumulator2_vec = vld1q_f32(zero);
++    accumulator3_vec = vld1q_f32(zero);
++    accumulator4_vec = vld1q_f32(zero);
++    float32x4_t x_to_1, x_to_2, x_to_3, x_to_4;
++    float32x4_t cutoff_vector, cpa_0, cpa_1, cpa_2, cpa_3;
++
++    // load the cutoff in to a vector
++    cutoff_vector = vdupq_n_f32(*cutoff);
++    // ... center point array
++    cpa_0 = vdupq_n_f32(center_point_array[0]);
++    cpa_1 = vdupq_n_f32(center_point_array[1]);
++    cpa_2 = vdupq_n_f32(center_point_array[2]);
++    cpa_3 = vdupq_n_f32(center_point_array[3]);
++
++    // nathan is not sure why this is slower *and* wrong compared to neonvertfma
++    for (i = 0; i < num_points / 4; ++i) {
++        // load x
++        x_to_1 = vld1q_f32(src0);
++
++        // Get a vector of max(src0, cutoff)
++        x_to_1 = vmaxq_f32(x_to_1, cutoff_vector); // x^1
++        x_to_2 = vmulq_f32(x_to_1, x_to_1);        // x^2
++        x_to_3 = vmulq_f32(x_to_2, x_to_1);        // x^3
++        x_to_4 = vmulq_f32(x_to_3, x_to_1);        // x^4
++        x_to_1 = vmulq_f32(x_to_1, cpa_0);
++        x_to_2 = vmulq_f32(x_to_2, cpa_1);
++        x_to_3 = vmulq_f32(x_to_3, cpa_2);
++        x_to_4 = vmulq_f32(x_to_4, cpa_3);
++        accumulator1_vec = vaddq_f32(accumulator1_vec, x_to_1);
++        accumulator2_vec = vaddq_f32(accumulator2_vec, x_to_2);
++        accumulator3_vec = vaddq_f32(accumulator3_vec, x_to_3);
++        accumulator4_vec = vaddq_f32(accumulator4_vec, x_to_4);
++
++        src0 += 4;
++    }
++    accumulator1_vec = vaddq_f32(accumulator1_vec, accumulator2_vec);
++    accumulator3_vec = vaddq_f32(accumulator3_vec, accumulator4_vec);
++    accumulator1_vec = vaddq_f32(accumulator1_vec, accumulator3_vec);
++
++    __VOLK_ATTR_ALIGNED(32) float res_accumulators[4];
++    vst1q_f32(res_accumulators, accumulator1_vec);
++    accumulator = res_accumulators[0] + res_accumulators[1] + res_accumulators[2] +
++                  res_accumulators[3];
++
++    float fst = 0.0;
++    float sq = 0.0;
++    float thrd = 0.0;
++    float frth = 0.0;
++
++    for (i = 4 * num_points / 4; i < num_points; ++i) {
++        fst = src0[i];
++        fst = MAX(fst, *cutoff);
++
++        sq = fst * fst;
++        thrd = fst * sq;
++        frth = sq * sq;
++        // fith = sq * thrd;
++
++        accumulator += (center_point_array[0] * fst + center_point_array[1] * sq +
++                        center_point_array[2] * thrd + center_point_array[3] * frth); //+
++    }
++
++    *target = accumulator + (float)num_points * center_point_array[4];
+ }
+ #endif /* LV_HAVE_NEON */
+@@ -510,150 +516,154 @@ volk_32f_x3_sum_of_poly_32f_neonvert(float* __restrict target, float* __restrict
+ #ifndef INCLUDED_volk_32f_x3_sum_of_poly_32f_u_H
+ #define INCLUDED_volk_32f_x3_sum_of_poly_32f_u_H
+-#include<inttypes.h>
+-#include<stdio.h>
+-#include<volk/volk_complex.h>
++#include <inttypes.h>
++#include <stdio.h>
++#include <volk/volk_complex.h>
+ #ifndef MAX
+-#define MAX(X,Y) ((X) > (Y)?(X):(Y))
++#define MAX(X, Y) ((X) > (Y) ? (X) : (Y))
+ #endif
+ #if LV_HAVE_AVX && LV_HAVE_FMA
+-#include<immintrin.h>
++#include <immintrin.h>
+-static inline void
+-volk_32f_x3_sum_of_poly_32f_u_avx_fma(float* target, float* src0, float* center_point_array,
+-                                      float* cutoff, unsigned int num_points)
++static inline void volk_32f_x3_sum_of_poly_32f_u_avx_fma(float* target,
++                                                         float* src0,
++                                                         float* center_point_array,
++                                                         float* cutoff,
++                                                         unsigned int num_points)
+ {
+-  const unsigned int eighth_points = num_points / 8;
+-  float fst  = 0.0;
+-  float sq   = 0.0;
+-  float thrd = 0.0;
+-  float frth = 0.0;
+-
+-  __m256 cpa0, cpa1, cpa2, cpa3, cutoff_vec;
+-  __m256 target_vec;
+-  __m256 x_to_1, x_to_2, x_to_3, x_to_4;
+-
+-  cpa0 = _mm256_set1_ps(center_point_array[0]);
+-  cpa1 = _mm256_set1_ps(center_point_array[1]);
+-  cpa2 = _mm256_set1_ps(center_point_array[2]);
+-  cpa3 = _mm256_set1_ps(center_point_array[3]);
+-  cutoff_vec = _mm256_set1_ps(*cutoff);
+-  target_vec = _mm256_setzero_ps();
+-
+-  unsigned int i;
+-
+-  for(i = 0; i < eighth_points; ++i) {
+-    x_to_1 = _mm256_loadu_ps(src0);
+-    x_to_1 = _mm256_max_ps(x_to_1, cutoff_vec);
+-    x_to_2 = _mm256_mul_ps(x_to_1, x_to_1); // x^2
+-    x_to_3 = _mm256_mul_ps(x_to_1, x_to_2); // x^3
+-    // x^1 * x^3 is slightly faster than x^2 * x^2
+-    x_to_4 = _mm256_mul_ps(x_to_1, x_to_3); // x^4
+-
+-    x_to_2 = _mm256_mul_ps(x_to_2, cpa1); // cpa[1] * x^2
+-    x_to_4 = _mm256_mul_ps(x_to_4, cpa3); // cpa[3] * x^4
+-
+-    x_to_1 = _mm256_fmadd_ps(x_to_1, cpa0, x_to_2);
+-    x_to_3 = _mm256_fmadd_ps(x_to_3, cpa2, x_to_4);
+-    // this is slightly faster than result += (x_to_1 + x_to_3)
+-    target_vec = _mm256_add_ps(x_to_1, target_vec);
+-    target_vec = _mm256_add_ps(x_to_3, target_vec);
+-
+-    src0 += 8;
+-  }
+-
+-  // the hadd for vector reduction has very very slight impact @ 50k iters
+-  __VOLK_ATTR_ALIGNED(32) float temp_results[8];
+-  target_vec = _mm256_hadd_ps(target_vec, target_vec); // x0+x1 | x2+x3 | x0+x1 | x2+x3 || x4+x5 | x6+x7 | x4+x5 | x6+x7
+-  _mm256_storeu_ps(temp_results, target_vec);
+-  *target = temp_results[0] + temp_results[1] + temp_results[4] + temp_results[5];
+-
+-  for(i = eighth_points*8; i < num_points; ++i) {
+-    fst  = *src0++;
+-    fst  = MAX(fst, *cutoff);
+-    sq   = fst * fst;
+-    thrd = fst * sq;
+-    frth = sq * sq;
+-    *target += (center_point_array[0] * fst +
+-                center_point_array[1] * sq +
+-                center_point_array[2] * thrd +
+-                center_point_array[3] * frth);
+-  }
+-
+-  *target += (float)(num_points) * center_point_array[4];
++    const unsigned int eighth_points = num_points / 8;
++    float fst = 0.0;
++    float sq = 0.0;
++    float thrd = 0.0;
++    float frth = 0.0;
++
++    __m256 cpa0, cpa1, cpa2, cpa3, cutoff_vec;
++    __m256 target_vec;
++    __m256 x_to_1, x_to_2, x_to_3, x_to_4;
++
++    cpa0 = _mm256_set1_ps(center_point_array[0]);
++    cpa1 = _mm256_set1_ps(center_point_array[1]);
++    cpa2 = _mm256_set1_ps(center_point_array[2]);
++    cpa3 = _mm256_set1_ps(center_point_array[3]);
++    cutoff_vec = _mm256_set1_ps(*cutoff);
++    target_vec = _mm256_setzero_ps();
++
++    unsigned int i;
++
++    for (i = 0; i < eighth_points; ++i) {
++        x_to_1 = _mm256_loadu_ps(src0);
++        x_to_1 = _mm256_max_ps(x_to_1, cutoff_vec);
++        x_to_2 = _mm256_mul_ps(x_to_1, x_to_1); // x^2
++        x_to_3 = _mm256_mul_ps(x_to_1, x_to_2); // x^3
++        // x^1 * x^3 is slightly faster than x^2 * x^2
++        x_to_4 = _mm256_mul_ps(x_to_1, x_to_3); // x^4
++
++        x_to_2 = _mm256_mul_ps(x_to_2, cpa1); // cpa[1] * x^2
++        x_to_4 = _mm256_mul_ps(x_to_4, cpa3); // cpa[3] * x^4
++
++        x_to_1 = _mm256_fmadd_ps(x_to_1, cpa0, x_to_2);
++        x_to_3 = _mm256_fmadd_ps(x_to_3, cpa2, x_to_4);
++        // this is slightly faster than result += (x_to_1 + x_to_3)
++        target_vec = _mm256_add_ps(x_to_1, target_vec);
++        target_vec = _mm256_add_ps(x_to_3, target_vec);
++
++        src0 += 8;
++    }
++
++    // the hadd for vector reduction has very very slight impact @ 50k iters
++    __VOLK_ATTR_ALIGNED(32) float temp_results[8];
++    target_vec = _mm256_hadd_ps(
++        target_vec,
++        target_vec); // x0+x1 | x2+x3 | x0+x1 | x2+x3 || x4+x5 | x6+x7 | x4+x5 | x6+x7
++    _mm256_storeu_ps(temp_results, target_vec);
++    *target = temp_results[0] + temp_results[1] + temp_results[4] + temp_results[5];
++
++    for (i = eighth_points * 8; i < num_points; ++i) {
++        fst = *src0++;
++        fst = MAX(fst, *cutoff);
++        sq = fst * fst;
++        thrd = fst * sq;
++        frth = sq * sq;
++        *target += (center_point_array[0] * fst + center_point_array[1] * sq +
++                    center_point_array[2] * thrd + center_point_array[3] * frth);
++    }
++
++    *target += (float)(num_points)*center_point_array[4];
+ }
+ #endif // LV_HAVE_AVX && LV_HAVE_FMA
+ #ifdef LV_HAVE_AVX
+-#include<immintrin.h>
++#include <immintrin.h>
+-static inline void
+-volk_32f_x3_sum_of_poly_32f_u_avx(float* target, float* src0, float* center_point_array,
+-                                  float* cutoff, unsigned int num_points)
++static inline void volk_32f_x3_sum_of_poly_32f_u_avx(float* target,
++                                                     float* src0,
++                                                     float* center_point_array,
++                                                     float* cutoff,
++                                                     unsigned int num_points)
+ {
+-  const unsigned int eighth_points = num_points / 8;
+-  float fst  = 0.0;
+-  float sq   = 0.0;
+-  float thrd = 0.0;
+-  float frth = 0.0;
+-
+-  __m256 cpa0, cpa1, cpa2, cpa3, cutoff_vec;
+-  __m256 target_vec;
+-  __m256 x_to_1, x_to_2, x_to_3, x_to_4;
+-
+-  cpa0 = _mm256_set1_ps(center_point_array[0]);
+-  cpa1 = _mm256_set1_ps(center_point_array[1]);
+-  cpa2 = _mm256_set1_ps(center_point_array[2]);
+-  cpa3 = _mm256_set1_ps(center_point_array[3]);
+-  cutoff_vec = _mm256_set1_ps(*cutoff);
+-  target_vec = _mm256_setzero_ps();
+-
+-  unsigned int i;
+-
+-  for(i = 0; i < eighth_points; ++i) {
+-    x_to_1 = _mm256_loadu_ps(src0);
+-    x_to_1 = _mm256_max_ps(x_to_1, cutoff_vec);
+-    x_to_2 = _mm256_mul_ps(x_to_1, x_to_1); // x^2
+-    x_to_3 = _mm256_mul_ps(x_to_1, x_to_2); // x^3
+-    // x^1 * x^3 is slightly faster than x^2 * x^2
+-    x_to_4 = _mm256_mul_ps(x_to_1, x_to_3); // x^4
+-
+-    x_to_1 = _mm256_mul_ps(x_to_1, cpa0); // cpa[0] * x^1
+-    x_to_2 = _mm256_mul_ps(x_to_2, cpa1); // cpa[1] * x^2
+-    x_to_3 = _mm256_mul_ps(x_to_3, cpa2); // cpa[2] * x^3
+-    x_to_4 = _mm256_mul_ps(x_to_4, cpa3); // cpa[3] * x^4
+-
+-    x_to_1 = _mm256_add_ps(x_to_1, x_to_2);
+-    x_to_3 = _mm256_add_ps(x_to_3, x_to_4);
+-    // this is slightly faster than result += (x_to_1 + x_to_3)
+-    target_vec = _mm256_add_ps(x_to_1, target_vec);
+-    target_vec = _mm256_add_ps(x_to_3, target_vec);
+-
+-    src0 += 8;
+-  }
+-
+-  // the hadd for vector reduction has very very slight impact @ 50k iters
+-  __VOLK_ATTR_ALIGNED(32) float temp_results[8];
+-  target_vec = _mm256_hadd_ps(target_vec, target_vec); // x0+x1 | x2+x3 | x0+x1 | x2+x3 || x4+x5 | x6+x7 | x4+x5 | x6+x7
+-  _mm256_storeu_ps(temp_results, target_vec);
+-  *target = temp_results[0] + temp_results[1] + temp_results[4] + temp_results[5];
+-
+-  for(i = eighth_points*8; i < num_points; ++i) {
+-    fst  = *src0++;
+-    fst  = MAX(fst, *cutoff);
+-    sq   = fst * fst;
+-    thrd = fst * sq;
+-    frth = sq * sq;
+-
+-    *target += (center_point_array[0] * fst +
+-                center_point_array[1] * sq +
+-                center_point_array[2] * thrd +
+-                center_point_array[3] * frth);
+-  }
+-
+-  *target += (float)(num_points) * center_point_array[4];
++    const unsigned int eighth_points = num_points / 8;
++    float fst = 0.0;
++    float sq = 0.0;
++    float thrd = 0.0;
++    float frth = 0.0;
++
++    __m256 cpa0, cpa1, cpa2, cpa3, cutoff_vec;
++    __m256 target_vec;
++    __m256 x_to_1, x_to_2, x_to_3, x_to_4;
++
++    cpa0 = _mm256_set1_ps(center_point_array[0]);
++    cpa1 = _mm256_set1_ps(center_point_array[1]);
++    cpa2 = _mm256_set1_ps(center_point_array[2]);
++    cpa3 = _mm256_set1_ps(center_point_array[3]);
++    cutoff_vec = _mm256_set1_ps(*cutoff);
++    target_vec = _mm256_setzero_ps();
++
++    unsigned int i;
++
++    for (i = 0; i < eighth_points; ++i) {
++        x_to_1 = _mm256_loadu_ps(src0);
++        x_to_1 = _mm256_max_ps(x_to_1, cutoff_vec);
++        x_to_2 = _mm256_mul_ps(x_to_1, x_to_1); // x^2
++        x_to_3 = _mm256_mul_ps(x_to_1, x_to_2); // x^3
++        // x^1 * x^3 is slightly faster than x^2 * x^2
++        x_to_4 = _mm256_mul_ps(x_to_1, x_to_3); // x^4
++
++        x_to_1 = _mm256_mul_ps(x_to_1, cpa0); // cpa[0] * x^1
++        x_to_2 = _mm256_mul_ps(x_to_2, cpa1); // cpa[1] * x^2
++        x_to_3 = _mm256_mul_ps(x_to_3, cpa2); // cpa[2] * x^3
++        x_to_4 = _mm256_mul_ps(x_to_4, cpa3); // cpa[3] * x^4
++
++        x_to_1 = _mm256_add_ps(x_to_1, x_to_2);
++        x_to_3 = _mm256_add_ps(x_to_3, x_to_4);
++        // this is slightly faster than result += (x_to_1 + x_to_3)
++        target_vec = _mm256_add_ps(x_to_1, target_vec);
++        target_vec = _mm256_add_ps(x_to_3, target_vec);
++
++        src0 += 8;
++    }
++
++    // the hadd for vector reduction has very very slight impact @ 50k iters
++    __VOLK_ATTR_ALIGNED(32) float temp_results[8];
++    target_vec = _mm256_hadd_ps(
++        target_vec,
++        target_vec); // x0+x1 | x2+x3 | x0+x1 | x2+x3 || x4+x5 | x6+x7 | x4+x5 | x6+x7
++    _mm256_storeu_ps(temp_results, target_vec);
++    *target = temp_results[0] + temp_results[1] + temp_results[4] + temp_results[5];
++
++    for (i = eighth_points * 8; i < num_points; ++i) {
++        fst = *src0++;
++        fst = MAX(fst, *cutoff);
++        sq = fst * fst;
++        thrd = fst * sq;
++        frth = sq * sq;
++
++        *target += (center_point_array[0] * fst + center_point_array[1] * sq +
++                    center_point_array[2] * thrd + center_point_array[3] * frth);
++    }
++
++    *target += (float)(num_points)*center_point_array[4];
+ }
+ #endif // LV_HAVE_AVX
+diff --git a/kernels/volk/volk_32fc_32f_add_32fc.h b/kernels/volk/volk_32fc_32f_add_32fc.h
+index 86a3818..b25ca6a 100644
+--- a/kernels/volk/volk_32fc_32f_add_32fc.h
++++ b/kernels/volk/volk_32fc_32f_add_32fc.h
+@@ -31,8 +31,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32fc_32f_add_32fc(lv_32fc_t* cVector, const lv_32fc_t* aVector, const float* bVector, unsigned int num_points)
+- * \endcode
++ * void volk_32fc_32f_add_32fc(lv_32fc_t* cVector, const lv_32fc_t* aVector, const float*
++ * bVector, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li aVector: First vector of input points.
+@@ -44,7 +44,8 @@
+  *
+  * \b Example
+  *
+- * The follow example adds the increasing and decreasing vectors such that the result of every summation pair is 10
++ * The follow example adds the increasing and decreasing vectors such that the result of
++ * every summation pair is 10
+  *
+  * \code
+  *   int N = 10;
+@@ -75,18 +76,19 @@
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32fc_32f_add_32fc_generic(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                            const float* bVector, unsigned int num_points)
++static inline void volk_32fc_32f_add_32fc_generic(lv_32fc_t* cVector,
++                                                  const lv_32fc_t* aVector,
++                                                  const float* bVector,
++                                                  unsigned int num_points)
+ {
+-  lv_32fc_t* cPtr = cVector;
+-  const lv_32fc_t* aPtr = aVector;
+-  const float* bPtr=  bVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    *cPtr++ = (*aPtr++) + (*bPtr++);
+-  }
++    lv_32fc_t* cPtr = cVector;
++    const lv_32fc_t* aPtr = aVector;
++    const float* bPtr = bVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) + (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -94,143 +96,150 @@ volk_32fc_32f_add_32fc_generic(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32fc_32f_add_32fc_u_avx(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                          const float* bVector, unsigned int num_points)
++static inline void volk_32fc_32f_add_32fc_u_avx(lv_32fc_t* cVector,
++                                                const lv_32fc_t* aVector,
++                                                const float* bVector,
++                                                unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  lv_32fc_t* cPtr = cVector;
+-  const lv_32fc_t* aPtr = aVector;
+-  const float* bPtr=  bVector;
+-
+-  __m256 aVal1, aVal2, bVal, cVal1, cVal2;
+-  __m256 cpx_b1, cpx_b2;
+-  __m256 zero;
+-  zero = _mm256_setzero_ps();
+-  __m256 tmp1, tmp2;
+-  for(;number < eighthPoints; number++){
+-
+-    aVal1 = _mm256_loadu_ps((float *) aPtr);
+-    aVal2 = _mm256_loadu_ps((float *) (aPtr+4));
+-    bVal = _mm256_loadu_ps(bPtr);
+-    cpx_b1 = _mm256_unpacklo_ps(bVal, zero); // b0, 0, b1, 0, b4, 0, b5, 0
+-    cpx_b2 = _mm256_unpackhi_ps(bVal, zero); // b2, 0, b3, 0, b6, 0, b7, 0
+-
+-    tmp1 = _mm256_permute2f128_ps(cpx_b1, cpx_b2, 0x0+(0x2<<4));
+-    tmp2 = _mm256_permute2f128_ps(cpx_b1, cpx_b2, 0x1+(0x3<<4));
+-
+-    cVal1 = _mm256_add_ps(aVal1, tmp1);
+-    cVal2 = _mm256_add_ps(aVal2, tmp2);
+-
+-    _mm256_storeu_ps((float *) cPtr, cVal1); // Store the results back into the C container
+-    _mm256_storeu_ps((float *) (cPtr+4), cVal2); // Store the results back into the C container
+-
+-    aPtr += 8;
+-    bPtr += 8;
+-    cPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) + (*bPtr++);
+-  }
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    lv_32fc_t* cPtr = cVector;
++    const lv_32fc_t* aPtr = aVector;
++    const float* bPtr = bVector;
++
++    __m256 aVal1, aVal2, bVal, cVal1, cVal2;
++    __m256 cpx_b1, cpx_b2;
++    __m256 zero;
++    zero = _mm256_setzero_ps();
++    __m256 tmp1, tmp2;
++    for (; number < eighthPoints; number++) {
++
++        aVal1 = _mm256_loadu_ps((float*)aPtr);
++        aVal2 = _mm256_loadu_ps((float*)(aPtr + 4));
++        bVal = _mm256_loadu_ps(bPtr);
++        cpx_b1 = _mm256_unpacklo_ps(bVal, zero); // b0, 0, b1, 0, b4, 0, b5, 0
++        cpx_b2 = _mm256_unpackhi_ps(bVal, zero); // b2, 0, b3, 0, b6, 0, b7, 0
++
++        tmp1 = _mm256_permute2f128_ps(cpx_b1, cpx_b2, 0x0 + (0x2 << 4));
++        tmp2 = _mm256_permute2f128_ps(cpx_b1, cpx_b2, 0x1 + (0x3 << 4));
++
++        cVal1 = _mm256_add_ps(aVal1, tmp1);
++        cVal2 = _mm256_add_ps(aVal2, tmp2);
++
++        _mm256_storeu_ps((float*)cPtr,
++                         cVal1); // Store the results back into the C container
++        _mm256_storeu_ps((float*)(cPtr + 4),
++                         cVal2); // Store the results back into the C container
++
++        aPtr += 8;
++        bPtr += 8;
++        cPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) + (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32fc_32f_add_32fc_a_avx(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                          const float* bVector, unsigned int num_points)
++static inline void volk_32fc_32f_add_32fc_a_avx(lv_32fc_t* cVector,
++                                                const lv_32fc_t* aVector,
++                                                const float* bVector,
++                                                unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  lv_32fc_t* cPtr = cVector;
+-  const lv_32fc_t* aPtr = aVector;
+-  const float* bPtr=  bVector;
+-
+-  __m256 aVal1, aVal2, bVal, cVal1, cVal2;
+-  __m256 cpx_b1, cpx_b2;
+-  __m256 zero;
+-  zero = _mm256_setzero_ps();
+-  __m256 tmp1, tmp2;
+-  for(;number < eighthPoints; number++){
+-
+-    aVal1 = _mm256_load_ps((float *) aPtr);
+-    aVal2 = _mm256_load_ps((float *) (aPtr+4));
+-    bVal = _mm256_load_ps(bPtr);
+-    cpx_b1 = _mm256_unpacklo_ps(bVal, zero); // b0, 0, b1, 0, b4, 0, b5, 0
+-    cpx_b2 = _mm256_unpackhi_ps(bVal, zero); // b2, 0, b3, 0, b6, 0, b7, 0
+-
+-    tmp1 = _mm256_permute2f128_ps(cpx_b1, cpx_b2, 0x0+(0x2<<4));
+-    tmp2 = _mm256_permute2f128_ps(cpx_b1, cpx_b2, 0x1+(0x3<<4));
+-
+-    cVal1 = _mm256_add_ps(aVal1, tmp1);
+-    cVal2 = _mm256_add_ps(aVal2, tmp2);
+-
+-    _mm256_store_ps((float *) cPtr, cVal1); // Store the results back into the C container
+-    _mm256_store_ps((float *) (cPtr+4), cVal2); // Store the results back into the C container
+-
+-    aPtr += 8;
+-    bPtr += 8;
+-    cPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) + (*bPtr++);
+-  }
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    lv_32fc_t* cPtr = cVector;
++    const lv_32fc_t* aPtr = aVector;
++    const float* bPtr = bVector;
++
++    __m256 aVal1, aVal2, bVal, cVal1, cVal2;
++    __m256 cpx_b1, cpx_b2;
++    __m256 zero;
++    zero = _mm256_setzero_ps();
++    __m256 tmp1, tmp2;
++    for (; number < eighthPoints; number++) {
++
++        aVal1 = _mm256_load_ps((float*)aPtr);
++        aVal2 = _mm256_load_ps((float*)(aPtr + 4));
++        bVal = _mm256_load_ps(bPtr);
++        cpx_b1 = _mm256_unpacklo_ps(bVal, zero); // b0, 0, b1, 0, b4, 0, b5, 0
++        cpx_b2 = _mm256_unpackhi_ps(bVal, zero); // b2, 0, b3, 0, b6, 0, b7, 0
++
++        tmp1 = _mm256_permute2f128_ps(cpx_b1, cpx_b2, 0x0 + (0x2 << 4));
++        tmp2 = _mm256_permute2f128_ps(cpx_b1, cpx_b2, 0x1 + (0x3 << 4));
++
++        cVal1 = _mm256_add_ps(aVal1, tmp1);
++        cVal2 = _mm256_add_ps(aVal2, tmp2);
++
++        _mm256_store_ps((float*)cPtr,
++                        cVal1); // Store the results back into the C container
++        _mm256_store_ps((float*)(cPtr + 4),
++                        cVal2); // Store the results back into the C container
++
++        aPtr += 8;
++        bPtr += 8;
++        cPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) + (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_32fc_32f_add_32fc_neon(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                          const float* bVector, unsigned int num_points)
++static inline void volk_32fc_32f_add_32fc_neon(lv_32fc_t* cVector,
++                                               const lv_32fc_t* aVector,
++                                               const float* bVector,
++                                               unsigned int num_points)
+ {
+-  lv_32fc_t* cPtr = cVector;
+-  const lv_32fc_t* aPtr = aVector;
+-  const float* bPtr = bVector;
+-
+-  float32x4x4_t aVal0, aVal1;
+-  float32x4x2_t bVal0, bVal1;
+-
+-  const unsigned int sixteenthPoints = num_points / 16;
+-  unsigned int number = 0;
+-  for(; number < sixteenthPoints; number++){
+-    aVal0 = vld4q_f32((const float*)aPtr);
+-    aPtr += 8;
+-    aVal1 = vld4q_f32((const float*)aPtr);
+-    aPtr += 8;
+-    __VOLK_PREFETCH(aPtr+16);
+-
+-    bVal0 = vld2q_f32((const float*)bPtr);
+-    bPtr += 8;
+-    bVal1 = vld2q_f32((const float*)bPtr);
+-    bPtr += 8;
+-    __VOLK_PREFETCH(bPtr+16);
+-
+-    aVal0.val[0] = vaddq_f32(aVal0.val[0], bVal0.val[0]);
+-    aVal0.val[2] = vaddq_f32(aVal0.val[2], bVal0.val[1]);
+-
+-    aVal1.val[2] = vaddq_f32(aVal1.val[2], bVal1.val[1]);
+-    aVal1.val[0] = vaddq_f32(aVal1.val[0], bVal1.val[0]);
+-
+-    vst4q_f32((float*)(cPtr), aVal0);
+-    cPtr += 8;
+-    vst4q_f32((float*)(cPtr), aVal1);
+-    cPtr += 8;
+-  }
+-
+-  for(number = sixteenthPoints * 16; number < num_points; number++){
+-    *cPtr++ = (*aPtr++) + (*bPtr++);
+-  }
++    lv_32fc_t* cPtr = cVector;
++    const lv_32fc_t* aPtr = aVector;
++    const float* bPtr = bVector;
++
++    float32x4x4_t aVal0, aVal1;
++    float32x4x2_t bVal0, bVal1;
++
++    const unsigned int sixteenthPoints = num_points / 16;
++    unsigned int number = 0;
++    for (; number < sixteenthPoints; number++) {
++        aVal0 = vld4q_f32((const float*)aPtr);
++        aPtr += 8;
++        aVal1 = vld4q_f32((const float*)aPtr);
++        aPtr += 8;
++        __VOLK_PREFETCH(aPtr + 16);
++
++        bVal0 = vld2q_f32((const float*)bPtr);
++        bPtr += 8;
++        bVal1 = vld2q_f32((const float*)bPtr);
++        bPtr += 8;
++        __VOLK_PREFETCH(bPtr + 16);
++
++        aVal0.val[0] = vaddq_f32(aVal0.val[0], bVal0.val[0]);
++        aVal0.val[2] = vaddq_f32(aVal0.val[2], bVal0.val[1]);
++
++        aVal1.val[2] = vaddq_f32(aVal1.val[2], bVal1.val[1]);
++        aVal1.val[0] = vaddq_f32(aVal1.val[0], bVal1.val[0]);
++
++        vst4q_f32((float*)(cPtr), aVal0);
++        cPtr += 8;
++        vst4q_f32((float*)(cPtr), aVal1);
++        cPtr += 8;
++    }
++
++    for (number = sixteenthPoints * 16; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) + (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+diff --git a/kernels/volk/volk_32fc_32f_dot_prod_32fc.h b/kernels/volk/volk_32fc_32f_dot_prod_32fc.h
+index 35f7077..d905870 100644
+--- a/kernels/volk/volk_32fc_32f_dot_prod_32fc.h
++++ b/kernels/volk/volk_32fc_32f_dot_prod_32fc.h
+@@ -33,8 +33,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32fc_32f_dot_prod_32fc(lv_32fc_t* result, const lv_32fc_t* input, const float * taps, unsigned int num_points)
+- * \endcode
++ * void volk_32fc_32f_dot_prod_32fc(lv_32fc_t* result, const lv_32fc_t* input, const float
++ * * taps, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li input: vector of complex samples
+@@ -63,28 +63,32 @@
+ #ifndef INCLUDED_volk_32fc_32f_dot_prod_32fc_a_H
+ #define INCLUDED_volk_32fc_32f_dot_prod_32fc_a_H
+-#include <volk/volk_common.h>
+ #include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32fc_32f_dot_prod_32fc_generic(lv_32fc_t* result, const lv_32fc_t* input, const float * taps, unsigned int num_points) {
++static inline void volk_32fc_32f_dot_prod_32fc_generic(lv_32fc_t* result,
++                                                       const lv_32fc_t* input,
++                                                       const float* taps,
++                                                       unsigned int num_points)
++{
+-  float res[2];
+-  float *realpt = &res[0], *imagpt = &res[1];
+-  const float* aPtr = (float*)input;
+-  const float* bPtr=  taps;
+-  unsigned int number = 0;
++    float res[2];
++    float *realpt = &res[0], *imagpt = &res[1];
++    const float* aPtr = (float*)input;
++    const float* bPtr = taps;
++    unsigned int number = 0;
+-  *realpt = 0;
+-  *imagpt = 0;
++    *realpt = 0;
++    *imagpt = 0;
+-  for(number = 0; number < num_points; number++){
+-    *realpt += ((*aPtr++) * (*bPtr));
+-    *imagpt += ((*aPtr++) * (*bPtr++));
+-  }
++    for (number = 0; number < num_points; number++) {
++        *realpt += ((*aPtr++) * (*bPtr));
++        *imagpt += ((*aPtr++) * (*bPtr++));
++    }
+-  *result = *(lv_32fc_t*)(&res[0]);
++    *result = *(lv_32fc_t*)(&res[0]);
+ }
+ #endif /*LV_HAVE_GENERIC*/
+@@ -93,78 +97,83 @@ static inline void volk_32fc_32f_dot_prod_32fc_generic(lv_32fc_t* result, const
+ #include <immintrin.h>
+-static inline void volk_32fc_32f_dot_prod_32fc_a_avx2_fma( lv_32fc_t* result, const lv_32fc_t* input, const float* taps, unsigned int num_points) {
+-
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
+-
+-  float res[2];
+-  float *realpt = &res[0], *imagpt = &res[1];
+-  const float* aPtr = (float*)input;
+-  const float* bPtr = taps;
+-
+-  __m256 a0Val, a1Val, a2Val, a3Val;
+-  __m256 b0Val, b1Val, b2Val, b3Val;
+-  __m256 x0Val, x1Val, x0loVal, x0hiVal, x1loVal, x1hiVal;
+-
+-  __m256 dotProdVal0 = _mm256_setzero_ps();
+-  __m256 dotProdVal1 = _mm256_setzero_ps();
+-  __m256 dotProdVal2 = _mm256_setzero_ps();
+-  __m256 dotProdVal3 = _mm256_setzero_ps();
+-
+-  for(;number < sixteenthPoints; number++){
+-
+-    a0Val = _mm256_load_ps(aPtr);
+-    a1Val = _mm256_load_ps(aPtr+8);
+-    a2Val = _mm256_load_ps(aPtr+16);
+-    a3Val = _mm256_load_ps(aPtr+24);
+-
+-    x0Val = _mm256_load_ps(bPtr); // t0|t1|t2|t3|t4|t5|t6|t7
+-    x1Val = _mm256_load_ps(bPtr+8);
+-    x0loVal = _mm256_unpacklo_ps(x0Val, x0Val); // t0|t0|t1|t1|t4|t4|t5|t5
+-    x0hiVal = _mm256_unpackhi_ps(x0Val, x0Val); // t2|t2|t3|t3|t6|t6|t7|t7
+-    x1loVal = _mm256_unpacklo_ps(x1Val, x1Val);
+-    x1hiVal = _mm256_unpackhi_ps(x1Val, x1Val);
+-
+-    // TODO: it may be possible to rearrange swizzling to better pipeline data
+-    b0Val = _mm256_permute2f128_ps(x0loVal, x0hiVal, 0x20); // t0|t0|t1|t1|t2|t2|t3|t3
+-    b1Val = _mm256_permute2f128_ps(x0loVal, x0hiVal, 0x31); // t4|t4|t5|t5|t6|t6|t7|t7
+-    b2Val = _mm256_permute2f128_ps(x1loVal, x1hiVal, 0x20);
+-    b3Val = _mm256_permute2f128_ps(x1loVal, x1hiVal, 0x31);
+-
+-    dotProdVal0 = _mm256_fmadd_ps(a0Val, b0Val, dotProdVal0);
+-    dotProdVal1 = _mm256_fmadd_ps(a1Val, b1Val, dotProdVal1);
+-    dotProdVal2 = _mm256_fmadd_ps(a2Val, b2Val, dotProdVal2);
+-    dotProdVal3 = _mm256_fmadd_ps(a3Val, b3Val, dotProdVal3);
+-
+-    aPtr += 32;
+-    bPtr += 16;
+-  }
+-
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal1);
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal2);
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal3);
+-
+-  __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
+-
+-  _mm256_store_ps(dotProductVector,dotProdVal0); // Store the results back into the dot product vector
+-
+-  *realpt = dotProductVector[0];
+-  *imagpt = dotProductVector[1];
+-  *realpt += dotProductVector[2];
+-  *imagpt += dotProductVector[3];
+-  *realpt += dotProductVector[4];
+-  *imagpt += dotProductVector[5];
+-  *realpt += dotProductVector[6];
+-  *imagpt += dotProductVector[7];
+-
+-  number = sixteenthPoints*16;
+-  for(;number < num_points; number++){
+-    *realpt += ((*aPtr++) * (*bPtr));
+-    *imagpt += ((*aPtr++) * (*bPtr++));
+-  }
+-
+-  *result = *(lv_32fc_t*)(&res[0]);
++static inline void volk_32fc_32f_dot_prod_32fc_a_avx2_fma(lv_32fc_t* result,
++                                                          const lv_32fc_t* input,
++                                                          const float* taps,
++                                                          unsigned int num_points)
++{
++
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
++
++    float res[2];
++    float *realpt = &res[0], *imagpt = &res[1];
++    const float* aPtr = (float*)input;
++    const float* bPtr = taps;
++
++    __m256 a0Val, a1Val, a2Val, a3Val;
++    __m256 b0Val, b1Val, b2Val, b3Val;
++    __m256 x0Val, x1Val, x0loVal, x0hiVal, x1loVal, x1hiVal;
++
++    __m256 dotProdVal0 = _mm256_setzero_ps();
++    __m256 dotProdVal1 = _mm256_setzero_ps();
++    __m256 dotProdVal2 = _mm256_setzero_ps();
++    __m256 dotProdVal3 = _mm256_setzero_ps();
++
++    for (; number < sixteenthPoints; number++) {
++
++        a0Val = _mm256_load_ps(aPtr);
++        a1Val = _mm256_load_ps(aPtr + 8);
++        a2Val = _mm256_load_ps(aPtr + 16);
++        a3Val = _mm256_load_ps(aPtr + 24);
++
++        x0Val = _mm256_load_ps(bPtr); // t0|t1|t2|t3|t4|t5|t6|t7
++        x1Val = _mm256_load_ps(bPtr + 8);
++        x0loVal = _mm256_unpacklo_ps(x0Val, x0Val); // t0|t0|t1|t1|t4|t4|t5|t5
++        x0hiVal = _mm256_unpackhi_ps(x0Val, x0Val); // t2|t2|t3|t3|t6|t6|t7|t7
++        x1loVal = _mm256_unpacklo_ps(x1Val, x1Val);
++        x1hiVal = _mm256_unpackhi_ps(x1Val, x1Val);
++
++        // TODO: it may be possible to rearrange swizzling to better pipeline data
++        b0Val = _mm256_permute2f128_ps(x0loVal, x0hiVal, 0x20); // t0|t0|t1|t1|t2|t2|t3|t3
++        b1Val = _mm256_permute2f128_ps(x0loVal, x0hiVal, 0x31); // t4|t4|t5|t5|t6|t6|t7|t7
++        b2Val = _mm256_permute2f128_ps(x1loVal, x1hiVal, 0x20);
++        b3Val = _mm256_permute2f128_ps(x1loVal, x1hiVal, 0x31);
++
++        dotProdVal0 = _mm256_fmadd_ps(a0Val, b0Val, dotProdVal0);
++        dotProdVal1 = _mm256_fmadd_ps(a1Val, b1Val, dotProdVal1);
++        dotProdVal2 = _mm256_fmadd_ps(a2Val, b2Val, dotProdVal2);
++        dotProdVal3 = _mm256_fmadd_ps(a3Val, b3Val, dotProdVal3);
++
++        aPtr += 32;
++        bPtr += 16;
++    }
++
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal1);
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal2);
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal3);
++
++    __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
++
++    _mm256_store_ps(dotProductVector,
++                    dotProdVal0); // Store the results back into the dot product vector
++
++    *realpt = dotProductVector[0];
++    *imagpt = dotProductVector[1];
++    *realpt += dotProductVector[2];
++    *imagpt += dotProductVector[3];
++    *realpt += dotProductVector[4];
++    *imagpt += dotProductVector[5];
++    *realpt += dotProductVector[6];
++    *imagpt += dotProductVector[7];
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        *realpt += ((*aPtr++) * (*bPtr));
++        *imagpt += ((*aPtr++) * (*bPtr++));
++    }
++
++    *result = *(lv_32fc_t*)(&res[0]);
+ }
+ #endif /*LV_HAVE_AVX2 && LV_HAVE_FMA*/
+@@ -173,164 +182,172 @@ static inline void volk_32fc_32f_dot_prod_32fc_a_avx2_fma( lv_32fc_t* result, co
+ #include <immintrin.h>
+-static inline void volk_32fc_32f_dot_prod_32fc_a_avx( lv_32fc_t* result, const lv_32fc_t* input, const float* taps, unsigned int num_points) {
+-
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
+-
+-  float res[2];
+-  float *realpt = &res[0], *imagpt = &res[1];
+-  const float* aPtr = (float*)input;
+-  const float* bPtr = taps;
+-
+-  __m256 a0Val, a1Val, a2Val, a3Val;
+-  __m256 b0Val, b1Val, b2Val, b3Val;
+-  __m256 x0Val, x1Val, x0loVal, x0hiVal, x1loVal, x1hiVal;
+-  __m256 c0Val, c1Val, c2Val, c3Val;
+-
+-  __m256 dotProdVal0 = _mm256_setzero_ps();
+-  __m256 dotProdVal1 = _mm256_setzero_ps();
+-  __m256 dotProdVal2 = _mm256_setzero_ps();
+-  __m256 dotProdVal3 = _mm256_setzero_ps();
+-
+-  for(;number < sixteenthPoints; number++){
+-
+-    a0Val = _mm256_load_ps(aPtr);
+-    a1Val = _mm256_load_ps(aPtr+8);
+-    a2Val = _mm256_load_ps(aPtr+16);
+-    a3Val = _mm256_load_ps(aPtr+24);
+-
+-    x0Val = _mm256_load_ps(bPtr); // t0|t1|t2|t3|t4|t5|t6|t7
+-    x1Val = _mm256_load_ps(bPtr+8);
+-    x0loVal = _mm256_unpacklo_ps(x0Val, x0Val); // t0|t0|t1|t1|t4|t4|t5|t5
+-    x0hiVal = _mm256_unpackhi_ps(x0Val, x0Val); // t2|t2|t3|t3|t6|t6|t7|t7
+-    x1loVal = _mm256_unpacklo_ps(x1Val, x1Val);
+-    x1hiVal = _mm256_unpackhi_ps(x1Val, x1Val);
+-
+-    // TODO: it may be possible to rearrange swizzling to better pipeline data
+-    b0Val = _mm256_permute2f128_ps(x0loVal, x0hiVal, 0x20); // t0|t0|t1|t1|t2|t2|t3|t3
+-    b1Val = _mm256_permute2f128_ps(x0loVal, x0hiVal, 0x31); // t4|t4|t5|t5|t6|t6|t7|t7
+-    b2Val = _mm256_permute2f128_ps(x1loVal, x1hiVal, 0x20);
+-    b3Val = _mm256_permute2f128_ps(x1loVal, x1hiVal, 0x31);
+-
+-    c0Val = _mm256_mul_ps(a0Val, b0Val);
+-    c1Val = _mm256_mul_ps(a1Val, b1Val);
+-    c2Val = _mm256_mul_ps(a2Val, b2Val);
+-    c3Val = _mm256_mul_ps(a3Val, b3Val);
+-
+-    dotProdVal0 = _mm256_add_ps(c0Val, dotProdVal0);
+-    dotProdVal1 = _mm256_add_ps(c1Val, dotProdVal1);
+-    dotProdVal2 = _mm256_add_ps(c2Val, dotProdVal2);
+-    dotProdVal3 = _mm256_add_ps(c3Val, dotProdVal3);
+-
+-    aPtr += 32;
+-    bPtr += 16;
+-  }
+-
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal1);
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal2);
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal3);
+-
+-  __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
+-
+-  _mm256_store_ps(dotProductVector,dotProdVal0); // Store the results back into the dot product vector
+-
+-  *realpt = dotProductVector[0];
+-  *imagpt = dotProductVector[1];
+-  *realpt += dotProductVector[2];
+-  *imagpt += dotProductVector[3];
+-  *realpt += dotProductVector[4];
+-  *imagpt += dotProductVector[5];
+-  *realpt += dotProductVector[6];
+-  *imagpt += dotProductVector[7];
+-
+-  number = sixteenthPoints*16;
+-  for(;number < num_points; number++){
+-    *realpt += ((*aPtr++) * (*bPtr));
+-    *imagpt += ((*aPtr++) * (*bPtr++));
+-  }
+-
+-  *result = *(lv_32fc_t*)(&res[0]);
++static inline void volk_32fc_32f_dot_prod_32fc_a_avx(lv_32fc_t* result,
++                                                     const lv_32fc_t* input,
++                                                     const float* taps,
++                                                     unsigned int num_points)
++{
++
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
++
++    float res[2];
++    float *realpt = &res[0], *imagpt = &res[1];
++    const float* aPtr = (float*)input;
++    const float* bPtr = taps;
++
++    __m256 a0Val, a1Val, a2Val, a3Val;
++    __m256 b0Val, b1Val, b2Val, b3Val;
++    __m256 x0Val, x1Val, x0loVal, x0hiVal, x1loVal, x1hiVal;
++    __m256 c0Val, c1Val, c2Val, c3Val;
++
++    __m256 dotProdVal0 = _mm256_setzero_ps();
++    __m256 dotProdVal1 = _mm256_setzero_ps();
++    __m256 dotProdVal2 = _mm256_setzero_ps();
++    __m256 dotProdVal3 = _mm256_setzero_ps();
++
++    for (; number < sixteenthPoints; number++) {
++
++        a0Val = _mm256_load_ps(aPtr);
++        a1Val = _mm256_load_ps(aPtr + 8);
++        a2Val = _mm256_load_ps(aPtr + 16);
++        a3Val = _mm256_load_ps(aPtr + 24);
++
++        x0Val = _mm256_load_ps(bPtr); // t0|t1|t2|t3|t4|t5|t6|t7
++        x1Val = _mm256_load_ps(bPtr + 8);
++        x0loVal = _mm256_unpacklo_ps(x0Val, x0Val); // t0|t0|t1|t1|t4|t4|t5|t5
++        x0hiVal = _mm256_unpackhi_ps(x0Val, x0Val); // t2|t2|t3|t3|t6|t6|t7|t7
++        x1loVal = _mm256_unpacklo_ps(x1Val, x1Val);
++        x1hiVal = _mm256_unpackhi_ps(x1Val, x1Val);
++
++        // TODO: it may be possible to rearrange swizzling to better pipeline data
++        b0Val = _mm256_permute2f128_ps(x0loVal, x0hiVal, 0x20); // t0|t0|t1|t1|t2|t2|t3|t3
++        b1Val = _mm256_permute2f128_ps(x0loVal, x0hiVal, 0x31); // t4|t4|t5|t5|t6|t6|t7|t7
++        b2Val = _mm256_permute2f128_ps(x1loVal, x1hiVal, 0x20);
++        b3Val = _mm256_permute2f128_ps(x1loVal, x1hiVal, 0x31);
++
++        c0Val = _mm256_mul_ps(a0Val, b0Val);
++        c1Val = _mm256_mul_ps(a1Val, b1Val);
++        c2Val = _mm256_mul_ps(a2Val, b2Val);
++        c3Val = _mm256_mul_ps(a3Val, b3Val);
++
++        dotProdVal0 = _mm256_add_ps(c0Val, dotProdVal0);
++        dotProdVal1 = _mm256_add_ps(c1Val, dotProdVal1);
++        dotProdVal2 = _mm256_add_ps(c2Val, dotProdVal2);
++        dotProdVal3 = _mm256_add_ps(c3Val, dotProdVal3);
++
++        aPtr += 32;
++        bPtr += 16;
++    }
++
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal1);
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal2);
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal3);
++
++    __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
++
++    _mm256_store_ps(dotProductVector,
++                    dotProdVal0); // Store the results back into the dot product vector
++
++    *realpt = dotProductVector[0];
++    *imagpt = dotProductVector[1];
++    *realpt += dotProductVector[2];
++    *imagpt += dotProductVector[3];
++    *realpt += dotProductVector[4];
++    *imagpt += dotProductVector[5];
++    *realpt += dotProductVector[6];
++    *imagpt += dotProductVector[7];
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        *realpt += ((*aPtr++) * (*bPtr));
++        *imagpt += ((*aPtr++) * (*bPtr++));
++    }
++
++    *result = *(lv_32fc_t*)(&res[0]);
+ }
+ #endif /*LV_HAVE_AVX*/
+-
+-
+ #ifdef LV_HAVE_SSE
+-static inline void volk_32fc_32f_dot_prod_32fc_a_sse( lv_32fc_t* result, const  lv_32fc_t* input, const  float* taps, unsigned int num_points) {
+-
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 8;
+-
+-  float res[2];
+-  float *realpt = &res[0], *imagpt = &res[1];
+-  const float* aPtr = (float*)input;
+-  const float* bPtr = taps;
+-
+-  __m128 a0Val, a1Val, a2Val, a3Val;
+-  __m128 b0Val, b1Val, b2Val, b3Val;
+-  __m128 x0Val, x1Val, x2Val, x3Val;
+-  __m128 c0Val, c1Val, c2Val, c3Val;
+-
+-  __m128 dotProdVal0 = _mm_setzero_ps();
+-  __m128 dotProdVal1 = _mm_setzero_ps();
+-  __m128 dotProdVal2 = _mm_setzero_ps();
+-  __m128 dotProdVal3 = _mm_setzero_ps();
+-
+-  for(;number < sixteenthPoints; number++){
+-
+-    a0Val = _mm_load_ps(aPtr);
+-    a1Val = _mm_load_ps(aPtr+4);
+-    a2Val = _mm_load_ps(aPtr+8);
+-    a3Val = _mm_load_ps(aPtr+12);
+-
+-    x0Val = _mm_load_ps(bPtr);
+-    x1Val = _mm_load_ps(bPtr);
+-    x2Val = _mm_load_ps(bPtr+4);
+-    x3Val = _mm_load_ps(bPtr+4);
+-    b0Val = _mm_unpacklo_ps(x0Val, x1Val);
+-    b1Val = _mm_unpackhi_ps(x0Val, x1Val);
+-    b2Val = _mm_unpacklo_ps(x2Val, x3Val);
+-    b3Val = _mm_unpackhi_ps(x2Val, x3Val);
+-
+-    c0Val = _mm_mul_ps(a0Val, b0Val);
+-    c1Val = _mm_mul_ps(a1Val, b1Val);
+-    c2Val = _mm_mul_ps(a2Val, b2Val);
+-    c3Val = _mm_mul_ps(a3Val, b3Val);
+-
+-    dotProdVal0 = _mm_add_ps(c0Val, dotProdVal0);
+-    dotProdVal1 = _mm_add_ps(c1Val, dotProdVal1);
+-    dotProdVal2 = _mm_add_ps(c2Val, dotProdVal2);
+-    dotProdVal3 = _mm_add_ps(c3Val, dotProdVal3);
+-
+-    aPtr += 16;
+-    bPtr += 8;
+-  }
+-
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal1);
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal2);
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal3);
+-
+-  __VOLK_ATTR_ALIGNED(16) float dotProductVector[4];
+-
+-  _mm_store_ps(dotProductVector,dotProdVal0); // Store the results back into the dot product vector
+-
+-  *realpt = dotProductVector[0];
+-  *imagpt = dotProductVector[1];
+-  *realpt += dotProductVector[2];
+-  *imagpt += dotProductVector[3];
+-
+-  number = sixteenthPoints*8;
+-  for(;number < num_points; number++){
+-    *realpt += ((*aPtr++) * (*bPtr));
+-    *imagpt += ((*aPtr++) * (*bPtr++));
+-  }
+-
+-  *result = *(lv_32fc_t*)(&res[0]);
++static inline void volk_32fc_32f_dot_prod_32fc_a_sse(lv_32fc_t* result,
++                                                     const lv_32fc_t* input,
++                                                     const float* taps,
++                                                     unsigned int num_points)
++{
++
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 8;
++
++    float res[2];
++    float *realpt = &res[0], *imagpt = &res[1];
++    const float* aPtr = (float*)input;
++    const float* bPtr = taps;
++
++    __m128 a0Val, a1Val, a2Val, a3Val;
++    __m128 b0Val, b1Val, b2Val, b3Val;
++    __m128 x0Val, x1Val, x2Val, x3Val;
++    __m128 c0Val, c1Val, c2Val, c3Val;
++
++    __m128 dotProdVal0 = _mm_setzero_ps();
++    __m128 dotProdVal1 = _mm_setzero_ps();
++    __m128 dotProdVal2 = _mm_setzero_ps();
++    __m128 dotProdVal3 = _mm_setzero_ps();
++
++    for (; number < sixteenthPoints; number++) {
++
++        a0Val = _mm_load_ps(aPtr);
++        a1Val = _mm_load_ps(aPtr + 4);
++        a2Val = _mm_load_ps(aPtr + 8);
++        a3Val = _mm_load_ps(aPtr + 12);
++
++        x0Val = _mm_load_ps(bPtr);
++        x1Val = _mm_load_ps(bPtr);
++        x2Val = _mm_load_ps(bPtr + 4);
++        x3Val = _mm_load_ps(bPtr + 4);
++        b0Val = _mm_unpacklo_ps(x0Val, x1Val);
++        b1Val = _mm_unpackhi_ps(x0Val, x1Val);
++        b2Val = _mm_unpacklo_ps(x2Val, x3Val);
++        b3Val = _mm_unpackhi_ps(x2Val, x3Val);
++
++        c0Val = _mm_mul_ps(a0Val, b0Val);
++        c1Val = _mm_mul_ps(a1Val, b1Val);
++        c2Val = _mm_mul_ps(a2Val, b2Val);
++        c3Val = _mm_mul_ps(a3Val, b3Val);
++
++        dotProdVal0 = _mm_add_ps(c0Val, dotProdVal0);
++        dotProdVal1 = _mm_add_ps(c1Val, dotProdVal1);
++        dotProdVal2 = _mm_add_ps(c2Val, dotProdVal2);
++        dotProdVal3 = _mm_add_ps(c3Val, dotProdVal3);
++
++        aPtr += 16;
++        bPtr += 8;
++    }
++
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal1);
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal2);
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal3);
++
++    __VOLK_ATTR_ALIGNED(16) float dotProductVector[4];
++
++    _mm_store_ps(dotProductVector,
++                 dotProdVal0); // Store the results back into the dot product vector
++
++    *realpt = dotProductVector[0];
++    *imagpt = dotProductVector[1];
++    *realpt += dotProductVector[2];
++    *imagpt += dotProductVector[3];
++
++    number = sixteenthPoints * 8;
++    for (; number < num_points; number++) {
++        *realpt += ((*aPtr++) * (*bPtr));
++        *imagpt += ((*aPtr++) * (*bPtr++));
++    }
++
++    *result = *(lv_32fc_t*)(&res[0]);
+ }
+ #endif /*LV_HAVE_SSE*/
+@@ -339,78 +356,83 @@ static inline void volk_32fc_32f_dot_prod_32fc_a_sse( lv_32fc_t* result, const
+ #include <immintrin.h>
+-static inline void volk_32fc_32f_dot_prod_32fc_u_avx2_fma( lv_32fc_t* result, const lv_32fc_t* input, const float* taps, unsigned int num_points) {
+-
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
+-
+-  float res[2];
+-  float *realpt = &res[0], *imagpt = &res[1];
+-  const float* aPtr = (float*)input;
+-  const float* bPtr = taps;
+-
+-  __m256 a0Val, a1Val, a2Val, a3Val;
+-  __m256 b0Val, b1Val, b2Val, b3Val;
+-  __m256 x0Val, x1Val, x0loVal, x0hiVal, x1loVal, x1hiVal;
+-
+-  __m256 dotProdVal0 = _mm256_setzero_ps();
+-  __m256 dotProdVal1 = _mm256_setzero_ps();
+-  __m256 dotProdVal2 = _mm256_setzero_ps();
+-  __m256 dotProdVal3 = _mm256_setzero_ps();
+-
+-  for(;number < sixteenthPoints; number++){
+-
+-    a0Val = _mm256_loadu_ps(aPtr);
+-    a1Val = _mm256_loadu_ps(aPtr+8);
+-    a2Val = _mm256_loadu_ps(aPtr+16);
+-    a3Val = _mm256_loadu_ps(aPtr+24);
+-
+-    x0Val = _mm256_load_ps(bPtr); // t0|t1|t2|t3|t4|t5|t6|t7
+-    x1Val = _mm256_load_ps(bPtr+8);
+-    x0loVal = _mm256_unpacklo_ps(x0Val, x0Val); // t0|t0|t1|t1|t4|t4|t5|t5
+-    x0hiVal = _mm256_unpackhi_ps(x0Val, x0Val); // t2|t2|t3|t3|t6|t6|t7|t7
+-    x1loVal = _mm256_unpacklo_ps(x1Val, x1Val);
+-    x1hiVal = _mm256_unpackhi_ps(x1Val, x1Val);
+-
+-    // TODO: it may be possible to rearrange swizzling to better pipeline data
+-    b0Val = _mm256_permute2f128_ps(x0loVal, x0hiVal, 0x20); // t0|t0|t1|t1|t2|t2|t3|t3
+-    b1Val = _mm256_permute2f128_ps(x0loVal, x0hiVal, 0x31); // t4|t4|t5|t5|t6|t6|t7|t7
+-    b2Val = _mm256_permute2f128_ps(x1loVal, x1hiVal, 0x20);
+-    b3Val = _mm256_permute2f128_ps(x1loVal, x1hiVal, 0x31);
+-
+-    dotProdVal0 = _mm256_fmadd_ps(a0Val, b0Val, dotProdVal0);
+-    dotProdVal1 = _mm256_fmadd_ps(a1Val, b1Val, dotProdVal1);
+-    dotProdVal2 = _mm256_fmadd_ps(a2Val, b2Val, dotProdVal2);
+-    dotProdVal3 = _mm256_fmadd_ps(a3Val, b3Val, dotProdVal3);
+-
+-    aPtr += 32;
+-    bPtr += 16;
+-  }
+-
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal1);
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal2);
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal3);
+-
+-  __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
+-
+-  _mm256_store_ps(dotProductVector,dotProdVal0); // Store the results back into the dot product vector
+-
+-  *realpt = dotProductVector[0];
+-  *imagpt = dotProductVector[1];
+-  *realpt += dotProductVector[2];
+-  *imagpt += dotProductVector[3];
+-  *realpt += dotProductVector[4];
+-  *imagpt += dotProductVector[5];
+-  *realpt += dotProductVector[6];
+-  *imagpt += dotProductVector[7];
+-
+-  number = sixteenthPoints*16;
+-  for(;number < num_points; number++){
+-    *realpt += ((*aPtr++) * (*bPtr));
+-    *imagpt += ((*aPtr++) * (*bPtr++));
+-  }
+-
+-  *result = *(lv_32fc_t*)(&res[0]);
++static inline void volk_32fc_32f_dot_prod_32fc_u_avx2_fma(lv_32fc_t* result,
++                                                          const lv_32fc_t* input,
++                                                          const float* taps,
++                                                          unsigned int num_points)
++{
++
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
++
++    float res[2];
++    float *realpt = &res[0], *imagpt = &res[1];
++    const float* aPtr = (float*)input;
++    const float* bPtr = taps;
++
++    __m256 a0Val, a1Val, a2Val, a3Val;
++    __m256 b0Val, b1Val, b2Val, b3Val;
++    __m256 x0Val, x1Val, x0loVal, x0hiVal, x1loVal, x1hiVal;
++
++    __m256 dotProdVal0 = _mm256_setzero_ps();
++    __m256 dotProdVal1 = _mm256_setzero_ps();
++    __m256 dotProdVal2 = _mm256_setzero_ps();
++    __m256 dotProdVal3 = _mm256_setzero_ps();
++
++    for (; number < sixteenthPoints; number++) {
++
++        a0Val = _mm256_loadu_ps(aPtr);
++        a1Val = _mm256_loadu_ps(aPtr + 8);
++        a2Val = _mm256_loadu_ps(aPtr + 16);
++        a3Val = _mm256_loadu_ps(aPtr + 24);
++
++        x0Val = _mm256_load_ps(bPtr); // t0|t1|t2|t3|t4|t5|t6|t7
++        x1Val = _mm256_load_ps(bPtr + 8);
++        x0loVal = _mm256_unpacklo_ps(x0Val, x0Val); // t0|t0|t1|t1|t4|t4|t5|t5
++        x0hiVal = _mm256_unpackhi_ps(x0Val, x0Val); // t2|t2|t3|t3|t6|t6|t7|t7
++        x1loVal = _mm256_unpacklo_ps(x1Val, x1Val);
++        x1hiVal = _mm256_unpackhi_ps(x1Val, x1Val);
++
++        // TODO: it may be possible to rearrange swizzling to better pipeline data
++        b0Val = _mm256_permute2f128_ps(x0loVal, x0hiVal, 0x20); // t0|t0|t1|t1|t2|t2|t3|t3
++        b1Val = _mm256_permute2f128_ps(x0loVal, x0hiVal, 0x31); // t4|t4|t5|t5|t6|t6|t7|t7
++        b2Val = _mm256_permute2f128_ps(x1loVal, x1hiVal, 0x20);
++        b3Val = _mm256_permute2f128_ps(x1loVal, x1hiVal, 0x31);
++
++        dotProdVal0 = _mm256_fmadd_ps(a0Val, b0Val, dotProdVal0);
++        dotProdVal1 = _mm256_fmadd_ps(a1Val, b1Val, dotProdVal1);
++        dotProdVal2 = _mm256_fmadd_ps(a2Val, b2Val, dotProdVal2);
++        dotProdVal3 = _mm256_fmadd_ps(a3Val, b3Val, dotProdVal3);
++
++        aPtr += 32;
++        bPtr += 16;
++    }
++
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal1);
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal2);
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal3);
++
++    __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
++
++    _mm256_store_ps(dotProductVector,
++                    dotProdVal0); // Store the results back into the dot product vector
++
++    *realpt = dotProductVector[0];
++    *imagpt = dotProductVector[1];
++    *realpt += dotProductVector[2];
++    *imagpt += dotProductVector[3];
++    *realpt += dotProductVector[4];
++    *imagpt += dotProductVector[5];
++    *realpt += dotProductVector[6];
++    *imagpt += dotProductVector[7];
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        *realpt += ((*aPtr++) * (*bPtr));
++        *imagpt += ((*aPtr++) * (*bPtr++));
++    }
++
++    *result = *(lv_32fc_t*)(&res[0]);
+ }
+ #endif /*LV_HAVE_AVX2 && LV_HAVE_FMA*/
+@@ -419,162 +441,172 @@ static inline void volk_32fc_32f_dot_prod_32fc_u_avx2_fma( lv_32fc_t* result, co
+ #include <immintrin.h>
+-static inline void volk_32fc_32f_dot_prod_32fc_u_avx( lv_32fc_t* result, const lv_32fc_t* input, const float* taps, unsigned int num_points) {
+-
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
+-
+-  float res[2];
+-  float *realpt = &res[0], *imagpt = &res[1];
+-  const float* aPtr = (float*)input;
+-  const float* bPtr = taps;
+-
+-  __m256 a0Val, a1Val, a2Val, a3Val;
+-  __m256 b0Val, b1Val, b2Val, b3Val;
+-  __m256 x0Val, x1Val, x0loVal, x0hiVal, x1loVal, x1hiVal;
+-  __m256 c0Val, c1Val, c2Val, c3Val;
+-
+-  __m256 dotProdVal0 = _mm256_setzero_ps();
+-  __m256 dotProdVal1 = _mm256_setzero_ps();
+-  __m256 dotProdVal2 = _mm256_setzero_ps();
+-  __m256 dotProdVal3 = _mm256_setzero_ps();
+-
+-  for(;number < sixteenthPoints; number++){
+-
+-    a0Val = _mm256_loadu_ps(aPtr);
+-    a1Val = _mm256_loadu_ps(aPtr+8);
+-    a2Val = _mm256_loadu_ps(aPtr+16);
+-    a3Val = _mm256_loadu_ps(aPtr+24);
+-
+-    x0Val = _mm256_loadu_ps(bPtr); // t0|t1|t2|t3|t4|t5|t6|t7
+-    x1Val = _mm256_loadu_ps(bPtr+8);
+-    x0loVal = _mm256_unpacklo_ps(x0Val, x0Val); // t0|t0|t1|t1|t4|t4|t5|t5
+-    x0hiVal = _mm256_unpackhi_ps(x0Val, x0Val); // t2|t2|t3|t3|t6|t6|t7|t7
+-    x1loVal = _mm256_unpacklo_ps(x1Val, x1Val);
+-    x1hiVal = _mm256_unpackhi_ps(x1Val, x1Val);
+-
+-    // TODO: it may be possible to rearrange swizzling to better pipeline data
+-    b0Val = _mm256_permute2f128_ps(x0loVal, x0hiVal, 0x20); // t0|t0|t1|t1|t2|t2|t3|t3
+-    b1Val = _mm256_permute2f128_ps(x0loVal, x0hiVal, 0x31); // t4|t4|t5|t5|t6|t6|t7|t7
+-    b2Val = _mm256_permute2f128_ps(x1loVal, x1hiVal, 0x20);
+-    b3Val = _mm256_permute2f128_ps(x1loVal, x1hiVal, 0x31);
+-
+-    c0Val = _mm256_mul_ps(a0Val, b0Val);
+-    c1Val = _mm256_mul_ps(a1Val, b1Val);
+-    c2Val = _mm256_mul_ps(a2Val, b2Val);
+-    c3Val = _mm256_mul_ps(a3Val, b3Val);
+-
+-    dotProdVal0 = _mm256_add_ps(c0Val, dotProdVal0);
+-    dotProdVal1 = _mm256_add_ps(c1Val, dotProdVal1);
+-    dotProdVal2 = _mm256_add_ps(c2Val, dotProdVal2);
+-    dotProdVal3 = _mm256_add_ps(c3Val, dotProdVal3);
+-
+-    aPtr += 32;
+-    bPtr += 16;
+-  }
+-
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal1);
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal2);
+-  dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal3);
+-
+-  __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
+-
+-  _mm256_store_ps(dotProductVector,dotProdVal0); // Store the results back into the dot product vector
+-
+-  *realpt = dotProductVector[0];
+-  *imagpt = dotProductVector[1];
+-  *realpt += dotProductVector[2];
+-  *imagpt += dotProductVector[3];
+-  *realpt += dotProductVector[4];
+-  *imagpt += dotProductVector[5];
+-  *realpt += dotProductVector[6];
+-  *imagpt += dotProductVector[7];
+-
+-  number = sixteenthPoints*16;
+-  for(;number < num_points; number++){
+-    *realpt += ((*aPtr++) * (*bPtr));
+-    *imagpt += ((*aPtr++) * (*bPtr++));
+-  }
+-
+-  *result = *(lv_32fc_t*)(&res[0]);
++static inline void volk_32fc_32f_dot_prod_32fc_u_avx(lv_32fc_t* result,
++                                                     const lv_32fc_t* input,
++                                                     const float* taps,
++                                                     unsigned int num_points)
++{
++
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
++
++    float res[2];
++    float *realpt = &res[0], *imagpt = &res[1];
++    const float* aPtr = (float*)input;
++    const float* bPtr = taps;
++
++    __m256 a0Val, a1Val, a2Val, a3Val;
++    __m256 b0Val, b1Val, b2Val, b3Val;
++    __m256 x0Val, x1Val, x0loVal, x0hiVal, x1loVal, x1hiVal;
++    __m256 c0Val, c1Val, c2Val, c3Val;
++
++    __m256 dotProdVal0 = _mm256_setzero_ps();
++    __m256 dotProdVal1 = _mm256_setzero_ps();
++    __m256 dotProdVal2 = _mm256_setzero_ps();
++    __m256 dotProdVal3 = _mm256_setzero_ps();
++
++    for (; number < sixteenthPoints; number++) {
++
++        a0Val = _mm256_loadu_ps(aPtr);
++        a1Val = _mm256_loadu_ps(aPtr + 8);
++        a2Val = _mm256_loadu_ps(aPtr + 16);
++        a3Val = _mm256_loadu_ps(aPtr + 24);
++
++        x0Val = _mm256_loadu_ps(bPtr); // t0|t1|t2|t3|t4|t5|t6|t7
++        x1Val = _mm256_loadu_ps(bPtr + 8);
++        x0loVal = _mm256_unpacklo_ps(x0Val, x0Val); // t0|t0|t1|t1|t4|t4|t5|t5
++        x0hiVal = _mm256_unpackhi_ps(x0Val, x0Val); // t2|t2|t3|t3|t6|t6|t7|t7
++        x1loVal = _mm256_unpacklo_ps(x1Val, x1Val);
++        x1hiVal = _mm256_unpackhi_ps(x1Val, x1Val);
++
++        // TODO: it may be possible to rearrange swizzling to better pipeline data
++        b0Val = _mm256_permute2f128_ps(x0loVal, x0hiVal, 0x20); // t0|t0|t1|t1|t2|t2|t3|t3
++        b1Val = _mm256_permute2f128_ps(x0loVal, x0hiVal, 0x31); // t4|t4|t5|t5|t6|t6|t7|t7
++        b2Val = _mm256_permute2f128_ps(x1loVal, x1hiVal, 0x20);
++        b3Val = _mm256_permute2f128_ps(x1loVal, x1hiVal, 0x31);
++
++        c0Val = _mm256_mul_ps(a0Val, b0Val);
++        c1Val = _mm256_mul_ps(a1Val, b1Val);
++        c2Val = _mm256_mul_ps(a2Val, b2Val);
++        c3Val = _mm256_mul_ps(a3Val, b3Val);
++
++        dotProdVal0 = _mm256_add_ps(c0Val, dotProdVal0);
++        dotProdVal1 = _mm256_add_ps(c1Val, dotProdVal1);
++        dotProdVal2 = _mm256_add_ps(c2Val, dotProdVal2);
++        dotProdVal3 = _mm256_add_ps(c3Val, dotProdVal3);
++
++        aPtr += 32;
++        bPtr += 16;
++    }
++
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal1);
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal2);
++    dotProdVal0 = _mm256_add_ps(dotProdVal0, dotProdVal3);
++
++    __VOLK_ATTR_ALIGNED(32) float dotProductVector[8];
++
++    _mm256_store_ps(dotProductVector,
++                    dotProdVal0); // Store the results back into the dot product vector
++
++    *realpt = dotProductVector[0];
++    *imagpt = dotProductVector[1];
++    *realpt += dotProductVector[2];
++    *imagpt += dotProductVector[3];
++    *realpt += dotProductVector[4];
++    *imagpt += dotProductVector[5];
++    *realpt += dotProductVector[6];
++    *imagpt += dotProductVector[7];
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        *realpt += ((*aPtr++) * (*bPtr));
++        *imagpt += ((*aPtr++) * (*bPtr++));
++    }
++
++    *result = *(lv_32fc_t*)(&res[0]);
+ }
+ #endif /*LV_HAVE_AVX*/
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void volk_32fc_32f_dot_prod_32fc_neon_unroll ( lv_32fc_t* __restrict result, const  lv_32fc_t* __restrict input, const  float* __restrict taps, unsigned int num_points) {
+-
+-   unsigned int number;
+-   const unsigned int quarterPoints = num_points / 8;
+-
+-   float res[2];
+-   float *realpt = &res[0], *imagpt = &res[1];
+-   const float* inputPtr = (float*)input;
+-   const float* tapsPtr = taps;
+-   float zero[4] = {0.0f, 0.0f, 0.0f, 0.0f };
+-   float accVector_real[4];
+-   float accVector_imag[4];
+-
+-   float32x4x2_t  inputVector0, inputVector1;
+-   float32x4_t  tapsVector0, tapsVector1;
+-   float32x4_t  tmp_real0, tmp_imag0;
+-   float32x4_t  tmp_real1, tmp_imag1;
+-   float32x4_t real_accumulator0, imag_accumulator0;
+-   float32x4_t real_accumulator1, imag_accumulator1;
+-
+-   // zero out accumulators
+-   // take a *float, return float32x4_t
+-   real_accumulator0 = vld1q_f32( zero );
+-   imag_accumulator0 = vld1q_f32( zero );
+-   real_accumulator1 = vld1q_f32( zero );
+-   imag_accumulator1 = vld1q_f32( zero );
+-
+-   for(number=0 ;number < quarterPoints; number++){
+-      // load doublewords and duplicate in to second lane
+-      tapsVector0 = vld1q_f32(tapsPtr );
+-      tapsVector1 = vld1q_f32(tapsPtr+4 );
+-
+-      // load quadword of complex numbers in to 2 lanes. 1st lane is real, 2dn imag
+-      inputVector0 = vld2q_f32(inputPtr );
+-      inputVector1 = vld2q_f32(inputPtr+8 );
+-      // inputVector is now a struct of two vectors, 0th is real, 1st is imag
+-
+-      tmp_real0 = vmulq_f32(tapsVector0, inputVector0.val[0]);
+-      tmp_imag0 = vmulq_f32(tapsVector0, inputVector0.val[1]);
+-
+-      tmp_real1 = vmulq_f32(tapsVector1, inputVector1.val[0]);
+-      tmp_imag1 = vmulq_f32(tapsVector1, inputVector1.val[1]);
+-
+-      real_accumulator0 = vaddq_f32(real_accumulator0, tmp_real0);
+-      imag_accumulator0 = vaddq_f32(imag_accumulator0, tmp_imag0);
+-
+-      real_accumulator1 = vaddq_f32(real_accumulator1, tmp_real1);
+-      imag_accumulator1 = vaddq_f32(imag_accumulator1, tmp_imag1);
+-
+-      tapsPtr += 8;
+-      inputPtr += 16;
+-   }
+-
+-   real_accumulator0 = vaddq_f32( real_accumulator0, real_accumulator1);
+-   imag_accumulator0 = vaddq_f32( imag_accumulator0, imag_accumulator1);
+-   // void vst1q_f32( float32_t * ptr, float32x4_t val);
+-   // store results back to a complex (array of 2 floats)
+-   vst1q_f32(accVector_real, real_accumulator0);
+-   vst1q_f32(accVector_imag, imag_accumulator0);
+-   *realpt = accVector_real[0] + accVector_real[1] +
+-             accVector_real[2] + accVector_real[3] ;
+-
+-   *imagpt = accVector_imag[0] + accVector_imag[1] +
+-             accVector_imag[2] + accVector_imag[3] ;
+-
+-  // clean up the remainder
+-  for(number=quarterPoints*8; number < num_points; number++){
+-    *realpt += ((*inputPtr++) * (*tapsPtr));
+-    *imagpt += ((*inputPtr++) * (*tapsPtr++));
+-  }
+-
+-  *result = *(lv_32fc_t*)(&res[0]);
++static inline void
++volk_32fc_32f_dot_prod_32fc_neon_unroll(lv_32fc_t* __restrict result,
++                                        const lv_32fc_t* __restrict input,
++                                        const float* __restrict taps,
++                                        unsigned int num_points)
++{
++
++    unsigned int number;
++    const unsigned int quarterPoints = num_points / 8;
++
++    float res[2];
++    float *realpt = &res[0], *imagpt = &res[1];
++    const float* inputPtr = (float*)input;
++    const float* tapsPtr = taps;
++    float zero[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
++    float accVector_real[4];
++    float accVector_imag[4];
++
++    float32x4x2_t inputVector0, inputVector1;
++    float32x4_t tapsVector0, tapsVector1;
++    float32x4_t tmp_real0, tmp_imag0;
++    float32x4_t tmp_real1, tmp_imag1;
++    float32x4_t real_accumulator0, imag_accumulator0;
++    float32x4_t real_accumulator1, imag_accumulator1;
++
++    // zero out accumulators
++    // take a *float, return float32x4_t
++    real_accumulator0 = vld1q_f32(zero);
++    imag_accumulator0 = vld1q_f32(zero);
++    real_accumulator1 = vld1q_f32(zero);
++    imag_accumulator1 = vld1q_f32(zero);
++
++    for (number = 0; number < quarterPoints; number++) {
++        // load doublewords and duplicate in to second lane
++        tapsVector0 = vld1q_f32(tapsPtr);
++        tapsVector1 = vld1q_f32(tapsPtr + 4);
++
++        // load quadword of complex numbers in to 2 lanes. 1st lane is real, 2dn imag
++        inputVector0 = vld2q_f32(inputPtr);
++        inputVector1 = vld2q_f32(inputPtr + 8);
++        // inputVector is now a struct of two vectors, 0th is real, 1st is imag
++
++        tmp_real0 = vmulq_f32(tapsVector0, inputVector0.val[0]);
++        tmp_imag0 = vmulq_f32(tapsVector0, inputVector0.val[1]);
++
++        tmp_real1 = vmulq_f32(tapsVector1, inputVector1.val[0]);
++        tmp_imag1 = vmulq_f32(tapsVector1, inputVector1.val[1]);
++
++        real_accumulator0 = vaddq_f32(real_accumulator0, tmp_real0);
++        imag_accumulator0 = vaddq_f32(imag_accumulator0, tmp_imag0);
++
++        real_accumulator1 = vaddq_f32(real_accumulator1, tmp_real1);
++        imag_accumulator1 = vaddq_f32(imag_accumulator1, tmp_imag1);
++
++        tapsPtr += 8;
++        inputPtr += 16;
++    }
++
++    real_accumulator0 = vaddq_f32(real_accumulator0, real_accumulator1);
++    imag_accumulator0 = vaddq_f32(imag_accumulator0, imag_accumulator1);
++    // void vst1q_f32( float32_t * ptr, float32x4_t val);
++    // store results back to a complex (array of 2 floats)
++    vst1q_f32(accVector_real, real_accumulator0);
++    vst1q_f32(accVector_imag, imag_accumulator0);
++    *realpt =
++        accVector_real[0] + accVector_real[1] + accVector_real[2] + accVector_real[3];
++
++    *imagpt =
++        accVector_imag[0] + accVector_imag[1] + accVector_imag[2] + accVector_imag[3];
++
++    // clean up the remainder
++    for (number = quarterPoints * 8; number < num_points; number++) {
++        *realpt += ((*inputPtr++) * (*tapsPtr));
++        *imagpt += ((*inputPtr++) * (*tapsPtr++));
++    }
++
++    *result = *(lv_32fc_t*)(&res[0]);
+ }
+ #endif /*LV_HAVE_NEON*/
+@@ -582,154 +614,171 @@ static inline void volk_32fc_32f_dot_prod_32fc_neon_unroll ( lv_32fc_t* __restri
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void volk_32fc_32f_dot_prod_32fc_a_neon ( lv_32fc_t* __restrict result, const  lv_32fc_t* __restrict input, const  float* __restrict taps, unsigned int num_points) {
+-
+-   unsigned int number;
+-   const unsigned int quarterPoints = num_points / 4;
++static inline void volk_32fc_32f_dot_prod_32fc_a_neon(lv_32fc_t* __restrict result,
++                                                      const lv_32fc_t* __restrict input,
++                                                      const float* __restrict taps,
++                                                      unsigned int num_points)
++{
+-   float res[2];
+-   float *realpt = &res[0], *imagpt = &res[1];
+-   const float* inputPtr = (float*)input;
+-   const float* tapsPtr = taps;
+-   float zero[4] = {0.0f, 0.0f, 0.0f, 0.0f };
+-   float accVector_real[4];
+-   float accVector_imag[4];
++    unsigned int number;
++    const unsigned int quarterPoints = num_points / 4;
+-   float32x4x2_t  inputVector;
+-   float32x4_t  tapsVector;
+-   float32x4_t tmp_real, tmp_imag;
+-   float32x4_t real_accumulator, imag_accumulator;
++    float res[2];
++    float *realpt = &res[0], *imagpt = &res[1];
++    const float* inputPtr = (float*)input;
++    const float* tapsPtr = taps;
++    float zero[4] = { 0.0f, 0.0f, 0.0f, 0.0f };
++    float accVector_real[4];
++    float accVector_imag[4];
++    float32x4x2_t inputVector;
++    float32x4_t tapsVector;
++    float32x4_t tmp_real, tmp_imag;
++    float32x4_t real_accumulator, imag_accumulator;
+-   // zero out accumulators
+-   // take a *float, return float32x4_t
+-   real_accumulator = vld1q_f32( zero );
+-   imag_accumulator = vld1q_f32( zero );
+-   for(number=0 ;number < quarterPoints; number++){
+-      // load taps ( float32x2x2_t = vld1q_f32( float32_t const * ptr) )
+-      // load doublewords and duplicate in to second lane
+-      tapsVector = vld1q_f32(tapsPtr );
++    // zero out accumulators
++    // take a *float, return float32x4_t
++    real_accumulator = vld1q_f32(zero);
++    imag_accumulator = vld1q_f32(zero);
+-      // load quadword of complex numbers in to 2 lanes. 1st lane is real, 2dn imag
+-      inputVector = vld2q_f32(inputPtr );
++    for (number = 0; number < quarterPoints; number++) {
++        // load taps ( float32x2x2_t = vld1q_f32( float32_t const * ptr) )
++        // load doublewords and duplicate in to second lane
++        tapsVector = vld1q_f32(tapsPtr);
+-      tmp_real = vmulq_f32(tapsVector, inputVector.val[0]);
+-      tmp_imag = vmulq_f32(tapsVector, inputVector.val[1]);
++        // load quadword of complex numbers in to 2 lanes. 1st lane is real, 2dn imag
++        inputVector = vld2q_f32(inputPtr);
+-      real_accumulator = vaddq_f32(real_accumulator, tmp_real);
+-      imag_accumulator = vaddq_f32(imag_accumulator, tmp_imag);
++        tmp_real = vmulq_f32(tapsVector, inputVector.val[0]);
++        tmp_imag = vmulq_f32(tapsVector, inputVector.val[1]);
++        real_accumulator = vaddq_f32(real_accumulator, tmp_real);
++        imag_accumulator = vaddq_f32(imag_accumulator, tmp_imag);
+-      tapsPtr += 4;
+-      inputPtr += 8;
+-   }
++        tapsPtr += 4;
++        inputPtr += 8;
++    }
+-   // store results back to a complex (array of 2 floats)
+-   vst1q_f32(accVector_real, real_accumulator);
+-   vst1q_f32(accVector_imag, imag_accumulator);
+-   *realpt = accVector_real[0] + accVector_real[1] +
+-             accVector_real[2] + accVector_real[3] ;
++    // store results back to a complex (array of 2 floats)
++    vst1q_f32(accVector_real, real_accumulator);
++    vst1q_f32(accVector_imag, imag_accumulator);
++    *realpt =
++        accVector_real[0] + accVector_real[1] + accVector_real[2] + accVector_real[3];
+-   *imagpt = accVector_imag[0] + accVector_imag[1] +
+-             accVector_imag[2] + accVector_imag[3] ;
++    *imagpt =
++        accVector_imag[0] + accVector_imag[1] + accVector_imag[2] + accVector_imag[3];
+-  // clean up the remainder
+-  for(number=quarterPoints*4; number < num_points; number++){
+-    *realpt += ((*inputPtr++) * (*tapsPtr));
+-    *imagpt += ((*inputPtr++) * (*tapsPtr++));
+-  }
++    // clean up the remainder
++    for (number = quarterPoints * 4; number < num_points; number++) {
++        *realpt += ((*inputPtr++) * (*tapsPtr));
++        *imagpt += ((*inputPtr++) * (*tapsPtr++));
++    }
+-  *result = *(lv_32fc_t*)(&res[0]);
++    *result = *(lv_32fc_t*)(&res[0]);
+ }
+ #endif /*LV_HAVE_NEON*/
+ #ifdef LV_HAVE_NEONV7
+-extern void volk_32fc_32f_dot_prod_32fc_a_neonasm ( lv_32fc_t* result, const  lv_32fc_t* input, const  float* taps, unsigned int num_points);
++extern void volk_32fc_32f_dot_prod_32fc_a_neonasm(lv_32fc_t* result,
++                                                  const lv_32fc_t* input,
++                                                  const float* taps,
++                                                  unsigned int num_points);
+ #endif /*LV_HAVE_NEONV7*/
+ #ifdef LV_HAVE_NEONV7
+-extern void volk_32fc_32f_dot_prod_32fc_a_neonasmvmla ( lv_32fc_t* result, const  lv_32fc_t* input, const  float* taps, unsigned int num_points);
++extern void volk_32fc_32f_dot_prod_32fc_a_neonasmvmla(lv_32fc_t* result,
++                                                      const lv_32fc_t* input,
++                                                      const float* taps,
++                                                      unsigned int num_points);
+ #endif /*LV_HAVE_NEONV7*/
+ #ifdef LV_HAVE_NEONV7
+-extern void volk_32fc_32f_dot_prod_32fc_a_neonpipeline ( lv_32fc_t* result, const  lv_32fc_t* input, const  float* taps, unsigned int num_points);
++extern void volk_32fc_32f_dot_prod_32fc_a_neonpipeline(lv_32fc_t* result,
++                                                       const lv_32fc_t* input,
++                                                       const float* taps,
++                                                       unsigned int num_points);
+ #endif /*LV_HAVE_NEONV7*/
+ #ifdef LV_HAVE_SSE
+-static inline void volk_32fc_32f_dot_prod_32fc_u_sse( lv_32fc_t* result, const  lv_32fc_t* input, const  float* taps, unsigned int num_points) {
+-
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 8;
+-
+-  float res[2];
+-  float *realpt = &res[0], *imagpt = &res[1];
+-  const float* aPtr = (float*)input;
+-  const float* bPtr = taps;
+-
+-  __m128 a0Val, a1Val, a2Val, a3Val;
+-  __m128 b0Val, b1Val, b2Val, b3Val;
+-  __m128 x0Val, x1Val, x2Val, x3Val;
+-  __m128 c0Val, c1Val, c2Val, c3Val;
+-
+-  __m128 dotProdVal0 = _mm_setzero_ps();
+-  __m128 dotProdVal1 = _mm_setzero_ps();
+-  __m128 dotProdVal2 = _mm_setzero_ps();
+-  __m128 dotProdVal3 = _mm_setzero_ps();
+-
+-  for(;number < sixteenthPoints; number++){
+-
+-    a0Val = _mm_loadu_ps(aPtr);
+-    a1Val = _mm_loadu_ps(aPtr+4);
+-    a2Val = _mm_loadu_ps(aPtr+8);
+-    a3Val = _mm_loadu_ps(aPtr+12);
+-
+-    x0Val = _mm_loadu_ps(bPtr);
+-    x1Val = _mm_loadu_ps(bPtr);
+-    x2Val = _mm_loadu_ps(bPtr+4);
+-    x3Val = _mm_loadu_ps(bPtr+4);
+-    b0Val = _mm_unpacklo_ps(x0Val, x1Val);
+-    b1Val = _mm_unpackhi_ps(x0Val, x1Val);
+-    b2Val = _mm_unpacklo_ps(x2Val, x3Val);
+-    b3Val = _mm_unpackhi_ps(x2Val, x3Val);
+-
+-    c0Val = _mm_mul_ps(a0Val, b0Val);
+-    c1Val = _mm_mul_ps(a1Val, b1Val);
+-    c2Val = _mm_mul_ps(a2Val, b2Val);
+-    c3Val = _mm_mul_ps(a3Val, b3Val);
+-
+-    dotProdVal0 = _mm_add_ps(c0Val, dotProdVal0);
+-    dotProdVal1 = _mm_add_ps(c1Val, dotProdVal1);
+-    dotProdVal2 = _mm_add_ps(c2Val, dotProdVal2);
+-    dotProdVal3 = _mm_add_ps(c3Val, dotProdVal3);
+-
+-    aPtr += 16;
+-    bPtr += 8;
+-  }
+-
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal1);
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal2);
+-  dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal3);
+-
+-  __VOLK_ATTR_ALIGNED(16) float dotProductVector[4];
+-
+-  _mm_store_ps(dotProductVector,dotProdVal0); // Store the results back into the dot product vector
+-
+-  *realpt = dotProductVector[0];
+-  *imagpt = dotProductVector[1];
+-  *realpt += dotProductVector[2];
+-  *imagpt += dotProductVector[3];
+-
+-  number = sixteenthPoints*8;
+-  for(;number < num_points; number++){
+-    *realpt += ((*aPtr++) * (*bPtr));
+-    *imagpt += ((*aPtr++) * (*bPtr++));
+-  }
+-
+-  *result = *(lv_32fc_t*)(&res[0]);
++static inline void volk_32fc_32f_dot_prod_32fc_u_sse(lv_32fc_t* result,
++                                                     const lv_32fc_t* input,
++                                                     const float* taps,
++                                                     unsigned int num_points)
++{
++
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 8;
++
++    float res[2];
++    float *realpt = &res[0], *imagpt = &res[1];
++    const float* aPtr = (float*)input;
++    const float* bPtr = taps;
++
++    __m128 a0Val, a1Val, a2Val, a3Val;
++    __m128 b0Val, b1Val, b2Val, b3Val;
++    __m128 x0Val, x1Val, x2Val, x3Val;
++    __m128 c0Val, c1Val, c2Val, c3Val;
++
++    __m128 dotProdVal0 = _mm_setzero_ps();
++    __m128 dotProdVal1 = _mm_setzero_ps();
++    __m128 dotProdVal2 = _mm_setzero_ps();
++    __m128 dotProdVal3 = _mm_setzero_ps();
++
++    for (; number < sixteenthPoints; number++) {
++
++        a0Val = _mm_loadu_ps(aPtr);
++        a1Val = _mm_loadu_ps(aPtr + 4);
++        a2Val = _mm_loadu_ps(aPtr + 8);
++        a3Val = _mm_loadu_ps(aPtr + 12);
++
++        x0Val = _mm_loadu_ps(bPtr);
++        x1Val = _mm_loadu_ps(bPtr);
++        x2Val = _mm_loadu_ps(bPtr + 4);
++        x3Val = _mm_loadu_ps(bPtr + 4);
++        b0Val = _mm_unpacklo_ps(x0Val, x1Val);
++        b1Val = _mm_unpackhi_ps(x0Val, x1Val);
++        b2Val = _mm_unpacklo_ps(x2Val, x3Val);
++        b3Val = _mm_unpackhi_ps(x2Val, x3Val);
++
++        c0Val = _mm_mul_ps(a0Val, b0Val);
++        c1Val = _mm_mul_ps(a1Val, b1Val);
++        c2Val = _mm_mul_ps(a2Val, b2Val);
++        c3Val = _mm_mul_ps(a3Val, b3Val);
++
++        dotProdVal0 = _mm_add_ps(c0Val, dotProdVal0);
++        dotProdVal1 = _mm_add_ps(c1Val, dotProdVal1);
++        dotProdVal2 = _mm_add_ps(c2Val, dotProdVal2);
++        dotProdVal3 = _mm_add_ps(c3Val, dotProdVal3);
++
++        aPtr += 16;
++        bPtr += 8;
++    }
++
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal1);
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal2);
++    dotProdVal0 = _mm_add_ps(dotProdVal0, dotProdVal3);
++
++    __VOLK_ATTR_ALIGNED(16) float dotProductVector[4];
++
++    _mm_store_ps(dotProductVector,
++                 dotProdVal0); // Store the results back into the dot product vector
++
++    *realpt = dotProductVector[0];
++    *imagpt = dotProductVector[1];
++    *realpt += dotProductVector[2];
++    *imagpt += dotProductVector[3];
++
++    number = sixteenthPoints * 8;
++    for (; number < num_points; number++) {
++        *realpt += ((*aPtr++) * (*bPtr));
++        *imagpt += ((*aPtr++) * (*bPtr++));
++    }
++
++    *result = *(lv_32fc_t*)(&res[0]);
+ }
+ #endif /*LV_HAVE_SSE*/
+diff --git a/kernels/volk/volk_32fc_32f_multiply_32fc.h b/kernels/volk/volk_32fc_32f_multiply_32fc.h
+index b47883f..196ba9a 100644
+--- a/kernels/volk/volk_32fc_32f_multiply_32fc.h
++++ b/kernels/volk/volk_32fc_32f_multiply_32fc.h
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32fc_32f_multiply_32fc(lv_32fc_t* cVector, const lv_32fc_t* aVector, const float* bVector, unsigned int num_points);
+- * \endcode
++ * void volk_32fc_32f_multiply_32fc(lv_32fc_t* cVector, const lv_32fc_t* aVector, const
++ * float* bVector, unsigned int num_points); \endcode
+  *
+  * \b Inputs
+  * \li aVector: The input vector of complex floats.
+@@ -61,52 +61,55 @@
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32fc_32f_multiply_32fc_a_avx(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                                  const float* bVector, unsigned int num_points)
++static inline void volk_32fc_32f_multiply_32fc_a_avx(lv_32fc_t* cVector,
++                                                     const lv_32fc_t* aVector,
++                                                     const float* bVector,
++                                                     unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  lv_32fc_t* cPtr = cVector;
+-  const lv_32fc_t* aPtr = aVector;
+-  const float* bPtr=  bVector;
++    lv_32fc_t* cPtr = cVector;
++    const lv_32fc_t* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m256 aVal1, aVal2, bVal, bVal1, bVal2, cVal1, cVal2;
++    __m256 aVal1, aVal2, bVal, bVal1, bVal2, cVal1, cVal2;
+-  __m256i permute_mask = _mm256_set_epi32(3, 3, 2, 2, 1, 1, 0, 0);
++    __m256i permute_mask = _mm256_set_epi32(3, 3, 2, 2, 1, 1, 0, 0);
+-  for(;number < eighthPoints; number++){
++    for (; number < eighthPoints; number++) {
+-    aVal1 = _mm256_load_ps((float *)aPtr);
+-    aPtr += 4;
++        aVal1 = _mm256_load_ps((float*)aPtr);
++        aPtr += 4;
+-    aVal2 = _mm256_load_ps((float *)aPtr);
+-    aPtr += 4;
++        aVal2 = _mm256_load_ps((float*)aPtr);
++        aPtr += 4;
+-    bVal = _mm256_load_ps(bPtr); // b0|b1|b2|b3|b4|b5|b6|b7
+-    bPtr += 8;
++        bVal = _mm256_load_ps(bPtr); // b0|b1|b2|b3|b4|b5|b6|b7
++        bPtr += 8;
+-    bVal1 = _mm256_permute2f128_ps(bVal, bVal, 0x00); // b0|b1|b2|b3|b0|b1|b2|b3
+-    bVal2 = _mm256_permute2f128_ps(bVal, bVal, 0x11); // b4|b5|b6|b7|b4|b5|b6|b7
++        bVal1 = _mm256_permute2f128_ps(bVal, bVal, 0x00); // b0|b1|b2|b3|b0|b1|b2|b3
++        bVal2 = _mm256_permute2f128_ps(bVal, bVal, 0x11); // b4|b5|b6|b7|b4|b5|b6|b7
+-    bVal1 = _mm256_permutevar_ps(bVal1, permute_mask); // b0|b0|b1|b1|b2|b2|b3|b3
+-    bVal2 = _mm256_permutevar_ps(bVal2, permute_mask); // b4|b4|b5|b5|b6|b6|b7|b7
++        bVal1 = _mm256_permutevar_ps(bVal1, permute_mask); // b0|b0|b1|b1|b2|b2|b3|b3
++        bVal2 = _mm256_permutevar_ps(bVal2, permute_mask); // b4|b4|b5|b5|b6|b6|b7|b7
+-    cVal1 = _mm256_mul_ps(aVal1, bVal1);
+-    cVal2 = _mm256_mul_ps(aVal2, bVal2);
++        cVal1 = _mm256_mul_ps(aVal1, bVal1);
++        cVal2 = _mm256_mul_ps(aVal2, bVal2);
+-    _mm256_store_ps((float*)cPtr,cVal1); // Store the results back into the C container
+-    cPtr += 4;
++        _mm256_store_ps((float*)cPtr,
++                        cVal1); // Store the results back into the C container
++        cPtr += 4;
+-    _mm256_store_ps((float*)cPtr,cVal2); // Store the results back into the C container
+-    cPtr += 4;
+-  }
++        _mm256_store_ps((float*)cPtr,
++                        cVal2); // Store the results back into the C container
++        cPtr += 4;
++    }
+-  number = eighthPoints * 8;
+-  for(;number < num_points; ++number){
+-    *cPtr++ = (*aPtr++) * (*bPtr++);
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; ++number) {
++        *cPtr++ = (*aPtr++) * (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -114,67 +117,69 @@ volk_32fc_32f_multiply_32fc_a_avx(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32fc_32f_multiply_32fc_a_sse(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                                  const float* bVector, unsigned int num_points)
++static inline void volk_32fc_32f_multiply_32fc_a_sse(lv_32fc_t* cVector,
++                                                     const lv_32fc_t* aVector,
++                                                     const float* bVector,
++                                                     unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  lv_32fc_t* cPtr = cVector;
+-  const lv_32fc_t* aPtr = aVector;
+-  const float* bPtr=  bVector;
++    lv_32fc_t* cPtr = cVector;
++    const lv_32fc_t* aPtr = aVector;
++    const float* bPtr = bVector;
+-  __m128 aVal1, aVal2, bVal, bVal1, bVal2, cVal;
+-  for(;number < quarterPoints; number++){
++    __m128 aVal1, aVal2, bVal, bVal1, bVal2, cVal;
++    for (; number < quarterPoints; number++) {
+-    aVal1 = _mm_load_ps((const float*)aPtr);
+-    aPtr += 2;
++        aVal1 = _mm_load_ps((const float*)aPtr);
++        aPtr += 2;
+-    aVal2 = _mm_load_ps((const float*)aPtr);
+-    aPtr += 2;
++        aVal2 = _mm_load_ps((const float*)aPtr);
++        aPtr += 2;
+-    bVal = _mm_load_ps(bPtr);
+-    bPtr += 4;
++        bVal = _mm_load_ps(bPtr);
++        bPtr += 4;
+-    bVal1 = _mm_shuffle_ps(bVal, bVal, _MM_SHUFFLE(1,1,0,0));
+-    bVal2 = _mm_shuffle_ps(bVal, bVal, _MM_SHUFFLE(3,3,2,2));
++        bVal1 = _mm_shuffle_ps(bVal, bVal, _MM_SHUFFLE(1, 1, 0, 0));
++        bVal2 = _mm_shuffle_ps(bVal, bVal, _MM_SHUFFLE(3, 3, 2, 2));
+-    cVal = _mm_mul_ps(aVal1, bVal1);
++        cVal = _mm_mul_ps(aVal1, bVal1);
+-    _mm_store_ps((float*)cPtr,cVal); // Store the results back into the C container
+-    cPtr += 2;
++        _mm_store_ps((float*)cPtr, cVal); // Store the results back into the C container
++        cPtr += 2;
+-    cVal = _mm_mul_ps(aVal2, bVal2);
++        cVal = _mm_mul_ps(aVal2, bVal2);
+-    _mm_store_ps((float*)cPtr,cVal); // Store the results back into the C container
++        _mm_store_ps((float*)cPtr, cVal); // Store the results back into the C container
+-    cPtr += 2;
+-  }
++        cPtr += 2;
++    }
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) * (*bPtr);
+-    bPtr++;
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) * (*bPtr);
++        bPtr++;
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32fc_32f_multiply_32fc_generic(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                                    const float* bVector, unsigned int num_points)
++static inline void volk_32fc_32f_multiply_32fc_generic(lv_32fc_t* cVector,
++                                                       const lv_32fc_t* aVector,
++                                                       const float* bVector,
++                                                       unsigned int num_points)
+ {
+-  lv_32fc_t* cPtr = cVector;
+-  const lv_32fc_t* aPtr = aVector;
+-  const float* bPtr=  bVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    *cPtr++ = (*aPtr++) * (*bPtr++);
+-  }
++    lv_32fc_t* cPtr = cVector;
++    const lv_32fc_t* aPtr = aVector;
++    const float* bPtr = bVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) * (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -182,49 +187,52 @@ volk_32fc_32f_multiply_32fc_generic(lv_32fc_t* cVector, const lv_32fc_t* aVector
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_32fc_32f_multiply_32fc_neon(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                                 const float* bVector, unsigned int num_points)
++static inline void volk_32fc_32f_multiply_32fc_neon(lv_32fc_t* cVector,
++                                                    const lv_32fc_t* aVector,
++                                                    const float* bVector,
++                                                    unsigned int num_points)
+ {
+-  lv_32fc_t* cPtr = cVector;
+-  const lv_32fc_t* aPtr = aVector;
+-  const float* bPtr=  bVector;
+-  unsigned int number = 0;
+-  unsigned int quarter_points = num_points / 4;
+-
+-  float32x4x2_t inputVector, outputVector;
+-  float32x4_t tapsVector;
+-  for(number = 0; number < quarter_points; number++){
+-    inputVector = vld2q_f32((float*)aPtr);
+-    tapsVector = vld1q_f32(bPtr);
+-
+-    outputVector.val[0] = vmulq_f32(inputVector.val[0], tapsVector);
+-    outputVector.val[1] = vmulq_f32(inputVector.val[1], tapsVector);
+-
+-    vst2q_f32((float*)cPtr, outputVector);
+-    aPtr += 4;
+-    bPtr += 4;
+-    cPtr += 4;
+-  }
+-
+-  for(number = quarter_points * 4; number < num_points; number++){
+-    *cPtr++ = (*aPtr++) * (*bPtr++);
+-  }
++    lv_32fc_t* cPtr = cVector;
++    const lv_32fc_t* aPtr = aVector;
++    const float* bPtr = bVector;
++    unsigned int number = 0;
++    unsigned int quarter_points = num_points / 4;
++
++    float32x4x2_t inputVector, outputVector;
++    float32x4_t tapsVector;
++    for (number = 0; number < quarter_points; number++) {
++        inputVector = vld2q_f32((float*)aPtr);
++        tapsVector = vld1q_f32(bPtr);
++
++        outputVector.val[0] = vmulq_f32(inputVector.val[0], tapsVector);
++        outputVector.val[1] = vmulq_f32(inputVector.val[1], tapsVector);
++
++        vst2q_f32((float*)cPtr, outputVector);
++        aPtr += 4;
++        bPtr += 4;
++        cPtr += 4;
++    }
++
++    for (number = quarter_points * 4; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) * (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_ORC
+-extern void
+-volk_32fc_32f_multiply_32fc_a_orc_impl(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                                       const float* bVector, unsigned int num_points);
++extern void volk_32fc_32f_multiply_32fc_a_orc_impl(lv_32fc_t* cVector,
++                                                   const lv_32fc_t* aVector,
++                                                   const float* bVector,
++                                                   unsigned int num_points);
+-static inline void
+-volk_32fc_32f_multiply_32fc_u_orc(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                                  const float* bVector, unsigned int num_points)
++static inline void volk_32fc_32f_multiply_32fc_u_orc(lv_32fc_t* cVector,
++                                                     const lv_32fc_t* aVector,
++                                                     const float* bVector,
++                                                     unsigned int num_points)
+ {
+-  volk_32fc_32f_multiply_32fc_a_orc_impl(cVector, aVector, bVector, num_points);
++    volk_32fc_32f_multiply_32fc_a_orc_impl(cVector, aVector, bVector, num_points);
+ }
+ #endif /* LV_HAVE_GENERIC */
+diff --git a/kernels/volk/volk_32fc_conjugate_32fc.h b/kernels/volk/volk_32fc_conjugate_32fc.h
+index 6994d0e..9195e3a 100644
+--- a/kernels/volk/volk_32fc_conjugate_32fc.h
++++ b/kernels/volk/volk_32fc_conjugate_32fc.h
+@@ -29,8 +29,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32fc_conjugate_32fc(lv_32fc_t* cVector, const lv_32fc_t* aVector, unsigned int num_points)
+- * \endcode
++ * void volk_32fc_conjugate_32fc(lv_32fc_t* cVector, const lv_32fc_t* aVector, unsigned
++ * int num_points) \endcode
+  *
+  * \b Inputs
+  * \li aVector: The input vector of complex floats.
+@@ -68,91 +68,94 @@
+ #ifndef INCLUDED_volk_32fc_conjugate_32fc_u_H
+ #define INCLUDED_volk_32fc_conjugate_32fc_u_H
++#include <float.h>
+ #include <inttypes.h>
+ #include <stdio.h>
+ #include <volk/volk_complex.h>
+-#include <float.h>
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32fc_conjugate_32fc_u_avx(lv_32fc_t* cVector, const lv_32fc_t* aVector, unsigned int num_points)
++static inline void volk_32fc_conjugate_32fc_u_avx(lv_32fc_t* cVector,
++                                                  const lv_32fc_t* aVector,
++                                                  unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  __m256 x;
+-  lv_32fc_t* c = cVector;
+-  const lv_32fc_t* a = aVector;
++    __m256 x;
++    lv_32fc_t* c = cVector;
++    const lv_32fc_t* a = aVector;
+-  __m256 conjugator = _mm256_setr_ps(0, -0.f, 0, -0.f, 0, -0.f, 0, -0.f);
++    __m256 conjugator = _mm256_setr_ps(0, -0.f, 0, -0.f, 0, -0.f, 0, -0.f);
+-  for(;number < quarterPoints; number++){
++    for (; number < quarterPoints; number++) {
+-    x = _mm256_loadu_ps((float*)a); // Load the complex data as ar,ai,br,bi
++        x = _mm256_loadu_ps((float*)a); // Load the complex data as ar,ai,br,bi
+-    x = _mm256_xor_ps(x, conjugator); // conjugate register
++        x = _mm256_xor_ps(x, conjugator); // conjugate register
+-    _mm256_storeu_ps((float*)c,x); // Store the results back into the C container
++        _mm256_storeu_ps((float*)c, x); // Store the results back into the C container
+-    a += 4;
+-    c += 4;
+-  }
++        a += 4;
++        c += 4;
++    }
+-  number = quarterPoints * 4;
++    number = quarterPoints * 4;
+-  for(;number < num_points; number++) {
+-    *c++ = lv_conj(*a++);
+-  }
++    for (; number < num_points; number++) {
++        *c++ = lv_conj(*a++);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_SSE3
+ #include <pmmintrin.h>
+-static inline void
+-volk_32fc_conjugate_32fc_u_sse3(lv_32fc_t* cVector, const lv_32fc_t* aVector, unsigned int num_points)
++static inline void volk_32fc_conjugate_32fc_u_sse3(lv_32fc_t* cVector,
++                                                   const lv_32fc_t* aVector,
++                                                   unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int halfPoints = num_points / 2;
++    unsigned int number = 0;
++    const unsigned int halfPoints = num_points / 2;
+-  __m128 x;
+-  lv_32fc_t* c = cVector;
+-  const lv_32fc_t* a = aVector;
++    __m128 x;
++    lv_32fc_t* c = cVector;
++    const lv_32fc_t* a = aVector;
+-  __m128 conjugator = _mm_setr_ps(0, -0.f, 0, -0.f);
++    __m128 conjugator = _mm_setr_ps(0, -0.f, 0, -0.f);
+-  for(;number < halfPoints; number++){
++    for (; number < halfPoints; number++) {
+-    x = _mm_loadu_ps((float*)a); // Load the complex data as ar,ai,br,bi
++        x = _mm_loadu_ps((float*)a); // Load the complex data as ar,ai,br,bi
+-    x = _mm_xor_ps(x, conjugator); // conjugate register
++        x = _mm_xor_ps(x, conjugator); // conjugate register
+-    _mm_storeu_ps((float*)c,x); // Store the results back into the C container
++        _mm_storeu_ps((float*)c, x); // Store the results back into the C container
+-    a += 2;
+-    c += 2;
+-  }
++        a += 2;
++        c += 2;
++    }
+-  if((num_points % 2) != 0) {
+-    *c = lv_conj(*a);
+-  }
++    if ((num_points % 2) != 0) {
++        *c = lv_conj(*a);
++    }
+ }
+ #endif /* LV_HAVE_SSE3 */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32fc_conjugate_32fc_generic(lv_32fc_t* cVector, const lv_32fc_t* aVector, unsigned int num_points)
++static inline void volk_32fc_conjugate_32fc_generic(lv_32fc_t* cVector,
++                                                    const lv_32fc_t* aVector,
++                                                    unsigned int num_points)
+ {
+-  lv_32fc_t* cPtr = cVector;
+-  const lv_32fc_t* aPtr = aVector;
+-  unsigned int number = 0;
++    lv_32fc_t* cPtr = cVector;
++    const lv_32fc_t* aPtr = aVector;
++    unsigned int number = 0;
+-  for(number = 0; number < num_points; number++){
+-    *cPtr++ = lv_conj(*aPtr++);
+-  }
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = lv_conj(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -161,124 +164,128 @@ volk_32fc_conjugate_32fc_generic(lv_32fc_t* cVector, const lv_32fc_t* aVector, u
+ #ifndef INCLUDED_volk_32fc_conjugate_32fc_a_H
+ #define INCLUDED_volk_32fc_conjugate_32fc_a_H
++#include <float.h>
+ #include <inttypes.h>
+ #include <stdio.h>
+ #include <volk/volk_complex.h>
+-#include <float.h>
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32fc_conjugate_32fc_a_avx(lv_32fc_t* cVector, const lv_32fc_t* aVector, unsigned int num_points)
++static inline void volk_32fc_conjugate_32fc_a_avx(lv_32fc_t* cVector,
++                                                  const lv_32fc_t* aVector,
++                                                  unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  __m256 x;
+-  lv_32fc_t* c = cVector;
+-  const lv_32fc_t* a = aVector;
++    __m256 x;
++    lv_32fc_t* c = cVector;
++    const lv_32fc_t* a = aVector;
+-  __m256 conjugator = _mm256_setr_ps(0, -0.f, 0, -0.f, 0, -0.f, 0, -0.f);
++    __m256 conjugator = _mm256_setr_ps(0, -0.f, 0, -0.f, 0, -0.f, 0, -0.f);
+-  for(;number < quarterPoints; number++){
++    for (; number < quarterPoints; number++) {
+-    x = _mm256_load_ps((float*)a); // Load the complex data as ar,ai,br,bi
++        x = _mm256_load_ps((float*)a); // Load the complex data as ar,ai,br,bi
+-    x = _mm256_xor_ps(x, conjugator); // conjugate register
++        x = _mm256_xor_ps(x, conjugator); // conjugate register
+-    _mm256_store_ps((float*)c,x); // Store the results back into the C container
++        _mm256_store_ps((float*)c, x); // Store the results back into the C container
+-    a += 4;
+-    c += 4;
+-  }
++        a += 4;
++        c += 4;
++    }
+-  number = quarterPoints * 4;
++    number = quarterPoints * 4;
+-  for(;number < num_points; number++) {
+-    *c++ = lv_conj(*a++);
+-  }
++    for (; number < num_points; number++) {
++        *c++ = lv_conj(*a++);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_SSE3
+ #include <pmmintrin.h>
+-static inline void
+-volk_32fc_conjugate_32fc_a_sse3(lv_32fc_t* cVector, const lv_32fc_t* aVector, unsigned int num_points)
++static inline void volk_32fc_conjugate_32fc_a_sse3(lv_32fc_t* cVector,
++                                                   const lv_32fc_t* aVector,
++                                                   unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int halfPoints = num_points / 2;
++    unsigned int number = 0;
++    const unsigned int halfPoints = num_points / 2;
+-  __m128 x;
+-  lv_32fc_t* c = cVector;
+-  const lv_32fc_t* a = aVector;
++    __m128 x;
++    lv_32fc_t* c = cVector;
++    const lv_32fc_t* a = aVector;
+-  __m128 conjugator = _mm_setr_ps(0, -0.f, 0, -0.f);
++    __m128 conjugator = _mm_setr_ps(0, -0.f, 0, -0.f);
+-  for(;number < halfPoints; number++){
++    for (; number < halfPoints; number++) {
+-    x = _mm_load_ps((float*)a); // Load the complex data as ar,ai,br,bi
++        x = _mm_load_ps((float*)a); // Load the complex data as ar,ai,br,bi
+-    x = _mm_xor_ps(x, conjugator); // conjugate register
++        x = _mm_xor_ps(x, conjugator); // conjugate register
+-    _mm_store_ps((float*)c,x); // Store the results back into the C container
++        _mm_store_ps((float*)c, x); // Store the results back into the C container
+-    a += 2;
+-    c += 2;
+-  }
++        a += 2;
++        c += 2;
++    }
+-  if((num_points % 2) != 0) {
+-    *c = lv_conj(*a);
+-  }
++    if ((num_points % 2) != 0) {
++        *c = lv_conj(*a);
++    }
+ }
+ #endif /* LV_HAVE_SSE3 */
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_32fc_conjugate_32fc_a_neon(lv_32fc_t* cVector, const lv_32fc_t* aVector, unsigned int num_points)
++static inline void volk_32fc_conjugate_32fc_a_neon(lv_32fc_t* cVector,
++                                                   const lv_32fc_t* aVector,
++                                                   unsigned int num_points)
+ {
+-  unsigned int number;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number;
++    const unsigned int quarterPoints = num_points / 4;
+-  float32x4x2_t x;
+-  lv_32fc_t* c = cVector;
+-  const lv_32fc_t* a = aVector;
++    float32x4x2_t x;
++    lv_32fc_t* c = cVector;
++    const lv_32fc_t* a = aVector;
+-  for(number=0; number < quarterPoints; number++){
+-    __VOLK_PREFETCH(a+4);
+-    x = vld2q_f32((float*)a); // Load the complex data as ar,br,cr,dr; ai,bi,ci,di
++    for (number = 0; number < quarterPoints; number++) {
++        __VOLK_PREFETCH(a + 4);
++        x = vld2q_f32((float*)a); // Load the complex data as ar,br,cr,dr; ai,bi,ci,di
+-    // xor the imaginary lane
+-    x.val[1] = vnegq_f32( x.val[1]);
++        // xor the imaginary lane
++        x.val[1] = vnegq_f32(x.val[1]);
+-    vst2q_f32((float*)c,x); // Store the results back into the C container
++        vst2q_f32((float*)c, x); // Store the results back into the C container
+-    a += 4;
+-    c += 4;
+-  }
++        a += 4;
++        c += 4;
++    }
+-  for(number=quarterPoints*4; number < num_points; number++){
+-    *c++ = lv_conj(*a++);
+-  }
++    for (number = quarterPoints * 4; number < num_points; number++) {
++        *c++ = lv_conj(*a++);
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32fc_conjugate_32fc_a_generic(lv_32fc_t* cVector, const lv_32fc_t* aVector, unsigned int num_points)
++static inline void volk_32fc_conjugate_32fc_a_generic(lv_32fc_t* cVector,
++                                                      const lv_32fc_t* aVector,
++                                                      unsigned int num_points)
+ {
+-  lv_32fc_t* cPtr = cVector;
+-  const lv_32fc_t* aPtr = aVector;
+-  unsigned int number = 0;
++    lv_32fc_t* cPtr = cVector;
++    const lv_32fc_t* aPtr = aVector;
++    unsigned int number = 0;
+-  for(number = 0; number < num_points; number++){
+-    *cPtr++ = lv_conj(*aPtr++);
+-  }
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = lv_conj(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+diff --git a/kernels/volk/volk_32fc_convert_16ic.h b/kernels/volk/volk_32fc_convert_16ic.h
+index 0ba2383..5788158 100644
+--- a/kernels/volk/volk_32fc_convert_16ic.h
++++ b/kernels/volk/volk_32fc_convert_16ic.h
+@@ -31,8 +31,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32fc_convert_16ic(lv_16sc_t* outputVector, const lv_32fc_t* inputVector, unsigned int num_points);
+- * \endcode
++ * void volk_32fc_convert_16ic(lv_16sc_t* outputVector, const lv_32fc_t* inputVector,
++ * unsigned int num_points); \endcode
+  *
+  * \b Inputs
+  * \li inputVector:  The complex 32-bit float input data buffer.
+@@ -46,14 +46,16 @@
+ #ifndef INCLUDED_volk_32fc_convert_16ic_a_H
+ #define INCLUDED_volk_32fc_convert_16ic_a_H
++#include "volk/volk_complex.h"
+ #include <limits.h>
+ #include <math.h>
+-#include "volk/volk_complex.h"
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void volk_32fc_convert_16ic_a_avx2(lv_16sc_t* outputVector, const lv_32fc_t* inputVector, unsigned int num_points)
++static inline void volk_32fc_convert_16ic_a_avx2(lv_16sc_t* outputVector,
++                                                 const lv_32fc_t* inputVector,
++                                                 unsigned int num_points)
+ {
+     const unsigned int avx_iters = num_points / 8;
+@@ -71,44 +73,44 @@ static inline void volk_32fc_convert_16ic_a_avx2(lv_16sc_t* outputVector, const
+     const __m256 vmax_val = _mm256_set1_ps(max_val);
+     unsigned int i;
+-    for(i = 0; i < avx_iters; i++)
+-        {
+-            inputVal1 = _mm256_load_ps((float*)inputVectorPtr);
+-            inputVectorPtr += 8;
+-            inputVal2 = _mm256_load_ps((float*)inputVectorPtr);
+-            inputVectorPtr += 8;
+-            __VOLK_PREFETCH(inputVectorPtr + 16);
+-
+-            // Clip
+-            ret1 = _mm256_max_ps(_mm256_min_ps(inputVal1, vmax_val), vmin_val);
+-            ret2 = _mm256_max_ps(_mm256_min_ps(inputVal2, vmax_val), vmin_val);
+-
+-            intInputVal1 = _mm256_cvtps_epi32(ret1);
+-            intInputVal2 = _mm256_cvtps_epi32(ret2);
+-
+-            intInputVal1 = _mm256_packs_epi32(intInputVal1, intInputVal2);
+-            intInputVal1 = _mm256_permute4x64_epi64(intInputVal1, 0xd8);
+-
+-            _mm256_store_si256((__m256i*)outputVectorPtr, intInputVal1);
+-            outputVectorPtr += 16;
+-        }
+-
+-    for(i = avx_iters * 16; i < num_points * 2; i++)
+-        {
+-            aux = *inputVectorPtr++;
+-            if(aux > max_val)
+-                aux = max_val;
+-            else if(aux < min_val)
+-                aux = min_val;
+-            *outputVectorPtr++ = (int16_t)rintf(aux);
+-        }
++    for (i = 0; i < avx_iters; i++) {
++        inputVal1 = _mm256_load_ps((float*)inputVectorPtr);
++        inputVectorPtr += 8;
++        inputVal2 = _mm256_load_ps((float*)inputVectorPtr);
++        inputVectorPtr += 8;
++        __VOLK_PREFETCH(inputVectorPtr + 16);
++
++        // Clip
++        ret1 = _mm256_max_ps(_mm256_min_ps(inputVal1, vmax_val), vmin_val);
++        ret2 = _mm256_max_ps(_mm256_min_ps(inputVal2, vmax_val), vmin_val);
++
++        intInputVal1 = _mm256_cvtps_epi32(ret1);
++        intInputVal2 = _mm256_cvtps_epi32(ret2);
++
++        intInputVal1 = _mm256_packs_epi32(intInputVal1, intInputVal2);
++        intInputVal1 = _mm256_permute4x64_epi64(intInputVal1, 0xd8);
++
++        _mm256_store_si256((__m256i*)outputVectorPtr, intInputVal1);
++        outputVectorPtr += 16;
++    }
++
++    for (i = avx_iters * 16; i < num_points * 2; i++) {
++        aux = *inputVectorPtr++;
++        if (aux > max_val)
++            aux = max_val;
++        else if (aux < min_val)
++            aux = min_val;
++        *outputVectorPtr++ = (int16_t)rintf(aux);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void volk_32fc_convert_16ic_a_sse2(lv_16sc_t* outputVector, const lv_32fc_t* inputVector, unsigned int num_points)
++static inline void volk_32fc_convert_16ic_a_sse2(lv_16sc_t* outputVector,
++                                                 const lv_32fc_t* inputVector,
++                                                 unsigned int num_points)
+ {
+     const unsigned int sse_iters = num_points / 4;
+@@ -126,34 +128,34 @@ static inline void volk_32fc_convert_16ic_a_sse2(lv_16sc_t* outputVector, const
+     const __m128 vmax_val = _mm_set_ps1(max_val);
+     unsigned int i;
+-    for(i = 0; i < sse_iters; i++)
+-        {
+-            inputVal1 = _mm_load_ps((float*)inputVectorPtr); inputVectorPtr += 4;
+-            inputVal2 = _mm_load_ps((float*)inputVectorPtr); inputVectorPtr += 4;
+-            __VOLK_PREFETCH(inputVectorPtr + 8);
+-
+-            // Clip
+-            ret1 = _mm_max_ps(_mm_min_ps(inputVal1, vmax_val), vmin_val);
+-            ret2 = _mm_max_ps(_mm_min_ps(inputVal2, vmax_val), vmin_val);
+-
+-            intInputVal1 = _mm_cvtps_epi32(ret1);
+-            intInputVal2 = _mm_cvtps_epi32(ret2);
+-
+-            intInputVal1 = _mm_packs_epi32(intInputVal1, intInputVal2);
+-
+-            _mm_store_si128((__m128i*)outputVectorPtr, intInputVal1);
+-            outputVectorPtr += 8;
+-        }
+-
+-    for(i = sse_iters * 8; i < num_points * 2; i++)
+-        {
+-            aux = *inputVectorPtr++;
+-            if(aux > max_val)
+-                aux = max_val;
+-            else if(aux < min_val)
+-                aux = min_val;
+-            *outputVectorPtr++ = (int16_t)rintf(aux);
+-        }
++    for (i = 0; i < sse_iters; i++) {
++        inputVal1 = _mm_load_ps((float*)inputVectorPtr);
++        inputVectorPtr += 4;
++        inputVal2 = _mm_load_ps((float*)inputVectorPtr);
++        inputVectorPtr += 4;
++        __VOLK_PREFETCH(inputVectorPtr + 8);
++
++        // Clip
++        ret1 = _mm_max_ps(_mm_min_ps(inputVal1, vmax_val), vmin_val);
++        ret2 = _mm_max_ps(_mm_min_ps(inputVal2, vmax_val), vmin_val);
++
++        intInputVal1 = _mm_cvtps_epi32(ret1);
++        intInputVal2 = _mm_cvtps_epi32(ret2);
++
++        intInputVal1 = _mm_packs_epi32(intInputVal1, intInputVal2);
++
++        _mm_store_si128((__m128i*)outputVectorPtr, intInputVal1);
++        outputVectorPtr += 8;
++    }
++
++    for (i = sse_iters * 8; i < num_points * 2; i++) {
++        aux = *inputVectorPtr++;
++        if (aux > max_val)
++            aux = max_val;
++        else if (aux < min_val)
++            aux = min_val;
++        *outputVectorPtr++ = (int16_t)rintf(aux);
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+@@ -161,13 +163,24 @@ static inline void volk_32fc_convert_16ic_a_sse2(lv_16sc_t* outputVector, const
+ #if LV_HAVE_NEONV7
+ #include <arm_neon.h>
+-#define VCVTRQ_S32_F32(res,val)                                         \
+-  __VOLK_ASM ("VCVTR.S32.F32 %[r0], %[v0]\n\t" : [r0]"=w"(res[0]) : [v0]"w"(val[0]) : ); \
+-  __VOLK_ASM ("VCVTR.S32.F32 %[r1], %[v1]\n\t" : [r1]"=w"(res[1]) : [v1]"w"(val[1]) : ); \
+-  __VOLK_ASM ("VCVTR.S32.F32 %[r2], %[v2]\n\t" : [r2]"=w"(res[2]) : [v2]"w"(val[2]) : ); \
+-  __VOLK_ASM ("VCVTR.S32.F32 %[r3], %[v3]\n\t" : [r3]"=w"(res[3]) : [v3]"w"(val[3]) : );
+-
+-static inline void volk_32fc_convert_16ic_neon(lv_16sc_t* outputVector, const lv_32fc_t* inputVector, unsigned int num_points)
++#define VCVTRQ_S32_F32(res, val)                \
++    __VOLK_ASM("VCVTR.S32.F32 %[r0], %[v0]\n\t" \
++               : [r0] "=w"(res[0])              \
++               : [v0] "w"(val[0])               \
++               :);                              \
++    __VOLK_ASM("VCVTR.S32.F32 %[r1], %[v1]\n\t" \
++               : [r1] "=w"(res[1])              \
++               : [v1] "w"(val[1])               \
++               :);                              \
++    __VOLK_ASM("VCVTR.S32.F32 %[r2], %[v2]\n\t" \
++               : [r2] "=w"(res[2])              \
++               : [v2] "w"(val[2])               \
++               :);                              \
++    __VOLK_ASM("VCVTR.S32.F32 %[r3], %[v3]\n\t" : [r3] "=w"(res[3]) : [v3] "w"(val[3]) :);
++
++static inline void volk_32fc_convert_16ic_neon(lv_16sc_t* outputVector,
++                                               const lv_32fc_t* inputVector,
++                                               unsigned int num_points)
+ {
+     const unsigned int neon_iters = num_points / 4;
+@@ -184,43 +197,41 @@ static inline void volk_32fc_convert_16ic_neon(lv_16sc_t* outputVector, const lv
+     const float32x4_t max_val = vmovq_n_f32(max_val_f);
+     float32x4_t ret1, ret2, a, b;
+-    int32x4_t toint_a={0,0,0,0};
+-    int32x4_t toint_b={0,0,0,0};
++    int32x4_t toint_a = { 0, 0, 0, 0 };
++    int32x4_t toint_b = { 0, 0, 0, 0 };
+     int16x4_t intInputVal1, intInputVal2;
+     int16x8_t res;
+-    for(i = 0; i < neon_iters; i++)
+-        {
+-            a = vld1q_f32((const float32_t*)(inputVectorPtr));
+-            inputVectorPtr += 4;
+-            b = vld1q_f32((const float32_t*)(inputVectorPtr));
+-            inputVectorPtr += 4;
+-            __VOLK_PREFETCH(inputVectorPtr + 8);
+-
+-            ret1 = vmaxq_f32(vminq_f32(a, max_val), min_val);
+-            ret2 = vmaxq_f32(vminq_f32(b, max_val), min_val);
+-
+-            // vcvtr takes into account the current rounding mode (as does rintf)
+-            VCVTRQ_S32_F32(toint_a, ret1);
+-            VCVTRQ_S32_F32(toint_b, ret2);
+-
+-            intInputVal1 = vqmovn_s32(toint_a);
+-            intInputVal2 = vqmovn_s32(toint_b);
+-
+-            res = vcombine_s16(intInputVal1, intInputVal2);
+-            vst1q_s16((int16_t*)outputVectorPtr, res);
+-            outputVectorPtr += 8;
+-        }
+-
+-    for(i = neon_iters * 8; i < num_points * 2; i++)
+-        {
+-            aux = *inputVectorPtr++;
+-            if(aux > max_val_f)
+-                aux = max_val_f;
+-            else if(aux < min_val_f)
+-                aux = min_val_f;
+-            *outputVectorPtr++ = (int16_t)rintf(aux);
+-        }
++    for (i = 0; i < neon_iters; i++) {
++        a = vld1q_f32((const float32_t*)(inputVectorPtr));
++        inputVectorPtr += 4;
++        b = vld1q_f32((const float32_t*)(inputVectorPtr));
++        inputVectorPtr += 4;
++        __VOLK_PREFETCH(inputVectorPtr + 8);
++
++        ret1 = vmaxq_f32(vminq_f32(a, max_val), min_val);
++        ret2 = vmaxq_f32(vminq_f32(b, max_val), min_val);
++
++        // vcvtr takes into account the current rounding mode (as does rintf)
++        VCVTRQ_S32_F32(toint_a, ret1);
++        VCVTRQ_S32_F32(toint_b, ret2);
++
++        intInputVal1 = vqmovn_s32(toint_a);
++        intInputVal2 = vqmovn_s32(toint_b);
++
++        res = vcombine_s16(intInputVal1, intInputVal2);
++        vst1q_s16((int16_t*)outputVectorPtr, res);
++        outputVectorPtr += 8;
++    }
++
++    for (i = neon_iters * 8; i < num_points * 2; i++) {
++        aux = *inputVectorPtr++;
++        if (aux > max_val_f)
++            aux = max_val_f;
++        else if (aux < min_val_f)
++            aux = min_val_f;
++        *outputVectorPtr++ = (int16_t)rintf(aux);
++    }
+ }
+ #undef VCVTRQ_S32_F32
+@@ -229,7 +240,9 @@ static inline void volk_32fc_convert_16ic_neon(lv_16sc_t* outputVector, const lv
+ #if LV_HAVE_NEONV8
+ #include <arm_neon.h>
+-static inline void volk_32fc_convert_16ic_neonv8(lv_16sc_t* outputVector, const lv_32fc_t* inputVector, unsigned int num_points)
++static inline void volk_32fc_convert_16ic_neonv8(lv_16sc_t* outputVector,
++                                                 const lv_32fc_t* inputVector,
++                                                 unsigned int num_points)
+ {
+     const unsigned int neon_iters = num_points / 4;
+@@ -245,50 +258,49 @@ static inline void volk_32fc_convert_16ic_neonv8(lv_16sc_t* outputVector, const
+     const float32x4_t max_val = vmovq_n_f32(max_val_f);
+     float32x4_t ret1, ret2, a, b;
+-    int32x4_t toint_a={0,0,0,0}, toint_b={0,0,0,0};
++    int32x4_t toint_a = { 0, 0, 0, 0 }, toint_b = { 0, 0, 0, 0 };
+     int16x4_t intInputVal1, intInputVal2;
+     int16x8_t res;
+-    for(i = 0; i < neon_iters; i++)
+-        {
+-            a = vld1q_f32((const float32_t*)(inputVectorPtr));
+-            inputVectorPtr += 4;
+-            b = vld1q_f32((const float32_t*)(inputVectorPtr));
+-            inputVectorPtr += 4;
+-            __VOLK_PREFETCH(inputVectorPtr + 8);
+-
+-            ret1 = vmaxq_f32(vminq_f32(a, max_val), min_val);
+-            ret2 = vmaxq_f32(vminq_f32(b, max_val), min_val);
+-
+-            // vrndiq takes into account the current rounding mode (as does rintf)
+-            toint_a = vcvtq_s32_f32(vrndiq_f32(ret1));
+-            toint_b = vcvtq_s32_f32(vrndiq_f32(ret2));
+-
+-            intInputVal1 = vqmovn_s32(toint_a);
+-            intInputVal2 = vqmovn_s32(toint_b);
+-
+-            res = vcombine_s16(intInputVal1, intInputVal2);
+-            vst1q_s16((int16_t*)outputVectorPtr, res);
+-            outputVectorPtr += 8;
+-        }
+-
+-    for(i = neon_iters * 8; i < num_points * 2; i++)
+-        {
+-            aux = *inputVectorPtr++;
+-            if(aux > max_val_f)
+-                aux = max_val_f;
+-            else if(aux < min_val_f)
+-                aux = min_val_f;
+-            *outputVectorPtr++ = (int16_t)rintf(aux);
+-        }
++    for (i = 0; i < neon_iters; i++) {
++        a = vld1q_f32((const float32_t*)(inputVectorPtr));
++        inputVectorPtr += 4;
++        b = vld1q_f32((const float32_t*)(inputVectorPtr));
++        inputVectorPtr += 4;
++        __VOLK_PREFETCH(inputVectorPtr + 8);
++
++        ret1 = vmaxq_f32(vminq_f32(a, max_val), min_val);
++        ret2 = vmaxq_f32(vminq_f32(b, max_val), min_val);
++
++        // vrndiq takes into account the current rounding mode (as does rintf)
++        toint_a = vcvtq_s32_f32(vrndiq_f32(ret1));
++        toint_b = vcvtq_s32_f32(vrndiq_f32(ret2));
++
++        intInputVal1 = vqmovn_s32(toint_a);
++        intInputVal2 = vqmovn_s32(toint_b);
++
++        res = vcombine_s16(intInputVal1, intInputVal2);
++        vst1q_s16((int16_t*)outputVectorPtr, res);
++        outputVectorPtr += 8;
++    }
++
++    for (i = neon_iters * 8; i < num_points * 2; i++) {
++        aux = *inputVectorPtr++;
++        if (aux > max_val_f)
++            aux = max_val_f;
++        else if (aux < min_val_f)
++            aux = min_val_f;
++        *outputVectorPtr++ = (int16_t)rintf(aux);
++    }
+ }
+ #endif /* LV_HAVE_NEONV8 */
+-
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32fc_convert_16ic_generic(lv_16sc_t* outputVector, const lv_32fc_t* inputVector, unsigned int num_points)
++static inline void volk_32fc_convert_16ic_generic(lv_16sc_t* outputVector,
++                                                  const lv_32fc_t* inputVector,
++                                                  unsigned int num_points)
+ {
+     float* inputVectorPtr = (float*)inputVector;
+     int16_t* outputVectorPtr = (int16_t*)outputVector;
+@@ -296,15 +308,14 @@ static inline void volk_32fc_convert_16ic_generic(lv_16sc_t* outputVector, const
+     const float max_val = (float)SHRT_MAX;
+     float aux;
+     unsigned int i;
+-    for(i = 0; i < num_points * 2; i++)
+-        {
+-            aux = *inputVectorPtr++;
+-            if(aux > max_val)
+-                aux = max_val;
+-            else if(aux < min_val)
+-                aux = min_val;
+-           *outputVectorPtr++ = (int16_t)rintf(aux);
+-        }
++    for (i = 0; i < num_points * 2; i++) {
++        aux = *inputVectorPtr++;
++        if (aux > max_val)
++            aux = max_val;
++        else if (aux < min_val)
++            aux = min_val;
++        *outputVectorPtr++ = (int16_t)rintf(aux);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -313,15 +324,17 @@ static inline void volk_32fc_convert_16ic_generic(lv_16sc_t* outputVector, const
+ #ifndef INCLUDED_volk_32fc_convert_16ic_u_H
+ #define INCLUDED_volk_32fc_convert_16ic_u_H
++#include "volk/volk_complex.h"
+ #include <limits.h>
+ #include <math.h>
+-#include "volk/volk_complex.h"
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void volk_32fc_convert_16ic_u_avx2(lv_16sc_t* outputVector, const lv_32fc_t* inputVector, unsigned int num_points)
++static inline void volk_32fc_convert_16ic_u_avx2(lv_16sc_t* outputVector,
++                                                 const lv_32fc_t* inputVector,
++                                                 unsigned int num_points)
+ {
+     const unsigned int avx_iters = num_points / 8;
+@@ -339,37 +352,35 @@ static inline void volk_32fc_convert_16ic_u_avx2(lv_16sc_t* outputVector, const
+     const __m256 vmax_val = _mm256_set1_ps(max_val);
+     unsigned int i;
+-    for(i = 0; i < avx_iters; i++)
+-        {
+-            inputVal1 = _mm256_loadu_ps((float*)inputVectorPtr);
+-            inputVectorPtr += 8;
+-            inputVal2 = _mm256_loadu_ps((float*)inputVectorPtr);
+-            inputVectorPtr += 8;
+-            __VOLK_PREFETCH(inputVectorPtr + 16);
+-
+-            // Clip
+-            ret1 = _mm256_max_ps(_mm256_min_ps(inputVal1, vmax_val), vmin_val);
+-            ret2 = _mm256_max_ps(_mm256_min_ps(inputVal2, vmax_val), vmin_val);
+-
+-            intInputVal1 = _mm256_cvtps_epi32(ret1);
+-            intInputVal2 = _mm256_cvtps_epi32(ret2);
+-
+-            intInputVal1 = _mm256_packs_epi32(intInputVal1, intInputVal2);
+-            intInputVal1 = _mm256_permute4x64_epi64(intInputVal1, 0xd8);
+-
+-            _mm256_storeu_si256((__m256i*)outputVectorPtr, intInputVal1);
+-            outputVectorPtr += 16;
+-        }
+-
+-    for(i = avx_iters * 16; i < num_points * 2; i++)
+-        {
+-            aux = *inputVectorPtr++;
+-            if(aux > max_val)
+-                aux = max_val;
+-            else if(aux < min_val)
+-                aux = min_val;
+-            *outputVectorPtr++ = (int16_t)rintf(aux);
+-        }
++    for (i = 0; i < avx_iters; i++) {
++        inputVal1 = _mm256_loadu_ps((float*)inputVectorPtr);
++        inputVectorPtr += 8;
++        inputVal2 = _mm256_loadu_ps((float*)inputVectorPtr);
++        inputVectorPtr += 8;
++        __VOLK_PREFETCH(inputVectorPtr + 16);
++
++        // Clip
++        ret1 = _mm256_max_ps(_mm256_min_ps(inputVal1, vmax_val), vmin_val);
++        ret2 = _mm256_max_ps(_mm256_min_ps(inputVal2, vmax_val), vmin_val);
++
++        intInputVal1 = _mm256_cvtps_epi32(ret1);
++        intInputVal2 = _mm256_cvtps_epi32(ret2);
++
++        intInputVal1 = _mm256_packs_epi32(intInputVal1, intInputVal2);
++        intInputVal1 = _mm256_permute4x64_epi64(intInputVal1, 0xd8);
++
++        _mm256_storeu_si256((__m256i*)outputVectorPtr, intInputVal1);
++        outputVectorPtr += 16;
++    }
++
++    for (i = avx_iters * 16; i < num_points * 2; i++) {
++        aux = *inputVectorPtr++;
++        if (aux > max_val)
++            aux = max_val;
++        else if (aux < min_val)
++            aux = min_val;
++        *outputVectorPtr++ = (int16_t)rintf(aux);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -377,7 +388,9 @@ static inline void volk_32fc_convert_16ic_u_avx2(lv_16sc_t* outputVector, const
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void volk_32fc_convert_16ic_u_sse2(lv_16sc_t* outputVector, const lv_32fc_t* inputVector, unsigned int num_points)
++static inline void volk_32fc_convert_16ic_u_sse2(lv_16sc_t* outputVector,
++                                                 const lv_32fc_t* inputVector,
++                                                 unsigned int num_points)
+ {
+     const unsigned int sse_iters = num_points / 4;
+@@ -395,36 +408,34 @@ static inline void volk_32fc_convert_16ic_u_sse2(lv_16sc_t* outputVector, const
+     const __m128 vmax_val = _mm_set_ps1(max_val);
+     unsigned int i;
+-    for(i = 0; i < sse_iters; i++)
+-        {
+-            inputVal1 = _mm_loadu_ps((float*)inputVectorPtr);
+-            inputVectorPtr += 4;
+-            inputVal2 = _mm_loadu_ps((float*)inputVectorPtr);
+-            inputVectorPtr += 4;
+-            __VOLK_PREFETCH(inputVectorPtr + 8);
+-
+-            // Clip
+-            ret1 = _mm_max_ps(_mm_min_ps(inputVal1, vmax_val), vmin_val);
+-            ret2 = _mm_max_ps(_mm_min_ps(inputVal2, vmax_val), vmin_val);
+-
+-            intInputVal1 = _mm_cvtps_epi32(ret1);
+-            intInputVal2 = _mm_cvtps_epi32(ret2);
+-
+-            intInputVal1 = _mm_packs_epi32(intInputVal1, intInputVal2);
+-
+-            _mm_storeu_si128((__m128i*)outputVectorPtr, intInputVal1);
+-            outputVectorPtr += 8;
+-        }
+-
+-    for(i = sse_iters * 8; i < num_points * 2; i++)
+-        {
+-            aux = *inputVectorPtr++;
+-            if(aux > max_val)
+-                aux = max_val;
+-            else if(aux < min_val)
+-                aux = min_val;
+-            *outputVectorPtr++ = (int16_t)rintf(aux);
+-        }
++    for (i = 0; i < sse_iters; i++) {
++        inputVal1 = _mm_loadu_ps((float*)inputVectorPtr);
++        inputVectorPtr += 4;
++        inputVal2 = _mm_loadu_ps((float*)inputVectorPtr);
++        inputVectorPtr += 4;
++        __VOLK_PREFETCH(inputVectorPtr + 8);
++
++        // Clip
++        ret1 = _mm_max_ps(_mm_min_ps(inputVal1, vmax_val), vmin_val);
++        ret2 = _mm_max_ps(_mm_min_ps(inputVal2, vmax_val), vmin_val);
++
++        intInputVal1 = _mm_cvtps_epi32(ret1);
++        intInputVal2 = _mm_cvtps_epi32(ret2);
++
++        intInputVal1 = _mm_packs_epi32(intInputVal1, intInputVal2);
++
++        _mm_storeu_si128((__m128i*)outputVectorPtr, intInputVal1);
++        outputVectorPtr += 8;
++    }
++
++    for (i = sse_iters * 8; i < num_points * 2; i++) {
++        aux = *inputVectorPtr++;
++        if (aux > max_val)
++            aux = max_val;
++        else if (aux < min_val)
++            aux = min_val;
++        *outputVectorPtr++ = (int16_t)rintf(aux);
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+ #endif /* INCLUDED_volk_32fc_convert_16ic_u_H */
+diff --git a/kernels/volk/volk_32fc_deinterleave_32f_x2.h b/kernels/volk/volk_32fc_deinterleave_32f_x2.h
+index 40cd664..1a06c48 100644
+--- a/kernels/volk/volk_32fc_deinterleave_32f_x2.h
++++ b/kernels/volk/volk_32fc_deinterleave_32f_x2.h
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32fc_deinterleave_32f_x2(float* iBuffer, float* qBuffer, const lv_32fc_t* complexVector, unsigned int num_points)
+- * \endcode
++ * void volk_32fc_deinterleave_32f_x2(float* iBuffer, float* qBuffer, const lv_32fc_t*
++ * complexVector, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li complexVector: The complex input vector.
+@@ -78,86 +78,88 @@
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32fc_deinterleave_32f_x2_a_avx(float* iBuffer, float* qBuffer, const lv_32fc_t* complexVector,
+-                                    unsigned int num_points)
++static inline void volk_32fc_deinterleave_32f_x2_a_avx(float* iBuffer,
++                                                       float* qBuffer,
++                                                       const lv_32fc_t* complexVector,
++                                                       unsigned int num_points)
+ {
+-  const float* complexVectorPtr = (float*)complexVector;
+-  float* iBufferPtr = iBuffer;
+-  float* qBufferPtr = qBuffer;
+-
+-  unsigned int number = 0;
+-  // Mask for real and imaginary parts
+-  const unsigned int eighthPoints = num_points / 8;
+-  __m256 cplxValue1, cplxValue2, complex1, complex2, iValue, qValue;
+-  for(;number < eighthPoints; number++){
+-    cplxValue1 = _mm256_load_ps(complexVectorPtr);
+-    complexVectorPtr += 8;
+-
+-    cplxValue2 = _mm256_load_ps(complexVectorPtr);
+-    complexVectorPtr += 8;
+-
+-    complex1 = _mm256_permute2f128_ps(cplxValue1, cplxValue2, 0x20);
+-    complex2 = _mm256_permute2f128_ps(cplxValue1, cplxValue2, 0x31);
+-
+-    // Arrange in i1i2i3i4 format
+-    iValue = _mm256_shuffle_ps(complex1, complex2, 0x88);
+-    // Arrange in q1q2q3q4 format
+-    qValue = _mm256_shuffle_ps(complex1, complex2, 0xdd);
+-
+-    _mm256_store_ps(iBufferPtr, iValue);
+-    _mm256_store_ps(qBufferPtr, qValue);
+-
+-    iBufferPtr += 8;
+-    qBufferPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = *complexVectorPtr++;
+-    *qBufferPtr++ = *complexVectorPtr++;
+-  }
++    const float* complexVectorPtr = (float*)complexVector;
++    float* iBufferPtr = iBuffer;
++    float* qBufferPtr = qBuffer;
++
++    unsigned int number = 0;
++    // Mask for real and imaginary parts
++    const unsigned int eighthPoints = num_points / 8;
++    __m256 cplxValue1, cplxValue2, complex1, complex2, iValue, qValue;
++    for (; number < eighthPoints; number++) {
++        cplxValue1 = _mm256_load_ps(complexVectorPtr);
++        complexVectorPtr += 8;
++
++        cplxValue2 = _mm256_load_ps(complexVectorPtr);
++        complexVectorPtr += 8;
++
++        complex1 = _mm256_permute2f128_ps(cplxValue1, cplxValue2, 0x20);
++        complex2 = _mm256_permute2f128_ps(cplxValue1, cplxValue2, 0x31);
++
++        // Arrange in i1i2i3i4 format
++        iValue = _mm256_shuffle_ps(complex1, complex2, 0x88);
++        // Arrange in q1q2q3q4 format
++        qValue = _mm256_shuffle_ps(complex1, complex2, 0xdd);
++
++        _mm256_store_ps(iBufferPtr, iValue);
++        _mm256_store_ps(qBufferPtr, qValue);
++
++        iBufferPtr += 8;
++        qBufferPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = *complexVectorPtr++;
++        *qBufferPtr++ = *complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32fc_deinterleave_32f_x2_a_sse(float* iBuffer, float* qBuffer, const lv_32fc_t* complexVector,
+-                                    unsigned int num_points)
++static inline void volk_32fc_deinterleave_32f_x2_a_sse(float* iBuffer,
++                                                       float* qBuffer,
++                                                       const lv_32fc_t* complexVector,
++                                                       unsigned int num_points)
+ {
+-  const float* complexVectorPtr = (float*)complexVector;
+-  float* iBufferPtr = iBuffer;
+-  float* qBufferPtr = qBuffer;
+-
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-  __m128 cplxValue1, cplxValue2, iValue, qValue;
+-  for(;number < quarterPoints; number++){
+-    cplxValue1 = _mm_load_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
+-
+-    cplxValue2 = _mm_load_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
+-
+-    // Arrange in i1i2i3i4 format
+-    iValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2,0,2,0));
+-    // Arrange in q1q2q3q4 format
+-    qValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(3,1,3,1));
+-
+-    _mm_store_ps(iBufferPtr, iValue);
+-    _mm_store_ps(qBufferPtr, qValue);
+-
+-    iBufferPtr += 4;
+-    qBufferPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = *complexVectorPtr++;
+-    *qBufferPtr++ = *complexVectorPtr++;
+-  }
++    const float* complexVectorPtr = (float*)complexVector;
++    float* iBufferPtr = iBuffer;
++    float* qBufferPtr = qBuffer;
++
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++    __m128 cplxValue1, cplxValue2, iValue, qValue;
++    for (; number < quarterPoints; number++) {
++        cplxValue1 = _mm_load_ps(complexVectorPtr);
++        complexVectorPtr += 4;
++
++        cplxValue2 = _mm_load_ps(complexVectorPtr);
++        complexVectorPtr += 4;
++
++        // Arrange in i1i2i3i4 format
++        iValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2, 0, 2, 0));
++        // Arrange in q1q2q3q4 format
++        qValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(3, 1, 3, 1));
++
++        _mm_store_ps(iBufferPtr, iValue);
++        _mm_store_ps(qBufferPtr, qValue);
++
++        iBufferPtr += 4;
++        qBufferPtr += 4;
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = *complexVectorPtr++;
++        *qBufferPtr++ = *complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+@@ -165,48 +167,50 @@ volk_32fc_deinterleave_32f_x2_a_sse(float* iBuffer, float* qBuffer, const lv_32f
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_32fc_deinterleave_32f_x2_neon(float* iBuffer, float* qBuffer, const lv_32fc_t* complexVector,
+-                                   unsigned int num_points)
++static inline void volk_32fc_deinterleave_32f_x2_neon(float* iBuffer,
++                                                      float* qBuffer,
++                                                      const lv_32fc_t* complexVector,
++                                                      unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  unsigned int quarter_points = num_points / 4;
+-  const float* complexVectorPtr = (float*)complexVector;
+-  float* iBufferPtr = iBuffer;
+-  float* qBufferPtr = qBuffer;
+-  float32x4x2_t complexInput;
+-
+-  for(number = 0; number < quarter_points; number++){
+-    complexInput = vld2q_f32(complexVectorPtr);
+-    vst1q_f32( iBufferPtr, complexInput.val[0] );
+-    vst1q_f32( qBufferPtr, complexInput.val[1] );
+-    complexVectorPtr += 8;
+-    iBufferPtr += 4;
+-    qBufferPtr += 4;
+-  }
+-
+-  for(number = quarter_points*4; number < num_points; number++){
+-    *iBufferPtr++ = *complexVectorPtr++;
+-    *qBufferPtr++ = *complexVectorPtr++;
+-  }
++    unsigned int number = 0;
++    unsigned int quarter_points = num_points / 4;
++    const float* complexVectorPtr = (float*)complexVector;
++    float* iBufferPtr = iBuffer;
++    float* qBufferPtr = qBuffer;
++    float32x4x2_t complexInput;
++
++    for (number = 0; number < quarter_points; number++) {
++        complexInput = vld2q_f32(complexVectorPtr);
++        vst1q_f32(iBufferPtr, complexInput.val[0]);
++        vst1q_f32(qBufferPtr, complexInput.val[1]);
++        complexVectorPtr += 8;
++        iBufferPtr += 4;
++        qBufferPtr += 4;
++    }
++
++    for (number = quarter_points * 4; number < num_points; number++) {
++        *iBufferPtr++ = *complexVectorPtr++;
++        *qBufferPtr++ = *complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32fc_deinterleave_32f_x2_generic(float* iBuffer, float* qBuffer, const lv_32fc_t* complexVector,
+-                                      unsigned int num_points)
++static inline void volk_32fc_deinterleave_32f_x2_generic(float* iBuffer,
++                                                         float* qBuffer,
++                                                         const lv_32fc_t* complexVector,
++                                                         unsigned int num_points)
+ {
+-  const float* complexVectorPtr = (float*)complexVector;
+-  float* iBufferPtr = iBuffer;
+-  float* qBufferPtr = qBuffer;
+-  unsigned int number;
+-  for(number = 0; number < num_points; number++){
+-    *iBufferPtr++ = *complexVectorPtr++;
+-    *qBufferPtr++ = *complexVectorPtr++;
+-  }
++    const float* complexVectorPtr = (float*)complexVector;
++    float* iBufferPtr = iBuffer;
++    float* qBufferPtr = qBuffer;
++    unsigned int number;
++    for (number = 0; number < num_points; number++) {
++        *iBufferPtr++ = *complexVectorPtr++;
++        *qBufferPtr++ = *complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -221,45 +225,46 @@ volk_32fc_deinterleave_32f_x2_generic(float* iBuffer, float* qBuffer, const lv_3
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32fc_deinterleave_32f_x2_u_avx(float* iBuffer, float* qBuffer, const lv_32fc_t* complexVector,
+-                                    unsigned int num_points)
++static inline void volk_32fc_deinterleave_32f_x2_u_avx(float* iBuffer,
++                                                       float* qBuffer,
++                                                       const lv_32fc_t* complexVector,
++                                                       unsigned int num_points)
+ {
+-  const float* complexVectorPtr = (float*)complexVector;
+-  float* iBufferPtr = iBuffer;
+-  float* qBufferPtr = qBuffer;
+-
+-  unsigned int number = 0;
+-  // Mask for real and imaginary parts
+-  const unsigned int eighthPoints = num_points / 8;
+-  __m256 cplxValue1, cplxValue2, complex1, complex2, iValue, qValue;
+-  for(;number < eighthPoints; number++){
+-    cplxValue1 = _mm256_loadu_ps(complexVectorPtr);
+-    complexVectorPtr += 8;
+-
+-    cplxValue2 = _mm256_loadu_ps(complexVectorPtr);
+-    complexVectorPtr += 8;
+-
+-    complex1 = _mm256_permute2f128_ps(cplxValue1, cplxValue2, 0x20);
+-    complex2 = _mm256_permute2f128_ps(cplxValue1, cplxValue2, 0x31);
+-
+-    // Arrange in i1i2i3i4 format
+-    iValue = _mm256_shuffle_ps(complex1, complex2, 0x88);
+-    // Arrange in q1q2q3q4 format
+-    qValue = _mm256_shuffle_ps(complex1, complex2, 0xdd);
+-
+-    _mm256_storeu_ps(iBufferPtr, iValue);
+-    _mm256_storeu_ps(qBufferPtr, qValue);
+-
+-    iBufferPtr += 8;
+-    qBufferPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = *complexVectorPtr++;
+-    *qBufferPtr++ = *complexVectorPtr++;
+-  }
++    const float* complexVectorPtr = (float*)complexVector;
++    float* iBufferPtr = iBuffer;
++    float* qBufferPtr = qBuffer;
++
++    unsigned int number = 0;
++    // Mask for real and imaginary parts
++    const unsigned int eighthPoints = num_points / 8;
++    __m256 cplxValue1, cplxValue2, complex1, complex2, iValue, qValue;
++    for (; number < eighthPoints; number++) {
++        cplxValue1 = _mm256_loadu_ps(complexVectorPtr);
++        complexVectorPtr += 8;
++
++        cplxValue2 = _mm256_loadu_ps(complexVectorPtr);
++        complexVectorPtr += 8;
++
++        complex1 = _mm256_permute2f128_ps(cplxValue1, cplxValue2, 0x20);
++        complex2 = _mm256_permute2f128_ps(cplxValue1, cplxValue2, 0x31);
++
++        // Arrange in i1i2i3i4 format
++        iValue = _mm256_shuffle_ps(complex1, complex2, 0x88);
++        // Arrange in q1q2q3q4 format
++        qValue = _mm256_shuffle_ps(complex1, complex2, 0xdd);
++
++        _mm256_storeu_ps(iBufferPtr, iValue);
++        _mm256_storeu_ps(qBufferPtr, qValue);
++
++        iBufferPtr += 8;
++        qBufferPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = *complexVectorPtr++;
++        *qBufferPtr++ = *complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+ #endif /* INCLUDED_volk_32fc_deinterleave_32f_x2_u_H */
+diff --git a/kernels/volk/volk_32fc_deinterleave_64f_x2.h b/kernels/volk/volk_32fc_deinterleave_64f_x2.h
+index 3e799cb..3b69c3c 100644
+--- a/kernels/volk/volk_32fc_deinterleave_64f_x2.h
++++ b/kernels/volk/volk_32fc_deinterleave_64f_x2.h
+@@ -79,110 +79,113 @@
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32fc_deinterleave_64f_x2_u_avx(double *iBuffer, double *qBuffer,
+-                                    const lv_32fc_t *complexVector,
+-                                    unsigned int num_points) {
+-  unsigned int number = 0;
+-
+-  const float *complexVectorPtr = (float *)complexVector;
+-  double *iBufferPtr = iBuffer;
+-  double *qBufferPtr = qBuffer;
+-
+-  const unsigned int quarterPoints = num_points / 4;
+-  __m256 cplxValue;
+-  __m128 complexH, complexL, fVal;
+-  __m256d dVal;
+-
+-  for (; number < quarterPoints; number++) {
+-
+-    cplxValue = _mm256_loadu_ps(complexVectorPtr);
+-    complexVectorPtr += 8;
+-
+-    complexH = _mm256_extractf128_ps(cplxValue, 1);
+-    complexL = _mm256_extractf128_ps(cplxValue, 0);
+-
+-    // Arrange in i1i2i1i2 format
+-    fVal = _mm_shuffle_ps(complexL, complexH, _MM_SHUFFLE(2, 0, 2, 0));
+-    dVal = _mm256_cvtps_pd(fVal);
+-    _mm256_storeu_pd(iBufferPtr, dVal);
+-
+-    // Arrange in q1q2q1q2 format
+-    fVal = _mm_shuffle_ps(complexL, complexH, _MM_SHUFFLE(3, 1, 3, 1));
+-    dVal = _mm256_cvtps_pd(fVal);
+-    _mm256_storeu_pd(qBufferPtr, dVal);
+-
+-    iBufferPtr += 4;
+-    qBufferPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for (; number < num_points; number++) {
+-    *iBufferPtr++ = *complexVectorPtr++;
+-    *qBufferPtr++ = *complexVectorPtr++;
+-  }
++static inline void volk_32fc_deinterleave_64f_x2_u_avx(double* iBuffer,
++                                                       double* qBuffer,
++                                                       const lv_32fc_t* complexVector,
++                                                       unsigned int num_points)
++{
++    unsigned int number = 0;
++
++    const float* complexVectorPtr = (float*)complexVector;
++    double* iBufferPtr = iBuffer;
++    double* qBufferPtr = qBuffer;
++
++    const unsigned int quarterPoints = num_points / 4;
++    __m256 cplxValue;
++    __m128 complexH, complexL, fVal;
++    __m256d dVal;
++
++    for (; number < quarterPoints; number++) {
++
++        cplxValue = _mm256_loadu_ps(complexVectorPtr);
++        complexVectorPtr += 8;
++
++        complexH = _mm256_extractf128_ps(cplxValue, 1);
++        complexL = _mm256_extractf128_ps(cplxValue, 0);
++
++        // Arrange in i1i2i1i2 format
++        fVal = _mm_shuffle_ps(complexL, complexH, _MM_SHUFFLE(2, 0, 2, 0));
++        dVal = _mm256_cvtps_pd(fVal);
++        _mm256_storeu_pd(iBufferPtr, dVal);
++
++        // Arrange in q1q2q1q2 format
++        fVal = _mm_shuffle_ps(complexL, complexH, _MM_SHUFFLE(3, 1, 3, 1));
++        dVal = _mm256_cvtps_pd(fVal);
++        _mm256_storeu_pd(qBufferPtr, dVal);
++
++        iBufferPtr += 4;
++        qBufferPtr += 4;
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = *complexVectorPtr++;
++        *qBufferPtr++ = *complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void
+-volk_32fc_deinterleave_64f_x2_u_sse2(double *iBuffer, double *qBuffer,
+-                                     const lv_32fc_t *complexVector,
+-                                     unsigned int num_points) {
+-  unsigned int number = 0;
+-
+-  const float *complexVectorPtr = (float *)complexVector;
+-  double *iBufferPtr = iBuffer;
+-  double *qBufferPtr = qBuffer;
+-
+-  const unsigned int halfPoints = num_points / 2;
+-  __m128 cplxValue, fVal;
+-  __m128d dVal;
+-
+-  for (; number < halfPoints; number++) {
+-
+-    cplxValue = _mm_loadu_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
+-
+-    // Arrange in i1i2i1i2 format
+-    fVal = _mm_shuffle_ps(cplxValue, cplxValue, _MM_SHUFFLE(2, 0, 2, 0));
+-    dVal = _mm_cvtps_pd(fVal);
+-    _mm_storeu_pd(iBufferPtr, dVal);
+-
+-    // Arrange in q1q2q1q2 format
+-    fVal = _mm_shuffle_ps(cplxValue, cplxValue, _MM_SHUFFLE(3, 1, 3, 1));
+-    dVal = _mm_cvtps_pd(fVal);
+-    _mm_storeu_pd(qBufferPtr, dVal);
+-
+-    iBufferPtr += 2;
+-    qBufferPtr += 2;
+-  }
+-
+-  number = halfPoints * 2;
+-  for (; number < num_points; number++) {
+-    *iBufferPtr++ = *complexVectorPtr++;
+-    *qBufferPtr++ = *complexVectorPtr++;
+-  }
++static inline void volk_32fc_deinterleave_64f_x2_u_sse2(double* iBuffer,
++                                                        double* qBuffer,
++                                                        const lv_32fc_t* complexVector,
++                                                        unsigned int num_points)
++{
++    unsigned int number = 0;
++
++    const float* complexVectorPtr = (float*)complexVector;
++    double* iBufferPtr = iBuffer;
++    double* qBufferPtr = qBuffer;
++
++    const unsigned int halfPoints = num_points / 2;
++    __m128 cplxValue, fVal;
++    __m128d dVal;
++
++    for (; number < halfPoints; number++) {
++
++        cplxValue = _mm_loadu_ps(complexVectorPtr);
++        complexVectorPtr += 4;
++
++        // Arrange in i1i2i1i2 format
++        fVal = _mm_shuffle_ps(cplxValue, cplxValue, _MM_SHUFFLE(2, 0, 2, 0));
++        dVal = _mm_cvtps_pd(fVal);
++        _mm_storeu_pd(iBufferPtr, dVal);
++
++        // Arrange in q1q2q1q2 format
++        fVal = _mm_shuffle_ps(cplxValue, cplxValue, _MM_SHUFFLE(3, 1, 3, 1));
++        dVal = _mm_cvtps_pd(fVal);
++        _mm_storeu_pd(qBufferPtr, dVal);
++
++        iBufferPtr += 2;
++        qBufferPtr += 2;
++    }
++
++    number = halfPoints * 2;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = *complexVectorPtr++;
++        *qBufferPtr++ = *complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32fc_deinterleave_64f_x2_generic(double *iBuffer, double *qBuffer,
+-                                      const lv_32fc_t *complexVector,
+-                                      unsigned int num_points) {
+-  unsigned int number = 0;
+-  const float *complexVectorPtr = (float *)complexVector;
+-  double *iBufferPtr = iBuffer;
+-  double *qBufferPtr = qBuffer;
+-
+-  for (number = 0; number < num_points; number++) {
+-    *iBufferPtr++ = (double)*complexVectorPtr++;
+-    *qBufferPtr++ = (double)*complexVectorPtr++;
+-  }
++static inline void volk_32fc_deinterleave_64f_x2_generic(double* iBuffer,
++                                                         double* qBuffer,
++                                                         const lv_32fc_t* complexVector,
++                                                         unsigned int num_points)
++{
++    unsigned int number = 0;
++    const float* complexVectorPtr = (float*)complexVector;
++    double* iBufferPtr = iBuffer;
++    double* qBufferPtr = qBuffer;
++
++    for (number = 0; number < num_points; number++) {
++        *iBufferPtr++ = (double)*complexVectorPtr++;
++        *qBufferPtr++ = (double)*complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -196,146 +199,150 @@ volk_32fc_deinterleave_64f_x2_generic(double *iBuffer, double *qBuffer,
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32fc_deinterleave_64f_x2_a_avx(double *iBuffer, double *qBuffer,
+-                                    const lv_32fc_t *complexVector,
+-                                    unsigned int num_points) {
+-  unsigned int number = 0;
+-
+-  const float *complexVectorPtr = (float *)complexVector;
+-  double *iBufferPtr = iBuffer;
+-  double *qBufferPtr = qBuffer;
+-
+-  const unsigned int quarterPoints = num_points / 4;
+-  __m256 cplxValue;
+-  __m128 complexH, complexL, fVal;
+-  __m256d dVal;
+-
+-  for (; number < quarterPoints; number++) {
+-
+-    cplxValue = _mm256_load_ps(complexVectorPtr);
+-    complexVectorPtr += 8;
+-
+-    complexH = _mm256_extractf128_ps(cplxValue, 1);
+-    complexL = _mm256_extractf128_ps(cplxValue, 0);
+-
+-    // Arrange in i1i2i1i2 format
+-    fVal = _mm_shuffle_ps(complexL, complexH, _MM_SHUFFLE(2, 0, 2, 0));
+-    dVal = _mm256_cvtps_pd(fVal);
+-    _mm256_store_pd(iBufferPtr, dVal);
+-
+-    // Arrange in q1q2q1q2 format
+-    fVal = _mm_shuffle_ps(complexL, complexH, _MM_SHUFFLE(3, 1, 3, 1));
+-    dVal = _mm256_cvtps_pd(fVal);
+-    _mm256_store_pd(qBufferPtr, dVal);
+-
+-    iBufferPtr += 4;
+-    qBufferPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for (; number < num_points; number++) {
+-    *iBufferPtr++ = *complexVectorPtr++;
+-    *qBufferPtr++ = *complexVectorPtr++;
+-  }
++static inline void volk_32fc_deinterleave_64f_x2_a_avx(double* iBuffer,
++                                                       double* qBuffer,
++                                                       const lv_32fc_t* complexVector,
++                                                       unsigned int num_points)
++{
++    unsigned int number = 0;
++
++    const float* complexVectorPtr = (float*)complexVector;
++    double* iBufferPtr = iBuffer;
++    double* qBufferPtr = qBuffer;
++
++    const unsigned int quarterPoints = num_points / 4;
++    __m256 cplxValue;
++    __m128 complexH, complexL, fVal;
++    __m256d dVal;
++
++    for (; number < quarterPoints; number++) {
++
++        cplxValue = _mm256_load_ps(complexVectorPtr);
++        complexVectorPtr += 8;
++
++        complexH = _mm256_extractf128_ps(cplxValue, 1);
++        complexL = _mm256_extractf128_ps(cplxValue, 0);
++
++        // Arrange in i1i2i1i2 format
++        fVal = _mm_shuffle_ps(complexL, complexH, _MM_SHUFFLE(2, 0, 2, 0));
++        dVal = _mm256_cvtps_pd(fVal);
++        _mm256_store_pd(iBufferPtr, dVal);
++
++        // Arrange in q1q2q1q2 format
++        fVal = _mm_shuffle_ps(complexL, complexH, _MM_SHUFFLE(3, 1, 3, 1));
++        dVal = _mm256_cvtps_pd(fVal);
++        _mm256_store_pd(qBufferPtr, dVal);
++
++        iBufferPtr += 4;
++        qBufferPtr += 4;
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = *complexVectorPtr++;
++        *qBufferPtr++ = *complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void
+-volk_32fc_deinterleave_64f_x2_a_sse2(double *iBuffer, double *qBuffer,
+-                                     const lv_32fc_t *complexVector,
+-                                     unsigned int num_points) {
+-  unsigned int number = 0;
+-
+-  const float *complexVectorPtr = (float *)complexVector;
+-  double *iBufferPtr = iBuffer;
+-  double *qBufferPtr = qBuffer;
+-
+-  const unsigned int halfPoints = num_points / 2;
+-  __m128 cplxValue, fVal;
+-  __m128d dVal;
+-
+-  for (; number < halfPoints; number++) {
+-
+-    cplxValue = _mm_load_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
+-
+-    // Arrange in i1i2i1i2 format
+-    fVal = _mm_shuffle_ps(cplxValue, cplxValue, _MM_SHUFFLE(2, 0, 2, 0));
+-    dVal = _mm_cvtps_pd(fVal);
+-    _mm_store_pd(iBufferPtr, dVal);
+-
+-    // Arrange in q1q2q1q2 format
+-    fVal = _mm_shuffle_ps(cplxValue, cplxValue, _MM_SHUFFLE(3, 1, 3, 1));
+-    dVal = _mm_cvtps_pd(fVal);
+-    _mm_store_pd(qBufferPtr, dVal);
+-
+-    iBufferPtr += 2;
+-    qBufferPtr += 2;
+-  }
+-
+-  number = halfPoints * 2;
+-  for (; number < num_points; number++) {
+-    *iBufferPtr++ = *complexVectorPtr++;
+-    *qBufferPtr++ = *complexVectorPtr++;
+-  }
++static inline void volk_32fc_deinterleave_64f_x2_a_sse2(double* iBuffer,
++                                                        double* qBuffer,
++                                                        const lv_32fc_t* complexVector,
++                                                        unsigned int num_points)
++{
++    unsigned int number = 0;
++
++    const float* complexVectorPtr = (float*)complexVector;
++    double* iBufferPtr = iBuffer;
++    double* qBufferPtr = qBuffer;
++
++    const unsigned int halfPoints = num_points / 2;
++    __m128 cplxValue, fVal;
++    __m128d dVal;
++
++    for (; number < halfPoints; number++) {
++
++        cplxValue = _mm_load_ps(complexVectorPtr);
++        complexVectorPtr += 4;
++
++        // Arrange in i1i2i1i2 format
++        fVal = _mm_shuffle_ps(cplxValue, cplxValue, _MM_SHUFFLE(2, 0, 2, 0));
++        dVal = _mm_cvtps_pd(fVal);
++        _mm_store_pd(iBufferPtr, dVal);
++
++        // Arrange in q1q2q1q2 format
++        fVal = _mm_shuffle_ps(cplxValue, cplxValue, _MM_SHUFFLE(3, 1, 3, 1));
++        dVal = _mm_cvtps_pd(fVal);
++        _mm_store_pd(qBufferPtr, dVal);
++
++        iBufferPtr += 2;
++        qBufferPtr += 2;
++    }
++
++    number = halfPoints * 2;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = *complexVectorPtr++;
++        *qBufferPtr++ = *complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32fc_deinterleave_64f_x2_a_generic(double *iBuffer, double *qBuffer,
+-                                        const lv_32fc_t *complexVector,
+-                                        unsigned int num_points) {
+-  unsigned int number = 0;
+-  const float *complexVectorPtr = (float *)complexVector;
+-  double *iBufferPtr = iBuffer;
+-  double *qBufferPtr = qBuffer;
+-
+-  for (number = 0; number < num_points; number++) {
+-    *iBufferPtr++ = (double)*complexVectorPtr++;
+-    *qBufferPtr++ = (double)*complexVectorPtr++;
+-  }
++static inline void volk_32fc_deinterleave_64f_x2_a_generic(double* iBuffer,
++                                                           double* qBuffer,
++                                                           const lv_32fc_t* complexVector,
++                                                           unsigned int num_points)
++{
++    unsigned int number = 0;
++    const float* complexVectorPtr = (float*)complexVector;
++    double* iBufferPtr = iBuffer;
++    double* qBufferPtr = qBuffer;
++
++    for (number = 0; number < num_points; number++) {
++        *iBufferPtr++ = (double)*complexVectorPtr++;
++        *qBufferPtr++ = (double)*complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_NEONV8
+ #include <arm_neon.h>
+-static inline void
+-volk_32fc_deinterleave_64f_x2_neon(double *iBuffer, double *qBuffer,
+-                                   const lv_32fc_t *complexVector,
+-                                   unsigned int num_points) {
+-  unsigned int number = 0;
+-  unsigned int half_points = num_points / 2;
+-  const float *complexVectorPtr = (float *)complexVector;
+-  double *iBufferPtr = iBuffer;
+-  double *qBufferPtr = qBuffer;
+-  float32x2x2_t complexInput;
+-  float64x2_t iVal, qVal;
+-
+-  for (number = 0; number < half_points; number++) {
+-    complexInput = vld2_f32(complexVectorPtr);
+-
+-    iVal = vcvt_f64_f32(complexInput.val[0]);
+-    qVal = vcvt_f64_f32(complexInput.val[1]);
+-
+-    vst1q_f64(iBufferPtr, iVal);
+-    vst1q_f64(qBufferPtr, qVal);
+-
+-    complexVectorPtr += 4;
+-    iBufferPtr += 2;
+-    qBufferPtr += 2;
+-  }
+-
+-  for (number = half_points * 2; number < num_points; number++) {
+-    *iBufferPtr++ = (double)*complexVectorPtr++;
+-    *qBufferPtr++ = (double)*complexVectorPtr++;
+-  }
++static inline void volk_32fc_deinterleave_64f_x2_neon(double* iBuffer,
++                                                      double* qBuffer,
++                                                      const lv_32fc_t* complexVector,
++                                                      unsigned int num_points)
++{
++    unsigned int number = 0;
++    unsigned int half_points = num_points / 2;
++    const float* complexVectorPtr = (float*)complexVector;
++    double* iBufferPtr = iBuffer;
++    double* qBufferPtr = qBuffer;
++    float32x2x2_t complexInput;
++    float64x2_t iVal, qVal;
++
++    for (number = 0; number < half_points; number++) {
++        complexInput = vld2_f32(complexVectorPtr);
++
++        iVal = vcvt_f64_f32(complexInput.val[0]);
++        qVal = vcvt_f64_f32(complexInput.val[1]);
++
++        vst1q_f64(iBufferPtr, iVal);
++        vst1q_f64(qBufferPtr, qVal);
++
++        complexVectorPtr += 4;
++        iBufferPtr += 2;
++        qBufferPtr += 2;
++    }
++
++    for (number = half_points * 2; number < num_points; number++) {
++        *iBufferPtr++ = (double)*complexVectorPtr++;
++        *qBufferPtr++ = (double)*complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_NEONV8 */
+diff --git a/kernels/volk/volk_32fc_deinterleave_imag_32f.h b/kernels/volk/volk_32fc_deinterleave_imag_32f.h
+index 13f9764..e3dfa12 100644
+--- a/kernels/volk/volk_32fc_deinterleave_imag_32f.h
++++ b/kernels/volk/volk_32fc_deinterleave_imag_32f.h
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32fc_deinterleave_image_32f(float* qBuffer, const lv_32fc_t* complexVector, unsigned int num_points)
+- * \endcode
++ * void volk_32fc_deinterleave_image_32f(float* qBuffer, const lv_32fc_t* complexVector,
++ * unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li complexVector: The complex input vector.
+@@ -76,121 +76,121 @@
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32fc_deinterleave_imag_32f_a_avx(float* qBuffer, const lv_32fc_t* complexVector,
+-                                      unsigned int num_points)
++static inline void volk_32fc_deinterleave_imag_32f_a_avx(float* qBuffer,
++                                                         const lv_32fc_t* complexVector,
++                                                         unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-  const float* complexVectorPtr = (const float*)complexVector;
+-  float* qBufferPtr = qBuffer;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++    const float* complexVectorPtr = (const float*)complexVector;
++    float* qBufferPtr = qBuffer;
+-  __m256 cplxValue1, cplxValue2, complex1, complex2, qValue;
+-  for(;number < eighthPoints; number++){
++    __m256 cplxValue1, cplxValue2, complex1, complex2, qValue;
++    for (; number < eighthPoints; number++) {
+-    cplxValue1 = _mm256_load_ps(complexVectorPtr);
+-    complexVectorPtr += 8;
++        cplxValue1 = _mm256_load_ps(complexVectorPtr);
++        complexVectorPtr += 8;
+-    cplxValue2 = _mm256_load_ps(complexVectorPtr);
+-    complexVectorPtr += 8;
++        cplxValue2 = _mm256_load_ps(complexVectorPtr);
++        complexVectorPtr += 8;
+-    complex1 = _mm256_permute2f128_ps(cplxValue1, cplxValue2, 0x20);
+-    complex2 = _mm256_permute2f128_ps(cplxValue1, cplxValue2, 0x31);
++        complex1 = _mm256_permute2f128_ps(cplxValue1, cplxValue2, 0x20);
++        complex2 = _mm256_permute2f128_ps(cplxValue1, cplxValue2, 0x31);
+-    // Arrange in q1q2q3q4 format
+-    qValue = _mm256_shuffle_ps(complex1, complex2, 0xdd);
++        // Arrange in q1q2q3q4 format
++        qValue = _mm256_shuffle_ps(complex1, complex2, 0xdd);
+-    _mm256_store_ps(qBufferPtr, qValue);
++        _mm256_store_ps(qBufferPtr, qValue);
+-    qBufferPtr += 8;
+-  }
++        qBufferPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    complexVectorPtr++;
+-    *qBufferPtr++ = *complexVectorPtr++;
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        complexVectorPtr++;
++        *qBufferPtr++ = *complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32fc_deinterleave_imag_32f_a_sse(float* qBuffer, const lv_32fc_t* complexVector,
+-                                      unsigned int num_points)
++static inline void volk_32fc_deinterleave_imag_32f_a_sse(float* qBuffer,
++                                                         const lv_32fc_t* complexVector,
++                                                         unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  const float* complexVectorPtr = (const float*)complexVector;
+-  float* qBufferPtr = qBuffer;
++    const float* complexVectorPtr = (const float*)complexVector;
++    float* qBufferPtr = qBuffer;
+-  __m128 cplxValue1, cplxValue2, iValue;
+-  for(;number < quarterPoints; number++){
++    __m128 cplxValue1, cplxValue2, iValue;
++    for (; number < quarterPoints; number++) {
+-    cplxValue1 = _mm_load_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
++        cplxValue1 = _mm_load_ps(complexVectorPtr);
++        complexVectorPtr += 4;
+-    cplxValue2 = _mm_load_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
++        cplxValue2 = _mm_load_ps(complexVectorPtr);
++        complexVectorPtr += 4;
+-    // Arrange in q1q2q3q4 format
+-    iValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(3,1,3,1));
++        // Arrange in q1q2q3q4 format
++        iValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(3, 1, 3, 1));
+-    _mm_store_ps(qBufferPtr, iValue);
++        _mm_store_ps(qBufferPtr, iValue);
+-    qBufferPtr += 4;
+-  }
++        qBufferPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    complexVectorPtr++;
+-    *qBufferPtr++ = *complexVectorPtr++;
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        complexVectorPtr++;
++        *qBufferPtr++ = *complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_32fc_deinterleave_imag_32f_neon(float* qBuffer, const lv_32fc_t* complexVector,
+-                                     unsigned int num_points)
++static inline void volk_32fc_deinterleave_imag_32f_neon(float* qBuffer,
++                                                        const lv_32fc_t* complexVector,
++                                                        unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  unsigned int quarter_points = num_points / 4;
+-  const float* complexVectorPtr = (float*)complexVector;
+-  float* qBufferPtr = qBuffer;
+-  float32x4x2_t complexInput;
+-
+-  for(number = 0; number < quarter_points; number++){
+-    complexInput = vld2q_f32(complexVectorPtr);
+-    vst1q_f32( qBufferPtr, complexInput.val[1] );
+-    complexVectorPtr += 8;
+-    qBufferPtr += 4;
+-  }
+-
+-  for(number = quarter_points*4; number < num_points; number++){
+-    complexVectorPtr++;
+-    *qBufferPtr++ = *complexVectorPtr++;
+-  }
++    unsigned int number = 0;
++    unsigned int quarter_points = num_points / 4;
++    const float* complexVectorPtr = (float*)complexVector;
++    float* qBufferPtr = qBuffer;
++    float32x4x2_t complexInput;
++
++    for (number = 0; number < quarter_points; number++) {
++        complexInput = vld2q_f32(complexVectorPtr);
++        vst1q_f32(qBufferPtr, complexInput.val[1]);
++        complexVectorPtr += 8;
++        qBufferPtr += 4;
++    }
++
++    for (number = quarter_points * 4; number < num_points; number++) {
++        complexVectorPtr++;
++        *qBufferPtr++ = *complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32fc_deinterleave_imag_32f_generic(float* qBuffer, const lv_32fc_t* complexVector,
+-                                        unsigned int num_points)
++static inline void volk_32fc_deinterleave_imag_32f_generic(float* qBuffer,
++                                                           const lv_32fc_t* complexVector,
++                                                           unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const float* complexVectorPtr = (float*)complexVector;
+-  float* qBufferPtr = qBuffer;
+-  for(number = 0; number < num_points; number++){
+-    complexVectorPtr++;
+-    *qBufferPtr++ = *complexVectorPtr++;
+-  }
++    unsigned int number = 0;
++    const float* complexVectorPtr = (float*)complexVector;
++    float* qBufferPtr = qBuffer;
++    for (number = 0; number < num_points; number++) {
++        complexVectorPtr++;
++        *qBufferPtr++ = *complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -206,40 +206,40 @@ volk_32fc_deinterleave_imag_32f_generic(float* qBuffer, const lv_32fc_t* complex
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32fc_deinterleave_imag_32f_u_avx(float* qBuffer, const lv_32fc_t* complexVector,
+-                                      unsigned int num_points)
++static inline void volk_32fc_deinterleave_imag_32f_u_avx(float* qBuffer,
++                                                         const lv_32fc_t* complexVector,
++                                                         unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-  const float* complexVectorPtr = (const float*)complexVector;
+-  float* qBufferPtr = qBuffer;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++    const float* complexVectorPtr = (const float*)complexVector;
++    float* qBufferPtr = qBuffer;
+-  __m256 cplxValue1, cplxValue2, complex1, complex2, qValue;
+-  for(;number < eighthPoints; number++){
++    __m256 cplxValue1, cplxValue2, complex1, complex2, qValue;
++    for (; number < eighthPoints; number++) {
+-    cplxValue1 = _mm256_loadu_ps(complexVectorPtr);
+-    complexVectorPtr += 8;
++        cplxValue1 = _mm256_loadu_ps(complexVectorPtr);
++        complexVectorPtr += 8;
+-    cplxValue2 = _mm256_loadu_ps(complexVectorPtr);
+-    complexVectorPtr += 8;
++        cplxValue2 = _mm256_loadu_ps(complexVectorPtr);
++        complexVectorPtr += 8;
+-    complex1 = _mm256_permute2f128_ps(cplxValue1, cplxValue2, 0x20);
+-    complex2 = _mm256_permute2f128_ps(cplxValue1, cplxValue2, 0x31);
++        complex1 = _mm256_permute2f128_ps(cplxValue1, cplxValue2, 0x20);
++        complex2 = _mm256_permute2f128_ps(cplxValue1, cplxValue2, 0x31);
+-    // Arrange in q1q2q3q4 format
+-    qValue = _mm256_shuffle_ps(complex1, complex2, 0xdd);
++        // Arrange in q1q2q3q4 format
++        qValue = _mm256_shuffle_ps(complex1, complex2, 0xdd);
+-    _mm256_storeu_ps(qBufferPtr, qValue);
++        _mm256_storeu_ps(qBufferPtr, qValue);
+-    qBufferPtr += 8;
+-  }
++        qBufferPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    complexVectorPtr++;
+-    *qBufferPtr++ = *complexVectorPtr++;
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        complexVectorPtr++;
++        *qBufferPtr++ = *complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+ #endif /* INCLUDED_volk_32fc_deinterleave_imag_32f_u_H */
+diff --git a/kernels/volk/volk_32fc_deinterleave_real_32f.h b/kernels/volk/volk_32fc_deinterleave_real_32f.h
+index 92a94d3..2526a16 100644
+--- a/kernels/volk/volk_32fc_deinterleave_real_32f.h
++++ b/kernels/volk/volk_32fc_deinterleave_real_32f.h
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32fc_deinterleave_real_32f(float* iBuffer, const lv_32fc_t* complexVector, unsigned int num_points)
+- * \endcode
++ * void volk_32fc_deinterleave_real_32f(float* iBuffer, const lv_32fc_t* complexVector,
++ * unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li complexVector: The complex input vector.
+@@ -76,96 +76,96 @@
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_32fc_deinterleave_real_32f_a_avx2(float* iBuffer, const lv_32fc_t* complexVector,
+-                                      unsigned int num_points)
++static inline void volk_32fc_deinterleave_real_32f_a_avx2(float* iBuffer,
++                                                          const lv_32fc_t* complexVector,
++                                                          unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  const float* complexVectorPtr = (const float*)complexVector;
+-  float* iBufferPtr = iBuffer;
++    const float* complexVectorPtr = (const float*)complexVector;
++    float* iBufferPtr = iBuffer;
+-  __m256 cplxValue1, cplxValue2;
+-  __m256 iValue;
+-  __m256i idx = _mm256_set_epi32(7,6,3,2,5,4,1,0);
+-  for(;number < eighthPoints; number++){
++    __m256 cplxValue1, cplxValue2;
++    __m256 iValue;
++    __m256i idx = _mm256_set_epi32(7, 6, 3, 2, 5, 4, 1, 0);
++    for (; number < eighthPoints; number++) {
+-    cplxValue1 = _mm256_load_ps(complexVectorPtr);
+-    complexVectorPtr += 8;
++        cplxValue1 = _mm256_load_ps(complexVectorPtr);
++        complexVectorPtr += 8;
+-    cplxValue2 = _mm256_load_ps(complexVectorPtr);
+-    complexVectorPtr += 8;
++        cplxValue2 = _mm256_load_ps(complexVectorPtr);
++        complexVectorPtr += 8;
+-    // Arrange in i1i2i3i4 format
+-    iValue = _mm256_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2,0,2,0));
+-    iValue = _mm256_permutevar8x32_ps(iValue,idx);
++        // Arrange in i1i2i3i4 format
++        iValue = _mm256_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2, 0, 2, 0));
++        iValue = _mm256_permutevar8x32_ps(iValue, idx);
+-    _mm256_store_ps(iBufferPtr, iValue);
++        _mm256_store_ps(iBufferPtr, iValue);
+-    iBufferPtr += 8;
+-  }
++        iBufferPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = *complexVectorPtr++;
+-    complexVectorPtr++;
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = *complexVectorPtr++;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32fc_deinterleave_real_32f_a_sse(float* iBuffer, const lv_32fc_t* complexVector,
+-                                      unsigned int num_points)
++static inline void volk_32fc_deinterleave_real_32f_a_sse(float* iBuffer,
++                                                         const lv_32fc_t* complexVector,
++                                                         unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  const float* complexVectorPtr = (const float*)complexVector;
+-  float* iBufferPtr = iBuffer;
++    const float* complexVectorPtr = (const float*)complexVector;
++    float* iBufferPtr = iBuffer;
+-  __m128 cplxValue1, cplxValue2, iValue;
+-  for(;number < quarterPoints; number++){
++    __m128 cplxValue1, cplxValue2, iValue;
++    for (; number < quarterPoints; number++) {
+-    cplxValue1 = _mm_load_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
++        cplxValue1 = _mm_load_ps(complexVectorPtr);
++        complexVectorPtr += 4;
+-    cplxValue2 = _mm_load_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
++        cplxValue2 = _mm_load_ps(complexVectorPtr);
++        complexVectorPtr += 4;
+-    // Arrange in i1i2i3i4 format
+-    iValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2,0,2,0));
++        // Arrange in i1i2i3i4 format
++        iValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2, 0, 2, 0));
+-    _mm_store_ps(iBufferPtr, iValue);
++        _mm_store_ps(iBufferPtr, iValue);
+-    iBufferPtr += 4;
+-  }
++        iBufferPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = *complexVectorPtr++;
+-    complexVectorPtr++;
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = *complexVectorPtr++;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32fc_deinterleave_real_32f_generic(float* iBuffer, const lv_32fc_t* complexVector,
+-                                        unsigned int num_points)
++static inline void volk_32fc_deinterleave_real_32f_generic(float* iBuffer,
++                                                           const lv_32fc_t* complexVector,
++                                                           unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const float* complexVectorPtr = (float*)complexVector;
+-  float* iBufferPtr = iBuffer;
+-  for(number = 0; number < num_points; number++){
+-    *iBufferPtr++ = *complexVectorPtr++;
+-    complexVectorPtr++;
+-  }
++    unsigned int number = 0;
++    const float* complexVectorPtr = (float*)complexVector;
++    float* iBufferPtr = iBuffer;
++    for (number = 0; number < num_points; number++) {
++        *iBufferPtr++ = *complexVectorPtr++;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -173,27 +173,27 @@ volk_32fc_deinterleave_real_32f_generic(float* iBuffer, const lv_32fc_t* complex
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_32fc_deinterleave_real_32f_neon(float* iBuffer, const lv_32fc_t* complexVector,
+-                                     unsigned int num_points)
++static inline void volk_32fc_deinterleave_real_32f_neon(float* iBuffer,
++                                                        const lv_32fc_t* complexVector,
++                                                        unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  unsigned int quarter_points = num_points / 4;
+-  const float* complexVectorPtr = (float*)complexVector;
+-  float* iBufferPtr = iBuffer;
+-  float32x4x2_t complexInput;
+-
+-  for(number = 0; number < quarter_points; number++){
+-    complexInput = vld2q_f32(complexVectorPtr);
+-    vst1q_f32( iBufferPtr, complexInput.val[0] );
+-    complexVectorPtr += 8;
+-    iBufferPtr += 4;
+-  }
+-
+-  for(number = quarter_points*4; number < num_points; number++){
+-    *iBufferPtr++ = *complexVectorPtr++;
+-    complexVectorPtr++;
+-  }
++    unsigned int number = 0;
++    unsigned int quarter_points = num_points / 4;
++    const float* complexVectorPtr = (float*)complexVector;
++    float* iBufferPtr = iBuffer;
++    float32x4x2_t complexInput;
++
++    for (number = 0; number < quarter_points; number++) {
++        complexInput = vld2q_f32(complexVectorPtr);
++        vst1q_f32(iBufferPtr, complexInput.val[0]);
++        complexVectorPtr += 8;
++        iBufferPtr += 4;
++    }
++
++    for (number = quarter_points * 4; number < num_points; number++) {
++        *iBufferPtr++ = *complexVectorPtr++;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+@@ -209,41 +209,41 @@ volk_32fc_deinterleave_real_32f_neon(float* iBuffer, const lv_32fc_t* complexVec
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_32fc_deinterleave_real_32f_u_avx2(float* iBuffer, const lv_32fc_t* complexVector,
+-                                      unsigned int num_points)
++static inline void volk_32fc_deinterleave_real_32f_u_avx2(float* iBuffer,
++                                                          const lv_32fc_t* complexVector,
++                                                          unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  const float* complexVectorPtr = (const float*)complexVector;
+-  float* iBufferPtr = iBuffer;
++    const float* complexVectorPtr = (const float*)complexVector;
++    float* iBufferPtr = iBuffer;
+-  __m256 cplxValue1, cplxValue2;
+-  __m256 iValue;
+-  __m256i idx = _mm256_set_epi32(7,6,3,2,5,4,1,0);
+-  for(;number < eighthPoints; number++){
++    __m256 cplxValue1, cplxValue2;
++    __m256 iValue;
++    __m256i idx = _mm256_set_epi32(7, 6, 3, 2, 5, 4, 1, 0);
++    for (; number < eighthPoints; number++) {
+-    cplxValue1 = _mm256_loadu_ps(complexVectorPtr);
+-    complexVectorPtr += 8;
++        cplxValue1 = _mm256_loadu_ps(complexVectorPtr);
++        complexVectorPtr += 8;
+-    cplxValue2 = _mm256_loadu_ps(complexVectorPtr);
+-    complexVectorPtr += 8;
++        cplxValue2 = _mm256_loadu_ps(complexVectorPtr);
++        complexVectorPtr += 8;
+-    // Arrange in i1i2i3i4 format
+-    iValue = _mm256_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2,0,2,0));
+-    iValue = _mm256_permutevar8x32_ps(iValue,idx);
++        // Arrange in i1i2i3i4 format
++        iValue = _mm256_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2, 0, 2, 0));
++        iValue = _mm256_permutevar8x32_ps(iValue, idx);
+-    _mm256_storeu_ps(iBufferPtr, iValue);
++        _mm256_storeu_ps(iBufferPtr, iValue);
+-    iBufferPtr += 8;
+-  }
++        iBufferPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = *complexVectorPtr++;
+-    complexVectorPtr++;
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = *complexVectorPtr++;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+diff --git a/kernels/volk/volk_32fc_deinterleave_real_64f.h b/kernels/volk/volk_32fc_deinterleave_real_64f.h
+index 3d6e901..9ec7769 100644
+--- a/kernels/volk/volk_32fc_deinterleave_real_64f.h
++++ b/kernels/volk/volk_32fc_deinterleave_real_64f.h
+@@ -77,124 +77,132 @@
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void volk_32fc_deinterleave_real_64f_a_avx2(
+-    double *iBuffer, const lv_32fc_t *complexVector, unsigned int num_points) {
+-  unsigned int number = 0;
+-
+-  const float *complexVectorPtr = (float *)complexVector;
+-  double *iBufferPtr = iBuffer;
+-
+-  const unsigned int quarterPoints = num_points / 4;
+-  __m256 cplxValue;
+-  __m128 fVal;
+-  __m256d dVal;
+-  __m256i idx = _mm256_set_epi32(0, 0, 0, 0, 6, 4, 2, 0);
+-  for (; number < quarterPoints; number++) {
+-
+-    cplxValue = _mm256_load_ps(complexVectorPtr);
+-    complexVectorPtr += 8;
+-
+-    // Arrange in i1i2i1i2 format
+-    cplxValue = _mm256_permutevar8x32_ps(cplxValue, idx);
+-    fVal = _mm256_extractf128_ps(cplxValue, 0);
+-    dVal = _mm256_cvtps_pd(fVal);
+-    _mm256_store_pd(iBufferPtr, dVal);
+-
+-    iBufferPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for (; number < num_points; number++) {
+-    *iBufferPtr++ = (double)*complexVectorPtr++;
+-    complexVectorPtr++;
+-  }
++static inline void volk_32fc_deinterleave_real_64f_a_avx2(double* iBuffer,
++                                                          const lv_32fc_t* complexVector,
++                                                          unsigned int num_points)
++{
++    unsigned int number = 0;
++
++    const float* complexVectorPtr = (float*)complexVector;
++    double* iBufferPtr = iBuffer;
++
++    const unsigned int quarterPoints = num_points / 4;
++    __m256 cplxValue;
++    __m128 fVal;
++    __m256d dVal;
++    __m256i idx = _mm256_set_epi32(0, 0, 0, 0, 6, 4, 2, 0);
++    for (; number < quarterPoints; number++) {
++
++        cplxValue = _mm256_load_ps(complexVectorPtr);
++        complexVectorPtr += 8;
++
++        // Arrange in i1i2i1i2 format
++        cplxValue = _mm256_permutevar8x32_ps(cplxValue, idx);
++        fVal = _mm256_extractf128_ps(cplxValue, 0);
++        dVal = _mm256_cvtps_pd(fVal);
++        _mm256_store_pd(iBufferPtr, dVal);
++
++        iBufferPtr += 4;
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = (double)*complexVectorPtr++;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void volk_32fc_deinterleave_real_64f_a_sse2(
+-    double *iBuffer, const lv_32fc_t *complexVector, unsigned int num_points) {
+-  unsigned int number = 0;
++static inline void volk_32fc_deinterleave_real_64f_a_sse2(double* iBuffer,
++                                                          const lv_32fc_t* complexVector,
++                                                          unsigned int num_points)
++{
++    unsigned int number = 0;
+-  const float *complexVectorPtr = (float *)complexVector;
+-  double *iBufferPtr = iBuffer;
++    const float* complexVectorPtr = (float*)complexVector;
++    double* iBufferPtr = iBuffer;
+-  const unsigned int halfPoints = num_points / 2;
+-  __m128 cplxValue, fVal;
+-  __m128d dVal;
+-  for (; number < halfPoints; number++) {
++    const unsigned int halfPoints = num_points / 2;
++    __m128 cplxValue, fVal;
++    __m128d dVal;
++    for (; number < halfPoints; number++) {
+-    cplxValue = _mm_load_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
++        cplxValue = _mm_load_ps(complexVectorPtr);
++        complexVectorPtr += 4;
+-    // Arrange in i1i2i1i2 format
+-    fVal = _mm_shuffle_ps(cplxValue, cplxValue, _MM_SHUFFLE(2, 0, 2, 0));
+-    dVal = _mm_cvtps_pd(fVal);
+-    _mm_store_pd(iBufferPtr, dVal);
++        // Arrange in i1i2i1i2 format
++        fVal = _mm_shuffle_ps(cplxValue, cplxValue, _MM_SHUFFLE(2, 0, 2, 0));
++        dVal = _mm_cvtps_pd(fVal);
++        _mm_store_pd(iBufferPtr, dVal);
+-    iBufferPtr += 2;
+-  }
++        iBufferPtr += 2;
++    }
+-  number = halfPoints * 2;
+-  for (; number < num_points; number++) {
+-    *iBufferPtr++ = (double)*complexVectorPtr++;
+-    complexVectorPtr++;
+-  }
++    number = halfPoints * 2;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = (double)*complexVectorPtr++;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32fc_deinterleave_real_64f_generic(
+-    double *iBuffer, const lv_32fc_t *complexVector, unsigned int num_points) {
+-  unsigned int number = 0;
+-  const float *complexVectorPtr = (float *)complexVector;
+-  double *iBufferPtr = iBuffer;
+-  for (number = 0; number < num_points; number++) {
+-    *iBufferPtr++ = (double)*complexVectorPtr++;
+-    complexVectorPtr++;
+-  }
++static inline void volk_32fc_deinterleave_real_64f_generic(double* iBuffer,
++                                                           const lv_32fc_t* complexVector,
++                                                           unsigned int num_points)
++{
++    unsigned int number = 0;
++    const float* complexVectorPtr = (float*)complexVector;
++    double* iBufferPtr = iBuffer;
++    for (number = 0; number < num_points; number++) {
++        *iBufferPtr++ = (double)*complexVectorPtr++;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_NEONV8
+ #include <arm_neon.h>
+-static inline void volk_32fc_deinterleave_real_64f_neon(
+-    double *iBuffer, const lv_32fc_t *complexVector, unsigned int num_points) {
+-  unsigned int number = 0;
+-  unsigned int quarter_points = num_points / 4;
+-  const float *complexVectorPtr = (float *)complexVector;
+-  double *iBufferPtr = iBuffer;
+-  float32x2x4_t complexInput;
+-  float64x2_t iVal1;
+-  float64x2_t iVal2;
+-  float64x2x2_t iVal;
+-
+-  for (number = 0; number < quarter_points; number++) {
+-    // Load data into register
+-    complexInput = vld4_f32(complexVectorPtr);
+-
+-    // Perform single to double precision conversion
+-    iVal1 = vcvt_f64_f32(complexInput.val[0]);
+-    iVal2 = vcvt_f64_f32(complexInput.val[2]);
+-    iVal.val[0] = iVal1;
+-    iVal.val[1] = iVal2;
+-
+-    // Store results into memory buffer
+-    vst2q_f64(iBufferPtr, iVal);
+-
+-    // Update pointers
+-    iBufferPtr += 4;
+-    complexVectorPtr += 8;
+-  }
+-
+-  for (number = quarter_points * 4; number < num_points; number++) {
+-    *iBufferPtr++ = (double)*complexVectorPtr++;
+-    complexVectorPtr++;
+-  }
++static inline void volk_32fc_deinterleave_real_64f_neon(double* iBuffer,
++                                                        const lv_32fc_t* complexVector,
++                                                        unsigned int num_points)
++{
++    unsigned int number = 0;
++    unsigned int quarter_points = num_points / 4;
++    const float* complexVectorPtr = (float*)complexVector;
++    double* iBufferPtr = iBuffer;
++    float32x2x4_t complexInput;
++    float64x2_t iVal1;
++    float64x2_t iVal2;
++    float64x2x2_t iVal;
++
++    for (number = 0; number < quarter_points; number++) {
++        // Load data into register
++        complexInput = vld4_f32(complexVectorPtr);
++
++        // Perform single to double precision conversion
++        iVal1 = vcvt_f64_f32(complexInput.val[0]);
++        iVal2 = vcvt_f64_f32(complexInput.val[2]);
++        iVal.val[0] = iVal1;
++        iVal.val[1] = iVal2;
++
++        // Store results into memory buffer
++        vst2q_f64(iBufferPtr, iVal);
++
++        // Update pointers
++        iBufferPtr += 4;
++        complexVectorPtr += 8;
++    }
++
++    for (number = quarter_points * 4; number < num_points; number++) {
++        *iBufferPtr++ = (double)*complexVectorPtr++;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+@@ -209,37 +217,39 @@ static inline void volk_32fc_deinterleave_real_64f_neon(
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void volk_32fc_deinterleave_real_64f_u_avx2(
+-    double *iBuffer, const lv_32fc_t *complexVector, unsigned int num_points) {
+-  unsigned int number = 0;
+-
+-  const float *complexVectorPtr = (float *)complexVector;
+-  double *iBufferPtr = iBuffer;
+-
+-  const unsigned int quarterPoints = num_points / 4;
+-  __m256 cplxValue;
+-  __m128 fVal;
+-  __m256d dVal;
+-  __m256i idx = _mm256_set_epi32(0, 0, 0, 0, 6, 4, 2, 0);
+-  for (; number < quarterPoints; number++) {
+-
+-    cplxValue = _mm256_loadu_ps(complexVectorPtr);
+-    complexVectorPtr += 8;
+-
+-    // Arrange in i1i2i1i2 format
+-    cplxValue = _mm256_permutevar8x32_ps(cplxValue, idx);
+-    fVal = _mm256_extractf128_ps(cplxValue, 0);
+-    dVal = _mm256_cvtps_pd(fVal);
+-    _mm256_storeu_pd(iBufferPtr, dVal);
+-
+-    iBufferPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for (; number < num_points; number++) {
+-    *iBufferPtr++ = (double)*complexVectorPtr++;
+-    complexVectorPtr++;
+-  }
++static inline void volk_32fc_deinterleave_real_64f_u_avx2(double* iBuffer,
++                                                          const lv_32fc_t* complexVector,
++                                                          unsigned int num_points)
++{
++    unsigned int number = 0;
++
++    const float* complexVectorPtr = (float*)complexVector;
++    double* iBufferPtr = iBuffer;
++
++    const unsigned int quarterPoints = num_points / 4;
++    __m256 cplxValue;
++    __m128 fVal;
++    __m256d dVal;
++    __m256i idx = _mm256_set_epi32(0, 0, 0, 0, 6, 4, 2, 0);
++    for (; number < quarterPoints; number++) {
++
++        cplxValue = _mm256_loadu_ps(complexVectorPtr);
++        complexVectorPtr += 8;
++
++        // Arrange in i1i2i1i2 format
++        cplxValue = _mm256_permutevar8x32_ps(cplxValue, idx);
++        fVal = _mm256_extractf128_ps(cplxValue, 0);
++        dVal = _mm256_cvtps_pd(fVal);
++        _mm256_storeu_pd(iBufferPtr, dVal);
++
++        iBufferPtr += 4;
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = (double)*complexVectorPtr++;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+diff --git a/kernels/volk/volk_32fc_index_max_16u.h b/kernels/volk/volk_32fc_index_max_16u.h
+index a9f9508..b9f9cfd 100644
+--- a/kernels/volk/volk_32fc_index_max_16u.h
++++ b/kernels/volk/volk_32fc_index_max_16u.h
+@@ -76,346 +76,353 @@
+ #ifndef INCLUDED_volk_32fc_index_max_16u_a_H
+ #define INCLUDED_volk_32fc_index_max_16u_a_H
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+-#include <stdio.h>
+ #include <limits.h>
++#include <stdio.h>
++#include <volk/volk_common.h>
+ #include <volk/volk_complex.h>
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+ static inline void
+-volk_32fc_index_max_16u_a_avx2(uint16_t* target, lv_32fc_t* src0,
+-                               uint32_t num_points)
++volk_32fc_index_max_16u_a_avx2(uint16_t* target, lv_32fc_t* src0, uint32_t num_points)
+ {
+-  num_points = (num_points > USHRT_MAX) ? USHRT_MAX : num_points;
+-  // Branchless version, if we think it'll make a difference
+-  //num_points = USHRT_MAX ^ ((num_points ^ USHRT_MAX) & -(num_points < USHRT_MAX));
+-
+-  const uint32_t num_bytes = num_points*8;
+-
+-  union bit256 holderf;
+-  union bit256 holderi;
+-  float sq_dist = 0.0;
++    num_points = (num_points > USHRT_MAX) ? USHRT_MAX : num_points;
++    // Branchless version, if we think it'll make a difference
++    // num_points = USHRT_MAX ^ ((num_points ^ USHRT_MAX) & -(num_points < USHRT_MAX));
+-  union bit256 xmm5, xmm4;
+-  __m256 xmm1, xmm2, xmm3;
+-  __m256i xmm8, xmm11, xmm12, xmmfive, xmmfour, xmm9, holder0, holder1, xmm10;
++    const uint32_t num_bytes = num_points * 8;
+-  xmm5.int_vec = xmmfive = _mm256_setzero_si256();
+-  xmm4.int_vec = xmmfour = _mm256_setzero_si256();
+-  holderf.int_vec = holder0 = _mm256_setzero_si256();
+-  holderi.int_vec = holder1 = _mm256_setzero_si256();
++    union bit256 holderf;
++    union bit256 holderi;
++    float sq_dist = 0.0;
+-  int bound = num_bytes >> 6;
+-  int i = 0;
++    union bit256 xmm5, xmm4;
++    __m256 xmm1, xmm2, xmm3;
++    __m256i xmm8, xmm11, xmm12, xmmfive, xmmfour, xmm9, holder0, holder1, xmm10;
+-  xmm8 = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0);
+-  xmm9 =  _mm256_setzero_si256(); //=xmm8
+-  xmm10 = _mm256_set1_epi32(8);
+-  xmm3 = _mm256_setzero_ps();
++    xmm5.int_vec = xmmfive = _mm256_setzero_si256();
++    xmm4.int_vec = xmmfour = _mm256_setzero_si256();
++    holderf.int_vec = holder0 = _mm256_setzero_si256();
++    holderi.int_vec = holder1 = _mm256_setzero_si256();
+-  __m256i idx = _mm256_set_epi32(7,6,3,2,5,4,1,0);
+-  for(; i < bound; ++i) {
+-    xmm1 = _mm256_load_ps((float*)src0);
+-    xmm2 = _mm256_load_ps((float*)&src0[4]);
++    int bound = num_bytes >> 6;
++    int i = 0;
+-    src0 += 8;
++    xmm8 = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0);
++    xmm9 = _mm256_setzero_si256(); //=xmm8
++    xmm10 = _mm256_set1_epi32(8);
++    xmm3 = _mm256_setzero_ps();
+-    xmm1 = _mm256_mul_ps(xmm1, xmm1);
+-    xmm2 = _mm256_mul_ps(xmm2, xmm2);
++    __m256i idx = _mm256_set_epi32(7, 6, 3, 2, 5, 4, 1, 0);
++    for (; i < bound; ++i) {
++        xmm1 = _mm256_load_ps((float*)src0);
++        xmm2 = _mm256_load_ps((float*)&src0[4]);
+-    xmm1 = _mm256_hadd_ps(xmm1, xmm2);
+-    xmm1 = _mm256_permutevar8x32_ps(xmm1, idx);
++        src0 += 8;
+-    xmm3 = _mm256_max_ps(xmm1, xmm3);
++        xmm1 = _mm256_mul_ps(xmm1, xmm1);
++        xmm2 = _mm256_mul_ps(xmm2, xmm2);
+-    xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
+-    xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
++        xmm1 = _mm256_hadd_ps(xmm1, xmm2);
++        xmm1 = _mm256_permutevar8x32_ps(xmm1, idx);
+-    xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
+-    xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
++        xmm3 = _mm256_max_ps(xmm1, xmm3);
+-    xmm9 = _mm256_add_epi32(xmm11,  xmm12);
++        xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
++        xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
+-    xmm8 = _mm256_add_epi32(xmm8, xmm10);
+-  }
+-  xmm10 = _mm256_set1_epi32(4);
+-  if (num_bytes >> 5 & 1) {
+-    xmm1 = _mm256_load_ps((float*)src0);
++        xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
++        xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
+-    src0 += 4;
++        xmm9 = _mm256_add_epi32(xmm11, xmm12);
+-    xmm1 = _mm256_mul_ps(xmm1, xmm1);
++        xmm8 = _mm256_add_epi32(xmm8, xmm10);
++    }
++    xmm10 = _mm256_set1_epi32(4);
++    if (num_bytes >> 5 & 1) {
++        xmm1 = _mm256_load_ps((float*)src0);
+-    xmm1 = _mm256_hadd_ps(xmm1, xmm1);
+-    xmm1 = _mm256_permutevar8x32_ps(xmm1, idx);
++        src0 += 4;
+-    xmm3 = _mm256_max_ps(xmm1, xmm3);
++        xmm1 = _mm256_mul_ps(xmm1, xmm1);
+-    xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
+-    xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
++        xmm1 = _mm256_hadd_ps(xmm1, xmm1);
++        xmm1 = _mm256_permutevar8x32_ps(xmm1, idx);
+-    xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
+-    xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
++        xmm3 = _mm256_max_ps(xmm1, xmm3);
+-    xmm9 = _mm256_add_epi32(xmm11,  xmm12);
++        xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
++        xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
+-    xmm8 = _mm256_add_epi32(xmm8, xmm10);
+-  }
++        xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
++        xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
+-  idx = _mm256_set_epi32(1,0,1,0,1,0,1,0);
+-  xmm10 = _mm256_set1_epi32(2);
+-  if (num_bytes >> 4 & 1) {
+-      xmm2 = _mm256_load_ps((float*)src0);
++        xmm9 = _mm256_add_epi32(xmm11, xmm12);
+-      xmm1 = _mm256_permutevar8x32_ps(bit256_p(&xmm8)->float_vec, idx);
+-      xmm8 = bit256_p(&xmm1)->int_vec;
++        xmm8 = _mm256_add_epi32(xmm8, xmm10);
++    }
+-      xmm2 = _mm256_mul_ps(xmm2, xmm2);
++    idx = _mm256_set_epi32(1, 0, 1, 0, 1, 0, 1, 0);
++    xmm10 = _mm256_set1_epi32(2);
++    if (num_bytes >> 4 & 1) {
++        xmm2 = _mm256_load_ps((float*)src0);
+-      src0 += 2;
++        xmm1 = _mm256_permutevar8x32_ps(bit256_p(&xmm8)->float_vec, idx);
++        xmm8 = bit256_p(&xmm1)->int_vec;
+-      xmm1 = _mm256_hadd_ps(xmm2, xmm2);
++        xmm2 = _mm256_mul_ps(xmm2, xmm2);
+-      xmm3 = _mm256_max_ps(xmm1, xmm3);
++        src0 += 2;
+-      xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
+-      xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
+-
+-      xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
+-      xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
++        xmm1 = _mm256_hadd_ps(xmm2, xmm2);
+-      xmm9 = _mm256_add_epi32(xmm11, xmm12);
++        xmm3 = _mm256_max_ps(xmm1, xmm3);
+-      xmm8 = _mm256_add_epi32(xmm8, xmm10);
+-  }
++        xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
++        xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
+-  /*
+-  idx = _mm256_setzero_si256();
+-  for(i = 0; i < leftovers2; ++i) {
+-    //printf("%u, %u, %u, %u\n", ((uint32_t*)&xmm9)[0], ((uint32_t*)&xmm9)[1], ((uint32_t*)&xmm9)[2], ((uint32_t*)&xmm9)[3]);
++        xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
++        xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
+-    sq_dist = lv_creal(src0[0]) * lv_creal(src0[0]) + lv_cimag(src0[0]) * lv_cimag(src0[0]);
++        xmm9 = _mm256_add_epi32(xmm11, xmm12);
+-    //xmm = _mm_load1_ps(&sq_dist);//insert?
+-    xmm2 = _mm256_set1_ps(sq_dist);
+-    //xmm2 = _mm256_insertf128_ps(xmm2, xmm, 0);
++        xmm8 = _mm256_add_epi32(xmm8, xmm10);
++    }
+-    xmm1 = xmm3;
++    /*
++    idx = _mm256_setzero_si256();
++    for(i = 0; i < leftovers2; ++i) {
++      //printf("%u, %u, %u, %u\n", ((uint32_t*)&xmm9)[0], ((uint32_t*)&xmm9)[1],
++  ((uint32_t*)&xmm9)[2], ((uint32_t*)&xmm9)[3]);
+-    xmm3 = _mm256_max_ps(xmm3, xmm2);//only lowest 32bit value
+-    xmm3 = _mm256_permutevar8x32_ps(xmm3, idx);
++      sq_dist = lv_creal(src0[0]) * lv_creal(src0[0]) + lv_cimag(src0[0]) *
++  lv_cimag(src0[0]);
+-    xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
+-    xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
++      //xmm = _mm_load1_ps(&sq_dist);//insert?
++      xmm2 = _mm256_set1_ps(sq_dist);
++      //xmm2 = _mm256_insertf128_ps(xmm2, xmm, 0);
+-    xmm8 = _mm256_permutevar8x32_epi32(xmm8, idx);
++      xmm1 = xmm3;
+-    xmm11 = _mm256_and_si256(xmm8, xmm4.int_vec);
+-    xmm12 = _mm256_and_si256(xmm9, xmm5.int_vec);
++      xmm3 = _mm256_max_ps(xmm3, xmm2);//only lowest 32bit value
++      xmm3 = _mm256_permutevar8x32_ps(xmm3, idx);
+-    xmm9 = _mm256_add_epi32(xmm11, xmm12);
+-}*/
++      xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
++      xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
+-  _mm256_store_ps((float*)&(holderf.f), xmm3);
+-  _mm256_store_si256(&(holderi.int_vec), xmm9);
++      xmm8 = _mm256_permutevar8x32_epi32(xmm8, idx);
+-  target[0] = holderi.i[0];
+-  sq_dist = holderf.f[0];
+-  target[0] = (holderf.f[1] > sq_dist) ? holderi.i[1] : target[0];
+-  sq_dist = (holderf.f[1] > sq_dist) ? holderf.f[1] : sq_dist;
+-  target[0] = (holderf.f[2] > sq_dist) ? holderi.i[2] : target[0];
+-  sq_dist = (holderf.f[2] > sq_dist) ? holderf.f[2] : sq_dist;
+-  target[0] = (holderf.f[3] > sq_dist) ? holderi.i[3] : target[0];
+-  sq_dist = (holderf.f[3] > sq_dist) ? holderf.f[3] : sq_dist;
+-  target[0] = (holderf.f[4] > sq_dist) ? holderi.i[4] : target[0];
+-  sq_dist = (holderf.f[4] > sq_dist) ? holderf.f[4] : sq_dist;
+-  target[0] = (holderf.f[5] > sq_dist) ? holderi.i[5] : target[0];
+-  sq_dist = (holderf.f[5] > sq_dist) ? holderf.f[5] : sq_dist;
+-  target[0] = (holderf.f[6] > sq_dist) ? holderi.i[6] : target[0];
+-  sq_dist = (holderf.f[6] > sq_dist) ? holderf.f[6] : sq_dist;
+-  target[0] = (holderf.f[7] > sq_dist) ? holderi.i[7] : target[0];
+-  sq_dist = (holderf.f[7] > sq_dist) ? holderf.f[7] : sq_dist;
++      xmm11 = _mm256_and_si256(xmm8, xmm4.int_vec);
++      xmm12 = _mm256_and_si256(xmm9, xmm5.int_vec);
++      xmm9 = _mm256_add_epi32(xmm11, xmm12);
++  }*/
++
++    _mm256_store_ps((float*)&(holderf.f), xmm3);
++    _mm256_store_si256(&(holderi.int_vec), xmm9);
++
++    target[0] = holderi.i[0];
++    sq_dist = holderf.f[0];
++    target[0] = (holderf.f[1] > sq_dist) ? holderi.i[1] : target[0];
++    sq_dist = (holderf.f[1] > sq_dist) ? holderf.f[1] : sq_dist;
++    target[0] = (holderf.f[2] > sq_dist) ? holderi.i[2] : target[0];
++    sq_dist = (holderf.f[2] > sq_dist) ? holderf.f[2] : sq_dist;
++    target[0] = (holderf.f[3] > sq_dist) ? holderi.i[3] : target[0];
++    sq_dist = (holderf.f[3] > sq_dist) ? holderf.f[3] : sq_dist;
++    target[0] = (holderf.f[4] > sq_dist) ? holderi.i[4] : target[0];
++    sq_dist = (holderf.f[4] > sq_dist) ? holderf.f[4] : sq_dist;
++    target[0] = (holderf.f[5] > sq_dist) ? holderi.i[5] : target[0];
++    sq_dist = (holderf.f[5] > sq_dist) ? holderf.f[5] : sq_dist;
++    target[0] = (holderf.f[6] > sq_dist) ? holderi.i[6] : target[0];
++    sq_dist = (holderf.f[6] > sq_dist) ? holderf.f[6] : sq_dist;
++    target[0] = (holderf.f[7] > sq_dist) ? holderi.i[7] : target[0];
++    sq_dist = (holderf.f[7] > sq_dist) ? holderf.f[7] : sq_dist;
+ }
+ #endif /*LV_HAVE_AVX2*/
+ #ifdef LV_HAVE_SSE3
+-#include <xmmintrin.h>
+ #include <pmmintrin.h>
++#include <xmmintrin.h>
+ static inline void
+-volk_32fc_index_max_16u_a_sse3(uint16_t* target, lv_32fc_t* src0,
+-                               uint32_t num_points)
++volk_32fc_index_max_16u_a_sse3(uint16_t* target, lv_32fc_t* src0, uint32_t num_points)
+ {
+-  num_points = (num_points > USHRT_MAX) ? USHRT_MAX : num_points;
+-  // Branchless version, if we think it'll make a difference
+-  //num_points = USHRT_MAX ^ ((num_points ^ USHRT_MAX) & -(num_points < USHRT_MAX));
++    num_points = (num_points > USHRT_MAX) ? USHRT_MAX : num_points;
++    // Branchless version, if we think it'll make a difference
++    // num_points = USHRT_MAX ^ ((num_points ^ USHRT_MAX) & -(num_points < USHRT_MAX));
+-  const uint32_t num_bytes = num_points*8;
++    const uint32_t num_bytes = num_points * 8;
+-  union bit128 holderf;
+-  union bit128 holderi;
+-  float sq_dist = 0.0;
++    union bit128 holderf;
++    union bit128 holderi;
++    float sq_dist = 0.0;
+-  union bit128 xmm5, xmm4;
+-  __m128 xmm1, xmm2, xmm3;
+-  __m128i xmm8, xmm11, xmm12, xmmfive, xmmfour, xmm9, holder0, holder1, xmm10;
++    union bit128 xmm5, xmm4;
++    __m128 xmm1, xmm2, xmm3;
++    __m128i xmm8, xmm11, xmm12, xmmfive, xmmfour, xmm9, holder0, holder1, xmm10;
+-  xmm5.int_vec = xmmfive = _mm_setzero_si128();
+-  xmm4.int_vec = xmmfour = _mm_setzero_si128();
+-  holderf.int_vec = holder0 = _mm_setzero_si128();
+-  holderi.int_vec = holder1 = _mm_setzero_si128();
++    xmm5.int_vec = xmmfive = _mm_setzero_si128();
++    xmm4.int_vec = xmmfour = _mm_setzero_si128();
++    holderf.int_vec = holder0 = _mm_setzero_si128();
++    holderi.int_vec = holder1 = _mm_setzero_si128();
+-  int bound = num_bytes >> 5;
+-  int i = 0;
++    int bound = num_bytes >> 5;
++    int i = 0;
+-  xmm8 = _mm_set_epi32(3, 2, 1, 0);//remember the crazy reverse order!
+-  xmm9 = _mm_setzero_si128();
+-  xmm10 = _mm_set_epi32(4, 4, 4, 4);
+-  xmm3 = _mm_setzero_ps();
+-  //printf("%f, %f, %f, %f\n", ((float*)&xmm10)[0], ((float*)&xmm10)[1], ((float*)&xmm10)[2], ((float*)&xmm10)[3]);
++    xmm8 = _mm_set_epi32(3, 2, 1, 0); // remember the crazy reverse order!
++    xmm9 = _mm_setzero_si128();
++    xmm10 = _mm_set_epi32(4, 4, 4, 4);
++    xmm3 = _mm_setzero_ps();
++    // printf("%f, %f, %f, %f\n", ((float*)&xmm10)[0], ((float*)&xmm10)[1],
++    // ((float*)&xmm10)[2], ((float*)&xmm10)[3]);
+-  for(; i < bound; ++i) {
+-    xmm1 = _mm_load_ps((float*)src0);
+-    xmm2 = _mm_load_ps((float*)&src0[2]);
++    for (; i < bound; ++i) {
++        xmm1 = _mm_load_ps((float*)src0);
++        xmm2 = _mm_load_ps((float*)&src0[2]);
+-    src0 += 4;
++        src0 += 4;
+-    xmm1 = _mm_mul_ps(xmm1, xmm1);
+-    xmm2 = _mm_mul_ps(xmm2, xmm2);
++        xmm1 = _mm_mul_ps(xmm1, xmm1);
++        xmm2 = _mm_mul_ps(xmm2, xmm2);
+-    xmm1 = _mm_hadd_ps(xmm1, xmm2);
++        xmm1 = _mm_hadd_ps(xmm1, xmm2);
+-    xmm3 = _mm_max_ps(xmm1, xmm3);
++        xmm3 = _mm_max_ps(xmm1, xmm3);
+-    xmm4.float_vec = _mm_cmplt_ps(xmm1, xmm3);
+-    xmm5.float_vec = _mm_cmpeq_ps(xmm1, xmm3);
++        xmm4.float_vec = _mm_cmplt_ps(xmm1, xmm3);
++        xmm5.float_vec = _mm_cmpeq_ps(xmm1, xmm3);
+-    xmm11 = _mm_and_si128(xmm8, xmm5.int_vec);
+-    xmm12 = _mm_and_si128(xmm9, xmm4.int_vec);
++        xmm11 = _mm_and_si128(xmm8, xmm5.int_vec);
++        xmm12 = _mm_and_si128(xmm9, xmm4.int_vec);
+-    xmm9 = _mm_add_epi32(xmm11,  xmm12);
++        xmm9 = _mm_add_epi32(xmm11, xmm12);
+-    xmm8 = _mm_add_epi32(xmm8, xmm10);
++        xmm8 = _mm_add_epi32(xmm8, xmm10);
+-    //printf("%f, %f, %f, %f\n", ((float*)&xmm3)[0], ((float*)&xmm3)[1], ((float*)&xmm3)[2], ((float*)&xmm3)[3]);
+-    //printf("%u, %u, %u, %u\n", ((uint32_t*)&xmm10)[0], ((uint32_t*)&xmm10)[1], ((uint32_t*)&xmm10)[2], ((uint32_t*)&xmm10)[3]);
+-  }
++        // printf("%f, %f, %f, %f\n", ((float*)&xmm3)[0], ((float*)&xmm3)[1],
++        // ((float*)&xmm3)[2], ((float*)&xmm3)[3]); printf("%u, %u, %u, %u\n",
++        // ((uint32_t*)&xmm10)[0], ((uint32_t*)&xmm10)[1], ((uint32_t*)&xmm10)[2],
++        // ((uint32_t*)&xmm10)[3]);
++    }
+-  if (num_bytes >> 4 & 1) {
+-    xmm2 = _mm_load_ps((float*)src0);
++    if (num_bytes >> 4 & 1) {
++        xmm2 = _mm_load_ps((float*)src0);
+-    xmm1 = _mm_movelh_ps(bit128_p(&xmm8)->float_vec, bit128_p(&xmm8)->float_vec);
+-    xmm8 = bit128_p(&xmm1)->int_vec;
++        xmm1 = _mm_movelh_ps(bit128_p(&xmm8)->float_vec, bit128_p(&xmm8)->float_vec);
++        xmm8 = bit128_p(&xmm1)->int_vec;
+-    xmm2 = _mm_mul_ps(xmm2, xmm2);
++        xmm2 = _mm_mul_ps(xmm2, xmm2);
+-    src0 += 2;
++        src0 += 2;
+-    xmm1 = _mm_hadd_ps(xmm2, xmm2);
++        xmm1 = _mm_hadd_ps(xmm2, xmm2);
+-    xmm3 = _mm_max_ps(xmm1, xmm3);
++        xmm3 = _mm_max_ps(xmm1, xmm3);
+-    xmm10 = _mm_set_epi32(2, 2, 2, 2);//load1_ps((float*)&init[2]);
++        xmm10 = _mm_set_epi32(2, 2, 2, 2); // load1_ps((float*)&init[2]);
+-    xmm4.float_vec = _mm_cmplt_ps(xmm1, xmm3);
+-    xmm5.float_vec = _mm_cmpeq_ps(xmm1, xmm3);
++        xmm4.float_vec = _mm_cmplt_ps(xmm1, xmm3);
++        xmm5.float_vec = _mm_cmpeq_ps(xmm1, xmm3);
+-    xmm11 = _mm_and_si128(xmm8, xmm5.int_vec);
+-    xmm12 = _mm_and_si128(xmm9, xmm4.int_vec);
++        xmm11 = _mm_and_si128(xmm8, xmm5.int_vec);
++        xmm12 = _mm_and_si128(xmm9, xmm4.int_vec);
+-    xmm9 = _mm_add_epi32(xmm11, xmm12);
++        xmm9 = _mm_add_epi32(xmm11, xmm12);
+-    xmm8 = _mm_add_epi32(xmm8, xmm10);
+-    //printf("egads%u, %u, %u, %u\n", ((uint32_t*)&xmm9)[0], ((uint32_t*)&xmm9)[1], ((uint32_t*)&xmm9)[2], ((uint32_t*)&xmm9)[3]);
+-  }
++        xmm8 = _mm_add_epi32(xmm8, xmm10);
++        // printf("egads%u, %u, %u, %u\n", ((uint32_t*)&xmm9)[0], ((uint32_t*)&xmm9)[1],
++        // ((uint32_t*)&xmm9)[2], ((uint32_t*)&xmm9)[3]);
++    }
+-  if (num_bytes >> 3 & 1) {
+-    //printf("%u, %u, %u, %u\n", ((uint32_t*)&xmm9)[0], ((uint32_t*)&xmm9)[1], ((uint32_t*)&xmm9)[2], ((uint32_t*)&xmm9)[3]);
++    if (num_bytes >> 3 & 1) {
++        // printf("%u, %u, %u, %u\n", ((uint32_t*)&xmm9)[0], ((uint32_t*)&xmm9)[1],
++        // ((uint32_t*)&xmm9)[2], ((uint32_t*)&xmm9)[3]);
+-    sq_dist = lv_creal(src0[0]) * lv_creal(src0[0]) + lv_cimag(src0[0]) * lv_cimag(src0[0]);
++        sq_dist =
++            lv_creal(src0[0]) * lv_creal(src0[0]) + lv_cimag(src0[0]) * lv_cimag(src0[0]);
+-    xmm2 = _mm_load1_ps(&sq_dist);
++        xmm2 = _mm_load1_ps(&sq_dist);
+-    xmm1 = xmm3;
++        xmm1 = xmm3;
+-    xmm3 = _mm_max_ss(xmm3, xmm2);
++        xmm3 = _mm_max_ss(xmm3, xmm2);
+-    xmm4.float_vec = _mm_cmplt_ps(xmm1, xmm3);
+-    xmm5.float_vec = _mm_cmpeq_ps(xmm1, xmm3);
++        xmm4.float_vec = _mm_cmplt_ps(xmm1, xmm3);
++        xmm5.float_vec = _mm_cmpeq_ps(xmm1, xmm3);
+-    xmm8 = _mm_shuffle_epi32(xmm8, 0x00);
++        xmm8 = _mm_shuffle_epi32(xmm8, 0x00);
+-    xmm11 = _mm_and_si128(xmm8, xmm4.int_vec);
+-    xmm12 = _mm_and_si128(xmm9, xmm5.int_vec);
++        xmm11 = _mm_and_si128(xmm8, xmm4.int_vec);
++        xmm12 = _mm_and_si128(xmm9, xmm5.int_vec);
+-    xmm9 = _mm_add_epi32(xmm11, xmm12);
+-  }
++        xmm9 = _mm_add_epi32(xmm11, xmm12);
++    }
+-  //printf("%f, %f, %f, %f\n", ((float*)&xmm3)[0], ((float*)&xmm3)[1], ((float*)&xmm3)[2], ((float*)&xmm3)[3]);
+-  //printf("%u, %u, %u, %u\n", ((uint32_t*)&xmm9)[0], ((uint32_t*)&xmm9)[1], ((uint32_t*)&xmm9)[2], ((uint32_t*)&xmm9)[3]);
++    // printf("%f, %f, %f, %f\n", ((float*)&xmm3)[0], ((float*)&xmm3)[1],
++    // ((float*)&xmm3)[2], ((float*)&xmm3)[3]); printf("%u, %u, %u, %u\n",
++    // ((uint32_t*)&xmm9)[0], ((uint32_t*)&xmm9)[1], ((uint32_t*)&xmm9)[2],
++    // ((uint32_t*)&xmm9)[3]);
+-  _mm_store_ps((float*)&(holderf.f), xmm3);
+-  _mm_store_si128(&(holderi.int_vec), xmm9);
++    _mm_store_ps((float*)&(holderf.f), xmm3);
++    _mm_store_si128(&(holderi.int_vec), xmm9);
+-  target[0] = holderi.i[0];
+-  sq_dist = holderf.f[0];
+-  target[0] = (holderf.f[1] > sq_dist) ? holderi.i[1] : target[0];
+-  sq_dist = (holderf.f[1] > sq_dist) ? holderf.f[1] : sq_dist;
+-  target[0] = (holderf.f[2] > sq_dist) ? holderi.i[2] : target[0];
+-  sq_dist = (holderf.f[2] > sq_dist) ? holderf.f[2] : sq_dist;
+-  target[0] = (holderf.f[3] > sq_dist) ? holderi.i[3] : target[0];
+-  sq_dist = (holderf.f[3] > sq_dist) ? holderf.f[3] : sq_dist;
++    target[0] = holderi.i[0];
++    sq_dist = holderf.f[0];
++    target[0] = (holderf.f[1] > sq_dist) ? holderi.i[1] : target[0];
++    sq_dist = (holderf.f[1] > sq_dist) ? holderf.f[1] : sq_dist;
++    target[0] = (holderf.f[2] > sq_dist) ? holderi.i[2] : target[0];
++    sq_dist = (holderf.f[2] > sq_dist) ? holderf.f[2] : sq_dist;
++    target[0] = (holderf.f[3] > sq_dist) ? holderi.i[3] : target[0];
++    sq_dist = (holderf.f[3] > sq_dist) ? holderf.f[3] : sq_dist;
+-  /*
+-  float placeholder = 0.0;
+-  uint32_t temp0, temp1;
+-  uint32_t g0 = (((float*)&xmm3)[0] > ((float*)&xmm3)[1]);
+-  uint32_t l0 = g0 ^ 1;
++    /*
++    float placeholder = 0.0;
++    uint32_t temp0, temp1;
++    uint32_t g0 = (((float*)&xmm3)[0] > ((float*)&xmm3)[1]);
++    uint32_t l0 = g0 ^ 1;
+-  uint32_t g1 = (((float*)&xmm3)[1] > ((float*)&xmm3)[2]);
+-  uint32_t l1 = g1 ^ 1;
++    uint32_t g1 = (((float*)&xmm3)[1] > ((float*)&xmm3)[2]);
++    uint32_t l1 = g1 ^ 1;
+-  temp0 = g0 * ((uint32_t*)&xmm9)[0] + l0 * ((uint32_t*)&xmm9)[1];
+-  temp1 = g0 * ((uint32_t*)&xmm9)[2] + l0 * ((uint32_t*)&xmm9)[3];
+-  sq_dist = g0 * ((float*)&xmm3)[0] + l0 * ((float*)&xmm3)[1];
+-  placeholder = g0 * ((float*)&xmm3)[2] + l0 * ((float*)&xmm3)[3];
++    temp0 = g0 * ((uint32_t*)&xmm9)[0] + l0 * ((uint32_t*)&xmm9)[1];
++    temp1 = g0 * ((uint32_t*)&xmm9)[2] + l0 * ((uint32_t*)&xmm9)[3];
++    sq_dist = g0 * ((float*)&xmm3)[0] + l0 * ((float*)&xmm3)[1];
++    placeholder = g0 * ((float*)&xmm3)[2] + l0 * ((float*)&xmm3)[3];
+-  g0 = (sq_dist > placeholder);
+-  l0 = g0 ^ 1;
+-  target[0] = g0 * temp0 + l0 * temp1;
+-  */
++    g0 = (sq_dist > placeholder);
++    l0 = g0 ^ 1;
++    target[0] = g0 * temp0 + l0 * temp1;
++    */
+ }
+ #endif /*LV_HAVE_SSE3*/
+ #ifdef LV_HAVE_GENERIC
+ static inline void
+- volk_32fc_index_max_16u_generic(uint16_t* target, lv_32fc_t* src0,
+-                                 uint32_t num_points)
++volk_32fc_index_max_16u_generic(uint16_t* target, lv_32fc_t* src0, uint32_t num_points)
+ {
+-  num_points = (num_points > USHRT_MAX) ? USHRT_MAX : num_points;
++    num_points = (num_points > USHRT_MAX) ? USHRT_MAX : num_points;
+-  const uint32_t num_bytes = num_points*8;
++    const uint32_t num_bytes = num_points * 8;
+-  float sq_dist = 0.0;
+-  float max = 0.0;
+-  uint16_t index = 0;
++    float sq_dist = 0.0;
++    float max = 0.0;
++    uint16_t index = 0;
+-  uint32_t i = 0;
++    uint32_t i = 0;
+-  for(; i < num_bytes >> 3; ++i) {
+-    sq_dist = lv_creal(src0[i]) * lv_creal(src0[i]) + lv_cimag(src0[i]) * lv_cimag(src0[i]);
++    for (; i<num_bytes>> 3; ++i) {
++        sq_dist =
++            lv_creal(src0[i]) * lv_creal(src0[i]) + lv_cimag(src0[i]) * lv_cimag(src0[i]);
+-    index = sq_dist > max ? i : index;
+-    max = sq_dist > max ? sq_dist : max;
+-  }
+-  target[0] = index;
++        index = sq_dist > max ? i : index;
++        max = sq_dist > max ? sq_dist : max;
++    }
++    target[0] = index;
+ }
+ #endif /*LV_HAVE_GENERIC*/
+@@ -427,142 +434,140 @@ static inline void
+ #ifndef INCLUDED_volk_32fc_index_max_16u_u_H
+ #define INCLUDED_volk_32fc_index_max_16u_u_H
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+-#include <stdio.h>
+ #include <limits.h>
++#include <stdio.h>
++#include <volk/volk_common.h>
+ #include <volk/volk_complex.h>
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+ static inline void
+-volk_32fc_index_max_16u_u_avx2(uint16_t* target, lv_32fc_t* src0,
+-                               uint32_t num_points)
++volk_32fc_index_max_16u_u_avx2(uint16_t* target, lv_32fc_t* src0, uint32_t num_points)
+ {
+-  num_points = (num_points > USHRT_MAX) ? USHRT_MAX : num_points;
+-  // Branchless version, if we think it'll make a difference
+-  //num_points = USHRT_MAX ^ ((num_points ^ USHRT_MAX) & -(num_points < USHRT_MAX));
++    num_points = (num_points > USHRT_MAX) ? USHRT_MAX : num_points;
++    // Branchless version, if we think it'll make a difference
++    // num_points = USHRT_MAX ^ ((num_points ^ USHRT_MAX) & -(num_points < USHRT_MAX));
+-  const uint32_t num_bytes = num_points*8;
++    const uint32_t num_bytes = num_points * 8;
+-  union bit256 holderf;
+-  union bit256 holderi;
+-  float sq_dist = 0.0;
++    union bit256 holderf;
++    union bit256 holderi;
++    float sq_dist = 0.0;
+-  union bit256 xmm5, xmm4;
+-  __m256 xmm1, xmm2, xmm3;
+-  __m256i xmm8, xmm11, xmm12, xmmfive, xmmfour, xmm9, holder0, holder1, xmm10;
++    union bit256 xmm5, xmm4;
++    __m256 xmm1, xmm2, xmm3;
++    __m256i xmm8, xmm11, xmm12, xmmfive, xmmfour, xmm9, holder0, holder1, xmm10;
+-  xmm5.int_vec = xmmfive = _mm256_setzero_si256();
+-  xmm4.int_vec = xmmfour = _mm256_setzero_si256();
+-  holderf.int_vec = holder0 = _mm256_setzero_si256();
+-  holderi.int_vec = holder1 = _mm256_setzero_si256();
++    xmm5.int_vec = xmmfive = _mm256_setzero_si256();
++    xmm4.int_vec = xmmfour = _mm256_setzero_si256();
++    holderf.int_vec = holder0 = _mm256_setzero_si256();
++    holderi.int_vec = holder1 = _mm256_setzero_si256();
+-  int bound = num_bytes >> 6;
+-  int i = 0;
++    int bound = num_bytes >> 6;
++    int i = 0;
+-  xmm8 = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0);
+-  xmm9 =  _mm256_setzero_si256(); //=xmm8
+-  xmm10 = _mm256_set1_epi32(8);
+-  xmm3 = _mm256_setzero_ps();
++    xmm8 = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0);
++    xmm9 = _mm256_setzero_si256(); //=xmm8
++    xmm10 = _mm256_set1_epi32(8);
++    xmm3 = _mm256_setzero_ps();
+-  __m256i idx = _mm256_set_epi32(7,6,3,2,5,4,1,0);
+-  for(; i < bound; ++i) {
+-    xmm1 = _mm256_loadu_ps((float*)src0);
+-    xmm2 = _mm256_loadu_ps((float*)&src0[4]);
++    __m256i idx = _mm256_set_epi32(7, 6, 3, 2, 5, 4, 1, 0);
++    for (; i < bound; ++i) {
++        xmm1 = _mm256_loadu_ps((float*)src0);
++        xmm2 = _mm256_loadu_ps((float*)&src0[4]);
+-    src0 += 8;
++        src0 += 8;
+-    xmm1 = _mm256_mul_ps(xmm1, xmm1);
+-    xmm2 = _mm256_mul_ps(xmm2, xmm2);
++        xmm1 = _mm256_mul_ps(xmm1, xmm1);
++        xmm2 = _mm256_mul_ps(xmm2, xmm2);
+-    xmm1 = _mm256_hadd_ps(xmm1, xmm2);
+-    xmm1 = _mm256_permutevar8x32_ps(xmm1, idx);
++        xmm1 = _mm256_hadd_ps(xmm1, xmm2);
++        xmm1 = _mm256_permutevar8x32_ps(xmm1, idx);
+-    xmm3 = _mm256_max_ps(xmm1, xmm3);
++        xmm3 = _mm256_max_ps(xmm1, xmm3);
+-    xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
+-    xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
++        xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
++        xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
+-    xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
+-    xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
++        xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
++        xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
+-    xmm9 = _mm256_add_epi32(xmm11,  xmm12);
++        xmm9 = _mm256_add_epi32(xmm11, xmm12);
+-    xmm8 = _mm256_add_epi32(xmm8, xmm10);
+-  }
+-  xmm10 = _mm256_set1_epi32(4);
+-  if (num_bytes >> 5 & 1) {
+-    xmm1 = _mm256_loadu_ps((float*)src0);
++        xmm8 = _mm256_add_epi32(xmm8, xmm10);
++    }
++    xmm10 = _mm256_set1_epi32(4);
++    if (num_bytes >> 5 & 1) {
++        xmm1 = _mm256_loadu_ps((float*)src0);
+-    src0 += 4;
++        src0 += 4;
+-    xmm1 = _mm256_mul_ps(xmm1, xmm1);
++        xmm1 = _mm256_mul_ps(xmm1, xmm1);
+-    xmm1 = _mm256_hadd_ps(xmm1, xmm1);
+-    xmm1 = _mm256_permutevar8x32_ps(xmm1, idx);
++        xmm1 = _mm256_hadd_ps(xmm1, xmm1);
++        xmm1 = _mm256_permutevar8x32_ps(xmm1, idx);
+-    xmm3 = _mm256_max_ps(xmm1, xmm3);
++        xmm3 = _mm256_max_ps(xmm1, xmm3);
+-    xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
+-    xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
++        xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
++        xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
+-    xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
+-    xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
++        xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
++        xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
+-    xmm9 = _mm256_add_epi32(xmm11,  xmm12);
++        xmm9 = _mm256_add_epi32(xmm11, xmm12);
+-    xmm8 = _mm256_add_epi32(xmm8, xmm10);
+-  }
++        xmm8 = _mm256_add_epi32(xmm8, xmm10);
++    }
+-  idx = _mm256_set_epi32(1,0,1,0,1,0,1,0);
+-  xmm10 = _mm256_set1_epi32(2);
+-  if (num_bytes >> 4 & 1) {
+-      xmm2 = _mm256_loadu_ps((float*)src0);
++    idx = _mm256_set_epi32(1, 0, 1, 0, 1, 0, 1, 0);
++    xmm10 = _mm256_set1_epi32(2);
++    if (num_bytes >> 4 & 1) {
++        xmm2 = _mm256_loadu_ps((float*)src0);
+-      xmm1 = _mm256_permutevar8x32_ps(bit256_p(&xmm8)->float_vec, idx);
+-      xmm8 = bit256_p(&xmm1)->int_vec;
++        xmm1 = _mm256_permutevar8x32_ps(bit256_p(&xmm8)->float_vec, idx);
++        xmm8 = bit256_p(&xmm1)->int_vec;
+-      xmm2 = _mm256_mul_ps(xmm2, xmm2);
++        xmm2 = _mm256_mul_ps(xmm2, xmm2);
+-      src0 += 2;
++        src0 += 2;
+-      xmm1 = _mm256_hadd_ps(xmm2, xmm2);
++        xmm1 = _mm256_hadd_ps(xmm2, xmm2);
+-      xmm3 = _mm256_max_ps(xmm1, xmm3);
++        xmm3 = _mm256_max_ps(xmm1, xmm3);
+-      xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
+-      xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
++        xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
++        xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
+-      xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
+-      xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
++        xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
++        xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
+-      xmm9 = _mm256_add_epi32(xmm11, xmm12);
++        xmm9 = _mm256_add_epi32(xmm11, xmm12);
++
++        xmm8 = _mm256_add_epi32(xmm8, xmm10);
++    }
+-      xmm8 = _mm256_add_epi32(xmm8, xmm10);
+-  }
+-
+-  _mm256_storeu_ps((float*)&(holderf.f), xmm3);
+-  _mm256_storeu_si256(&(holderi.int_vec), xmm9);
+-
+-  target[0] = holderi.i[0];
+-  sq_dist = holderf.f[0];
+-  target[0] = (holderf.f[1] > sq_dist) ? holderi.i[1] : target[0];
+-  sq_dist = (holderf.f[1] > sq_dist) ? holderf.f[1] : sq_dist;
+-  target[0] = (holderf.f[2] > sq_dist) ? holderi.i[2] : target[0];
+-  sq_dist = (holderf.f[2] > sq_dist) ? holderf.f[2] : sq_dist;
+-  target[0] = (holderf.f[3] > sq_dist) ? holderi.i[3] : target[0];
+-  sq_dist = (holderf.f[3] > sq_dist) ? holderf.f[3] : sq_dist;
+-  target[0] = (holderf.f[4] > sq_dist) ? holderi.i[4] : target[0];
+-  sq_dist = (holderf.f[4] > sq_dist) ? holderf.f[4] : sq_dist;
+-  target[0] = (holderf.f[5] > sq_dist) ? holderi.i[5] : target[0];
+-  sq_dist = (holderf.f[5] > sq_dist) ? holderf.f[5] : sq_dist;
+-  target[0] = (holderf.f[6] > sq_dist) ? holderi.i[6] : target[0];
+-  sq_dist = (holderf.f[6] > sq_dist) ? holderf.f[6] : sq_dist;
+-  target[0] = (holderf.f[7] > sq_dist) ? holderi.i[7] : target[0];
+-  sq_dist = (holderf.f[7] > sq_dist) ? holderf.f[7] : sq_dist;
++    _mm256_storeu_ps((float*)&(holderf.f), xmm3);
++    _mm256_storeu_si256(&(holderi.int_vec), xmm9);
++    target[0] = holderi.i[0];
++    sq_dist = holderf.f[0];
++    target[0] = (holderf.f[1] > sq_dist) ? holderi.i[1] : target[0];
++    sq_dist = (holderf.f[1] > sq_dist) ? holderf.f[1] : sq_dist;
++    target[0] = (holderf.f[2] > sq_dist) ? holderi.i[2] : target[0];
++    sq_dist = (holderf.f[2] > sq_dist) ? holderf.f[2] : sq_dist;
++    target[0] = (holderf.f[3] > sq_dist) ? holderi.i[3] : target[0];
++    sq_dist = (holderf.f[3] > sq_dist) ? holderf.f[3] : sq_dist;
++    target[0] = (holderf.f[4] > sq_dist) ? holderi.i[4] : target[0];
++    sq_dist = (holderf.f[4] > sq_dist) ? holderf.f[4] : sq_dist;
++    target[0] = (holderf.f[5] > sq_dist) ? holderi.i[5] : target[0];
++    sq_dist = (holderf.f[5] > sq_dist) ? holderf.f[5] : sq_dist;
++    target[0] = (holderf.f[6] > sq_dist) ? holderi.i[6] : target[0];
++    sq_dist = (holderf.f[6] > sq_dist) ? holderf.f[6] : sq_dist;
++    target[0] = (holderf.f[7] > sq_dist) ? holderi.i[7] : target[0];
++    sq_dist = (holderf.f[7] > sq_dist) ? holderf.f[7] : sq_dist;
+ }
+ #endif /*LV_HAVE_AVX2*/
+diff --git a/kernels/volk/volk_32fc_index_max_32u.h b/kernels/volk/volk_32fc_index_max_32u.h
+index 67a3faa..7756fc6 100644
+--- a/kernels/volk/volk_32fc_index_max_32u.h
++++ b/kernels/volk/volk_32fc_index_max_32u.h
+@@ -70,309 +70,314 @@
+ #ifndef INCLUDED_volk_32fc_index_max_32u_a_H
+ #define INCLUDED_volk_32fc_index_max_32u_a_H
++#include <inttypes.h>
++#include <stdio.h>
+ #include <volk/volk_common.h>
+-#include<inttypes.h>
+-#include<stdio.h>
+-#include<volk/volk_complex.h>
++#include <volk/volk_complex.h>
+ #ifdef LV_HAVE_AVX2
+-#include<immintrin.h>
++#include <immintrin.h>
+ static inline void
+-volk_32fc_index_max_32u_a_avx2(uint32_t* target, lv_32fc_t* src0,
+-                               uint32_t num_points)
++volk_32fc_index_max_32u_a_avx2(uint32_t* target, lv_32fc_t* src0, uint32_t num_points)
+ {
+-  const uint32_t num_bytes = num_points*8;
++    const uint32_t num_bytes = num_points * 8;
+-  union bit256 holderf;
+-  union bit256 holderi;
+-  float sq_dist = 0.0;
++    union bit256 holderf;
++    union bit256 holderi;
++    float sq_dist = 0.0;
+-  union bit256 xmm5, xmm4;
+-  __m256 xmm1, xmm2, xmm3;
+-  __m256i xmm8, xmm11, xmm12, xmmfive, xmmfour, xmm9, holder0, holder1, xmm10;
++    union bit256 xmm5, xmm4;
++    __m256 xmm1, xmm2, xmm3;
++    __m256i xmm8, xmm11, xmm12, xmmfive, xmmfour, xmm9, holder0, holder1, xmm10;
+-  xmm5.int_vec = xmmfive = _mm256_setzero_si256();
+-  xmm4.int_vec = xmmfour = _mm256_setzero_si256();
+-  holderf.int_vec = holder0 = _mm256_setzero_si256();
+-  holderi.int_vec = holder1 = _mm256_setzero_si256();
++    xmm5.int_vec = xmmfive = _mm256_setzero_si256();
++    xmm4.int_vec = xmmfour = _mm256_setzero_si256();
++    holderf.int_vec = holder0 = _mm256_setzero_si256();
++    holderi.int_vec = holder1 = _mm256_setzero_si256();
+-  int bound = num_bytes >> 6;
+-  int i = 0;
++    int bound = num_bytes >> 6;
++    int i = 0;
+-  xmm8 = _mm256_set_epi32(7,6,5,4,3, 2, 1, 0);
+-  xmm9 = _mm256_setzero_si256();
+-  xmm10 = _mm256_set1_epi32(8);
+-  xmm3 = _mm256_setzero_ps();
+-  __m256i idx = _mm256_set_epi32(7,6,3,2,5,4,1,0);
++    xmm8 = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0);
++    xmm9 = _mm256_setzero_si256();
++    xmm10 = _mm256_set1_epi32(8);
++    xmm3 = _mm256_setzero_ps();
++    __m256i idx = _mm256_set_epi32(7, 6, 3, 2, 5, 4, 1, 0);
+-  for(; i < bound; ++i) {
+-    xmm1 = _mm256_load_ps((float*)src0);
+-    xmm2 = _mm256_load_ps((float*)&src0[4]);
++    for (; i < bound; ++i) {
++        xmm1 = _mm256_load_ps((float*)src0);
++        xmm2 = _mm256_load_ps((float*)&src0[4]);
+-    src0 += 8;
++        src0 += 8;
+-    xmm1 = _mm256_mul_ps(xmm1, xmm1);
+-    xmm2 = _mm256_mul_ps(xmm2, xmm2);
++        xmm1 = _mm256_mul_ps(xmm1, xmm1);
++        xmm2 = _mm256_mul_ps(xmm2, xmm2);
+-    xmm1 = _mm256_hadd_ps(xmm1, xmm2);
+-    xmm1 = _mm256_permutevar8x32_ps(xmm1, idx);
++        xmm1 = _mm256_hadd_ps(xmm1, xmm2);
++        xmm1 = _mm256_permutevar8x32_ps(xmm1, idx);
+-    xmm3 = _mm256_max_ps(xmm1, xmm3);
++        xmm3 = _mm256_max_ps(xmm1, xmm3);
+-    xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
+-    xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
++        xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
++        xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
+-    xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
+-    xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
++        xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
++        xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
+-    xmm9 = _mm256_add_epi32(xmm11,  xmm12);
++        xmm9 = _mm256_add_epi32(xmm11, xmm12);
+-    xmm8 = _mm256_add_epi32(xmm8, xmm10);
+-  }
+-
+-  xmm10 = _mm256_set1_epi32(4);
+-  if (num_bytes >> 5 & 1) {
+-    xmm1 = _mm256_load_ps((float*)src0);
+-
+-    xmm1 = _mm256_mul_ps(xmm1, xmm1);
++        xmm8 = _mm256_add_epi32(xmm8, xmm10);
++    }
+-    src0 += 4;
++    xmm10 = _mm256_set1_epi32(4);
++    if (num_bytes >> 4 & 1) {
++        xmm1 = _mm256_load_ps((float*)src0);
+-    xmm1 = _mm256_hadd_ps(xmm1, xmm1);
++        xmm1 = _mm256_mul_ps(xmm1, xmm1);
+-    xmm3 = _mm256_max_ps(xmm1, xmm3);
++        src0 += 4;
+-    xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
+-    xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
++        xmm1 = _mm256_hadd_ps(xmm1, xmm1);
+-    xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
+-    xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
++        xmm3 = _mm256_max_ps(xmm1, xmm3);
+-    xmm9 = _mm256_add_epi32(xmm11, xmm12);
++        xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
++        xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
+-    xmm8 = _mm256_add_epi32(xmm8, xmm10);
+-  }
++        xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
++        xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
+-  idx = _mm256_set_epi32(1,0,1,0,1,0,1,0);
+-  xmm10 = _mm256_set1_epi32(2);
+-  if (num_bytes >> 4 & 1) {
+-    xmm2 = _mm256_load_ps((float*)src0);
++        xmm9 = _mm256_add_epi32(xmm11, xmm12);
+-    xmm1 = _mm256_permutevar8x32_ps(bit256_p(&xmm8)->float_vec, idx);
+-    xmm8 = bit256_p(&xmm1)->int_vec;
++        xmm8 = _mm256_add_epi32(xmm8, xmm10);
++    }
+-    xmm2 = _mm256_mul_ps(xmm2, xmm2);
++    idx = _mm256_set_epi32(1, 0, 1, 0, 1, 0, 1, 0);
++    xmm10 = _mm256_set1_epi32(2);
++    if (num_bytes >> 4 & 1) {
++        xmm2 = _mm256_load_ps((float*)src0);
+-    src0 += 2;
++        xmm1 = _mm256_permutevar8x32_ps(bit256_p(&xmm8)->float_vec, idx);
++        xmm8 = bit256_p(&xmm1)->int_vec;
+-    xmm1 = _mm256_hadd_ps(xmm2, xmm2);
++        xmm2 = _mm256_mul_ps(xmm2, xmm2);
+-    xmm3 = _mm256_max_ps(xmm1, xmm3);
++        src0 += 2;
+-    xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
+-    xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
++        xmm1 = _mm256_hadd_ps(xmm2, xmm2);
+-    xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
+-    xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
++        xmm3 = _mm256_max_ps(xmm1, xmm3);
+-    xmm9 = _mm256_add_epi32(xmm11, xmm12);
++        xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
++        xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
+-    xmm8 = _mm256_add_epi32(xmm8, xmm10);
+-  }
++        xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
++        xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
+-  _mm256_store_ps((float*)&(holderf.f), xmm3);
+-  _mm256_store_si256(&(holderi.int_vec), xmm9);
++        xmm9 = _mm256_add_epi32(xmm11, xmm12);
+-  target[0] = holderi.i[0];
+-  sq_dist = holderf.f[0];
+-  target[0] = (holderf.f[1] > sq_dist) ? holderi.i[1] : target[0];
+-  sq_dist = (holderf.f[1] > sq_dist) ? holderf.f[1] : sq_dist;
+-  target[0] = (holderf.f[2] > sq_dist) ? holderi.i[2] : target[0];
+-  sq_dist = (holderf.f[2] > sq_dist) ? holderf.f[2] : sq_dist;
+-  target[0] = (holderf.f[3] > sq_dist) ? holderi.i[3] : target[0];
+-  sq_dist = (holderf.f[3] > sq_dist) ? holderf.f[3] : sq_dist;
+-  target[0] = (holderf.f[4] > sq_dist) ? holderi.i[4] : target[0];
+-  sq_dist = (holderf.f[4] > sq_dist) ? holderf.f[4] : sq_dist;
+-  target[0] = (holderf.f[5] > sq_dist) ? holderi.i[5] : target[0];
+-  sq_dist = (holderf.f[5] > sq_dist) ? holderf.f[5] : sq_dist;
+-  target[0] = (holderf.f[6] > sq_dist) ? holderi.i[6] : target[0];
+-  sq_dist = (holderf.f[6] > sq_dist) ? holderf.f[6] : sq_dist;
+-  target[0] = (holderf.f[7] > sq_dist) ? holderi.i[7] : target[0];
+-  sq_dist = (holderf.f[7] > sq_dist) ? holderf.f[7] : sq_dist;
++        xmm8 = _mm256_add_epi32(xmm8, xmm10);
++    }
++    _mm256_store_ps((float*)&(holderf.f), xmm3);
++    _mm256_store_si256(&(holderi.int_vec), xmm9);
++
++    target[0] = holderi.i[0];
++    sq_dist = holderf.f[0];
++    target[0] = (holderf.f[1] > sq_dist) ? holderi.i[1] : target[0];
++    sq_dist = (holderf.f[1] > sq_dist) ? holderf.f[1] : sq_dist;
++    target[0] = (holderf.f[2] > sq_dist) ? holderi.i[2] : target[0];
++    sq_dist = (holderf.f[2] > sq_dist) ? holderf.f[2] : sq_dist;
++    target[0] = (holderf.f[3] > sq_dist) ? holderi.i[3] : target[0];
++    sq_dist = (holderf.f[3] > sq_dist) ? holderf.f[3] : sq_dist;
++    target[0] = (holderf.f[4] > sq_dist) ? holderi.i[4] : target[0];
++    sq_dist = (holderf.f[4] > sq_dist) ? holderf.f[4] : sq_dist;
++    target[0] = (holderf.f[5] > sq_dist) ? holderi.i[5] : target[0];
++    sq_dist = (holderf.f[5] > sq_dist) ? holderf.f[5] : sq_dist;
++    target[0] = (holderf.f[6] > sq_dist) ? holderi.i[6] : target[0];
++    sq_dist = (holderf.f[6] > sq_dist) ? holderf.f[6] : sq_dist;
++    target[0] = (holderf.f[7] > sq_dist) ? holderi.i[7] : target[0];
++    sq_dist = (holderf.f[7] > sq_dist) ? holderf.f[7] : sq_dist;
+ }
+ #endif /*LV_HAVE_AVX2*/
+ #ifdef LV_HAVE_SSE3
+-#include<xmmintrin.h>
+-#include<pmmintrin.h>
++#include <pmmintrin.h>
++#include <xmmintrin.h>
+ static inline void
+-volk_32fc_index_max_32u_a_sse3(uint32_t* target, lv_32fc_t* src0,
+-                               uint32_t num_points)
++volk_32fc_index_max_32u_a_sse3(uint32_t* target, lv_32fc_t* src0, uint32_t num_points)
+ {
+-  const uint32_t num_bytes = num_points*8;
+-
+-  union bit128 holderf;
+-  union bit128 holderi;
+-  float sq_dist = 0.0;
+-
+-  union bit128 xmm5, xmm4;
+-  __m128 xmm1, xmm2, xmm3;
+-  __m128i xmm8, xmm11, xmm12, xmmfive, xmmfour, xmm9, holder0, holder1, xmm10;
++    const uint32_t num_bytes = num_points * 8;
+-  xmm5.int_vec = xmmfive = _mm_setzero_si128();
+-  xmm4.int_vec = xmmfour = _mm_setzero_si128();
+-  holderf.int_vec = holder0 = _mm_setzero_si128();
+-  holderi.int_vec = holder1 = _mm_setzero_si128();
++    union bit128 holderf;
++    union bit128 holderi;
++    float sq_dist = 0.0;
+-  int bound = num_bytes >> 5;
+-  int i = 0;
++    union bit128 xmm5, xmm4;
++    __m128 xmm1, xmm2, xmm3;
++    __m128i xmm8, xmm11, xmm12, xmmfive, xmmfour, xmm9, holder0, holder1, xmm10;
+-  xmm8 = _mm_set_epi32(3, 2, 1, 0);//remember the crazy reverse order!
+-  xmm9 = _mm_setzero_si128();
+-  xmm10 = _mm_set_epi32(4, 4, 4, 4);
+-  xmm3 = _mm_setzero_ps();
++    xmm5.int_vec = xmmfive = _mm_setzero_si128();
++    xmm4.int_vec = xmmfour = _mm_setzero_si128();
++    holderf.int_vec = holder0 = _mm_setzero_si128();
++    holderi.int_vec = holder1 = _mm_setzero_si128();
+-  //printf("%f, %f, %f, %f\n", ((float*)&xmm10)[0], ((float*)&xmm10)[1], ((float*)&xmm10)[2], ((float*)&xmm10)[3]);
++    int bound = num_bytes >> 5;
++    int i = 0;
+-  for(; i < bound; ++i) {
+-    xmm1 = _mm_load_ps((float*)src0);
+-    xmm2 = _mm_load_ps((float*)&src0[2]);
++    xmm8 = _mm_set_epi32(3, 2, 1, 0); // remember the crazy reverse order!
++    xmm9 = _mm_setzero_si128();
++    xmm10 = _mm_set_epi32(4, 4, 4, 4);
++    xmm3 = _mm_setzero_ps();
+-    src0 += 4;
++    // printf("%f, %f, %f, %f\n", ((float*)&xmm10)[0], ((float*)&xmm10)[1],
++    // ((float*)&xmm10)[2], ((float*)&xmm10)[3]);
+-    xmm1 = _mm_mul_ps(xmm1, xmm1);
+-    xmm2 = _mm_mul_ps(xmm2, xmm2);
++    for (; i < bound; ++i) {
++        xmm1 = _mm_load_ps((float*)src0);
++        xmm2 = _mm_load_ps((float*)&src0[2]);
+-    xmm1 = _mm_hadd_ps(xmm1, xmm2);
++        src0 += 4;
+-    xmm3 = _mm_max_ps(xmm1, xmm3);
++        xmm1 = _mm_mul_ps(xmm1, xmm1);
++        xmm2 = _mm_mul_ps(xmm2, xmm2);
+-    xmm4.float_vec = _mm_cmplt_ps(xmm1, xmm3);
+-    xmm5.float_vec = _mm_cmpeq_ps(xmm1, xmm3);
++        xmm1 = _mm_hadd_ps(xmm1, xmm2);
+-    xmm11 = _mm_and_si128(xmm8, xmm5.int_vec);
+-    xmm12 = _mm_and_si128(xmm9, xmm4.int_vec);
++        xmm3 = _mm_max_ps(xmm1, xmm3);
+-    xmm9 = _mm_add_epi32(xmm11,  xmm12);
++        xmm4.float_vec = _mm_cmplt_ps(xmm1, xmm3);
++        xmm5.float_vec = _mm_cmpeq_ps(xmm1, xmm3);
+-    xmm8 = _mm_add_epi32(xmm8, xmm10);
++        xmm11 = _mm_and_si128(xmm8, xmm5.int_vec);
++        xmm12 = _mm_and_si128(xmm9, xmm4.int_vec);
+-    //printf("%f, %f, %f, %f\n", ((float*)&xmm3)[0], ((float*)&xmm3)[1], ((float*)&xmm3)[2], ((float*)&xmm3)[3]);
+-    //printf("%u, %u, %u, %u\n", ((uint32_t*)&xmm10)[0], ((uint32_t*)&xmm10)[1], ((uint32_t*)&xmm10)[2], ((uint32_t*)&xmm10)[3]);
+-  }
++        xmm9 = _mm_add_epi32(xmm11, xmm12);
++        xmm8 = _mm_add_epi32(xmm8, xmm10);
+-  if (num_bytes >> 4 & 1) {
+-    xmm2 = _mm_load_ps((float*)src0);
+-
+-    xmm1 = _mm_movelh_ps(bit128_p(&xmm8)->float_vec, bit128_p(&xmm8)->float_vec);
+-    xmm8 = bit128_p(&xmm1)->int_vec;
+-
+-    xmm2 = _mm_mul_ps(xmm2, xmm2);
+-
+-    src0 += 2;
+-
+-    xmm1 = _mm_hadd_ps(xmm2, xmm2);
++        // printf("%f, %f, %f, %f\n", ((float*)&xmm3)[0], ((float*)&xmm3)[1],
++        // ((float*)&xmm3)[2], ((float*)&xmm3)[3]); printf("%u, %u, %u, %u\n",
++        // ((uint32_t*)&xmm10)[0], ((uint32_t*)&xmm10)[1], ((uint32_t*)&xmm10)[2],
++        // ((uint32_t*)&xmm10)[3]);
++    }
+-    xmm3 = _mm_max_ps(xmm1, xmm3);
+-    xmm10 = _mm_set_epi32(2, 2, 2, 2);//load1_ps((float*)&init[2]);
++    if (num_bytes >> 4 & 1) {
++        xmm2 = _mm_load_ps((float*)src0);
+-    xmm4.float_vec = _mm_cmplt_ps(xmm1, xmm3);
+-    xmm5.float_vec = _mm_cmpeq_ps(xmm1, xmm3);
++        xmm1 = _mm_movelh_ps(bit128_p(&xmm8)->float_vec, bit128_p(&xmm8)->float_vec);
++        xmm8 = bit128_p(&xmm1)->int_vec;
+-    xmm11 = _mm_and_si128(xmm8, xmm5.int_vec);
+-    xmm12 = _mm_and_si128(xmm9, xmm4.int_vec);
++        xmm2 = _mm_mul_ps(xmm2, xmm2);
+-    xmm9 = _mm_add_epi32(xmm11, xmm12);
++        src0 += 2;
+-    xmm8 = _mm_add_epi32(xmm8, xmm10);
+-    //printf("egads%u, %u, %u, %u\n", ((uint32_t*)&xmm9)[0], ((uint32_t*)&xmm9)[1], ((uint32_t*)&xmm9)[2], ((uint32_t*)&xmm9)[3]);
+-  }
++        xmm1 = _mm_hadd_ps(xmm2, xmm2);
+-  if (num_bytes >> 3 & 1) {
+-    //printf("%u, %u, %u, %u\n", ((uint32_t*)&xmm9)[0], ((uint32_t*)&xmm9)[1], ((uint32_t*)&xmm9)[2], ((uint32_t*)&xmm9)[3]);
++        xmm3 = _mm_max_ps(xmm1, xmm3);
+-    sq_dist = lv_creal(src0[0]) * lv_creal(src0[0]) + lv_cimag(src0[0]) * lv_cimag(src0[0]);
++        xmm10 = _mm_set_epi32(2, 2, 2, 2); // load1_ps((float*)&init[2]);
+-    xmm2 = _mm_load1_ps(&sq_dist);
++        xmm4.float_vec = _mm_cmplt_ps(xmm1, xmm3);
++        xmm5.float_vec = _mm_cmpeq_ps(xmm1, xmm3);
+-    xmm1 = xmm3;
++        xmm11 = _mm_and_si128(xmm8, xmm5.int_vec);
++        xmm12 = _mm_and_si128(xmm9, xmm4.int_vec);
+-    xmm3 = _mm_max_ss(xmm3, xmm2);
++        xmm9 = _mm_add_epi32(xmm11, xmm12);
+-    xmm4.float_vec = _mm_cmplt_ps(xmm1, xmm3);
+-    xmm5.float_vec = _mm_cmpeq_ps(xmm1, xmm3);
++        xmm8 = _mm_add_epi32(xmm8, xmm10);
++        // printf("egads%u, %u, %u, %u\n", ((uint32_t*)&xmm9)[0], ((uint32_t*)&xmm9)[1],
++        // ((uint32_t*)&xmm9)[2], ((uint32_t*)&xmm9)[3]);
++    }
+-    xmm8 = _mm_shuffle_epi32(xmm8, 0x00);
++    if (num_bytes >> 3 & 1) {
++        // printf("%u, %u, %u, %u\n", ((uint32_t*)&xmm9)[0], ((uint32_t*)&xmm9)[1],
++        // ((uint32_t*)&xmm9)[2], ((uint32_t*)&xmm9)[3]);
+-    xmm11 = _mm_and_si128(xmm8, xmm4.int_vec);
+-    xmm12 = _mm_and_si128(xmm9, xmm5.int_vec);
++        sq_dist =
++            lv_creal(src0[0]) * lv_creal(src0[0]) + lv_cimag(src0[0]) * lv_cimag(src0[0]);
+-    xmm9 = _mm_add_epi32(xmm11, xmm12);
+-  }
++        xmm2 = _mm_load1_ps(&sq_dist);
+-  //printf("%f, %f, %f, %f\n", ((float*)&xmm3)[0], ((float*)&xmm3)[1], ((float*)&xmm3)[2], ((float*)&xmm3)[3]);
+-  //printf("%u, %u, %u, %u\n", ((uint32_t*)&xmm9)[0], ((uint32_t*)&xmm9)[1], ((uint32_t*)&xmm9)[2], ((uint32_t*)&xmm9)[3]);
++        xmm1 = xmm3;
+-  _mm_store_ps((float*)&(holderf.f), xmm3);
+-  _mm_store_si128(&(holderi.int_vec), xmm9);
++        xmm3 = _mm_max_ss(xmm3, xmm2);
+-  target[0] = holderi.i[0];
+-  sq_dist = holderf.f[0];
+-  target[0] = (holderf.f[1] > sq_dist) ? holderi.i[1] : target[0];
+-  sq_dist = (holderf.f[1] > sq_dist) ? holderf.f[1] : sq_dist;
+-  target[0] = (holderf.f[2] > sq_dist) ? holderi.i[2] : target[0];
+-  sq_dist = (holderf.f[2] > sq_dist) ? holderf.f[2] : sq_dist;
+-  target[0] = (holderf.f[3] > sq_dist) ? holderi.i[3] : target[0];
+-  sq_dist = (holderf.f[3] > sq_dist) ? holderf.f[3] : sq_dist;
++        xmm4.float_vec = _mm_cmplt_ps(xmm1, xmm3);
++        xmm5.float_vec = _mm_cmpeq_ps(xmm1, xmm3);
+-  /*
+-  float placeholder = 0.0;
+-  uint32_t temp0, temp1;
+-  uint32_t g0 = (((float*)&xmm3)[0] > ((float*)&xmm3)[1]);
+-  uint32_t l0 = g0 ^ 1;
++        xmm8 = _mm_shuffle_epi32(xmm8, 0x00);
+-  uint32_t g1 = (((float*)&xmm3)[1] > ((float*)&xmm3)[2]);
+-  uint32_t l1 = g1 ^ 1;
++        xmm11 = _mm_and_si128(xmm8, xmm4.int_vec);
++        xmm12 = _mm_and_si128(xmm9, xmm5.int_vec);
+-  temp0 = g0 * ((uint32_t*)&xmm9)[0] + l0 * ((uint32_t*)&xmm9)[1];
+-  temp1 = g0 * ((uint32_t*)&xmm9)[2] + l0 * ((uint32_t*)&xmm9)[3];
+-  sq_dist = g0 * ((float*)&xmm3)[0] + l0 * ((float*)&xmm3)[1];
+-  placeholder = g0 * ((float*)&xmm3)[2] + l0 * ((float*)&xmm3)[3];
++        xmm9 = _mm_add_epi32(xmm11, xmm12);
++    }
+-  g0 = (sq_dist > placeholder);
+-  l0 = g0 ^ 1;
+-  target[0] = g0 * temp0 + l0 * temp1;
+-  */
++    // printf("%f, %f, %f, %f\n", ((float*)&xmm3)[0], ((float*)&xmm3)[1],
++    // ((float*)&xmm3)[2], ((float*)&xmm3)[3]); printf("%u, %u, %u, %u\n",
++    // ((uint32_t*)&xmm9)[0], ((uint32_t*)&xmm9)[1], ((uint32_t*)&xmm9)[2],
++    // ((uint32_t*)&xmm9)[3]);
++
++    _mm_store_ps((float*)&(holderf.f), xmm3);
++    _mm_store_si128(&(holderi.int_vec), xmm9);
++
++    target[0] = holderi.i[0];
++    sq_dist = holderf.f[0];
++    target[0] = (holderf.f[1] > sq_dist) ? holderi.i[1] : target[0];
++    sq_dist = (holderf.f[1] > sq_dist) ? holderf.f[1] : sq_dist;
++    target[0] = (holderf.f[2] > sq_dist) ? holderi.i[2] : target[0];
++    sq_dist = (holderf.f[2] > sq_dist) ? holderf.f[2] : sq_dist;
++    target[0] = (holderf.f[3] > sq_dist) ? holderi.i[3] : target[0];
++    sq_dist = (holderf.f[3] > sq_dist) ? holderf.f[3] : sq_dist;
++
++    /*
++    float placeholder = 0.0;
++    uint32_t temp0, temp1;
++    uint32_t g0 = (((float*)&xmm3)[0] > ((float*)&xmm3)[1]);
++    uint32_t l0 = g0 ^ 1;
++
++    uint32_t g1 = (((float*)&xmm3)[1] > ((float*)&xmm3)[2]);
++    uint32_t l1 = g1 ^ 1;
++
++    temp0 = g0 * ((uint32_t*)&xmm9)[0] + l0 * ((uint32_t*)&xmm9)[1];
++    temp1 = g0 * ((uint32_t*)&xmm9)[2] + l0 * ((uint32_t*)&xmm9)[3];
++    sq_dist = g0 * ((float*)&xmm3)[0] + l0 * ((float*)&xmm3)[1];
++    placeholder = g0 * ((float*)&xmm3)[2] + l0 * ((float*)&xmm3)[3];
++
++    g0 = (sq_dist > placeholder);
++    l0 = g0 ^ 1;
++    target[0] = g0 * temp0 + l0 * temp1;
++    */
+ }
+ #endif /*LV_HAVE_SSE3*/
+ #ifdef LV_HAVE_GENERIC
+ static inline void
+- volk_32fc_index_max_32u_generic(uint32_t* target, lv_32fc_t* src0,
+-                                 uint32_t num_points)
++volk_32fc_index_max_32u_generic(uint32_t* target, lv_32fc_t* src0, uint32_t num_points)
+ {
+-  const uint32_t num_bytes = num_points*8;
++    const uint32_t num_bytes = num_points * 8;
+-  float sq_dist = 0.0;
+-  float max = 0.0;
+-  uint32_t index = 0;
++    float sq_dist = 0.0;
++    float max = 0.0;
++    uint32_t index = 0;
+-  uint32_t i = 0;
++    uint32_t i = 0;
+-  for(; i < num_bytes >> 3; ++i) {
+-    sq_dist = lv_creal(src0[i]) * lv_creal(src0[i]) + lv_cimag(src0[i]) * lv_cimag(src0[i]);
++    for (; i<num_bytes>> 3; ++i) {
++        sq_dist =
++            lv_creal(src0[i]) * lv_creal(src0[i]) + lv_cimag(src0[i]) * lv_cimag(src0[i]);
+-    index = sq_dist > max ? i : index;
+-    max = sq_dist > max ? sq_dist : max;
+-  }
+-  target[0] = index;
++        index = sq_dist > max ? i : index;
++        max = sq_dist > max ? sq_dist : max;
++    }
++    target[0] = index;
+ }
+ #endif /*LV_HAVE_GENERIC*/
+@@ -384,137 +389,135 @@ static inline void
+ #ifndef INCLUDED_volk_32fc_index_max_32u_u_H
+ #define INCLUDED_volk_32fc_index_max_32u_u_H
++#include <inttypes.h>
++#include <stdio.h>
+ #include <volk/volk_common.h>
+-#include<inttypes.h>
+-#include<stdio.h>
+-#include<volk/volk_complex.h>
++#include <volk/volk_complex.h>
+ #ifdef LV_HAVE_AVX2
+-#include<immintrin.h>
++#include <immintrin.h>
+ static inline void
+-volk_32fc_index_max_32u_u_avx2(uint32_t* target, lv_32fc_t* src0,
+-                               uint32_t num_points)
++volk_32fc_index_max_32u_u_avx2(uint32_t* target, lv_32fc_t* src0, uint32_t num_points)
+ {
+-  const uint32_t num_bytes = num_points*8;
+-
+-  union bit256 holderf;
+-  union bit256 holderi;
+-  float sq_dist = 0.0;
++    const uint32_t num_bytes = num_points * 8;
+-  union bit256 xmm5, xmm4;
+-  __m256 xmm1, xmm2, xmm3;
+-  __m256i xmm8, xmm11, xmm12, xmmfive, xmmfour, xmm9, holder0, holder1, xmm10;
++    union bit256 holderf;
++    union bit256 holderi;
++    float sq_dist = 0.0;
+-  xmm5.int_vec = xmmfive = _mm256_setzero_si256();
+-  xmm4.int_vec = xmmfour = _mm256_setzero_si256();
+-  holderf.int_vec = holder0 = _mm256_setzero_si256();
+-  holderi.int_vec = holder1 = _mm256_setzero_si256();
++    union bit256 xmm5, xmm4;
++    __m256 xmm1, xmm2, xmm3;
++    __m256i xmm8, xmm11, xmm12, xmmfive, xmmfour, xmm9, holder0, holder1, xmm10;
+-  int bound = num_bytes >> 6;
+-  int i = 0;
++    xmm5.int_vec = xmmfive = _mm256_setzero_si256();
++    xmm4.int_vec = xmmfour = _mm256_setzero_si256();
++    holderf.int_vec = holder0 = _mm256_setzero_si256();
++    holderi.int_vec = holder1 = _mm256_setzero_si256();
+-  xmm8 = _mm256_set_epi32(7,6,5,4,3, 2, 1, 0);
+-  xmm9 = _mm256_setzero_si256();
+-  xmm10 = _mm256_set1_epi32(8);
+-  xmm3 = _mm256_setzero_ps();
+-  __m256i idx = _mm256_set_epi32(7,6,3,2,5,4,1,0);
++    int bound = num_bytes >> 6;
++    int i = 0;
+-  for(; i < bound; ++i) {
+-    xmm1 = _mm256_loadu_ps((float*)src0);
+-    xmm2 = _mm256_loadu_ps((float*)&src0[4]);
++    xmm8 = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0);
++    xmm9 = _mm256_setzero_si256();
++    xmm10 = _mm256_set1_epi32(8);
++    xmm3 = _mm256_setzero_ps();
++    __m256i idx = _mm256_set_epi32(7, 6, 3, 2, 5, 4, 1, 0);
+-    src0 += 8;
++    for (; i < bound; ++i) {
++        xmm1 = _mm256_loadu_ps((float*)src0);
++        xmm2 = _mm256_loadu_ps((float*)&src0[4]);
+-    xmm1 = _mm256_mul_ps(xmm1, xmm1);
+-    xmm2 = _mm256_mul_ps(xmm2, xmm2);
++        src0 += 8;
+-    xmm1 = _mm256_hadd_ps(xmm1, xmm2);
+-    xmm1 = _mm256_permutevar8x32_ps(xmm1, idx);
++        xmm1 = _mm256_mul_ps(xmm1, xmm1);
++        xmm2 = _mm256_mul_ps(xmm2, xmm2);
+-    xmm3 = _mm256_max_ps(xmm1, xmm3);
++        xmm1 = _mm256_hadd_ps(xmm1, xmm2);
++        xmm1 = _mm256_permutevar8x32_ps(xmm1, idx);
+-    xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
+-    xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
++        xmm3 = _mm256_max_ps(xmm1, xmm3);
+-    xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
+-    xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
++        xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
++        xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
+-    xmm9 = _mm256_add_epi32(xmm11,  xmm12);
++        xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
++        xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
+-    xmm8 = _mm256_add_epi32(xmm8, xmm10);
+-  }
++        xmm9 = _mm256_add_epi32(xmm11, xmm12);
+-  xmm10 = _mm256_set1_epi32(4);
+-  if (num_bytes >> 5 & 1) {
+-    xmm1 = _mm256_loadu_ps((float*)src0);
+-
+-    xmm1 = _mm256_mul_ps(xmm1, xmm1);
++        xmm8 = _mm256_add_epi32(xmm8, xmm10);
++    }
+-    src0 += 4;
++    xmm10 = _mm256_set1_epi32(4);
++    if (num_bytes >> 4 & 1) {
++        xmm1 = _mm256_loadu_ps((float*)src0);
+-    xmm1 = _mm256_hadd_ps(xmm1, xmm1);
++        xmm1 = _mm256_mul_ps(xmm1, xmm1);
+-    xmm3 = _mm256_max_ps(xmm1, xmm3);
++        src0 += 4;
+-    xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
+-    xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
++        xmm1 = _mm256_hadd_ps(xmm1, xmm1);
+-    xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
+-    xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
++        xmm3 = _mm256_max_ps(xmm1, xmm3);
+-    xmm9 = _mm256_add_epi32(xmm11, xmm12);
++        xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
++        xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
+-    xmm8 = _mm256_add_epi32(xmm8, xmm10);
+-  }
++        xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
++        xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
+-  idx = _mm256_set_epi32(1,0,1,0,1,0,1,0);
+-  xmm10 = _mm256_set1_epi32(2);
+-  if (num_bytes >> 4 & 1) {
+-    xmm2 = _mm256_loadu_ps((float*)src0);
++        xmm9 = _mm256_add_epi32(xmm11, xmm12);
+-    xmm1 = _mm256_permutevar8x32_ps(bit256_p(&xmm8)->float_vec, idx);
+-    xmm8 = bit256_p(&xmm1)->int_vec;
++        xmm8 = _mm256_add_epi32(xmm8, xmm10);
++    }
+-    xmm2 = _mm256_mul_ps(xmm2, xmm2);
++    idx = _mm256_set_epi32(1, 0, 1, 0, 1, 0, 1, 0);
++    xmm10 = _mm256_set1_epi32(2);
++    if (num_bytes >> 4 & 1) {
++        xmm2 = _mm256_loadu_ps((float*)src0);
+-    src0 += 2;
++        xmm1 = _mm256_permutevar8x32_ps(bit256_p(&xmm8)->float_vec, idx);
++        xmm8 = bit256_p(&xmm1)->int_vec;
+-    xmm1 = _mm256_hadd_ps(xmm2, xmm2);
++        xmm2 = _mm256_mul_ps(xmm2, xmm2);
+-    xmm3 = _mm256_max_ps(xmm1, xmm3);
++        src0 += 2;
+-    xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
+-    xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
++        xmm1 = _mm256_hadd_ps(xmm2, xmm2);
+-    xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
+-    xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
++        xmm3 = _mm256_max_ps(xmm1, xmm3);
+-    xmm9 = _mm256_add_epi32(xmm11, xmm12);
++        xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
++        xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
+-    xmm8 = _mm256_add_epi32(xmm8, xmm10);
+-  }
++        xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
++        xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
+-  _mm256_storeu_ps((float*)&(holderf.f), xmm3);
+-  _mm256_storeu_si256(&(holderi.int_vec), xmm9);
++        xmm9 = _mm256_add_epi32(xmm11, xmm12);
+-  target[0] = holderi.i[0];
+-  sq_dist = holderf.f[0];
+-  target[0] = (holderf.f[1] > sq_dist) ? holderi.i[1] : target[0];
+-  sq_dist = (holderf.f[1] > sq_dist) ? holderf.f[1] : sq_dist;
+-  target[0] = (holderf.f[2] > sq_dist) ? holderi.i[2] : target[0];
+-  sq_dist = (holderf.f[2] > sq_dist) ? holderf.f[2] : sq_dist;
+-  target[0] = (holderf.f[3] > sq_dist) ? holderi.i[3] : target[0];
+-  sq_dist = (holderf.f[3] > sq_dist) ? holderf.f[3] : sq_dist;
+-  target[0] = (holderf.f[4] > sq_dist) ? holderi.i[4] : target[0];
+-  sq_dist = (holderf.f[4] > sq_dist) ? holderf.f[4] : sq_dist;
+-  target[0] = (holderf.f[5] > sq_dist) ? holderi.i[5] : target[0];
+-  sq_dist = (holderf.f[5] > sq_dist) ? holderf.f[5] : sq_dist;
+-  target[0] = (holderf.f[6] > sq_dist) ? holderi.i[6] : target[0];
+-  sq_dist = (holderf.f[6] > sq_dist) ? holderf.f[6] : sq_dist;
+-  target[0] = (holderf.f[7] > sq_dist) ? holderi.i[7] : target[0];
+-  sq_dist = (holderf.f[7] > sq_dist) ? holderf.f[7] : sq_dist;
++        xmm8 = _mm256_add_epi32(xmm8, xmm10);
++    }
++    _mm256_storeu_ps((float*)&(holderf.f), xmm3);
++    _mm256_storeu_si256(&(holderi.int_vec), xmm9);
++
++    target[0] = holderi.i[0];
++    sq_dist = holderf.f[0];
++    target[0] = (holderf.f[1] > sq_dist) ? holderi.i[1] : target[0];
++    sq_dist = (holderf.f[1] > sq_dist) ? holderf.f[1] : sq_dist;
++    target[0] = (holderf.f[2] > sq_dist) ? holderi.i[2] : target[0];
++    sq_dist = (holderf.f[2] > sq_dist) ? holderf.f[2] : sq_dist;
++    target[0] = (holderf.f[3] > sq_dist) ? holderi.i[3] : target[0];
++    sq_dist = (holderf.f[3] > sq_dist) ? holderf.f[3] : sq_dist;
++    target[0] = (holderf.f[4] > sq_dist) ? holderi.i[4] : target[0];
++    sq_dist = (holderf.f[4] > sq_dist) ? holderf.f[4] : sq_dist;
++    target[0] = (holderf.f[5] > sq_dist) ? holderi.i[5] : target[0];
++    sq_dist = (holderf.f[5] > sq_dist) ? holderf.f[5] : sq_dist;
++    target[0] = (holderf.f[6] > sq_dist) ? holderi.i[6] : target[0];
++    sq_dist = (holderf.f[6] > sq_dist) ? holderf.f[6] : sq_dist;
++    target[0] = (holderf.f[7] > sq_dist) ? holderi.i[7] : target[0];
++    sq_dist = (holderf.f[7] > sq_dist) ? holderf.f[7] : sq_dist;
+ }
+ #endif /*LV_HAVE_AVX2*/
+@@ -523,29 +526,29 @@ volk_32fc_index_max_32u_u_avx2(uint32_t* target, lv_32fc_t* src0,
+ #include <arm_neon.h>
+ #include <volk/volk_neon_intrinsics.h>
+-static inline void volk_32fc_index_max_32u_neon(uint32_t* target, lv_32fc_t* src0, uint32_t num_points)
++static inline void
++volk_32fc_index_max_32u_neon(uint32_t* target, lv_32fc_t* src0, uint32_t num_points)
+ {
+     unsigned int number = 0;
+     const uint32_t quarter_points = num_points / 4;
+     const lv_32fc_t* src0Ptr = src0;
+-    
+-    uint32_t indices[4] = {0, 1, 2, 3};
++
++    uint32_t indices[4] = { 0, 1, 2, 3 };
+     const uint32x4_t vec_indices_incr = vdupq_n_u32(4);
+     uint32x4_t vec_indices = vld1q_u32(indices);
+     uint32x4_t vec_max_indices = vec_indices;
+-    
+-    if(num_points)
+-    {
++
++    if (num_points) {
+         float max = *src0Ptr;
+         uint32_t index = 0;
+-        
++
+         float32x4_t vec_max = vdupq_n_f32(*src0Ptr);
+-        
+-        for(;number < quarter_points; number++)
+-        {
++
++        for (; number < quarter_points; number++) {
+             // Load complex and compute magnitude squared
+-            const float32x4_t vec_mag2 = _vmagnitudesquaredq_f32(vld2q_f32((float*)src0Ptr));
+-            __VOLK_PREFETCH(src0Ptr+=4);
++            const float32x4_t vec_mag2 =
++                _vmagnitudesquaredq_f32(vld2q_f32((float*)src0Ptr));
++            __VOLK_PREFETCH(src0Ptr += 4);
+             // a > b?
+             const uint32x4_t gt_mask = vcgtq_f32(vec_mag2, vec_max);
+             vec_max = vbslq_f32(gt_mask, vec_mag2, vec_max);
+@@ -556,20 +559,19 @@ static inline void volk_32fc_index_max_32u_neon(uint32_t* target, lv_32fc_t* src
+         float tmp_max[4];
+         vst1q_u32(tmp_max_indices, vec_max_indices);
+         vst1q_f32(tmp_max, vec_max);
+-        
++
+         for (int i = 0; i < 4; i++) {
+             if (tmp_max[i] > max) {
+                 max = tmp_max[i];
+                 index = tmp_max_indices[i];
+             }
+         }
+-        
++
+         // Deal with the rest
+-        for(number = quarter_points * 4;number < num_points; number++)
+-        {
++        for (number = quarter_points * 4; number < num_points; number++) {
+             const float re = lv_creal(*src0Ptr);
+             const float im = lv_cimag(*src0Ptr);
+-            if ((re*re+im*im) > max) {
++            if ((re * re + im * im) > max) {
+                 max = *src0Ptr;
+                 index = number;
+             }
+diff --git a/kernels/volk/volk_32fc_magnitude_32f.h b/kernels/volk/volk_32fc_magnitude_32f.h
+index 1ba6871..6a0a7d8 100644
+--- a/kernels/volk/volk_32fc_magnitude_32f.h
++++ b/kernels/volk/volk_32fc_magnitude_32f.h
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32fc_magnitude_32f(float* magnitudeVector, const lv_32fc_t* complexVector, unsigned int num_points)
+- * \endcode
++ * void volk_32fc_magnitude_32f(float* magnitudeVector, const lv_32fc_t* complexVector,
++ * unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li complexVector: The complex input vector.
+@@ -72,41 +72,41 @@
+ #define INCLUDED_volk_32fc_magnitude_32f_u_H
+ #include <inttypes.h>
+-#include <stdio.h>
+ #include <math.h>
++#include <stdio.h>
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+ #include <volk/volk_avx_intrinsics.h>
+-static inline void
+-volk_32fc_magnitude_32f_u_avx(float* magnitudeVector, const lv_32fc_t* complexVector,
+-                              unsigned int num_points)
++static inline void volk_32fc_magnitude_32f_u_avx(float* magnitudeVector,
++                                                 const lv_32fc_t* complexVector,
++                                                 unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  const float* complexVectorPtr = (float*) complexVector;
+-  float* magnitudeVectorPtr = magnitudeVector;
+-
+-  __m256 cplxValue1, cplxValue2, result;
+-
+-  for(; number < eighthPoints; number++){
+-    cplxValue1 = _mm256_loadu_ps(complexVectorPtr);
+-    cplxValue2 = _mm256_loadu_ps(complexVectorPtr + 8);
+-    result = _mm256_magnitude_ps(cplxValue1, cplxValue2);
+-    _mm256_storeu_ps(magnitudeVectorPtr, result);
+-
+-    complexVectorPtr += 16;
+-    magnitudeVectorPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    float val1Real = *complexVectorPtr++;
+-    float val1Imag = *complexVectorPtr++;
+-    *magnitudeVectorPtr++ = sqrtf((val1Real * val1Real) + (val1Imag * val1Imag));
+-  }
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    const float* complexVectorPtr = (float*)complexVector;
++    float* magnitudeVectorPtr = magnitudeVector;
++
++    __m256 cplxValue1, cplxValue2, result;
++
++    for (; number < eighthPoints; number++) {
++        cplxValue1 = _mm256_loadu_ps(complexVectorPtr);
++        cplxValue2 = _mm256_loadu_ps(complexVectorPtr + 8);
++        result = _mm256_magnitude_ps(cplxValue1, cplxValue2);
++        _mm256_storeu_ps(magnitudeVectorPtr, result);
++
++        complexVectorPtr += 16;
++        magnitudeVectorPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        float val1Real = *complexVectorPtr++;
++        float val1Imag = *complexVectorPtr++;
++        *magnitudeVectorPtr++ = sqrtf((val1Real * val1Real) + (val1Imag * val1Imag));
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -114,137 +114,137 @@ volk_32fc_magnitude_32f_u_avx(float* magnitudeVector, const lv_32fc_t* complexVe
+ #include <pmmintrin.h>
+ #include <volk/volk_sse3_intrinsics.h>
+-static inline void
+-volk_32fc_magnitude_32f_u_sse3(float* magnitudeVector, const lv_32fc_t* complexVector,
+-                               unsigned int num_points)
++static inline void volk_32fc_magnitude_32f_u_sse3(float* magnitudeVector,
++                                                  const lv_32fc_t* complexVector,
++                                                  unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  const float* complexVectorPtr = (float*) complexVector;
+-  float* magnitudeVectorPtr = magnitudeVector;
++    const float* complexVectorPtr = (float*)complexVector;
++    float* magnitudeVectorPtr = magnitudeVector;
+-  __m128 cplxValue1, cplxValue2, result;
+-  for(; number < quarterPoints; number++){
+-    cplxValue1 = _mm_loadu_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
++    __m128 cplxValue1, cplxValue2, result;
++    for (; number < quarterPoints; number++) {
++        cplxValue1 = _mm_loadu_ps(complexVectorPtr);
++        complexVectorPtr += 4;
+-    cplxValue2 = _mm_loadu_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
++        cplxValue2 = _mm_loadu_ps(complexVectorPtr);
++        complexVectorPtr += 4;
+-    result = _mm_magnitude_ps_sse3(cplxValue1, cplxValue2);
++        result = _mm_magnitude_ps_sse3(cplxValue1, cplxValue2);
+-    _mm_storeu_ps(magnitudeVectorPtr, result);
+-    magnitudeVectorPtr += 4;
+-  }
++        _mm_storeu_ps(magnitudeVectorPtr, result);
++        magnitudeVectorPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    float val1Real = *complexVectorPtr++;
+-    float val1Imag = *complexVectorPtr++;
+-    *magnitudeVectorPtr++ = sqrtf((val1Real * val1Real) + (val1Imag * val1Imag));
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        float val1Real = *complexVectorPtr++;
++        float val1Imag = *complexVectorPtr++;
++        *magnitudeVectorPtr++ = sqrtf((val1Real * val1Real) + (val1Imag * val1Imag));
++    }
+ }
+ #endif /* LV_HAVE_SSE3 */
+ #ifdef LV_HAVE_SSE
+-#include <xmmintrin.h>
+ #include <volk/volk_sse_intrinsics.h>
++#include <xmmintrin.h>
+-static inline void
+-volk_32fc_magnitude_32f_u_sse(float* magnitudeVector, const lv_32fc_t* complexVector,
+-                              unsigned int num_points)
++static inline void volk_32fc_magnitude_32f_u_sse(float* magnitudeVector,
++                                                 const lv_32fc_t* complexVector,
++                                                 unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  const float* complexVectorPtr = (float*) complexVector;
+-  float* magnitudeVectorPtr = magnitudeVector;
++    const float* complexVectorPtr = (float*)complexVector;
++    float* magnitudeVectorPtr = magnitudeVector;
+-  __m128 cplxValue1, cplxValue2, result;
++    __m128 cplxValue1, cplxValue2, result;
+-  for(; number < quarterPoints; number++){
+-    cplxValue1 = _mm_loadu_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
++    for (; number < quarterPoints; number++) {
++        cplxValue1 = _mm_loadu_ps(complexVectorPtr);
++        complexVectorPtr += 4;
+-    cplxValue2 = _mm_loadu_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
++        cplxValue2 = _mm_loadu_ps(complexVectorPtr);
++        complexVectorPtr += 4;
+-    result = _mm_magnitude_ps(cplxValue1, cplxValue2);
+-    _mm_storeu_ps(magnitudeVectorPtr, result);
+-    magnitudeVectorPtr += 4;
+-  }
++        result = _mm_magnitude_ps(cplxValue1, cplxValue2);
++        _mm_storeu_ps(magnitudeVectorPtr, result);
++        magnitudeVectorPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    float val1Real = *complexVectorPtr++;
+-    float val1Imag = *complexVectorPtr++;
+-    *magnitudeVectorPtr++ = sqrtf((val1Real * val1Real) + (val1Imag * val1Imag));
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        float val1Real = *complexVectorPtr++;
++        float val1Imag = *complexVectorPtr++;
++        *magnitudeVectorPtr++ = sqrtf((val1Real * val1Real) + (val1Imag * val1Imag));
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32fc_magnitude_32f_generic(float* magnitudeVector, const lv_32fc_t* complexVector, unsigned int num_points)
++static inline void volk_32fc_magnitude_32f_generic(float* magnitudeVector,
++                                                   const lv_32fc_t* complexVector,
++                                                   unsigned int num_points)
+ {
+-  const float* complexVectorPtr = (float*)complexVector;
+-  float* magnitudeVectorPtr = magnitudeVector;
+-  unsigned int number = 0;
+-  for(number = 0; number < num_points; number++){
+-    const float real = *complexVectorPtr++;
+-    const float imag = *complexVectorPtr++;
+-    *magnitudeVectorPtr++ = sqrtf((real*real) + (imag*imag));
+-  }
++    const float* complexVectorPtr = (float*)complexVector;
++    float* magnitudeVectorPtr = magnitudeVector;
++    unsigned int number = 0;
++    for (number = 0; number < num_points; number++) {
++        const float real = *complexVectorPtr++;
++        const float imag = *complexVectorPtr++;
++        *magnitudeVectorPtr++ = sqrtf((real * real) + (imag * imag));
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+-
+ #endif /* INCLUDED_volk_32fc_magnitude_32f_u_H */
+ #ifndef INCLUDED_volk_32fc_magnitude_32f_a_H
+ #define INCLUDED_volk_32fc_magnitude_32f_a_H
+ #include <inttypes.h>
+-#include <stdio.h>
+ #include <math.h>
++#include <stdio.h>
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+ #include <volk/volk_avx_intrinsics.h>
+-static inline void
+-volk_32fc_magnitude_32f_a_avx(float* magnitudeVector, const lv_32fc_t* complexVector,
+-                              unsigned int num_points)
++static inline void volk_32fc_magnitude_32f_a_avx(float* magnitudeVector,
++                                                 const lv_32fc_t* complexVector,
++                                                 unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  const float* complexVectorPtr = (float*) complexVector;
+-  float* magnitudeVectorPtr = magnitudeVector;
+-
+-  __m256 cplxValue1, cplxValue2, result;
+-  for(; number < eighthPoints; number++){
+-    cplxValue1 = _mm256_load_ps(complexVectorPtr);
+-    complexVectorPtr += 8;
+-
+-    cplxValue2 = _mm256_load_ps(complexVectorPtr);
+-    complexVectorPtr += 8;
+-
+-    result = _mm256_magnitude_ps(cplxValue1, cplxValue2);
+-    _mm256_store_ps(magnitudeVectorPtr, result);
+-    magnitudeVectorPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    float val1Real = *complexVectorPtr++;
+-    float val1Imag = *complexVectorPtr++;
+-    *magnitudeVectorPtr++ = sqrtf((val1Real * val1Real) + (val1Imag * val1Imag));
+-  }
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    const float* complexVectorPtr = (float*)complexVector;
++    float* magnitudeVectorPtr = magnitudeVector;
++
++    __m256 cplxValue1, cplxValue2, result;
++    for (; number < eighthPoints; number++) {
++        cplxValue1 = _mm256_load_ps(complexVectorPtr);
++        complexVectorPtr += 8;
++
++        cplxValue2 = _mm256_load_ps(complexVectorPtr);
++        complexVectorPtr += 8;
++
++        result = _mm256_magnitude_ps(cplxValue1, cplxValue2);
++        _mm256_store_ps(magnitudeVectorPtr, result);
++        magnitudeVectorPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        float val1Real = *complexVectorPtr++;
++        float val1Imag = *complexVectorPtr++;
++        *magnitudeVectorPtr++ = sqrtf((val1Real * val1Real) + (val1Imag * val1Imag));
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -252,89 +252,89 @@ volk_32fc_magnitude_32f_a_avx(float* magnitudeVector, const lv_32fc_t* complexVe
+ #include <pmmintrin.h>
+ #include <volk/volk_sse3_intrinsics.h>
+-static inline void
+-volk_32fc_magnitude_32f_a_sse3(float* magnitudeVector, const lv_32fc_t* complexVector,
+-                               unsigned int num_points)
++static inline void volk_32fc_magnitude_32f_a_sse3(float* magnitudeVector,
++                                                  const lv_32fc_t* complexVector,
++                                                  unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  const float* complexVectorPtr = (float*) complexVector;
+-  float* magnitudeVectorPtr = magnitudeVector;
+-
+-  __m128 cplxValue1, cplxValue2, result;
+-  for(; number < quarterPoints; number++){
+-    cplxValue1 = _mm_load_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
+-
+-    cplxValue2 = _mm_load_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
+-
+-    result = _mm_magnitude_ps_sse3(cplxValue1, cplxValue2);
+-    _mm_store_ps(magnitudeVectorPtr, result);
+-    magnitudeVectorPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    float val1Real = *complexVectorPtr++;
+-    float val1Imag = *complexVectorPtr++;
+-    *magnitudeVectorPtr++ = sqrtf((val1Real * val1Real) + (val1Imag * val1Imag));
+-  }
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++
++    const float* complexVectorPtr = (float*)complexVector;
++    float* magnitudeVectorPtr = magnitudeVector;
++
++    __m128 cplxValue1, cplxValue2, result;
++    for (; number < quarterPoints; number++) {
++        cplxValue1 = _mm_load_ps(complexVectorPtr);
++        complexVectorPtr += 4;
++
++        cplxValue2 = _mm_load_ps(complexVectorPtr);
++        complexVectorPtr += 4;
++
++        result = _mm_magnitude_ps_sse3(cplxValue1, cplxValue2);
++        _mm_store_ps(magnitudeVectorPtr, result);
++        magnitudeVectorPtr += 4;
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        float val1Real = *complexVectorPtr++;
++        float val1Imag = *complexVectorPtr++;
++        *magnitudeVectorPtr++ = sqrtf((val1Real * val1Real) + (val1Imag * val1Imag));
++    }
+ }
+ #endif /* LV_HAVE_SSE3 */
+ #ifdef LV_HAVE_SSE
+-#include <xmmintrin.h>
+ #include <volk/volk_sse_intrinsics.h>
++#include <xmmintrin.h>
+-static inline void
+-volk_32fc_magnitude_32f_a_sse(float* magnitudeVector, const lv_32fc_t* complexVector,
+-                              unsigned int num_points)
++static inline void volk_32fc_magnitude_32f_a_sse(float* magnitudeVector,
++                                                 const lv_32fc_t* complexVector,
++                                                 unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  const float* complexVectorPtr = (float*) complexVector;
+-  float* magnitudeVectorPtr = magnitudeVector;
+-
+-  __m128 cplxValue1, cplxValue2, result;
+-  for(; number < quarterPoints; number++){
+-    cplxValue1 = _mm_load_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
+-
+-    cplxValue2 = _mm_load_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
+-
+-    result = _mm_magnitude_ps(cplxValue1, cplxValue2);
+-    _mm_store_ps(magnitudeVectorPtr, result);
+-    magnitudeVectorPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    float val1Real = *complexVectorPtr++;
+-    float val1Imag = *complexVectorPtr++;
+-    *magnitudeVectorPtr++ = sqrtf((val1Real * val1Real) + (val1Imag * val1Imag));
+-  }
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++
++    const float* complexVectorPtr = (float*)complexVector;
++    float* magnitudeVectorPtr = magnitudeVector;
++
++    __m128 cplxValue1, cplxValue2, result;
++    for (; number < quarterPoints; number++) {
++        cplxValue1 = _mm_load_ps(complexVectorPtr);
++        complexVectorPtr += 4;
++
++        cplxValue2 = _mm_load_ps(complexVectorPtr);
++        complexVectorPtr += 4;
++
++        result = _mm_magnitude_ps(cplxValue1, cplxValue2);
++        _mm_store_ps(magnitudeVectorPtr, result);
++        magnitudeVectorPtr += 4;
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        float val1Real = *complexVectorPtr++;
++        float val1Imag = *complexVectorPtr++;
++        *magnitudeVectorPtr++ = sqrtf((val1Real * val1Real) + (val1Imag * val1Imag));
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32fc_magnitude_32f_a_generic(float* magnitudeVector, const lv_32fc_t* complexVector,
+-                                  unsigned int num_points)
++static inline void volk_32fc_magnitude_32f_a_generic(float* magnitudeVector,
++                                                     const lv_32fc_t* complexVector,
++                                                     unsigned int num_points)
+ {
+-  const float* complexVectorPtr = (float*)complexVector;
+-  float* magnitudeVectorPtr = magnitudeVector;
+-  unsigned int number = 0;
+-  for(number = 0; number < num_points; number++){
+-    const float real = *complexVectorPtr++;
+-    const float imag = *complexVectorPtr++;
+-    *magnitudeVectorPtr++ = sqrtf((real*real) + (imag*imag));
+-  }
++    const float* complexVectorPtr = (float*)complexVector;
++    float* magnitudeVectorPtr = magnitudeVector;
++    unsigned int number = 0;
++    for (number = 0; number < num_points; number++) {
++        const float real = *complexVectorPtr++;
++        const float imag = *complexVectorPtr++;
++        *magnitudeVectorPtr++ = sqrtf((real * real) + (imag * imag));
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -342,41 +342,43 @@ volk_32fc_magnitude_32f_a_generic(float* magnitudeVector, const lv_32fc_t* compl
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_32fc_magnitude_32f_neon(float* magnitudeVector, const lv_32fc_t* complexVector,
+-                             unsigned int num_points)
++static inline void volk_32fc_magnitude_32f_neon(float* magnitudeVector,
++                                                const lv_32fc_t* complexVector,
++                                                unsigned int num_points)
+ {
+-  unsigned int number;
+-  unsigned int quarter_points = num_points / 4;
+-  const float* complexVectorPtr = (float*)complexVector;
+-  float* magnitudeVectorPtr = magnitudeVector;
+-
+-  float32x4x2_t complex_vec;
+-  float32x4_t magnitude_vec;
+-  for(number = 0; number < quarter_points; number++){
+-    complex_vec = vld2q_f32(complexVectorPtr);
+-    complex_vec.val[0] = vmulq_f32(complex_vec.val[0], complex_vec.val[0]);
+-    magnitude_vec = vmlaq_f32(complex_vec.val[0], complex_vec.val[1], complex_vec.val[1]);
+-    magnitude_vec = vrsqrteq_f32(magnitude_vec);
+-    magnitude_vec = vrecpeq_f32( magnitude_vec ); // no plain ol' sqrt
+-    vst1q_f32(magnitudeVectorPtr, magnitude_vec);
+-
+-    complexVectorPtr += 8;
+-    magnitudeVectorPtr += 4;
+-  }
+-
+-  for(number = quarter_points*4; number < num_points; number++){
+-    const float real = *complexVectorPtr++;
+-    const float imag = *complexVectorPtr++;
+-    *magnitudeVectorPtr++ = sqrtf((real*real) + (imag*imag));
+-  }
++    unsigned int number;
++    unsigned int quarter_points = num_points / 4;
++    const float* complexVectorPtr = (float*)complexVector;
++    float* magnitudeVectorPtr = magnitudeVector;
++
++    float32x4x2_t complex_vec;
++    float32x4_t magnitude_vec;
++    for (number = 0; number < quarter_points; number++) {
++        complex_vec = vld2q_f32(complexVectorPtr);
++        complex_vec.val[0] = vmulq_f32(complex_vec.val[0], complex_vec.val[0]);
++        magnitude_vec =
++            vmlaq_f32(complex_vec.val[0], complex_vec.val[1], complex_vec.val[1]);
++        magnitude_vec = vrsqrteq_f32(magnitude_vec);
++        magnitude_vec = vrecpeq_f32(magnitude_vec); // no plain ol' sqrt
++        vst1q_f32(magnitudeVectorPtr, magnitude_vec);
++
++        complexVectorPtr += 8;
++        magnitudeVectorPtr += 4;
++    }
++
++    for (number = quarter_points * 4; number < num_points; number++) {
++        const float real = *complexVectorPtr++;
++        const float imag = *complexVectorPtr++;
++        *magnitudeVectorPtr++ = sqrtf((real * real) + (imag * imag));
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_NEON
+ /*!
+-  \brief Calculates the magnitude of the complexVector and stores the results in the magnitudeVector
++  \brief Calculates the magnitude of the complexVector and stores the results in the
++  magnitudeVector
+   This is an approximation from "Streamlining Digital Signal Processing" by
+   Richard Lyons. Apparently max error is about 1% and mean error is about 0.6%.
+@@ -387,80 +389,80 @@ volk_32fc_magnitude_32f_neon(float* magnitudeVector, const lv_32fc_t* complexVec
+   \param complexVector The vector containing the complex input values
+   \param magnitudeVector The vector containing the real output values
+-  \param num_points The number of complex values in complexVector to be calculated and stored into cVector
++  \param num_points The number of complex values in complexVector to be calculated and
++  stored into cVector
+ */
+-static inline void
+-volk_32fc_magnitude_32f_neon_fancy_sweet(float* magnitudeVector, const lv_32fc_t* complexVector,
+-                                         unsigned int num_points)
++static inline void volk_32fc_magnitude_32f_neon_fancy_sweet(
++    float* magnitudeVector, const lv_32fc_t* complexVector, unsigned int num_points)
+ {
+-  unsigned int number;
+-  unsigned int quarter_points = num_points / 4;
+-  const float* complexVectorPtr = (float*)complexVector;
+-  float* magnitudeVectorPtr = magnitudeVector;
+-
+-  const float threshold = 0.4142135;
+-
+-  float32x4_t a_vec, b_vec, a_high, a_low, b_high, b_low;
+-  a_high = vdupq_n_f32( 0.84 );
+-  b_high = vdupq_n_f32( 0.561);
+-  a_low  = vdupq_n_f32( 0.99 );
+-  b_low  = vdupq_n_f32( 0.197);
+-
+-  uint32x4_t comp0, comp1;
+-
+-  float32x4x2_t complex_vec;
+-  float32x4_t min_vec, max_vec, magnitude_vec;
+-  float32x4_t real_abs, imag_abs;
+-  for(number = 0; number < quarter_points; number++){
+-    complex_vec = vld2q_f32(complexVectorPtr);
+-
+-    real_abs = vabsq_f32(complex_vec.val[0]);
+-    imag_abs = vabsq_f32(complex_vec.val[1]);
+-
+-    min_vec = vminq_f32(real_abs, imag_abs);
+-    max_vec = vmaxq_f32(real_abs, imag_abs);
+-
+-    // effective branch to choose coefficient pair.
+-    comp0 = vcgtq_f32(min_vec, vmulq_n_f32(max_vec, threshold));
+-    comp1 = vcleq_f32(min_vec, vmulq_n_f32(max_vec, threshold));
+-
+-    // and 0s or 1s with coefficients from previous effective branch
+-    a_vec = (float32x4_t)vaddq_s32(vandq_s32((int32x4_t)comp0, (int32x4_t)a_high),
+-                                   vandq_s32((int32x4_t)comp1, (int32x4_t)a_low));
+-    b_vec = (float32x4_t)vaddq_s32(vandq_s32((int32x4_t)comp0, (int32x4_t)b_high),
+-                                   vandq_s32((int32x4_t)comp1, (int32x4_t)b_low));
+-
+-    // coefficients chosen, do the weighted sum
+-    min_vec = vmulq_f32(min_vec, b_vec);
+-    max_vec = vmulq_f32(max_vec, a_vec);
+-
+-    magnitude_vec = vaddq_f32(min_vec, max_vec);
+-    vst1q_f32(magnitudeVectorPtr, magnitude_vec);
+-
+-    complexVectorPtr += 8;
+-    magnitudeVectorPtr += 4;
+-  }
+-
+-  for(number = quarter_points*4; number < num_points; number++){
+-    const float real = *complexVectorPtr++;
+-    const float imag = *complexVectorPtr++;
+-    *magnitudeVectorPtr++ = sqrtf((real*real) + (imag*imag));
+-  }
++    unsigned int number;
++    unsigned int quarter_points = num_points / 4;
++    const float* complexVectorPtr = (float*)complexVector;
++    float* magnitudeVectorPtr = magnitudeVector;
++
++    const float threshold = 0.4142135;
++
++    float32x4_t a_vec, b_vec, a_high, a_low, b_high, b_low;
++    a_high = vdupq_n_f32(0.84);
++    b_high = vdupq_n_f32(0.561);
++    a_low = vdupq_n_f32(0.99);
++    b_low = vdupq_n_f32(0.197);
++
++    uint32x4_t comp0, comp1;
++
++    float32x4x2_t complex_vec;
++    float32x4_t min_vec, max_vec, magnitude_vec;
++    float32x4_t real_abs, imag_abs;
++    for (number = 0; number < quarter_points; number++) {
++        complex_vec = vld2q_f32(complexVectorPtr);
++
++        real_abs = vabsq_f32(complex_vec.val[0]);
++        imag_abs = vabsq_f32(complex_vec.val[1]);
++
++        min_vec = vminq_f32(real_abs, imag_abs);
++        max_vec = vmaxq_f32(real_abs, imag_abs);
++
++        // effective branch to choose coefficient pair.
++        comp0 = vcgtq_f32(min_vec, vmulq_n_f32(max_vec, threshold));
++        comp1 = vcleq_f32(min_vec, vmulq_n_f32(max_vec, threshold));
++
++        // and 0s or 1s with coefficients from previous effective branch
++        a_vec = (float32x4_t)vaddq_s32(vandq_s32((int32x4_t)comp0, (int32x4_t)a_high),
++                                       vandq_s32((int32x4_t)comp1, (int32x4_t)a_low));
++        b_vec = (float32x4_t)vaddq_s32(vandq_s32((int32x4_t)comp0, (int32x4_t)b_high),
++                                       vandq_s32((int32x4_t)comp1, (int32x4_t)b_low));
++
++        // coefficients chosen, do the weighted sum
++        min_vec = vmulq_f32(min_vec, b_vec);
++        max_vec = vmulq_f32(max_vec, a_vec);
++
++        magnitude_vec = vaddq_f32(min_vec, max_vec);
++        vst1q_f32(magnitudeVectorPtr, magnitude_vec);
++
++        complexVectorPtr += 8;
++        magnitudeVectorPtr += 4;
++    }
++
++    for (number = quarter_points * 4; number < num_points; number++) {
++        const float real = *complexVectorPtr++;
++        const float imag = *complexVectorPtr++;
++        *magnitudeVectorPtr++ = sqrtf((real * real) + (imag * imag));
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_ORC
+-extern void
+-volk_32fc_magnitude_32f_a_orc_impl(float* magnitudeVector, const lv_32fc_t* complexVector,
+-                                   unsigned int num_points);
++extern void volk_32fc_magnitude_32f_a_orc_impl(float* magnitudeVector,
++                                               const lv_32fc_t* complexVector,
++                                               unsigned int num_points);
+-static inline void
+-volk_32fc_magnitude_32f_u_orc(float* magnitudeVector, const lv_32fc_t* complexVector,
+-                              unsigned int num_points)
++static inline void volk_32fc_magnitude_32f_u_orc(float* magnitudeVector,
++                                                 const lv_32fc_t* complexVector,
++                                                 unsigned int num_points)
+ {
+-  volk_32fc_magnitude_32f_a_orc_impl(magnitudeVector, complexVector, num_points);
++    volk_32fc_magnitude_32f_a_orc_impl(magnitudeVector, complexVector, num_points);
+ }
+ #endif /* LV_HAVE_ORC */
+diff --git a/kernels/volk/volk_32fc_magnitude_squared_32f.h b/kernels/volk/volk_32fc_magnitude_squared_32f.h
+index 51bb4df..cb093ca 100644
+--- a/kernels/volk/volk_32fc_magnitude_squared_32f.h
++++ b/kernels/volk/volk_32fc_magnitude_squared_32f.h
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32fc_magnitude_squared_32f(float* magnitudeVector, const lv_32fc_t* complexVector, unsigned int num_points)
+- * \endcode
++ * void volk_32fc_magnitude_squared_32f(float* magnitudeVector, const lv_32fc_t*
++ * complexVector, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li complexVector: The complex input vector.
+@@ -72,41 +72,41 @@
+ #define INCLUDED_volk_32fc_magnitude_squared_32f_u_H
+ #include <inttypes.h>
+-#include <stdio.h>
+ #include <math.h>
++#include <stdio.h>
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+ #include <volk/volk_avx_intrinsics.h>
+-static inline void
+-volk_32fc_magnitude_squared_32f_u_avx(float* magnitudeVector, const lv_32fc_t* complexVector,
+-                                      unsigned int num_points)
++static inline void volk_32fc_magnitude_squared_32f_u_avx(float* magnitudeVector,
++                                                         const lv_32fc_t* complexVector,
++                                                         unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  const float* complexVectorPtr = (float*) complexVector;
+-  float* magnitudeVectorPtr = magnitudeVector;
+-
+-  __m256 cplxValue1, cplxValue2, result;
+-
+-  for(; number < eighthPoints; number++){
+-    cplxValue1 = _mm256_loadu_ps(complexVectorPtr);
+-    cplxValue2 = _mm256_loadu_ps(complexVectorPtr + 8);
+-    result = _mm256_magnitudesquared_ps(cplxValue1, cplxValue2);
+-    _mm256_storeu_ps(magnitudeVectorPtr, result);
+-
+-    complexVectorPtr += 16;
+-    magnitudeVectorPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    float val1Real = *complexVectorPtr++;
+-    float val1Imag = *complexVectorPtr++;
+-    *magnitudeVectorPtr++ = (val1Real * val1Real) + (val1Imag * val1Imag);
+-  }
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    const float* complexVectorPtr = (float*)complexVector;
++    float* magnitudeVectorPtr = magnitudeVector;
++
++    __m256 cplxValue1, cplxValue2, result;
++
++    for (; number < eighthPoints; number++) {
++        cplxValue1 = _mm256_loadu_ps(complexVectorPtr);
++        cplxValue2 = _mm256_loadu_ps(complexVectorPtr + 8);
++        result = _mm256_magnitudesquared_ps(cplxValue1, cplxValue2);
++        _mm256_storeu_ps(magnitudeVectorPtr, result);
++
++        complexVectorPtr += 16;
++        magnitudeVectorPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        float val1Real = *complexVectorPtr++;
++        float val1Imag = *complexVectorPtr++;
++        *magnitudeVectorPtr++ = (val1Real * val1Real) + (val1Imag * val1Imag);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -115,137 +115,136 @@ volk_32fc_magnitude_squared_32f_u_avx(float* magnitudeVector, const lv_32fc_t* c
+ #include <pmmintrin.h>
+ #include <volk/volk_sse3_intrinsics.h>
+-static inline void
+-volk_32fc_magnitude_squared_32f_u_sse3(float* magnitudeVector, const lv_32fc_t* complexVector,
+-                                       unsigned int num_points)
++static inline void volk_32fc_magnitude_squared_32f_u_sse3(float* magnitudeVector,
++                                                          const lv_32fc_t* complexVector,
++                                                          unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  const float* complexVectorPtr = (float*) complexVector;
+-  float* magnitudeVectorPtr = magnitudeVector;
+-
+-  __m128 cplxValue1, cplxValue2, result;
+-  for(; number < quarterPoints; number++){
+-    cplxValue1 = _mm_loadu_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
+-
+-    cplxValue2 = _mm_loadu_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
+-
+-    result = _mm_magnitudesquared_ps_sse3(cplxValue1, cplxValue2);
+-    _mm_storeu_ps(magnitudeVectorPtr, result);
+-    magnitudeVectorPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    float val1Real = *complexVectorPtr++;
+-    float val1Imag = *complexVectorPtr++;
+-    *magnitudeVectorPtr++ = (val1Real * val1Real) + (val1Imag * val1Imag);
+-  }
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++
++    const float* complexVectorPtr = (float*)complexVector;
++    float* magnitudeVectorPtr = magnitudeVector;
++
++    __m128 cplxValue1, cplxValue2, result;
++    for (; number < quarterPoints; number++) {
++        cplxValue1 = _mm_loadu_ps(complexVectorPtr);
++        complexVectorPtr += 4;
++
++        cplxValue2 = _mm_loadu_ps(complexVectorPtr);
++        complexVectorPtr += 4;
++
++        result = _mm_magnitudesquared_ps_sse3(cplxValue1, cplxValue2);
++        _mm_storeu_ps(magnitudeVectorPtr, result);
++        magnitudeVectorPtr += 4;
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        float val1Real = *complexVectorPtr++;
++        float val1Imag = *complexVectorPtr++;
++        *magnitudeVectorPtr++ = (val1Real * val1Real) + (val1Imag * val1Imag);
++    }
+ }
+ #endif /* LV_HAVE_SSE3 */
+ #ifdef LV_HAVE_SSE
+-#include <xmmintrin.h>
+ #include <volk/volk_sse_intrinsics.h>
++#include <xmmintrin.h>
+-static inline void
+-volk_32fc_magnitude_squared_32f_u_sse(float* magnitudeVector, const lv_32fc_t* complexVector,
+-                                      unsigned int num_points)
++static inline void volk_32fc_magnitude_squared_32f_u_sse(float* magnitudeVector,
++                                                         const lv_32fc_t* complexVector,
++                                                         unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  const float* complexVectorPtr = (float*) complexVector;
+-  float* magnitudeVectorPtr = magnitudeVector;
++    const float* complexVectorPtr = (float*)complexVector;
++    float* magnitudeVectorPtr = magnitudeVector;
+-  __m128 cplxValue1, cplxValue2, result;
++    __m128 cplxValue1, cplxValue2, result;
+-  for(; number < quarterPoints; number++){
+-    cplxValue1 = _mm_loadu_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
++    for (; number < quarterPoints; number++) {
++        cplxValue1 = _mm_loadu_ps(complexVectorPtr);
++        complexVectorPtr += 4;
+-    cplxValue2 = _mm_loadu_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
++        cplxValue2 = _mm_loadu_ps(complexVectorPtr);
++        complexVectorPtr += 4;
+-    result = _mm_magnitudesquared_ps(cplxValue1, cplxValue2);
+-    _mm_storeu_ps(magnitudeVectorPtr, result);
+-    magnitudeVectorPtr += 4;
+-  }
++        result = _mm_magnitudesquared_ps(cplxValue1, cplxValue2);
++        _mm_storeu_ps(magnitudeVectorPtr, result);
++        magnitudeVectorPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    float val1Real = *complexVectorPtr++;
+-    float val1Imag = *complexVectorPtr++;
+-    *magnitudeVectorPtr++ = (val1Real * val1Real) + (val1Imag * val1Imag);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        float val1Real = *complexVectorPtr++;
++        float val1Imag = *complexVectorPtr++;
++        *magnitudeVectorPtr++ = (val1Real * val1Real) + (val1Imag * val1Imag);
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32fc_magnitude_squared_32f_generic(float* magnitudeVector, const lv_32fc_t* complexVector,
+-                                        unsigned int num_points)
++static inline void volk_32fc_magnitude_squared_32f_generic(float* magnitudeVector,
++                                                           const lv_32fc_t* complexVector,
++                                                           unsigned int num_points)
+ {
+-  const float* complexVectorPtr = (float*)complexVector;
+-  float* magnitudeVectorPtr = magnitudeVector;
+-  unsigned int number = 0;
+-  for(number = 0; number < num_points; number++){
+-    const float real = *complexVectorPtr++;
+-    const float imag = *complexVectorPtr++;
+-    *magnitudeVectorPtr++ = (real*real) + (imag*imag);
+-  }
++    const float* complexVectorPtr = (float*)complexVector;
++    float* magnitudeVectorPtr = magnitudeVector;
++    unsigned int number = 0;
++    for (number = 0; number < num_points; number++) {
++        const float real = *complexVectorPtr++;
++        const float imag = *complexVectorPtr++;
++        *magnitudeVectorPtr++ = (real * real) + (imag * imag);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+-
+ #endif /* INCLUDED_volk_32fc_magnitude_32f_u_H */
+ #ifndef INCLUDED_volk_32fc_magnitude_squared_32f_a_H
+ #define INCLUDED_volk_32fc_magnitude_squared_32f_a_H
+ #include <inttypes.h>
+-#include <stdio.h>
+ #include <math.h>
++#include <stdio.h>
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+ #include <volk/volk_avx_intrinsics.h>
+-static inline void
+-volk_32fc_magnitude_squared_32f_a_avx(float* magnitudeVector, const lv_32fc_t* complexVector,
+-                                      unsigned int num_points)
++static inline void volk_32fc_magnitude_squared_32f_a_avx(float* magnitudeVector,
++                                                         const lv_32fc_t* complexVector,
++                                                         unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  const float* complexVectorPtr = (float*) complexVector;
+-  float* magnitudeVectorPtr = magnitudeVector;
+-
+-  __m256 cplxValue1, cplxValue2, result;
+-  for(; number < eighthPoints; number++){
+-    cplxValue1 = _mm256_load_ps(complexVectorPtr);
+-    complexVectorPtr += 8;
+-
+-    cplxValue2 = _mm256_load_ps(complexVectorPtr);
+-    complexVectorPtr += 8;
+-
+-    result = _mm256_magnitudesquared_ps(cplxValue1, cplxValue2);
+-    _mm256_store_ps(magnitudeVectorPtr, result);
+-    magnitudeVectorPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    float val1Real = *complexVectorPtr++;
+-    float val1Imag = *complexVectorPtr++;
+-    *magnitudeVectorPtr++ = (val1Real * val1Real) + (val1Imag * val1Imag);
+-  }
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++
++    const float* complexVectorPtr = (float*)complexVector;
++    float* magnitudeVectorPtr = magnitudeVector;
++
++    __m256 cplxValue1, cplxValue2, result;
++    for (; number < eighthPoints; number++) {
++        cplxValue1 = _mm256_load_ps(complexVectorPtr);
++        complexVectorPtr += 8;
++
++        cplxValue2 = _mm256_load_ps(complexVectorPtr);
++        complexVectorPtr += 8;
++
++        result = _mm256_magnitudesquared_ps(cplxValue1, cplxValue2);
++        _mm256_store_ps(magnitudeVectorPtr, result);
++        magnitudeVectorPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        float val1Real = *complexVectorPtr++;
++        float val1Imag = *complexVectorPtr++;
++        *magnitudeVectorPtr++ = (val1Real * val1Real) + (val1Imag * val1Imag);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -254,72 +253,72 @@ volk_32fc_magnitude_squared_32f_a_avx(float* magnitudeVector, const lv_32fc_t* c
+ #include <pmmintrin.h>
+ #include <volk/volk_sse3_intrinsics.h>
+-static inline void
+-volk_32fc_magnitude_squared_32f_a_sse3(float* magnitudeVector, const lv_32fc_t* complexVector,
+-                                       unsigned int num_points)
++static inline void volk_32fc_magnitude_squared_32f_a_sse3(float* magnitudeVector,
++                                                          const lv_32fc_t* complexVector,
++                                                          unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  const float* complexVectorPtr = (float*) complexVector;
+-  float* magnitudeVectorPtr = magnitudeVector;
+-
+-  __m128 cplxValue1, cplxValue2, result;
+-  for(; number < quarterPoints; number++){
+-    cplxValue1 = _mm_load_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
+-
+-    cplxValue2 = _mm_load_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
+-
+-    result = _mm_magnitudesquared_ps_sse3(cplxValue1, cplxValue2);
+-    _mm_store_ps(magnitudeVectorPtr, result);
+-    magnitudeVectorPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    float val1Real = *complexVectorPtr++;
+-    float val1Imag = *complexVectorPtr++;
+-    *magnitudeVectorPtr++ = (val1Real * val1Real) + (val1Imag * val1Imag);
+-  }
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++
++    const float* complexVectorPtr = (float*)complexVector;
++    float* magnitudeVectorPtr = magnitudeVector;
++
++    __m128 cplxValue1, cplxValue2, result;
++    for (; number < quarterPoints; number++) {
++        cplxValue1 = _mm_load_ps(complexVectorPtr);
++        complexVectorPtr += 4;
++
++        cplxValue2 = _mm_load_ps(complexVectorPtr);
++        complexVectorPtr += 4;
++
++        result = _mm_magnitudesquared_ps_sse3(cplxValue1, cplxValue2);
++        _mm_store_ps(magnitudeVectorPtr, result);
++        magnitudeVectorPtr += 4;
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        float val1Real = *complexVectorPtr++;
++        float val1Imag = *complexVectorPtr++;
++        *magnitudeVectorPtr++ = (val1Real * val1Real) + (val1Imag * val1Imag);
++    }
+ }
+ #endif /* LV_HAVE_SSE3 */
+ #ifdef LV_HAVE_SSE
+-#include <xmmintrin.h>
+ #include <volk/volk_sse_intrinsics.h>
++#include <xmmintrin.h>
+-static inline void
+-volk_32fc_magnitude_squared_32f_a_sse(float* magnitudeVector, const lv_32fc_t* complexVector,
+-                                      unsigned int num_points)
++static inline void volk_32fc_magnitude_squared_32f_a_sse(float* magnitudeVector,
++                                                         const lv_32fc_t* complexVector,
++                                                         unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  const float* complexVectorPtr = (float*)complexVector;
+-  float* magnitudeVectorPtr = magnitudeVector;
+-
+-  __m128 cplxValue1, cplxValue2, result;
+-  for(;number < quarterPoints; number++){
+-    cplxValue1 = _mm_load_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
+-
+-    cplxValue2 = _mm_load_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
+-
+-    result = _mm_magnitudesquared_ps(cplxValue1, cplxValue2);
+-    _mm_store_ps(magnitudeVectorPtr, result);
+-    magnitudeVectorPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    float val1Real = *complexVectorPtr++;
+-    float val1Imag = *complexVectorPtr++;
+-    *magnitudeVectorPtr++ = (val1Real * val1Real) + (val1Imag * val1Imag);
+-  }
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++
++    const float* complexVectorPtr = (float*)complexVector;
++    float* magnitudeVectorPtr = magnitudeVector;
++
++    __m128 cplxValue1, cplxValue2, result;
++    for (; number < quarterPoints; number++) {
++        cplxValue1 = _mm_load_ps(complexVectorPtr);
++        complexVectorPtr += 4;
++
++        cplxValue2 = _mm_load_ps(complexVectorPtr);
++        complexVectorPtr += 4;
++
++        result = _mm_magnitudesquared_ps(cplxValue1, cplxValue2);
++        _mm_store_ps(magnitudeVectorPtr, result);
++        magnitudeVectorPtr += 4;
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        float val1Real = *complexVectorPtr++;
++        float val1Imag = *complexVectorPtr++;
++        *magnitudeVectorPtr++ = (val1Real * val1Real) + (val1Imag * val1Imag);
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+@@ -327,55 +326,57 @@ volk_32fc_magnitude_squared_32f_a_sse(float* magnitudeVector, const lv_32fc_t* c
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_32fc_magnitude_squared_32f_neon(float* magnitudeVector, const lv_32fc_t* complexVector,
+-                                     unsigned int num_points)
++static inline void volk_32fc_magnitude_squared_32f_neon(float* magnitudeVector,
++                                                        const lv_32fc_t* complexVector,
++                                                        unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  const float* complexVectorPtr = (float*)complexVector;
+-  float* magnitudeVectorPtr = magnitudeVector;
+-
+-  float32x4x2_t cmplx_val;
+-  float32x4_t result;
+-  for(;number < quarterPoints; number++){
+-    cmplx_val = vld2q_f32(complexVectorPtr);
+-    complexVectorPtr += 8;
+-
+-    cmplx_val.val[0] = vmulq_f32(cmplx_val.val[0], cmplx_val.val[0]); // Square the values
+-    cmplx_val.val[1] = vmulq_f32(cmplx_val.val[1], cmplx_val.val[1]); // Square the values
+-
+-    result = vaddq_f32(cmplx_val.val[0], cmplx_val.val[1]); // Add the I2 and Q2 values
+-
+-    vst1q_f32(magnitudeVectorPtr, result);
+-    magnitudeVectorPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    float val1Real = *complexVectorPtr++;
+-    float val1Imag = *complexVectorPtr++;
+-    *magnitudeVectorPtr++ = (val1Real * val1Real) + (val1Imag * val1Imag);
+-  }
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++
++    const float* complexVectorPtr = (float*)complexVector;
++    float* magnitudeVectorPtr = magnitudeVector;
++
++    float32x4x2_t cmplx_val;
++    float32x4_t result;
++    for (; number < quarterPoints; number++) {
++        cmplx_val = vld2q_f32(complexVectorPtr);
++        complexVectorPtr += 8;
++
++        cmplx_val.val[0] =
++            vmulq_f32(cmplx_val.val[0], cmplx_val.val[0]); // Square the values
++        cmplx_val.val[1] =
++            vmulq_f32(cmplx_val.val[1], cmplx_val.val[1]); // Square the values
++
++        result =
++            vaddq_f32(cmplx_val.val[0], cmplx_val.val[1]); // Add the I2 and Q2 values
++
++        vst1q_f32(magnitudeVectorPtr, result);
++        magnitudeVectorPtr += 4;
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        float val1Real = *complexVectorPtr++;
++        float val1Imag = *complexVectorPtr++;
++        *magnitudeVectorPtr++ = (val1Real * val1Real) + (val1Imag * val1Imag);
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32fc_magnitude_squared_32f_a_generic(float* magnitudeVector, const lv_32fc_t* complexVector,
+-                                          unsigned int num_points)
++static inline void volk_32fc_magnitude_squared_32f_a_generic(
++    float* magnitudeVector, const lv_32fc_t* complexVector, unsigned int num_points)
+ {
+-  const float* complexVectorPtr = (float*)complexVector;
+-  float* magnitudeVectorPtr = magnitudeVector;
+-  unsigned int number = 0;
+-  for(number = 0; number < num_points; number++){
+-    const float real = *complexVectorPtr++;
+-    const float imag = *complexVectorPtr++;
+-    *magnitudeVectorPtr++ = (real*real) + (imag*imag);
+-  }
++    const float* complexVectorPtr = (float*)complexVector;
++    float* magnitudeVectorPtr = magnitudeVector;
++    unsigned int number = 0;
++    for (number = 0; number < num_points; number++) {
++        const float real = *complexVectorPtr++;
++        const float imag = *complexVectorPtr++;
++        *magnitudeVectorPtr++ = (real * real) + (imag * imag);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+diff --git a/kernels/volk/volk_32fc_s32f_atan2_32f.h b/kernels/volk/volk_32fc_s32f_atan2_32f.h
+index c169336..f08f793 100644
+--- a/kernels/volk/volk_32fc_s32f_atan2_32f.h
++++ b/kernels/volk/volk_32fc_s32f_atan2_32f.h
+@@ -30,13 +30,13 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32fc_s32f_atan2_32f(float* outputVector, const lv_32fc_t* complexVector, const float normalizeFactor, unsigned int num_points)
+- * \endcode
++ * void volk_32fc_s32f_atan2_32f(float* outputVector, const lv_32fc_t* complexVector,
++ * const float normalizeFactor, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+- * \li inputVector: The byte-aligned input vector containing interleaved IQ data (I = cos, Q = sin).
+- * \li normalizeFactor: The atan results are divided by this normalization factor.
+- * \li num_points: The number of complex values in \p inputVector.
++ * \li inputVector: The byte-aligned input vector containing interleaved IQ data (I = cos,
++ * Q = sin). \li normalizeFactor: The atan results are divided by this normalization
++ * factor. \li num_points: The number of complex values in \p inputVector.
+  *
+  * \b Outputs
+  * \li outputVector: The vector where the results will be stored.
+@@ -75,8 +75,8 @@
+ #define INCLUDED_volk_32fc_s32f_atan2_32f_a_H
+ #include <inttypes.h>
+-#include <stdio.h>
+ #include <math.h>
++#include <stdio.h>
+ #ifdef LV_HAVE_SSE4_1
+ #include <smmintrin.h>
+@@ -85,50 +85,54 @@
+ #include <simdmath.h>
+ #endif /* LV_HAVE_LIB_SIMDMATH */
+-static inline void volk_32fc_s32f_atan2_32f_a_sse4_1(float* outputVector,  const lv_32fc_t* complexVector, const float normalizeFactor, unsigned int num_points){
+-  const float* complexVectorPtr = (float*)complexVector;
+-  float* outPtr = outputVector;
++static inline void volk_32fc_s32f_atan2_32f_a_sse4_1(float* outputVector,
++                                                     const lv_32fc_t* complexVector,
++                                                     const float normalizeFactor,
++                                                     unsigned int num_points)
++{
++    const float* complexVectorPtr = (float*)complexVector;
++    float* outPtr = outputVector;
+-  unsigned int number = 0;
+-  const float invNormalizeFactor = 1.0 / normalizeFactor;
++    unsigned int number = 0;
++    const float invNormalizeFactor = 1.0 / normalizeFactor;
+ #ifdef LV_HAVE_LIB_SIMDMATH
+-  const unsigned int quarterPoints = num_points / 4;
+-  __m128 testVector = _mm_set_ps1(2*M_PI);
+-  __m128 correctVector = _mm_set_ps1(M_PI);
+-  __m128 vNormalizeFactor = _mm_set_ps1(invNormalizeFactor);
+-  __m128 phase;
+-  __m128 complex1, complex2, iValue, qValue;
+-  __m128 keepMask;
+-
+-  for (; number < quarterPoints; number++) {
+-    // Load IQ data:
+-    complex1 = _mm_load_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
+-    complex2 = _mm_load_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
+-    // Deinterleave IQ data:
+-    iValue = _mm_shuffle_ps(complex1, complex2, _MM_SHUFFLE(2,0,2,0));
+-    qValue = _mm_shuffle_ps(complex1, complex2, _MM_SHUFFLE(3,1,3,1));
+-    // Arctan to get phase:
+-    phase = atan2f4(qValue, iValue);
+-    // When Q = 0 and I < 0, atan2f4 sucks and returns 2pi vice pi.
+-    // Compare to 2pi:
+-    keepMask = _mm_cmpneq_ps(phase,testVector);
+-    phase = _mm_blendv_ps(correctVector, phase, keepMask);
+-    // done with above correction.
+-    phase = _mm_mul_ps(phase, vNormalizeFactor);
+-    _mm_store_ps((float*)outPtr, phase);
+-    outPtr += 4;
+-  }
+-  number = quarterPoints * 4;
++    const unsigned int quarterPoints = num_points / 4;
++    __m128 testVector = _mm_set_ps1(2 * M_PI);
++    __m128 correctVector = _mm_set_ps1(M_PI);
++    __m128 vNormalizeFactor = _mm_set_ps1(invNormalizeFactor);
++    __m128 phase;
++    __m128 complex1, complex2, iValue, qValue;
++    __m128 keepMask;
++
++    for (; number < quarterPoints; number++) {
++        // Load IQ data:
++        complex1 = _mm_load_ps(complexVectorPtr);
++        complexVectorPtr += 4;
++        complex2 = _mm_load_ps(complexVectorPtr);
++        complexVectorPtr += 4;
++        // Deinterleave IQ data:
++        iValue = _mm_shuffle_ps(complex1, complex2, _MM_SHUFFLE(2, 0, 2, 0));
++        qValue = _mm_shuffle_ps(complex1, complex2, _MM_SHUFFLE(3, 1, 3, 1));
++        // Arctan to get phase:
++        phase = atan2f4(qValue, iValue);
++        // When Q = 0 and I < 0, atan2f4 sucks and returns 2pi vice pi.
++        // Compare to 2pi:
++        keepMask = _mm_cmpneq_ps(phase, testVector);
++        phase = _mm_blendv_ps(correctVector, phase, keepMask);
++        // done with above correction.
++        phase = _mm_mul_ps(phase, vNormalizeFactor);
++        _mm_store_ps((float*)outPtr, phase);
++        outPtr += 4;
++    }
++    number = quarterPoints * 4;
+ #endif /* LV_HAVE_SIMDMATH_H */
+-  for (; number < num_points; number++) {
+-    const float real = *complexVectorPtr++;
+-    const float imag = *complexVectorPtr++;
+-    *outPtr++ = atan2f(imag, real) * invNormalizeFactor;
+-  }
++    for (; number < num_points; number++) {
++        const float real = *complexVectorPtr++;
++        const float imag = *complexVectorPtr++;
++        *outPtr++ = atan2f(imag, real) * invNormalizeFactor;
++    }
+ }
+ #endif /* LV_HAVE_SSE4_1 */
+@@ -140,72 +144,78 @@ static inline void volk_32fc_s32f_atan2_32f_a_sse4_1(float* outputVector,  const
+ #include <simdmath.h>
+ #endif /* LV_HAVE_LIB_SIMDMATH */
+-static inline void volk_32fc_s32f_atan2_32f_a_sse(float* outputVector,  const lv_32fc_t* complexVector, const float normalizeFactor, unsigned int num_points){
+-  const float* complexVectorPtr = (float*)complexVector;
+-  float* outPtr = outputVector;
++static inline void volk_32fc_s32f_atan2_32f_a_sse(float* outputVector,
++                                                  const lv_32fc_t* complexVector,
++                                                  const float normalizeFactor,
++                                                  unsigned int num_points)
++{
++    const float* complexVectorPtr = (float*)complexVector;
++    float* outPtr = outputVector;
+-  unsigned int number = 0;
+-  const float invNormalizeFactor = 1.0 / normalizeFactor;
++    unsigned int number = 0;
++    const float invNormalizeFactor = 1.0 / normalizeFactor;
+ #ifdef LV_HAVE_LIB_SIMDMATH
+-  const unsigned int quarterPoints = num_points / 4;
+-  __m128 testVector = _mm_set_ps1(2*M_PI);
+-  __m128 correctVector = _mm_set_ps1(M_PI);
+-  __m128 vNormalizeFactor = _mm_set_ps1(invNormalizeFactor);
+-  __m128 phase;
+-  __m128 complex1, complex2, iValue, qValue;
+-  __m128 mask;
+-  __m128 keepMask;
+-
+-  for (; number < quarterPoints; number++) {
+-    // Load IQ data:
+-    complex1 = _mm_load_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
+-    complex2 = _mm_load_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
+-    // Deinterleave IQ data:
+-    iValue = _mm_shuffle_ps(complex1, complex2, _MM_SHUFFLE(2,0,2,0));
+-    qValue = _mm_shuffle_ps(complex1, complex2, _MM_SHUFFLE(3,1,3,1));
+-    // Arctan to get phase:
+-    phase = atan2f4(qValue, iValue);
+-    // When Q = 0 and I < 0, atan2f4 sucks and returns 2pi vice pi.
+-    // Compare to 2pi:
+-    keepMask = _mm_cmpneq_ps(phase,testVector);
+-    phase = _mm_and_ps(phase, keepMask);
+-    mask = _mm_andnot_ps(keepMask, correctVector);
+-    phase = _mm_or_ps(phase, mask);
+-    // done with above correction.
+-    phase = _mm_mul_ps(phase, vNormalizeFactor);
+-    _mm_store_ps((float*)outPtr, phase);
+-    outPtr += 4;
+-  }
+-  number = quarterPoints * 4;
++    const unsigned int quarterPoints = num_points / 4;
++    __m128 testVector = _mm_set_ps1(2 * M_PI);
++    __m128 correctVector = _mm_set_ps1(M_PI);
++    __m128 vNormalizeFactor = _mm_set_ps1(invNormalizeFactor);
++    __m128 phase;
++    __m128 complex1, complex2, iValue, qValue;
++    __m128 mask;
++    __m128 keepMask;
++
++    for (; number < quarterPoints; number++) {
++        // Load IQ data:
++        complex1 = _mm_load_ps(complexVectorPtr);
++        complexVectorPtr += 4;
++        complex2 = _mm_load_ps(complexVectorPtr);
++        complexVectorPtr += 4;
++        // Deinterleave IQ data:
++        iValue = _mm_shuffle_ps(complex1, complex2, _MM_SHUFFLE(2, 0, 2, 0));
++        qValue = _mm_shuffle_ps(complex1, complex2, _MM_SHUFFLE(3, 1, 3, 1));
++        // Arctan to get phase:
++        phase = atan2f4(qValue, iValue);
++        // When Q = 0 and I < 0, atan2f4 sucks and returns 2pi vice pi.
++        // Compare to 2pi:
++        keepMask = _mm_cmpneq_ps(phase, testVector);
++        phase = _mm_and_ps(phase, keepMask);
++        mask = _mm_andnot_ps(keepMask, correctVector);
++        phase = _mm_or_ps(phase, mask);
++        // done with above correction.
++        phase = _mm_mul_ps(phase, vNormalizeFactor);
++        _mm_store_ps((float*)outPtr, phase);
++        outPtr += 4;
++    }
++    number = quarterPoints * 4;
+ #endif /* LV_HAVE_SIMDMATH_H */
+-  for (; number < num_points; number++) {
+-    const float real = *complexVectorPtr++;
+-    const float imag = *complexVectorPtr++;
+-    *outPtr++ = atan2f(imag, real) * invNormalizeFactor;
+-  }
++    for (; number < num_points; number++) {
++        const float real = *complexVectorPtr++;
++        const float imag = *complexVectorPtr++;
++        *outPtr++ = atan2f(imag, real) * invNormalizeFactor;
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32fc_s32f_atan2_32f_generic(float* outputVector, const lv_32fc_t* inputVector, const float normalizeFactor, unsigned int num_points){
+-  float* outPtr = outputVector;
+-  const float* inPtr = (float*)inputVector;
+-  const float invNormalizeFactor = 1.0 / normalizeFactor;
+-  unsigned int number;
+-  for ( number = 0; number < num_points; number++) {
+-    const float real = *inPtr++;
+-    const float imag = *inPtr++;
+-    *outPtr++ = atan2f(imag, real) * invNormalizeFactor;
+-  }
++static inline void volk_32fc_s32f_atan2_32f_generic(float* outputVector,
++                                                    const lv_32fc_t* inputVector,
++                                                    const float normalizeFactor,
++                                                    unsigned int num_points)
++{
++    float* outPtr = outputVector;
++    const float* inPtr = (float*)inputVector;
++    const float invNormalizeFactor = 1.0 / normalizeFactor;
++    unsigned int number;
++    for (number = 0; number < num_points; number++) {
++        const float real = *inPtr++;
++        const float imag = *inPtr++;
++        *outPtr++ = atan2f(imag, real) * invNormalizeFactor;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+-
+-
+ #endif /* INCLUDED_volk_32fc_s32f_atan2_32f_a_H */
+diff --git a/kernels/volk/volk_32fc_s32f_deinterleave_real_16i.h b/kernels/volk/volk_32fc_s32f_deinterleave_real_16i.h
+index 64c6a8b..f70f494 100644
+--- a/kernels/volk/volk_32fc_s32f_deinterleave_real_16i.h
++++ b/kernels/volk/volk_32fc_s32f_deinterleave_real_16i.h
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32fc_s32f_deinterleave_real_16i(int16_t* iBuffer, const lv_32fc_t* complexVector, const float scalar, unsigned int num_points)
+- * \endcode
++ * void volk_32fc_s32f_deinterleave_real_16i(int16_t* iBuffer, const lv_32fc_t*
++ * complexVector, const float scalar, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li complexVector: The complex input vector.
+@@ -73,61 +73,62 @@
+ #ifndef INCLUDED_volk_32fc_s32f_deinterleave_real_16i_a_H
+ #define INCLUDED_volk_32fc_s32f_deinterleave_real_16i_a_H
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+ #include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+ static inline void
+-volk_32fc_s32f_deinterleave_real_16i_a_avx2(int16_t* iBuffer, const lv_32fc_t* complexVector,
+-                                           const float scalar, unsigned int num_points)
++volk_32fc_s32f_deinterleave_real_16i_a_avx2(int16_t* iBuffer,
++                                            const lv_32fc_t* complexVector,
++                                            const float scalar,
++                                            unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  const float* complexVectorPtr = (float*)complexVector;
+-  int16_t* iBufferPtr = iBuffer;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  __m256 vScalar = _mm256_set1_ps(scalar);
++    const float* complexVectorPtr = (float*)complexVector;
++    int16_t* iBufferPtr = iBuffer;
+-  __m256 cplxValue1, cplxValue2, iValue;
+-  __m256i a;
+-  __m128i b;
++    __m256 vScalar = _mm256_set1_ps(scalar);
+-  __m256i idx = _mm256_set_epi32(3,3,3,3,5,1,4,0);
++    __m256 cplxValue1, cplxValue2, iValue;
++    __m256i a;
++    __m128i b;
+-  for(;number < eighthPoints; number++){
+-    cplxValue1 = _mm256_load_ps(complexVectorPtr);
+-    complexVectorPtr += 8;
++    __m256i idx = _mm256_set_epi32(3, 3, 3, 3, 5, 1, 4, 0);
+-    cplxValue2 = _mm256_load_ps(complexVectorPtr);
+-    complexVectorPtr += 8;
++    for (; number < eighthPoints; number++) {
++        cplxValue1 = _mm256_load_ps(complexVectorPtr);
++        complexVectorPtr += 8;
+-    // Arrange in i1i2i3i4 format
+-    iValue = _mm256_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2,0,2,0));
++        cplxValue2 = _mm256_load_ps(complexVectorPtr);
++        complexVectorPtr += 8;
+-    iValue = _mm256_mul_ps(iValue, vScalar);
++        // Arrange in i1i2i3i4 format
++        iValue = _mm256_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2, 0, 2, 0));
+-    iValue = _mm256_round_ps(iValue, _MM_FROUND_TO_ZERO);
+-    a = _mm256_cvtps_epi32(iValue);
+-    a = _mm256_packs_epi32(a,a);
+-    a = _mm256_permutevar8x32_epi32(a,idx);
+-    b = _mm256_extracti128_si256(a,0);
++        iValue = _mm256_mul_ps(iValue, vScalar);
+-    _mm_store_si128((__m128i*)iBufferPtr,b); 
+-    iBufferPtr += 8;
++        iValue = _mm256_round_ps(iValue, _MM_FROUND_TO_ZERO);
++        a = _mm256_cvtps_epi32(iValue);
++        a = _mm256_packs_epi32(a, a);
++        a = _mm256_permutevar8x32_epi32(a, idx);
++        b = _mm256_extracti128_si256(a, 0);
+-  }
++        _mm_store_si128((__m128i*)iBufferPtr, b);
++        iBufferPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  iBufferPtr = &iBuffer[number];
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = (int16_t)(*complexVectorPtr++ * scalar);
+-    complexVectorPtr++;
+-  }
++    number = eighthPoints * 8;
++    iBufferPtr = &iBuffer[number];
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = (int16_t)(*complexVectorPtr++ * scalar);
++        complexVectorPtr++;
++    }
+ }
+@@ -137,46 +138,48 @@ volk_32fc_s32f_deinterleave_real_16i_a_avx2(int16_t* iBuffer, const lv_32fc_t* c
+ #include <xmmintrin.h>
+ static inline void
+-volk_32fc_s32f_deinterleave_real_16i_a_sse(int16_t* iBuffer, const lv_32fc_t* complexVector,
+-                                           const float scalar, unsigned int num_points)
++volk_32fc_s32f_deinterleave_real_16i_a_sse(int16_t* iBuffer,
++                                           const lv_32fc_t* complexVector,
++                                           const float scalar,
++                                           unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  const float* complexVectorPtr = (float*)complexVector;
+-  int16_t* iBufferPtr = iBuffer;
++    const float* complexVectorPtr = (float*)complexVector;
++    int16_t* iBufferPtr = iBuffer;
+-  __m128 vScalar = _mm_set_ps1(scalar);
++    __m128 vScalar = _mm_set_ps1(scalar);
+-  __m128 cplxValue1, cplxValue2, iValue;
++    __m128 cplxValue1, cplxValue2, iValue;
+-  __VOLK_ATTR_ALIGNED(16) float floatBuffer[4];
++    __VOLK_ATTR_ALIGNED(16) float floatBuffer[4];
+-  for(;number < quarterPoints; number++){
+-    cplxValue1 = _mm_load_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
++    for (; number < quarterPoints; number++) {
++        cplxValue1 = _mm_load_ps(complexVectorPtr);
++        complexVectorPtr += 4;
+-    cplxValue2 = _mm_load_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
++        cplxValue2 = _mm_load_ps(complexVectorPtr);
++        complexVectorPtr += 4;
+-    // Arrange in i1i2i3i4 format
+-    iValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2,0,2,0));
++        // Arrange in i1i2i3i4 format
++        iValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2, 0, 2, 0));
+-    iValue = _mm_mul_ps(iValue, vScalar);
++        iValue = _mm_mul_ps(iValue, vScalar);
+-    _mm_store_ps(floatBuffer, iValue);
+-    *iBufferPtr++ = (int16_t)(floatBuffer[0]);
+-    *iBufferPtr++ = (int16_t)(floatBuffer[1]);
+-    *iBufferPtr++ = (int16_t)(floatBuffer[2]);
+-    *iBufferPtr++ = (int16_t)(floatBuffer[3]);
+-  }
++        _mm_store_ps(floatBuffer, iValue);
++        *iBufferPtr++ = (int16_t)(floatBuffer[0]);
++        *iBufferPtr++ = (int16_t)(floatBuffer[1]);
++        *iBufferPtr++ = (int16_t)(floatBuffer[2]);
++        *iBufferPtr++ = (int16_t)(floatBuffer[3]);
++    }
+-  number = quarterPoints * 4;
+-  iBufferPtr = &iBuffer[number];
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = (int16_t)(*complexVectorPtr++ * scalar);
+-    complexVectorPtr++;
+-  }
++    number = quarterPoints * 4;
++    iBufferPtr = &iBuffer[number];
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = (int16_t)(*complexVectorPtr++ * scalar);
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+@@ -185,16 +188,18 @@ volk_32fc_s32f_deinterleave_real_16i_a_sse(int16_t* iBuffer, const lv_32fc_t* co
+ #ifdef LV_HAVE_GENERIC
+ static inline void
+-volk_32fc_s32f_deinterleave_real_16i_generic(int16_t* iBuffer, const lv_32fc_t* complexVector,
+-                                             const float scalar, unsigned int num_points)
++volk_32fc_s32f_deinterleave_real_16i_generic(int16_t* iBuffer,
++                                             const lv_32fc_t* complexVector,
++                                             const float scalar,
++                                             unsigned int num_points)
+ {
+-  const float* complexVectorPtr = (float*)complexVector;
+-  int16_t* iBufferPtr = iBuffer;
+-  unsigned int number = 0;
+-  for(number = 0; number < num_points; number++){
+-    *iBufferPtr++ = (int16_t)(*complexVectorPtr++ * scalar);
+-    complexVectorPtr++;
+-  }
++    const float* complexVectorPtr = (float*)complexVector;
++    int16_t* iBufferPtr = iBuffer;
++    unsigned int number = 0;
++    for (number = 0; number < num_points; number++) {
++        *iBufferPtr++ = (int16_t)(*complexVectorPtr++ * scalar);
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -204,60 +209,61 @@ volk_32fc_s32f_deinterleave_real_16i_generic(int16_t* iBuffer, const lv_32fc_t*
+ #ifndef INCLUDED_volk_32fc_s32f_deinterleave_real_16i_u_H
+ #define INCLUDED_volk_32fc_s32f_deinterleave_real_16i_u_H
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+ #include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+ static inline void
+-volk_32fc_s32f_deinterleave_real_16i_u_avx2(int16_t* iBuffer, const lv_32fc_t* complexVector,
+-                                           const float scalar, unsigned int num_points)
++volk_32fc_s32f_deinterleave_real_16i_u_avx2(int16_t* iBuffer,
++                                            const lv_32fc_t* complexVector,
++                                            const float scalar,
++                                            unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-
+-  const float* complexVectorPtr = (float*)complexVector;
+-  int16_t* iBufferPtr = iBuffer;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  __m256 vScalar = _mm256_set1_ps(scalar);
++    const float* complexVectorPtr = (float*)complexVector;
++    int16_t* iBufferPtr = iBuffer;
+-  __m256 cplxValue1, cplxValue2, iValue;
+-  __m256i a;
+-  __m128i b;
++    __m256 vScalar = _mm256_set1_ps(scalar);
+-  __m256i idx = _mm256_set_epi32(3,3,3,3,5,1,4,0);
++    __m256 cplxValue1, cplxValue2, iValue;
++    __m256i a;
++    __m128i b;
+-  for(;number < eighthPoints; number++){
+-    cplxValue1 = _mm256_loadu_ps(complexVectorPtr);
+-    complexVectorPtr += 8;
++    __m256i idx = _mm256_set_epi32(3, 3, 3, 3, 5, 1, 4, 0);
+-    cplxValue2 = _mm256_loadu_ps(complexVectorPtr);
+-    complexVectorPtr += 8;
++    for (; number < eighthPoints; number++) {
++        cplxValue1 = _mm256_loadu_ps(complexVectorPtr);
++        complexVectorPtr += 8;
+-    // Arrange in i1i2i3i4 format
+-    iValue = _mm256_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2,0,2,0));
++        cplxValue2 = _mm256_loadu_ps(complexVectorPtr);
++        complexVectorPtr += 8;
+-    iValue = _mm256_mul_ps(iValue, vScalar);
++        // Arrange in i1i2i3i4 format
++        iValue = _mm256_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2, 0, 2, 0));
+-    iValue = _mm256_round_ps(iValue, _MM_FROUND_TO_ZERO);
+-    a = _mm256_cvtps_epi32(iValue);
+-    a = _mm256_packs_epi32(a,a);
+-    a = _mm256_permutevar8x32_epi32(a,idx);
+-    b = _mm256_extracti128_si256(a,0);
++        iValue = _mm256_mul_ps(iValue, vScalar);
+-    _mm_storeu_si128((__m128i*)iBufferPtr,b); 
+-    iBufferPtr += 8;
++        iValue = _mm256_round_ps(iValue, _MM_FROUND_TO_ZERO);
++        a = _mm256_cvtps_epi32(iValue);
++        a = _mm256_packs_epi32(a, a);
++        a = _mm256_permutevar8x32_epi32(a, idx);
++        b = _mm256_extracti128_si256(a, 0);
+-  }
++        _mm_storeu_si128((__m128i*)iBufferPtr, b);
++        iBufferPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  iBufferPtr = &iBuffer[number];
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = (int16_t)(*complexVectorPtr++ * scalar);
+-    complexVectorPtr++;
+-  }
++    number = eighthPoints * 8;
++    iBufferPtr = &iBuffer[number];
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = (int16_t)(*complexVectorPtr++ * scalar);
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+diff --git a/kernels/volk/volk_32fc_s32f_magnitude_16i.h b/kernels/volk/volk_32fc_s32f_magnitude_16i.h
+index 6e7e7cb..91a5b8e 100644
+--- a/kernels/volk/volk_32fc_s32f_magnitude_16i.h
++++ b/kernels/volk/volk_32fc_s32f_magnitude_16i.h
+@@ -31,8 +31,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32fc_s32f_magnitude_16i(int16_t* magnitudeVector, const lv_32fc_t* complexVector, unsigned int num_points)
+- * \endcode
++ * void volk_32fc_s32f_magnitude_16i(int16_t* magnitudeVector, const lv_32fc_t*
++ * complexVector, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li complexVector: The complex input vector.
+@@ -73,123 +73,129 @@
+ #ifdef LV_HAVE_GENERIC
+ #include <volk/volk_common.h>
+-static inline void
+-volk_32fc_s32f_magnitude_16i_generic(int16_t* magnitudeVector, const lv_32fc_t* complexVector,
+-                                     const float scalar, unsigned int num_points)
++static inline void volk_32fc_s32f_magnitude_16i_generic(int16_t* magnitudeVector,
++                                                        const lv_32fc_t* complexVector,
++                                                        const float scalar,
++                                                        unsigned int num_points)
+ {
+-  const float* complexVectorPtr = (float*)complexVector;
+-  int16_t* magnitudeVectorPtr = magnitudeVector;
+-  unsigned int number = 0;
+-  for(number = 0; number < num_points; number++){
+-    __VOLK_VOLATILE float real = *complexVectorPtr++;
+-    __VOLK_VOLATILE float imag = *complexVectorPtr++;
+-    real *= real;
+-    imag *= imag;
+-    *magnitudeVectorPtr++ = (int16_t)rintf(scalar*sqrtf(real + imag));
+-  }
++    const float* complexVectorPtr = (float*)complexVector;
++    int16_t* magnitudeVectorPtr = magnitudeVector;
++    unsigned int number = 0;
++    for (number = 0; number < num_points; number++) {
++        __VOLK_VOLATILE float real = *complexVectorPtr++;
++        __VOLK_VOLATILE float imag = *complexVectorPtr++;
++        real *= real;
++        imag *= imag;
++        *magnitudeVectorPtr++ = (int16_t)rintf(scalar * sqrtf(real + imag));
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifndef INCLUDED_volk_32fc_s32f_magnitude_16i_a_H
+ #define INCLUDED_volk_32fc_s32f_magnitude_16i_a_H
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+-#include <stdio.h>
+ #include <math.h>
++#include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_32fc_s32f_magnitude_16i_a_avx2(int16_t* magnitudeVector, const lv_32fc_t* complexVector,
+-                                    const float scalar, unsigned int num_points)
++static inline void volk_32fc_s32f_magnitude_16i_a_avx2(int16_t* magnitudeVector,
++                                                       const lv_32fc_t* complexVector,
++                                                       const float scalar,
++                                                       unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  const float* complexVectorPtr = (const float*)complexVector;
+-  int16_t* magnitudeVectorPtr = magnitudeVector;
++    const float* complexVectorPtr = (const float*)complexVector;
++    int16_t* magnitudeVectorPtr = magnitudeVector;
+-  __m256 vScalar = _mm256_set1_ps(scalar);
+-  __m256i idx = _mm256_set_epi32(0,0,0,0,5,1,4,0);
+-  __m256 cplxValue1, cplxValue2, result;
+-  __m256i resultInt;
+-  __m128i resultShort;
++    __m256 vScalar = _mm256_set1_ps(scalar);
++    __m256i idx = _mm256_set_epi32(0, 0, 0, 0, 5, 1, 4, 0);
++    __m256 cplxValue1, cplxValue2, result;
++    __m256i resultInt;
++    __m128i resultShort;
+-  for(;number < eighthPoints; number++){
+-    cplxValue1 = _mm256_load_ps(complexVectorPtr);
+-    complexVectorPtr += 8;
++    for (; number < eighthPoints; number++) {
++        cplxValue1 = _mm256_load_ps(complexVectorPtr);
++        complexVectorPtr += 8;
+-    cplxValue2 = _mm256_load_ps(complexVectorPtr);
+-    complexVectorPtr += 8;
++        cplxValue2 = _mm256_load_ps(complexVectorPtr);
++        complexVectorPtr += 8;
+-    cplxValue1 = _mm256_mul_ps(cplxValue1, cplxValue1); // Square the values
+-    cplxValue2 = _mm256_mul_ps(cplxValue2, cplxValue2); // Square the Values
++        cplxValue1 = _mm256_mul_ps(cplxValue1, cplxValue1); // Square the values
++        cplxValue2 = _mm256_mul_ps(cplxValue2, cplxValue2); // Square the Values
+-    result = _mm256_hadd_ps(cplxValue1, cplxValue2); // Add the I2 and Q2 values
++        result = _mm256_hadd_ps(cplxValue1, cplxValue2); // Add the I2 and Q2 values
+-    result = _mm256_sqrt_ps(result);
++        result = _mm256_sqrt_ps(result);
+-    result = _mm256_mul_ps(result, vScalar);
++        result = _mm256_mul_ps(result, vScalar);
+-    resultInt = _mm256_cvtps_epi32(result);
+-    resultInt = _mm256_packs_epi32(resultInt, resultInt);
+-    resultInt = _mm256_permutevar8x32_epi32(resultInt, idx); //permute to compensate for shuffling in hadd and packs
+-    resultShort = _mm256_extracti128_si256(resultInt,0);
+-    _mm_store_si128((__m128i*)magnitudeVectorPtr,resultShort);
+-    magnitudeVectorPtr += 8;
+-  }
++        resultInt = _mm256_cvtps_epi32(result);
++        resultInt = _mm256_packs_epi32(resultInt, resultInt);
++        resultInt = _mm256_permutevar8x32_epi32(
++            resultInt, idx); // permute to compensate for shuffling in hadd and packs
++        resultShort = _mm256_extracti128_si256(resultInt, 0);
++        _mm_store_si128((__m128i*)magnitudeVectorPtr, resultShort);
++        magnitudeVectorPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  volk_32fc_s32f_magnitude_16i_generic(magnitudeVector+number, complexVector+number, scalar, num_points-number);
++    number = eighthPoints * 8;
++    volk_32fc_s32f_magnitude_16i_generic(
++        magnitudeVector + number, complexVector + number, scalar, num_points - number);
+ }
+ #endif /* LV_HAVE_AVX2 */
+ #ifdef LV_HAVE_SSE3
+ #include <pmmintrin.h>
+-static inline void
+-volk_32fc_s32f_magnitude_16i_a_sse3(int16_t* magnitudeVector, const lv_32fc_t* complexVector,
+-                                    const float scalar, unsigned int num_points)
++static inline void volk_32fc_s32f_magnitude_16i_a_sse3(int16_t* magnitudeVector,
++                                                       const lv_32fc_t* complexVector,
++                                                       const float scalar,
++                                                       unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  const float* complexVectorPtr = (const float*)complexVector;
+-  int16_t* magnitudeVectorPtr = magnitudeVector;
++    const float* complexVectorPtr = (const float*)complexVector;
++    int16_t* magnitudeVectorPtr = magnitudeVector;
+-  __m128 vScalar = _mm_set_ps1(scalar);
++    __m128 vScalar = _mm_set_ps1(scalar);
+-  __m128 cplxValue1, cplxValue2, result;
++    __m128 cplxValue1, cplxValue2, result;
+-  __VOLK_ATTR_ALIGNED(16) float floatBuffer[4];
++    __VOLK_ATTR_ALIGNED(16) float floatBuffer[4];
+-  for(;number < quarterPoints; number++){
+-    cplxValue1 = _mm_load_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
++    for (; number < quarterPoints; number++) {
++        cplxValue1 = _mm_load_ps(complexVectorPtr);
++        complexVectorPtr += 4;
+-    cplxValue2 = _mm_load_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
++        cplxValue2 = _mm_load_ps(complexVectorPtr);
++        complexVectorPtr += 4;
+-    cplxValue1 = _mm_mul_ps(cplxValue1, cplxValue1); // Square the values
+-    cplxValue2 = _mm_mul_ps(cplxValue2, cplxValue2); // Square the Values
++        cplxValue1 = _mm_mul_ps(cplxValue1, cplxValue1); // Square the values
++        cplxValue2 = _mm_mul_ps(cplxValue2, cplxValue2); // Square the Values
+-    result = _mm_hadd_ps(cplxValue1, cplxValue2); // Add the I2 and Q2 values
++        result = _mm_hadd_ps(cplxValue1, cplxValue2); // Add the I2 and Q2 values
+-    result = _mm_sqrt_ps(result);
++        result = _mm_sqrt_ps(result);
+-    result = _mm_mul_ps(result, vScalar);
++        result = _mm_mul_ps(result, vScalar);
+-    _mm_store_ps(floatBuffer, result);
+-    *magnitudeVectorPtr++ = (int16_t)rintf(floatBuffer[0]);
+-    *magnitudeVectorPtr++ = (int16_t)rintf(floatBuffer[1]);
+-    *magnitudeVectorPtr++ = (int16_t)rintf(floatBuffer[2]);
+-    *magnitudeVectorPtr++ = (int16_t)rintf(floatBuffer[3]);
+-  }
++        _mm_store_ps(floatBuffer, result);
++        *magnitudeVectorPtr++ = (int16_t)rintf(floatBuffer[0]);
++        *magnitudeVectorPtr++ = (int16_t)rintf(floatBuffer[1]);
++        *magnitudeVectorPtr++ = (int16_t)rintf(floatBuffer[2]);
++        *magnitudeVectorPtr++ = (int16_t)rintf(floatBuffer[3]);
++    }
+-  number = quarterPoints * 4;
+-  volk_32fc_s32f_magnitude_16i_generic(magnitudeVector+number, complexVector+number, scalar, num_points-number);
++    number = quarterPoints * 4;
++    volk_32fc_s32f_magnitude_16i_generic(
++        magnitudeVector + number, complexVector + number, scalar, num_points - number);
+ }
+ #endif /* LV_HAVE_SSE3 */
+@@ -197,53 +203,57 @@ volk_32fc_s32f_magnitude_16i_a_sse3(int16_t* magnitudeVector, const lv_32fc_t* c
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32fc_s32f_magnitude_16i_a_sse(int16_t* magnitudeVector, const lv_32fc_t* complexVector,
+-                                   const float scalar, unsigned int num_points)
++static inline void volk_32fc_s32f_magnitude_16i_a_sse(int16_t* magnitudeVector,
++                                                      const lv_32fc_t* complexVector,
++                                                      const float scalar,
++                                                      unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  const float* complexVectorPtr = (const float*)complexVector;
+-  int16_t* magnitudeVectorPtr = magnitudeVector;
++    const float* complexVectorPtr = (const float*)complexVector;
++    int16_t* magnitudeVectorPtr = magnitudeVector;
+-  __m128 vScalar = _mm_set_ps1(scalar);
++    __m128 vScalar = _mm_set_ps1(scalar);
+-  __m128 cplxValue1, cplxValue2, result;
+-  __m128 iValue, qValue;
++    __m128 cplxValue1, cplxValue2, result;
++    __m128 iValue, qValue;
+-  __VOLK_ATTR_ALIGNED(16) float floatBuffer[4];
++    __VOLK_ATTR_ALIGNED(16) float floatBuffer[4];
+-  for(;number < quarterPoints; number++){
+-    cplxValue1 = _mm_load_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
++    for (; number < quarterPoints; number++) {
++        cplxValue1 = _mm_load_ps(complexVectorPtr);
++        complexVectorPtr += 4;
+-    cplxValue2 = _mm_load_ps(complexVectorPtr);
+-    complexVectorPtr += 4;
++        cplxValue2 = _mm_load_ps(complexVectorPtr);
++        complexVectorPtr += 4;
+-    // Arrange in i1i2i3i4 format
+-    iValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2,0,2,0));
+-    // Arrange in q1q2q3q4 format
+-    qValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(3,1,3,1));
++        // Arrange in i1i2i3i4 format
++        iValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2, 0, 2, 0));
++        // Arrange in q1q2q3q4 format
++        qValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(3, 1, 3, 1));
+-    __VOLK_VOLATILE __m128 iValue2 = _mm_mul_ps(iValue, iValue); // Square the I values
+-    __VOLK_VOLATILE __m128 qValue2 = _mm_mul_ps(qValue, qValue); // Square the Q Values
++        __VOLK_VOLATILE __m128 iValue2 =
++            _mm_mul_ps(iValue, iValue); // Square the I values
++        __VOLK_VOLATILE __m128 qValue2 =
++            _mm_mul_ps(qValue, qValue); // Square the Q Values
+-    result = _mm_add_ps(iValue2, qValue2); // Add the I2 and Q2 values
++        result = _mm_add_ps(iValue2, qValue2); // Add the I2 and Q2 values
+-    result = _mm_sqrt_ps(result);
++        result = _mm_sqrt_ps(result);
+-    result = _mm_mul_ps(result, vScalar);
++        result = _mm_mul_ps(result, vScalar);
+-    _mm_store_ps(floatBuffer, result);
+-    *magnitudeVectorPtr++ = (int16_t)rintf(floatBuffer[0]);
+-    *magnitudeVectorPtr++ = (int16_t)rintf(floatBuffer[1]);
+-    *magnitudeVectorPtr++ = (int16_t)rintf(floatBuffer[2]);
+-    *magnitudeVectorPtr++ = (int16_t)rintf(floatBuffer[3]);
+-  }
++        _mm_store_ps(floatBuffer, result);
++        *magnitudeVectorPtr++ = (int16_t)rintf(floatBuffer[0]);
++        *magnitudeVectorPtr++ = (int16_t)rintf(floatBuffer[1]);
++        *magnitudeVectorPtr++ = (int16_t)rintf(floatBuffer[2]);
++        *magnitudeVectorPtr++ = (int16_t)rintf(floatBuffer[3]);
++    }
+-  number = quarterPoints * 4;
+-  volk_32fc_s32f_magnitude_16i_generic(magnitudeVector+number, complexVector+number, scalar, num_points-number);
++    number = quarterPoints * 4;
++    volk_32fc_s32f_magnitude_16i_generic(
++        magnitudeVector + number, complexVector + number, scalar, num_points - number);
+ }
+ #endif /* LV_HAVE_SSE */
+@@ -253,56 +263,59 @@ volk_32fc_s32f_magnitude_16i_a_sse(int16_t* magnitudeVector, const lv_32fc_t* co
+ #ifndef INCLUDED_volk_32fc_s32f_magnitude_16i_u_H
+ #define INCLUDED_volk_32fc_s32f_magnitude_16i_u_H
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+-#include <stdio.h>
+ #include <math.h>
++#include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_32fc_s32f_magnitude_16i_u_avx2(int16_t* magnitudeVector, const lv_32fc_t* complexVector,
+-                                    const float scalar, unsigned int num_points)
++static inline void volk_32fc_s32f_magnitude_16i_u_avx2(int16_t* magnitudeVector,
++                                                       const lv_32fc_t* complexVector,
++                                                       const float scalar,
++                                                       unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
+-  const float* complexVectorPtr = (const float*)complexVector;
+-  int16_t* magnitudeVectorPtr = magnitudeVector;
++    const float* complexVectorPtr = (const float*)complexVector;
++    int16_t* magnitudeVectorPtr = magnitudeVector;
+-  __m256 vScalar = _mm256_set1_ps(scalar);
+-  __m256i idx = _mm256_set_epi32(0,0,0,0,5,1,4,0);
+-  __m256 cplxValue1, cplxValue2, result;
+-  __m256i resultInt;
+-  __m128i resultShort;
++    __m256 vScalar = _mm256_set1_ps(scalar);
++    __m256i idx = _mm256_set_epi32(0, 0, 0, 0, 5, 1, 4, 0);
++    __m256 cplxValue1, cplxValue2, result;
++    __m256i resultInt;
++    __m128i resultShort;
+-  for(;number < eighthPoints; number++){
+-    cplxValue1 = _mm256_loadu_ps(complexVectorPtr);
+-    complexVectorPtr += 8;
++    for (; number < eighthPoints; number++) {
++        cplxValue1 = _mm256_loadu_ps(complexVectorPtr);
++        complexVectorPtr += 8;
+-    cplxValue2 = _mm256_loadu_ps(complexVectorPtr);
+-    complexVectorPtr += 8;
++        cplxValue2 = _mm256_loadu_ps(complexVectorPtr);
++        complexVectorPtr += 8;
+-    cplxValue1 = _mm256_mul_ps(cplxValue1, cplxValue1); // Square the values
+-    cplxValue2 = _mm256_mul_ps(cplxValue2, cplxValue2); // Square the Values
++        cplxValue1 = _mm256_mul_ps(cplxValue1, cplxValue1); // Square the values
++        cplxValue2 = _mm256_mul_ps(cplxValue2, cplxValue2); // Square the Values
+-    result = _mm256_hadd_ps(cplxValue1, cplxValue2); // Add the I2 and Q2 values
++        result = _mm256_hadd_ps(cplxValue1, cplxValue2); // Add the I2 and Q2 values
+-    result = _mm256_sqrt_ps(result);
++        result = _mm256_sqrt_ps(result);
+-    result = _mm256_mul_ps(result, vScalar);
++        result = _mm256_mul_ps(result, vScalar);
+-    resultInt = _mm256_cvtps_epi32(result);
+-    resultInt = _mm256_packs_epi32(resultInt, resultInt);
+-    resultInt = _mm256_permutevar8x32_epi32(resultInt, idx); //permute to compensate for shuffling in hadd and packs
+-    resultShort = _mm256_extracti128_si256(resultInt,0);
+-    _mm_storeu_si128((__m128i*)magnitudeVectorPtr,resultShort);
+-    magnitudeVectorPtr += 8;
+-  }
++        resultInt = _mm256_cvtps_epi32(result);
++        resultInt = _mm256_packs_epi32(resultInt, resultInt);
++        resultInt = _mm256_permutevar8x32_epi32(
++            resultInt, idx); // permute to compensate for shuffling in hadd and packs
++        resultShort = _mm256_extracti128_si256(resultInt, 0);
++        _mm_storeu_si128((__m128i*)magnitudeVectorPtr, resultShort);
++        magnitudeVectorPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  volk_32fc_s32f_magnitude_16i_generic(magnitudeVector+number, complexVector+number, scalar, num_points-number);
++    number = eighthPoints * 8;
++    volk_32fc_s32f_magnitude_16i_generic(
++        magnitudeVector + number, complexVector + number, scalar, num_points - number);
+ }
+ #endif /* LV_HAVE_AVX2 */
+diff --git a/kernels/volk/volk_32fc_s32f_power_32fc.h b/kernels/volk/volk_32fc_s32f_power_32fc.h
+index d2803f2..b31179c 100644
+--- a/kernels/volk/volk_32fc_s32f_power_32fc.h
++++ b/kernels/volk/volk_32fc_s32f_power_32fc.h
+@@ -31,8 +31,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32fc_s32f_power_32fc(lv_32fc_t* cVector, const lv_32fc_t* aVector, const float power, unsigned int num_points)
+- * \endcode
++ * void volk_32fc_s32f_power_32fc(lv_32fc_t* cVector, const lv_32fc_t* aVector, const
++ * float power, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li aVector: The complex input vector.
+@@ -56,15 +56,17 @@
+ #define INCLUDED_volk_32fc_s32f_power_32fc_a_H
+ #include <inttypes.h>
+-#include <stdio.h>
+ #include <math.h>
++#include <stdio.h>
+ //! raise a complex float to a real float power
+-static inline lv_32fc_t __volk_s32fc_s32f_power_s32fc_a(const lv_32fc_t exp, const float power)
++static inline lv_32fc_t __volk_s32fc_s32f_power_s32fc_a(const lv_32fc_t exp,
++                                                        const float power)
+ {
+-  const float arg = power*atan2f(lv_creal(exp), lv_cimag(exp));
+-  const float mag = powf(lv_creal(exp)*lv_creal(exp) + lv_cimag(exp)*lv_cimag(exp), power/2);
+-  return mag*lv_cmake(-cosf(arg), sinf(arg));
++    const float arg = power * atan2f(lv_creal(exp), lv_cimag(exp));
++    const float mag =
++        powf(lv_creal(exp) * lv_creal(exp) + lv_cimag(exp) * lv_cimag(exp), power / 2);
++    return mag * lv_cmake(-cosf(arg), sinf(arg));
+ }
+ #ifdef LV_HAVE_SSE
+@@ -74,83 +76,94 @@ static inline lv_32fc_t __volk_s32fc_s32f_power_s32fc_a(const lv_32fc_t exp, con
+ #include <simdmath.h>
+ #endif /* LV_HAVE_LIB_SIMDMATH */
+-static inline void
+-volk_32fc_s32f_power_32fc_a_sse(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                                const float power, unsigned int num_points)
++static inline void volk_32fc_s32f_power_32fc_a_sse(lv_32fc_t* cVector,
++                                                   const lv_32fc_t* aVector,
++                                                   const float power,
++                                                   unsigned int num_points)
+ {
+-  unsigned int number = 0;
++    unsigned int number = 0;
+-  lv_32fc_t* cPtr = cVector;
+-  const lv_32fc_t* aPtr = aVector;
++    lv_32fc_t* cPtr = cVector;
++    const lv_32fc_t* aPtr = aVector;
+ #ifdef LV_HAVE_LIB_SIMDMATH
+-  const unsigned int quarterPoints = num_points / 4;
+-  __m128 vPower = _mm_set_ps1(power);
++    const unsigned int quarterPoints = num_points / 4;
++    __m128 vPower = _mm_set_ps1(power);
+-  __m128 cplxValue1, cplxValue2, magnitude, phase, iValue, qValue;
+-  for(;number < quarterPoints; number++){
++    __m128 cplxValue1, cplxValue2, magnitude, phase, iValue, qValue;
++    for (; number < quarterPoints; number++) {
+-    cplxValue1 = _mm_load_ps((float*)aPtr);
+-    aPtr += 2;
++        cplxValue1 = _mm_load_ps((float*)aPtr);
++        aPtr += 2;
+-    cplxValue2 = _mm_load_ps((float*)aPtr);
+-    aPtr += 2;
++        cplxValue2 = _mm_load_ps((float*)aPtr);
++        aPtr += 2;
+-    // Convert to polar coordinates
++        // Convert to polar coordinates
+-    // Arrange in i1i2i3i4 format
+-    iValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2,0,2,0));
+-    // Arrange in q1q2q3q4 format
+-    qValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(3,1,3,1));
++        // Arrange in i1i2i3i4 format
++        iValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2, 0, 2, 0));
++        // Arrange in q1q2q3q4 format
++        qValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(3, 1, 3, 1));
+-    phase = atan2f4(qValue, iValue); // Calculate the Phase
++        phase = atan2f4(qValue, iValue); // Calculate the Phase
+-    magnitude = _mm_sqrt_ps(_mm_add_ps(_mm_mul_ps(iValue, iValue), _mm_mul_ps(qValue, qValue))); // Calculate the magnitude by square rooting the added I2 and Q2 values
++        magnitude = _mm_sqrt_ps(
++            _mm_add_ps(_mm_mul_ps(iValue, iValue),
++                       _mm_mul_ps(qValue, qValue))); // Calculate the magnitude by square
++                                                     // rooting the added I2 and Q2 values
+-    // Now calculate the power of the polar coordinate data
+-    magnitude = powf4(magnitude, vPower); // Take the magnitude to the specified power
++        // Now calculate the power of the polar coordinate data
++        magnitude = powf4(magnitude, vPower); // Take the magnitude to the specified power
+-    phase = _mm_mul_ps(phase, vPower); // Multiply the phase by the specified power
++        phase = _mm_mul_ps(phase, vPower); // Multiply the phase by the specified power
+-    // Convert back to cartesian coordinates
+-    iValue = _mm_mul_ps( cosf4(phase), magnitude); // Multiply the cos of the phase by the magnitude
+-    qValue = _mm_mul_ps( sinf4(phase), magnitude); // Multiply the sin of the phase by the magnitude
++        // Convert back to cartesian coordinates
++        iValue = _mm_mul_ps(cosf4(phase),
++                            magnitude); // Multiply the cos of the phase by the magnitude
++        qValue = _mm_mul_ps(sinf4(phase),
++                            magnitude); // Multiply the sin of the phase by the magnitude
+-    cplxValue1 = _mm_unpacklo_ps(iValue, qValue); // Interleave the lower two i & q values
+-    cplxValue2 = _mm_unpackhi_ps(iValue, qValue); // Interleave the upper two i & q values
++        cplxValue1 =
++            _mm_unpacklo_ps(iValue, qValue); // Interleave the lower two i & q values
++        cplxValue2 =
++            _mm_unpackhi_ps(iValue, qValue); // Interleave the upper two i & q values
+-    _mm_store_ps((float*)cPtr,cplxValue1); // Store the results back into the C container
++        _mm_store_ps((float*)cPtr,
++                     cplxValue1); // Store the results back into the C container
+-    cPtr += 2;
++        cPtr += 2;
+-    _mm_store_ps((float*)cPtr,cplxValue2); // Store the results back into the C container
++        _mm_store_ps((float*)cPtr,
++                     cplxValue2); // Store the results back into the C container
+-    cPtr += 2;
+-  }
++        cPtr += 2;
++    }
+-  number = quarterPoints * 4;
++    number = quarterPoints * 4;
+ #endif /* LV_HAVE_LIB_SIMDMATH */
+-  for(;number < num_points; number++){
+-    *cPtr++ = __volk_s32fc_s32f_power_s32fc_a((*aPtr++), power);
+-  }
++    for (; number < num_points; number++) {
++        *cPtr++ = __volk_s32fc_s32f_power_s32fc_a((*aPtr++), power);
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32fc_s32f_power_32fc_generic(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                                  const float power, unsigned int num_points)
++static inline void volk_32fc_s32f_power_32fc_generic(lv_32fc_t* cVector,
++                                                     const lv_32fc_t* aVector,
++                                                     const float power,
++                                                     unsigned int num_points)
+ {
+-  lv_32fc_t* cPtr = cVector;
+-  const lv_32fc_t* aPtr = aVector;
+-  unsigned int number = 0;
++    lv_32fc_t* cPtr = cVector;
++    const lv_32fc_t* aPtr = aVector;
++    unsigned int number = 0;
+-  for(number = 0; number < num_points; number++){
+-    *cPtr++ = __volk_s32fc_s32f_power_s32fc_a((*aPtr++), power);
+-  }
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = __volk_s32fc_s32f_power_s32fc_a((*aPtr++), power);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+diff --git a/kernels/volk/volk_32fc_s32f_power_spectrum_32f.h b/kernels/volk/volk_32fc_s32f_power_spectrum_32f.h
+index abe4662..a1a036d 100644
+--- a/kernels/volk/volk_32fc_s32f_power_spectrum_32f.h
++++ b/kernels/volk/volk_32fc_s32f_power_spectrum_32f.h
+@@ -29,13 +29,13 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32fc_s32f_power_spectrum_32f(float* logPowerOutput, const lv_32fc_t* complexFFTInput, const float normalizationFactor, unsigned int num_points)
+- * \endcode
++ * void volk_32fc_s32f_power_spectrum_32f(float* logPowerOutput, const lv_32fc_t*
++ * complexFFTInput, const float normalizationFactor, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li complexFFTInput The complex data output from the FFT point.
+- * \li normalizationFactor: This value is divided against all the input values before the power is calculated.
+- * \li num_points: The number of fft data points.
++ * \li normalizationFactor: This value is divided against all the input values before the
++ * power is calculated. \li num_points: The number of fft data points.
+  *
+  * \b Outputs
+  * \li logPowerOutput: The 10.0 * log10(r*r + i*i) for each data point.
+@@ -54,8 +54,8 @@
+ #define INCLUDED_volk_32fc_s32f_power_spectrum_32f_a_H
+ #include <inttypes.h>
+-#include <stdio.h>
+ #include <math.h>
++#include <stdio.h>
+ #ifdef LV_HAVE_SSE3
+ #include <pmmintrin.h>
+@@ -65,74 +65,75 @@
+ #endif /* LV_HAVE_LIB_SIMDMATH */
+ static inline void
+-volk_32fc_s32f_power_spectrum_32f_a_sse3(float* logPowerOutput, const lv_32fc_t* complexFFTInput,
+-                                         const float normalizationFactor, unsigned int num_points)
++volk_32fc_s32f_power_spectrum_32f_a_sse3(float* logPowerOutput,
++                                         const lv_32fc_t* complexFFTInput,
++                                         const float normalizationFactor,
++                                         unsigned int num_points)
+ {
+-  const float* inputPtr = (const float*)complexFFTInput;
+-  float* destPtr = logPowerOutput;
+-  uint64_t number = 0;
+-  const float iNormalizationFactor = 1.0 / normalizationFactor;
++    const float* inputPtr = (const float*)complexFFTInput;
++    float* destPtr = logPowerOutput;
++    uint64_t number = 0;
++    const float iNormalizationFactor = 1.0 / normalizationFactor;
+ #ifdef LV_HAVE_LIB_SIMDMATH
+-  __m128 magScalar = _mm_set_ps1(10.0);
+-  magScalar = _mm_div_ps(magScalar, logf4(magScalar));
++    __m128 magScalar = _mm_set_ps1(10.0);
++    magScalar = _mm_div_ps(magScalar, logf4(magScalar));
+-  __m128 invNormalizationFactor = _mm_set_ps1(iNormalizationFactor);
++    __m128 invNormalizationFactor = _mm_set_ps1(iNormalizationFactor);
+-  __m128 power;
+-  __m128 input1, input2;
+-  const uint64_t quarterPoints = num_points / 4;
+-  for(;number < quarterPoints; number++){
+-    // Load the complex values
+-    input1 =_mm_load_ps(inputPtr);
+-    inputPtr += 4;
+-    input2 =_mm_load_ps(inputPtr);
+-    inputPtr += 4;
++    __m128 power;
++    __m128 input1, input2;
++    const uint64_t quarterPoints = num_points / 4;
++    for (; number < quarterPoints; number++) {
++        // Load the complex values
++        input1 = _mm_load_ps(inputPtr);
++        inputPtr += 4;
++        input2 = _mm_load_ps(inputPtr);
++        inputPtr += 4;
+-    // Apply the normalization factor
+-    input1 = _mm_mul_ps(input1, invNormalizationFactor);
+-    input2 = _mm_mul_ps(input2, invNormalizationFactor);
++        // Apply the normalization factor
++        input1 = _mm_mul_ps(input1, invNormalizationFactor);
++        input2 = _mm_mul_ps(input2, invNormalizationFactor);
+-    // Multiply each value by itself
+-    // (r1*r1), (i1*i1), (r2*r2), (i2*i2)
+-    input1 = _mm_mul_ps(input1, input1);
+-    // (r3*r3), (i3*i3), (r4*r4), (i4*i4)
+-    input2 = _mm_mul_ps(input2, input2);
++        // Multiply each value by itself
++        // (r1*r1), (i1*i1), (r2*r2), (i2*i2)
++        input1 = _mm_mul_ps(input1, input1);
++        // (r3*r3), (i3*i3), (r4*r4), (i4*i4)
++        input2 = _mm_mul_ps(input2, input2);
+-    // Horizontal add, to add (r*r) + (i*i) for each complex value
+-    // (r1*r1)+(i1*i1), (r2*r2) + (i2*i2), (r3*r3)+(i3*i3), (r4*r4)+(i4*i4)
+-    power = _mm_hadd_ps(input1, input2);
++        // Horizontal add, to add (r*r) + (i*i) for each complex value
++        // (r1*r1)+(i1*i1), (r2*r2) + (i2*i2), (r3*r3)+(i3*i3), (r4*r4)+(i4*i4)
++        power = _mm_hadd_ps(input1, input2);
+-    // Calculate the natural log power
+-    power = logf4(power);
++        // Calculate the natural log power
++        power = logf4(power);
+-    // Convert to log10 and multiply by 10.0
+-    power = _mm_mul_ps(power, magScalar);
++        // Convert to log10 and multiply by 10.0
++        power = _mm_mul_ps(power, magScalar);
+-    // Store the floating point results
+-    _mm_store_ps(destPtr, power);
++        // Store the floating point results
++        _mm_store_ps(destPtr, power);
+-    destPtr += 4;
+-  }
++        destPtr += 4;
++    }
+-  number = quarterPoints*4;
++    number = quarterPoints * 4;
+ #endif /* LV_HAVE_LIB_SIMDMATH */
+-  // Calculate the FFT for any remaining points
+-
+-  for(; number < num_points; number++){
+-    // Calculate dBm
+-    // 50 ohm load assumption
+-    // 10 * log10 (v^2 / (2 * 50.0 * .001)) = 10 * log10( v^2 * 10)
+-    // 75 ohm load assumption
+-    // 10 * log10 (v^2 / (2 * 75.0 * .001)) = 10 * log10( v^2 * 15)
++    // Calculate the FFT for any remaining points
+-    const float real = *inputPtr++ * iNormalizationFactor;
+-    const float imag = *inputPtr++ * iNormalizationFactor;
++    for (; number < num_points; number++) {
++        // Calculate dBm
++        // 50 ohm load assumption
++        // 10 * log10 (v^2 / (2 * 50.0 * .001)) = 10 * log10( v^2 * 10)
++        // 75 ohm load assumption
++        // 10 * log10 (v^2 / (2 * 75.0 * .001)) = 10 * log10( v^2 * 15)
+-    *destPtr = 10.0*log10f(((real * real) + (imag * imag)) + 1e-20);
++        const float real = *inputPtr++ * iNormalizationFactor;
++        const float imag = *inputPtr++ * iNormalizationFactor;
+-    destPtr++;
+-  }
++        *destPtr = 10.0 * log10f(((real * real) + (imag * imag)) + 1e-20);
++        destPtr++;
++    }
+ }
+ #endif /* LV_HAVE_SSE3 */
+@@ -141,7 +142,10 @@ volk_32fc_s32f_power_spectrum_32f_a_sse3(float* logPowerOutput, const lv_32fc_t*
+ #include <volk/volk_neon_intrinsics.h>
+ static inline void
+-volk_32fc_s32f_power_spectrum_32f_neon(float* logPowerOutput, const lv_32fc_t* complexFFTInput, const float normalizationFactor, unsigned int num_points)
++volk_32fc_s32f_power_spectrum_32f_neon(float* logPowerOutput,
++                                       const lv_32fc_t* complexFFTInput,
++                                       const float normalizationFactor,
++                                       unsigned int num_points)
+ {
+     float* logPowerOutputPtr = logPowerOutput;
+     const lv_32fc_t* complexFFTInputPtr = complexFFTInput;
+@@ -151,14 +155,14 @@ volk_32fc_s32f_power_spectrum_32f_neon(float* logPowerOutput, const lv_32fc_t* c
+     float32x4x2_t fft_vec;
+     float32x4_t log_pwr_vec;
+     float32x4_t mag_squared_vec;
+-    
++
+     const float inv_ln10_10 = 4.34294481903f; // 10.0/ln(10.)
+-    
+-    for(number = 0; number < quarter_points; number++) {
++
++    for (number = 0; number < quarter_points; number++) {
+         // Load
+         fft_vec = vld2q_f32((float*)complexFFTInputPtr);
+         // Prefetch next 4
+-        __VOLK_PREFETCH(complexFFTInputPtr+4);
++        __VOLK_PREFETCH(complexFFTInputPtr + 4);
+         // Normalize
+         fft_vec.val[0] = vmulq_n_f32(fft_vec.val[0], iNormalizationFactor);
+         fft_vec.val[1] = vmulq_n_f32(fft_vec.val[1], iNormalizationFactor);
+@@ -167,12 +171,12 @@ volk_32fc_s32f_power_spectrum_32f_neon(float* logPowerOutput, const lv_32fc_t* c
+         // Store
+         vst1q_f32(logPowerOutputPtr, log_pwr_vec);
+         // Move pointers ahead
+-        complexFFTInputPtr+=4;
+-        logPowerOutputPtr+=4;
++        complexFFTInputPtr += 4;
++        logPowerOutputPtr += 4;
+     }
+-    
++
+     // deal with the rest
+-    for(number = quarter_points * 4; number < num_points; number++) {
++    for (number = quarter_points * 4; number < num_points; number++) {
+         const float real = lv_creal(*complexFFTInputPtr) * iNormalizationFactor;
+         const float imag = lv_cimag(*complexFFTInputPtr) * iNormalizationFactor;
+         *logPowerOutputPtr = 10.0 * log10f(((real * real) + (imag * imag)) + 1e-20);
+@@ -186,27 +190,29 @@ volk_32fc_s32f_power_spectrum_32f_neon(float* logPowerOutput, const lv_32fc_t* c
+ #ifdef LV_HAVE_GENERIC
+ static inline void
+-volk_32fc_s32f_power_spectrum_32f_generic(float* logPowerOutput, const lv_32fc_t* complexFFTInput,
+-                                          const float normalizationFactor, unsigned int num_points)
++volk_32fc_s32f_power_spectrum_32f_generic(float* logPowerOutput,
++                                          const lv_32fc_t* complexFFTInput,
++                                          const float normalizationFactor,
++                                          unsigned int num_points)
+ {
+-  // Calculate the Power of the complex point
+-  const float* inputPtr = (float*)complexFFTInput;
+-  float* realFFTDataPointsPtr = logPowerOutput;
+-  const float iNormalizationFactor = 1.0 / normalizationFactor;
+-  unsigned int point;
+-  for(point = 0; point < num_points; point++){
+-    // Calculate dBm
+-    // 50 ohm load assumption
+-    // 10 * log10 (v^2 / (2 * 50.0 * .001)) = 10 * log10( v^2 * 10)
+-    // 75 ohm load assumption
+-    // 10 * log10 (v^2 / (2 * 75.0 * .001)) = 10 * log10( v^2 * 15)
+-
+-    const float real = *inputPtr++ * iNormalizationFactor;
+-    const float imag = *inputPtr++ * iNormalizationFactor;
+-
+-    *realFFTDataPointsPtr = 10.0*log10f(((real * real) + (imag * imag)) + 1e-20);
+-    realFFTDataPointsPtr++;
+-  }
++    // Calculate the Power of the complex point
++    const float* inputPtr = (float*)complexFFTInput;
++    float* realFFTDataPointsPtr = logPowerOutput;
++    const float iNormalizationFactor = 1.0 / normalizationFactor;
++    unsigned int point;
++    for (point = 0; point < num_points; point++) {
++        // Calculate dBm
++        // 50 ohm load assumption
++        // 10 * log10 (v^2 / (2 * 50.0 * .001)) = 10 * log10( v^2 * 10)
++        // 75 ohm load assumption
++        // 10 * log10 (v^2 / (2 * 75.0 * .001)) = 10 * log10( v^2 * 15)
++
++        const float real = *inputPtr++ * iNormalizationFactor;
++        const float imag = *inputPtr++ * iNormalizationFactor;
++
++        *realFFTDataPointsPtr = 10.0 * log10f(((real * real) + (imag * imag)) + 1e-20);
++        realFFTDataPointsPtr++;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+diff --git a/kernels/volk/volk_32fc_s32f_x2_power_spectral_density_32f.h b/kernels/volk/volk_32fc_s32f_x2_power_spectral_density_32f.h
+index 3260b08..37ca43c 100644
+--- a/kernels/volk/volk_32fc_s32f_x2_power_spectral_density_32f.h
++++ b/kernels/volk/volk_32fc_s32f_x2_power_spectral_density_32f.h
+@@ -29,14 +29,15 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32fc_s32f_x2_power_spectral_density_32f(float* logPowerOutput, const lv_32fc_t* complexFFTInput, const float normalizationFactor, const float rbw, unsigned int num_points)
+- * \endcode
++ * void volk_32fc_s32f_x2_power_spectral_density_32f(float* logPowerOutput, const
++ * lv_32fc_t* complexFFTInput, const float normalizationFactor, const float rbw, unsigned
++ * int num_points) \endcode
+  *
+  * \b Inputs
+  * \li complexFFTInput The complex data output from the FFT point.
+- * \li normalizationFactor: This value is divided against all the input values before the power is calculated.
+- * \li rbw: The resolution bandwidth of the fft spectrum
+- * \li num_points: The number of fft data points.
++ * \li normalizationFactor: This value is divided against all the input values before the
++ * power is calculated. \li rbw: The resolution bandwidth of the fft spectrum \li
++ * num_points: The number of fft data points.
+  *
+  * \b Outputs
+  * \li logPowerOutput: The 10.0 * log10((r*r + i*i)/RBW) for each data point.
+@@ -55,8 +56,8 @@
+ #define INCLUDED_volk_32fc_s32f_x2_power_spectral_density_32f_a_H
+ #include <inttypes.h>
+-#include <stdio.h>
+ #include <math.h>
++#include <stdio.h>
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+@@ -66,83 +67,84 @@
+ #endif /* LV_HAVE_LIB_SIMDMATH */
+ static inline void
+-volk_32fc_s32f_x2_power_spectral_density_32f_a_avx(float* logPowerOutput, const lv_32fc_t* complexFFTInput,
+-                                                   const float normalizationFactor, const float rbw,
++volk_32fc_s32f_x2_power_spectral_density_32f_a_avx(float* logPowerOutput,
++                                                   const lv_32fc_t* complexFFTInput,
++                                                   const float normalizationFactor,
++                                                   const float rbw,
+                                                    unsigned int num_points)
+ {
+-  const float* inputPtr = (const float*)complexFFTInput;
+-  float* destPtr = logPowerOutput;
+-  uint64_t number = 0;
+-  const float iRBW = 1.0 / rbw;
+-  const float iNormalizationFactor = 1.0 / normalizationFactor;
++    const float* inputPtr = (const float*)complexFFTInput;
++    float* destPtr = logPowerOutput;
++    uint64_t number = 0;
++    const float iRBW = 1.0 / rbw;
++    const float iNormalizationFactor = 1.0 / normalizationFactor;
+ #ifdef LV_HAVE_LIB_SIMDMATH
+-  __m256 magScalar = _mm256_set1_ps(10.0);
+-  magScalar = _mm256_div_ps(magScalar, logf4(magScalar));
++    __m256 magScalar = _mm256_set1_ps(10.0);
++    magScalar = _mm256_div_ps(magScalar, logf4(magScalar));
+-  __m256 invRBW = _mm256_set1_ps(iRBW);
++    __m256 invRBW = _mm256_set1_ps(iRBW);
+-  __m256 invNormalizationFactor = _mm256_set1_ps(iNormalizationFactor);
++    __m256 invNormalizationFactor = _mm256_set1_ps(iNormalizationFactor);
+-  __m256 power;
+-  __m256 input1, input2;
+-  const uint64_t eighthPoints = num_points / 8;
+-  for(;number < eighthPoints; number++){
+-    // Load the complex values
+-    input1 =_mm256_load_ps(inputPtr);
+-    inputPtr += 8;
+-    input2 =_mm256_load_ps(inputPtr);
+-    inputPtr += 8;
++    __m256 power;
++    __m256 input1, input2;
++    const uint64_t eighthPoints = num_points / 8;
++    for (; number < eighthPoints; number++) {
++        // Load the complex values
++        input1 = _mm256_load_ps(inputPtr);
++        inputPtr += 8;
++        input2 = _mm256_load_ps(inputPtr);
++        inputPtr += 8;
+-    // Apply the normalization factor
+-    input1 = _mm256_mul_ps(input1, invNormalizationFactor);
+-    input2 = _mm256_mul_ps(input2, invNormalizationFactor);
++        // Apply the normalization factor
++        input1 = _mm256_mul_ps(input1, invNormalizationFactor);
++        input2 = _mm256_mul_ps(input2, invNormalizationFactor);
+-    // Multiply each value by itself
+-    // (r1*r1), (i1*i1), (r2*r2), (i2*i2)
+-    input1 = _mm256_mul_ps(input1, input1);
+-    // (r3*r3), (i3*i3), (r4*r4), (i4*i4)
+-    input2 = _mm256_mul_ps(input2, input2);
++        // Multiply each value by itself
++        // (r1*r1), (i1*i1), (r2*r2), (i2*i2)
++        input1 = _mm256_mul_ps(input1, input1);
++        // (r3*r3), (i3*i3), (r4*r4), (i4*i4)
++        input2 = _mm256_mul_ps(input2, input2);
+-    // Horizontal add, to add (r*r) + (i*i) for each complex value
+-    // (r1*r1)+(i1*i1), (r2*r2) + (i2*i2), (r3*r3)+(i3*i3), (r4*r4)+(i4*i4)
+-    inputVal1 = _mm256_permute2f128_ps(input1, input2, 0x20);
+-    inputVal2 = _mm256_permute2f128_ps(input1, input2, 0x31);
++        // Horizontal add, to add (r*r) + (i*i) for each complex value
++        // (r1*r1)+(i1*i1), (r2*r2) + (i2*i2), (r3*r3)+(i3*i3), (r4*r4)+(i4*i4)
++        inputVal1 = _mm256_permute2f128_ps(input1, input2, 0x20);
++        inputVal2 = _mm256_permute2f128_ps(input1, input2, 0x31);
+-    power = _mm256_hadd_ps(inputVal1, inputVal2);
++        power = _mm256_hadd_ps(inputVal1, inputVal2);
+-    // Divide by the rbw
+-    power = _mm256_mul_ps(power, invRBW);
++        // Divide by the rbw
++        power = _mm256_mul_ps(power, invRBW);
+-    // Calculate the natural log power
+-    power = logf4(power);
++        // Calculate the natural log power
++        power = logf4(power);
+-    // Convert to log10 and multiply by 10.0
+-    power = _mm256_mul_ps(power, magScalar);
++        // Convert to log10 and multiply by 10.0
++        power = _mm256_mul_ps(power, magScalar);
+-    // Store the floating point results
+-    _mm256_store_ps(destPtr, power);
++        // Store the floating point results
++        _mm256_store_ps(destPtr, power);
+-    destPtr += 8;
+-  }
++        destPtr += 8;
++    }
+-  number = eighthPoints*8;
++    number = eighthPoints * 8;
+ #endif /* LV_HAVE_LIB_SIMDMATH */
+-  // Calculate the FFT for any remaining points
+-  for(; number < num_points; number++){
+-    // Calculate dBm
+-    // 50 ohm load assumption
+-    // 10 * log10 (v^2 / (2 * 50.0 * .001)) = 10 * log10( v^2 * 10)
+-    // 75 ohm load assumption
+-    // 10 * log10 (v^2 / (2 * 75.0 * .001)) = 10 * log10( v^2 * 15)
+-
+-    const float real = *inputPtr++ * iNormalizationFactor;
+-    const float imag = *inputPtr++ * iNormalizationFactor;
+-
+-    *destPtr = 10.0*log10f((((real * real) + (imag * imag)) + 1e-20) * iRBW);
+-    destPtr++;
+-  }
+-
++    // Calculate the FFT for any remaining points
++    for (; number < num_points; number++) {
++        // Calculate dBm
++        // 50 ohm load assumption
++        // 10 * log10 (v^2 / (2 * 50.0 * .001)) = 10 * log10( v^2 * 10)
++        // 75 ohm load assumption
++        // 10 * log10 (v^2 / (2 * 75.0 * .001)) = 10 * log10( v^2 * 15)
++
++        const float real = *inputPtr++ * iNormalizationFactor;
++        const float imag = *inputPtr++ * iNormalizationFactor;
++
++        *destPtr = 10.0 * log10f((((real * real) + (imag * imag)) + 1e-20) * iRBW);
++        destPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -150,86 +152,86 @@ volk_32fc_s32f_x2_power_spectral_density_32f_a_avx(float* logPowerOutput, const
+ #include <pmmintrin.h>
+-
+ #ifdef LV_HAVE_LIB_SIMDMATH
+ #include <simdmath.h>
+ #endif /* LV_HAVE_LIB_SIMDMATH */
+ static inline void
+-volk_32fc_s32f_x2_power_spectral_density_32f_a_sse3(float* logPowerOutput, const lv_32fc_t* complexFFTInput,
+-                                                    const float normalizationFactor, const float rbw,
++volk_32fc_s32f_x2_power_spectral_density_32f_a_sse3(float* logPowerOutput,
++                                                    const lv_32fc_t* complexFFTInput,
++                                                    const float normalizationFactor,
++                                                    const float rbw,
+                                                     unsigned int num_points)
+ {
+-  const float* inputPtr = (const float*)complexFFTInput;
+-  float* destPtr = logPowerOutput;
+-  uint64_t number = 0;
+-  const float iRBW = 1.0 / rbw;
+-  const float iNormalizationFactor = 1.0 / normalizationFactor;
++    const float* inputPtr = (const float*)complexFFTInput;
++    float* destPtr = logPowerOutput;
++    uint64_t number = 0;
++    const float iRBW = 1.0 / rbw;
++    const float iNormalizationFactor = 1.0 / normalizationFactor;
+ #ifdef LV_HAVE_LIB_SIMDMATH
+-  __m128 magScalar = _mm_set_ps1(10.0);
+-  magScalar = _mm_div_ps(magScalar, logf4(magScalar));
++    __m128 magScalar = _mm_set_ps1(10.0);
++    magScalar = _mm_div_ps(magScalar, logf4(magScalar));
+-  __m128 invRBW = _mm_set_ps1(iRBW);
++    __m128 invRBW = _mm_set_ps1(iRBW);
+-  __m128 invNormalizationFactor = _mm_set_ps1(iNormalizationFactor);
++    __m128 invNormalizationFactor = _mm_set_ps1(iNormalizationFactor);
+-  __m128 power;
+-  __m128 input1, input2;
+-  const uint64_t quarterPoints = num_points / 4;
+-  for(;number < quarterPoints; number++){
+-    // Load the complex values
+-    input1 =_mm_load_ps(inputPtr);
+-    inputPtr += 4;
+-    input2 =_mm_load_ps(inputPtr);
+-    inputPtr += 4;
++    __m128 power;
++    __m128 input1, input2;
++    const uint64_t quarterPoints = num_points / 4;
++    for (; number < quarterPoints; number++) {
++        // Load the complex values
++        input1 = _mm_load_ps(inputPtr);
++        inputPtr += 4;
++        input2 = _mm_load_ps(inputPtr);
++        inputPtr += 4;
+-    // Apply the normalization factor
+-    input1 = _mm_mul_ps(input1, invNormalizationFactor);
+-    input2 = _mm_mul_ps(input2, invNormalizationFactor);
++        // Apply the normalization factor
++        input1 = _mm_mul_ps(input1, invNormalizationFactor);
++        input2 = _mm_mul_ps(input2, invNormalizationFactor);
+-    // Multiply each value by itself
+-    // (r1*r1), (i1*i1), (r2*r2), (i2*i2)
+-    input1 = _mm_mul_ps(input1, input1);
+-    // (r3*r3), (i3*i3), (r4*r4), (i4*i4)
+-    input2 = _mm_mul_ps(input2, input2);
++        // Multiply each value by itself
++        // (r1*r1), (i1*i1), (r2*r2), (i2*i2)
++        input1 = _mm_mul_ps(input1, input1);
++        // (r3*r3), (i3*i3), (r4*r4), (i4*i4)
++        input2 = _mm_mul_ps(input2, input2);
+-    // Horizontal add, to add (r*r) + (i*i) for each complex value
+-    // (r1*r1)+(i1*i1), (r2*r2) + (i2*i2), (r3*r3)+(i3*i3), (r4*r4)+(i4*i4)
+-    power = _mm_hadd_ps(input1, input2);
++        // Horizontal add, to add (r*r) + (i*i) for each complex value
++        // (r1*r1)+(i1*i1), (r2*r2) + (i2*i2), (r3*r3)+(i3*i3), (r4*r4)+(i4*i4)
++        power = _mm_hadd_ps(input1, input2);
+-    // Divide by the rbw
+-    power = _mm_mul_ps(power, invRBW);
++        // Divide by the rbw
++        power = _mm_mul_ps(power, invRBW);
+-    // Calculate the natural log power
+-    power = logf4(power);
++        // Calculate the natural log power
++        power = logf4(power);
+-    // Convert to log10 and multiply by 10.0
+-    power = _mm_mul_ps(power, magScalar);
++        // Convert to log10 and multiply by 10.0
++        power = _mm_mul_ps(power, magScalar);
+-    // Store the floating point results
+-    _mm_store_ps(destPtr, power);
++        // Store the floating point results
++        _mm_store_ps(destPtr, power);
+-    destPtr += 4;
+-  }
++        destPtr += 4;
++    }
+-  number = quarterPoints*4;
++    number = quarterPoints * 4;
+ #endif /* LV_HAVE_LIB_SIMDMATH */
+-  // Calculate the FFT for any remaining points
+-  for(; number < num_points; number++){
+-    // Calculate dBm
+-    // 50 ohm load assumption
+-    // 10 * log10 (v^2 / (2 * 50.0 * .001)) = 10 * log10( v^2 * 10)
+-    // 75 ohm load assumption
+-    // 10 * log10 (v^2 / (2 * 75.0 * .001)) = 10 * log10( v^2 * 15)
+-
+-    const float real = *inputPtr++ * iNormalizationFactor;
+-    const float imag = *inputPtr++ * iNormalizationFactor;
+-
+-    *destPtr = 10.0*log10f((((real * real) + (imag * imag)) + 1e-20) * iRBW);
+-    destPtr++;
+-  }
+-
++    // Calculate the FFT for any remaining points
++    for (; number < num_points; number++) {
++        // Calculate dBm
++        // 50 ohm load assumption
++        // 10 * log10 (v^2 / (2 * 50.0 * .001)) = 10 * log10( v^2 * 10)
++        // 75 ohm load assumption
++        // 10 * log10 (v^2 / (2 * 75.0 * .001)) = 10 * log10( v^2 * 15)
++
++        const float real = *inputPtr++ * iNormalizationFactor;
++        const float imag = *inputPtr++ * iNormalizationFactor;
++
++        *destPtr = 10.0 * log10f((((real * real) + (imag * imag)) + 1e-20) * iRBW);
++        destPtr++;
++    }
+ }
+ #endif /* LV_HAVE_SSE3 */
+@@ -237,31 +239,34 @@ volk_32fc_s32f_x2_power_spectral_density_32f_a_sse3(float* logPowerOutput, const
+ #ifdef LV_HAVE_GENERIC
+ static inline void
+-volk_32fc_s32f_x2_power_spectral_density_32f_generic(float* logPowerOutput, const lv_32fc_t* complexFFTInput,
+-                                                     const float normalizationFactor, const float rbw,
++volk_32fc_s32f_x2_power_spectral_density_32f_generic(float* logPowerOutput,
++                                                     const lv_32fc_t* complexFFTInput,
++                                                     const float normalizationFactor,
++                                                     const float rbw,
+                                                      unsigned int num_points)
+ {
+-  // Calculate the Power of the complex point
+-  const float* inputPtr = (float*)complexFFTInput;
+-  float* realFFTDataPointsPtr = logPowerOutput;
+-  unsigned int point;
+-  const float invRBW = 1.0 / rbw;
+-  const float iNormalizationFactor = 1.0 / normalizationFactor;
+-
+-  for(point = 0; point < num_points; point++){
+-    // Calculate dBm
+-    // 50 ohm load assumption
+-    // 10 * log10 (v^2 / (2 * 50.0 * .001)) = 10 * log10( v^2 * 10)
+-    // 75 ohm load assumption
+-    // 10 * log10 (v^2 / (2 * 75.0 * .001)) = 10 * log10( v^2 * 15)
+-
+-    const float real = *inputPtr++ * iNormalizationFactor;
+-    const float imag = *inputPtr++ * iNormalizationFactor;
+-
+-    *realFFTDataPointsPtr = 10.0*log10f((((real * real) + (imag * imag)) + 1e-20) * invRBW);
+-
+-    realFFTDataPointsPtr++;
+-  }
++    // Calculate the Power of the complex point
++    const float* inputPtr = (float*)complexFFTInput;
++    float* realFFTDataPointsPtr = logPowerOutput;
++    unsigned int point;
++    const float invRBW = 1.0 / rbw;
++    const float iNormalizationFactor = 1.0 / normalizationFactor;
++
++    for (point = 0; point < num_points; point++) {
++        // Calculate dBm
++        // 50 ohm load assumption
++        // 10 * log10 (v^2 / (2 * 50.0 * .001)) = 10 * log10( v^2 * 10)
++        // 75 ohm load assumption
++        // 10 * log10 (v^2 / (2 * 75.0 * .001)) = 10 * log10( v^2 * 15)
++
++        const float real = *inputPtr++ * iNormalizationFactor;
++        const float imag = *inputPtr++ * iNormalizationFactor;
++
++        *realFFTDataPointsPtr =
++            10.0 * log10f((((real * real) + (imag * imag)) + 1e-20) * invRBW);
++
++        realFFTDataPointsPtr++;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+diff --git a/kernels/volk/volk_32fc_s32fc_multiply_32fc.h b/kernels/volk/volk_32fc_s32fc_multiply_32fc.h
+index fe416b4..840008a 100644
+--- a/kernels/volk/volk_32fc_s32fc_multiply_32fc.h
++++ b/kernels/volk/volk_32fc_s32fc_multiply_32fc.h
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32fc_s32fc_multiply_32fc(lv_32fc_t* cVector, const lv_32fc_t* aVector, const lv_32fc_t scalar, unsigned int num_points);
+- * \endcode
++ * void volk_32fc_s32fc_multiply_32fc(lv_32fc_t* cVector, const lv_32fc_t* aVector, const
++ * lv_32fc_t scalar, unsigned int num_points); \endcode
+  *
+  * \b Inputs
+  * \li aVector: The input vector to be multiplied.
+@@ -76,15 +76,19 @@
+ #ifndef INCLUDED_volk_32fc_s32fc_multiply_32fc_u_H
+ #define INCLUDED_volk_32fc_s32fc_multiply_32fc_u_H
++#include <float.h>
+ #include <inttypes.h>
+ #include <stdio.h>
+ #include <volk/volk_complex.h>
+-#include <float.h>
+ #if LV_HAVE_AVX && LV_HAVE_FMA
+ #include <immintrin.h>
+-static inline void volk_32fc_s32fc_multiply_32fc_u_avx_fma(lv_32fc_t* cVector, const lv_32fc_t* aVector, const lv_32fc_t scalar, unsigned int num_points){
++static inline void volk_32fc_s32fc_multiply_32fc_u_avx_fma(lv_32fc_t* cVector,
++                                                           const lv_32fc_t* aVector,
++                                                           const lv_32fc_t scalar,
++                                                           unsigned int num_points)
++{
+     unsigned int number = 0;
+     unsigned int i = 0;
+     const unsigned int quarterPoints = num_points / 4;
+@@ -97,34 +101,38 @@ static inline void volk_32fc_s32fc_multiply_32fc_u_avx_fma(lv_32fc_t* cVector, c
+     yl = _mm256_set1_ps(lv_creal(scalar));
+     yh = _mm256_set1_ps(lv_cimag(scalar));
+-    for(;number < quarterPoints; number++){
+-      x = _mm256_loadu_ps((float*)a); // Load the ar + ai, br + bi as ar,ai,br,bi
++    for (; number < quarterPoints; number++) {
++        x = _mm256_loadu_ps((float*)a); // Load the ar + ai, br + bi as ar,ai,br,bi
+-      tmp1 = x;
++        tmp1 = x;
+-      x = _mm256_shuffle_ps(x,x,0xB1); // Re-arrange x to be ai,ar,bi,br
++        x = _mm256_shuffle_ps(x, x, 0xB1); // Re-arrange x to be ai,ar,bi,br
+-      tmp2 = _mm256_mul_ps(x,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
++        tmp2 = _mm256_mul_ps(x, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+-      z = _mm256_fmaddsub_ps(tmp1, yl,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
++        z = _mm256_fmaddsub_ps(
++            tmp1, yl, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+-      _mm256_storeu_ps((float*)c,z); // Store the results back into the C container
++        _mm256_storeu_ps((float*)c, z); // Store the results back into the C container
+-      a += 4;
+-      c += 4;
++        a += 4;
++        c += 4;
+     }
+-    for(i = num_points-isodd; i < num_points; i++) {
++    for (i = num_points - isodd; i < num_points; i++) {
+         *c++ = (*a++) * scalar;
+     }
+-
+ }
+ #endif /* LV_HAVE_AVX && LV_HAVE_FMA */
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void volk_32fc_s32fc_multiply_32fc_u_avx(lv_32fc_t* cVector, const lv_32fc_t* aVector, const lv_32fc_t scalar, unsigned int num_points){
++static inline void volk_32fc_s32fc_multiply_32fc_u_avx(lv_32fc_t* cVector,
++                                                       const lv_32fc_t* aVector,
++                                                       const lv_32fc_t scalar,
++                                                       unsigned int num_points)
++{
+     unsigned int number = 0;
+     unsigned int i = 0;
+     const unsigned int quarterPoints = num_points / 4;
+@@ -137,35 +145,39 @@ static inline void volk_32fc_s32fc_multiply_32fc_u_avx(lv_32fc_t* cVector, const
+     yl = _mm256_set1_ps(lv_creal(scalar));
+     yh = _mm256_set1_ps(lv_cimag(scalar));
+-    for(;number < quarterPoints; number++){
+-      x = _mm256_loadu_ps((float*)a); // Load the ar + ai, br + bi as ar,ai,br,bi
++    for (; number < quarterPoints; number++) {
++        x = _mm256_loadu_ps((float*)a); // Load the ar + ai, br + bi as ar,ai,br,bi
+-      tmp1 = _mm256_mul_ps(x,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
++        tmp1 = _mm256_mul_ps(x, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+-      x = _mm256_shuffle_ps(x,x,0xB1); // Re-arrange x to be ai,ar,bi,br
++        x = _mm256_shuffle_ps(x, x, 0xB1); // Re-arrange x to be ai,ar,bi,br
+-      tmp2 = _mm256_mul_ps(x,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
++        tmp2 = _mm256_mul_ps(x, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+-      z = _mm256_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
++        z = _mm256_addsub_ps(tmp1,
++                             tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+-      _mm256_storeu_ps((float*)c,z); // Store the results back into the C container
++        _mm256_storeu_ps((float*)c, z); // Store the results back into the C container
+-      a += 4;
+-      c += 4;
++        a += 4;
++        c += 4;
+     }
+-    for(i = num_points-isodd; i < num_points; i++) {
++    for (i = num_points - isodd; i < num_points; i++) {
+         *c++ = (*a++) * scalar;
+     }
+-
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_SSE3
+ #include <pmmintrin.h>
+-static inline void volk_32fc_s32fc_multiply_32fc_u_sse3(lv_32fc_t* cVector, const lv_32fc_t* aVector, const lv_32fc_t scalar, unsigned int num_points){
+-  unsigned int number = 0;
++static inline void volk_32fc_s32fc_multiply_32fc_u_sse3(lv_32fc_t* cVector,
++                                                        const lv_32fc_t* aVector,
++                                                        const lv_32fc_t scalar,
++                                                        unsigned int num_points)
++{
++    unsigned int number = 0;
+     const unsigned int halfPoints = num_points / 2;
+     __m128 x, yl, yh, z, tmp1, tmp2;
+@@ -176,53 +188,58 @@ static inline void volk_32fc_s32fc_multiply_32fc_u_sse3(lv_32fc_t* cVector, cons
+     yl = _mm_set_ps1(lv_creal(scalar));
+     yh = _mm_set_ps1(lv_cimag(scalar));
+-    for(;number < halfPoints; number++){
++    for (; number < halfPoints; number++) {
+-      x = _mm_loadu_ps((float*)a); // Load the ar + ai, br + bi as ar,ai,br,bi
++        x = _mm_loadu_ps((float*)a); // Load the ar + ai, br + bi as ar,ai,br,bi
+-      tmp1 = _mm_mul_ps(x,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
++        tmp1 = _mm_mul_ps(x, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+-      x = _mm_shuffle_ps(x,x,0xB1); // Re-arrange x to be ai,ar,bi,br
++        x = _mm_shuffle_ps(x, x, 0xB1); // Re-arrange x to be ai,ar,bi,br
+-      tmp2 = _mm_mul_ps(x,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
++        tmp2 = _mm_mul_ps(x, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+-      z = _mm_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
++        z = _mm_addsub_ps(tmp1,
++                          tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+-      _mm_storeu_ps((float*)c,z); // Store the results back into the C container
++        _mm_storeu_ps((float*)c, z); // Store the results back into the C container
+-      a += 2;
+-      c += 2;
++        a += 2;
++        c += 2;
+     }
+-    if((num_points % 2) != 0) {
+-      *c = (*a) * scalar;
++    if ((num_points % 2) != 0) {
++        *c = (*a) * scalar;
+     }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32fc_s32fc_multiply_32fc_generic(lv_32fc_t* cVector, const lv_32fc_t* aVector, const lv_32fc_t scalar, unsigned int num_points){
++static inline void volk_32fc_s32fc_multiply_32fc_generic(lv_32fc_t* cVector,
++                                                         const lv_32fc_t* aVector,
++                                                         const lv_32fc_t scalar,
++                                                         unsigned int num_points)
++{
+     lv_32fc_t* cPtr = cVector;
+     const lv_32fc_t* aPtr = aVector;
+     unsigned int number = num_points;
+     // unwrap loop
+-    while (number >= 8){
+-      *cPtr++ = (*aPtr++) * scalar;
+-      *cPtr++ = (*aPtr++) * scalar;
+-      *cPtr++ = (*aPtr++) * scalar;
+-      *cPtr++ = (*aPtr++) * scalar;
+-      *cPtr++ = (*aPtr++) * scalar;
+-      *cPtr++ = (*aPtr++) * scalar;
+-      *cPtr++ = (*aPtr++) * scalar;
+-      *cPtr++ = (*aPtr++) * scalar;
+-      number -= 8;
++    while (number >= 8) {
++        *cPtr++ = (*aPtr++) * scalar;
++        *cPtr++ = (*aPtr++) * scalar;
++        *cPtr++ = (*aPtr++) * scalar;
++        *cPtr++ = (*aPtr++) * scalar;
++        *cPtr++ = (*aPtr++) * scalar;
++        *cPtr++ = (*aPtr++) * scalar;
++        *cPtr++ = (*aPtr++) * scalar;
++        *cPtr++ = (*aPtr++) * scalar;
++        number -= 8;
+     }
+     // clean up any remaining
+     while (number-- > 0)
+-      *cPtr++ = *aPtr++ * scalar;
++        *cPtr++ = *aPtr++ * scalar;
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -231,15 +248,19 @@ static inline void volk_32fc_s32fc_multiply_32fc_generic(lv_32fc_t* cVector, con
+ #ifndef INCLUDED_volk_32fc_s32fc_multiply_32fc_a_H
+ #define INCLUDED_volk_32fc_s32fc_multiply_32fc_a_H
++#include <float.h>
+ #include <inttypes.h>
+ #include <stdio.h>
+ #include <volk/volk_complex.h>
+-#include <float.h>
+ #if LV_HAVE_AVX && LV_HAVE_FMA
+ #include <immintrin.h>
+-static inline void volk_32fc_s32fc_multiply_32fc_a_avx_fma(lv_32fc_t* cVector, const lv_32fc_t* aVector, const lv_32fc_t scalar, unsigned int num_points){
++static inline void volk_32fc_s32fc_multiply_32fc_a_avx_fma(lv_32fc_t* cVector,
++                                                           const lv_32fc_t* aVector,
++                                                           const lv_32fc_t scalar,
++                                                           unsigned int num_points)
++{
+     unsigned int number = 0;
+     unsigned int i = 0;
+     const unsigned int quarterPoints = num_points / 4;
+@@ -252,27 +273,27 @@ static inline void volk_32fc_s32fc_multiply_32fc_a_avx_fma(lv_32fc_t* cVector, c
+     yl = _mm256_set1_ps(lv_creal(scalar));
+     yh = _mm256_set1_ps(lv_cimag(scalar));
+-    for(;number < quarterPoints; number++){
+-      x = _mm256_load_ps((float*)a); // Load the ar + ai, br + bi as ar,ai,br,bi
++    for (; number < quarterPoints; number++) {
++        x = _mm256_load_ps((float*)a); // Load the ar + ai, br + bi as ar,ai,br,bi
+-      tmp1 = x;
++        tmp1 = x;
+-      x = _mm256_shuffle_ps(x,x,0xB1); // Re-arrange x to be ai,ar,bi,br
++        x = _mm256_shuffle_ps(x, x, 0xB1); // Re-arrange x to be ai,ar,bi,br
+-      tmp2 = _mm256_mul_ps(x,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
++        tmp2 = _mm256_mul_ps(x, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+-      z = _mm256_fmaddsub_ps(tmp1, yl,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
++        z = _mm256_fmaddsub_ps(
++            tmp1, yl, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+-      _mm256_store_ps((float*)c,z); // Store the results back into the C container
++        _mm256_store_ps((float*)c, z); // Store the results back into the C container
+-      a += 4;
+-      c += 4;
++        a += 4;
++        c += 4;
+     }
+-    for(i = num_points-isodd; i < num_points; i++) {
++    for (i = num_points - isodd; i < num_points; i++) {
+         *c++ = (*a++) * scalar;
+     }
+-
+ }
+ #endif /* LV_HAVE_AVX && LV_HAVE_FMA */
+@@ -280,7 +301,11 @@ static inline void volk_32fc_s32fc_multiply_32fc_a_avx_fma(lv_32fc_t* cVector, c
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void volk_32fc_s32fc_multiply_32fc_a_avx(lv_32fc_t* cVector, const lv_32fc_t* aVector, const lv_32fc_t scalar, unsigned int num_points){
++static inline void volk_32fc_s32fc_multiply_32fc_a_avx(lv_32fc_t* cVector,
++                                                       const lv_32fc_t* aVector,
++                                                       const lv_32fc_t scalar,
++                                                       unsigned int num_points)
++{
+     unsigned int number = 0;
+     unsigned int i = 0;
+     const unsigned int quarterPoints = num_points / 4;
+@@ -293,35 +318,39 @@ static inline void volk_32fc_s32fc_multiply_32fc_a_avx(lv_32fc_t* cVector, const
+     yl = _mm256_set1_ps(lv_creal(scalar));
+     yh = _mm256_set1_ps(lv_cimag(scalar));
+-    for(;number < quarterPoints; number++){
+-      x = _mm256_load_ps((float*)a); // Load the ar + ai, br + bi as ar,ai,br,bi
++    for (; number < quarterPoints; number++) {
++        x = _mm256_load_ps((float*)a); // Load the ar + ai, br + bi as ar,ai,br,bi
+-      tmp1 = _mm256_mul_ps(x,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
++        tmp1 = _mm256_mul_ps(x, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+-      x = _mm256_shuffle_ps(x,x,0xB1); // Re-arrange x to be ai,ar,bi,br
++        x = _mm256_shuffle_ps(x, x, 0xB1); // Re-arrange x to be ai,ar,bi,br
+-      tmp2 = _mm256_mul_ps(x,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
++        tmp2 = _mm256_mul_ps(x, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+-      z = _mm256_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
++        z = _mm256_addsub_ps(tmp1,
++                             tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+-      _mm256_store_ps((float*)c,z); // Store the results back into the C container
++        _mm256_store_ps((float*)c, z); // Store the results back into the C container
+-      a += 4;
+-      c += 4;
++        a += 4;
++        c += 4;
+     }
+-    for(i = num_points-isodd; i < num_points; i++) {
++    for (i = num_points - isodd; i < num_points; i++) {
+         *c++ = (*a++) * scalar;
+     }
+-
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_SSE3
+ #include <pmmintrin.h>
+-static inline void volk_32fc_s32fc_multiply_32fc_a_sse3(lv_32fc_t* cVector, const lv_32fc_t* aVector, const lv_32fc_t scalar, unsigned int num_points){
+-  unsigned int number = 0;
++static inline void volk_32fc_s32fc_multiply_32fc_a_sse3(lv_32fc_t* cVector,
++                                                        const lv_32fc_t* aVector,
++                                                        const lv_32fc_t scalar,
++                                                        unsigned int num_points)
++{
++    unsigned int number = 0;
+     const unsigned int halfPoints = num_points / 2;
+     __m128 x, yl, yh, z, tmp1, tmp2;
+@@ -332,26 +361,27 @@ static inline void volk_32fc_s32fc_multiply_32fc_a_sse3(lv_32fc_t* cVector, cons
+     yl = _mm_set_ps1(lv_creal(scalar));
+     yh = _mm_set_ps1(lv_cimag(scalar));
+-    for(;number < halfPoints; number++){
++    for (; number < halfPoints; number++) {
+-      x = _mm_load_ps((float*)a); // Load the ar + ai, br + bi as ar,ai,br,bi
++        x = _mm_load_ps((float*)a); // Load the ar + ai, br + bi as ar,ai,br,bi
+-      tmp1 = _mm_mul_ps(x,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
++        tmp1 = _mm_mul_ps(x, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+-      x = _mm_shuffle_ps(x,x,0xB1); // Re-arrange x to be ai,ar,bi,br
++        x = _mm_shuffle_ps(x, x, 0xB1); // Re-arrange x to be ai,ar,bi,br
+-      tmp2 = _mm_mul_ps(x,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
++        tmp2 = _mm_mul_ps(x, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+-      z = _mm_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
++        z = _mm_addsub_ps(tmp1,
++                          tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+-      _mm_store_ps((float*)c,z); // Store the results back into the C container
++        _mm_store_ps((float*)c, z); // Store the results back into the C container
+-      a += 2;
+-      c += 2;
++        a += 2;
++        c += 2;
+     }
+-    if((num_points % 2) != 0) {
+-      *c = (*a) * scalar;
++    if ((num_points % 2) != 0) {
++        *c = (*a) * scalar;
+     }
+ }
+ #endif /* LV_HAVE_SSE */
+@@ -359,7 +389,11 @@ static inline void volk_32fc_s32fc_multiply_32fc_a_sse3(lv_32fc_t* cVector, cons
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void volk_32fc_s32fc_multiply_32fc_neon(lv_32fc_t* cVector, const lv_32fc_t* aVector, const lv_32fc_t scalar, unsigned int num_points){
++static inline void volk_32fc_s32fc_multiply_32fc_neon(lv_32fc_t* cVector,
++                                                      const lv_32fc_t* aVector,
++                                                      const lv_32fc_t scalar,
++                                                      unsigned int num_points)
++{
+     lv_32fc_t* cPtr = cVector;
+     const lv_32fc_t* aPtr = aVector;
+     unsigned int number = num_points;
+@@ -370,7 +404,7 @@ static inline void volk_32fc_s32fc_multiply_32fc_neon(lv_32fc_t* cVector, const
+     scalar_val.val[0] = vld1q_dup_f32((const float*)&scalar);
+     scalar_val.val[1] = vld1q_dup_f32(((const float*)&scalar) + 1);
+-    for(number = 0; number < quarter_points; ++number) {
++    for (number = 0; number < quarter_points; ++number) {
+         a_val = vld2q_f32((float*)aPtr);
+         tmp_imag.val[1] = vmulq_f32(a_val.val[1], scalar_val.val[0]);
+         tmp_imag.val[0] = vmulq_f32(a_val.val[0], scalar_val.val[0]);
+@@ -383,35 +417,39 @@ static inline void volk_32fc_s32fc_multiply_32fc_neon(lv_32fc_t* cVector, const
+         cPtr += 4;
+     }
+-    for(number = quarter_points*4; number < num_points; number++){
+-      *cPtr++ = *aPtr++ * scalar;
++    for (number = quarter_points * 4; number < num_points; number++) {
++        *cPtr++ = *aPtr++ * scalar;
+     }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32fc_s32fc_multiply_32fc_a_generic(lv_32fc_t* cVector, const lv_32fc_t* aVector, const lv_32fc_t scalar, unsigned int num_points){
++static inline void volk_32fc_s32fc_multiply_32fc_a_generic(lv_32fc_t* cVector,
++                                                           const lv_32fc_t* aVector,
++                                                           const lv_32fc_t scalar,
++                                                           unsigned int num_points)
++{
+     lv_32fc_t* cPtr = cVector;
+     const lv_32fc_t* aPtr = aVector;
+     unsigned int number = num_points;
+     // unwrap loop
+-    while (number >= 8){
+-      *cPtr++ = (*aPtr++) * scalar;
+-      *cPtr++ = (*aPtr++) * scalar;
+-      *cPtr++ = (*aPtr++) * scalar;
+-      *cPtr++ = (*aPtr++) * scalar;
+-      *cPtr++ = (*aPtr++) * scalar;
+-      *cPtr++ = (*aPtr++) * scalar;
+-      *cPtr++ = (*aPtr++) * scalar;
+-      *cPtr++ = (*aPtr++) * scalar;
+-      number -= 8;
++    while (number >= 8) {
++        *cPtr++ = (*aPtr++) * scalar;
++        *cPtr++ = (*aPtr++) * scalar;
++        *cPtr++ = (*aPtr++) * scalar;
++        *cPtr++ = (*aPtr++) * scalar;
++        *cPtr++ = (*aPtr++) * scalar;
++        *cPtr++ = (*aPtr++) * scalar;
++        *cPtr++ = (*aPtr++) * scalar;
++        *cPtr++ = (*aPtr++) * scalar;
++        number -= 8;
+     }
+     // clean up any remaining
+     while (number-- > 0)
+-      *cPtr++ = *aPtr++ * scalar;
++        *cPtr++ = *aPtr++ * scalar;
+ }
+ #endif /* LV_HAVE_GENERIC */
+diff --git a/kernels/volk/volk_32fc_s32fc_rotatorpuppet_32fc.h b/kernels/volk/volk_32fc_s32fc_rotatorpuppet_32fc.h
+index 181abc5..eba98fe 100644
+--- a/kernels/volk/volk_32fc_s32fc_rotatorpuppet_32fc.h
++++ b/kernels/volk/volk_32fc_s32fc_rotatorpuppet_32fc.h
+@@ -25,19 +25,24 @@
+ #define INCLUDED_volk_32fc_s32fc_rotatorpuppet_32fc_a_H
+-#include <volk/volk_complex.h>
+ #include <stdio.h>
+ #include <volk/volk_32fc_s32fc_x2_rotator_32fc.h>
++#include <volk/volk_complex.h>
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32fc_s32fc_rotatorpuppet_32fc_generic(lv_32fc_t* outVector, const lv_32fc_t* inVector, const lv_32fc_t phase_inc, unsigned int num_points){
+-    lv_32fc_t phase[1] = {lv_cmake(.3, 0.95393)};
++static inline void volk_32fc_s32fc_rotatorpuppet_32fc_generic(lv_32fc_t* outVector,
++                                                              const lv_32fc_t* inVector,
++                                                              const lv_32fc_t phase_inc,
++                                                              unsigned int num_points)
++{
++    lv_32fc_t phase[1] = { lv_cmake(.3, 0.95393) };
+     (*phase) /= hypotf(lv_creal(*phase), lv_cimag(*phase));
+-    const lv_32fc_t phase_inc_n = phase_inc / hypotf(lv_creal(phase_inc), lv_cimag(phase_inc));
+-    volk_32fc_s32fc_x2_rotator_32fc_generic(outVector, inVector, phase_inc_n, phase, num_points);
+-
++    const lv_32fc_t phase_inc_n =
++        phase_inc / hypotf(lv_creal(phase_inc), lv_cimag(phase_inc));
++    volk_32fc_s32fc_x2_rotator_32fc_generic(
++        outVector, inVector, phase_inc_n, phase, num_points);
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -47,12 +52,17 @@ static inline void volk_32fc_s32fc_rotatorpuppet_32fc_generic(lv_32fc_t* outVect
+ #include <arm_neon.h>
+ #include <volk/volk_neon_intrinsics.h>
+-static inline void volk_32fc_s32fc_rotatorpuppet_32fc_neon(lv_32fc_t* outVector, const lv_32fc_t* inVector, const lv_32fc_t phase_inc, unsigned int num_points){
+-    lv_32fc_t phase[1] = {lv_cmake(.3, 0.95393)};
++static inline void volk_32fc_s32fc_rotatorpuppet_32fc_neon(lv_32fc_t* outVector,
++                                                           const lv_32fc_t* inVector,
++                                                           const lv_32fc_t phase_inc,
++                                                           unsigned int num_points)
++{
++    lv_32fc_t phase[1] = { lv_cmake(.3, 0.95393) };
+     (*phase) /= hypotf(lv_creal(*phase), lv_cimag(*phase));
+-    const lv_32fc_t phase_inc_n = phase_inc / hypotf(lv_creal(phase_inc), lv_cimag(phase_inc));
+-    volk_32fc_s32fc_x2_rotator_32fc_neon(outVector, inVector, phase_inc_n, phase, num_points);
+-    
++    const lv_32fc_t phase_inc_n =
++        phase_inc / hypotf(lv_creal(phase_inc), lv_cimag(phase_inc));
++    volk_32fc_s32fc_x2_rotator_32fc_neon(
++        outVector, inVector, phase_inc_n, phase, num_points);
+ }
+ #endif /* LV_HAVE_NEON */
+@@ -61,12 +71,17 @@ static inline void volk_32fc_s32fc_rotatorpuppet_32fc_neon(lv_32fc_t* outVector,
+ #ifdef LV_HAVE_SSE4_1
+ #include <smmintrin.h>
+-static inline void volk_32fc_s32fc_rotatorpuppet_32fc_a_sse4_1(lv_32fc_t* outVector, const lv_32fc_t* inVector, const lv_32fc_t phase_inc, unsigned int num_points){
+-    lv_32fc_t phase[1] = {lv_cmake(.3, .95393)};
++static inline void volk_32fc_s32fc_rotatorpuppet_32fc_a_sse4_1(lv_32fc_t* outVector,
++                                                               const lv_32fc_t* inVector,
++                                                               const lv_32fc_t phase_inc,
++                                                               unsigned int num_points)
++{
++    lv_32fc_t phase[1] = { lv_cmake(.3, .95393) };
+     (*phase) /= hypotf(lv_creal(*phase), lv_cimag(*phase));
+-    const lv_32fc_t phase_inc_n = phase_inc / hypotf(lv_creal(phase_inc), lv_cimag(phase_inc));
+-    volk_32fc_s32fc_x2_rotator_32fc_a_sse4_1(outVector, inVector, phase_inc_n, phase, num_points);
+-
++    const lv_32fc_t phase_inc_n =
++        phase_inc / hypotf(lv_creal(phase_inc), lv_cimag(phase_inc));
++    volk_32fc_s32fc_x2_rotator_32fc_a_sse4_1(
++        outVector, inVector, phase_inc_n, phase, num_points);
+ }
+ #endif /* LV_HAVE_SSE4_1 */
+@@ -74,12 +89,17 @@ static inline void volk_32fc_s32fc_rotatorpuppet_32fc_a_sse4_1(lv_32fc_t* outVec
+ #ifdef LV_HAVE_SSE4_1
+ #include <smmintrin.h>
+-static inline void volk_32fc_s32fc_rotatorpuppet_32fc_u_sse4_1(lv_32fc_t* outVector, const lv_32fc_t* inVector, const lv_32fc_t phase_inc, unsigned int num_points){
+-    lv_32fc_t phase[1] = {lv_cmake(.3, .95393)};
++static inline void volk_32fc_s32fc_rotatorpuppet_32fc_u_sse4_1(lv_32fc_t* outVector,
++                                                               const lv_32fc_t* inVector,
++                                                               const lv_32fc_t phase_inc,
++                                                               unsigned int num_points)
++{
++    lv_32fc_t phase[1] = { lv_cmake(.3, .95393) };
+     (*phase) /= hypotf(lv_creal(*phase), lv_cimag(*phase));
+-    const lv_32fc_t phase_inc_n = phase_inc / hypotf(lv_creal(phase_inc), lv_cimag(phase_inc));
+-    volk_32fc_s32fc_x2_rotator_32fc_u_sse4_1(outVector, inVector, phase_inc_n, phase, num_points);
+-
++    const lv_32fc_t phase_inc_n =
++        phase_inc / hypotf(lv_creal(phase_inc), lv_cimag(phase_inc));
++    volk_32fc_s32fc_x2_rotator_32fc_u_sse4_1(
++        outVector, inVector, phase_inc_n, phase, num_points);
+ }
+ #endif /* LV_HAVE_SSE4_1 */
+@@ -88,11 +108,17 @@ static inline void volk_32fc_s32fc_rotatorpuppet_32fc_u_sse4_1(lv_32fc_t* outVec
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void volk_32fc_s32fc_rotatorpuppet_32fc_a_avx(lv_32fc_t* outVector, const lv_32fc_t* inVector, const lv_32fc_t phase_inc, unsigned int num_points){
+-    lv_32fc_t phase[1] = {lv_cmake(.3, .95393)};
++static inline void volk_32fc_s32fc_rotatorpuppet_32fc_a_avx(lv_32fc_t* outVector,
++                                                            const lv_32fc_t* inVector,
++                                                            const lv_32fc_t phase_inc,
++                                                            unsigned int num_points)
++{
++    lv_32fc_t phase[1] = { lv_cmake(.3, .95393) };
+     (*phase) /= hypotf(lv_creal(*phase), lv_cimag(*phase));
+-    const lv_32fc_t phase_inc_n = phase_inc / hypotf(lv_creal(phase_inc), lv_cimag(phase_inc));
+-    volk_32fc_s32fc_x2_rotator_32fc_a_avx(outVector, inVector, phase_inc_n, phase, num_points);
++    const lv_32fc_t phase_inc_n =
++        phase_inc / hypotf(lv_creal(phase_inc), lv_cimag(phase_inc));
++    volk_32fc_s32fc_x2_rotator_32fc_a_avx(
++        outVector, inVector, phase_inc_n, phase, num_points);
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -101,11 +127,17 @@ static inline void volk_32fc_s32fc_rotatorpuppet_32fc_a_avx(lv_32fc_t* outVector
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void volk_32fc_s32fc_rotatorpuppet_32fc_u_avx(lv_32fc_t* outVector, const lv_32fc_t* inVector, const lv_32fc_t phase_inc, unsigned int num_points){
+-    lv_32fc_t phase[1] = {lv_cmake(.3, .95393)};
++static inline void volk_32fc_s32fc_rotatorpuppet_32fc_u_avx(lv_32fc_t* outVector,
++                                                            const lv_32fc_t* inVector,
++                                                            const lv_32fc_t phase_inc,
++                                                            unsigned int num_points)
++{
++    lv_32fc_t phase[1] = { lv_cmake(.3, .95393) };
+     (*phase) /= hypotf(lv_creal(*phase), lv_cimag(*phase));
+-    const lv_32fc_t phase_inc_n = phase_inc / hypotf(lv_creal(phase_inc), lv_cimag(phase_inc));
+-    volk_32fc_s32fc_x2_rotator_32fc_u_avx(outVector, inVector, phase_inc_n, phase, num_points);
++    const lv_32fc_t phase_inc_n =
++        phase_inc / hypotf(lv_creal(phase_inc), lv_cimag(phase_inc));
++    volk_32fc_s32fc_x2_rotator_32fc_u_avx(
++        outVector, inVector, phase_inc_n, phase, num_points);
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -113,11 +145,17 @@ static inline void volk_32fc_s32fc_rotatorpuppet_32fc_u_avx(lv_32fc_t* outVector
+ #if LV_HAVE_AVX && LV_HAVE_FMA
+ #include <immintrin.h>
+-static inline void volk_32fc_s32fc_rotatorpuppet_32fc_a_avx_fma(lv_32fc_t* outVector, const lv_32fc_t* inVector, const lv_32fc_t phase_inc, unsigned int num_points){
+-    lv_32fc_t phase[1] = {lv_cmake(.3, .95393)};
++static inline void volk_32fc_s32fc_rotatorpuppet_32fc_a_avx_fma(lv_32fc_t* outVector,
++                                                                const lv_32fc_t* inVector,
++                                                                const lv_32fc_t phase_inc,
++                                                                unsigned int num_points)
++{
++    lv_32fc_t phase[1] = { lv_cmake(.3, .95393) };
+     (*phase) /= hypotf(lv_creal(*phase), lv_cimag(*phase));
+-    const lv_32fc_t phase_inc_n = phase_inc / hypotf(lv_creal(phase_inc), lv_cimag(phase_inc));
+-    volk_32fc_s32fc_x2_rotator_32fc_a_avx_fma(outVector, inVector, phase_inc_n, phase, num_points);
++    const lv_32fc_t phase_inc_n =
++        phase_inc / hypotf(lv_creal(phase_inc), lv_cimag(phase_inc));
++    volk_32fc_s32fc_x2_rotator_32fc_a_avx_fma(
++        outVector, inVector, phase_inc_n, phase, num_points);
+ }
+ #endif /* LV_HAVE_AVX && LV_HAVE_FMA*/
+@@ -126,11 +164,17 @@ static inline void volk_32fc_s32fc_rotatorpuppet_32fc_a_avx_fma(lv_32fc_t* outVe
+ #if LV_HAVE_AVX && LV_HAVE_FMA
+ #include <immintrin.h>
+-static inline void volk_32fc_s32fc_rotatorpuppet_32fc_u_avx_fma(lv_32fc_t* outVector, const lv_32fc_t* inVector, const lv_32fc_t phase_inc, unsigned int num_points){
+-    lv_32fc_t phase[1] = {lv_cmake(.3, .95393)};
++static inline void volk_32fc_s32fc_rotatorpuppet_32fc_u_avx_fma(lv_32fc_t* outVector,
++                                                                const lv_32fc_t* inVector,
++                                                                const lv_32fc_t phase_inc,
++                                                                unsigned int num_points)
++{
++    lv_32fc_t phase[1] = { lv_cmake(.3, .95393) };
+     (*phase) /= hypotf(lv_creal(*phase), lv_cimag(*phase));
+-    const lv_32fc_t phase_inc_n = phase_inc / hypotf(lv_creal(phase_inc), lv_cimag(phase_inc));
+-    volk_32fc_s32fc_x2_rotator_32fc_u_avx_fma(outVector, inVector, phase_inc_n, phase, num_points);
++    const lv_32fc_t phase_inc_n =
++        phase_inc / hypotf(lv_creal(phase_inc), lv_cimag(phase_inc));
++    volk_32fc_s32fc_x2_rotator_32fc_u_avx_fma(
++        outVector, inVector, phase_inc_n, phase, num_points);
+ }
+ #endif /* LV_HAVE_AVX && LV_HAVE_FMA*/
+diff --git a/kernels/volk/volk_32fc_s32fc_x2_rotator_32fc.h b/kernels/volk/volk_32fc_s32fc_x2_rotator_32fc.h
+index a886458..c97b8cb 100644
+--- a/kernels/volk/volk_32fc_s32fc_x2_rotator_32fc.h
++++ b/kernels/volk/volk_32fc_s32fc_x2_rotator_32fc.h
+@@ -30,14 +30,15 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32fc_s32fc_x2_rotator_32fc(lv_32fc_t* outVector, const lv_32fc_t* inVector, const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points)
+- * \endcode
++ * void volk_32fc_s32fc_x2_rotator_32fc(lv_32fc_t* outVector, const lv_32fc_t* inVector,
++ * const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li inVector: Vector to be rotated.
+  * \li phase_inc: rotational velocity.
+  * \li phase: initial phase offset.
+- * \li num_points: The number of values in inVector to be rotated and stored into outVector.
++ * \li num_points: The number of values in inVector to be rotated and stored into
++ * outVector.
+  *
+  * \b Outputs
+  * \li outVector: The vector where the results will be stored.
+@@ -81,31 +82,36 @@
+ #define INCLUDED_volk_32fc_s32fc_rotator_32fc_a_H
+-#include <volk/volk_complex.h>
++#include <math.h>
+ #include <stdio.h>
+ #include <stdlib.h>
+-#include <math.h>
++#include <volk/volk_complex.h>
+ #define ROTATOR_RELOAD 512
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32fc_s32fc_x2_rotator_32fc_generic(lv_32fc_t* outVector, const lv_32fc_t* inVector, const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points){
++static inline void volk_32fc_s32fc_x2_rotator_32fc_generic(lv_32fc_t* outVector,
++                                                           const lv_32fc_t* inVector,
++                                                           const lv_32fc_t phase_inc,
++                                                           lv_32fc_t* phase,
++                                                           unsigned int num_points)
++{
+     unsigned int i = 0;
+     int j = 0;
+-    for(i = 0; i < (unsigned int)(num_points/ROTATOR_RELOAD); ++i) {
+-        for(j = 0; j < ROTATOR_RELOAD; ++j) {
++    for (i = 0; i < (unsigned int)(num_points / ROTATOR_RELOAD); ++i) {
++        for (j = 0; j < ROTATOR_RELOAD; ++j) {
+             *outVector++ = *inVector++ * (*phase);
+             (*phase) *= phase_inc;
+         }
+         (*phase) /= hypotf(lv_creal(*phase), lv_cimag(*phase));
+     }
+-    for(i = 0; i < num_points%ROTATOR_RELOAD; ++i) {
++    for (i = 0; i < num_points % ROTATOR_RELOAD; ++i) {
+         *outVector++ = *inVector++ * (*phase);
+         (*phase) *= phase_inc;
+     }
+-    if(i){
++    if (i) {
+         // Make sure, we normalize phase on every call!
+         (*phase) /= hypotf(lv_creal(*phase), lv_cimag(*phase));
+     }
+@@ -118,43 +124,47 @@ static inline void volk_32fc_s32fc_x2_rotator_32fc_generic(lv_32fc_t* outVector,
+ #include <arm_neon.h>
+ #include <volk/volk_neon_intrinsics.h>
+-static inline void volk_32fc_s32fc_x2_rotator_32fc_neon(lv_32fc_t* outVector, const lv_32fc_t* inVector, const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points)
++static inline void volk_32fc_s32fc_x2_rotator_32fc_neon(lv_32fc_t* outVector,
++                                                        const lv_32fc_t* inVector,
++                                                        const lv_32fc_t phase_inc,
++                                                        lv_32fc_t* phase,
++                                                        unsigned int num_points)
+ {
+     lv_32fc_t* outputVectorPtr = outVector;
+     const lv_32fc_t* inputVectorPtr = inVector;
+     lv_32fc_t incr = 1;
+-    lv_32fc_t phasePtr[4] = {(*phase), (*phase), (*phase), (*phase)};
++    lv_32fc_t phasePtr[4] = { (*phase), (*phase), (*phase), (*phase) };
+     float32x4x2_t input_vec;
+     float32x4x2_t output_vec;
+-    
++
+     unsigned int i = 0, j = 0;
+     const unsigned int quarter_points = num_points / 4;
+-    
+-    for(i = 0; i < 4; ++i) {
++
++    for (i = 0; i < 4; ++i) {
+         phasePtr[i] *= incr;
+         incr *= (phase_inc);
+     }
+-    
++
+     // Notice that incr has be incremented in the previous loop
+-    const lv_32fc_t incrPtr[4] = {incr, incr, incr, incr};
+-    const float32x4x2_t incr_vec = vld2q_f32((float*) incrPtr);
+-    float32x4x2_t phase_vec = vld2q_f32((float*) phasePtr);
+-    
+-    for(i = 0; i < (unsigned int)(quarter_points/ROTATOR_RELOAD); i++) {
+-        for(j = 0; j < ROTATOR_RELOAD; j++) {
+-            input_vec = vld2q_f32((float*) inputVectorPtr);
++    const lv_32fc_t incrPtr[4] = { incr, incr, incr, incr };
++    const float32x4x2_t incr_vec = vld2q_f32((float*)incrPtr);
++    float32x4x2_t phase_vec = vld2q_f32((float*)phasePtr);
++
++    for (i = 0; i < (unsigned int)(quarter_points / ROTATOR_RELOAD); i++) {
++        for (j = 0; j < ROTATOR_RELOAD; j++) {
++            input_vec = vld2q_f32((float*)inputVectorPtr);
+             // Prefetch next one, speeds things up
+-            __VOLK_PREFETCH(inputVectorPtr+4);
++            __VOLK_PREFETCH(inputVectorPtr + 4);
+             // Rotate
+             output_vec = _vmultiply_complexq_f32(input_vec, phase_vec);
+             // Increase phase
+             phase_vec = _vmultiply_complexq_f32(phase_vec, incr_vec);
+             // Store output
+             vst2q_f32((float*)outputVectorPtr, output_vec);
+-            
+-            outputVectorPtr+=4;
+-            inputVectorPtr+=4;
++
++            outputVectorPtr += 4;
++            inputVectorPtr += 4;
+         }
+         // normalize phase so magnitude doesn't grow because of
+         // floating point rounding error
+@@ -164,20 +174,20 @@ static inline void volk_32fc_s32fc_x2_rotator_32fc_neon(lv_32fc_t* outVector, co
+         phase_vec.val[0] = vmulq_f32(phase_vec.val[0], inv_mag);
+         phase_vec.val[1] = vmulq_f32(phase_vec.val[1], inv_mag);
+     }
+-    
+-    for(i = 0; i < quarter_points % ROTATOR_RELOAD; i++) {
+-        input_vec = vld2q_f32((float*) inputVectorPtr);
++
++    for (i = 0; i < quarter_points % ROTATOR_RELOAD; i++) {
++        input_vec = vld2q_f32((float*)inputVectorPtr);
+         // Prefetch next one, speeds things up
+-        __VOLK_PREFETCH(inputVectorPtr+4);
++        __VOLK_PREFETCH(inputVectorPtr + 4);
+         // Rotate
+         output_vec = _vmultiply_complexq_f32(input_vec, phase_vec);
+         // Increase phase
+         phase_vec = _vmultiply_complexq_f32(phase_vec, incr_vec);
+         // Store output
+         vst2q_f32((float*)outputVectorPtr, output_vec);
+-        
+-        outputVectorPtr+=4;
+-        inputVectorPtr+=4;
++
++        outputVectorPtr += 4;
++        inputVectorPtr += 4;
+     }
+     // if(i) == true means we looped above
+     if (i) {
+@@ -191,13 +201,13 @@ static inline void volk_32fc_s32fc_x2_rotator_32fc_neon(lv_32fc_t* outVector, co
+     }
+     // Store current phase
+     vst2q_f32((float*)phasePtr, phase_vec);
+-    
++
+     // Deal with the rest
+-    for(i = 0; i < num_points % 4; i++) {
++    for (i = 0; i < num_points % 4; i++) {
+         *outputVectorPtr++ = *inputVectorPtr++ * phasePtr[0];
+         phasePtr[0] *= (phase_inc);
+     }
+-    
++
+     // For continious phase next time we need to call this function
+     (*phase) = phasePtr[0];
+ }
+@@ -208,15 +218,20 @@ static inline void volk_32fc_s32fc_x2_rotator_32fc_neon(lv_32fc_t* outVector, co
+ #ifdef LV_HAVE_SSE4_1
+ #include <smmintrin.h>
+-static inline void volk_32fc_s32fc_x2_rotator_32fc_a_sse4_1(lv_32fc_t* outVector, const lv_32fc_t* inVector, const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points){
++static inline void volk_32fc_s32fc_x2_rotator_32fc_a_sse4_1(lv_32fc_t* outVector,
++                                                            const lv_32fc_t* inVector,
++                                                            const lv_32fc_t phase_inc,
++                                                            lv_32fc_t* phase,
++                                                            unsigned int num_points)
++{
+     lv_32fc_t* cPtr = outVector;
+     const lv_32fc_t* aPtr = inVector;
+     lv_32fc_t incr = 1;
+-    lv_32fc_t phase_Ptr[2] = {(*phase), (*phase)};
++    lv_32fc_t phase_Ptr[2] = { (*phase), (*phase) };
+     unsigned int i, j = 0;
+-    for(i = 0; i < 2; ++i) {
++    for (i = 0; i < 2; ++i) {
+         phase_Ptr[i] *= incr;
+         incr *= (phase_inc);
+     }
+@@ -227,13 +242,13 @@ static inline void volk_32fc_s32fc_x2_rotator_32fc_a_sse4_1(lv_32fc_t* outVector
+     __m128 aVal, phase_Val, inc_Val, yl, yh, tmp1, tmp2, z, ylp, yhp, tmp1p, tmp2p;
+     phase_Val = _mm_loadu_ps((float*)phase_Ptr);
+-    inc_Val = _mm_set_ps(lv_cimag(incr), lv_creal(incr),lv_cimag(incr), lv_creal(incr));
++    inc_Val = _mm_set_ps(lv_cimag(incr), lv_creal(incr), lv_cimag(incr), lv_creal(incr));
+     const unsigned int halfPoints = num_points / 2;
+-    for(i = 0; i < (unsigned int)(halfPoints/ROTATOR_RELOAD); i++) {
+-        for(j = 0; j < ROTATOR_RELOAD; ++j) {
++    for (i = 0; i < (unsigned int)(halfPoints / ROTATOR_RELOAD); i++) {
++        for (j = 0; j < ROTATOR_RELOAD; ++j) {
+             aVal = _mm_load_ps((float*)aPtr);
+@@ -264,7 +279,7 @@ static inline void volk_32fc_s32fc_x2_rotator_32fc_a_sse4_1(lv_32fc_t* outVector
+         tmp2 = _mm_sqrt_ps(tmp1);
+         phase_Val = _mm_div_ps(phase_Val, tmp2);
+     }
+-    for(i = 0; i < halfPoints%ROTATOR_RELOAD; ++i) {
++    for (i = 0; i < halfPoints % ROTATOR_RELOAD; ++i) {
+         aVal = _mm_load_ps((float*)aPtr);
+         yl = _mm_moveldup_ps(phase_Val);
+@@ -304,7 +319,6 @@ static inline void volk_32fc_s32fc_x2_rotator_32fc_a_sse4_1(lv_32fc_t* outVector
+     }
+     (*phase) = phase_Ptr[0];
+-
+ }
+ #endif /* LV_HAVE_SSE4_1 for aligned */
+@@ -313,15 +327,20 @@ static inline void volk_32fc_s32fc_x2_rotator_32fc_a_sse4_1(lv_32fc_t* outVector
+ #ifdef LV_HAVE_SSE4_1
+ #include <smmintrin.h>
+-static inline void volk_32fc_s32fc_x2_rotator_32fc_u_sse4_1(lv_32fc_t* outVector, const lv_32fc_t* inVector, const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points){
++static inline void volk_32fc_s32fc_x2_rotator_32fc_u_sse4_1(lv_32fc_t* outVector,
++                                                            const lv_32fc_t* inVector,
++                                                            const lv_32fc_t phase_inc,
++                                                            lv_32fc_t* phase,
++                                                            unsigned int num_points)
++{
+     lv_32fc_t* cPtr = outVector;
+     const lv_32fc_t* aPtr = inVector;
+     lv_32fc_t incr = 1;
+-    lv_32fc_t phase_Ptr[2] = {(*phase), (*phase)};
++    lv_32fc_t phase_Ptr[2] = { (*phase), (*phase) };
+     unsigned int i, j = 0;
+-    for(i = 0; i < 2; ++i) {
++    for (i = 0; i < 2; ++i) {
+         phase_Ptr[i] *= incr;
+         incr *= (phase_inc);
+     }
+@@ -332,13 +351,13 @@ static inline void volk_32fc_s32fc_x2_rotator_32fc_u_sse4_1(lv_32fc_t* outVector
+     __m128 aVal, phase_Val, inc_Val, yl, yh, tmp1, tmp2, z, ylp, yhp, tmp1p, tmp2p;
+     phase_Val = _mm_loadu_ps((float*)phase_Ptr);
+-    inc_Val = _mm_set_ps(lv_cimag(incr), lv_creal(incr),lv_cimag(incr), lv_creal(incr));
++    inc_Val = _mm_set_ps(lv_cimag(incr), lv_creal(incr), lv_cimag(incr), lv_creal(incr));
+     const unsigned int halfPoints = num_points / 2;
+-    for(i = 0; i < (unsigned int)(halfPoints/ROTATOR_RELOAD); i++) {
+-        for(j = 0; j < ROTATOR_RELOAD; ++j) {
++    for (i = 0; i < (unsigned int)(halfPoints / ROTATOR_RELOAD); i++) {
++        for (j = 0; j < ROTATOR_RELOAD; ++j) {
+             aVal = _mm_loadu_ps((float*)aPtr);
+@@ -369,7 +388,7 @@ static inline void volk_32fc_s32fc_x2_rotator_32fc_u_sse4_1(lv_32fc_t* outVector
+         tmp2 = _mm_sqrt_ps(tmp1);
+         phase_Val = _mm_div_ps(phase_Val, tmp2);
+     }
+-    for(i = 0; i < halfPoints%ROTATOR_RELOAD; ++i) {
++    for (i = 0; i < halfPoints % ROTATOR_RELOAD; ++i) {
+         aVal = _mm_loadu_ps((float*)aPtr);
+         yl = _mm_moveldup_ps(phase_Val);
+@@ -409,7 +428,6 @@ static inline void volk_32fc_s32fc_x2_rotator_32fc_u_sse4_1(lv_32fc_t* outVector
+     }
+     (*phase) = phase_Ptr[0];
+-
+ }
+ #endif /* LV_HAVE_SSE4_1 */
+@@ -419,15 +437,20 @@ static inline void volk_32fc_s32fc_x2_rotator_32fc_u_sse4_1(lv_32fc_t* outVector
+ #include <immintrin.h>
+ #include <volk/volk_avx_intrinsics.h>
+-static inline void volk_32fc_s32fc_x2_rotator_32fc_a_avx(lv_32fc_t* outVector, const lv_32fc_t* inVector, const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points){
++static inline void volk_32fc_s32fc_x2_rotator_32fc_a_avx(lv_32fc_t* outVector,
++                                                         const lv_32fc_t* inVector,
++                                                         const lv_32fc_t phase_inc,
++                                                         lv_32fc_t* phase,
++                                                         unsigned int num_points)
++{
+     lv_32fc_t* cPtr = outVector;
+     const lv_32fc_t* aPtr = inVector;
+     lv_32fc_t incr = lv_cmake(1.0, 0.0);
+-    lv_32fc_t phase_Ptr[4] = {(*phase), (*phase), (*phase), (*phase)};
++    lv_32fc_t phase_Ptr[4] = { (*phase), (*phase), (*phase), (*phase) };
+     unsigned int i, j = 0;
+-    for(i = 0; i < 4; ++i) {
++    for (i = 0; i < 4; ++i) {
+         phase_Ptr[i] *= incr;
+         incr *= (phase_inc);
+     }
+@@ -435,16 +458,20 @@ static inline void volk_32fc_s32fc_x2_rotator_32fc_a_avx(lv_32fc_t* outVector, c
+     __m256 aVal, phase_Val, z;
+     phase_Val = _mm256_loadu_ps((float*)phase_Ptr);
+-    
+-    const __m256 inc_Val = _mm256_set_ps(lv_cimag(incr), lv_creal(incr),
+-                                         lv_cimag(incr), lv_creal(incr),
+-                                         lv_cimag(incr), lv_creal(incr),
+-                                         lv_cimag(incr), lv_creal(incr));
++
++    const __m256 inc_Val = _mm256_set_ps(lv_cimag(incr),
++                                         lv_creal(incr),
++                                         lv_cimag(incr),
++                                         lv_creal(incr),
++                                         lv_cimag(incr),
++                                         lv_creal(incr),
++                                         lv_cimag(incr),
++                                         lv_creal(incr));
+     const unsigned int fourthPoints = num_points / 4;
+-    for(i = 0; i < (unsigned int)(fourthPoints/ROTATOR_RELOAD); i++) {
+-        for(j = 0; j < ROTATOR_RELOAD; ++j) {
++    for (i = 0; i < (unsigned int)(fourthPoints / ROTATOR_RELOAD); i++) {
++        for (j = 0; j < ROTATOR_RELOAD; ++j) {
+             aVal = _mm256_load_ps((float*)aPtr);
+@@ -458,8 +485,8 @@ static inline void volk_32fc_s32fc_x2_rotator_32fc_a_avx(lv_32fc_t* outVector, c
+         }
+         phase_Val = _mm256_normalize_ps(phase_Val);
+     }
+-    
+-    for(i = 0; i < fourthPoints%ROTATOR_RELOAD; ++i) {
++
++    for (i = 0; i < fourthPoints % ROTATOR_RELOAD; ++i) {
+         aVal = _mm256_load_ps((float*)aPtr);
+         z = _mm256_complexmul_ps(aVal, phase_Val);
+@@ -473,10 +500,10 @@ static inline void volk_32fc_s32fc_x2_rotator_32fc_a_avx(lv_32fc_t* outVector, c
+     if (i) {
+         phase_Val = _mm256_normalize_ps(phase_Val);
+     }
+-    
++
+     _mm256_storeu_ps((float*)phase_Ptr, phase_Val);
+     (*phase) = phase_Ptr[0];
+-    volk_32fc_s32fc_x2_rotator_32fc_generic(cPtr, aPtr, phase_inc, phase, num_points%4);
++    volk_32fc_s32fc_x2_rotator_32fc_generic(cPtr, aPtr, phase_inc, phase, num_points % 4);
+ }
+ #endif /* LV_HAVE_AVX for aligned */
+@@ -486,15 +513,20 @@ static inline void volk_32fc_s32fc_x2_rotator_32fc_a_avx(lv_32fc_t* outVector, c
+ #include <immintrin.h>
+ #include <volk/volk_avx_intrinsics.h>
+-static inline void volk_32fc_s32fc_x2_rotator_32fc_u_avx(lv_32fc_t* outVector, const lv_32fc_t* inVector, const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points){
++static inline void volk_32fc_s32fc_x2_rotator_32fc_u_avx(lv_32fc_t* outVector,
++                                                         const lv_32fc_t* inVector,
++                                                         const lv_32fc_t phase_inc,
++                                                         lv_32fc_t* phase,
++                                                         unsigned int num_points)
++{
+     lv_32fc_t* cPtr = outVector;
+     const lv_32fc_t* aPtr = inVector;
+     lv_32fc_t incr = lv_cmake(1.0, 0.0);
+-    lv_32fc_t phase_Ptr[4] = {(*phase), (*phase), (*phase), (*phase)};
++    lv_32fc_t phase_Ptr[4] = { (*phase), (*phase), (*phase), (*phase) };
+     unsigned int i, j = 0;
+-    for(i = 0; i < 4; ++i) {
++    for (i = 0; i < 4; ++i) {
+         phase_Ptr[i] *= incr;
+         incr *= (phase_inc);
+     }
+@@ -502,19 +534,23 @@ static inline void volk_32fc_s32fc_x2_rotator_32fc_u_avx(lv_32fc_t* outVector, c
+     __m256 aVal, phase_Val, z;
+     phase_Val = _mm256_loadu_ps((float*)phase_Ptr);
+-    
+-    const __m256 inc_Val = _mm256_set_ps(lv_cimag(incr), lv_creal(incr),
+-                                         lv_cimag(incr), lv_creal(incr),
+-                                         lv_cimag(incr), lv_creal(incr),
+-                                         lv_cimag(incr), lv_creal(incr));
+-    
++
++    const __m256 inc_Val = _mm256_set_ps(lv_cimag(incr),
++                                         lv_creal(incr),
++                                         lv_cimag(incr),
++                                         lv_creal(incr),
++                                         lv_cimag(incr),
++                                         lv_creal(incr),
++                                         lv_cimag(incr),
++                                         lv_creal(incr));
++
+     const unsigned int fourthPoints = num_points / 4;
+-    for(i = 0; i < (unsigned int)(fourthPoints/ROTATOR_RELOAD); ++i) {
+-        for(j = 0; j < ROTATOR_RELOAD; ++j) {
++    for (i = 0; i < (unsigned int)(fourthPoints / ROTATOR_RELOAD); ++i) {
++        for (j = 0; j < ROTATOR_RELOAD; ++j) {
+             aVal = _mm256_loadu_ps((float*)aPtr);
+-            
++
+             z = _mm256_complexmul_ps(aVal, phase_Val);
+             phase_Val = _mm256_complexmul_ps(phase_Val, inc_Val);
+@@ -524,10 +560,9 @@ static inline void volk_32fc_s32fc_x2_rotator_32fc_u_avx(lv_32fc_t* outVector, c
+             cPtr += 4;
+         }
+         phase_Val = _mm256_normalize_ps(phase_Val);
+-        
+     }
+-    
+-    for(i = 0; i < fourthPoints%ROTATOR_RELOAD; ++i) {
++
++    for (i = 0; i < num_points % ROTATOR_RELOAD; ++i) {
+         aVal = _mm256_loadu_ps((float*)aPtr);
+         z = _mm256_complexmul_ps(aVal, phase_Val);
+@@ -544,7 +579,7 @@ static inline void volk_32fc_s32fc_x2_rotator_32fc_u_avx(lv_32fc_t* outVector, c
+     _mm256_storeu_ps((float*)phase_Ptr, phase_Val);
+     (*phase) = phase_Ptr[0];
+-    volk_32fc_s32fc_x2_rotator_32fc_generic(cPtr, aPtr, phase_inc, phase, num_points%4);
++    volk_32fc_s32fc_x2_rotator_32fc_generic(cPtr, aPtr, phase_inc, phase, num_points % 4);
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -552,15 +587,21 @@ static inline void volk_32fc_s32fc_x2_rotator_32fc_u_avx(lv_32fc_t* outVector, c
+ #if LV_HAVE_AVX && LV_HAVE_FMA
+ #include <immintrin.h>
+-static inline void volk_32fc_s32fc_x2_rotator_32fc_a_avx_fma(lv_32fc_t* outVector, const lv_32fc_t* inVector, const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points){
++static inline void volk_32fc_s32fc_x2_rotator_32fc_a_avx_fma(lv_32fc_t* outVector,
++                                                             const lv_32fc_t* inVector,
++                                                             const lv_32fc_t phase_inc,
++                                                             lv_32fc_t* phase,
++                                                             unsigned int num_points)
++{
+     lv_32fc_t* cPtr = outVector;
+     const lv_32fc_t* aPtr = inVector;
+     lv_32fc_t incr = 1;
+-    __VOLK_ATTR_ALIGNED(32) lv_32fc_t phase_Ptr[4] = {(*phase), (*phase), (*phase), (*phase)};
++    __VOLK_ATTR_ALIGNED(32)
++    lv_32fc_t phase_Ptr[4] = { (*phase), (*phase), (*phase), (*phase) };
+     unsigned int i, j = 0;
+-    for(i = 0; i < 4; ++i) {
++    for (i = 0; i < 4; ++i) {
+         phase_Ptr[i] *= incr;
+         incr *= (phase_inc);
+     }
+@@ -568,11 +609,18 @@ static inline void volk_32fc_s32fc_x2_rotator_32fc_a_avx_fma(lv_32fc_t* outVecto
+     __m256 aVal, phase_Val, inc_Val, yl, yh, tmp1, tmp2, z, ylp, yhp, tmp1p, tmp2p;
+     phase_Val = _mm256_load_ps((float*)phase_Ptr);
+-    inc_Val = _mm256_set_ps(lv_cimag(incr), lv_creal(incr),lv_cimag(incr), lv_creal(incr),lv_cimag(incr), lv_creal(incr),lv_cimag(incr), lv_creal(incr));
++    inc_Val = _mm256_set_ps(lv_cimag(incr),
++                            lv_creal(incr),
++                            lv_cimag(incr),
++                            lv_creal(incr),
++                            lv_cimag(incr),
++                            lv_creal(incr),
++                            lv_cimag(incr),
++                            lv_creal(incr));
+     const unsigned int fourthPoints = num_points / 4;
+-    for(i = 0; i < (unsigned int)(fourthPoints/ROTATOR_RELOAD); i++) {
+-        for(j = 0; j < ROTATOR_RELOAD; ++j) {
++    for (i = 0; i < (unsigned int)(fourthPoints / ROTATOR_RELOAD); i++) {
++        for (j = 0; j < ROTATOR_RELOAD; ++j) {
+             aVal = _mm256_load_ps((float*)aPtr);
+@@ -603,7 +651,7 @@ static inline void volk_32fc_s32fc_x2_rotator_32fc_a_avx_fma(lv_32fc_t* outVecto
+         tmp2 = _mm256_sqrt_ps(tmp1);
+         phase_Val = _mm256_div_ps(phase_Val, tmp2);
+     }
+-    for(i = 0; i < fourthPoints%ROTATOR_RELOAD; ++i) {
++    for (i = 0; i < fourthPoints % ROTATOR_RELOAD; ++i) {
+         aVal = _mm256_load_ps((float*)aPtr);
+         yl = _mm256_moveldup_ps(phase_Val);
+@@ -636,13 +684,12 @@ static inline void volk_32fc_s32fc_x2_rotator_32fc_a_avx_fma(lv_32fc_t* outVecto
+     }
+     _mm256_store_ps((float*)phase_Ptr, phase_Val);
+-    for(i = 0; i < num_points%4; ++i) {
++    for (i = 0; i < num_points % 4; ++i) {
+         *cPtr++ = *aPtr++ * phase_Ptr[0];
+         phase_Ptr[0] *= (phase_inc);
+     }
+     (*phase) = phase_Ptr[0];
+-
+ }
+ #endif /* LV_HAVE_AVX && LV_HAVE_FMA for aligned*/
+@@ -650,15 +697,20 @@ static inline void volk_32fc_s32fc_x2_rotator_32fc_a_avx_fma(lv_32fc_t* outVecto
+ #if LV_HAVE_AVX && LV_HAVE_FMA
+ #include <immintrin.h>
+-static inline void volk_32fc_s32fc_x2_rotator_32fc_u_avx_fma(lv_32fc_t* outVector, const lv_32fc_t* inVector, const lv_32fc_t phase_inc, lv_32fc_t* phase, unsigned int num_points){
++static inline void volk_32fc_s32fc_x2_rotator_32fc_u_avx_fma(lv_32fc_t* outVector,
++                                                             const lv_32fc_t* inVector,
++                                                             const lv_32fc_t phase_inc,
++                                                             lv_32fc_t* phase,
++                                                             unsigned int num_points)
++{
+     lv_32fc_t* cPtr = outVector;
+     const lv_32fc_t* aPtr = inVector;
+     lv_32fc_t incr = 1;
+-    lv_32fc_t phase_Ptr[4] = {(*phase), (*phase), (*phase), (*phase)};
++    lv_32fc_t phase_Ptr[4] = { (*phase), (*phase), (*phase), (*phase) };
+     unsigned int i, j = 0;
+-    for(i = 0; i < 4; ++i) {
++    for (i = 0; i < 4; ++i) {
+         phase_Ptr[i] *= incr;
+         incr *= (phase_inc);
+     }
+@@ -666,11 +718,18 @@ static inline void volk_32fc_s32fc_x2_rotator_32fc_u_avx_fma(lv_32fc_t* outVecto
+     __m256 aVal, phase_Val, inc_Val, yl, yh, tmp1, tmp2, z, ylp, yhp, tmp1p, tmp2p;
+     phase_Val = _mm256_loadu_ps((float*)phase_Ptr);
+-    inc_Val = _mm256_set_ps(lv_cimag(incr), lv_creal(incr),lv_cimag(incr), lv_creal(incr),lv_cimag(incr), lv_creal(incr),lv_cimag(incr), lv_creal(incr));
++    inc_Val = _mm256_set_ps(lv_cimag(incr),
++                            lv_creal(incr),
++                            lv_cimag(incr),
++                            lv_creal(incr),
++                            lv_cimag(incr),
++                            lv_creal(incr),
++                            lv_cimag(incr),
++                            lv_creal(incr));
+     const unsigned int fourthPoints = num_points / 4;
+-    for(i = 0; i < (unsigned int)(fourthPoints/ROTATOR_RELOAD); i++) {
+-        for(j = 0; j < ROTATOR_RELOAD; ++j) {
++    for (i = 0; i < (unsigned int)(fourthPoints / ROTATOR_RELOAD); i++) {
++        for (j = 0; j < ROTATOR_RELOAD; ++j) {
+             aVal = _mm256_loadu_ps((float*)aPtr);
+@@ -701,7 +760,7 @@ static inline void volk_32fc_s32fc_x2_rotator_32fc_u_avx_fma(lv_32fc_t* outVecto
+         tmp2 = _mm256_sqrt_ps(tmp1);
+         phase_Val = _mm256_div_ps(phase_Val, tmp2);
+     }
+-    for(i = 0; i < fourthPoints%ROTATOR_RELOAD; ++i) {
++    for (i = 0; i < fourthPoints % ROTATOR_RELOAD; ++i) {
+         aVal = _mm256_loadu_ps((float*)aPtr);
+         yl = _mm256_moveldup_ps(phase_Val);
+@@ -734,13 +793,12 @@ static inline void volk_32fc_s32fc_x2_rotator_32fc_u_avx_fma(lv_32fc_t* outVecto
+     }
+     _mm256_storeu_ps((float*)phase_Ptr, phase_Val);
+-    for(i = 0; i < num_points%4; ++i) {
++    for (i = 0; i < num_points % 4; ++i) {
+         *cPtr++ = *aPtr++ * phase_Ptr[0];
+         phase_Ptr[0] *= (phase_inc);
+     }
+     (*phase) = phase_Ptr[0];
+-
+ }
+ #endif /* LV_HAVE_AVX && LV_HAVE_FMA*/
+diff --git a/kernels/volk/volk_32fc_x2_add_32fc.h b/kernels/volk/volk_32fc_x2_add_32fc.h
+index 90ff787..e7356c3 100644
+--- a/kernels/volk/volk_32fc_x2_add_32fc.h
++++ b/kernels/volk/volk_32fc_x2_add_32fc.h
+@@ -31,8 +31,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32fc_x2_add_32fc(lv_32fc_t* cVector, const lv_32fc_t* aVector, const lv_32fc_t* bVector, unsigned int num_points)
+- * \endcode
++ * void volk_32fc_x2_add_32fc(lv_32fc_t* cVector, const lv_32fc_t* aVector, const
++ * lv_32fc_t* bVector, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li aVector: First vector of input points.
+@@ -44,7 +44,8 @@
+  *
+  * \b Example
+  *
+- * The follow example adds the increasing and decreasing vectors such that the result of every summation pair is 10
++ * The follow example adds the increasing and decreasing vectors such that the result of
++ * every summation pair is 10
+  *
+  * \code
+  *   int N = 10;
+@@ -76,36 +77,38 @@
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32fc_x2_add_32fc_u_avx(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                          const lv_32fc_t* bVector, unsigned int num_points)
++static inline void volk_32fc_x2_add_32fc_u_avx(lv_32fc_t* cVector,
++                                               const lv_32fc_t* aVector,
++                                               const lv_32fc_t* bVector,
++                                               unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  lv_32fc_t* cPtr = cVector;
+-  const lv_32fc_t* aPtr = aVector;
+-  const lv_32fc_t* bPtr=  bVector;
++    lv_32fc_t* cPtr = cVector;
++    const lv_32fc_t* aPtr = aVector;
++    const lv_32fc_t* bPtr = bVector;
+-  __m256 aVal, bVal, cVal;
+-  for(;number < quarterPoints; number++){
++    __m256 aVal, bVal, cVal;
++    for (; number < quarterPoints; number++) {
+-    aVal = _mm256_loadu_ps((float *) aPtr);
+-    bVal = _mm256_loadu_ps((float *) bPtr);
++        aVal = _mm256_loadu_ps((float*)aPtr);
++        bVal = _mm256_loadu_ps((float*)bPtr);
+-    cVal = _mm256_add_ps(aVal, bVal);
++        cVal = _mm256_add_ps(aVal, bVal);
+-    _mm256_storeu_ps((float *) cPtr,cVal); // Store the results back into the C container
++        _mm256_storeu_ps((float*)cPtr,
++                         cVal); // Store the results back into the C container
+-    aPtr += 4;
+-    bPtr += 4;
+-    cPtr += 4;
+-  }
++        aPtr += 4;
++        bPtr += 4;
++        cPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) + (*bPtr++);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) + (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -113,36 +116,38 @@ volk_32fc_x2_add_32fc_u_avx(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_32fc_x2_add_32fc_a_avx(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                          const lv_32fc_t* bVector, unsigned int num_points)
++static inline void volk_32fc_x2_add_32fc_a_avx(lv_32fc_t* cVector,
++                                               const lv_32fc_t* aVector,
++                                               const lv_32fc_t* bVector,
++                                               unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  lv_32fc_t* cPtr = cVector;
+-  const lv_32fc_t* aPtr = aVector;
+-  const lv_32fc_t* bPtr=  bVector;
++    lv_32fc_t* cPtr = cVector;
++    const lv_32fc_t* aPtr = aVector;
++    const lv_32fc_t* bPtr = bVector;
+-  __m256 aVal, bVal, cVal;
+-  for(;number < quarterPoints; number++){
++    __m256 aVal, bVal, cVal;
++    for (; number < quarterPoints; number++) {
+-    aVal = _mm256_load_ps((float*) aPtr);
+-    bVal = _mm256_load_ps((float*) bPtr);
++        aVal = _mm256_load_ps((float*)aPtr);
++        bVal = _mm256_load_ps((float*)bPtr);
+-    cVal = _mm256_add_ps(aVal, bVal);
++        cVal = _mm256_add_ps(aVal, bVal);
+-    _mm256_store_ps((float*) cPtr,cVal); // Store the results back into the C container
++        _mm256_store_ps((float*)cPtr,
++                        cVal); // Store the results back into the C container
+-    aPtr += 4;
+-    bPtr += 4;
+-    cPtr += 4;
+-  }
++        aPtr += 4;
++        bPtr += 4;
++        cPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) + (*bPtr++);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) + (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -150,54 +155,56 @@ volk_32fc_x2_add_32fc_a_avx(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32fc_x2_add_32fc_u_sse(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                          const lv_32fc_t* bVector, unsigned int num_points)
++static inline void volk_32fc_x2_add_32fc_u_sse(lv_32fc_t* cVector,
++                                               const lv_32fc_t* aVector,
++                                               const lv_32fc_t* bVector,
++                                               unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int halfPoints = num_points / 2;
++    unsigned int number = 0;
++    const unsigned int halfPoints = num_points / 2;
+-  lv_32fc_t* cPtr = cVector;
+-  const lv_32fc_t* aPtr = aVector;
+-  const lv_32fc_t* bPtr=  bVector;
++    lv_32fc_t* cPtr = cVector;
++    const lv_32fc_t* aPtr = aVector;
++    const lv_32fc_t* bPtr = bVector;
+-  __m128 aVal, bVal, cVal;
+-  for(;number < halfPoints; number++){
++    __m128 aVal, bVal, cVal;
++    for (; number < halfPoints; number++) {
+-    aVal = _mm_loadu_ps((float *) aPtr);
+-    bVal = _mm_loadu_ps((float *) bPtr);
++        aVal = _mm_loadu_ps((float*)aPtr);
++        bVal = _mm_loadu_ps((float*)bPtr);
+-    cVal = _mm_add_ps(aVal, bVal);
++        cVal = _mm_add_ps(aVal, bVal);
+-    _mm_storeu_ps((float*) cPtr, cVal); // Store the results back into the C container
++        _mm_storeu_ps((float*)cPtr, cVal); // Store the results back into the C container
+-    aPtr += 2;
+-    bPtr += 2;
+-    cPtr += 2;
+-  }
++        aPtr += 2;
++        bPtr += 2;
++        cPtr += 2;
++    }
+-  number = halfPoints * 2;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) + (*bPtr++);
+-  }
++    number = halfPoints * 2;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) + (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32fc_x2_add_32fc_generic(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                            const lv_32fc_t* bVector, unsigned int num_points)
++static inline void volk_32fc_x2_add_32fc_generic(lv_32fc_t* cVector,
++                                                 const lv_32fc_t* aVector,
++                                                 const lv_32fc_t* bVector,
++                                                 unsigned int num_points)
+ {
+-  lv_32fc_t* cPtr = cVector;
+-  const lv_32fc_t* aPtr = aVector;
+-  const lv_32fc_t* bPtr=  bVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    *cPtr++ = (*aPtr++) + (*bPtr++);
+-  }
++    lv_32fc_t* cPtr = cVector;
++    const lv_32fc_t* aPtr = aVector;
++    const lv_32fc_t* bPtr = bVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) + (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -205,34 +212,36 @@ volk_32fc_x2_add_32fc_generic(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32fc_x2_add_32fc_a_sse(lv_32fc_t* cVector, const lv_32fc_t* aVector, const lv_32fc_t* bVector, unsigned int num_points)
++static inline void volk_32fc_x2_add_32fc_a_sse(lv_32fc_t* cVector,
++                                               const lv_32fc_t* aVector,
++                                               const lv_32fc_t* bVector,
++                                               unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int halfPoints = num_points / 2;
++    unsigned int number = 0;
++    const unsigned int halfPoints = num_points / 2;
+-  lv_32fc_t* cPtr = cVector;
+-  const lv_32fc_t* aPtr = aVector;
+-  const lv_32fc_t* bPtr=  bVector;
++    lv_32fc_t* cPtr = cVector;
++    const lv_32fc_t* aPtr = aVector;
++    const lv_32fc_t* bPtr = bVector;
+-  __m128 aVal, bVal, cVal;
+-  for(;number < halfPoints; number++){
+-    aVal = _mm_load_ps((float *) aPtr);
+-    bVal = _mm_load_ps((float *) bPtr);
++    __m128 aVal, bVal, cVal;
++    for (; number < halfPoints; number++) {
++        aVal = _mm_load_ps((float*)aPtr);
++        bVal = _mm_load_ps((float*)bPtr);
+-    cVal = _mm_add_ps(aVal, bVal);
++        cVal = _mm_add_ps(aVal, bVal);
+-    _mm_store_ps((float *) cPtr,cVal); // Store the results back into the C container
++        _mm_store_ps((float*)cPtr, cVal); // Store the results back into the C container
+-    aPtr += 2;
+-    bPtr += 2;
+-    cPtr += 2;
+-  }
++        aPtr += 2;
++        bPtr += 2;
++        cPtr += 2;
++    }
+-  number = halfPoints * 2;
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) + (*bPtr++);
+-  }
++    number = halfPoints * 2;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) + (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+@@ -240,38 +249,39 @@ volk_32fc_x2_add_32fc_a_sse(lv_32fc_t* cVector, const lv_32fc_t* aVector, const
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_32fc_x2_add_32fc_u_neon(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                           const lv_32fc_t* bVector, unsigned int num_points)
++static inline void volk_32fc_x2_add_32fc_u_neon(lv_32fc_t* cVector,
++                                                const lv_32fc_t* aVector,
++                                                const lv_32fc_t* bVector,
++                                                unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int halfPoints = num_points / 2;
+-
+-  lv_32fc_t* cPtr = cVector;
+-  const lv_32fc_t* aPtr = aVector;
+-  const lv_32fc_t* bPtr=  bVector;
+-  float32x4_t aVal, bVal, cVal;
+-  for(number=0; number < halfPoints; number++){
+-    // Load in to NEON registers
+-    aVal = vld1q_f32((const float32_t*)(aPtr));
+-    bVal = vld1q_f32((const float32_t*)(bPtr));
+-    __VOLK_PREFETCH(aPtr+2);
+-    __VOLK_PREFETCH(bPtr+2);
+-
+-    // vector add
+-    cVal = vaddq_f32(aVal, bVal);
+-    // Store the results back into the C container
+-    vst1q_f32((float*)(cPtr),cVal);
+-
+-    aPtr += 2; // q uses quadwords, 4 lv_32fc_ts per vadd
+-    bPtr += 2;
+-    cPtr += 2;
+-  }
+-
+-  number = halfPoints * 2; // should be = num_points
+-  for(;number < num_points; number++){
+-    *cPtr++ = (*aPtr++) + (*bPtr++);
+-  }
++    unsigned int number = 0;
++    const unsigned int halfPoints = num_points / 2;
++
++    lv_32fc_t* cPtr = cVector;
++    const lv_32fc_t* aPtr = aVector;
++    const lv_32fc_t* bPtr = bVector;
++    float32x4_t aVal, bVal, cVal;
++    for (number = 0; number < halfPoints; number++) {
++        // Load in to NEON registers
++        aVal = vld1q_f32((const float32_t*)(aPtr));
++        bVal = vld1q_f32((const float32_t*)(bPtr));
++        __VOLK_PREFETCH(aPtr + 2);
++        __VOLK_PREFETCH(bPtr + 2);
++
++        // vector add
++        cVal = vaddq_f32(aVal, bVal);
++        // Store the results back into the C container
++        vst1q_f32((float*)(cPtr), cVal);
++
++        aPtr += 2; // q uses quadwords, 4 lv_32fc_ts per vadd
++        bPtr += 2;
++        cPtr += 2;
++    }
++
++    number = halfPoints * 2; // should be = num_points
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) + (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+diff --git a/kernels/volk/volk_32fc_x2_conjugate_dot_prod_32fc.h b/kernels/volk/volk_32fc_x2_conjugate_dot_prod_32fc.h
+index 77432ec..0f69499 100644
+--- a/kernels/volk/volk_32fc_x2_conjugate_dot_prod_32fc.h
++++ b/kernels/volk/volk_32fc_x2_conjugate_dot_prod_32fc.h
+@@ -34,8 +34,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32fc_x2_conjugate_dot_prod_32fc(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points)
+- * \endcode
++ * void volk_32fc_x2_conjugate_dot_prod_32fc(lv_32fc_t* result, const lv_32fc_t* input,
++ * const lv_32fc_t* taps, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li input: vector of complex floats.
+@@ -60,40 +60,44 @@
+ #define INCLUDED_volk_32fc_x2_conjugate_dot_prod_32fc_u_H
+-#include<volk/volk_complex.h>
++#include <volk/volk_complex.h>
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32fc_x2_conjugate_dot_prod_32fc_generic(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points) {
++static inline void volk_32fc_x2_conjugate_dot_prod_32fc_generic(lv_32fc_t* result,
++                                                                const lv_32fc_t* input,
++                                                                const lv_32fc_t* taps,
++                                                                unsigned int num_points)
++{
+-  const unsigned int num_bytes = num_points*8;
++    const unsigned int num_bytes = num_points * 8;
+-  float * res = (float*) result;
+-  float * in = (float*) input;
+-  float * tp = (float*) taps;
+-  unsigned int n_2_ccomplex_blocks = num_bytes >> 4;
++    float* res = (float*)result;
++    float* in = (float*)input;
++    float* tp = (float*)taps;
++    unsigned int n_2_ccomplex_blocks = num_bytes >> 4;
+-  float sum0[2] = {0,0};
+-  float sum1[2] = {0,0};
+-  unsigned int i = 0;
++    float sum0[2] = { 0, 0 };
++    float sum1[2] = { 0, 0 };
++    unsigned int i = 0;
+-  for(i = 0; i < n_2_ccomplex_blocks; ++i) {
+-    sum0[0] += in[0] * tp[0] + in[1] * tp[1];
+-    sum0[1] += (-in[0] * tp[1]) + in[1] * tp[0];
+-    sum1[0] += in[2] * tp[2] + in[3] * tp[3];
+-    sum1[1] += (-in[2] * tp[3]) + in[3] * tp[2];
++    for (i = 0; i < n_2_ccomplex_blocks; ++i) {
++        sum0[0] += in[0] * tp[0] + in[1] * tp[1];
++        sum0[1] += (-in[0] * tp[1]) + in[1] * tp[0];
++        sum1[0] += in[2] * tp[2] + in[3] * tp[3];
++        sum1[1] += (-in[2] * tp[3]) + in[3] * tp[2];
+-    in += 4;
+-    tp += 4;
+-  }
++        in += 4;
++        tp += 4;
++    }
+-  res[0] = sum0[0] + sum1[0];
+-  res[1] = sum0[1] + sum1[1];
++    res[0] = sum0[0] + sum1[0];
++    res[1] = sum0[1] + sum1[1];
+-  if (num_bytes >> 3 & 1) {
+-    *result += input[(num_bytes >> 3) - 1] * lv_conj(taps[(num_bytes >> 3) - 1]);
+-  }
++    if (num_bytes >> 3 & 1) {
++        *result += input[(num_bytes >> 3) - 1] * lv_conj(taps[(num_bytes >> 3) - 1]);
++    }
+ }
+ #endif /*LV_HAVE_GENERIC*/
+@@ -103,125 +107,134 @@ static inline void volk_32fc_x2_conjugate_dot_prod_32fc_generic(lv_32fc_t* resul
+ #include <immintrin.h>
+ static inline void volk_32fc_x2_conjugate_dot_prod_32fc_u_avx(lv_32fc_t* result,
+-    const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points)
++                                                              const lv_32fc_t* input,
++                                                              const lv_32fc_t* taps,
++                                                              unsigned int num_points)
+ {
+-  // Partial sums for indices i, i+1, i+2 and i+3.
+-  __m256 sum_a_mult_b_real = _mm256_setzero_ps();
+-  __m256 sum_a_mult_b_imag = _mm256_setzero_ps();
+-
+-  for (long unsigned i = 0; i < (num_points & ~3u); i += 4) {
+-    /* Four complex elements a time are processed.
+-     * (ar + jâ‹…ai)*conj(br + jâ‹…bi) =
+-     * arâ‹…br + aiâ‹…bi + jâ‹…(aiâ‹…br âˆ’ arâ‹…bi)
+-     */
++    // Partial sums for indices i, i+1, i+2 and i+3.
++    __m256 sum_a_mult_b_real = _mm256_setzero_ps();
++    __m256 sum_a_mult_b_imag = _mm256_setzero_ps();
++
++    for (long unsigned i = 0; i < (num_points & ~3u); i += 4) {
++        /* Four complex elements a time are processed.
++         * (ar + jâ‹…ai)*conj(br + jâ‹…bi) =
++         * arâ‹…br + aiâ‹…bi + jâ‹…(aiâ‹…br âˆ’ arâ‹…bi)
++         */
++
++        /* Load input and taps, split and duplicate real und imaginary parts of taps.
++         * a: | ai,i+3 | ar,i+3 | â€¦ | ai,i+1 | ar,i+1 | ai,i+0 | ar,i+0 |
++         * b: | bi,i+3 | br,i+3 | â€¦ | bi,i+1 | br,i+1 | bi,i+0 | br,i+0 |
++         * b_real: | br,i+3 | br,i+3 | â€¦ | br,i+1 | br,i+1 | br,i+0 | br,i+0 |
++         * b_imag: | bi,i+3 | bi,i+3 | â€¦ | bi,i+1 | bi,i+1 | bi,i+0 | bi,i+0 |
++         */
++        __m256 a = _mm256_loadu_ps((const float*)&input[i]);
++        __m256 b = _mm256_loadu_ps((const float*)&taps[i]);
++        __m256 b_real = _mm256_moveldup_ps(b);
++        __m256 b_imag = _mm256_movehdup_ps(b);
++
++        // Add | aiâ‹…br,i+3 | arâ‹…br,i+3 | â€¦ | aiâ‹…br,i+0 | arâ‹…br,i+0 | to partial sum.
++        sum_a_mult_b_real = _mm256_add_ps(sum_a_mult_b_real, _mm256_mul_ps(a, b_real));
++        // Add | aiâ‹…bi,i+3 | âˆ’arâ‹…bi,i+3 | â€¦ | aiâ‹…bi,i+0 | âˆ’arâ‹…bi,i+0 | to partial sum.
++        sum_a_mult_b_imag = _mm256_addsub_ps(sum_a_mult_b_imag, _mm256_mul_ps(a, b_imag));
++    }
+-    /* Load input and taps, split and duplicate real und imaginary parts of taps.
+-     * a: | ai,i+3 | ar,i+3 | â€¦ | ai,i+1 | ar,i+1 | ai,i+0 | ar,i+0 |
+-     * b: | bi,i+3 | br,i+3 | â€¦ | bi,i+1 | br,i+1 | bi,i+0 | br,i+0 |
+-     * b_real: | br,i+3 | br,i+3 | â€¦ | br,i+1 | br,i+1 | br,i+0 | br,i+0 |
+-     * b_imag: | bi,i+3 | bi,i+3 | â€¦ | bi,i+1 | bi,i+1 | bi,i+0 | bi,i+0 |
++    // Swap position of âˆ’arâ‹…bi and aiâ‹…bi.
++    sum_a_mult_b_imag = _mm256_permute_ps(sum_a_mult_b_imag, _MM_SHUFFLE(2, 3, 0, 1));
++    // | aiâ‹…br + aiâ‹…bi | aiâ‹…br âˆ’ arâ‹…bi |, sum contains four such partial sums.
++    __m256 sum = _mm256_add_ps(sum_a_mult_b_real, sum_a_mult_b_imag);
++    /* Sum the four partial sums: Add high half of vector sum to the low one, i.e.
++     * s1 + s3 and s0 + s2 â€¦
+      */
+-    __m256 a = _mm256_loadu_ps((const float *) &input[i]);
+-    __m256 b = _mm256_loadu_ps((const float *) &taps[i]);
+-    __m256 b_real = _mm256_moveldup_ps(b);
+-    __m256 b_imag = _mm256_movehdup_ps(b);
+-
+-    // Add | aiâ‹…br,i+3 | arâ‹…br,i+3 | â€¦ | aiâ‹…br,i+0 | arâ‹…br,i+0 | to partial sum.
+-    sum_a_mult_b_real = _mm256_add_ps(sum_a_mult_b_real, _mm256_mul_ps(a, b_real));
+-    // Add | aiâ‹…bi,i+3 | âˆ’arâ‹…bi,i+3 | â€¦ | aiâ‹…bi,i+0 | âˆ’arâ‹…bi,i+0 | to partial sum.
+-    sum_a_mult_b_imag = _mm256_addsub_ps(sum_a_mult_b_imag, _mm256_mul_ps(a, b_imag));
+-  }
+-
+-  // Swap position of âˆ’arâ‹…bi and aiâ‹…bi.
+-  sum_a_mult_b_imag = _mm256_permute_ps(sum_a_mult_b_imag, _MM_SHUFFLE(2, 3, 0, 1));
+-  // | aiâ‹…br + aiâ‹…bi | aiâ‹…br âˆ’ arâ‹…bi |, sum contains four such partial sums.
+-  __m256 sum = _mm256_add_ps(sum_a_mult_b_real, sum_a_mult_b_imag);
+-  /* Sum the four partial sums: Add high half of vector sum to the low one, i.e.
+-   * s1 + s3 and s0 + s2 â€¦
+-   */
+-  sum = _mm256_add_ps(sum, _mm256_permute2f128_ps(sum, sum, 0x01));
+-  // â€¦ and now (s0 + s2) + (s1 + s3)
+-  sum = _mm256_add_ps(sum, _mm256_permute_ps(sum, _MM_SHUFFLE(1, 0, 3, 2)));
+-  // Store result.
+-  __m128 lower = _mm256_extractf128_ps(sum, 0);
+-  _mm_storel_pi((__m64 *) result, lower);
+-
+-  // Handle the last elements if num_points mod 4 is bigger than 0.
+-  for (long unsigned i = num_points & ~3u; i < num_points; ++i) {
+-    *result += lv_cmake(
+-        lv_creal(input[i]) * lv_creal(taps[i]) + lv_cimag(input[i]) * lv_cimag(taps[i]),
+-        lv_cimag(input[i]) * lv_creal(taps[i]) - lv_creal(input[i]) * lv_cimag(taps[i]));
+-  }
++    sum = _mm256_add_ps(sum, _mm256_permute2f128_ps(sum, sum, 0x01));
++    // â€¦ and now (s0 + s2) + (s1 + s3)
++    sum = _mm256_add_ps(sum, _mm256_permute_ps(sum, _MM_SHUFFLE(1, 0, 3, 2)));
++    // Store result.
++    __m128 lower = _mm256_extractf128_ps(sum, 0);
++    _mm_storel_pi((__m64*)result, lower);
++
++    // Handle the last elements if num_points mod 4 is bigger than 0.
++    for (long unsigned i = num_points & ~3u; i < num_points; ++i) {
++        *result += lv_cmake(lv_creal(input[i]) * lv_creal(taps[i]) +
++                                lv_cimag(input[i]) * lv_cimag(taps[i]),
++                            lv_cimag(input[i]) * lv_creal(taps[i]) -
++                                lv_creal(input[i]) * lv_cimag(taps[i]));
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_SSE3
+-#include <xmmintrin.h>
+ #include <pmmintrin.h>
++#include <xmmintrin.h>
+ static inline void volk_32fc_x2_conjugate_dot_prod_32fc_u_sse3(lv_32fc_t* result,
+-    const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points)
++                                                               const lv_32fc_t* input,
++                                                               const lv_32fc_t* taps,
++                                                               unsigned int num_points)
+ {
+-  // Partial sums for indices i and i+1.
+-  __m128 sum_a_mult_b_real = _mm_setzero_ps();
+-  __m128 sum_a_mult_b_imag = _mm_setzero_ps();
+-
+-  for (long unsigned i = 0; i < (num_points & ~1u); i += 2) {
+-    /* Two complex elements a time are processed.
+-     * (ar + jâ‹…ai)*conj(br + jâ‹…bi) =
+-     * arâ‹…br + aiâ‹…bi + jâ‹…(aiâ‹…br âˆ’ arâ‹…bi)
+-     */
++    // Partial sums for indices i and i+1.
++    __m128 sum_a_mult_b_real = _mm_setzero_ps();
++    __m128 sum_a_mult_b_imag = _mm_setzero_ps();
++
++    for (long unsigned i = 0; i < (num_points & ~1u); i += 2) {
++        /* Two complex elements a time are processed.
++         * (ar + jâ‹…ai)*conj(br + jâ‹…bi) =
++         * arâ‹…br + aiâ‹…bi + jâ‹…(aiâ‹…br âˆ’ arâ‹…bi)
++         */
++
++        /* Load input and taps, split and duplicate real und imaginary parts of taps.
++         * a: | ai,i+1 | ar,i+1 | ai,i+0 | ar,i+0 |
++         * b: | bi,i+1 | br,i+1 | bi,i+0 | br,i+0 |
++         * b_real: | br,i+1 | br,i+1 | br,i+0 | br,i+0 |
++         * b_imag: | bi,i+1 | bi,i+1 | bi,i+0 | bi,i+0 |
++         */
++        __m128 a = _mm_loadu_ps((const float*)&input[i]);
++        __m128 b = _mm_loadu_ps((const float*)&taps[i]);
++        __m128 b_real = _mm_moveldup_ps(b);
++        __m128 b_imag = _mm_movehdup_ps(b);
++
++        // Add | aiâ‹…br,i+1 | arâ‹…br,i+1 | aiâ‹…br,i+0 | arâ‹…br,i+0 | to partial sum.
++        sum_a_mult_b_real = _mm_add_ps(sum_a_mult_b_real, _mm_mul_ps(a, b_real));
++        // Add | aiâ‹…bi,i+1 | âˆ’arâ‹…bi,i+1 | aiâ‹…bi,i+0 | âˆ’arâ‹…bi,i+0 | to partial sum.
++        sum_a_mult_b_imag = _mm_addsub_ps(sum_a_mult_b_imag, _mm_mul_ps(a, b_imag));
++    }
+-    /* Load input and taps, split and duplicate real und imaginary parts of taps.
+-     * a: | ai,i+1 | ar,i+1 | ai,i+0 | ar,i+0 |
+-     * b: | bi,i+1 | br,i+1 | bi,i+0 | br,i+0 |
+-     * b_real: | br,i+1 | br,i+1 | br,i+0 | br,i+0 |
+-     * b_imag: | bi,i+1 | bi,i+1 | bi,i+0 | bi,i+0 |
+-     */
+-    __m128 a = _mm_loadu_ps((const float *) &input[i]);
+-    __m128 b = _mm_loadu_ps((const float *) &taps[i]);
+-    __m128 b_real = _mm_moveldup_ps(b);
+-    __m128 b_imag = _mm_movehdup_ps(b);
+-
+-    // Add | aiâ‹…br,i+1 | arâ‹…br,i+1 | aiâ‹…br,i+0 | arâ‹…br,i+0 | to partial sum.
+-    sum_a_mult_b_real = _mm_add_ps(sum_a_mult_b_real, _mm_mul_ps(a, b_real));
+-    // Add | aiâ‹…bi,i+1 | âˆ’arâ‹…bi,i+1 | aiâ‹…bi,i+0 | âˆ’arâ‹…bi,i+0 | to partial sum.
+-    sum_a_mult_b_imag = _mm_addsub_ps(sum_a_mult_b_imag, _mm_mul_ps(a, b_imag));
+-  }
+-
+-  // Swap position of âˆ’arâ‹…bi and aiâ‹…bi.
+-  sum_a_mult_b_imag = _mm_shuffle_ps(sum_a_mult_b_imag, sum_a_mult_b_imag,
+-      _MM_SHUFFLE(2, 3, 0, 1));
+-  // | aiâ‹…br + aiâ‹…bi | aiâ‹…br âˆ’ arâ‹…bi |, sum contains two such partial sums.
+-  __m128 sum = _mm_add_ps(sum_a_mult_b_real, sum_a_mult_b_imag);
+-  // Sum the two partial sums.
+-  sum = _mm_add_ps(sum, _mm_shuffle_ps(sum, sum, _MM_SHUFFLE(1, 0, 3, 2)));
+-  // Store result.
+-  _mm_storel_pi((__m64 *) result, sum);
+-
+-  // Handle the last element if num_points mod 2 is 1.
+-  if (num_points & 1u) {
+-    *result += lv_cmake(
+-        lv_creal(input[num_points - 1]) * lv_creal(taps[num_points - 1]) +
+-        lv_cimag(input[num_points - 1]) * lv_cimag(taps[num_points - 1]),
+-        lv_cimag(input[num_points - 1]) * lv_creal(taps[num_points - 1]) -
+-        lv_creal(input[num_points - 1]) * lv_cimag(taps[num_points - 1]));
+-  }
++    // Swap position of âˆ’arâ‹…bi and aiâ‹…bi.
++    sum_a_mult_b_imag =
++        _mm_shuffle_ps(sum_a_mult_b_imag, sum_a_mult_b_imag, _MM_SHUFFLE(2, 3, 0, 1));
++    // | aiâ‹…br + aiâ‹…bi | aiâ‹…br âˆ’ arâ‹…bi |, sum contains two such partial sums.
++    __m128 sum = _mm_add_ps(sum_a_mult_b_real, sum_a_mult_b_imag);
++    // Sum the two partial sums.
++    sum = _mm_add_ps(sum, _mm_shuffle_ps(sum, sum, _MM_SHUFFLE(1, 0, 3, 2)));
++    // Store result.
++    _mm_storel_pi((__m64*)result, sum);
++
++    // Handle the last element if num_points mod 2 is 1.
++    if (num_points & 1u) {
++        *result += lv_cmake(
++            lv_creal(input[num_points - 1]) * lv_creal(taps[num_points - 1]) +
++                lv_cimag(input[num_points - 1]) * lv_cimag(taps[num_points - 1]),
++            lv_cimag(input[num_points - 1]) * lv_creal(taps[num_points - 1]) -
++                lv_creal(input[num_points - 1]) * lv_cimag(taps[num_points - 1]));
++    }
+ }
+ #endif /*LV_HAVE_SSE3*/
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void volk_32fc_x2_conjugate_dot_prod_32fc_neon(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points) {
++static inline void volk_32fc_x2_conjugate_dot_prod_32fc_neon(lv_32fc_t* result,
++                                                             const lv_32fc_t* input,
++                                                             const lv_32fc_t* taps,
++                                                             unsigned int num_points)
++{
+     unsigned int quarter_points = num_points / 4;
+     unsigned int number;
+-    lv_32fc_t* a_ptr = (lv_32fc_t*) taps;
+-    lv_32fc_t* b_ptr = (lv_32fc_t*) input;
++    lv_32fc_t* a_ptr = (lv_32fc_t*)taps;
++    lv_32fc_t* b_ptr = (lv_32fc_t*)input;
+     // for 2-lane vectors, 1st lane holds the real part,
+     // 2nd lane holds the imaginary part
+     float32x4x2_t a_val, b_val, accumulator;
+@@ -229,11 +242,11 @@ static inline void volk_32fc_x2_conjugate_dot_prod_32fc_neon(lv_32fc_t* result,
+     accumulator.val[0] = vdupq_n_f32(0);
+     accumulator.val[1] = vdupq_n_f32(0);
+-    for(number = 0; number < quarter_points; ++number) {
++    for (number = 0; number < quarter_points; ++number) {
+         a_val = vld2q_f32((float*)a_ptr); // a0r|a1r|a2r|a3r || a0i|a1i|a2i|a3i
+         b_val = vld2q_f32((float*)b_ptr); // b0r|b1r|b2r|b3r || b0i|b1i|b2i|b3i
+-        __VOLK_PREFETCH(a_ptr+8);
+-        __VOLK_PREFETCH(b_ptr+8);
++        __VOLK_PREFETCH(a_ptr + 8);
++        __VOLK_PREFETCH(b_ptr + 8);
+         // do the first multiply
+         tmp_imag.val[1] = vmulq_f32(a_val.val[1], b_val.val[0]);
+@@ -255,11 +268,10 @@ static inline void volk_32fc_x2_conjugate_dot_prod_32fc_neon(lv_32fc_t* result,
+     *result = accum_result[0] + accum_result[1] + accum_result[2] + accum_result[3];
+     // tail case
+-    for(number = quarter_points*4; number < num_points; ++number) {
+-      *result += (*a_ptr++) * lv_conj(*b_ptr++);
++    for (number = quarter_points * 4; number < num_points; ++number) {
++        *result += (*a_ptr++) * lv_conj(*b_ptr++);
+     }
+     *result = lv_conj(*result);
+-
+ }
+ #endif /*LV_HAVE_NEON*/
+@@ -268,120 +280,125 @@ static inline void volk_32fc_x2_conjugate_dot_prod_32fc_neon(lv_32fc_t* result,
+ #ifndef INCLUDED_volk_32fc_x2_conjugate_dot_prod_32fc_a_H
+ #define INCLUDED_volk_32fc_x2_conjugate_dot_prod_32fc_a_H
++#include <stdio.h>
+ #include <volk/volk_common.h>
+-#include<volk/volk_complex.h>
+-#include<stdio.h>
++#include <volk/volk_complex.h>
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+ static inline void volk_32fc_x2_conjugate_dot_prod_32fc_a_avx(lv_32fc_t* result,
+-    const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points)
++                                                              const lv_32fc_t* input,
++                                                              const lv_32fc_t* taps,
++                                                              unsigned int num_points)
+ {
+-  // Partial sums for indices i, i+1, i+2 and i+3.
+-  __m256 sum_a_mult_b_real = _mm256_setzero_ps();
+-  __m256 sum_a_mult_b_imag = _mm256_setzero_ps();
+-
+-  for (long unsigned i = 0; i < (num_points & ~3u); i += 4) {
+-    /* Four complex elements a time are processed.
+-     * (ar + jâ‹…ai)*conj(br + jâ‹…bi) =
+-     * arâ‹…br + aiâ‹…bi + jâ‹…(aiâ‹…br âˆ’ arâ‹…bi)
+-     */
++    // Partial sums for indices i, i+1, i+2 and i+3.
++    __m256 sum_a_mult_b_real = _mm256_setzero_ps();
++    __m256 sum_a_mult_b_imag = _mm256_setzero_ps();
++
++    for (long unsigned i = 0; i < (num_points & ~3u); i += 4) {
++        /* Four complex elements a time are processed.
++         * (ar + jâ‹…ai)*conj(br + jâ‹…bi) =
++         * arâ‹…br + aiâ‹…bi + jâ‹…(aiâ‹…br âˆ’ arâ‹…bi)
++         */
++
++        /* Load input and taps, split and duplicate real und imaginary parts of taps.
++         * a: | ai,i+3 | ar,i+3 | â€¦ | ai,i+1 | ar,i+1 | ai,i+0 | ar,i+0 |
++         * b: | bi,i+3 | br,i+3 | â€¦ | bi,i+1 | br,i+1 | bi,i+0 | br,i+0 |
++         * b_real: | br,i+3 | br,i+3 | â€¦ | br,i+1 | br,i+1 | br,i+0 | br,i+0 |
++         * b_imag: | bi,i+3 | bi,i+3 | â€¦ | bi,i+1 | bi,i+1 | bi,i+0 | bi,i+0 |
++         */
++        __m256 a = _mm256_load_ps((const float*)&input[i]);
++        __m256 b = _mm256_load_ps((const float*)&taps[i]);
++        __m256 b_real = _mm256_moveldup_ps(b);
++        __m256 b_imag = _mm256_movehdup_ps(b);
++
++        // Add | aiâ‹…br,i+3 | arâ‹…br,i+3 | â€¦ | aiâ‹…br,i+0 | arâ‹…br,i+0 | to partial sum.
++        sum_a_mult_b_real = _mm256_add_ps(sum_a_mult_b_real, _mm256_mul_ps(a, b_real));
++        // Add | aiâ‹…bi,i+3 | âˆ’arâ‹…bi,i+3 | â€¦ | aiâ‹…bi,i+0 | âˆ’arâ‹…bi,i+0 | to partial sum.
++        sum_a_mult_b_imag = _mm256_addsub_ps(sum_a_mult_b_imag, _mm256_mul_ps(a, b_imag));
++    }
+-    /* Load input and taps, split and duplicate real und imaginary parts of taps.
+-     * a: | ai,i+3 | ar,i+3 | â€¦ | ai,i+1 | ar,i+1 | ai,i+0 | ar,i+0 |
+-     * b: | bi,i+3 | br,i+3 | â€¦ | bi,i+1 | br,i+1 | bi,i+0 | br,i+0 |
+-     * b_real: | br,i+3 | br,i+3 | â€¦ | br,i+1 | br,i+1 | br,i+0 | br,i+0 |
+-     * b_imag: | bi,i+3 | bi,i+3 | â€¦ | bi,i+1 | bi,i+1 | bi,i+0 | bi,i+0 |
++    // Swap position of âˆ’arâ‹…bi and aiâ‹…bi.
++    sum_a_mult_b_imag = _mm256_permute_ps(sum_a_mult_b_imag, _MM_SHUFFLE(2, 3, 0, 1));
++    // | aiâ‹…br + aiâ‹…bi | aiâ‹…br âˆ’ arâ‹…bi |, sum contains four such partial sums.
++    __m256 sum = _mm256_add_ps(sum_a_mult_b_real, sum_a_mult_b_imag);
++    /* Sum the four partial sums: Add high half of vector sum to the low one, i.e.
++     * s1 + s3 and s0 + s2 â€¦
+      */
+-    __m256 a = _mm256_load_ps((const float *) &input[i]);
+-    __m256 b = _mm256_load_ps((const float *) &taps[i]);
+-    __m256 b_real = _mm256_moveldup_ps(b);
+-    __m256 b_imag = _mm256_movehdup_ps(b);
+-
+-    // Add | aiâ‹…br,i+3 | arâ‹…br,i+3 | â€¦ | aiâ‹…br,i+0 | arâ‹…br,i+0 | to partial sum.
+-    sum_a_mult_b_real = _mm256_add_ps(sum_a_mult_b_real, _mm256_mul_ps(a, b_real));
+-    // Add | aiâ‹…bi,i+3 | âˆ’arâ‹…bi,i+3 | â€¦ | aiâ‹…bi,i+0 | âˆ’arâ‹…bi,i+0 | to partial sum.
+-    sum_a_mult_b_imag = _mm256_addsub_ps(sum_a_mult_b_imag, _mm256_mul_ps(a, b_imag));
+-  }
+-
+-  // Swap position of âˆ’arâ‹…bi and aiâ‹…bi.
+-  sum_a_mult_b_imag = _mm256_permute_ps(sum_a_mult_b_imag, _MM_SHUFFLE(2, 3, 0, 1));
+-  // | aiâ‹…br + aiâ‹…bi | aiâ‹…br âˆ’ arâ‹…bi |, sum contains four such partial sums.
+-  __m256 sum = _mm256_add_ps(sum_a_mult_b_real, sum_a_mult_b_imag);
+-  /* Sum the four partial sums: Add high half of vector sum to the low one, i.e.
+-   * s1 + s3 and s0 + s2 â€¦
+-   */
+-  sum = _mm256_add_ps(sum, _mm256_permute2f128_ps(sum, sum, 0x01));
+-  // â€¦ and now (s0 + s2) + (s1 + s3)
+-  sum = _mm256_add_ps(sum, _mm256_permute_ps(sum, _MM_SHUFFLE(1, 0, 3, 2)));
+-  // Store result.
+-  __m128 lower = _mm256_extractf128_ps(sum, 0);
+-  _mm_storel_pi((__m64 *) result, lower);
+-
+-  // Handle the last elements if num_points mod 4 is bigger than 0.
+-  for (long unsigned i = num_points & ~3u; i < num_points; ++i) {
+-    *result += lv_cmake(
+-        lv_creal(input[i]) * lv_creal(taps[i]) + lv_cimag(input[i]) * lv_cimag(taps[i]),
+-        lv_cimag(input[i]) * lv_creal(taps[i]) - lv_creal(input[i]) * lv_cimag(taps[i]));
+-  }
++    sum = _mm256_add_ps(sum, _mm256_permute2f128_ps(sum, sum, 0x01));
++    // â€¦ and now (s0 + s2) + (s1 + s3)
++    sum = _mm256_add_ps(sum, _mm256_permute_ps(sum, _MM_SHUFFLE(1, 0, 3, 2)));
++    // Store result.
++    __m128 lower = _mm256_extractf128_ps(sum, 0);
++    _mm_storel_pi((__m64*)result, lower);
++
++    // Handle the last elements if num_points mod 4 is bigger than 0.
++    for (long unsigned i = num_points & ~3u; i < num_points; ++i) {
++        *result += lv_cmake(lv_creal(input[i]) * lv_creal(taps[i]) +
++                                lv_cimag(input[i]) * lv_cimag(taps[i]),
++                            lv_cimag(input[i]) * lv_creal(taps[i]) -
++                                lv_creal(input[i]) * lv_cimag(taps[i]));
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_SSE3
+-#include <xmmintrin.h>
+ #include <pmmintrin.h>
++#include <xmmintrin.h>
+ static inline void volk_32fc_x2_conjugate_dot_prod_32fc_a_sse3(lv_32fc_t* result,
+-    const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points)
++                                                               const lv_32fc_t* input,
++                                                               const lv_32fc_t* taps,
++                                                               unsigned int num_points)
+ {
+-  // Partial sums for indices i and i+1.
+-  __m128 sum_a_mult_b_real = _mm_setzero_ps();
+-  __m128 sum_a_mult_b_imag = _mm_setzero_ps();
+-
+-  for (long unsigned i = 0; i < (num_points & ~1u); i += 2) {
+-    /* Two complex elements a time are processed.
+-     * (ar + jâ‹…ai)*conj(br + jâ‹…bi) =
+-     * arâ‹…br + aiâ‹…bi + jâ‹…(aiâ‹…br âˆ’ arâ‹…bi)
+-     */
++    // Partial sums for indices i and i+1.
++    __m128 sum_a_mult_b_real = _mm_setzero_ps();
++    __m128 sum_a_mult_b_imag = _mm_setzero_ps();
++
++    for (long unsigned i = 0; i < (num_points & ~1u); i += 2) {
++        /* Two complex elements a time are processed.
++         * (ar + jâ‹…ai)*conj(br + jâ‹…bi) =
++         * arâ‹…br + aiâ‹…bi + jâ‹…(aiâ‹…br âˆ’ arâ‹…bi)
++         */
++
++        /* Load input and taps, split and duplicate real und imaginary parts of taps.
++         * a: | ai,i+1 | ar,i+1 | ai,i+0 | ar,i+0 |
++         * b: | bi,i+1 | br,i+1 | bi,i+0 | br,i+0 |
++         * b_real: | br,i+1 | br,i+1 | br,i+0 | br,i+0 |
++         * b_imag: | bi,i+1 | bi,i+1 | bi,i+0 | bi,i+0 |
++         */
++        __m128 a = _mm_load_ps((const float*)&input[i]);
++        __m128 b = _mm_load_ps((const float*)&taps[i]);
++        __m128 b_real = _mm_moveldup_ps(b);
++        __m128 b_imag = _mm_movehdup_ps(b);
++
++        // Add | aiâ‹…br,i+1 | arâ‹…br,i+1 | aiâ‹…br,i+0 | arâ‹…br,i+0 | to partial sum.
++        sum_a_mult_b_real = _mm_add_ps(sum_a_mult_b_real, _mm_mul_ps(a, b_real));
++        // Add | aiâ‹…bi,i+1 | âˆ’arâ‹…bi,i+1 | aiâ‹…bi,i+0 | âˆ’arâ‹…bi,i+0 | to partial sum.
++        sum_a_mult_b_imag = _mm_addsub_ps(sum_a_mult_b_imag, _mm_mul_ps(a, b_imag));
++    }
+-    /* Load input and taps, split and duplicate real und imaginary parts of taps.
+-     * a: | ai,i+1 | ar,i+1 | ai,i+0 | ar,i+0 |
+-     * b: | bi,i+1 | br,i+1 | bi,i+0 | br,i+0 |
+-     * b_real: | br,i+1 | br,i+1 | br,i+0 | br,i+0 |
+-     * b_imag: | bi,i+1 | bi,i+1 | bi,i+0 | bi,i+0 |
+-     */
+-    __m128 a = _mm_load_ps((const float *) &input[i]);
+-    __m128 b = _mm_load_ps((const float *) &taps[i]);
+-    __m128 b_real = _mm_moveldup_ps(b);
+-    __m128 b_imag = _mm_movehdup_ps(b);
+-
+-    // Add | aiâ‹…br,i+1 | arâ‹…br,i+1 | aiâ‹…br,i+0 | arâ‹…br,i+0 | to partial sum.
+-    sum_a_mult_b_real = _mm_add_ps(sum_a_mult_b_real, _mm_mul_ps(a, b_real));
+-    // Add | aiâ‹…bi,i+1 | âˆ’arâ‹…bi,i+1 | aiâ‹…bi,i+0 | âˆ’arâ‹…bi,i+0 | to partial sum.
+-    sum_a_mult_b_imag = _mm_addsub_ps(sum_a_mult_b_imag, _mm_mul_ps(a, b_imag));
+-  }
+-
+-  // Swap position of âˆ’arâ‹…bi and aiâ‹…bi.
+-  sum_a_mult_b_imag = _mm_shuffle_ps(sum_a_mult_b_imag, sum_a_mult_b_imag,
+-      _MM_SHUFFLE(2, 3, 0, 1));
+-  // | aiâ‹…br + aiâ‹…bi | aiâ‹…br âˆ’ arâ‹…bi |, sum contains two such partial sums.
+-  __m128 sum = _mm_add_ps(sum_a_mult_b_real, sum_a_mult_b_imag);
+-  // Sum the two partial sums.
+-  sum = _mm_add_ps(sum, _mm_shuffle_ps(sum, sum, _MM_SHUFFLE(1, 0, 3, 2)));
+-  // Store result.
+-  _mm_storel_pi((__m64 *) result, sum);
+-
+-  // Handle the last element if num_points mod 2 is 1.
+-  if (num_points & 1u) {
+-    *result += lv_cmake(
+-        lv_creal(input[num_points - 1]) * lv_creal(taps[num_points - 1]) +
+-        lv_cimag(input[num_points - 1]) * lv_cimag(taps[num_points - 1]),
+-        lv_cimag(input[num_points - 1]) * lv_creal(taps[num_points - 1]) -
+-        lv_creal(input[num_points - 1]) * lv_cimag(taps[num_points - 1]));
+-  }
++    // Swap position of âˆ’arâ‹…bi and aiâ‹…bi.
++    sum_a_mult_b_imag =
++        _mm_shuffle_ps(sum_a_mult_b_imag, sum_a_mult_b_imag, _MM_SHUFFLE(2, 3, 0, 1));
++    // | aiâ‹…br + aiâ‹…bi | aiâ‹…br âˆ’ arâ‹…bi |, sum contains two such partial sums.
++    __m128 sum = _mm_add_ps(sum_a_mult_b_real, sum_a_mult_b_imag);
++    // Sum the two partial sums.
++    sum = _mm_add_ps(sum, _mm_shuffle_ps(sum, sum, _MM_SHUFFLE(1, 0, 3, 2)));
++    // Store result.
++    _mm_storel_pi((__m64*)result, sum);
++
++    // Handle the last element if num_points mod 2 is 1.
++    if (num_points & 1u) {
++        *result += lv_cmake(
++            lv_creal(input[num_points - 1]) * lv_creal(taps[num_points - 1]) +
++                lv_cimag(input[num_points - 1]) * lv_cimag(taps[num_points - 1]),
++            lv_cimag(input[num_points - 1]) * lv_creal(taps[num_points - 1]) -
++                lv_creal(input[num_points - 1]) * lv_cimag(taps[num_points - 1]));
++    }
+ }
+ #endif /*LV_HAVE_SSE3*/
+@@ -390,35 +407,39 @@ static inline void volk_32fc_x2_conjugate_dot_prod_32fc_a_sse3(lv_32fc_t* result
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32fc_x2_conjugate_dot_prod_32fc_a_generic(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points) {
++static inline void volk_32fc_x2_conjugate_dot_prod_32fc_a_generic(lv_32fc_t* result,
++                                                                  const lv_32fc_t* input,
++                                                                  const lv_32fc_t* taps,
++                                                                  unsigned int num_points)
++{
+-  const unsigned int num_bytes = num_points*8;
++    const unsigned int num_bytes = num_points * 8;
+-  float * res = (float*) result;
+-  float * in = (float*) input;
+-  float * tp = (float*) taps;
+-  unsigned int n_2_ccomplex_blocks = num_bytes >> 4;
++    float* res = (float*)result;
++    float* in = (float*)input;
++    float* tp = (float*)taps;
++    unsigned int n_2_ccomplex_blocks = num_bytes >> 4;
+-  float sum0[2] = {0,0};
+-  float sum1[2] = {0,0};
+-  unsigned int i = 0;
++    float sum0[2] = { 0, 0 };
++    float sum1[2] = { 0, 0 };
++    unsigned int i = 0;
+-  for(i = 0; i < n_2_ccomplex_blocks; ++i) {
+-    sum0[0] += in[0] * tp[0] + in[1] * tp[1];
+-    sum0[1] += (-in[0] * tp[1]) + in[1] * tp[0];
+-    sum1[0] += in[2] * tp[2] + in[3] * tp[3];
+-    sum1[1] += (-in[2] * tp[3]) + in[3] * tp[2];
++    for (i = 0; i < n_2_ccomplex_blocks; ++i) {
++        sum0[0] += in[0] * tp[0] + in[1] * tp[1];
++        sum0[1] += (-in[0] * tp[1]) + in[1] * tp[0];
++        sum1[0] += in[2] * tp[2] + in[3] * tp[3];
++        sum1[1] += (-in[2] * tp[3]) + in[3] * tp[2];
+-    in += 4;
+-    tp += 4;
+-  }
++        in += 4;
++        tp += 4;
++    }
+-  res[0] = sum0[0] + sum1[0];
+-  res[1] = sum0[1] + sum1[1];
++    res[0] = sum0[0] + sum1[0];
++    res[1] = sum0[1] + sum1[1];
+-  if (num_bytes >> 3 & 1) {
+-    *result += input[(num_bytes >> 3) - 1] * lv_conj(taps[(num_bytes >> 3) - 1]);
+-  }
++    if (num_bytes >> 3 & 1) {
++        *result += input[(num_bytes >> 3) - 1] * lv_conj(taps[(num_bytes >> 3) - 1]);
++    }
+ }
+ #endif /*LV_HAVE_GENERIC*/
+@@ -426,256 +447,276 @@ static inline void volk_32fc_x2_conjugate_dot_prod_32fc_a_generic(lv_32fc_t* res
+ #if LV_HAVE_SSE && LV_HAVE_64
+-static inline void volk_32fc_x2_conjugate_dot_prod_32fc_a_sse(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points) {
+-
+-  const unsigned int num_bytes = num_points*8;
+-
+-  __VOLK_ATTR_ALIGNED(16) static const uint32_t conjugator[4]= {0x00000000, 0x80000000, 0x00000000, 0x80000000};
+-
+-  __VOLK_ASM __VOLK_VOLATILE
+-    (
+-     "#  ccomplex_conjugate_dotprod_generic (float* result, const float *input,\n\t"
+-     "#                         const float *taps, unsigned num_bytes)\n\t"
+-     "#    float sum0 = 0;\n\t"
+-     "#    float sum1 = 0;\n\t"
+-     "#    float sum2 = 0;\n\t"
+-     "#    float sum3 = 0;\n\t"
+-     "#    do {\n\t"
+-     "#      sum0 += input[0] * taps[0] - input[1] * taps[1];\n\t"
+-     "#      sum1 += input[0] * taps[1] + input[1] * taps[0];\n\t"
+-     "#      sum2 += input[2] * taps[2] - input[3] * taps[3];\n\t"
+-     "#      sum3 += input[2] * taps[3] + input[3] * taps[2];\n\t"
+-     "#      input += 4;\n\t"
+-     "#      taps += 4;  \n\t"
+-     "#    } while (--n_2_ccomplex_blocks != 0);\n\t"
+-     "#    result[0] = sum0 + sum2;\n\t"
+-     "#    result[1] = sum1 + sum3;\n\t"
+-     "# TODO: prefetch and better scheduling\n\t"
+-     "  xor    %%r9,  %%r9\n\t"
+-     "  xor    %%r10, %%r10\n\t"
+-     "  movq   %[conjugator], %%r9\n\t"
+-     "  movq   %%rcx, %%rax\n\t"
+-     "  movaps 0(%%r9), %%xmm8\n\t"
+-     "  movq   %%rcx, %%r8\n\t"
+-     "  movq   %[rsi],  %%r9\n\t"
+-     "  movq   %[rdx], %%r10\n\t"
+-     "        xorps   %%xmm6, %%xmm6          # zero accumulators\n\t"
+-     "        movaps  0(%%r9), %%xmm0\n\t"
+-     "        xorps   %%xmm7, %%xmm7          # zero accumulators\n\t"
+-     "        movups  0(%%r10), %%xmm2\n\t"
+-     "        shr     $5, %%rax               # rax = n_2_ccomplex_blocks / 2\n\t"
+-     "  shr     $4, %%r8\n\t"
+-     "  xorps  %%xmm8, %%xmm2\n\t"
+-     "        jmp     .%=L1_test\n\t"
+-     "        # 4 taps / loop\n\t"
+-     "        # something like ?? cycles / loop\n\t"
+-     ".%=Loop1:       \n\t"
+-     "# complex prod: C += A * B,  w/ temp Z & Y (or B), xmmPN=$0x8000000080000000\n\t"
+-     "#       movaps  (%%r9), %%xmmA\n\t"
+-     "#       movaps  (%%r10), %%xmmB\n\t"
+-     "#       movaps  %%xmmA, %%xmmZ\n\t"
+-     "#       shufps  $0xb1, %%xmmZ, %%xmmZ   # swap internals\n\t"
+-     "#       mulps   %%xmmB, %%xmmA\n\t"
+-     "#       mulps   %%xmmZ, %%xmmB\n\t"
+-     "#       # SSE replacement for: pfpnacc %%xmmB, %%xmmA\n\t"
+-     "#       xorps   %%xmmPN, %%xmmA\n\t"
+-     "#       movaps  %%xmmA, %%xmmZ\n\t"
+-     "#       unpcklps %%xmmB, %%xmmA\n\t"
+-     "#       unpckhps %%xmmB, %%xmmZ\n\t"
+-     "#       movaps  %%xmmZ, %%xmmY\n\t"
+-     "#       shufps  $0x44, %%xmmA, %%xmmZ   # b01000100\n\t"
+-     "#       shufps  $0xee, %%xmmY, %%xmmA   # b11101110\n\t"
+-     "#       addps   %%xmmZ, %%xmmA\n\t"
+-     "#       addps   %%xmmA, %%xmmC\n\t"
+-     "# A=xmm0, B=xmm2, Z=xmm4\n\t"
+-     "# A'=xmm1, B'=xmm3, Z'=xmm5\n\t"
+-     "        movaps  16(%%r9), %%xmm1\n\t"
+-     "        movaps  %%xmm0, %%xmm4\n\t"
+-     "        mulps   %%xmm2, %%xmm0\n\t"
+-     "        shufps  $0xb1, %%xmm4, %%xmm4   # swap internals\n\t"
+-     "        movaps  16(%%r10), %%xmm3\n\t"
+-     "        movaps  %%xmm1, %%xmm5\n\t"
+-     "  xorps   %%xmm8, %%xmm3\n\t"
+-     "        addps   %%xmm0, %%xmm6\n\t"
+-     "        mulps   %%xmm3, %%xmm1\n\t"
+-     "        shufps  $0xb1, %%xmm5, %%xmm5   # swap internals\n\t"
+-     "        addps   %%xmm1, %%xmm6\n\t"
+-     "        mulps   %%xmm4, %%xmm2\n\t"
+-     "        movaps  32(%%r9), %%xmm0\n\t"
+-     "        addps   %%xmm2, %%xmm7\n\t"
+-     "        mulps   %%xmm5, %%xmm3\n\t"
+-     "        add     $32, %%r9\n\t"
+-     "        movaps  32(%%r10), %%xmm2\n\t"
+-     "        addps   %%xmm3, %%xmm7\n\t"
+-     "        add     $32, %%r10\n\t"
+-     "  xorps   %%xmm8, %%xmm2\n\t"
+-     ".%=L1_test:\n\t"
+-     "        dec     %%rax\n\t"
+-     "        jge     .%=Loop1\n\t"
+-     "        # We've handled the bulk of multiplies up to here.\n\t"
+-     "        # Let's sse if original n_2_ccomplex_blocks was odd.\n\t"
+-     "        # If so, we've got 2 more taps to do.\n\t"
+-     "        and     $1, %%r8\n\t"
+-     "        je      .%=Leven\n\t"
+-     "        # The count was odd, do 2 more taps.\n\t"
+-     "        # Note that we've already got mm0/mm2 preloaded\n\t"
+-     "        # from the main loop.\n\t"
+-     "        movaps  %%xmm0, %%xmm4\n\t"
+-     "        mulps   %%xmm2, %%xmm0\n\t"
+-     "        shufps  $0xb1, %%xmm4, %%xmm4   # swap internals\n\t"
+-     "        addps   %%xmm0, %%xmm6\n\t"
+-     "        mulps   %%xmm4, %%xmm2\n\t"
+-     "        addps   %%xmm2, %%xmm7\n\t"
+-     ".%=Leven:\n\t"
+-     "        # neg inversor\n\t"
+-     "        xorps   %%xmm1, %%xmm1\n\t"
+-     "        mov     $0x80000000, %%r9\n\t"
+-     "        movd    %%r9, %%xmm1\n\t"
+-     "        shufps  $0x11, %%xmm1, %%xmm1   # b00010001 # 0 -0 0 -0\n\t"
+-     "        # pfpnacc\n\t"
+-     "        xorps   %%xmm1, %%xmm6\n\t"
+-     "        movaps  %%xmm6, %%xmm2\n\t"
+-     "        unpcklps %%xmm7, %%xmm6\n\t"
+-     "        unpckhps %%xmm7, %%xmm2\n\t"
+-     "        movaps  %%xmm2, %%xmm3\n\t"
+-     "        shufps  $0x44, %%xmm6, %%xmm2   # b01000100\n\t"
+-     "        shufps  $0xee, %%xmm3, %%xmm6   # b11101110\n\t"
+-     "        addps   %%xmm2, %%xmm6\n\t"
+-     "                                        # xmm6 = r1 i2 r3 i4\n\t"
+-     "        movhlps %%xmm6, %%xmm4          # xmm4 = r3 i4 ?? ??\n\t"
+-     "        addps   %%xmm4, %%xmm6          # xmm6 = r1+r3 i2+i4 ?? ??\n\t"
+-     "        movlps  %%xmm6, (%[rdi])                # store low 2x32 bits (complex) to memory\n\t"
+-     :
+-     :[rsi] "r" (input), [rdx] "r" (taps), "c" (num_bytes), [rdi] "r" (result), [conjugator] "r" (conjugator)
+-     :"rax", "r8", "r9", "r10"
+-     );
+-
+-  int getem = num_bytes % 16;
+-
+-  for(; getem > 0; getem -= 8) {
+-    *result += (input[(num_bytes >> 3) - 1] * lv_conj(taps[(num_bytes >> 3) - 1]));
+-  }
++static inline void volk_32fc_x2_conjugate_dot_prod_32fc_a_sse(lv_32fc_t* result,
++                                                              const lv_32fc_t* input,
++                                                              const lv_32fc_t* taps,
++                                                              unsigned int num_points)
++{
++
++    const unsigned int num_bytes = num_points * 8;
++
++    __VOLK_ATTR_ALIGNED(16)
++    static const uint32_t conjugator[4] = {
++        0x00000000, 0x80000000, 0x00000000, 0x80000000
++    };
++
++    __VOLK_ASM __VOLK_VOLATILE(
++        "#  ccomplex_conjugate_dotprod_generic (float* result, const float *input,\n\t"
++        "#                         const float *taps, unsigned num_bytes)\n\t"
++        "#    float sum0 = 0;\n\t"
++        "#    float sum1 = 0;\n\t"
++        "#    float sum2 = 0;\n\t"
++        "#    float sum3 = 0;\n\t"
++        "#    do {\n\t"
++        "#      sum0 += input[0] * taps[0] - input[1] * taps[1];\n\t"
++        "#      sum1 += input[0] * taps[1] + input[1] * taps[0];\n\t"
++        "#      sum2 += input[2] * taps[2] - input[3] * taps[3];\n\t"
++        "#      sum3 += input[2] * taps[3] + input[3] * taps[2];\n\t"
++        "#      input += 4;\n\t"
++        "#      taps += 4;  \n\t"
++        "#    } while (--n_2_ccomplex_blocks != 0);\n\t"
++        "#    result[0] = sum0 + sum2;\n\t"
++        "#    result[1] = sum1 + sum3;\n\t"
++        "# TODO: prefetch and better scheduling\n\t"
++        "  xor    %%r9,  %%r9\n\t"
++        "  xor    %%r10, %%r10\n\t"
++        "  movq   %[conjugator], %%r9\n\t"
++        "  movq   %%rcx, %%rax\n\t"
++        "  movaps 0(%%r9), %%xmm8\n\t"
++        "  movq   %%rcx, %%r8\n\t"
++        "  movq   %[rsi],  %%r9\n\t"
++        "  movq   %[rdx], %%r10\n\t"
++        "     xorps   %%xmm6, %%xmm6          # zero accumulators\n\t"
++        "     movaps  0(%%r9), %%xmm0\n\t"
++        "     xorps   %%xmm7, %%xmm7          # zero accumulators\n\t"
++        "     movups  0(%%r10), %%xmm2\n\t"
++        "     shr     $5, %%rax               # rax = n_2_ccomplex_blocks / 2\n\t"
++        "  shr     $4, %%r8\n\t"
++        "  xorps  %%xmm8, %%xmm2\n\t"
++        "     jmp     .%=L1_test\n\t"
++        "     # 4 taps / loop\n\t"
++        "     # something like ?? cycles / loop\n\t"
++        ".%=Loop1:    \n\t"
++        "# complex prod: C += A * B,  w/ temp Z & Y (or B), xmmPN=$0x8000000080000000\n\t"
++        "#    movaps  (%%r9), %%xmmA\n\t"
++        "#    movaps  (%%r10), %%xmmB\n\t"
++        "#    movaps  %%xmmA, %%xmmZ\n\t"
++        "#    shufps  $0xb1, %%xmmZ, %%xmmZ   # swap internals\n\t"
++        "#    mulps   %%xmmB, %%xmmA\n\t"
++        "#    mulps   %%xmmZ, %%xmmB\n\t"
++        "#    # SSE replacement for: pfpnacc %%xmmB, %%xmmA\n\t"
++        "#    xorps   %%xmmPN, %%xmmA\n\t"
++        "#    movaps  %%xmmA, %%xmmZ\n\t"
++        "#    unpcklps %%xmmB, %%xmmA\n\t"
++        "#    unpckhps %%xmmB, %%xmmZ\n\t"
++        "#    movaps  %%xmmZ, %%xmmY\n\t"
++        "#    shufps  $0x44, %%xmmA, %%xmmZ   # b01000100\n\t"
++        "#    shufps  $0xee, %%xmmY, %%xmmA   # b11101110\n\t"
++        "#    addps   %%xmmZ, %%xmmA\n\t"
++        "#    addps   %%xmmA, %%xmmC\n\t"
++        "# A=xmm0, B=xmm2, Z=xmm4\n\t"
++        "# A'=xmm1, B'=xmm3, Z'=xmm5\n\t"
++        "     movaps  16(%%r9), %%xmm1\n\t"
++        "     movaps  %%xmm0, %%xmm4\n\t"
++        "     mulps   %%xmm2, %%xmm0\n\t"
++        "     shufps  $0xb1, %%xmm4, %%xmm4   # swap internals\n\t"
++        "     movaps  16(%%r10), %%xmm3\n\t"
++        "     movaps  %%xmm1, %%xmm5\n\t"
++        "  xorps   %%xmm8, %%xmm3\n\t"
++        "     addps   %%xmm0, %%xmm6\n\t"
++        "     mulps   %%xmm3, %%xmm1\n\t"
++        "     shufps  $0xb1, %%xmm5, %%xmm5   # swap internals\n\t"
++        "     addps   %%xmm1, %%xmm6\n\t"
++        "     mulps   %%xmm4, %%xmm2\n\t"
++        "     movaps  32(%%r9), %%xmm0\n\t"
++        "     addps   %%xmm2, %%xmm7\n\t"
++        "     mulps   %%xmm5, %%xmm3\n\t"
++        "     add     $32, %%r9\n\t"
++        "     movaps  32(%%r10), %%xmm2\n\t"
++        "     addps   %%xmm3, %%xmm7\n\t"
++        "     add     $32, %%r10\n\t"
++        "  xorps   %%xmm8, %%xmm2\n\t"
++        ".%=L1_test:\n\t"
++        "     dec     %%rax\n\t"
++        "     jge     .%=Loop1\n\t"
++        "     # We've handled the bulk of multiplies up to here.\n\t"
++        "     # Let's sse if original n_2_ccomplex_blocks was odd.\n\t"
++        "     # If so, we've got 2 more taps to do.\n\t"
++        "     and     $1, %%r8\n\t"
++        "     je      .%=Leven\n\t"
++        "     # The count was odd, do 2 more taps.\n\t"
++        "     # Note that we've already got mm0/mm2 preloaded\n\t"
++        "     # from the main loop.\n\t"
++        "     movaps  %%xmm0, %%xmm4\n\t"
++        "     mulps   %%xmm2, %%xmm0\n\t"
++        "     shufps  $0xb1, %%xmm4, %%xmm4   # swap internals\n\t"
++        "     addps   %%xmm0, %%xmm6\n\t"
++        "     mulps   %%xmm4, %%xmm2\n\t"
++        "     addps   %%xmm2, %%xmm7\n\t"
++        ".%=Leven:\n\t"
++        "     # neg inversor\n\t"
++        "     xorps   %%xmm1, %%xmm1\n\t"
++        "     mov     $0x80000000, %%r9\n\t"
++        "     movd    %%r9, %%xmm1\n\t"
++        "     shufps  $0x11, %%xmm1, %%xmm1   # b00010001 # 0 -0 0 -0\n\t"
++        "     # pfpnacc\n\t"
++        "     xorps   %%xmm1, %%xmm6\n\t"
++        "     movaps  %%xmm6, %%xmm2\n\t"
++        "     unpcklps %%xmm7, %%xmm6\n\t"
++        "     unpckhps %%xmm7, %%xmm2\n\t"
++        "     movaps  %%xmm2, %%xmm3\n\t"
++        "     shufps  $0x44, %%xmm6, %%xmm2   # b01000100\n\t"
++        "     shufps  $0xee, %%xmm3, %%xmm6   # b11101110\n\t"
++        "     addps   %%xmm2, %%xmm6\n\t"
++        "                                     # xmm6 = r1 i2 r3 i4\n\t"
++        "     movhlps %%xmm6, %%xmm4          # xmm4 = r3 i4 ?? ??\n\t"
++        "     addps   %%xmm4, %%xmm6          # xmm6 = r1+r3 i2+i4 ?? ??\n\t"
++        "     movlps  %%xmm6, (%[rdi])                # store low 2x32 bits (complex) "
++        "to memory\n\t"
++        :
++        : [rsi] "r"(input),
++          [rdx] "r"(taps),
++          "c"(num_bytes),
++          [rdi] "r"(result),
++          [conjugator] "r"(conjugator)
++        : "rax", "r8", "r9", "r10");
++
++    int getem = num_bytes % 16;
++
++    for (; getem > 0; getem -= 8) {
++        *result += (input[(num_bytes >> 3) - 1] * lv_conj(taps[(num_bytes >> 3) - 1]));
++    }
+ }
+ #endif
+ #if LV_HAVE_SSE && LV_HAVE_32
+-static inline void volk_32fc_x2_conjugate_dot_prod_32fc_a_sse_32(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points) {
+-
+-  const unsigned int num_bytes = num_points*8;
+-
+-  __VOLK_ATTR_ALIGNED(16) static const uint32_t conjugator[4]= {0x00000000, 0x80000000, 0x00000000, 0x80000000};
+-
+-  int bound = num_bytes >> 4;
+-  int leftovers = num_bytes % 16;
+-
+-  __VOLK_ASM __VOLK_VOLATILE
+-    (
+-     "        #pushl  %%ebp\n\t"
+-     "        #movl   %%esp, %%ebp\n\t"
+-     "        #movl   12(%%ebp), %%eax                # input\n\t"
+-     "        #movl   16(%%ebp), %%edx                # taps\n\t"
+-     "        #movl   20(%%ebp), %%ecx                # n_bytes\n\t"
+-     "  movaps  0(%[conjugator]), %%xmm1\n\t"
+-     "        xorps   %%xmm6, %%xmm6          # zero accumulators\n\t"
+-     "        movaps  0(%[eax]), %%xmm0\n\t"
+-     "        xorps   %%xmm7, %%xmm7          # zero accumulators\n\t"
+-     "        movaps  0(%[edx]), %%xmm2\n\t"
+-     "  movl    %[ecx], (%[out])\n\t"
+-     "        shrl    $5, %[ecx]              # ecx = n_2_ccomplex_blocks / 2\n\t"
+-
+-     "  xorps   %%xmm1, %%xmm2\n\t"
+-     "        jmp     .%=L1_test\n\t"
+-     "        # 4 taps / loop\n\t"
+-     "        # something like ?? cycles / loop\n\t"
+-     ".%=Loop1:       \n\t"
+-     "# complex prod: C += A * B,  w/ temp Z & Y (or B), xmmPN=$0x8000000080000000\n\t"
+-     "#       movaps  (%[eax]), %%xmmA\n\t"
+-     "#       movaps  (%[edx]), %%xmmB\n\t"
+-     "#       movaps  %%xmmA, %%xmmZ\n\t"
+-     "#       shufps  $0xb1, %%xmmZ, %%xmmZ   # swap internals\n\t"
+-     "#       mulps   %%xmmB, %%xmmA\n\t"
+-     "#       mulps   %%xmmZ, %%xmmB\n\t"
+-     "#       # SSE replacement for: pfpnacc %%xmmB, %%xmmA\n\t"
+-     "#       xorps   %%xmmPN, %%xmmA\n\t"
+-     "#       movaps  %%xmmA, %%xmmZ\n\t"
+-     "#       unpcklps %%xmmB, %%xmmA\n\t"
+-     "#       unpckhps %%xmmB, %%xmmZ\n\t"
+-     "#       movaps  %%xmmZ, %%xmmY\n\t"
+-     "#       shufps  $0x44, %%xmmA, %%xmmZ   # b01000100\n\t"
+-     "#       shufps  $0xee, %%xmmY, %%xmmA   # b11101110\n\t"
+-     "#       addps   %%xmmZ, %%xmmA\n\t"
+-     "#       addps   %%xmmA, %%xmmC\n\t"
+-     "# A=xmm0, B=xmm2, Z=xmm4\n\t"
+-     "# A'=xmm1, B'=xmm3, Z'=xmm5\n\t"
+-     "        movaps  16(%[edx]), %%xmm3\n\t"
+-     "        movaps  %%xmm0, %%xmm4\n\t"
+-     "  xorps   %%xmm1, %%xmm3\n\t"
+-     "        mulps   %%xmm2, %%xmm0\n\t"
+-     "        movaps  16(%[eax]), %%xmm1\n\t"
+-     "        shufps  $0xb1, %%xmm4, %%xmm4   # swap internals\n\t"
+-     "        movaps  %%xmm1, %%xmm5\n\t"
+-     "        addps   %%xmm0, %%xmm6\n\t"
+-     "        mulps   %%xmm3, %%xmm1\n\t"
+-     "        shufps  $0xb1, %%xmm5, %%xmm5   # swap internals\n\t"
+-     "        addps   %%xmm1, %%xmm6\n\t"
+-     "  movaps  0(%[conjugator]), %%xmm1\n\t"
+-     "        mulps   %%xmm4, %%xmm2\n\t"
+-     "        movaps  32(%[eax]), %%xmm0\n\t"
+-     "        addps   %%xmm2, %%xmm7\n\t"
+-     "        mulps   %%xmm5, %%xmm3\n\t"
+-     "        addl    $32, %[eax]\n\t"
+-     "        movaps  32(%[edx]), %%xmm2\n\t"
+-     "        addps   %%xmm3, %%xmm7\n\t"
+-     "  xorps   %%xmm1, %%xmm2\n\t"
+-     "        addl    $32, %[edx]\n\t"
+-     ".%=L1_test:\n\t"
+-     "        decl    %[ecx]\n\t"
+-     "        jge     .%=Loop1\n\t"
+-     "        # We've handled the bulk of multiplies up to here.\n\t"
+-     "        # Let's sse if original n_2_ccomplex_blocks was odd.\n\t"
+-     "        # If so, we've got 2 more taps to do.\n\t"
+-     "        movl    0(%[out]), %[ecx]               # n_2_ccomplex_blocks\n\t"
+-     "  shrl    $4, %[ecx]\n\t"
+-     "        andl    $1, %[ecx]\n\t"
+-     "        je      .%=Leven\n\t"
+-     "        # The count was odd, do 2 more taps.\n\t"
+-     "        # Note that we've already got mm0/mm2 preloaded\n\t"
+-     "        # from the main loop.\n\t"
+-     "        movaps  %%xmm0, %%xmm4\n\t"
+-     "        mulps   %%xmm2, %%xmm0\n\t"
+-     "        shufps  $0xb1, %%xmm4, %%xmm4   # swap internals\n\t"
+-     "        addps   %%xmm0, %%xmm6\n\t"
+-     "        mulps   %%xmm4, %%xmm2\n\t"
+-     "        addps   %%xmm2, %%xmm7\n\t"
+-     ".%=Leven:\n\t"
+-     "        # neg inversor\n\t"
+-     "  #movl 8(%%ebp), %[eax] \n\t"
+-     "        xorps   %%xmm1, %%xmm1\n\t"
+-     "  movl  $0x80000000, (%[out])\n\t"
+-     "        movss   (%[out]), %%xmm1\n\t"
+-     "        shufps  $0x11, %%xmm1, %%xmm1   # b00010001 # 0 -0 0 -0\n\t"
+-     "        # pfpnacc\n\t"
+-     "        xorps   %%xmm1, %%xmm6\n\t"
+-     "        movaps  %%xmm6, %%xmm2\n\t"
+-     "        unpcklps %%xmm7, %%xmm6\n\t"
+-     "        unpckhps %%xmm7, %%xmm2\n\t"
+-     "        movaps  %%xmm2, %%xmm3\n\t"
+-     "        shufps  $0x44, %%xmm6, %%xmm2   # b01000100\n\t"
+-     "        shufps  $0xee, %%xmm3, %%xmm6   # b11101110\n\t"
+-     "        addps   %%xmm2, %%xmm6\n\t"
+-     "                                        # xmm6 = r1 i2 r3 i4\n\t"
+-     "        #movl   8(%%ebp), %[eax]                # @result\n\t"
+-     "        movhlps %%xmm6, %%xmm4          # xmm4 = r3 i4 ?? ??\n\t"
+-     "        addps   %%xmm4, %%xmm6          # xmm6 = r1+r3 i2+i4 ?? ??\n\t"
+-     "        movlps  %%xmm6, (%[out])                # store low 2x32 bits (complex) to memory\n\t"
+-     "        #popl   %%ebp\n\t"
+-     :
+-     : [eax] "r" (input), [edx] "r" (taps), [ecx] "r" (num_bytes), [out] "r" (result), [conjugator] "r" (conjugator)
+-     );
+-
+-  for(; leftovers > 0; leftovers -= 8) {
+-    *result += (input[(bound << 1)] * lv_conj(taps[(bound << 1)]));
+-  }
++static inline void volk_32fc_x2_conjugate_dot_prod_32fc_a_sse_32(lv_32fc_t* result,
++                                                                 const lv_32fc_t* input,
++                                                                 const lv_32fc_t* taps,
++                                                                 unsigned int num_points)
++{
++
++    const unsigned int num_bytes = num_points * 8;
++
++    __VOLK_ATTR_ALIGNED(16)
++    static const uint32_t conjugator[4] = {
++        0x00000000, 0x80000000, 0x00000000, 0x80000000
++    };
++
++    int bound = num_bytes >> 4;
++    int leftovers = num_bytes % 16;
++
++    __VOLK_ASM __VOLK_VOLATILE(
++        "     #pushl  %%ebp\n\t"
++        "     #movl   %%esp, %%ebp\n\t"
++        "     #movl   12(%%ebp), %%eax                # input\n\t"
++        "     #movl   16(%%ebp), %%edx                # taps\n\t"
++        "     #movl   20(%%ebp), %%ecx                # n_bytes\n\t"
++        "  movaps  0(%[conjugator]), %%xmm1\n\t"
++        "     xorps   %%xmm6, %%xmm6          # zero accumulators\n\t"
++        "     movaps  0(%[eax]), %%xmm0\n\t"
++        "     xorps   %%xmm7, %%xmm7          # zero accumulators\n\t"
++        "     movaps  0(%[edx]), %%xmm2\n\t"
++        "  movl    %[ecx], (%[out])\n\t"
++        "     shrl    $5, %[ecx]              # ecx = n_2_ccomplex_blocks / 2\n\t"
++
++        "  xorps   %%xmm1, %%xmm2\n\t"
++        "     jmp     .%=L1_test\n\t"
++        "     # 4 taps / loop\n\t"
++        "     # something like ?? cycles / loop\n\t"
++        ".%=Loop1:    \n\t"
++        "# complex prod: C += A * B,  w/ temp Z & Y (or B), xmmPN=$0x8000000080000000\n\t"
++        "#    movaps  (%[eax]), %%xmmA\n\t"
++        "#    movaps  (%[edx]), %%xmmB\n\t"
++        "#    movaps  %%xmmA, %%xmmZ\n\t"
++        "#    shufps  $0xb1, %%xmmZ, %%xmmZ   # swap internals\n\t"
++        "#    mulps   %%xmmB, %%xmmA\n\t"
++        "#    mulps   %%xmmZ, %%xmmB\n\t"
++        "#    # SSE replacement for: pfpnacc %%xmmB, %%xmmA\n\t"
++        "#    xorps   %%xmmPN, %%xmmA\n\t"
++        "#    movaps  %%xmmA, %%xmmZ\n\t"
++        "#    unpcklps %%xmmB, %%xmmA\n\t"
++        "#    unpckhps %%xmmB, %%xmmZ\n\t"
++        "#    movaps  %%xmmZ, %%xmmY\n\t"
++        "#    shufps  $0x44, %%xmmA, %%xmmZ   # b01000100\n\t"
++        "#    shufps  $0xee, %%xmmY, %%xmmA   # b11101110\n\t"
++        "#    addps   %%xmmZ, %%xmmA\n\t"
++        "#    addps   %%xmmA, %%xmmC\n\t"
++        "# A=xmm0, B=xmm2, Z=xmm4\n\t"
++        "# A'=xmm1, B'=xmm3, Z'=xmm5\n\t"
++        "     movaps  16(%[edx]), %%xmm3\n\t"
++        "     movaps  %%xmm0, %%xmm4\n\t"
++        "  xorps   %%xmm1, %%xmm3\n\t"
++        "     mulps   %%xmm2, %%xmm0\n\t"
++        "     movaps  16(%[eax]), %%xmm1\n\t"
++        "     shufps  $0xb1, %%xmm4, %%xmm4   # swap internals\n\t"
++        "     movaps  %%xmm1, %%xmm5\n\t"
++        "     addps   %%xmm0, %%xmm6\n\t"
++        "     mulps   %%xmm3, %%xmm1\n\t"
++        "     shufps  $0xb1, %%xmm5, %%xmm5   # swap internals\n\t"
++        "     addps   %%xmm1, %%xmm6\n\t"
++        "  movaps  0(%[conjugator]), %%xmm1\n\t"
++        "     mulps   %%xmm4, %%xmm2\n\t"
++        "     movaps  32(%[eax]), %%xmm0\n\t"
++        "     addps   %%xmm2, %%xmm7\n\t"
++        "     mulps   %%xmm5, %%xmm3\n\t"
++        "     addl    $32, %[eax]\n\t"
++        "     movaps  32(%[edx]), %%xmm2\n\t"
++        "     addps   %%xmm3, %%xmm7\n\t"
++        "  xorps   %%xmm1, %%xmm2\n\t"
++        "     addl    $32, %[edx]\n\t"
++        ".%=L1_test:\n\t"
++        "     decl    %[ecx]\n\t"
++        "     jge     .%=Loop1\n\t"
++        "     # We've handled the bulk of multiplies up to here.\n\t"
++        "     # Let's sse if original n_2_ccomplex_blocks was odd.\n\t"
++        "     # If so, we've got 2 more taps to do.\n\t"
++        "     movl    0(%[out]), %[ecx]               # n_2_ccomplex_blocks\n\t"
++        "  shrl    $4, %[ecx]\n\t"
++        "     andl    $1, %[ecx]\n\t"
++        "     je      .%=Leven\n\t"
++        "     # The count was odd, do 2 more taps.\n\t"
++        "     # Note that we've already got mm0/mm2 preloaded\n\t"
++        "     # from the main loop.\n\t"
++        "     movaps  %%xmm0, %%xmm4\n\t"
++        "     mulps   %%xmm2, %%xmm0\n\t"
++        "     shufps  $0xb1, %%xmm4, %%xmm4   # swap internals\n\t"
++        "     addps   %%xmm0, %%xmm6\n\t"
++        "     mulps   %%xmm4, %%xmm2\n\t"
++        "     addps   %%xmm2, %%xmm7\n\t"
++        ".%=Leven:\n\t"
++        "     # neg inversor\n\t"
++        "  #movl 8(%%ebp), %[eax] \n\t"
++        "     xorps   %%xmm1, %%xmm1\n\t"
++        "  movl       $0x80000000, (%[out])\n\t"
++        "     movss   (%[out]), %%xmm1\n\t"
++        "     shufps  $0x11, %%xmm1, %%xmm1   # b00010001 # 0 -0 0 -0\n\t"
++        "     # pfpnacc\n\t"
++        "     xorps   %%xmm1, %%xmm6\n\t"
++        "     movaps  %%xmm6, %%xmm2\n\t"
++        "     unpcklps %%xmm7, %%xmm6\n\t"
++        "     unpckhps %%xmm7, %%xmm2\n\t"
++        "     movaps  %%xmm2, %%xmm3\n\t"
++        "     shufps  $0x44, %%xmm6, %%xmm2   # b01000100\n\t"
++        "     shufps  $0xee, %%xmm3, %%xmm6   # b11101110\n\t"
++        "     addps   %%xmm2, %%xmm6\n\t"
++        "                                     # xmm6 = r1 i2 r3 i4\n\t"
++        "     #movl   8(%%ebp), %[eax]                # @result\n\t"
++        "     movhlps %%xmm6, %%xmm4          # xmm4 = r3 i4 ?? ??\n\t"
++        "     addps   %%xmm4, %%xmm6          # xmm6 = r1+r3 i2+i4 ?? ??\n\t"
++        "     movlps  %%xmm6, (%[out])                # store low 2x32 bits (complex) "
++        "to memory\n\t"
++        "     #popl   %%ebp\n\t"
++        :
++        : [eax] "r"(input),
++          [edx] "r"(taps),
++          [ecx] "r"(num_bytes),
++          [out] "r"(result),
++          [conjugator] "r"(conjugator));
++
++    for (; leftovers > 0; leftovers -= 8) {
++        *result += (input[(bound << 1)] * lv_conj(taps[(bound << 1)]));
++    }
+ }
+ #endif /*LV_HAVE_SSE*/
+diff --git a/kernels/volk/volk_32fc_x2_divide_32fc.h b/kernels/volk/volk_32fc_x2_divide_32fc.h
+index 3ce6ede..78c245a 100644
+--- a/kernels/volk/volk_32fc_x2_divide_32fc.h
++++ b/kernels/volk/volk_32fc_x2_divide_32fc.h
+@@ -29,8 +29,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32fc_x2_divide_32fc(lv_32fc_t* cVector, const lv_32fc_t* numeratorVector, const lv_32fc_t* denumeratorVector, unsigned int num_points);
+- * \endcode
++ * void volk_32fc_x2_divide_32fc(lv_32fc_t* cVector, const lv_32fc_t* numeratorVector,
++ * const lv_32fc_t* denumeratorVector, unsigned int num_points); \endcode
+  *
+  * \b Inputs
+  * \li numeratorVector: The numerator complex values.
+@@ -41,7 +41,8 @@
+  * \li outputVector: The output vector complex floats.
+  *
+  * \b Example
+- * divide a complex vector by itself, demonstrating the result should be pretty close to 1+0j.
++ * divide a complex vector by itself, demonstrating the result should be pretty close to
++ * 1+0j.
+  *
+  * \code
+  *   int N = 10;
+@@ -71,17 +72,18 @@
+ #ifndef INCLUDED_volk_32fc_x2_divide_32fc_u_H
+ #define INCLUDED_volk_32fc_x2_divide_32fc_u_H
++#include <float.h>
+ #include <inttypes.h>
+ #include <volk/volk_complex.h>
+-#include <float.h>
+ #ifdef LV_HAVE_SSE3
+ #include <pmmintrin.h>
+ #include <volk/volk_sse3_intrinsics.h>
+-static inline void
+-volk_32fc_x2_divide_32fc_u_sse3(lv_32fc_t* cVector, const lv_32fc_t* numeratorVector,
+-                                            const lv_32fc_t* denumeratorVector, unsigned int num_points)
++static inline void volk_32fc_x2_divide_32fc_u_sse3(lv_32fc_t* cVector,
++                                                   const lv_32fc_t* numeratorVector,
++                                                   const lv_32fc_t* denumeratorVector,
++                                                   unsigned int num_points)
+ {
+     /*
+      * we'll do the "classical"
+@@ -89,44 +91,46 @@ volk_32fc_x2_divide_32fc_u_sse3(lv_32fc_t* cVector, const lv_32fc_t* numeratorVe
+      * --- = -------
+      *  b     |b|^2
+      * */
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  __m128 num01, num23, den01, den23, norm, result;
+-  lv_32fc_t* c = cVector;
+-  const lv_32fc_t* a = numeratorVector;
+-  const lv_32fc_t* b = denumeratorVector;
+-
+-  for(; number < quarterPoints; number++){
+-    num01 = _mm_loadu_ps((float*) a);    // first pair
+-    den01 = _mm_loadu_ps((float*) b);    // first pair
+-    num01 = _mm_complexconjugatemul_ps(num01, den01);   // a conj(b)
+-    a += 2;
+-    b += 2;
+-
+-    num23 = _mm_loadu_ps((float*) a);    // second pair
+-    den23 = _mm_loadu_ps((float*) b);    // second pair
+-    num23 = _mm_complexconjugatemul_ps(num23, den23);   // a conj(b)
+-    a += 2;
+-    b += 2;
+-
+-    norm = _mm_magnitudesquared_ps_sse3(den01, den23);
+-    den01 = _mm_unpacklo_ps(norm,norm);
+-    den23 = _mm_unpackhi_ps(norm,norm);
+-
+-    result = _mm_div_ps(num01, den01);
+-    _mm_storeu_ps((float*) c, result); // Store the results back into the C container
+-    c += 2;
+-    result = _mm_div_ps(num23, den23);
+-    _mm_storeu_ps((float*) c, result); // Store the results back into the C container
+-    c += 2;
+-  }
+-
+-  number *= 4;
+-  for(;number < num_points; number++){
+-    *c = (*a) / (*b);
+-    a++; b++; c++;
+-  }
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++
++    __m128 num01, num23, den01, den23, norm, result;
++    lv_32fc_t* c = cVector;
++    const lv_32fc_t* a = numeratorVector;
++    const lv_32fc_t* b = denumeratorVector;
++
++    for (; number < quarterPoints; number++) {
++        num01 = _mm_loadu_ps((float*)a);                  // first pair
++        den01 = _mm_loadu_ps((float*)b);                  // first pair
++        num01 = _mm_complexconjugatemul_ps(num01, den01); // a conj(b)
++        a += 2;
++        b += 2;
++
++        num23 = _mm_loadu_ps((float*)a);                  // second pair
++        den23 = _mm_loadu_ps((float*)b);                  // second pair
++        num23 = _mm_complexconjugatemul_ps(num23, den23); // a conj(b)
++        a += 2;
++        b += 2;
++
++        norm = _mm_magnitudesquared_ps_sse3(den01, den23);
++        den01 = _mm_unpacklo_ps(norm, norm);
++        den23 = _mm_unpackhi_ps(norm, norm);
++
++        result = _mm_div_ps(num01, den01);
++        _mm_storeu_ps((float*)c, result); // Store the results back into the C container
++        c += 2;
++        result = _mm_div_ps(num23, den23);
++        _mm_storeu_ps((float*)c, result); // Store the results back into the C container
++        c += 2;
++    }
++
++    number *= 4;
++    for (; number < num_points; number++) {
++        *c = (*a) / (*b);
++        a++;
++        b++;
++        c++;
++    }
+ }
+ #endif /* LV_HAVE_SSE3 */
+@@ -135,9 +139,10 @@ volk_32fc_x2_divide_32fc_u_sse3(lv_32fc_t* cVector, const lv_32fc_t* numeratorVe
+ #include <immintrin.h>
+ #include <volk/volk_avx_intrinsics.h>
+-static inline void
+-volk_32fc_x2_divide_32fc_u_avx(lv_32fc_t* cVector, const lv_32fc_t* numeratorVector,
+-                                            const lv_32fc_t* denumeratorVector, unsigned int num_points)
++static inline void volk_32fc_x2_divide_32fc_u_avx(lv_32fc_t* cVector,
++                                                  const lv_32fc_t* numeratorVector,
++                                                  const lv_32fc_t* denumeratorVector,
++                                                  unsigned int num_points)
+ {
+     /*
+      * we'll do the "classical"
+@@ -153,17 +158,21 @@ volk_32fc_x2_divide_32fc_u_avx(lv_32fc_t* cVector, const lv_32fc_t* numeratorVec
+     const lv_32fc_t* a = numeratorVector;
+     const lv_32fc_t* b = denumeratorVector;
+-    for(; number < quarterPoints; number++){
+-        num = _mm256_loadu_ps((float*) a); // Load the ar + ai, br + bi ... as ar,ai,br,bi ...
+-        denum = _mm256_loadu_ps((float*) b); // Load the cr + ci, dr + di ... as cr,ci,dr,di ...
++    for (; number < quarterPoints; number++) {
++        num = _mm256_loadu_ps(
++            (float*)a); // Load the ar + ai, br + bi ... as ar,ai,br,bi ...
++        denum = _mm256_loadu_ps(
++            (float*)b); // Load the cr + ci, dr + di ... as cr,ci,dr,di ...
+         mul_conj = _mm256_complexconjugatemul_ps(num, denum);
+         sq = _mm256_mul_ps(denum, denum); // Square the values
+-        mag_sq_un = _mm256_hadd_ps(sq,sq); // obtain the actual squared magnitude, although out of order
++        mag_sq_un = _mm256_hadd_ps(
++            sq, sq); // obtain the actual squared magnitude, although out of order
+         mag_sq = _mm256_permute_ps(mag_sq_un, 0xd8); // I order them
+-        // best guide I found on using these functions: https://software.intel.com/sites/landingpage/IntrinsicsGuide/#expand=2738,2059,2738,2738,3875,3874,3875,2738,3870
+-        div = _mm256_div_ps(mul_conj,mag_sq);
++        // best guide I found on using these functions:
++        // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#expand=2738,2059,2738,2738,3875,3874,3875,2738,3870
++        div = _mm256_div_ps(mul_conj, mag_sq);
+-        _mm256_storeu_ps((float*) c, div); // Store the results back into the C container
++        _mm256_storeu_ps((float*)c, div); // Store the results back into the C container
+         a += 4;
+         b += 4;
+@@ -172,51 +181,51 @@ volk_32fc_x2_divide_32fc_u_avx(lv_32fc_t* cVector, const lv_32fc_t* numeratorVec
+     number = quarterPoints * 4;
+-    for(; number < num_points; number++){
++    for (; number < num_points; number++) {
+         *c++ = (*a++) / (*b++);
+     }
+-
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32fc_x2_divide_32fc_generic(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                                             const lv_32fc_t* bVector, unsigned int num_points)
++static inline void volk_32fc_x2_divide_32fc_generic(lv_32fc_t* cVector,
++                                                    const lv_32fc_t* aVector,
++                                                    const lv_32fc_t* bVector,
++                                                    unsigned int num_points)
+ {
+-  lv_32fc_t* cPtr = cVector;
+-  const lv_32fc_t* aPtr = aVector;
+-  const lv_32fc_t* bPtr=  bVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    *cPtr++ = (*aPtr++) / (*bPtr++);
+-  }
++    lv_32fc_t* cPtr = cVector;
++    const lv_32fc_t* aPtr = aVector;
++    const lv_32fc_t* bPtr = bVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) / (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+-
+ #endif /* INCLUDED_volk_32fc_x2_divide_32fc_u_H */
+ #ifndef INCLUDED_volk_32fc_x2_divide_32fc_a_H
+ #define INCLUDED_volk_32fc_x2_divide_32fc_a_H
++#include <float.h>
+ #include <inttypes.h>
+ #include <stdio.h>
+ #include <volk/volk_complex.h>
+-#include <float.h>
+ #ifdef LV_HAVE_SSE3
+ #include <pmmintrin.h>
+ #include <volk/volk_sse3_intrinsics.h>
+-static inline void
+-volk_32fc_x2_divide_32fc_a_sse3(lv_32fc_t* cVector, const lv_32fc_t* numeratorVector,
+-                                            const lv_32fc_t* denumeratorVector, unsigned int num_points)
++static inline void volk_32fc_x2_divide_32fc_a_sse3(lv_32fc_t* cVector,
++                                                   const lv_32fc_t* numeratorVector,
++                                                   const lv_32fc_t* denumeratorVector,
++                                                   unsigned int num_points)
+ {
+     /*
+      * we'll do the "classical"
+@@ -224,45 +233,47 @@ volk_32fc_x2_divide_32fc_a_sse3(lv_32fc_t* cVector, const lv_32fc_t* numeratorVe
+      * --- = -------
+      *  b     |b|^2
+      * */
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  __m128 num01, num23, den01, den23, norm, result;
+-  lv_32fc_t* c = cVector;
+-  const lv_32fc_t* a = numeratorVector;
+-  const lv_32fc_t* b = denumeratorVector;
+-
+-  for(; number < quarterPoints; number++){
+-    num01 = _mm_load_ps((float*) a);    // first pair
+-    den01 = _mm_load_ps((float*) b);    // first pair
+-    num01 = _mm_complexconjugatemul_ps(num01, den01);   // a conj(b)
+-    a += 2;
+-    b += 2;
+-
+-    num23 = _mm_load_ps((float*) a);    // second pair
+-    den23 = _mm_load_ps((float*) b);    // second pair
+-    num23 = _mm_complexconjugatemul_ps(num23, den23);   // a conj(b)
+-    a += 2;
+-    b += 2;
+-
+-    norm = _mm_magnitudesquared_ps_sse3(den01, den23);
+-
+-    den01 = _mm_unpacklo_ps(norm,norm); // select the lower floats twice
+-    den23 = _mm_unpackhi_ps(norm,norm); // select the upper floats twice
+-
+-    result = _mm_div_ps(num01, den01);
+-    _mm_store_ps((float*) c, result); // Store the results back into the C container
+-    c += 2;
+-    result = _mm_div_ps(num23, den23);
+-    _mm_store_ps((float*) c, result); // Store the results back into the C container
+-    c += 2;
+-  }
+-
+-  number *= 4;
+-  for(;number < num_points; number++){
+-    *c = (*a) / (*b);
+-    a++; b++; c++;
+-  }
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++
++    __m128 num01, num23, den01, den23, norm, result;
++    lv_32fc_t* c = cVector;
++    const lv_32fc_t* a = numeratorVector;
++    const lv_32fc_t* b = denumeratorVector;
++
++    for (; number < quarterPoints; number++) {
++        num01 = _mm_load_ps((float*)a);                   // first pair
++        den01 = _mm_load_ps((float*)b);                   // first pair
++        num01 = _mm_complexconjugatemul_ps(num01, den01); // a conj(b)
++        a += 2;
++        b += 2;
++
++        num23 = _mm_load_ps((float*)a);                   // second pair
++        den23 = _mm_load_ps((float*)b);                   // second pair
++        num23 = _mm_complexconjugatemul_ps(num23, den23); // a conj(b)
++        a += 2;
++        b += 2;
++
++        norm = _mm_magnitudesquared_ps_sse3(den01, den23);
++
++        den01 = _mm_unpacklo_ps(norm, norm); // select the lower floats twice
++        den23 = _mm_unpackhi_ps(norm, norm); // select the upper floats twice
++
++        result = _mm_div_ps(num01, den01);
++        _mm_store_ps((float*)c, result); // Store the results back into the C container
++        c += 2;
++        result = _mm_div_ps(num23, den23);
++        _mm_store_ps((float*)c, result); // Store the results back into the C container
++        c += 2;
++    }
++
++    number *= 4;
++    for (; number < num_points; number++) {
++        *c = (*a) / (*b);
++        a++;
++        b++;
++        c++;
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+@@ -270,9 +281,10 @@ volk_32fc_x2_divide_32fc_a_sse3(lv_32fc_t* cVector, const lv_32fc_t* numeratorVe
+ #include <immintrin.h>
+ #include <volk/volk_avx_intrinsics.h>
+-static inline void
+-volk_32fc_x2_divide_32fc_a_avx(lv_32fc_t* cVector, const lv_32fc_t* numeratorVector,
+-                                            const lv_32fc_t* denumeratorVector, unsigned int num_points)
++static inline void volk_32fc_x2_divide_32fc_a_avx(lv_32fc_t* cVector,
++                                                  const lv_32fc_t* numeratorVector,
++                                                  const lv_32fc_t* denumeratorVector,
++                                                  unsigned int num_points)
+ {
+     /*
+      * we'll do the "classical"
+@@ -288,17 +300,21 @@ volk_32fc_x2_divide_32fc_a_avx(lv_32fc_t* cVector, const lv_32fc_t* numeratorVec
+     const lv_32fc_t* a = numeratorVector;
+     const lv_32fc_t* b = denumeratorVector;
+-    for(; number < quarterPoints; number++){
+-        num = _mm256_load_ps((float*) a); // Load the ar + ai, br + bi ... as ar,ai,br,bi ...
+-        denum = _mm256_load_ps((float*) b); // Load the cr + ci, dr + di ... as cr,ci,dr,di ...
++    for (; number < quarterPoints; number++) {
++        num =
++            _mm256_load_ps((float*)a); // Load the ar + ai, br + bi ... as ar,ai,br,bi ...
++        denum =
++            _mm256_load_ps((float*)b); // Load the cr + ci, dr + di ... as cr,ci,dr,di ...
+         mul_conj = _mm256_complexconjugatemul_ps(num, denum);
+         sq = _mm256_mul_ps(denum, denum); // Square the values
+-        mag_sq_un = _mm256_hadd_ps(sq,sq); // obtain the actual squared magnitude, although out of order
++        mag_sq_un = _mm256_hadd_ps(
++            sq, sq); // obtain the actual squared magnitude, although out of order
+         mag_sq = _mm256_permute_ps(mag_sq_un, 0xd8); // I order them
+-        // best guide I found on using these functions: https://software.intel.com/sites/landingpage/IntrinsicsGuide/#expand=2738,2059,2738,2738,3875,3874,3875,2738,3870
+-        div = _mm256_div_ps(mul_conj,mag_sq);
++        // best guide I found on using these functions:
++        // https://software.intel.com/sites/landingpage/IntrinsicsGuide/#expand=2738,2059,2738,2738,3875,3874,3875,2738,3870
++        div = _mm256_div_ps(mul_conj, mag_sq);
+-        _mm256_store_ps((float*) c, div); // Store the results back into the C container
++        _mm256_store_ps((float*)c, div); // Store the results back into the C container
+         a += 4;
+         b += 4;
+@@ -307,78 +323,78 @@ volk_32fc_x2_divide_32fc_a_avx(lv_32fc_t* cVector, const lv_32fc_t* numeratorVec
+     number = quarterPoints * 4;
+-    for(; number < num_points; number++){
++    for (; number < num_points; number++) {
+         *c++ = (*a++) / (*b++);
+     }
+-
+-
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_32fc_x2_divide_32fc_neon(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                            const lv_32fc_t* bVector, unsigned int num_points)
++static inline void volk_32fc_x2_divide_32fc_neon(lv_32fc_t* cVector,
++                                                 const lv_32fc_t* aVector,
++                                                 const lv_32fc_t* bVector,
++                                                 unsigned int num_points)
+ {
+-  lv_32fc_t* cPtr = cVector;
+-  const lv_32fc_t* aPtr = aVector;
+-  const lv_32fc_t* bPtr = bVector;
+-
+-  float32x4x2_t aVal, bVal, cVal;
+-  float32x4_t bAbs, bAbsInv;
+-
+-  const unsigned int quarterPoints = num_points / 4;
+-  unsigned int number = 0;
+-  for(; number < quarterPoints; number++){
+-    aVal = vld2q_f32((const float*)(aPtr));
+-    bVal = vld2q_f32((const float*)(bPtr));
+-    aPtr += 4;
+-    bPtr += 4;
+-    __VOLK_PREFETCH(aPtr+4);
+-    __VOLK_PREFETCH(bPtr+4);
+-
+-    bAbs = vmulq_f32(      bVal.val[0], bVal.val[0]);
+-    bAbs = vmlaq_f32(bAbs, bVal.val[1], bVal.val[1]);
+-
+-    bAbsInv = vrecpeq_f32(bAbs);
+-    bAbsInv = vmulq_f32(bAbsInv, vrecpsq_f32(bAbsInv, bAbs));
+-    bAbsInv = vmulq_f32(bAbsInv, vrecpsq_f32(bAbsInv, bAbs));
+-
+-    cVal.val[0] = vmulq_f32(             aVal.val[0], bVal.val[0]);
+-    cVal.val[0] = vmlaq_f32(cVal.val[0], aVal.val[1], bVal.val[1]);
+-    cVal.val[0] = vmulq_f32(cVal.val[0], bAbsInv);
+-
+-    cVal.val[1] = vmulq_f32(             aVal.val[1], bVal.val[0]);
+-    cVal.val[1] = vmlsq_f32(cVal.val[1], aVal.val[0], bVal.val[1]);
+-    cVal.val[1] = vmulq_f32(cVal.val[1], bAbsInv);
+-
+-    vst2q_f32((float*)(cPtr), cVal);
+-    cPtr += 4;
+-  }
+-
+-  for(number = quarterPoints * 4; number < num_points; number++){
+-    *cPtr++ = (*aPtr++) / (*bPtr++);
+-  }
++    lv_32fc_t* cPtr = cVector;
++    const lv_32fc_t* aPtr = aVector;
++    const lv_32fc_t* bPtr = bVector;
++
++    float32x4x2_t aVal, bVal, cVal;
++    float32x4_t bAbs, bAbsInv;
++
++    const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    for (; number < quarterPoints; number++) {
++        aVal = vld2q_f32((const float*)(aPtr));
++        bVal = vld2q_f32((const float*)(bPtr));
++        aPtr += 4;
++        bPtr += 4;
++        __VOLK_PREFETCH(aPtr + 4);
++        __VOLK_PREFETCH(bPtr + 4);
++
++        bAbs = vmulq_f32(bVal.val[0], bVal.val[0]);
++        bAbs = vmlaq_f32(bAbs, bVal.val[1], bVal.val[1]);
++
++        bAbsInv = vrecpeq_f32(bAbs);
++        bAbsInv = vmulq_f32(bAbsInv, vrecpsq_f32(bAbsInv, bAbs));
++        bAbsInv = vmulq_f32(bAbsInv, vrecpsq_f32(bAbsInv, bAbs));
++
++        cVal.val[0] = vmulq_f32(aVal.val[0], bVal.val[0]);
++        cVal.val[0] = vmlaq_f32(cVal.val[0], aVal.val[1], bVal.val[1]);
++        cVal.val[0] = vmulq_f32(cVal.val[0], bAbsInv);
++
++        cVal.val[1] = vmulq_f32(aVal.val[1], bVal.val[0]);
++        cVal.val[1] = vmlsq_f32(cVal.val[1], aVal.val[0], bVal.val[1]);
++        cVal.val[1] = vmulq_f32(cVal.val[1], bAbsInv);
++
++        vst2q_f32((float*)(cPtr), cVal);
++        cPtr += 4;
++    }
++
++    for (number = quarterPoints * 4; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) / (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32fc_x2_divide_32fc_a_generic(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                                               const lv_32fc_t* bVector, unsigned int num_points)
++static inline void volk_32fc_x2_divide_32fc_a_generic(lv_32fc_t* cVector,
++                                                      const lv_32fc_t* aVector,
++                                                      const lv_32fc_t* bVector,
++                                                      unsigned int num_points)
+ {
+-  lv_32fc_t* cPtr = cVector;
+-  const lv_32fc_t* aPtr = aVector;
+-  const lv_32fc_t* bPtr=  bVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    *cPtr++ = (*aPtr++)  / (*bPtr++);
+-  }
++    lv_32fc_t* cPtr = cVector;
++    const lv_32fc_t* aPtr = aVector;
++    const lv_32fc_t* bPtr = bVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) / (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+diff --git a/kernels/volk/volk_32fc_x2_dot_prod_32fc.h b/kernels/volk/volk_32fc_x2_dot_prod_32fc.h
+index f4a4469..b0b7fee 100644
+--- a/kernels/volk/volk_32fc_x2_dot_prod_32fc.h
++++ b/kernels/volk/volk_32fc_x2_dot_prod_32fc.h
+@@ -33,8 +33,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32fc_x2_dot_prod_32fc(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points)
+- * \endcode
++ * void volk_32fc_x2_dot_prod_32fc(lv_32fc_t* result, const lv_32fc_t* input, const
++ * lv_32fc_t* taps, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li input: vector of complex floats.
+@@ -58,236 +58,246 @@
+ #ifndef INCLUDED_volk_32fc_x2_dot_prod_32fc_u_H
+ #define INCLUDED_volk_32fc_x2_dot_prod_32fc_u_H
+-#include <volk/volk_common.h>
+-#include <volk/volk_complex.h>
+ #include <stdio.h>
+ #include <string.h>
++#include <volk/volk_common.h>
++#include <volk/volk_complex.h>
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32fc_x2_dot_prod_32fc_generic(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points) {
++static inline void volk_32fc_x2_dot_prod_32fc_generic(lv_32fc_t* result,
++                                                      const lv_32fc_t* input,
++                                                      const lv_32fc_t* taps,
++                                                      unsigned int num_points)
++{
+-  float * res = (float*) result;
+-  float * in = (float*) input;
+-  float * tp = (float*) taps;
+-  unsigned int n_2_ccomplex_blocks = num_points/2;
++    float* res = (float*)result;
++    float* in = (float*)input;
++    float* tp = (float*)taps;
++    unsigned int n_2_ccomplex_blocks = num_points / 2;
+-  float sum0[2] = {0,0};
+-  float sum1[2] = {0,0};
+-  unsigned int i = 0;
++    float sum0[2] = { 0, 0 };
++    float sum1[2] = { 0, 0 };
++    unsigned int i = 0;
+-  for(i = 0; i < n_2_ccomplex_blocks; ++i) {
+-    sum0[0] += in[0] * tp[0] - in[1] * tp[1];
+-    sum0[1] += in[0] * tp[1] + in[1] * tp[0];
+-    sum1[0] += in[2] * tp[2] - in[3] * tp[3];
+-    sum1[1] += in[2] * tp[3] + in[3] * tp[2];
++    for (i = 0; i < n_2_ccomplex_blocks; ++i) {
++        sum0[0] += in[0] * tp[0] - in[1] * tp[1];
++        sum0[1] += in[0] * tp[1] + in[1] * tp[0];
++        sum1[0] += in[2] * tp[2] - in[3] * tp[3];
++        sum1[1] += in[2] * tp[3] + in[3] * tp[2];
+-    in += 4;
+-    tp += 4;
+-  }
++        in += 4;
++        tp += 4;
++    }
+-  res[0] = sum0[0] + sum1[0];
+-  res[1] = sum0[1] + sum1[1];
++    res[0] = sum0[0] + sum1[0];
++    res[1] = sum0[1] + sum1[1];
+-  // Cleanup if we had an odd number of points
+-  if (num_points & 1) {
+-    *result += input[num_points - 1] * taps[num_points - 1];
+-  }
++    // Cleanup if we had an odd number of points
++    if (num_points & 1) {
++        *result += input[num_points - 1] * taps[num_points - 1];
++    }
+ }
+ #endif /*LV_HAVE_GENERIC*/
+-
+ #if LV_HAVE_SSE && LV_HAVE_64
+-static inline void volk_32fc_x2_dot_prod_32fc_u_sse_64(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points) {
+-
+-  const unsigned int num_bytes = num_points*8;
+-  unsigned int isodd = num_points & 1;
+-
+-  __VOLK_ASM
+-    (
+-     "#  ccomplex_dotprod_generic (float* result, const float *input,\n\t"
+-     "#                         const float *taps, unsigned num_bytes)\n\t"
+-     "#    float sum0 = 0;\n\t"
+-     "#    float sum1 = 0;\n\t"
+-     "#    float sum2 = 0;\n\t"
+-     "#    float sum3 = 0;\n\t"
+-     "#    do {\n\t"
+-     "#      sum0 += input[0] * taps[0] - input[1] * taps[1];\n\t"
+-     "#      sum1 += input[0] * taps[1] + input[1] * taps[0];\n\t"
+-     "#      sum2 += input[2] * taps[2] - input[3] * taps[3];\n\t"
+-     "#      sum3 += input[2] * taps[3] + input[3] * taps[2];\n\t"
+-     "#      input += 4;\n\t"
+-     "#      taps += 4;  \n\t"
+-     "#    } while (--n_2_ccomplex_blocks != 0);\n\t"
+-     "#    result[0] = sum0 + sum2;\n\t"
+-     "#    result[1] = sum1 + sum3;\n\t"
+-     "# TODO: prefetch and better scheduling\n\t"
+-     "  xor    %%r9,  %%r9\n\t"
+-     "  xor    %%r10, %%r10\n\t"
+-     "  movq   %%rcx, %%rax\n\t"
+-     "  movq   %%rcx, %%r8\n\t"
+-     "  movq   %[rsi],  %%r9\n\t"
+-     "  movq   %[rdx], %%r10\n\t"
+-     "        xorps   %%xmm6, %%xmm6          # zero accumulators\n\t"
+-     "        movups  0(%%r9), %%xmm0\n\t"
+-     "        xorps   %%xmm7, %%xmm7          # zero accumulators\n\t"
+-     "        movups  0(%%r10), %%xmm2\n\t"
+-     "        shr     $5, %%rax               # rax = n_2_ccomplex_blocks / 2\n\t"
+-     "  shr     $4, %%r8\n\t"
+-     "        jmp     .%=L1_test\n\t"
+-     "        # 4 taps / loop\n\t"
+-     "        # something like ?? cycles / loop\n\t"
+-     ".%=Loop1:       \n\t"
+-     "# complex prod: C += A * B,  w/ temp Z & Y (or B), xmmPN=$0x8000000080000000\n\t"
+-     "#       movups  (%%r9), %%xmmA\n\t"
+-     "#       movups  (%%r10), %%xmmB\n\t"
+-     "#       movups  %%xmmA, %%xmmZ\n\t"
+-     "#       shufps  $0xb1, %%xmmZ, %%xmmZ   # swap internals\n\t"
+-     "#       mulps   %%xmmB, %%xmmA\n\t"
+-     "#       mulps   %%xmmZ, %%xmmB\n\t"
+-     "#       # SSE replacement for: pfpnacc %%xmmB, %%xmmA\n\t"
+-     "#       xorps   %%xmmPN, %%xmmA\n\t"
+-     "#       movups  %%xmmA, %%xmmZ\n\t"
+-     "#       unpcklps %%xmmB, %%xmmA\n\t"
+-     "#       unpckhps %%xmmB, %%xmmZ\n\t"
+-     "#       movups  %%xmmZ, %%xmmY\n\t"
+-     "#       shufps  $0x44, %%xmmA, %%xmmZ   # b01000100\n\t"
+-     "#       shufps  $0xee, %%xmmY, %%xmmA   # b11101110\n\t"
+-     "#       addps   %%xmmZ, %%xmmA\n\t"
+-     "#       addps   %%xmmA, %%xmmC\n\t"
+-     "# A=xmm0, B=xmm2, Z=xmm4\n\t"
+-     "# A'=xmm1, B'=xmm3, Z'=xmm5\n\t"
+-     "        movups  16(%%r9), %%xmm1\n\t"
+-     "        movups  %%xmm0, %%xmm4\n\t"
+-     "        mulps   %%xmm2, %%xmm0\n\t"
+-     "        shufps  $0xb1, %%xmm4, %%xmm4   # swap internals\n\t"
+-     "        movups  16(%%r10), %%xmm3\n\t"
+-     "        movups  %%xmm1, %%xmm5\n\t"
+-     "        addps   %%xmm0, %%xmm6\n\t"
+-     "        mulps   %%xmm3, %%xmm1\n\t"
+-     "        shufps  $0xb1, %%xmm5, %%xmm5   # swap internals\n\t"
+-     "        addps   %%xmm1, %%xmm6\n\t"
+-     "        mulps   %%xmm4, %%xmm2\n\t"
+-     "        movups  32(%%r9), %%xmm0\n\t"
+-     "        addps   %%xmm2, %%xmm7\n\t"
+-     "        mulps   %%xmm5, %%xmm3\n\t"
+-     "        add     $32, %%r9\n\t"
+-     "        movups  32(%%r10), %%xmm2\n\t"
+-     "        addps   %%xmm3, %%xmm7\n\t"
+-     "        add     $32, %%r10\n\t"
+-     ".%=L1_test:\n\t"
+-     "        dec     %%rax\n\t"
+-     "        jge     .%=Loop1\n\t"
+-     "        # We've handled the bulk of multiplies up to here.\n\t"
+-     "        # Let's sse if original n_2_ccomplex_blocks was odd.\n\t"
+-     "        # If so, we've got 2 more taps to do.\n\t"
+-     "        and     $1, %%r8\n\t"
+-     "        je      .%=Leven\n\t"
+-     "        # The count was odd, do 2 more taps.\n\t"
+-     "        # Note that we've already got mm0/mm2 preloaded\n\t"
+-     "        # from the main loop.\n\t"
+-     "        movups  %%xmm0, %%xmm4\n\t"
+-     "        mulps   %%xmm2, %%xmm0\n\t"
+-     "        shufps  $0xb1, %%xmm4, %%xmm4   # swap internals\n\t"
+-     "        addps   %%xmm0, %%xmm6\n\t"
+-     "        mulps   %%xmm4, %%xmm2\n\t"
+-     "        addps   %%xmm2, %%xmm7\n\t"
+-     ".%=Leven:\n\t"
+-     "        # neg inversor\n\t"
+-     "        xorps   %%xmm1, %%xmm1\n\t"
+-     "        mov     $0x80000000, %%r9\n\t"
+-     "        movd    %%r9, %%xmm1\n\t"
+-     "        shufps  $0x11, %%xmm1, %%xmm1   # b00010001 # 0 -0 0 -0\n\t"
+-     "        # pfpnacc\n\t"
+-     "        xorps   %%xmm1, %%xmm6\n\t"
+-     "        movups  %%xmm6, %%xmm2\n\t"
+-     "        unpcklps %%xmm7, %%xmm6\n\t"
+-     "        unpckhps %%xmm7, %%xmm2\n\t"
+-     "        movups  %%xmm2, %%xmm3\n\t"
+-     "        shufps  $0x44, %%xmm6, %%xmm2   # b01000100\n\t"
+-     "        shufps  $0xee, %%xmm3, %%xmm6   # b11101110\n\t"
+-     "        addps   %%xmm2, %%xmm6\n\t"
+-     "                                        # xmm6 = r1 i2 r3 i4\n\t"
+-     "        movhlps %%xmm6, %%xmm4          # xmm4 = r3 i4 ?? ??\n\t"
+-     "        addps   %%xmm4, %%xmm6          # xmm6 = r1+r3 i2+i4 ?? ??\n\t"
+-     "        movlps  %%xmm6, (%[rdi])                # store low 2x32 bits (complex) to memory\n\t"
+-     :
+-     :[rsi] "r" (input), [rdx] "r" (taps), "c" (num_bytes), [rdi] "r" (result)
+-     :"rax", "r8", "r9", "r10"
+-     );
+-
+-
+-  if(isodd) {
+-    *result += input[num_points - 1] * taps[num_points - 1];
+-  }
+-
+-  return;
++static inline void volk_32fc_x2_dot_prod_32fc_u_sse_64(lv_32fc_t* result,
++                                                       const lv_32fc_t* input,
++                                                       const lv_32fc_t* taps,
++                                                       unsigned int num_points)
++{
++
++    const unsigned int num_bytes = num_points * 8;
++    unsigned int isodd = num_points & 1;
++
++    __VOLK_ASM(
++        "#  ccomplex_dotprod_generic (float* result, const float *input,\n\t"
++        "#                         const float *taps, unsigned num_bytes)\n\t"
++        "#    float sum0 = 0;\n\t"
++        "#    float sum1 = 0;\n\t"
++        "#    float sum2 = 0;\n\t"
++        "#    float sum3 = 0;\n\t"
++        "#    do {\n\t"
++        "#      sum0 += input[0] * taps[0] - input[1] * taps[1];\n\t"
++        "#      sum1 += input[0] * taps[1] + input[1] * taps[0];\n\t"
++        "#      sum2 += input[2] * taps[2] - input[3] * taps[3];\n\t"
++        "#      sum3 += input[2] * taps[3] + input[3] * taps[2];\n\t"
++        "#      input += 4;\n\t"
++        "#      taps += 4;  \n\t"
++        "#    } while (--n_2_ccomplex_blocks != 0);\n\t"
++        "#    result[0] = sum0 + sum2;\n\t"
++        "#    result[1] = sum1 + sum3;\n\t"
++        "# TODO: prefetch and better scheduling\n\t"
++        "  xor    %%r9,  %%r9\n\t"
++        "  xor    %%r10, %%r10\n\t"
++        "  movq   %%rcx, %%rax\n\t"
++        "  movq   %%rcx, %%r8\n\t"
++        "  movq   %[rsi],  %%r9\n\t"
++        "  movq   %[rdx], %%r10\n\t"
++        "     xorps   %%xmm6, %%xmm6          # zero accumulators\n\t"
++        "     movups  0(%%r9), %%xmm0\n\t"
++        "     xorps   %%xmm7, %%xmm7          # zero accumulators\n\t"
++        "     movups  0(%%r10), %%xmm2\n\t"
++        "     shr     $5, %%rax               # rax = n_2_ccomplex_blocks / 2\n\t"
++        "  shr     $4, %%r8\n\t"
++        "     jmp     .%=L1_test\n\t"
++        "     # 4 taps / loop\n\t"
++        "     # something like ?? cycles / loop\n\t"
++        ".%=Loop1:    \n\t"
++        "# complex prod: C += A * B,  w/ temp Z & Y (or B), xmmPN=$0x8000000080000000\n\t"
++        "#    movups  (%%r9), %%xmmA\n\t"
++        "#    movups  (%%r10), %%xmmB\n\t"
++        "#    movups  %%xmmA, %%xmmZ\n\t"
++        "#    shufps  $0xb1, %%xmmZ, %%xmmZ   # swap internals\n\t"
++        "#    mulps   %%xmmB, %%xmmA\n\t"
++        "#    mulps   %%xmmZ, %%xmmB\n\t"
++        "#    # SSE replacement for: pfpnacc %%xmmB, %%xmmA\n\t"
++        "#    xorps   %%xmmPN, %%xmmA\n\t"
++        "#    movups  %%xmmA, %%xmmZ\n\t"
++        "#    unpcklps %%xmmB, %%xmmA\n\t"
++        "#    unpckhps %%xmmB, %%xmmZ\n\t"
++        "#    movups  %%xmmZ, %%xmmY\n\t"
++        "#    shufps  $0x44, %%xmmA, %%xmmZ   # b01000100\n\t"
++        "#    shufps  $0xee, %%xmmY, %%xmmA   # b11101110\n\t"
++        "#    addps   %%xmmZ, %%xmmA\n\t"
++        "#    addps   %%xmmA, %%xmmC\n\t"
++        "# A=xmm0, B=xmm2, Z=xmm4\n\t"
++        "# A'=xmm1, B'=xmm3, Z'=xmm5\n\t"
++        "     movups  16(%%r9), %%xmm1\n\t"
++        "     movups  %%xmm0, %%xmm4\n\t"
++        "     mulps   %%xmm2, %%xmm0\n\t"
++        "     shufps  $0xb1, %%xmm4, %%xmm4   # swap internals\n\t"
++        "     movups  16(%%r10), %%xmm3\n\t"
++        "     movups  %%xmm1, %%xmm5\n\t"
++        "     addps   %%xmm0, %%xmm6\n\t"
++        "     mulps   %%xmm3, %%xmm1\n\t"
++        "     shufps  $0xb1, %%xmm5, %%xmm5   # swap internals\n\t"
++        "     addps   %%xmm1, %%xmm6\n\t"
++        "     mulps   %%xmm4, %%xmm2\n\t"
++        "     movups  32(%%r9), %%xmm0\n\t"
++        "     addps   %%xmm2, %%xmm7\n\t"
++        "     mulps   %%xmm5, %%xmm3\n\t"
++        "     add     $32, %%r9\n\t"
++        "     movups  32(%%r10), %%xmm2\n\t"
++        "     addps   %%xmm3, %%xmm7\n\t"
++        "     add     $32, %%r10\n\t"
++        ".%=L1_test:\n\t"
++        "     dec     %%rax\n\t"
++        "     jge     .%=Loop1\n\t"
++        "     # We've handled the bulk of multiplies up to here.\n\t"
++        "     # Let's sse if original n_2_ccomplex_blocks was odd.\n\t"
++        "     # If so, we've got 2 more taps to do.\n\t"
++        "     and     $1, %%r8\n\t"
++        "     je      .%=Leven\n\t"
++        "     # The count was odd, do 2 more taps.\n\t"
++        "     # Note that we've already got mm0/mm2 preloaded\n\t"
++        "     # from the main loop.\n\t"
++        "     movups  %%xmm0, %%xmm4\n\t"
++        "     mulps   %%xmm2, %%xmm0\n\t"
++        "     shufps  $0xb1, %%xmm4, %%xmm4   # swap internals\n\t"
++        "     addps   %%xmm0, %%xmm6\n\t"
++        "     mulps   %%xmm4, %%xmm2\n\t"
++        "     addps   %%xmm2, %%xmm7\n\t"
++        ".%=Leven:\n\t"
++        "     # neg inversor\n\t"
++        "     xorps   %%xmm1, %%xmm1\n\t"
++        "     mov     $0x80000000, %%r9\n\t"
++        "     movd    %%r9, %%xmm1\n\t"
++        "     shufps  $0x11, %%xmm1, %%xmm1   # b00010001 # 0 -0 0 -0\n\t"
++        "     # pfpnacc\n\t"
++        "     xorps   %%xmm1, %%xmm6\n\t"
++        "     movups  %%xmm6, %%xmm2\n\t"
++        "     unpcklps %%xmm7, %%xmm6\n\t"
++        "     unpckhps %%xmm7, %%xmm2\n\t"
++        "     movups  %%xmm2, %%xmm3\n\t"
++        "     shufps  $0x44, %%xmm6, %%xmm2   # b01000100\n\t"
++        "     shufps  $0xee, %%xmm3, %%xmm6   # b11101110\n\t"
++        "     addps   %%xmm2, %%xmm6\n\t"
++        "                                     # xmm6 = r1 i2 r3 i4\n\t"
++        "     movhlps %%xmm6, %%xmm4          # xmm4 = r3 i4 ?? ??\n\t"
++        "     addps   %%xmm4, %%xmm6          # xmm6 = r1+r3 i2+i4 ?? ??\n\t"
++        "     movlps  %%xmm6, (%[rdi])                # store low 2x32 bits (complex) "
++        "to memory\n\t"
++        :
++        : [rsi] "r"(input), [rdx] "r"(taps), "c"(num_bytes), [rdi] "r"(result)
++        : "rax", "r8", "r9", "r10");
++
++
++    if (isodd) {
++        *result += input[num_points - 1] * taps[num_points - 1];
++    }
++    return;
+ }
+ #endif /* LV_HAVE_SSE && LV_HAVE_64 */
+-
+-
+ #ifdef LV_HAVE_SSE3
+ #include <pmmintrin.h>
+-static inline void volk_32fc_x2_dot_prod_32fc_u_sse3(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points) {
++static inline void volk_32fc_x2_dot_prod_32fc_u_sse3(lv_32fc_t* result,
++                                                     const lv_32fc_t* input,
++                                                     const lv_32fc_t* taps,
++                                                     unsigned int num_points)
++{
+-  lv_32fc_t dotProduct;
+-  memset(&dotProduct, 0x0, 2*sizeof(float));
++    lv_32fc_t dotProduct;
++    memset(&dotProduct, 0x0, 2 * sizeof(float));
+-  unsigned int number = 0;
+-  const unsigned int halfPoints = num_points/2;
+-  unsigned int isodd = num_points & 1;
++    unsigned int number = 0;
++    const unsigned int halfPoints = num_points / 2;
++    unsigned int isodd = num_points & 1;
+-  __m128 x, y, yl, yh, z, tmp1, tmp2, dotProdVal;
++    __m128 x, y, yl, yh, z, tmp1, tmp2, dotProdVal;
+-  const lv_32fc_t* a = input;
+-  const lv_32fc_t* b = taps;
++    const lv_32fc_t* a = input;
++    const lv_32fc_t* b = taps;
+-  dotProdVal = _mm_setzero_ps();
++    dotProdVal = _mm_setzero_ps();
+-  for(;number < halfPoints; number++){
++    for (; number < halfPoints; number++) {
+-    x = _mm_loadu_ps((float*)a); // Load the ar + ai, br + bi as ar,ai,br,bi
+-    y = _mm_loadu_ps((float*)b); // Load the cr + ci, dr + di as cr,ci,dr,di
++        x = _mm_loadu_ps((float*)a); // Load the ar + ai, br + bi as ar,ai,br,bi
++        y = _mm_loadu_ps((float*)b); // Load the cr + ci, dr + di as cr,ci,dr,di
+-    yl = _mm_moveldup_ps(y); // Load yl with cr,cr,dr,dr
+-    yh = _mm_movehdup_ps(y); // Load yh with ci,ci,di,di
++        yl = _mm_moveldup_ps(y); // Load yl with cr,cr,dr,dr
++        yh = _mm_movehdup_ps(y); // Load yh with ci,ci,di,di
+-    tmp1 = _mm_mul_ps(x,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
++        tmp1 = _mm_mul_ps(x, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+-    x = _mm_shuffle_ps(x,x,0xB1); // Re-arrange x to be ai,ar,bi,br
++        x = _mm_shuffle_ps(x, x, 0xB1); // Re-arrange x to be ai,ar,bi,br
+-    tmp2 = _mm_mul_ps(x,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
++        tmp2 = _mm_mul_ps(x, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+-    z = _mm_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
++        z = _mm_addsub_ps(tmp1,
++                          tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+-    dotProdVal = _mm_add_ps(dotProdVal, z); // Add the complex multiplication results together
++        dotProdVal =
++            _mm_add_ps(dotProdVal, z); // Add the complex multiplication results together
+-    a += 2;
+-    b += 2;
+-  }
++        a += 2;
++        b += 2;
++    }
+-  __VOLK_ATTR_ALIGNED(16) lv_32fc_t dotProductVector[2];
++    __VOLK_ATTR_ALIGNED(16) lv_32fc_t dotProductVector[2];
+-  _mm_storeu_ps((float*)dotProductVector,dotProdVal); // Store the results back into the dot product vector
++    _mm_storeu_ps((float*)dotProductVector,
++                  dotProdVal); // Store the results back into the dot product vector
+-  dotProduct += ( dotProductVector[0] + dotProductVector[1] );
++    dotProduct += (dotProductVector[0] + dotProductVector[1]);
+-  if(isodd) {
+-    dotProduct += input[num_points - 1] * taps[num_points - 1];
+-  }
++    if (isodd) {
++        dotProduct += input[num_points - 1] * taps[num_points - 1];
++    }
+-  *result = dotProduct;
++    *result = dotProduct;
+ }
+ #endif /*LV_HAVE_SSE3*/
+@@ -296,78 +306,82 @@ static inline void volk_32fc_x2_dot_prod_32fc_u_sse3(lv_32fc_t* result, const lv
+ #include <smmintrin.h>
+-static inline void volk_32fc_x2_dot_prod_32fc_u_sse4_1(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points) {
++static inline void volk_32fc_x2_dot_prod_32fc_u_sse4_1(lv_32fc_t* result,
++                                                       const lv_32fc_t* input,
++                                                       const lv_32fc_t* taps,
++                                                       unsigned int num_points)
++{
+-  unsigned int i = 0;
+-  const unsigned int qtr_points = num_points/4;
+-  const unsigned int isodd = num_points & 3;
++    unsigned int i = 0;
++    const unsigned int qtr_points = num_points / 4;
++    const unsigned int isodd = num_points & 3;
+-  __m128 xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, real0, real1, im0, im1;
+-  float *p_input, *p_taps;
+-  __m64 *p_result;
++    __m128 xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, real0, real1, im0, im1;
++    float *p_input, *p_taps;
++    __m64* p_result;
+-  p_result = (__m64*)result;
+-  p_input = (float*)input;
+-  p_taps = (float*)taps;
++    p_result = (__m64*)result;
++    p_input = (float*)input;
++    p_taps = (float*)taps;
+-  static const __m128i neg = {0x000000000000000080000000};
++    static const __m128i neg = { 0x000000000000000080000000 };
+-  real0 = _mm_setzero_ps();
+-  real1 = _mm_setzero_ps();
+-  im0 = _mm_setzero_ps();
+-  im1 = _mm_setzero_ps();
++    real0 = _mm_setzero_ps();
++    real1 = _mm_setzero_ps();
++    im0 = _mm_setzero_ps();
++    im1 = _mm_setzero_ps();
+-  for(; i < qtr_points; ++i) {
+-    xmm0 = _mm_loadu_ps(p_input);
+-    xmm1 = _mm_loadu_ps(p_taps);
++    for (; i < qtr_points; ++i) {
++        xmm0 = _mm_loadu_ps(p_input);
++        xmm1 = _mm_loadu_ps(p_taps);
+-    p_input += 4;
+-    p_taps += 4;
++        p_input += 4;
++        p_taps += 4;
+-    xmm2 = _mm_loadu_ps(p_input);
+-    xmm3 = _mm_loadu_ps(p_taps);
++        xmm2 = _mm_loadu_ps(p_input);
++        xmm3 = _mm_loadu_ps(p_taps);
+-    p_input += 4;
+-    p_taps += 4;
++        p_input += 4;
++        p_taps += 4;
+-    xmm4 = _mm_unpackhi_ps(xmm0, xmm2);
+-    xmm5 = _mm_unpackhi_ps(xmm1, xmm3);
+-    xmm0 = _mm_unpacklo_ps(xmm0, xmm2);
+-    xmm2 = _mm_unpacklo_ps(xmm1, xmm3);
++        xmm4 = _mm_unpackhi_ps(xmm0, xmm2);
++        xmm5 = _mm_unpackhi_ps(xmm1, xmm3);
++        xmm0 = _mm_unpacklo_ps(xmm0, xmm2);
++        xmm2 = _mm_unpacklo_ps(xmm1, xmm3);
+-    //imaginary vector from input
+-    xmm1 = _mm_unpackhi_ps(xmm0, xmm4);
+-    //real vector from input
+-    xmm3 = _mm_unpacklo_ps(xmm0, xmm4);
+-    //imaginary vector from taps
+-    xmm0 = _mm_unpackhi_ps(xmm2, xmm5);
+-    //real vector from taps
+-    xmm2 = _mm_unpacklo_ps(xmm2, xmm5);
++        // imaginary vector from input
++        xmm1 = _mm_unpackhi_ps(xmm0, xmm4);
++        // real vector from input
++        xmm3 = _mm_unpacklo_ps(xmm0, xmm4);
++        // imaginary vector from taps
++        xmm0 = _mm_unpackhi_ps(xmm2, xmm5);
++        // real vector from taps
++        xmm2 = _mm_unpacklo_ps(xmm2, xmm5);
+-    xmm4 = _mm_dp_ps(xmm3, xmm2, 0xf1);
+-    xmm5 = _mm_dp_ps(xmm1, xmm0, 0xf1);
++        xmm4 = _mm_dp_ps(xmm3, xmm2, 0xf1);
++        xmm5 = _mm_dp_ps(xmm1, xmm0, 0xf1);
+-    xmm6 = _mm_dp_ps(xmm3, xmm0, 0xf2);
+-    xmm7 = _mm_dp_ps(xmm1, xmm2, 0xf2);
++        xmm6 = _mm_dp_ps(xmm3, xmm0, 0xf2);
++        xmm7 = _mm_dp_ps(xmm1, xmm2, 0xf2);
+-    real0 = _mm_add_ps(xmm4, real0);
+-    real1 = _mm_add_ps(xmm5, real1);
+-    im0 = _mm_add_ps(xmm6, im0);
+-    im1 = _mm_add_ps(xmm7, im1);
+-  }
++        real0 = _mm_add_ps(xmm4, real0);
++        real1 = _mm_add_ps(xmm5, real1);
++        im0 = _mm_add_ps(xmm6, im0);
++        im1 = _mm_add_ps(xmm7, im1);
++    }
+-  real1 = _mm_xor_ps(real1, bit128_p(&neg)->float_vec);
++    real1 = _mm_xor_ps(real1, bit128_p(&neg)->float_vec);
+-  im0 = _mm_add_ps(im0, im1);
+-  real0 = _mm_add_ps(real0, real1);
++    im0 = _mm_add_ps(im0, im1);
++    real0 = _mm_add_ps(real0, real1);
+-  im0 = _mm_add_ps(im0, real0);
++    im0 = _mm_add_ps(im0, real0);
+-  _mm_storel_pi(p_result, im0);
++    _mm_storel_pi(p_result, im0);
+-  for(i = num_points-isodd; i < num_points; i++) {
+-    *result += input[i] * taps[i];
+-  }
++    for (i = num_points - isodd; i < num_points; i++) {
++        *result += input[i] * taps[i];
++    }
+ }
+ #endif /*LV_HAVE_SSE4_1*/
+@@ -376,55 +390,63 @@ static inline void volk_32fc_x2_dot_prod_32fc_u_sse4_1(lv_32fc_t* result, const
+ #include <immintrin.h>
+-static inline void volk_32fc_x2_dot_prod_32fc_u_avx(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points) {
++static inline void volk_32fc_x2_dot_prod_32fc_u_avx(lv_32fc_t* result,
++                                                    const lv_32fc_t* input,
++                                                    const lv_32fc_t* taps,
++                                                    unsigned int num_points)
++{
+-  unsigned int isodd = num_points & 3;
+-  unsigned int i = 0;
+-  lv_32fc_t dotProduct;
+-  memset(&dotProduct, 0x0, 2*sizeof(float));
++    unsigned int isodd = num_points & 3;
++    unsigned int i = 0;
++    lv_32fc_t dotProduct;
++    memset(&dotProduct, 0x0, 2 * sizeof(float));
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  __m256 x, y, yl, yh, z, tmp1, tmp2, dotProdVal;
++    __m256 x, y, yl, yh, z, tmp1, tmp2, dotProdVal;
+-  const lv_32fc_t* a = input;
+-  const lv_32fc_t* b = taps;
++    const lv_32fc_t* a = input;
++    const lv_32fc_t* b = taps;
+-  dotProdVal = _mm256_setzero_ps();
++    dotProdVal = _mm256_setzero_ps();
+-  for(;number < quarterPoints; number++){
+-    x = _mm256_loadu_ps((float*)a); // Load a,b,e,f as ar,ai,br,bi,er,ei,fr,fi
+-    y = _mm256_loadu_ps((float*)b); // Load c,d,g,h as cr,ci,dr,di,gr,gi,hr,hi
++    for (; number < quarterPoints; number++) {
++        x = _mm256_loadu_ps((float*)a); // Load a,b,e,f as ar,ai,br,bi,er,ei,fr,fi
++        y = _mm256_loadu_ps((float*)b); // Load c,d,g,h as cr,ci,dr,di,gr,gi,hr,hi
+-    yl = _mm256_moveldup_ps(y); // Load yl with cr,cr,dr,dr,gr,gr,hr,hr
+-    yh = _mm256_movehdup_ps(y); // Load yh with ci,ci,di,di,gi,gi,hi,hi
++        yl = _mm256_moveldup_ps(y); // Load yl with cr,cr,dr,dr,gr,gr,hr,hr
++        yh = _mm256_movehdup_ps(y); // Load yh with ci,ci,di,di,gi,gi,hi,hi
+-    tmp1 = _mm256_mul_ps(x,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr ...
++        tmp1 = _mm256_mul_ps(x, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr ...
+-    x = _mm256_shuffle_ps(x,x,0xB1); // Re-arrange x to be ai,ar,bi,br,ei,er,fi,fr
++        x = _mm256_shuffle_ps(x, x, 0xB1); // Re-arrange x to be ai,ar,bi,br,ei,er,fi,fr
+-    tmp2 = _mm256_mul_ps(x,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di ...
++        tmp2 = _mm256_mul_ps(x, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di ...
+-    z = _mm256_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
++        z = _mm256_addsub_ps(tmp1,
++                             tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+-    dotProdVal = _mm256_add_ps(dotProdVal, z); // Add the complex multiplication results together
++        dotProdVal = _mm256_add_ps(dotProdVal,
++                                   z); // Add the complex multiplication results together
+-    a += 4;
+-    b += 4;
+-  }
++        a += 4;
++        b += 4;
++    }
+-  __VOLK_ATTR_ALIGNED(32) lv_32fc_t dotProductVector[4];
++    __VOLK_ATTR_ALIGNED(32) lv_32fc_t dotProductVector[4];
+-  _mm256_storeu_ps((float*)dotProductVector,dotProdVal); // Store the results back into the dot product vector
++    _mm256_storeu_ps((float*)dotProductVector,
++                     dotProdVal); // Store the results back into the dot product vector
+-  dotProduct += ( dotProductVector[0] + dotProductVector[1] + dotProductVector[2] + dotProductVector[3]);
++    dotProduct += (dotProductVector[0] + dotProductVector[1] + dotProductVector[2] +
++                   dotProductVector[3]);
+-  for(i = num_points-isodd; i < num_points; i++) {
+-    dotProduct += input[i] * taps[i];
+-  }
++    for (i = num_points - isodd; i < num_points; i++) {
++        dotProduct += input[i] * taps[i];
++    }
+-  *result = dotProduct;
++    *result = dotProduct;
+ }
+ #endif /*LV_HAVE_AVX*/
+@@ -432,56 +454,64 @@ static inline void volk_32fc_x2_dot_prod_32fc_u_avx(lv_32fc_t* result, const lv_
+ #if LV_HAVE_AVX && LV_HAVE_FMA
+ #include <immintrin.h>
+-static inline void volk_32fc_x2_dot_prod_32fc_u_avx_fma(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points) {
++static inline void volk_32fc_x2_dot_prod_32fc_u_avx_fma(lv_32fc_t* result,
++                                                        const lv_32fc_t* input,
++                                                        const lv_32fc_t* taps,
++                                                        unsigned int num_points)
++{
+-  unsigned int isodd = num_points & 3;
+-  unsigned int i = 0;
+-  lv_32fc_t dotProduct;
+-  memset(&dotProduct, 0x0, 2*sizeof(float));
++    unsigned int isodd = num_points & 3;
++    unsigned int i = 0;
++    lv_32fc_t dotProduct;
++    memset(&dotProduct, 0x0, 2 * sizeof(float));
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  __m256 x, y, yl, yh, z, tmp1, tmp2, dotProdVal;
++    __m256 x, y, yl, yh, z, tmp1, tmp2, dotProdVal;
+-  const lv_32fc_t* a = input;
+-  const lv_32fc_t* b = taps;
++    const lv_32fc_t* a = input;
++    const lv_32fc_t* b = taps;
+-  dotProdVal = _mm256_setzero_ps();
++    dotProdVal = _mm256_setzero_ps();
+-  for(;number < quarterPoints; number++){
++    for (; number < quarterPoints; number++) {
+-    x = _mm256_loadu_ps((float*)a); // Load a,b,e,f as ar,ai,br,bi,er,ei,fr,fi
+-    y = _mm256_loadu_ps((float*)b); // Load c,d,g,h as cr,ci,dr,di,gr,gi,hr,hi
++        x = _mm256_loadu_ps((float*)a); // Load a,b,e,f as ar,ai,br,bi,er,ei,fr,fi
++        y = _mm256_loadu_ps((float*)b); // Load c,d,g,h as cr,ci,dr,di,gr,gi,hr,hi
+-    yl = _mm256_moveldup_ps(y); // Load yl with cr,cr,dr,dr,gr,gr,hr,hr
+-    yh = _mm256_movehdup_ps(y); // Load yh with ci,ci,di,di,gi,gi,hi,hi
++        yl = _mm256_moveldup_ps(y); // Load yl with cr,cr,dr,dr,gr,gr,hr,hr
++        yh = _mm256_movehdup_ps(y); // Load yh with ci,ci,di,di,gi,gi,hi,hi
+-    tmp1 = x;
++        tmp1 = x;
+-    x = _mm256_shuffle_ps(x,x,0xB1); // Re-arrange x to be ai,ar,bi,br,ei,er,fi,fr
++        x = _mm256_shuffle_ps(x, x, 0xB1); // Re-arrange x to be ai,ar,bi,br,ei,er,fi,fr
+-    tmp2 = _mm256_mul_ps(x,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di ...
++        tmp2 = _mm256_mul_ps(x, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di ...
+-    z = _mm256_fmaddsub_ps(tmp1, yl,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
++        z = _mm256_fmaddsub_ps(
++            tmp1, yl, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+-    dotProdVal = _mm256_add_ps(dotProdVal, z); // Add the complex multiplication results together
++        dotProdVal = _mm256_add_ps(dotProdVal,
++                                   z); // Add the complex multiplication results together
+-    a += 4;
+-    b += 4;
+-  }
++        a += 4;
++        b += 4;
++    }
+-  __VOLK_ATTR_ALIGNED(32) lv_32fc_t dotProductVector[4];
++    __VOLK_ATTR_ALIGNED(32) lv_32fc_t dotProductVector[4];
+-  _mm256_storeu_ps((float*)dotProductVector,dotProdVal); // Store the results back into the dot product vector
++    _mm256_storeu_ps((float*)dotProductVector,
++                     dotProdVal); // Store the results back into the dot product vector
+-  dotProduct += ( dotProductVector[0] + dotProductVector[1] + dotProductVector[2] + dotProductVector[3]);
++    dotProduct += (dotProductVector[0] + dotProductVector[1] + dotProductVector[2] +
++                   dotProductVector[3]);
+-  for(i = num_points-isodd; i < num_points; i++) {
+-    dotProduct += input[i] * taps[i];
+-  }
++    for (i = num_points - isodd; i < num_points; i++) {
++        dotProduct += input[i] * taps[i];
++    }
+-  *result = dotProduct;
++    *result = dotProduct;
+ }
+ #endif /*LV_HAVE_AVX && LV_HAVE_FMA*/
+@@ -491,44 +521,48 @@ static inline void volk_32fc_x2_dot_prod_32fc_u_avx_fma(lv_32fc_t* result, const
+ #ifndef INCLUDED_volk_32fc_x2_dot_prod_32fc_a_H
+ #define INCLUDED_volk_32fc_x2_dot_prod_32fc_a_H
+-#include <volk/volk_common.h>
+-#include <volk/volk_complex.h>
+ #include <stdio.h>
+ #include <string.h>
++#include <volk/volk_common.h>
++#include <volk/volk_complex.h>
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32fc_x2_dot_prod_32fc_a_generic(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points) {
++static inline void volk_32fc_x2_dot_prod_32fc_a_generic(lv_32fc_t* result,
++                                                        const lv_32fc_t* input,
++                                                        const lv_32fc_t* taps,
++                                                        unsigned int num_points)
++{
+-  const unsigned int num_bytes = num_points*8;
++    const unsigned int num_bytes = num_points * 8;
+-  float * res = (float*) result;
+-  float * in = (float*) input;
+-  float * tp = (float*) taps;
+-  unsigned int n_2_ccomplex_blocks = num_bytes >> 4;
++    float* res = (float*)result;
++    float* in = (float*)input;
++    float* tp = (float*)taps;
++    unsigned int n_2_ccomplex_blocks = num_bytes >> 4;
+-  float sum0[2] = {0,0};
+-  float sum1[2] = {0,0};
+-  unsigned int i = 0;
++    float sum0[2] = { 0, 0 };
++    float sum1[2] = { 0, 0 };
++    unsigned int i = 0;
+-  for(i = 0; i < n_2_ccomplex_blocks; ++i) {
+-    sum0[0] += in[0] * tp[0] - in[1] * tp[1];
+-    sum0[1] += in[0] * tp[1] + in[1] * tp[0];
+-    sum1[0] += in[2] * tp[2] - in[3] * tp[3];
+-    sum1[1] += in[2] * tp[3] + in[3] * tp[2];
++    for (i = 0; i < n_2_ccomplex_blocks; ++i) {
++        sum0[0] += in[0] * tp[0] - in[1] * tp[1];
++        sum0[1] += in[0] * tp[1] + in[1] * tp[0];
++        sum1[0] += in[2] * tp[2] - in[3] * tp[3];
++        sum1[1] += in[2] * tp[3] + in[3] * tp[2];
+-    in += 4;
+-    tp += 4;
+-  }
++        in += 4;
++        tp += 4;
++    }
+-  res[0] = sum0[0] + sum1[0];
+-  res[1] = sum0[1] + sum1[1];
++    res[0] = sum0[0] + sum1[0];
++    res[1] = sum0[1] + sum1[1];
+-  if (num_points & 1) {
+-    *result += input[num_points - 1] * taps[num_points - 1];
+-  }
++    if (num_points & 1) {
++        *result += input[num_points - 1] * taps[num_points - 1];
++    }
+ }
+ #endif /*LV_HAVE_GENERIC*/
+@@ -537,140 +571,146 @@ static inline void volk_32fc_x2_dot_prod_32fc_a_generic(lv_32fc_t* result, const
+ #if LV_HAVE_SSE && LV_HAVE_64
+-static inline void volk_32fc_x2_dot_prod_32fc_a_sse_64(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points) {
+-
+-  const unsigned int num_bytes = num_points*8;
+-  unsigned int isodd = num_points & 1;
+-
+-  __VOLK_ASM
+-    (
+-     "#  ccomplex_dotprod_generic (float* result, const float *input,\n\t"
+-     "#                         const float *taps, unsigned num_bytes)\n\t"
+-     "#    float sum0 = 0;\n\t"
+-     "#    float sum1 = 0;\n\t"
+-     "#    float sum2 = 0;\n\t"
+-     "#    float sum3 = 0;\n\t"
+-     "#    do {\n\t"
+-     "#      sum0 += input[0] * taps[0] - input[1] * taps[1];\n\t"
+-     "#      sum1 += input[0] * taps[1] + input[1] * taps[0];\n\t"
+-     "#      sum2 += input[2] * taps[2] - input[3] * taps[3];\n\t"
+-     "#      sum3 += input[2] * taps[3] + input[3] * taps[2];\n\t"
+-     "#      input += 4;\n\t"
+-     "#      taps += 4;  \n\t"
+-     "#    } while (--n_2_ccomplex_blocks != 0);\n\t"
+-     "#    result[0] = sum0 + sum2;\n\t"
+-     "#    result[1] = sum1 + sum3;\n\t"
+-     "# TODO: prefetch and better scheduling\n\t"
+-     "  xor    %%r9,  %%r9\n\t"
+-     "  xor    %%r10, %%r10\n\t"
+-     "  movq   %%rcx, %%rax\n\t"
+-     "  movq   %%rcx, %%r8\n\t"
+-     "  movq   %[rsi],  %%r9\n\t"
+-     "  movq   %[rdx], %%r10\n\t"
+-     "        xorps   %%xmm6, %%xmm6          # zero accumulators\n\t"
+-     "        movaps  0(%%r9), %%xmm0\n\t"
+-     "        xorps   %%xmm7, %%xmm7          # zero accumulators\n\t"
+-     "        movaps  0(%%r10), %%xmm2\n\t"
+-     "        shr     $5, %%rax               # rax = n_2_ccomplex_blocks / 2\n\t"
+-     "  shr     $4, %%r8\n\t"
+-     "        jmp     .%=L1_test\n\t"
+-     "        # 4 taps / loop\n\t"
+-     "        # something like ?? cycles / loop\n\t"
+-     ".%=Loop1:       \n\t"
+-     "# complex prod: C += A * B,  w/ temp Z & Y (or B), xmmPN=$0x8000000080000000\n\t"
+-     "#       movaps  (%%r9), %%xmmA\n\t"
+-     "#       movaps  (%%r10), %%xmmB\n\t"
+-     "#       movaps  %%xmmA, %%xmmZ\n\t"
+-     "#       shufps  $0xb1, %%xmmZ, %%xmmZ   # swap internals\n\t"
+-     "#       mulps   %%xmmB, %%xmmA\n\t"
+-     "#       mulps   %%xmmZ, %%xmmB\n\t"
+-     "#       # SSE replacement for: pfpnacc %%xmmB, %%xmmA\n\t"
+-     "#       xorps   %%xmmPN, %%xmmA\n\t"
+-     "#       movaps  %%xmmA, %%xmmZ\n\t"
+-     "#       unpcklps %%xmmB, %%xmmA\n\t"
+-     "#       unpckhps %%xmmB, %%xmmZ\n\t"
+-     "#       movaps  %%xmmZ, %%xmmY\n\t"
+-     "#       shufps  $0x44, %%xmmA, %%xmmZ   # b01000100\n\t"
+-     "#       shufps  $0xee, %%xmmY, %%xmmA   # b11101110\n\t"
+-     "#       addps   %%xmmZ, %%xmmA\n\t"
+-     "#       addps   %%xmmA, %%xmmC\n\t"
+-     "# A=xmm0, B=xmm2, Z=xmm4\n\t"
+-     "# A'=xmm1, B'=xmm3, Z'=xmm5\n\t"
+-     "        movaps  16(%%r9), %%xmm1\n\t"
+-     "        movaps  %%xmm0, %%xmm4\n\t"
+-     "        mulps   %%xmm2, %%xmm0\n\t"
+-     "        shufps  $0xb1, %%xmm4, %%xmm4   # swap internals\n\t"
+-     "        movaps  16(%%r10), %%xmm3\n\t"
+-     "        movaps  %%xmm1, %%xmm5\n\t"
+-     "        addps   %%xmm0, %%xmm6\n\t"
+-     "        mulps   %%xmm3, %%xmm1\n\t"
+-     "        shufps  $0xb1, %%xmm5, %%xmm5   # swap internals\n\t"
+-     "        addps   %%xmm1, %%xmm6\n\t"
+-     "        mulps   %%xmm4, %%xmm2\n\t"
+-     "        movaps  32(%%r9), %%xmm0\n\t"
+-     "        addps   %%xmm2, %%xmm7\n\t"
+-     "        mulps   %%xmm5, %%xmm3\n\t"
+-     "        add     $32, %%r9\n\t"
+-     "        movaps  32(%%r10), %%xmm2\n\t"
+-     "        addps   %%xmm3, %%xmm7\n\t"
+-     "        add     $32, %%r10\n\t"
+-     ".%=L1_test:\n\t"
+-     "        dec     %%rax\n\t"
+-     "        jge     .%=Loop1\n\t"
+-     "        # We've handled the bulk of multiplies up to here.\n\t"
+-     "        # Let's sse if original n_2_ccomplex_blocks was odd.\n\t"
+-     "        # If so, we've got 2 more taps to do.\n\t"
+-     "        and     $1, %%r8\n\t"
+-     "        je      .%=Leven\n\t"
+-     "        # The count was odd, do 2 more taps.\n\t"
+-     "        # Note that we've already got mm0/mm2 preloaded\n\t"
+-     "        # from the main loop.\n\t"
+-     "        movaps  %%xmm0, %%xmm4\n\t"
+-     "        mulps   %%xmm2, %%xmm0\n\t"
+-     "        shufps  $0xb1, %%xmm4, %%xmm4   # swap internals\n\t"
+-     "        addps   %%xmm0, %%xmm6\n\t"
+-     "        mulps   %%xmm4, %%xmm2\n\t"
+-     "        addps   %%xmm2, %%xmm7\n\t"
+-     ".%=Leven:\n\t"
+-     "        # neg inversor\n\t"
+-     "        xorps   %%xmm1, %%xmm1\n\t"
+-     "        mov     $0x80000000, %%r9\n\t"
+-     "        movd    %%r9, %%xmm1\n\t"
+-     "        shufps  $0x11, %%xmm1, %%xmm1   # b00010001 # 0 -0 0 -0\n\t"
+-     "        # pfpnacc\n\t"
+-     "        xorps   %%xmm1, %%xmm6\n\t"
+-     "        movaps  %%xmm6, %%xmm2\n\t"
+-     "        unpcklps %%xmm7, %%xmm6\n\t"
+-     "        unpckhps %%xmm7, %%xmm2\n\t"
+-     "        movaps  %%xmm2, %%xmm3\n\t"
+-     "        shufps  $0x44, %%xmm6, %%xmm2   # b01000100\n\t"
+-     "        shufps  $0xee, %%xmm3, %%xmm6   # b11101110\n\t"
+-     "        addps   %%xmm2, %%xmm6\n\t"
+-     "                                        # xmm6 = r1 i2 r3 i4\n\t"
+-     "        movhlps %%xmm6, %%xmm4          # xmm4 = r3 i4 ?? ??\n\t"
+-     "        addps   %%xmm4, %%xmm6          # xmm6 = r1+r3 i2+i4 ?? ??\n\t"
+-     "        movlps  %%xmm6, (%[rdi])                # store low 2x32 bits (complex) to memory\n\t"
+-     :
+-     :[rsi] "r" (input), [rdx] "r" (taps), "c" (num_bytes), [rdi] "r" (result)
+-     :"rax", "r8", "r9", "r10"
+-     );
+-
+-
+-  if(isodd) {
+-    *result += input[num_points - 1] * taps[num_points - 1];
+-  }
+-
+-  return;
++static inline void volk_32fc_x2_dot_prod_32fc_a_sse_64(lv_32fc_t* result,
++                                                       const lv_32fc_t* input,
++                                                       const lv_32fc_t* taps,
++                                                       unsigned int num_points)
++{
++
++    const unsigned int num_bytes = num_points * 8;
++    unsigned int isodd = num_points & 1;
++
++    __VOLK_ASM(
++        "#  ccomplex_dotprod_generic (float* result, const float *input,\n\t"
++        "#                         const float *taps, unsigned num_bytes)\n\t"
++        "#    float sum0 = 0;\n\t"
++        "#    float sum1 = 0;\n\t"
++        "#    float sum2 = 0;\n\t"
++        "#    float sum3 = 0;\n\t"
++        "#    do {\n\t"
++        "#      sum0 += input[0] * taps[0] - input[1] * taps[1];\n\t"
++        "#      sum1 += input[0] * taps[1] + input[1] * taps[0];\n\t"
++        "#      sum2 += input[2] * taps[2] - input[3] * taps[3];\n\t"
++        "#      sum3 += input[2] * taps[3] + input[3] * taps[2];\n\t"
++        "#      input += 4;\n\t"
++        "#      taps += 4;  \n\t"
++        "#    } while (--n_2_ccomplex_blocks != 0);\n\t"
++        "#    result[0] = sum0 + sum2;\n\t"
++        "#    result[1] = sum1 + sum3;\n\t"
++        "# TODO: prefetch and better scheduling\n\t"
++        "  xor    %%r9,  %%r9\n\t"
++        "  xor    %%r10, %%r10\n\t"
++        "  movq   %%rcx, %%rax\n\t"
++        "  movq   %%rcx, %%r8\n\t"
++        "  movq   %[rsi],  %%r9\n\t"
++        "  movq   %[rdx], %%r10\n\t"
++        "     xorps   %%xmm6, %%xmm6          # zero accumulators\n\t"
++        "     movaps  0(%%r9), %%xmm0\n\t"
++        "     xorps   %%xmm7, %%xmm7          # zero accumulators\n\t"
++        "     movaps  0(%%r10), %%xmm2\n\t"
++        "     shr     $5, %%rax               # rax = n_2_ccomplex_blocks / 2\n\t"
++        "  shr     $4, %%r8\n\t"
++        "     jmp     .%=L1_test\n\t"
++        "     # 4 taps / loop\n\t"
++        "     # something like ?? cycles / loop\n\t"
++        ".%=Loop1:    \n\t"
++        "# complex prod: C += A * B,  w/ temp Z & Y (or B), xmmPN=$0x8000000080000000\n\t"
++        "#    movaps  (%%r9), %%xmmA\n\t"
++        "#    movaps  (%%r10), %%xmmB\n\t"
++        "#    movaps  %%xmmA, %%xmmZ\n\t"
++        "#    shufps  $0xb1, %%xmmZ, %%xmmZ   # swap internals\n\t"
++        "#    mulps   %%xmmB, %%xmmA\n\t"
++        "#    mulps   %%xmmZ, %%xmmB\n\t"
++        "#    # SSE replacement for: pfpnacc %%xmmB, %%xmmA\n\t"
++        "#    xorps   %%xmmPN, %%xmmA\n\t"
++        "#    movaps  %%xmmA, %%xmmZ\n\t"
++        "#    unpcklps %%xmmB, %%xmmA\n\t"
++        "#    unpckhps %%xmmB, %%xmmZ\n\t"
++        "#    movaps  %%xmmZ, %%xmmY\n\t"
++        "#    shufps  $0x44, %%xmmA, %%xmmZ   # b01000100\n\t"
++        "#    shufps  $0xee, %%xmmY, %%xmmA   # b11101110\n\t"
++        "#    addps   %%xmmZ, %%xmmA\n\t"
++        "#    addps   %%xmmA, %%xmmC\n\t"
++        "# A=xmm0, B=xmm2, Z=xmm4\n\t"
++        "# A'=xmm1, B'=xmm3, Z'=xmm5\n\t"
++        "     movaps  16(%%r9), %%xmm1\n\t"
++        "     movaps  %%xmm0, %%xmm4\n\t"
++        "     mulps   %%xmm2, %%xmm0\n\t"
++        "     shufps  $0xb1, %%xmm4, %%xmm4   # swap internals\n\t"
++        "     movaps  16(%%r10), %%xmm3\n\t"
++        "     movaps  %%xmm1, %%xmm5\n\t"
++        "     addps   %%xmm0, %%xmm6\n\t"
++        "     mulps   %%xmm3, %%xmm1\n\t"
++        "     shufps  $0xb1, %%xmm5, %%xmm5   # swap internals\n\t"
++        "     addps   %%xmm1, %%xmm6\n\t"
++        "     mulps   %%xmm4, %%xmm2\n\t"
++        "     movaps  32(%%r9), %%xmm0\n\t"
++        "     addps   %%xmm2, %%xmm7\n\t"
++        "     mulps   %%xmm5, %%xmm3\n\t"
++        "     add     $32, %%r9\n\t"
++        "     movaps  32(%%r10), %%xmm2\n\t"
++        "     addps   %%xmm3, %%xmm7\n\t"
++        "     add     $32, %%r10\n\t"
++        ".%=L1_test:\n\t"
++        "     dec     %%rax\n\t"
++        "     jge     .%=Loop1\n\t"
++        "     # We've handled the bulk of multiplies up to here.\n\t"
++        "     # Let's sse if original n_2_ccomplex_blocks was odd.\n\t"
++        "     # If so, we've got 2 more taps to do.\n\t"
++        "     and     $1, %%r8\n\t"
++        "     je      .%=Leven\n\t"
++        "     # The count was odd, do 2 more taps.\n\t"
++        "     # Note that we've already got mm0/mm2 preloaded\n\t"
++        "     # from the main loop.\n\t"
++        "     movaps  %%xmm0, %%xmm4\n\t"
++        "     mulps   %%xmm2, %%xmm0\n\t"
++        "     shufps  $0xb1, %%xmm4, %%xmm4   # swap internals\n\t"
++        "     addps   %%xmm0, %%xmm6\n\t"
++        "     mulps   %%xmm4, %%xmm2\n\t"
++        "     addps   %%xmm2, %%xmm7\n\t"
++        ".%=Leven:\n\t"
++        "     # neg inversor\n\t"
++        "     xorps   %%xmm1, %%xmm1\n\t"
++        "     mov     $0x80000000, %%r9\n\t"
++        "     movd    %%r9, %%xmm1\n\t"
++        "     shufps  $0x11, %%xmm1, %%xmm1   # b00010001 # 0 -0 0 -0\n\t"
++        "     # pfpnacc\n\t"
++        "     xorps   %%xmm1, %%xmm6\n\t"
++        "     movaps  %%xmm6, %%xmm2\n\t"
++        "     unpcklps %%xmm7, %%xmm6\n\t"
++        "     unpckhps %%xmm7, %%xmm2\n\t"
++        "     movaps  %%xmm2, %%xmm3\n\t"
++        "     shufps  $0x44, %%xmm6, %%xmm2   # b01000100\n\t"
++        "     shufps  $0xee, %%xmm3, %%xmm6   # b11101110\n\t"
++        "     addps   %%xmm2, %%xmm6\n\t"
++        "                                     # xmm6 = r1 i2 r3 i4\n\t"
++        "     movhlps %%xmm6, %%xmm4          # xmm4 = r3 i4 ?? ??\n\t"
++        "     addps   %%xmm4, %%xmm6          # xmm6 = r1+r3 i2+i4 ?? ??\n\t"
++        "     movlps  %%xmm6, (%[rdi])                # store low 2x32 bits (complex) "
++        "to memory\n\t"
++        :
++        : [rsi] "r"(input), [rdx] "r"(taps), "c"(num_bytes), [rdi] "r"(result)
++        : "rax", "r8", "r9", "r10");
++
++
++    if (isodd) {
++        *result += input[num_points - 1] * taps[num_points - 1];
++    }
++    return;
+ }
+ #endif
+ #if LV_HAVE_SSE && LV_HAVE_32
+-static inline void volk_32fc_x2_dot_prod_32fc_a_sse_32(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points) {
++static inline void volk_32fc_x2_dot_prod_32fc_a_sse_32(lv_32fc_t* result,
++                                                       const lv_32fc_t* input,
++                                                       const lv_32fc_t* taps,
++                                                       unsigned int num_points)
++{
+-  volk_32fc_x2_dot_prod_32fc_a_generic(result, input, taps, num_points);
++    volk_32fc_x2_dot_prod_32fc_a_generic(result, input, taps, num_points);
+ #if 0
+   const unsigned int num_bytes = num_points*8;
+@@ -792,57 +832,64 @@ static inline void volk_32fc_x2_dot_prod_32fc_a_sse_32(lv_32fc_t* result, const
+ #include <pmmintrin.h>
+-static inline void volk_32fc_x2_dot_prod_32fc_a_sse3(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points) {
++static inline void volk_32fc_x2_dot_prod_32fc_a_sse3(lv_32fc_t* result,
++                                                     const lv_32fc_t* input,
++                                                     const lv_32fc_t* taps,
++                                                     unsigned int num_points)
++{
+-  const unsigned int num_bytes = num_points*8;
+-  unsigned int isodd = num_points & 1;
++    const unsigned int num_bytes = num_points * 8;
++    unsigned int isodd = num_points & 1;
+-  lv_32fc_t dotProduct;
+-  memset(&dotProduct, 0x0, 2*sizeof(float));
++    lv_32fc_t dotProduct;
++    memset(&dotProduct, 0x0, 2 * sizeof(float));
+-  unsigned int number = 0;
+-  const unsigned int halfPoints = num_bytes >> 4;
++    unsigned int number = 0;
++    const unsigned int halfPoints = num_bytes >> 4;
+-  __m128 x, y, yl, yh, z, tmp1, tmp2, dotProdVal;
++    __m128 x, y, yl, yh, z, tmp1, tmp2, dotProdVal;
+-  const lv_32fc_t* a = input;
+-  const lv_32fc_t* b = taps;
++    const lv_32fc_t* a = input;
++    const lv_32fc_t* b = taps;
+-  dotProdVal = _mm_setzero_ps();
++    dotProdVal = _mm_setzero_ps();
+-  for(;number < halfPoints; number++){
++    for (; number < halfPoints; number++) {
+-    x = _mm_load_ps((float*)a); // Load the ar + ai, br + bi as ar,ai,br,bi
+-    y = _mm_load_ps((float*)b); // Load the cr + ci, dr + di as cr,ci,dr,di
++        x = _mm_load_ps((float*)a); // Load the ar + ai, br + bi as ar,ai,br,bi
++        y = _mm_load_ps((float*)b); // Load the cr + ci, dr + di as cr,ci,dr,di
+-    yl = _mm_moveldup_ps(y); // Load yl with cr,cr,dr,dr
+-    yh = _mm_movehdup_ps(y); // Load yh with ci,ci,di,di
++        yl = _mm_moveldup_ps(y); // Load yl with cr,cr,dr,dr
++        yh = _mm_movehdup_ps(y); // Load yh with ci,ci,di,di
+-    tmp1 = _mm_mul_ps(x,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
++        tmp1 = _mm_mul_ps(x, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr
+-    x = _mm_shuffle_ps(x,x,0xB1); // Re-arrange x to be ai,ar,bi,br
++        x = _mm_shuffle_ps(x, x, 0xB1); // Re-arrange x to be ai,ar,bi,br
+-    tmp2 = _mm_mul_ps(x,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
++        tmp2 = _mm_mul_ps(x, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+-    z = _mm_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
++        z = _mm_addsub_ps(tmp1,
++                          tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+-    dotProdVal = _mm_add_ps(dotProdVal, z); // Add the complex multiplication results together
++        dotProdVal =
++            _mm_add_ps(dotProdVal, z); // Add the complex multiplication results together
+-    a += 2;
+-    b += 2;
+-  }
++        a += 2;
++        b += 2;
++    }
+-  __VOLK_ATTR_ALIGNED(16) lv_32fc_t dotProductVector[2];
++    __VOLK_ATTR_ALIGNED(16) lv_32fc_t dotProductVector[2];
+-  _mm_store_ps((float*)dotProductVector,dotProdVal); // Store the results back into the dot product vector
++    _mm_store_ps((float*)dotProductVector,
++                 dotProdVal); // Store the results back into the dot product vector
+-  dotProduct += ( dotProductVector[0] + dotProductVector[1] );
++    dotProduct += (dotProductVector[0] + dotProductVector[1]);
+-  if(isodd) {
+-    dotProduct += input[num_points - 1] * taps[num_points - 1];
+-  }
++    if (isodd) {
++        dotProduct += input[num_points - 1] * taps[num_points - 1];
++    }
+-  *result = dotProduct;
++    *result = dotProduct;
+ }
+ #endif /*LV_HAVE_SSE3*/
+@@ -852,78 +899,82 @@ static inline void volk_32fc_x2_dot_prod_32fc_a_sse3(lv_32fc_t* result, const lv
+ #include <smmintrin.h>
+-static inline void volk_32fc_x2_dot_prod_32fc_a_sse4_1(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points) {
++static inline void volk_32fc_x2_dot_prod_32fc_a_sse4_1(lv_32fc_t* result,
++                                                       const lv_32fc_t* input,
++                                                       const lv_32fc_t* taps,
++                                                       unsigned int num_points)
++{
+-  unsigned int i = 0;
+-  const unsigned int qtr_points = num_points/4;
+-  const unsigned int isodd = num_points & 3;
++    unsigned int i = 0;
++    const unsigned int qtr_points = num_points / 4;
++    const unsigned int isodd = num_points & 3;
+-  __m128 xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, real0, real1, im0, im1;
+-  float *p_input, *p_taps;
+-  __m64 *p_result;
++    __m128 xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, real0, real1, im0, im1;
++    float *p_input, *p_taps;
++    __m64* p_result;
+-  static const __m128i neg = {0x000000000000000080000000};
++    static const __m128i neg = { 0x000000000000000080000000 };
+-  p_result = (__m64*)result;
+-  p_input = (float*)input;
+-  p_taps = (float*)taps;
++    p_result = (__m64*)result;
++    p_input = (float*)input;
++    p_taps = (float*)taps;
+-  real0 = _mm_setzero_ps();
+-  real1 = _mm_setzero_ps();
+-  im0 = _mm_setzero_ps();
+-  im1 = _mm_setzero_ps();
++    real0 = _mm_setzero_ps();
++    real1 = _mm_setzero_ps();
++    im0 = _mm_setzero_ps();
++    im1 = _mm_setzero_ps();
+-  for(; i < qtr_points; ++i) {
+-    xmm0 = _mm_load_ps(p_input);
+-    xmm1 = _mm_load_ps(p_taps);
++    for (; i < qtr_points; ++i) {
++        xmm0 = _mm_load_ps(p_input);
++        xmm1 = _mm_load_ps(p_taps);
+-    p_input += 4;
+-    p_taps += 4;
++        p_input += 4;
++        p_taps += 4;
+-    xmm2 = _mm_load_ps(p_input);
+-    xmm3 = _mm_load_ps(p_taps);
++        xmm2 = _mm_load_ps(p_input);
++        xmm3 = _mm_load_ps(p_taps);
+-    p_input += 4;
+-    p_taps += 4;
++        p_input += 4;
++        p_taps += 4;
+-    xmm4 = _mm_unpackhi_ps(xmm0, xmm2);
+-    xmm5 = _mm_unpackhi_ps(xmm1, xmm3);
+-    xmm0 = _mm_unpacklo_ps(xmm0, xmm2);
+-    xmm2 = _mm_unpacklo_ps(xmm1, xmm3);
++        xmm4 = _mm_unpackhi_ps(xmm0, xmm2);
++        xmm5 = _mm_unpackhi_ps(xmm1, xmm3);
++        xmm0 = _mm_unpacklo_ps(xmm0, xmm2);
++        xmm2 = _mm_unpacklo_ps(xmm1, xmm3);
+-    //imaginary vector from input
+-    xmm1 = _mm_unpackhi_ps(xmm0, xmm4);
+-    //real vector from input
+-    xmm3 = _mm_unpacklo_ps(xmm0, xmm4);
+-    //imaginary vector from taps
+-    xmm0 = _mm_unpackhi_ps(xmm2, xmm5);
+-    //real vector from taps
+-    xmm2 = _mm_unpacklo_ps(xmm2, xmm5);
++        // imaginary vector from input
++        xmm1 = _mm_unpackhi_ps(xmm0, xmm4);
++        // real vector from input
++        xmm3 = _mm_unpacklo_ps(xmm0, xmm4);
++        // imaginary vector from taps
++        xmm0 = _mm_unpackhi_ps(xmm2, xmm5);
++        // real vector from taps
++        xmm2 = _mm_unpacklo_ps(xmm2, xmm5);
+-    xmm4 = _mm_dp_ps(xmm3, xmm2, 0xf1);
+-    xmm5 = _mm_dp_ps(xmm1, xmm0, 0xf1);
++        xmm4 = _mm_dp_ps(xmm3, xmm2, 0xf1);
++        xmm5 = _mm_dp_ps(xmm1, xmm0, 0xf1);
+-    xmm6 = _mm_dp_ps(xmm3, xmm0, 0xf2);
+-    xmm7 = _mm_dp_ps(xmm1, xmm2, 0xf2);
++        xmm6 = _mm_dp_ps(xmm3, xmm0, 0xf2);
++        xmm7 = _mm_dp_ps(xmm1, xmm2, 0xf2);
+-    real0 = _mm_add_ps(xmm4, real0);
+-    real1 = _mm_add_ps(xmm5, real1);
+-    im0 = _mm_add_ps(xmm6, im0);
+-    im1 = _mm_add_ps(xmm7, im1);
+-  }
++        real0 = _mm_add_ps(xmm4, real0);
++        real1 = _mm_add_ps(xmm5, real1);
++        im0 = _mm_add_ps(xmm6, im0);
++        im1 = _mm_add_ps(xmm7, im1);
++    }
+-  real1 = _mm_xor_ps(real1, bit128_p(&neg)->float_vec);
++    real1 = _mm_xor_ps(real1, bit128_p(&neg)->float_vec);
+-  im0 = _mm_add_ps(im0, im1);
+-  real0 = _mm_add_ps(real0, real1);
++    im0 = _mm_add_ps(im0, im1);
++    real0 = _mm_add_ps(real0, real1);
+-  im0 = _mm_add_ps(im0, real0);
++    im0 = _mm_add_ps(im0, real0);
+-  _mm_storel_pi(p_result, im0);
++    _mm_storel_pi(p_result, im0);
+-  for(i = num_points-isodd; i < num_points; i++) {
+-    *result += input[i] * taps[i];
+-  }
++    for (i = num_points - isodd; i < num_points; i++) {
++        *result += input[i] * taps[i];
++    }
+ }
+ #endif /*LV_HAVE_SSE4_1*/
+@@ -931,13 +982,17 @@ static inline void volk_32fc_x2_dot_prod_32fc_a_sse4_1(lv_32fc_t* result, const
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void volk_32fc_x2_dot_prod_32fc_neon(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points) {
++static inline void volk_32fc_x2_dot_prod_32fc_neon(lv_32fc_t* result,
++                                                   const lv_32fc_t* input,
++                                                   const lv_32fc_t* taps,
++                                                   unsigned int num_points)
++{
+     unsigned int quarter_points = num_points / 4;
+     unsigned int number;
+-    lv_32fc_t* a_ptr = (lv_32fc_t*) taps;
+-    lv_32fc_t* b_ptr = (lv_32fc_t*) input;
++    lv_32fc_t* a_ptr = (lv_32fc_t*)taps;
++    lv_32fc_t* b_ptr = (lv_32fc_t*)input;
+     // for 2-lane vectors, 1st lane holds the real part,
+     // 2nd lane holds the imaginary part
+     float32x4x2_t a_val, b_val, c_val, accumulator;
+@@ -945,11 +1000,11 @@ static inline void volk_32fc_x2_dot_prod_32fc_neon(lv_32fc_t* result, const lv_3
+     accumulator.val[0] = vdupq_n_f32(0);
+     accumulator.val[1] = vdupq_n_f32(0);
+-    for(number = 0; number < quarter_points; ++number) {
++    for (number = 0; number < quarter_points; ++number) {
+         a_val = vld2q_f32((float*)a_ptr); // a0r|a1r|a2r|a3r || a0i|a1i|a2i|a3i
+         b_val = vld2q_f32((float*)b_ptr); // b0r|b1r|b2r|b3r || b0i|b1i|b2i|b3i
+-        __VOLK_PREFETCH(a_ptr+8);
+-        __VOLK_PREFETCH(b_ptr+8);
++        __VOLK_PREFETCH(a_ptr + 8);
++        __VOLK_PREFETCH(b_ptr + 8);
+         // multiply the real*real and imag*imag to get real result
+         // a0r*b0r|a1r*b1r|a2r*b2r|a3r*b3r
+@@ -977,22 +1032,25 @@ static inline void volk_32fc_x2_dot_prod_32fc_neon(lv_32fc_t* result, const lv_3
+     *result = accum_result[0] + accum_result[1] + accum_result[2] + accum_result[3];
+     // tail case
+-    for(number = quarter_points*4; number < num_points; ++number) {
++    for (number = quarter_points * 4; number < num_points; ++number) {
+         *result += (*a_ptr++) * (*b_ptr++);
+     }
+-
+ }
+ #endif /*LV_HAVE_NEON*/
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void volk_32fc_x2_dot_prod_32fc_neon_opttests(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points) {
++static inline void volk_32fc_x2_dot_prod_32fc_neon_opttests(lv_32fc_t* result,
++                                                            const lv_32fc_t* input,
++                                                            const lv_32fc_t* taps,
++                                                            unsigned int num_points)
++{
+     unsigned int quarter_points = num_points / 4;
+     unsigned int number;
+-    lv_32fc_t* a_ptr = (lv_32fc_t*) taps;
+-    lv_32fc_t* b_ptr = (lv_32fc_t*) input;
++    lv_32fc_t* a_ptr = (lv_32fc_t*)taps;
++    lv_32fc_t* b_ptr = (lv_32fc_t*)input;
+     // for 2-lane vectors, 1st lane holds the real part,
+     // 2nd lane holds the imaginary part
+     float32x4x2_t a_val, b_val, accumulator;
+@@ -1000,11 +1058,11 @@ static inline void volk_32fc_x2_dot_prod_32fc_neon_opttests(lv_32fc_t* result, c
+     accumulator.val[0] = vdupq_n_f32(0);
+     accumulator.val[1] = vdupq_n_f32(0);
+-    for(number = 0; number < quarter_points; ++number) {
++    for (number = 0; number < quarter_points; ++number) {
+         a_val = vld2q_f32((float*)a_ptr); // a0r|a1r|a2r|a3r || a0i|a1i|a2i|a3i
+         b_val = vld2q_f32((float*)b_ptr); // b0r|b1r|b2r|b3r || b0i|b1i|b2i|b3i
+-        __VOLK_PREFETCH(a_ptr+8);
+-        __VOLK_PREFETCH(b_ptr+8);
++        __VOLK_PREFETCH(a_ptr + 8);
++        __VOLK_PREFETCH(b_ptr + 8);
+         // do the first multiply
+         tmp_imag.val[1] = vmulq_f32(a_val.val[1], b_val.val[0]);
+@@ -1026,21 +1084,24 @@ static inline void volk_32fc_x2_dot_prod_32fc_neon_opttests(lv_32fc_t* result, c
+     *result = accum_result[0] + accum_result[1] + accum_result[2] + accum_result[3];
+     // tail case
+-    for(number = quarter_points*4; number < num_points; ++number) {
++    for (number = quarter_points * 4; number < num_points; ++number) {
+         *result += (*a_ptr++) * (*b_ptr++);
+     }
+-
+ }
+ #endif /*LV_HAVE_NEON*/
+ #ifdef LV_HAVE_NEON
+-static inline void volk_32fc_x2_dot_prod_32fc_neon_optfma(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points) {
++static inline void volk_32fc_x2_dot_prod_32fc_neon_optfma(lv_32fc_t* result,
++                                                          const lv_32fc_t* input,
++                                                          const lv_32fc_t* taps,
++                                                          unsigned int num_points)
++{
+     unsigned int quarter_points = num_points / 4;
+     unsigned int number;
+-    lv_32fc_t* a_ptr = (lv_32fc_t*) taps;
+-    lv_32fc_t* b_ptr = (lv_32fc_t*) input;
++    lv_32fc_t* a_ptr = (lv_32fc_t*)taps;
++    lv_32fc_t* b_ptr = (lv_32fc_t*)input;
+     // for 2-lane vectors, 1st lane holds the real part,
+     // 2nd lane holds the imaginary part
+     float32x4x2_t a_val, b_val, accumulator1, accumulator2;
+@@ -1049,11 +1110,11 @@ static inline void volk_32fc_x2_dot_prod_32fc_neon_optfma(lv_32fc_t* result, con
+     accumulator2.val[0] = vdupq_n_f32(0);
+     accumulator2.val[1] = vdupq_n_f32(0);
+-    for(number = 0; number < quarter_points; ++number) {
++    for (number = 0; number < quarter_points; ++number) {
+         a_val = vld2q_f32((float*)a_ptr); // a0r|a1r|a2r|a3r || a0i|a1i|a2i|a3i
+         b_val = vld2q_f32((float*)b_ptr); // b0r|b1r|b2r|b3r || b0i|b1i|b2i|b3i
+-        __VOLK_PREFETCH(a_ptr+8);
+-        __VOLK_PREFETCH(b_ptr+8);
++        __VOLK_PREFETCH(a_ptr + 8);
++        __VOLK_PREFETCH(b_ptr + 8);
+         // use 2 accumulators to remove inter-instruction data dependencies
+         accumulator1.val[0] = vmlaq_f32(accumulator1.val[0], a_val.val[0], b_val.val[0]);
+@@ -1071,22 +1132,26 @@ static inline void volk_32fc_x2_dot_prod_32fc_neon_optfma(lv_32fc_t* result, con
+     *result = accum_result[0] + accum_result[1] + accum_result[2] + accum_result[3];
+     // tail case
+-    for(number = quarter_points*4; number < num_points; ++number) {
++    for (number = quarter_points * 4; number < num_points; ++number) {
+         *result += (*a_ptr++) * (*b_ptr++);
+     }
+-
+ }
+ #endif /*LV_HAVE_NEON*/
+ #ifdef LV_HAVE_NEON
+-static inline void volk_32fc_x2_dot_prod_32fc_neon_optfmaunroll(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points) {
+-// NOTE: GCC does a poor job with this kernel, but the equivalent ASM code is very fast
++static inline void volk_32fc_x2_dot_prod_32fc_neon_optfmaunroll(lv_32fc_t* result,
++                                                                const lv_32fc_t* input,
++                                                                const lv_32fc_t* taps,
++                                                                unsigned int num_points)
++{
++    // NOTE: GCC does a poor job with this kernel, but the equivalent ASM code is very
++    // fast
+     unsigned int quarter_points = num_points / 8;
+     unsigned int number;
+-    lv_32fc_t* a_ptr = (lv_32fc_t*) taps;
+-    lv_32fc_t* b_ptr = (lv_32fc_t*) input;
++    lv_32fc_t* a_ptr = (lv_32fc_t*)taps;
++    lv_32fc_t* b_ptr = (lv_32fc_t*)input;
+     // for 2-lane vectors, 1st lane holds the real part,
+     // 2nd lane holds the imaginary part
+     float32x4x4_t a_val, b_val, accumulator1, accumulator2;
+@@ -1101,11 +1166,11 @@ static inline void volk_32fc_x2_dot_prod_32fc_neon_optfmaunroll(lv_32fc_t* resul
+     accumulator2.val[3] = vdupq_n_f32(0);
+     // 8 input regs, 8 accumulators -> 16/16 neon regs are used
+-    for(number = 0; number < quarter_points; ++number) {
++    for (number = 0; number < quarter_points; ++number) {
+         a_val = vld4q_f32((float*)a_ptr); // a0r|a1r|a2r|a3r || a0i|a1i|a2i|a3i
+         b_val = vld4q_f32((float*)b_ptr); // b0r|b1r|b2r|b3r || b0i|b1i|b2i|b3i
+-        __VOLK_PREFETCH(a_ptr+8);
+-        __VOLK_PREFETCH(b_ptr+8);
++        __VOLK_PREFETCH(a_ptr + 8);
++        __VOLK_PREFETCH(b_ptr + 8);
+         // use 2 accumulators to remove inter-instruction data dependencies
+         accumulator1.val[0] = vmlaq_f32(accumulator1.val[0], a_val.val[0], b_val.val[0]);
+@@ -1136,10 +1201,9 @@ static inline void volk_32fc_x2_dot_prod_32fc_neon_optfmaunroll(lv_32fc_t* resul
+     *result = accum_result[0] + accum_result[1] + accum_result[2] + accum_result[3];
+     // tail case
+-    for(number = quarter_points*8; number < num_points; ++number) {
++    for (number = quarter_points * 8; number < num_points; ++number) {
+         *result += (*a_ptr++) * (*b_ptr++);
+     }
+-
+ }
+ #endif /*LV_HAVE_NEON*/
+@@ -1148,56 +1212,64 @@ static inline void volk_32fc_x2_dot_prod_32fc_neon_optfmaunroll(lv_32fc_t* resul
+ #include <immintrin.h>
+-static inline void volk_32fc_x2_dot_prod_32fc_a_avx(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points) {
++static inline void volk_32fc_x2_dot_prod_32fc_a_avx(lv_32fc_t* result,
++                                                    const lv_32fc_t* input,
++                                                    const lv_32fc_t* taps,
++                                                    unsigned int num_points)
++{
+-  unsigned int isodd = num_points & 3;
+-  unsigned int i = 0;
+-  lv_32fc_t dotProduct;
+-  memset(&dotProduct, 0x0, 2*sizeof(float));
++    unsigned int isodd = num_points & 3;
++    unsigned int i = 0;
++    lv_32fc_t dotProduct;
++    memset(&dotProduct, 0x0, 2 * sizeof(float));
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  __m256 x, y, yl, yh, z, tmp1, tmp2, dotProdVal;
++    __m256 x, y, yl, yh, z, tmp1, tmp2, dotProdVal;
+-  const lv_32fc_t* a = input;
+-  const lv_32fc_t* b = taps;
++    const lv_32fc_t* a = input;
++    const lv_32fc_t* b = taps;
+-  dotProdVal = _mm256_setzero_ps();
++    dotProdVal = _mm256_setzero_ps();
+-  for(;number < quarterPoints; number++){
++    for (; number < quarterPoints; number++) {
+-    x = _mm256_load_ps((float*)a); // Load a,b,e,f as ar,ai,br,bi,er,ei,fr,fi
+-    y = _mm256_load_ps((float*)b); // Load c,d,g,h as cr,ci,dr,di,gr,gi,hr,hi
++        x = _mm256_load_ps((float*)a); // Load a,b,e,f as ar,ai,br,bi,er,ei,fr,fi
++        y = _mm256_load_ps((float*)b); // Load c,d,g,h as cr,ci,dr,di,gr,gi,hr,hi
+-    yl = _mm256_moveldup_ps(y); // Load yl with cr,cr,dr,dr,gr,gr,hr,hr
+-    yh = _mm256_movehdup_ps(y); // Load yh with ci,ci,di,di,gi,gi,hi,hi
++        yl = _mm256_moveldup_ps(y); // Load yl with cr,cr,dr,dr,gr,gr,hr,hr
++        yh = _mm256_movehdup_ps(y); // Load yh with ci,ci,di,di,gi,gi,hi,hi
+-    tmp1 = _mm256_mul_ps(x,yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr ...
++        tmp1 = _mm256_mul_ps(x, yl); // tmp1 = ar*cr,ai*cr,br*dr,bi*dr ...
+-    x = _mm256_shuffle_ps(x,x,0xB1); // Re-arrange x to be ai,ar,bi,br,ei,er,fi,fr
++        x = _mm256_shuffle_ps(x, x, 0xB1); // Re-arrange x to be ai,ar,bi,br,ei,er,fi,fr
+-    tmp2 = _mm256_mul_ps(x,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di ...
++        tmp2 = _mm256_mul_ps(x, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di ...
+-    z = _mm256_addsub_ps(tmp1,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
++        z = _mm256_addsub_ps(tmp1,
++                             tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+-    dotProdVal = _mm256_add_ps(dotProdVal, z); // Add the complex multiplication results together
++        dotProdVal = _mm256_add_ps(dotProdVal,
++                                   z); // Add the complex multiplication results together
+-    a += 4;
+-    b += 4;
+-  }
++        a += 4;
++        b += 4;
++    }
+-  __VOLK_ATTR_ALIGNED(32) lv_32fc_t dotProductVector[4];
++    __VOLK_ATTR_ALIGNED(32) lv_32fc_t dotProductVector[4];
+-  _mm256_store_ps((float*)dotProductVector,dotProdVal); // Store the results back into the dot product vector
++    _mm256_store_ps((float*)dotProductVector,
++                    dotProdVal); // Store the results back into the dot product vector
+-  dotProduct += ( dotProductVector[0] + dotProductVector[1] + dotProductVector[2] + dotProductVector[3]);
++    dotProduct += (dotProductVector[0] + dotProductVector[1] + dotProductVector[2] +
++                   dotProductVector[3]);
+-  for(i = num_points-isodd; i < num_points; i++) {
+-    dotProduct += input[i] * taps[i];
+-  }
++    for (i = num_points - isodd; i < num_points; i++) {
++        dotProduct += input[i] * taps[i];
++    }
+-  *result = dotProduct;
++    *result = dotProduct;
+ }
+ #endif /*LV_HAVE_AVX*/
+@@ -1205,56 +1277,64 @@ static inline void volk_32fc_x2_dot_prod_32fc_a_avx(lv_32fc_t* result, const lv_
+ #if LV_HAVE_AVX && LV_HAVE_FMA
+ #include <immintrin.h>
+-static inline void volk_32fc_x2_dot_prod_32fc_a_avx_fma(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points) {
++static inline void volk_32fc_x2_dot_prod_32fc_a_avx_fma(lv_32fc_t* result,
++                                                        const lv_32fc_t* input,
++                                                        const lv_32fc_t* taps,
++                                                        unsigned int num_points)
++{
+-  unsigned int isodd = num_points & 3;
+-  unsigned int i = 0;
+-  lv_32fc_t dotProduct;
+-  memset(&dotProduct, 0x0, 2*sizeof(float));
++    unsigned int isodd = num_points & 3;
++    unsigned int i = 0;
++    lv_32fc_t dotProduct;
++    memset(&dotProduct, 0x0, 2 * sizeof(float));
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  __m256 x, y, yl, yh, z, tmp1, tmp2, dotProdVal;
++    __m256 x, y, yl, yh, z, tmp1, tmp2, dotProdVal;
+-  const lv_32fc_t* a = input;
+-  const lv_32fc_t* b = taps;
++    const lv_32fc_t* a = input;
++    const lv_32fc_t* b = taps;
+-  dotProdVal = _mm256_setzero_ps();
++    dotProdVal = _mm256_setzero_ps();
+-  for(;number < quarterPoints; number++){
++    for (; number < quarterPoints; number++) {
+-    x = _mm256_load_ps((float*)a); // Load a,b,e,f as ar,ai,br,bi,er,ei,fr,fi
+-    y = _mm256_load_ps((float*)b); // Load c,d,g,h as cr,ci,dr,di,gr,gi,hr,hi
++        x = _mm256_load_ps((float*)a); // Load a,b,e,f as ar,ai,br,bi,er,ei,fr,fi
++        y = _mm256_load_ps((float*)b); // Load c,d,g,h as cr,ci,dr,di,gr,gi,hr,hi
+-    yl = _mm256_moveldup_ps(y); // Load yl with cr,cr,dr,dr,gr,gr,hr,hr
+-    yh = _mm256_movehdup_ps(y); // Load yh with ci,ci,di,di,gi,gi,hi,hi
++        yl = _mm256_moveldup_ps(y); // Load yl with cr,cr,dr,dr,gr,gr,hr,hr
++        yh = _mm256_movehdup_ps(y); // Load yh with ci,ci,di,di,gi,gi,hi,hi
+-    tmp1 = x;
++        tmp1 = x;
+-    x = _mm256_shuffle_ps(x,x,0xB1); // Re-arrange x to be ai,ar,bi,br,ei,er,fi,fr
++        x = _mm256_shuffle_ps(x, x, 0xB1); // Re-arrange x to be ai,ar,bi,br,ei,er,fi,fr
+-    tmp2 = _mm256_mul_ps(x,yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di ...
++        tmp2 = _mm256_mul_ps(x, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di ...
+-    z = _mm256_fmaddsub_ps(tmp1, yl,tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
++        z = _mm256_fmaddsub_ps(
++            tmp1, yl, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+-    dotProdVal = _mm256_add_ps(dotProdVal, z); // Add the complex multiplication results together
++        dotProdVal = _mm256_add_ps(dotProdVal,
++                                   z); // Add the complex multiplication results together
+-    a += 4;
+-    b += 4;
+-  }
++        a += 4;
++        b += 4;
++    }
+-  __VOLK_ATTR_ALIGNED(32) lv_32fc_t dotProductVector[4];
++    __VOLK_ATTR_ALIGNED(32) lv_32fc_t dotProductVector[4];
+-  _mm256_store_ps((float*)dotProductVector,dotProdVal); // Store the results back into the dot product vector
++    _mm256_store_ps((float*)dotProductVector,
++                    dotProdVal); // Store the results back into the dot product vector
+-  dotProduct += ( dotProductVector[0] + dotProductVector[1] + dotProductVector[2] + dotProductVector[3]);
++    dotProduct += (dotProductVector[0] + dotProductVector[1] + dotProductVector[2] +
++                   dotProductVector[3]);
+-  for(i = num_points-isodd; i < num_points; i++) {
+-    dotProduct += input[i] * taps[i];
+-  }
++    for (i = num_points - isodd; i < num_points; i++) {
++        dotProduct += input[i] * taps[i];
++    }
+-  *result = dotProduct;
++    *result = dotProduct;
+ }
+ #endif /*LV_HAVE_AVX && LV_HAVE_FMA*/
+diff --git a/kernels/volk/volk_32fc_x2_multiply_32fc.h b/kernels/volk/volk_32fc_x2_multiply_32fc.h
+index 6bf428b..6cb6907 100644
+--- a/kernels/volk/volk_32fc_x2_multiply_32fc.h
++++ b/kernels/volk/volk_32fc_x2_multiply_32fc.h
+@@ -29,8 +29,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32fc_x2_multiply_32fc(lv_32fc_t* cVector, const lv_32fc_t* aVector, const lv_32fc_t* bVector, unsigned int num_points);
+- * \endcode
++ * void volk_32fc_x2_multiply_32fc(lv_32fc_t* cVector, const lv_32fc_t* aVector, const
++ * lv_32fc_t* bVector, unsigned int num_points); \endcode
+  *
+  * \b Inputs
+  * \li aVector: The first input vector of complex floats.
+@@ -70,55 +70,62 @@
+ #ifndef INCLUDED_volk_32fc_x2_multiply_32fc_u_H
+ #define INCLUDED_volk_32fc_x2_multiply_32fc_u_H
++#include <float.h>
+ #include <inttypes.h>
+ #include <stdio.h>
+ #include <volk/volk_complex.h>
+-#include <float.h>
+ #if LV_HAVE_AVX2 && LV_HAVE_FMA
+ #include <immintrin.h>
+ /*!
+-  \brief Multiplies the two input complex vectors and stores their results in the third vector
+-  \param cVector The vector where the results will be stored
+-  \param aVector One of the vectors to be multiplied
+-  \param bVector One of the vectors to be multiplied
+-  \param num_points The number of complex values in aVector and bVector to be multiplied together and stored into cVector
++  \brief Multiplies the two input complex vectors and stores their results in the third
++  vector \param cVector The vector where the results will be stored \param aVector One of
++  the vectors to be multiplied \param bVector One of the vectors to be multiplied \param
++  num_points The number of complex values in aVector and bVector to be multiplied together
++  and stored into cVector
+ */
+-static inline void volk_32fc_x2_multiply_32fc_u_avx2_fma(lv_32fc_t* cVector, const lv_32fc_t* aVector, const lv_32fc_t* bVector, unsigned int num_points){
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++static inline void volk_32fc_x2_multiply_32fc_u_avx2_fma(lv_32fc_t* cVector,
++                                                         const lv_32fc_t* aVector,
++                                                         const lv_32fc_t* bVector,
++                                                         unsigned int num_points)
++{
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  lv_32fc_t* c = cVector;
+-  const lv_32fc_t* a = aVector;
+-  const lv_32fc_t* b = bVector;
++    lv_32fc_t* c = cVector;
++    const lv_32fc_t* a = aVector;
++    const lv_32fc_t* b = bVector;
+-  for(;number < quarterPoints; number++){
++    for (; number < quarterPoints; number++) {
+-    const __m256 x = _mm256_loadu_ps((float*)a); // Load the ar + ai, br + bi as ar,ai,br,bi
+-    const __m256 y = _mm256_loadu_ps((float*)b); // Load the cr + ci, dr + di as cr,ci,dr,di
++        const __m256 x =
++            _mm256_loadu_ps((float*)a); // Load the ar + ai, br + bi as ar,ai,br,bi
++        const __m256 y =
++            _mm256_loadu_ps((float*)b); // Load the cr + ci, dr + di as cr,ci,dr,di
+-    const __m256 yl = _mm256_moveldup_ps(y); // Load yl with cr,cr,dr,dr
+-    const __m256 yh = _mm256_movehdup_ps(y); // Load yh with ci,ci,di,di
++        const __m256 yl = _mm256_moveldup_ps(y); // Load yl with cr,cr,dr,dr
++        const __m256 yh = _mm256_movehdup_ps(y); // Load yh with ci,ci,di,di
+-    const __m256 tmp2x = _mm256_permute_ps(x,0xB1); // Re-arrange x to be ai,ar,bi,br
++        const __m256 tmp2x = _mm256_permute_ps(x, 0xB1); // Re-arrange x to be ai,ar,bi,br
+-    const __m256 tmp2 = _mm256_mul_ps(tmp2x, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
++        const __m256 tmp2 = _mm256_mul_ps(tmp2x, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+-    const __m256 z = _mm256_fmaddsub_ps(x, yl, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
++        const __m256 z = _mm256_fmaddsub_ps(
++            x, yl, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+-    _mm256_storeu_ps((float*)c,z); // Store the results back into the C container
++        _mm256_storeu_ps((float*)c, z); // Store the results back into the C container
+-    a += 4;
+-    b += 4;
+-    c += 4;
+-  }
++        a += 4;
++        b += 4;
++        c += 4;
++    }
+-  _mm256_zeroupper();
++    _mm256_zeroupper();
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    *c++ = (*a++) * (*b++);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *c++ = (*a++) * (*b++);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 && LV_HAVE_FMA */
+@@ -127,34 +134,37 @@ static inline void volk_32fc_x2_multiply_32fc_u_avx2_fma(lv_32fc_t* cVector, con
+ #include <immintrin.h>
+ #include <volk/volk_avx_intrinsics.h>
+-static inline void
+-volk_32fc_x2_multiply_32fc_u_avx(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                                 const lv_32fc_t* bVector, unsigned int num_points)
++static inline void volk_32fc_x2_multiply_32fc_u_avx(lv_32fc_t* cVector,
++                                                    const lv_32fc_t* aVector,
++                                                    const lv_32fc_t* bVector,
++                                                    unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  __m256 x, y, z;
+-  lv_32fc_t* c = cVector;
+-  const lv_32fc_t* a = aVector;
+-  const lv_32fc_t* b = bVector;
+-
+-  for(; number < quarterPoints; number++){
+-    x = _mm256_loadu_ps((float*) a); // Load the ar + ai, br + bi ... as ar,ai,br,bi ...
+-    y = _mm256_loadu_ps((float*) b); // Load the cr + ci, dr + di ... as cr,ci,dr,di ...
+-    z = _mm256_complexmul_ps(x, y);
+-    _mm256_storeu_ps((float*) c, z); // Store the results back into the C container
+-
+-    a += 4;
+-    b += 4;
+-    c += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-
+-  for(; number < num_points; number++){
+-    *c++ = (*a++) * (*b++);
+-  }
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++
++    __m256 x, y, z;
++    lv_32fc_t* c = cVector;
++    const lv_32fc_t* a = aVector;
++    const lv_32fc_t* b = bVector;
++
++    for (; number < quarterPoints; number++) {
++        x = _mm256_loadu_ps(
++            (float*)a); // Load the ar + ai, br + bi ... as ar,ai,br,bi ...
++        y = _mm256_loadu_ps(
++            (float*)b); // Load the cr + ci, dr + di ... as cr,ci,dr,di ...
++        z = _mm256_complexmul_ps(x, y);
++        _mm256_storeu_ps((float*)c, z); // Store the results back into the C container
++
++        a += 4;
++        b += 4;
++        c += 4;
++    }
++
++    number = quarterPoints * 4;
++
++    for (; number < num_points; number++) {
++        *c++ = (*a++) * (*b++);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -163,50 +173,52 @@ volk_32fc_x2_multiply_32fc_u_avx(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+ #include <pmmintrin.h>
+ #include <volk/volk_sse3_intrinsics.h>
+-static inline void
+-volk_32fc_x2_multiply_32fc_u_sse3(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                                  const lv_32fc_t* bVector, unsigned int num_points)
++static inline void volk_32fc_x2_multiply_32fc_u_sse3(lv_32fc_t* cVector,
++                                                     const lv_32fc_t* aVector,
++                                                     const lv_32fc_t* bVector,
++                                                     unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int halfPoints = num_points / 2;
+-
+-  __m128 x, y, z;
+-  lv_32fc_t* c = cVector;
+-  const lv_32fc_t* a = aVector;
+-  const lv_32fc_t* b = bVector;
+-
+-  for(; number < halfPoints; number++){
+-    x = _mm_loadu_ps((float*) a); // Load the ar + ai, br + bi as ar,ai,br,bi
+-    y = _mm_loadu_ps((float*) b); // Load the cr + ci, dr + di as cr,ci,dr,di
+-    z = _mm_complexmul_ps(x, y);
+-    _mm_storeu_ps((float*) c, z); // Store the results back into the C container
+-
+-    a += 2;
+-    b += 2;
+-    c += 2;
+-  }
+-
+-  if((num_points % 2) != 0){
+-    *c = (*a) * (*b);
+-  }
++    unsigned int number = 0;
++    const unsigned int halfPoints = num_points / 2;
++
++    __m128 x, y, z;
++    lv_32fc_t* c = cVector;
++    const lv_32fc_t* a = aVector;
++    const lv_32fc_t* b = bVector;
++
++    for (; number < halfPoints; number++) {
++        x = _mm_loadu_ps((float*)a); // Load the ar + ai, br + bi as ar,ai,br,bi
++        y = _mm_loadu_ps((float*)b); // Load the cr + ci, dr + di as cr,ci,dr,di
++        z = _mm_complexmul_ps(x, y);
++        _mm_storeu_ps((float*)c, z); // Store the results back into the C container
++
++        a += 2;
++        b += 2;
++        c += 2;
++    }
++
++    if ((num_points % 2) != 0) {
++        *c = (*a) * (*b);
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32fc_x2_multiply_32fc_generic(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                                   const lv_32fc_t* bVector, unsigned int num_points)
++static inline void volk_32fc_x2_multiply_32fc_generic(lv_32fc_t* cVector,
++                                                      const lv_32fc_t* aVector,
++                                                      const lv_32fc_t* bVector,
++                                                      unsigned int num_points)
+ {
+-  lv_32fc_t* cPtr = cVector;
+-  const lv_32fc_t* aPtr = aVector;
+-  const lv_32fc_t* bPtr=  bVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    *cPtr++ = (*aPtr++) * (*bPtr++);
+-  }
++    lv_32fc_t* cPtr = cVector;
++    const lv_32fc_t* aPtr = aVector;
++    const lv_32fc_t* bPtr = bVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) * (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -215,55 +227,62 @@ volk_32fc_x2_multiply_32fc_generic(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+ #ifndef INCLUDED_volk_32fc_x2_multiply_32fc_a_H
+ #define INCLUDED_volk_32fc_x2_multiply_32fc_a_H
++#include <float.h>
+ #include <inttypes.h>
+ #include <stdio.h>
+ #include <volk/volk_complex.h>
+-#include <float.h>
+ #if LV_HAVE_AVX2 && LV_HAVE_FMA
+ #include <immintrin.h>
+ /*!
+-  \brief Multiplies the two input complex vectors and stores their results in the third vector
+-  \param cVector The vector where the results will be stored
+-  \param aVector One of the vectors to be multiplied
+-  \param bVector One of the vectors to be multiplied
+-  \param num_points The number of complex values in aVector and bVector to be multiplied together and stored into cVector
++  \brief Multiplies the two input complex vectors and stores their results in the third
++  vector \param cVector The vector where the results will be stored \param aVector One of
++  the vectors to be multiplied \param bVector One of the vectors to be multiplied \param
++  num_points The number of complex values in aVector and bVector to be multiplied together
++  and stored into cVector
+ */
+-static inline void volk_32fc_x2_multiply_32fc_a_avx2_fma(lv_32fc_t* cVector, const lv_32fc_t* aVector, const lv_32fc_t* bVector, unsigned int num_points){
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++static inline void volk_32fc_x2_multiply_32fc_a_avx2_fma(lv_32fc_t* cVector,
++                                                         const lv_32fc_t* aVector,
++                                                         const lv_32fc_t* bVector,
++                                                         unsigned int num_points)
++{
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  lv_32fc_t* c = cVector;
+-  const lv_32fc_t* a = aVector;
+-  const lv_32fc_t* b = bVector;
++    lv_32fc_t* c = cVector;
++    const lv_32fc_t* a = aVector;
++    const lv_32fc_t* b = bVector;
+-  for(;number < quarterPoints; number++){
++    for (; number < quarterPoints; number++) {
+-    const __m256 x = _mm256_load_ps((float*)a); // Load the ar + ai, br + bi as ar,ai,br,bi
+-    const __m256 y = _mm256_load_ps((float*)b); // Load the cr + ci, dr + di as cr,ci,dr,di
++        const __m256 x =
++            _mm256_load_ps((float*)a); // Load the ar + ai, br + bi as ar,ai,br,bi
++        const __m256 y =
++            _mm256_load_ps((float*)b); // Load the cr + ci, dr + di as cr,ci,dr,di
+-    const __m256 yl = _mm256_moveldup_ps(y); // Load yl with cr,cr,dr,dr
+-    const __m256 yh = _mm256_movehdup_ps(y); // Load yh with ci,ci,di,di
++        const __m256 yl = _mm256_moveldup_ps(y); // Load yl with cr,cr,dr,dr
++        const __m256 yh = _mm256_movehdup_ps(y); // Load yh with ci,ci,di,di
+-    const __m256 tmp2x = _mm256_permute_ps(x,0xB1); // Re-arrange x to be ai,ar,bi,br
++        const __m256 tmp2x = _mm256_permute_ps(x, 0xB1); // Re-arrange x to be ai,ar,bi,br
+-    const __m256 tmp2 = _mm256_mul_ps(tmp2x, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
++        const __m256 tmp2 = _mm256_mul_ps(tmp2x, yh); // tmp2 = ai*ci,ar*ci,bi*di,br*di
+-    const __m256 z = _mm256_fmaddsub_ps(x, yl, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
++        const __m256 z = _mm256_fmaddsub_ps(
++            x, yl, tmp2); // ar*cr-ai*ci, ai*cr+ar*ci, br*dr-bi*di, bi*dr+br*di
+-    _mm256_store_ps((float*)c,z); // Store the results back into the C container
++        _mm256_store_ps((float*)c, z); // Store the results back into the C container
+-    a += 4;
+-    b += 4;
+-    c += 4;
+-  }
++        a += 4;
++        b += 4;
++        c += 4;
++    }
+-  _mm256_zeroupper();
++    _mm256_zeroupper();
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    *c++ = (*a++) * (*b++);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *c++ = (*a++) * (*b++);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 && LV_HAVE_FMA */
+@@ -272,34 +291,35 @@ static inline void volk_32fc_x2_multiply_32fc_a_avx2_fma(lv_32fc_t* cVector, con
+ #include <immintrin.h>
+ #include <volk/volk_avx_intrinsics.h>
+-static inline void
+-volk_32fc_x2_multiply_32fc_a_avx(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                                 const lv_32fc_t* bVector, unsigned int num_points)
++static inline void volk_32fc_x2_multiply_32fc_a_avx(lv_32fc_t* cVector,
++                                                    const lv_32fc_t* aVector,
++                                                    const lv_32fc_t* bVector,
++                                                    unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  __m256 x, y, z;
+-  lv_32fc_t* c = cVector;
+-  const lv_32fc_t* a = aVector;
+-  const lv_32fc_t* b = bVector;
+-
+-  for(; number < quarterPoints; number++){
+-    x = _mm256_load_ps((float*) a); // Load the ar + ai, br + bi ... as ar,ai,br,bi ...
+-    y = _mm256_load_ps((float*) b); // Load the cr + ci, dr + di ... as cr,ci,dr,di ...
+-    z = _mm256_complexmul_ps(x, y);
+-    _mm256_store_ps((float*) c, z); // Store the results back into the C container
+-
+-    a += 4;
+-    b += 4;
+-    c += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-
+-  for(; number < num_points; number++){
+-    *c++ = (*a++) * (*b++);
+-  }
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++
++    __m256 x, y, z;
++    lv_32fc_t* c = cVector;
++    const lv_32fc_t* a = aVector;
++    const lv_32fc_t* b = bVector;
++
++    for (; number < quarterPoints; number++) {
++        x = _mm256_load_ps((float*)a); // Load the ar + ai, br + bi ... as ar,ai,br,bi ...
++        y = _mm256_load_ps((float*)b); // Load the cr + ci, dr + di ... as cr,ci,dr,di ...
++        z = _mm256_complexmul_ps(x, y);
++        _mm256_store_ps((float*)c, z); // Store the results back into the C container
++
++        a += 4;
++        b += 4;
++        c += 4;
++    }
++
++    number = quarterPoints * 4;
++
++    for (; number < num_points; number++) {
++        *c++ = (*a++) * (*b++);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -307,50 +327,52 @@ volk_32fc_x2_multiply_32fc_a_avx(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+ #include <pmmintrin.h>
+ #include <volk/volk_sse3_intrinsics.h>
+-static inline void
+-volk_32fc_x2_multiply_32fc_a_sse3(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                                  const lv_32fc_t* bVector, unsigned int num_points)
++static inline void volk_32fc_x2_multiply_32fc_a_sse3(lv_32fc_t* cVector,
++                                                     const lv_32fc_t* aVector,
++                                                     const lv_32fc_t* bVector,
++                                                     unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int halfPoints = num_points / 2;
+-
+-  __m128 x, y, z;
+-  lv_32fc_t* c = cVector;
+-  const lv_32fc_t* a = aVector;
+-  const lv_32fc_t* b = bVector;
+-
+-  for(; number < halfPoints; number++){
+-    x = _mm_load_ps((float*) a); // Load the ar + ai, br + bi as ar,ai,br,bi
+-    y = _mm_load_ps((float*) b); // Load the cr + ci, dr + di as cr,ci,dr,di
+-    z = _mm_complexmul_ps(x, y);
+-    _mm_store_ps((float*) c, z); // Store the results back into the C container
+-
+-    a += 2;
+-    b += 2;
+-    c += 2;
+-  }
+-
+-  if((num_points % 2) != 0){
+-    *c = (*a) * (*b);
+-  }
++    unsigned int number = 0;
++    const unsigned int halfPoints = num_points / 2;
++
++    __m128 x, y, z;
++    lv_32fc_t* c = cVector;
++    const lv_32fc_t* a = aVector;
++    const lv_32fc_t* b = bVector;
++
++    for (; number < halfPoints; number++) {
++        x = _mm_load_ps((float*)a); // Load the ar + ai, br + bi as ar,ai,br,bi
++        y = _mm_load_ps((float*)b); // Load the cr + ci, dr + di as cr,ci,dr,di
++        z = _mm_complexmul_ps(x, y);
++        _mm_store_ps((float*)c, z); // Store the results back into the C container
++
++        a += 2;
++        b += 2;
++        c += 2;
++    }
++
++    if ((num_points % 2) != 0) {
++        *c = (*a) * (*b);
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32fc_x2_multiply_32fc_a_generic(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                                     const lv_32fc_t* bVector, unsigned int num_points)
++static inline void volk_32fc_x2_multiply_32fc_a_generic(lv_32fc_t* cVector,
++                                                        const lv_32fc_t* aVector,
++                                                        const lv_32fc_t* bVector,
++                                                        unsigned int num_points)
+ {
+-  lv_32fc_t* cPtr = cVector;
+-  const lv_32fc_t* aPtr = aVector;
+-  const lv_32fc_t* bPtr=  bVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    *cPtr++ = (*aPtr++) * (*bPtr++);
+-  }
++    lv_32fc_t* cPtr = cVector;
++    const lv_32fc_t* aPtr = aVector;
++    const lv_32fc_t* bPtr = bVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) * (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -358,113 +380,118 @@ volk_32fc_x2_multiply_32fc_a_generic(lv_32fc_t* cVector, const lv_32fc_t* aVecto
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_32fc_x2_multiply_32fc_neon(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                                const lv_32fc_t* bVector, unsigned int num_points)
++static inline void volk_32fc_x2_multiply_32fc_neon(lv_32fc_t* cVector,
++                                                   const lv_32fc_t* aVector,
++                                                   const lv_32fc_t* bVector,
++                                                   unsigned int num_points)
+ {
+-  lv_32fc_t *a_ptr = (lv_32fc_t*) aVector;
+-  lv_32fc_t *b_ptr = (lv_32fc_t*) bVector;
+-  unsigned int quarter_points = num_points / 4;
+-  float32x4x2_t a_val, b_val, c_val;
+-  float32x4x2_t tmp_real, tmp_imag;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < quarter_points; ++number) {
+-    a_val = vld2q_f32((float*)a_ptr); // a0r|a1r|a2r|a3r || a0i|a1i|a2i|a3i
+-    b_val = vld2q_f32((float*)b_ptr); // b0r|b1r|b2r|b3r || b0i|b1i|b2i|b3i
+-    __VOLK_PREFETCH(a_ptr+4);
+-    __VOLK_PREFETCH(b_ptr+4);
+-
+-    // multiply the real*real and imag*imag to get real result
+-    // a0r*b0r|a1r*b1r|a2r*b2r|a3r*b3r
+-    tmp_real.val[0] = vmulq_f32(a_val.val[0], b_val.val[0]);
+-    // a0i*b0i|a1i*b1i|a2i*b2i|a3i*b3i
+-    tmp_real.val[1] = vmulq_f32(a_val.val[1], b_val.val[1]);
+-
+-    // Multiply cross terms to get the imaginary result
+-    // a0r*b0i|a1r*b1i|a2r*b2i|a3r*b3i
+-    tmp_imag.val[0] = vmulq_f32(a_val.val[0], b_val.val[1]);
+-    // a0i*b0r|a1i*b1r|a2i*b2r|a3i*b3r
+-    tmp_imag.val[1] = vmulq_f32(a_val.val[1], b_val.val[0]);
+-
+-    // store the results
+-    c_val.val[0] = vsubq_f32(tmp_real.val[0], tmp_real.val[1]);
+-    c_val.val[1] = vaddq_f32(tmp_imag.val[0], tmp_imag.val[1]);
+-    vst2q_f32((float*)cVector, c_val);
+-
+-    a_ptr += 4;
+-    b_ptr += 4;
+-    cVector += 4;
+-  }
+-
+-  for(number = quarter_points*4; number < num_points; number++){
+-    *cVector++ = (*a_ptr++) * (*b_ptr++);
+-  }
++    lv_32fc_t* a_ptr = (lv_32fc_t*)aVector;
++    lv_32fc_t* b_ptr = (lv_32fc_t*)bVector;
++    unsigned int quarter_points = num_points / 4;
++    float32x4x2_t a_val, b_val, c_val;
++    float32x4x2_t tmp_real, tmp_imag;
++    unsigned int number = 0;
++
++    for (number = 0; number < quarter_points; ++number) {
++        a_val = vld2q_f32((float*)a_ptr); // a0r|a1r|a2r|a3r || a0i|a1i|a2i|a3i
++        b_val = vld2q_f32((float*)b_ptr); // b0r|b1r|b2r|b3r || b0i|b1i|b2i|b3i
++        __VOLK_PREFETCH(a_ptr + 4);
++        __VOLK_PREFETCH(b_ptr + 4);
++
++        // multiply the real*real and imag*imag to get real result
++        // a0r*b0r|a1r*b1r|a2r*b2r|a3r*b3r
++        tmp_real.val[0] = vmulq_f32(a_val.val[0], b_val.val[0]);
++        // a0i*b0i|a1i*b1i|a2i*b2i|a3i*b3i
++        tmp_real.val[1] = vmulq_f32(a_val.val[1], b_val.val[1]);
++
++        // Multiply cross terms to get the imaginary result
++        // a0r*b0i|a1r*b1i|a2r*b2i|a3r*b3i
++        tmp_imag.val[0] = vmulq_f32(a_val.val[0], b_val.val[1]);
++        // a0i*b0r|a1i*b1r|a2i*b2r|a3i*b3r
++        tmp_imag.val[1] = vmulq_f32(a_val.val[1], b_val.val[0]);
++
++        // store the results
++        c_val.val[0] = vsubq_f32(tmp_real.val[0], tmp_real.val[1]);
++        c_val.val[1] = vaddq_f32(tmp_imag.val[0], tmp_imag.val[1]);
++        vst2q_f32((float*)cVector, c_val);
++
++        a_ptr += 4;
++        b_ptr += 4;
++        cVector += 4;
++    }
++
++    for (number = quarter_points * 4; number < num_points; number++) {
++        *cVector++ = (*a_ptr++) * (*b_ptr++);
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_NEON
+-static inline void
+-volk_32fc_x2_multiply_32fc_neon_opttests(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                                         const lv_32fc_t* bVector, unsigned int num_points)
++static inline void volk_32fc_x2_multiply_32fc_neon_opttests(lv_32fc_t* cVector,
++                                                            const lv_32fc_t* aVector,
++                                                            const lv_32fc_t* bVector,
++                                                            unsigned int num_points)
+ {
+-  lv_32fc_t *a_ptr = (lv_32fc_t*) aVector;
+-  lv_32fc_t *b_ptr = (lv_32fc_t*) bVector;
+-  unsigned int quarter_points = num_points / 4;
+-  float32x4x2_t a_val, b_val;
+-  float32x4x2_t tmp_imag;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < quarter_points; ++number) {
+-    a_val = vld2q_f32((float*)a_ptr); // a0r|a1r|a2r|a3r || a0i|a1i|a2i|a3i
+-    b_val = vld2q_f32((float*)b_ptr); // b0r|b1r|b2r|b3r || b0i|b1i|b2i|b3i
+-    __VOLK_PREFETCH(a_ptr+4);
+-    __VOLK_PREFETCH(b_ptr+4);
+-
+-    // do the first multiply
+-    tmp_imag.val[1] = vmulq_f32(a_val.val[1], b_val.val[0]);
+-    tmp_imag.val[0] = vmulq_f32(a_val.val[0], b_val.val[0]);
+-
+-    // use multiply accumulate/subtract to get result
+-    tmp_imag.val[1] = vmlaq_f32(tmp_imag.val[1], a_val.val[0], b_val.val[1]);
+-    tmp_imag.val[0] = vmlsq_f32(tmp_imag.val[0], a_val.val[1], b_val.val[1]);
+-
+-    // store
+-    vst2q_f32((float*)cVector, tmp_imag);
+-    // increment pointers
+-    a_ptr += 4;
+-    b_ptr += 4;
+-    cVector += 4;
+-  }
+-
+-  for(number = quarter_points*4; number < num_points; number++){
+-    *cVector++ = (*a_ptr++) * (*b_ptr++);
+-  }
++    lv_32fc_t* a_ptr = (lv_32fc_t*)aVector;
++    lv_32fc_t* b_ptr = (lv_32fc_t*)bVector;
++    unsigned int quarter_points = num_points / 4;
++    float32x4x2_t a_val, b_val;
++    float32x4x2_t tmp_imag;
++    unsigned int number = 0;
++
++    for (number = 0; number < quarter_points; ++number) {
++        a_val = vld2q_f32((float*)a_ptr); // a0r|a1r|a2r|a3r || a0i|a1i|a2i|a3i
++        b_val = vld2q_f32((float*)b_ptr); // b0r|b1r|b2r|b3r || b0i|b1i|b2i|b3i
++        __VOLK_PREFETCH(a_ptr + 4);
++        __VOLK_PREFETCH(b_ptr + 4);
++
++        // do the first multiply
++        tmp_imag.val[1] = vmulq_f32(a_val.val[1], b_val.val[0]);
++        tmp_imag.val[0] = vmulq_f32(a_val.val[0], b_val.val[0]);
++
++        // use multiply accumulate/subtract to get result
++        tmp_imag.val[1] = vmlaq_f32(tmp_imag.val[1], a_val.val[0], b_val.val[1]);
++        tmp_imag.val[0] = vmlsq_f32(tmp_imag.val[0], a_val.val[1], b_val.val[1]);
++
++        // store
++        vst2q_f32((float*)cVector, tmp_imag);
++        // increment pointers
++        a_ptr += 4;
++        b_ptr += 4;
++        cVector += 4;
++    }
++
++    for (number = quarter_points * 4; number < num_points; number++) {
++        *cVector++ = (*a_ptr++) * (*b_ptr++);
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_NEONV7
+-extern void
+-volk_32fc_x2_multiply_32fc_a_neonasm(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                                   const lv_32fc_t* bVector, unsigned int num_points);
++extern void volk_32fc_x2_multiply_32fc_a_neonasm(lv_32fc_t* cVector,
++                                                 const lv_32fc_t* aVector,
++                                                 const lv_32fc_t* bVector,
++                                                 unsigned int num_points);
+ #endif /* LV_HAVE_NEONV7 */
+ #ifdef LV_HAVE_ORC
+-extern void
+-volk_32fc_x2_multiply_32fc_a_orc_impl(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                                      const lv_32fc_t* bVector, unsigned int num_points);
++extern void volk_32fc_x2_multiply_32fc_a_orc_impl(lv_32fc_t* cVector,
++                                                  const lv_32fc_t* aVector,
++                                                  const lv_32fc_t* bVector,
++                                                  unsigned int num_points);
+-static inline void
+-volk_32fc_x2_multiply_32fc_u_orc(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                                 const lv_32fc_t* bVector, unsigned int num_points)
++static inline void volk_32fc_x2_multiply_32fc_u_orc(lv_32fc_t* cVector,
++                                                    const lv_32fc_t* aVector,
++                                                    const lv_32fc_t* bVector,
++                                                    unsigned int num_points)
+ {
+-  volk_32fc_x2_multiply_32fc_a_orc_impl(cVector, aVector, bVector, num_points);
++    volk_32fc_x2_multiply_32fc_a_orc_impl(cVector, aVector, bVector, num_points);
+ }
+ #endif /* LV_HAVE_ORC */
+diff --git a/kernels/volk/volk_32fc_x2_multiply_conjugate_32fc.h b/kernels/volk/volk_32fc_x2_multiply_conjugate_32fc.h
+index 1b1a8b3..4f834c2 100644
+--- a/kernels/volk/volk_32fc_x2_multiply_conjugate_32fc.h
++++ b/kernels/volk/volk_32fc_x2_multiply_conjugate_32fc.h
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32fc_x2_multiply_conjugate_32fc(lv_32fc_t* cVector, const lv_32fc_t* aVector, const lv_32fc_t* bVector, unsigned int num_points);
+- * \endcode
++ * void volk_32fc_x2_multiply_conjugate_32fc(lv_32fc_t* cVector, const lv_32fc_t* aVector,
++ * const lv_32fc_t* bVector, unsigned int num_points); \endcode
+  *
+  * \b Inputs
+  * \li aVector: The first input vector of complex floats.
+@@ -71,43 +71,46 @@
+ #ifndef INCLUDED_volk_32fc_x2_multiply_conjugate_32fc_u_H
+ #define INCLUDED_volk_32fc_x2_multiply_conjugate_32fc_u_H
++#include <float.h>
+ #include <inttypes.h>
+ #include <stdio.h>
+ #include <volk/volk_complex.h>
+-#include <float.h>
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+ #include <volk/volk_avx_intrinsics.h>
+-static inline void
+-volk_32fc_x2_multiply_conjugate_32fc_u_avx(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                                           const lv_32fc_t* bVector, unsigned int num_points)
++static inline void volk_32fc_x2_multiply_conjugate_32fc_u_avx(lv_32fc_t* cVector,
++                                                              const lv_32fc_t* aVector,
++                                                              const lv_32fc_t* bVector,
++                                                              unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  __m256 x, y, z;
+-  lv_32fc_t* c = cVector;
+-  const lv_32fc_t* a = aVector;
+-  const lv_32fc_t* b = bVector;
+-
+-  for(; number < quarterPoints; number++){
+-    x = _mm256_loadu_ps((float*) a); // Load the ar + ai, br + bi ... as ar,ai,br,bi ...
+-    y = _mm256_loadu_ps((float*) b); // Load the cr + ci, dr + di ... as cr,ci,dr,di ...
+-    z = _mm256_complexconjugatemul_ps(x, y);
+-    _mm256_storeu_ps((float*) c, z); // Store the results back into the C container
+-
+-    a += 4;
+-    b += 4;
+-    c += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-
+-  for(; number < num_points; number++){
+-    *c++ = (*a++) * lv_conj(*b++);
+-  }
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++
++    __m256 x, y, z;
++    lv_32fc_t* c = cVector;
++    const lv_32fc_t* a = aVector;
++    const lv_32fc_t* b = bVector;
++
++    for (; number < quarterPoints; number++) {
++        x = _mm256_loadu_ps(
++            (float*)a); // Load the ar + ai, br + bi ... as ar,ai,br,bi ...
++        y = _mm256_loadu_ps(
++            (float*)b); // Load the cr + ci, dr + di ... as cr,ci,dr,di ...
++        z = _mm256_complexconjugatemul_ps(x, y);
++        _mm256_storeu_ps((float*)c, z); // Store the results back into the C container
++
++        a += 4;
++        b += 4;
++        c += 4;
++    }
++
++    number = quarterPoints * 4;
++
++    for (; number < num_points; number++) {
++        *c++ = (*a++) * lv_conj(*b++);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -116,96 +119,98 @@ volk_32fc_x2_multiply_conjugate_32fc_u_avx(lv_32fc_t* cVector, const lv_32fc_t*
+ #include <pmmintrin.h>
+ #include <volk/volk_sse3_intrinsics.h>
+-static inline void
+-volk_32fc_x2_multiply_conjugate_32fc_u_sse3(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                                            const lv_32fc_t* bVector, unsigned int num_points)
++static inline void volk_32fc_x2_multiply_conjugate_32fc_u_sse3(lv_32fc_t* cVector,
++                                                               const lv_32fc_t* aVector,
++                                                               const lv_32fc_t* bVector,
++                                                               unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int halfPoints = num_points / 2;
+-
+-  __m128 x, y, z;
+-  lv_32fc_t* c = cVector;
+-  const lv_32fc_t* a = aVector;
+-  const lv_32fc_t* b = bVector;
+-
+-  for(; number < halfPoints; number++){
+-    x = _mm_loadu_ps((float*) a); // Load the ar + ai, br + bi as ar,ai,br,bi
+-    y = _mm_loadu_ps((float*) b); // Load the cr + ci, dr + di as cr,ci,dr,di
+-    z = _mm_complexconjugatemul_ps(x, y);
+-    _mm_storeu_ps((float*) c, z); // Store the results back into the C container
+-
+-    a += 2;
+-    b += 2;
+-    c += 2;
+-  }
+-
+-  if((num_points % 2) != 0){
+-    *c = (*a) * lv_conj(*b);
+-  }
++    unsigned int number = 0;
++    const unsigned int halfPoints = num_points / 2;
++
++    __m128 x, y, z;
++    lv_32fc_t* c = cVector;
++    const lv_32fc_t* a = aVector;
++    const lv_32fc_t* b = bVector;
++
++    for (; number < halfPoints; number++) {
++        x = _mm_loadu_ps((float*)a); // Load the ar + ai, br + bi as ar,ai,br,bi
++        y = _mm_loadu_ps((float*)b); // Load the cr + ci, dr + di as cr,ci,dr,di
++        z = _mm_complexconjugatemul_ps(x, y);
++        _mm_storeu_ps((float*)c, z); // Store the results back into the C container
++
++        a += 2;
++        b += 2;
++        c += 2;
++    }
++
++    if ((num_points % 2) != 0) {
++        *c = (*a) * lv_conj(*b);
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32fc_x2_multiply_conjugate_32fc_generic(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                                             const lv_32fc_t* bVector, unsigned int num_points)
++static inline void volk_32fc_x2_multiply_conjugate_32fc_generic(lv_32fc_t* cVector,
++                                                                const lv_32fc_t* aVector,
++                                                                const lv_32fc_t* bVector,
++                                                                unsigned int num_points)
+ {
+-  lv_32fc_t* cPtr = cVector;
+-  const lv_32fc_t* aPtr = aVector;
+-  const lv_32fc_t* bPtr=  bVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    *cPtr++ = (*aPtr++) * lv_conj(*bPtr++);
+-  }
++    lv_32fc_t* cPtr = cVector;
++    const lv_32fc_t* aPtr = aVector;
++    const lv_32fc_t* bPtr = bVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) * lv_conj(*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+-
+ #endif /* INCLUDED_volk_32fc_x2_multiply_conjugate_32fc_u_H */
+ #ifndef INCLUDED_volk_32fc_x2_multiply_conjugate_32fc_a_H
+ #define INCLUDED_volk_32fc_x2_multiply_conjugate_32fc_a_H
++#include <float.h>
+ #include <inttypes.h>
+ #include <stdio.h>
+ #include <volk/volk_complex.h>
+-#include <float.h>
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+ #include <volk/volk_avx_intrinsics.h>
+-static inline void
+-volk_32fc_x2_multiply_conjugate_32fc_a_avx(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                                           const lv_32fc_t* bVector, unsigned int num_points)
++static inline void volk_32fc_x2_multiply_conjugate_32fc_a_avx(lv_32fc_t* cVector,
++                                                              const lv_32fc_t* aVector,
++                                                              const lv_32fc_t* bVector,
++                                                              unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  __m256 x, y, z;
+-  lv_32fc_t* c = cVector;
+-  const lv_32fc_t* a = aVector;
+-  const lv_32fc_t* b = bVector;
+-
+-  for(; number < quarterPoints; number++){
+-    x = _mm256_load_ps((float*) a); // Load the ar + ai, br + bi ... as ar,ai,br,bi ...
+-    y = _mm256_load_ps((float*) b); // Load the cr + ci, dr + di ... as cr,ci,dr,di ...
+-    z = _mm256_complexconjugatemul_ps(x, y);
+-    _mm256_store_ps((float*) c, z); // Store the results back into the C container
+-
+-    a += 4;
+-    b += 4;
+-    c += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-
+-  for(; number < num_points; number++){
+-    *c++ = (*a++) * lv_conj(*b++);
+-  }
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++
++    __m256 x, y, z;
++    lv_32fc_t* c = cVector;
++    const lv_32fc_t* a = aVector;
++    const lv_32fc_t* b = bVector;
++
++    for (; number < quarterPoints; number++) {
++        x = _mm256_load_ps((float*)a); // Load the ar + ai, br + bi ... as ar,ai,br,bi ...
++        y = _mm256_load_ps((float*)b); // Load the cr + ci, dr + di ... as cr,ci,dr,di ...
++        z = _mm256_complexconjugatemul_ps(x, y);
++        _mm256_store_ps((float*)c, z); // Store the results back into the C container
++
++        a += 4;
++        b += 4;
++        c += 4;
++    }
++
++    number = quarterPoints * 4;
++
++    for (; number < num_points; number++) {
++        *c++ = (*a++) * lv_conj(*b++);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -214,32 +219,33 @@ volk_32fc_x2_multiply_conjugate_32fc_a_avx(lv_32fc_t* cVector, const lv_32fc_t*
+ #include <pmmintrin.h>
+ #include <volk/volk_sse3_intrinsics.h>
+-static inline void
+-volk_32fc_x2_multiply_conjugate_32fc_a_sse3(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                                            const lv_32fc_t* bVector, unsigned int num_points)
++static inline void volk_32fc_x2_multiply_conjugate_32fc_a_sse3(lv_32fc_t* cVector,
++                                                               const lv_32fc_t* aVector,
++                                                               const lv_32fc_t* bVector,
++                                                               unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int halfPoints = num_points / 2;
+-
+-  __m128 x, y, z;
+-  lv_32fc_t* c = cVector;
+-  const lv_32fc_t* a = aVector;
+-  const lv_32fc_t* b = bVector;
+-
+-  for(; number < halfPoints; number++){
+-    x = _mm_load_ps((float*) a); // Load the ar + ai, br + bi as ar,ai,br,bi
+-    y = _mm_load_ps((float*) b); // Load the cr + ci, dr + di as cr,ci,dr,di
+-    z = _mm_complexconjugatemul_ps(x, y);
+-    _mm_store_ps((float*) c, z); // Store the results back into the C container
+-
+-    a += 2;
+-    b += 2;
+-    c += 2;
+-  }
+-
+-  if((num_points % 2) != 0){
+-    *c = (*a) * lv_conj(*b);
+-  }
++    unsigned int number = 0;
++    const unsigned int halfPoints = num_points / 2;
++
++    __m128 x, y, z;
++    lv_32fc_t* c = cVector;
++    const lv_32fc_t* a = aVector;
++    const lv_32fc_t* b = bVector;
++
++    for (; number < halfPoints; number++) {
++        x = _mm_load_ps((float*)a); // Load the ar + ai, br + bi as ar,ai,br,bi
++        y = _mm_load_ps((float*)b); // Load the cr + ci, dr + di as cr,ci,dr,di
++        z = _mm_complexconjugatemul_ps(x, y);
++        _mm_store_ps((float*)c, z); // Store the results back into the C container
++
++        a += 2;
++        b += 2;
++        c += 2;
++    }
++
++    if ((num_points % 2) != 0) {
++        *c = (*a) * lv_conj(*b);
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+@@ -247,49 +253,50 @@ volk_32fc_x2_multiply_conjugate_32fc_a_sse3(lv_32fc_t* cVector, const lv_32fc_t*
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_32fc_x2_multiply_conjugate_32fc_neon(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                                          const lv_32fc_t* bVector, unsigned int num_points)
++static inline void volk_32fc_x2_multiply_conjugate_32fc_neon(lv_32fc_t* cVector,
++                                                             const lv_32fc_t* aVector,
++                                                             const lv_32fc_t* bVector,
++                                                             unsigned int num_points)
+ {
+-  lv_32fc_t *a_ptr = (lv_32fc_t*) aVector;
+-  lv_32fc_t *b_ptr = (lv_32fc_t*) bVector;
+-  unsigned int quarter_points = num_points / 4;
+-  float32x4x2_t a_val, b_val, c_val;
+-  float32x4x2_t tmp_real, tmp_imag;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < quarter_points; ++number) {
+-    a_val = vld2q_f32((float*)a_ptr); // a0r|a1r|a2r|a3r || a0i|a1i|a2i|a3i
+-    b_val = vld2q_f32((float*)b_ptr); // b0r|b1r|b2r|b3r || b0i|b1i|b2i|b3i
+-    b_val.val[1] = vnegq_f32(b_val.val[1]);
+-    __VOLK_PREFETCH(a_ptr+4);
+-    __VOLK_PREFETCH(b_ptr+4);
+-
+-    // multiply the real*real and imag*imag to get real result
+-    // a0r*b0r|a1r*b1r|a2r*b2r|a3r*b3r
+-    tmp_real.val[0] = vmulq_f32(a_val.val[0], b_val.val[0]);
+-    // a0i*b0i|a1i*b1i|a2i*b2i|a3i*b3i
+-    tmp_real.val[1] = vmulq_f32(a_val.val[1], b_val.val[1]);
+-
+-    // Multiply cross terms to get the imaginary result
++    lv_32fc_t* a_ptr = (lv_32fc_t*)aVector;
++    lv_32fc_t* b_ptr = (lv_32fc_t*)bVector;
++    unsigned int quarter_points = num_points / 4;
++    float32x4x2_t a_val, b_val, c_val;
++    float32x4x2_t tmp_real, tmp_imag;
++    unsigned int number = 0;
++
++    for (number = 0; number < quarter_points; ++number) {
++        a_val = vld2q_f32((float*)a_ptr); // a0r|a1r|a2r|a3r || a0i|a1i|a2i|a3i
++        b_val = vld2q_f32((float*)b_ptr); // b0r|b1r|b2r|b3r || b0i|b1i|b2i|b3i
++        b_val.val[1] = vnegq_f32(b_val.val[1]);
++        __VOLK_PREFETCH(a_ptr + 4);
++        __VOLK_PREFETCH(b_ptr + 4);
++
++        // multiply the real*real and imag*imag to get real result
++        // a0r*b0r|a1r*b1r|a2r*b2r|a3r*b3r
++        tmp_real.val[0] = vmulq_f32(a_val.val[0], b_val.val[0]);
++        // a0i*b0i|a1i*b1i|a2i*b2i|a3i*b3i
++        tmp_real.val[1] = vmulq_f32(a_val.val[1], b_val.val[1]);
++
++        // Multiply cross terms to get the imaginary result
+         // a0r*b0i|a1r*b1i|a2r*b2i|a3r*b3i
+-    tmp_imag.val[0] = vmulq_f32(a_val.val[0], b_val.val[1]);
+-    // a0i*b0r|a1i*b1r|a2i*b2r|a3i*b3r
+-    tmp_imag.val[1] = vmulq_f32(a_val.val[1], b_val.val[0]);
+-
+-    // store the results
+-    c_val.val[0] = vsubq_f32(tmp_real.val[0], tmp_real.val[1]);
+-    c_val.val[1] = vaddq_f32(tmp_imag.val[0], tmp_imag.val[1]);
+-    vst2q_f32((float*)cVector, c_val);
+-
+-    a_ptr += 4;
+-    b_ptr += 4;
+-    cVector += 4;
++        tmp_imag.val[0] = vmulq_f32(a_val.val[0], b_val.val[1]);
++        // a0i*b0r|a1i*b1r|a2i*b2r|a3i*b3r
++        tmp_imag.val[1] = vmulq_f32(a_val.val[1], b_val.val[0]);
++
++        // store the results
++        c_val.val[0] = vsubq_f32(tmp_real.val[0], tmp_real.val[1]);
++        c_val.val[1] = vaddq_f32(tmp_imag.val[0], tmp_imag.val[1]);
++        vst2q_f32((float*)cVector, c_val);
++
++        a_ptr += 4;
++        b_ptr += 4;
++        cVector += 4;
+     }
+-  for(number = quarter_points*4; number < num_points; number++){
+-    *cVector++ = (*a_ptr++) * conj(*b_ptr++);
+-  }
++    for (number = quarter_points * 4; number < num_points; number++) {
++        *cVector++ = (*a_ptr++) * conj(*b_ptr++);
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+@@ -297,17 +304,19 @@ volk_32fc_x2_multiply_conjugate_32fc_neon(lv_32fc_t* cVector, const lv_32fc_t* a
+ #ifdef LV_HAVE_GENERIC
+ static inline void
+-volk_32fc_x2_multiply_conjugate_32fc_a_generic(lv_32fc_t* cVector, const lv_32fc_t* aVector,
+-                                               const lv_32fc_t* bVector, unsigned int num_points)
++volk_32fc_x2_multiply_conjugate_32fc_a_generic(lv_32fc_t* cVector,
++                                               const lv_32fc_t* aVector,
++                                               const lv_32fc_t* bVector,
++                                               unsigned int num_points)
+ {
+-  lv_32fc_t* cPtr = cVector;
+-  const lv_32fc_t* aPtr = aVector;
+-  const lv_32fc_t* bPtr=  bVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    *cPtr++ = (*aPtr++) * lv_conj(*bPtr++);
+-  }
++    lv_32fc_t* cPtr = cVector;
++    const lv_32fc_t* aPtr = aVector;
++    const lv_32fc_t* bPtr = bVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) * lv_conj(*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+diff --git a/kernels/volk/volk_32fc_x2_s32f_square_dist_scalar_mult_32f.h b/kernels/volk/volk_32fc_x2_s32f_square_dist_scalar_mult_32f.h
+index 1c65f23..1d10561 100644
+--- a/kernels/volk/volk_32fc_x2_s32f_square_dist_scalar_mult_32f.h
++++ b/kernels/volk/volk_32fc_x2_s32f_square_dist_scalar_mult_32f.h
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32fc_x2_s32f_square_dist_scalar_mult_32f(float* target, lv_32fc_t* src0, lv_32fc_t* points, float scalar, unsigned int num_points)
+- * \endcode
++ * void volk_32fc_x2_s32f_square_dist_scalar_mult_32f(float* target, lv_32fc_t* src0,
++ * lv_32fc_t* points, float scalar, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li src0: The complex input. Only the first point is used.
+@@ -79,103 +79,107 @@
+ #ifndef INCLUDED_volk_32fc_x2_s32f_square_dist_scalar_mult_32f_a_H
+ #define INCLUDED_volk_32fc_x2_s32f_square_dist_scalar_mult_32f_a_H
+-#include<volk/volk_complex.h>
++#include <volk/volk_complex.h>
+-static inline void
+-calculate_scaled_distances(float* target, const lv_32fc_t symbol, const lv_32fc_t* points,
+-                           const float scalar, const unsigned int num_points)
++static inline void calculate_scaled_distances(float* target,
++                                              const lv_32fc_t symbol,
++                                              const lv_32fc_t* points,
++                                              const float scalar,
++                                              const unsigned int num_points)
+ {
+-  lv_32fc_t diff;
+-  for(unsigned int i = 0; i < num_points; ++i) {
+-    /*
+-     * Calculate: |y - x|^2 * SNR_lin
+-     * Compare C++: *target++ = scalar * std::norm(symbol - *constellation++);
+-     */
+-    diff = symbol - *points++;
+-    *target++ = scalar * (lv_creal(diff) * lv_creal(diff) + lv_cimag(diff) * lv_cimag(diff));
+-  }
++    lv_32fc_t diff;
++    for (unsigned int i = 0; i < num_points; ++i) {
++        /*
++         * Calculate: |y - x|^2 * SNR_lin
++         * Compare C++: *target++ = scalar * std::norm(symbol - *constellation++);
++         */
++        diff = symbol - *points++;
++        *target++ =
++            scalar * (lv_creal(diff) * lv_creal(diff) + lv_cimag(diff) * lv_cimag(diff));
++    }
+ }
+ #ifdef LV_HAVE_AVX2
+-#include<immintrin.h>
+-#include<volk/volk_avx2_intrinsics.h>
++#include <immintrin.h>
++#include <volk/volk_avx2_intrinsics.h>
+ static inline void
+-volk_32fc_x2_s32f_square_dist_scalar_mult_32f_a_avx2(float* target, lv_32fc_t* src0, 
+-                                                     lv_32fc_t* points, float scalar, 
++volk_32fc_x2_s32f_square_dist_scalar_mult_32f_a_avx2(float* target,
++                                                     lv_32fc_t* src0,
++                                                     lv_32fc_t* points,
++                                                     float scalar,
+                                                      unsigned int num_points)
+ {
+-  const unsigned int num_bytes = num_points*8;
+-  __m128 xmm9, xmm10;
+-  __m256 xmm4, xmm6;
+-  __m256 xmm_points0, xmm_points1, xmm_result;
++    const unsigned int num_bytes = num_points * 8;
++    __m128 xmm9, xmm10;
++    __m256 xmm4, xmm6;
++    __m256 xmm_points0, xmm_points1, xmm_result;
+-  const unsigned int bound = num_bytes >> 6;
+-  
+-  // load complex value into all parts of the register.
+-  const __m256 xmm_symbol = _mm256_castpd_ps(_mm256_broadcast_sd((const double*)src0));
+-  const __m128 xmm128_symbol = _mm256_extractf128_ps(xmm_symbol, 1);
+-  
+-  // Load scalar into all 8 parts of the register
+-  const __m256 xmm_scalar = _mm256_broadcast_ss(&scalar);
+-  const __m128 xmm128_scalar = _mm256_extractf128_ps(xmm_scalar, 1);
++    const unsigned int bound = num_bytes >> 6;
+-  // Set permutation constant
+-  const __m256i idx = _mm256_set_epi32(7,6,3,2,5,4,1,0);
+-  
+-  for(unsigned int i = 0; i < bound; ++i) {
+-    xmm_points0 = _mm256_load_ps((float*)points);
+-    xmm_points1 = _mm256_load_ps((float*)(points + 4));
+-    points += 8;
+-    __VOLK_PREFETCH(points);
++    // load complex value into all parts of the register.
++    const __m256 xmm_symbol = _mm256_castpd_ps(_mm256_broadcast_sd((const double*)src0));
++    const __m128 xmm128_symbol = _mm256_extractf128_ps(xmm_symbol, 1);
+-    xmm_result = _mm256_scaled_norm_dist_ps_avx2(xmm_symbol, xmm_symbol,
+-                                                 xmm_points0, xmm_points1, 
+-                                                 xmm_scalar);
+-    
+-    _mm256_store_ps(target, xmm_result);
+-    target += 8;
+-  }
++    // Load scalar into all 8 parts of the register
++    const __m256 xmm_scalar = _mm256_broadcast_ss(&scalar);
++    const __m128 xmm128_scalar = _mm256_extractf128_ps(xmm_scalar, 1);
+-  if (num_bytes >> 5 & 1) {
+-    xmm_points0 = _mm256_load_ps((float*)points);
++    // Set permutation constant
++    const __m256i idx = _mm256_set_epi32(7, 6, 3, 2, 5, 4, 1, 0);
+-    xmm4 = _mm256_sub_ps(xmm_symbol, xmm_points0);
++    for (unsigned int i = 0; i < bound; ++i) {
++        xmm_points0 = _mm256_load_ps((float*)points);
++        xmm_points1 = _mm256_load_ps((float*)(points + 4));
++        points += 8;
++        __VOLK_PREFETCH(points);
+-    points += 4;
++        xmm_result = _mm256_scaled_norm_dist_ps_avx2(
++            xmm_symbol, xmm_symbol, xmm_points0, xmm_points1, xmm_scalar);
+-    xmm6 = _mm256_mul_ps(xmm4, xmm4);
++        _mm256_store_ps(target, xmm_result);
++        target += 8;
++    }
+-    xmm4 = _mm256_hadd_ps(xmm6, xmm6);
+-    xmm4 = _mm256_permutevar8x32_ps(xmm4, idx);
++    if (num_bytes >> 5 & 1) {
++        xmm_points0 = _mm256_load_ps((float*)points);
+-    xmm_result = _mm256_mul_ps(xmm4, xmm_scalar);
++        xmm4 = _mm256_sub_ps(xmm_symbol, xmm_points0);
+-    xmm9 = _mm256_extractf128_ps(xmm_result, 1);
+-    _mm_store_ps(target,xmm9);
+-    target += 4;
+-  }
++        points += 4;
+-  if (num_bytes >> 4 & 1) {
+-    xmm9 = _mm_load_ps((float*)points);
++        xmm6 = _mm256_mul_ps(xmm4, xmm4);
+-    xmm10 = _mm_sub_ps(xmm128_symbol, xmm9);
++        xmm4 = _mm256_hadd_ps(xmm6, xmm6);
++        xmm4 = _mm256_permutevar8x32_ps(xmm4, idx);
+-    points += 2;
++        xmm_result = _mm256_mul_ps(xmm4, xmm_scalar);
+-    xmm9 = _mm_mul_ps(xmm10, xmm10);
++        xmm9 = _mm256_extractf128_ps(xmm_result, 1);
++        _mm_store_ps(target, xmm9);
++        target += 4;
++    }
+-    xmm10 = _mm_hadd_ps(xmm9, xmm9);
++    if (num_bytes >> 4 & 1) {
++        xmm9 = _mm_load_ps((float*)points);
+-    xmm10 = _mm_mul_ps(xmm10, xmm128_scalar);
++        xmm10 = _mm_sub_ps(xmm128_symbol, xmm9);
+-    _mm_storeh_pi((__m64*)target, xmm10);
+-    target += 2;
+-  }
++        points += 2;
+-  calculate_scaled_distances(target, src0[0], points, scalar, (num_bytes >> 3) & 1);
++        xmm9 = _mm_mul_ps(xmm10, xmm10);
++
++        xmm10 = _mm_hadd_ps(xmm9, xmm9);
++
++        xmm10 = _mm_mul_ps(xmm10, xmm128_scalar);
++
++        _mm_storeh_pi((__m64*)target, xmm10);
++        target += 2;
++    }
++
++    calculate_scaled_distances(target, src0[0], points, scalar, (num_bytes >> 3) & 1);
+ }
+ #endif /*LV_HAVE_AVX2*/
+@@ -186,131 +190,139 @@ volk_32fc_x2_s32f_square_dist_scalar_mult_32f_a_avx2(float* target, lv_32fc_t* s
+ #include <volk/volk_avx_intrinsics.h>
+ static inline void
+-volk_32fc_x2_s32f_square_dist_scalar_mult_32f_a_avx(float *target, lv_32fc_t *src0, 
+-                                                    lv_32fc_t *points, float scalar, 
+-                                                    unsigned int num_points) {
+-  const int eightsPoints = num_points / 8;
+-  const int remainder = num_points - 8 * eightsPoints;
+-  
+-  __m256 xmm_points0, xmm_points1, xmm_result;
+-
+-  // load complex value into all parts of the register.
+-  const __m256 xmm_symbol = _mm256_castpd_ps(_mm256_broadcast_sd((const double*)src0));
+-  
+-  // Load scalar into all 8 parts of the register
+-  const __m256 xmm_scalar = _mm256_broadcast_ss(&scalar);
+-  
+-  for(int i = 0; i < eightsPoints; ++i){
+-    xmm_points0 = _mm256_load_ps((float*)points);
+-    xmm_points1 = _mm256_load_ps((float*)(points + 4));
+-    points += 8;
+-    
+-    xmm_result = _mm256_scaled_norm_dist_ps(xmm_symbol, xmm_symbol, xmm_points0, 
+-                                            xmm_points1, xmm_scalar);
+-    
+-    _mm256_store_ps(target, xmm_result);
+-    target += 8;
+-  }
+-  
+-  const lv_32fc_t symbol = *src0;
+-  calculate_scaled_distances(target, symbol, points, scalar, remainder);
++volk_32fc_x2_s32f_square_dist_scalar_mult_32f_a_avx(float* target,
++                                                    lv_32fc_t* src0,
++                                                    lv_32fc_t* points,
++                                                    float scalar,
++                                                    unsigned int num_points)
++{
++    const int eightsPoints = num_points / 8;
++    const int remainder = num_points - 8 * eightsPoints;
++
++    __m256 xmm_points0, xmm_points1, xmm_result;
++
++    // load complex value into all parts of the register.
++    const __m256 xmm_symbol = _mm256_castpd_ps(_mm256_broadcast_sd((const double*)src0));
++
++    // Load scalar into all 8 parts of the register
++    const __m256 xmm_scalar = _mm256_broadcast_ss(&scalar);
++
++    for (int i = 0; i < eightsPoints; ++i) {
++        xmm_points0 = _mm256_load_ps((float*)points);
++        xmm_points1 = _mm256_load_ps((float*)(points + 4));
++        points += 8;
++
++        xmm_result = _mm256_scaled_norm_dist_ps(
++            xmm_symbol, xmm_symbol, xmm_points0, xmm_points1, xmm_scalar);
++
++        _mm256_store_ps(target, xmm_result);
++        target += 8;
++    }
++
++    const lv_32fc_t symbol = *src0;
++    calculate_scaled_distances(target, symbol, points, scalar, remainder);
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_SSE3
+-#include<pmmintrin.h>
+-#include<volk/volk_sse3_intrinsics.h>
++#include <pmmintrin.h>
++#include <volk/volk_sse3_intrinsics.h>
+ static inline void
+-volk_32fc_x2_s32f_square_dist_scalar_mult_32f_a_sse3(float* target, lv_32fc_t* src0, 
+-                                                     lv_32fc_t* points, float scalar, 
++volk_32fc_x2_s32f_square_dist_scalar_mult_32f_a_sse3(float* target,
++                                                     lv_32fc_t* src0,
++                                                     lv_32fc_t* points,
++                                                     float scalar,
+                                                      unsigned int num_points)
+ {
+-  __m128 xmm_points0, xmm_points1, xmm_result;
+-
+-  /*
+-   * First do 4 values in every loop iteration.
+-   * There may be up to 3 values left.
+-   * leftovers0 indicates if at least 2 more are available for SSE execution.
+-   * leftovers1 indicates if there is a single element left.
+-   */
+-  const int quarterPoints = num_points / 4;
+-  const int leftovers0 = (num_points / 2) - 2 * quarterPoints;
+-  const int leftovers1 = num_points % 2;
+-
+-  // load complex value into both parts of the register.
+-  const __m128 xmm_symbol = _mm_castpd_ps(_mm_load1_pd((const double*)src0));
+-  
+-  // Load scalar into all 4 parts of the register
+-  const __m128 xmm_scalar = _mm_load1_ps(&scalar);
+-
+-  for(int i = 0; i < quarterPoints; ++i) {
+-    xmm_points0 = _mm_load_ps((float*)points);
+-    xmm_points1 = _mm_load_ps((float*)(points + 2));
+-    points += 4;
+-    __VOLK_PREFETCH(points);
+-    // calculate distances
+-    xmm_result = _mm_scaled_norm_dist_ps_sse3(xmm_symbol, xmm_symbol, xmm_points0, 
+-                                              xmm_points1, xmm_scalar);
+-
+-    _mm_store_ps(target, xmm_result);
+-    target += 4;
+-  }
+-
+-  for(int i = 0; i < leftovers0; ++i) {
+-    xmm_points0 = _mm_load_ps((float*)points);
+-    points += 2;
+-    
+-    xmm_points0 = _mm_sub_ps(xmm_symbol, xmm_points0);
+-    xmm_points0 = _mm_mul_ps(xmm_points0, xmm_points0);
+-    xmm_points0 = _mm_hadd_ps(xmm_points0, xmm_points0);
+-    xmm_result = _mm_mul_ps(xmm_points0, xmm_scalar);
+-
+-    _mm_storeh_pi((__m64*)target, xmm_result);
+-    target += 2;
+-  }
+-
+-  calculate_scaled_distances(target, src0[0], points, scalar, leftovers1);
++    __m128 xmm_points0, xmm_points1, xmm_result;
++
++    /*
++     * First do 4 values in every loop iteration.
++     * There may be up to 3 values left.
++     * leftovers0 indicates if at least 2 more are available for SSE execution.
++     * leftovers1 indicates if there is a single element left.
++     */
++    const int quarterPoints = num_points / 4;
++    const int leftovers0 = (num_points / 2) - 2 * quarterPoints;
++    const int leftovers1 = num_points % 2;
++
++    // load complex value into both parts of the register.
++    const __m128 xmm_symbol = _mm_castpd_ps(_mm_load1_pd((const double*)src0));
++
++    // Load scalar into all 4 parts of the register
++    const __m128 xmm_scalar = _mm_load1_ps(&scalar);
++
++    for (int i = 0; i < quarterPoints; ++i) {
++        xmm_points0 = _mm_load_ps((float*)points);
++        xmm_points1 = _mm_load_ps((float*)(points + 2));
++        points += 4;
++        __VOLK_PREFETCH(points);
++        // calculate distances
++        xmm_result = _mm_scaled_norm_dist_ps_sse3(
++            xmm_symbol, xmm_symbol, xmm_points0, xmm_points1, xmm_scalar);
++
++        _mm_store_ps(target, xmm_result);
++        target += 4;
++    }
++
++    for (int i = 0; i < leftovers0; ++i) {
++        xmm_points0 = _mm_load_ps((float*)points);
++        points += 2;
++
++        xmm_points0 = _mm_sub_ps(xmm_symbol, xmm_points0);
++        xmm_points0 = _mm_mul_ps(xmm_points0, xmm_points0);
++        xmm_points0 = _mm_hadd_ps(xmm_points0, xmm_points0);
++        xmm_result = _mm_mul_ps(xmm_points0, xmm_scalar);
++
++        _mm_storeh_pi((__m64*)target, xmm_result);
++        target += 2;
++    }
++
++    calculate_scaled_distances(target, src0[0], points, scalar, leftovers1);
+ }
+ #endif /*LV_HAVE_SSE3*/
+ #ifdef LV_HAVE_SSE
+-#include <xmmintrin.h>
+ #include <volk/volk_sse_intrinsics.h>
++#include <xmmintrin.h>
+ static inline void
+-volk_32fc_x2_s32f_square_dist_scalar_mult_32f_a_sse(float* target, lv_32fc_t* src0,
+-                                                    lv_32fc_t* points, float scalar,
++volk_32fc_x2_s32f_square_dist_scalar_mult_32f_a_sse(float* target,
++                                                    lv_32fc_t* src0,
++                                                    lv_32fc_t* points,
++                                                    float scalar,
+                                                     unsigned int num_points)
+ {
+-  const __m128 xmm_scalar = _mm_set1_ps(scalar);
+-  const __m128 xmm_symbol = _mm_castpd_ps(_mm_load1_pd((const double*)src0));
+-
+-  for (unsigned i = 0; i < num_points / 4; ++i) {
+-    __m128 xmm_points0 = _mm_load_ps((float *) points);
+-    __m128 xmm_points1 = _mm_load_ps((float *) (points + 2));
+-    points += 4;
+-    __m128 xmm_result = _mm_scaled_norm_dist_ps_sse(xmm_symbol, xmm_symbol,
+-                                                    xmm_points0, xmm_points1,
+-                                                    xmm_scalar);
+-    _mm_store_ps((float *) target, xmm_result);
+-    target += 4;
+-  }
+-
+-  calculate_scaled_distances(target, src0[0], points, scalar, num_points % 4);
++    const __m128 xmm_scalar = _mm_set1_ps(scalar);
++    const __m128 xmm_symbol = _mm_castpd_ps(_mm_load1_pd((const double*)src0));
++
++    for (unsigned i = 0; i < num_points / 4; ++i) {
++        __m128 xmm_points0 = _mm_load_ps((float*)points);
++        __m128 xmm_points1 = _mm_load_ps((float*)(points + 2));
++        points += 4;
++        __m128 xmm_result = _mm_scaled_norm_dist_ps_sse(
++            xmm_symbol, xmm_symbol, xmm_points0, xmm_points1, xmm_scalar);
++        _mm_store_ps((float*)target, xmm_result);
++        target += 4;
++    }
++
++    calculate_scaled_distances(target, src0[0], points, scalar, num_points % 4);
+ }
+ #endif // LV_HAVE_SSE
+ #ifdef LV_HAVE_GENERIC
+ static inline void
+-volk_32fc_x2_s32f_square_dist_scalar_mult_32f_generic(float* target, lv_32fc_t* src0, 
+-                                                      lv_32fc_t* points, float scalar, 
++volk_32fc_x2_s32f_square_dist_scalar_mult_32f_generic(float* target,
++                                                      lv_32fc_t* src0,
++                                                      lv_32fc_t* points,
++                                                      float scalar,
+                                                       unsigned int num_points)
+ {
+-  const lv_32fc_t symbol = *src0;
+-  calculate_scaled_distances(target, symbol, points, scalar, num_points);
++    const lv_32fc_t symbol = *src0;
++    calculate_scaled_distances(target, symbol, points, scalar, num_points);
+ }
+ #endif /*LV_HAVE_GENERIC*/
+@@ -321,87 +333,88 @@ volk_32fc_x2_s32f_square_dist_scalar_mult_32f_generic(float* target, lv_32fc_t*
+ #ifndef INCLUDED_volk_32fc_x2_s32f_square_dist_scalar_mult_32f_u_H
+ #define INCLUDED_volk_32fc_x2_s32f_square_dist_scalar_mult_32f_u_H
+-#include<volk/volk_complex.h>
++#include <volk/volk_complex.h>
+ #ifdef LV_HAVE_AVX2
+-#include<immintrin.h>
++#include <immintrin.h>
+ #include <volk/volk_avx2_intrinsics.h>
+ static inline void
+-volk_32fc_x2_s32f_square_dist_scalar_mult_32f_u_avx2(float* target, lv_32fc_t* src0, 
+-                                                     lv_32fc_t* points, float scalar, 
++volk_32fc_x2_s32f_square_dist_scalar_mult_32f_u_avx2(float* target,
++                                                     lv_32fc_t* src0,
++                                                     lv_32fc_t* points,
++                                                     float scalar,
+                                                      unsigned int num_points)
+ {
+-  const unsigned int num_bytes = num_points*8;
+-  __m128 xmm9, xmm10;
+-  __m256 xmm4, xmm6;
+-  __m256 xmm_points0, xmm_points1, xmm_result;
++    const unsigned int num_bytes = num_points * 8;
++    __m128 xmm9, xmm10;
++    __m256 xmm4, xmm6;
++    __m256 xmm_points0, xmm_points1, xmm_result;
++
++    const unsigned int bound = num_bytes >> 6;
++
++    // load complex value into all parts of the register.
++    const __m256 xmm_symbol = _mm256_castpd_ps(_mm256_broadcast_sd((const double*)src0));
++    const __m128 xmm128_symbol = _mm256_extractf128_ps(xmm_symbol, 1);
++
++    // Load scalar into all 8 parts of the register
++    const __m256 xmm_scalar = _mm256_broadcast_ss(&scalar);
++    const __m128 xmm128_scalar = _mm256_extractf128_ps(xmm_scalar, 1);
+-  const unsigned int bound = num_bytes >> 6;
+-  
+-  // load complex value into all parts of the register.
+-  const __m256 xmm_symbol = _mm256_castpd_ps(_mm256_broadcast_sd((const double*)src0));
+-  const __m128 xmm128_symbol = _mm256_extractf128_ps(xmm_symbol, 1);
+-  
+-  // Load scalar into all 8 parts of the register
+-  const __m256 xmm_scalar = _mm256_broadcast_ss(&scalar);
+-  const __m128 xmm128_scalar = _mm256_extractf128_ps(xmm_scalar, 1);
++    // Set permutation constant
++    const __m256i idx = _mm256_set_epi32(7, 6, 3, 2, 5, 4, 1, 0);
+-  // Set permutation constant
+-  const __m256i idx = _mm256_set_epi32(7,6,3,2,5,4,1,0);
+-  
+-  for(unsigned int i = 0; i < bound; ++i) {
+-    xmm_points0 = _mm256_loadu_ps((float*)points);
+-    xmm_points1 = _mm256_loadu_ps((float*)(points + 4));
+-    points += 8;
+-    __VOLK_PREFETCH(points);
++    for (unsigned int i = 0; i < bound; ++i) {
++        xmm_points0 = _mm256_loadu_ps((float*)points);
++        xmm_points1 = _mm256_loadu_ps((float*)(points + 4));
++        points += 8;
++        __VOLK_PREFETCH(points);
+-    xmm_result = _mm256_scaled_norm_dist_ps_avx2(xmm_symbol, xmm_symbol,
+-                                                 xmm_points0, xmm_points1, 
+-                                                 xmm_scalar);
+-    
+-    _mm256_storeu_ps(target, xmm_result);
+-    target += 8;
+-  }
++        xmm_result = _mm256_scaled_norm_dist_ps_avx2(
++            xmm_symbol, xmm_symbol, xmm_points0, xmm_points1, xmm_scalar);
+-  if (num_bytes >> 5 & 1) {
+-    xmm_points0 = _mm256_loadu_ps((float*)points);
++        _mm256_storeu_ps(target, xmm_result);
++        target += 8;
++    }
+-    xmm4 = _mm256_sub_ps(xmm_symbol, xmm_points0);
++    if (num_bytes >> 5 & 1) {
++        xmm_points0 = _mm256_loadu_ps((float*)points);
+-    points += 4;
++        xmm4 = _mm256_sub_ps(xmm_symbol, xmm_points0);
+-    xmm6 = _mm256_mul_ps(xmm4, xmm4);
++        points += 4;
+-    xmm4 = _mm256_hadd_ps(xmm6, xmm6);
+-    xmm4 = _mm256_permutevar8x32_ps(xmm4, idx);
++        xmm6 = _mm256_mul_ps(xmm4, xmm4);
+-    xmm_result = _mm256_mul_ps(xmm4, xmm_scalar);
++        xmm4 = _mm256_hadd_ps(xmm6, xmm6);
++        xmm4 = _mm256_permutevar8x32_ps(xmm4, idx);
+-    xmm9 = _mm256_extractf128_ps(xmm_result, 1);
+-    _mm_storeu_ps(target,xmm9);
+-    target += 4;
+-  }
++        xmm_result = _mm256_mul_ps(xmm4, xmm_scalar);
+-  if (num_bytes >> 4 & 1) {
+-    xmm9 = _mm_loadu_ps((float*)points);
++        xmm9 = _mm256_extractf128_ps(xmm_result, 1);
++        _mm_storeu_ps(target, xmm9);
++        target += 4;
++    }
+-    xmm10 = _mm_sub_ps(xmm128_symbol, xmm9);
++    if (num_bytes >> 4 & 1) {
++        xmm9 = _mm_loadu_ps((float*)points);
+-    points += 2;
++        xmm10 = _mm_sub_ps(xmm128_symbol, xmm9);
+-    xmm9 = _mm_mul_ps(xmm10, xmm10);
++        points += 2;
+-    xmm10 = _mm_hadd_ps(xmm9, xmm9);
++        xmm9 = _mm_mul_ps(xmm10, xmm10);
+-    xmm10 = _mm_mul_ps(xmm10, xmm128_scalar);
++        xmm10 = _mm_hadd_ps(xmm9, xmm9);
+-    _mm_storeh_pi((__m64*)target, xmm10);
+-    target += 2;
+-  }
++        xmm10 = _mm_mul_ps(xmm10, xmm128_scalar);
+-  calculate_scaled_distances(target, src0[0], points, scalar, (num_bytes >> 3) & 1);
++        _mm_storeh_pi((__m64*)target, xmm10);
++        target += 2;
++    }
++
++    calculate_scaled_distances(target, src0[0], points, scalar, (num_bytes >> 3) & 1);
+ }
+ #endif /*LV_HAVE_AVX2*/
+@@ -412,120 +425,126 @@ volk_32fc_x2_s32f_square_dist_scalar_mult_32f_u_avx2(float* target, lv_32fc_t* s
+ #include <volk/volk_avx_intrinsics.h>
+ static inline void
+-volk_32fc_x2_s32f_square_dist_scalar_mult_32f_u_avx(float *target, lv_32fc_t *src0, 
+-                                                    lv_32fc_t *points, float scalar, 
+-                                                    unsigned int num_points) {
+-  const int eightsPoints = num_points / 8;
+-  const int remainder = num_points - 8 * eightsPoints;
+-  
+-  __m256 xmm_points0, xmm_points1, xmm_result;
+-
+-  // load complex value into all parts of the register.
+-  const __m256 xmm_symbol = _mm256_castpd_ps(_mm256_broadcast_sd((const double*)src0));
+-  
+-  // Load scalar into all 8 parts of the register
+-  const __m256 xmm_scalar = _mm256_broadcast_ss(&scalar);
+-  
+-  for(int i = 0; i < eightsPoints; ++i){
+-    xmm_points0 = _mm256_loadu_ps((float*)points);
+-    xmm_points1 = _mm256_loadu_ps((float*)(points + 4));
+-    points += 8;
+-    
+-    xmm_result = _mm256_scaled_norm_dist_ps(xmm_symbol, xmm_symbol, xmm_points0, 
+-                                            xmm_points1, xmm_scalar);
+-    
+-    _mm256_storeu_ps(target, xmm_result);
+-    target += 8;
+-  }
+-  
+-  const lv_32fc_t symbol = *src0;
+-  calculate_scaled_distances(target, symbol, points, scalar, remainder);
++volk_32fc_x2_s32f_square_dist_scalar_mult_32f_u_avx(float* target,
++                                                    lv_32fc_t* src0,
++                                                    lv_32fc_t* points,
++                                                    float scalar,
++                                                    unsigned int num_points)
++{
++    const int eightsPoints = num_points / 8;
++    const int remainder = num_points - 8 * eightsPoints;
++
++    __m256 xmm_points0, xmm_points1, xmm_result;
++
++    // load complex value into all parts of the register.
++    const __m256 xmm_symbol = _mm256_castpd_ps(_mm256_broadcast_sd((const double*)src0));
++
++    // Load scalar into all 8 parts of the register
++    const __m256 xmm_scalar = _mm256_broadcast_ss(&scalar);
++
++    for (int i = 0; i < eightsPoints; ++i) {
++        xmm_points0 = _mm256_loadu_ps((float*)points);
++        xmm_points1 = _mm256_loadu_ps((float*)(points + 4));
++        points += 8;
++
++        xmm_result = _mm256_scaled_norm_dist_ps(
++            xmm_symbol, xmm_symbol, xmm_points0, xmm_points1, xmm_scalar);
++
++        _mm256_storeu_ps(target, xmm_result);
++        target += 8;
++    }
++
++    const lv_32fc_t symbol = *src0;
++    calculate_scaled_distances(target, symbol, points, scalar, remainder);
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_SSE3
+-#include<pmmintrin.h>
+-#include<volk/volk_sse3_intrinsics.h>
++#include <pmmintrin.h>
++#include <volk/volk_sse3_intrinsics.h>
+ static inline void
+-volk_32fc_x2_s32f_square_dist_scalar_mult_32f_u_sse3(float* target, lv_32fc_t* src0, 
+-                                                     lv_32fc_t* points, float scalar, 
++volk_32fc_x2_s32f_square_dist_scalar_mult_32f_u_sse3(float* target,
++                                                     lv_32fc_t* src0,
++                                                     lv_32fc_t* points,
++                                                     float scalar,
+                                                      unsigned int num_points)
+ {
+-  __m128 xmm_points0, xmm_points1, xmm_result;
+-
+-  /*
+-   * First do 4 values in every loop iteration.
+-   * There may be up to 3 values left.
+-   * leftovers0 indicates if at least 2 more are available for SSE execution.
+-   * leftovers1 indicates if there is a single element left.
+-   */
+-  const int quarterPoints = num_points / 4;
+-  const int leftovers0 = (num_points / 2) - 2 * quarterPoints;
+-  const int leftovers1 = num_points % 2;
+-
+-  // load complex value into both parts of the register.
+-  const __m128 xmm_symbol = _mm_castpd_ps(_mm_load1_pd((const double*)src0));
+-  
+-  // Load scalar into all 4 parts of the register
+-  const __m128 xmm_scalar = _mm_load1_ps(&scalar);
+-  
+-  for(int i = 0; i < quarterPoints; ++i) {
+-    xmm_points0 = _mm_loadu_ps((float*)points);
+-    xmm_points1 = _mm_loadu_ps((float*)(points + 2));
+-    points += 4;
+-    __VOLK_PREFETCH(points);
+-    // calculate distances
+-    xmm_result = _mm_scaled_norm_dist_ps_sse3(xmm_symbol, xmm_symbol, xmm_points0, 
+-                                              xmm_points1, xmm_scalar);
+-    
+-    _mm_storeu_ps(target, xmm_result);
+-    target += 4;
+-  }
+-
+-  for(int i = 0; i < leftovers0; ++i) {
+-    xmm_points0 = _mm_loadu_ps((float*)points);
+-    points += 2;
+-    
+-    xmm_points0 = _mm_sub_ps(xmm_symbol, xmm_points0);
+-    xmm_points0 = _mm_mul_ps(xmm_points0, xmm_points0);
+-    xmm_points0 = _mm_hadd_ps(xmm_points0, xmm_points0);
+-    xmm_result = _mm_mul_ps(xmm_points0, xmm_scalar);
+-
+-    _mm_storeh_pi((__m64*)target, xmm_result);
+-    target += 2;
+-  }
+-
+-  calculate_scaled_distances(target, src0[0], points, scalar, leftovers1);
++    __m128 xmm_points0, xmm_points1, xmm_result;
++
++    /*
++     * First do 4 values in every loop iteration.
++     * There may be up to 3 values left.
++     * leftovers0 indicates if at least 2 more are available for SSE execution.
++     * leftovers1 indicates if there is a single element left.
++     */
++    const int quarterPoints = num_points / 4;
++    const int leftovers0 = (num_points / 2) - 2 * quarterPoints;
++    const int leftovers1 = num_points % 2;
++
++    // load complex value into both parts of the register.
++    const __m128 xmm_symbol = _mm_castpd_ps(_mm_load1_pd((const double*)src0));
++
++    // Load scalar into all 4 parts of the register
++    const __m128 xmm_scalar = _mm_load1_ps(&scalar);
++
++    for (int i = 0; i < quarterPoints; ++i) {
++        xmm_points0 = _mm_loadu_ps((float*)points);
++        xmm_points1 = _mm_loadu_ps((float*)(points + 2));
++        points += 4;
++        __VOLK_PREFETCH(points);
++        // calculate distances
++        xmm_result = _mm_scaled_norm_dist_ps_sse3(
++            xmm_symbol, xmm_symbol, xmm_points0, xmm_points1, xmm_scalar);
++
++        _mm_storeu_ps(target, xmm_result);
++        target += 4;
++    }
++
++    for (int i = 0; i < leftovers0; ++i) {
++        xmm_points0 = _mm_loadu_ps((float*)points);
++        points += 2;
++
++        xmm_points0 = _mm_sub_ps(xmm_symbol, xmm_points0);
++        xmm_points0 = _mm_mul_ps(xmm_points0, xmm_points0);
++        xmm_points0 = _mm_hadd_ps(xmm_points0, xmm_points0);
++        xmm_result = _mm_mul_ps(xmm_points0, xmm_scalar);
++
++        _mm_storeh_pi((__m64*)target, xmm_result);
++        target += 2;
++    }
++
++    calculate_scaled_distances(target, src0[0], points, scalar, leftovers1);
+ }
+ #endif /*LV_HAVE_SSE3*/
+ #ifdef LV_HAVE_SSE
+-#include <xmmintrin.h>
+ #include <volk/volk_sse_intrinsics.h>
++#include <xmmintrin.h>
+ static inline void
+-volk_32fc_x2_s32f_square_dist_scalar_mult_32f_u_sse(float* target, lv_32fc_t* src0,
+-                                                    lv_32fc_t* points, float scalar,
++volk_32fc_x2_s32f_square_dist_scalar_mult_32f_u_sse(float* target,
++                                                    lv_32fc_t* src0,
++                                                    lv_32fc_t* points,
++                                                    float scalar,
+                                                     unsigned int num_points)
+ {
+-  const __m128 xmm_scalar = _mm_set1_ps(scalar);
+-  const __m128 xmm_symbol = _mm_castpd_ps(_mm_load1_pd((const double*)src0));
+-
+-  for (unsigned i = 0; i < num_points / 4; ++i) {
+-    __m128 xmm_points0 = _mm_loadu_ps((float *) points);
+-    __m128 xmm_points1 = _mm_loadu_ps((float *) (points + 2));
+-    points += 4;
+-    __m128 xmm_result = _mm_scaled_norm_dist_ps_sse(xmm_symbol, xmm_symbol,
+-                                                    xmm_points0, xmm_points1,
+-                                                    xmm_scalar);
+-    _mm_storeu_ps((float *) target, xmm_result);
+-    target += 4;
+-  }
+-
+-  calculate_scaled_distances(target, src0[0], points, scalar, num_points % 4);
++    const __m128 xmm_scalar = _mm_set1_ps(scalar);
++    const __m128 xmm_symbol = _mm_castpd_ps(_mm_load1_pd((const double*)src0));
++
++    for (unsigned i = 0; i < num_points / 4; ++i) {
++        __m128 xmm_points0 = _mm_loadu_ps((float*)points);
++        __m128 xmm_points1 = _mm_loadu_ps((float*)(points + 2));
++        points += 4;
++        __m128 xmm_result = _mm_scaled_norm_dist_ps_sse(
++            xmm_symbol, xmm_symbol, xmm_points0, xmm_points1, xmm_scalar);
++        _mm_storeu_ps((float*)target, xmm_result);
++        target += 4;
++    }
++
++    calculate_scaled_distances(target, src0[0], points, scalar, num_points % 4);
+ }
+ #endif // LV_HAVE_SSE
+diff --git a/kernels/volk/volk_32fc_x2_s32fc_multiply_conjugate_add_32fc.h b/kernels/volk/volk_32fc_x2_s32fc_multiply_conjugate_add_32fc.h
+index 6c7f4d3..1fb9b68 100644
+--- a/kernels/volk/volk_32fc_x2_s32fc_multiply_conjugate_add_32fc.h
++++ b/kernels/volk/volk_32fc_x2_s32fc_multiply_conjugate_add_32fc.h
+@@ -32,14 +32,16 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32fc_x2_s32fc_multiply_conjugate_add_32fc(lv_32fc_t* cVector, const lv_32fc_t* aVector, const lv_32fc_t* bVector, const lv_32fc_t scalar, unsigned int num_points);
+- * \endcode
++ * void volk_32fc_x2_s32fc_multiply_conjugate_add_32fc(lv_32fc_t* cVector, const
++ * lv_32fc_t* aVector, const lv_32fc_t* bVector, const lv_32fc_t scalar, unsigned int
++ * num_points); \endcode
+  *
+  * \b Inputs
+  * \li aVector: The input vector to be added.
+  * \li bVector: The input vector to be conjugate and multiplied.
+  * \li scalar: The complex scalar to multiply against conjugated bVector.
+- * \li num_points: The number of complex values in aVector and bVector to be conjugate, multiplied and stored into cVector.
++ * \li num_points: The number of complex values in aVector and bVector to be conjugate,
++ * multiplied and stored into cVector.
+  *
+  * \b Outputs
+  * \li cVector: The vector where the results will be stored.
+@@ -84,15 +86,21 @@
+ #ifndef INCLUDED_volk_32fc_x2_s32fc_multiply_conjugate_add_32fc_H
+ #define INCLUDED_volk_32fc_x2_s32fc_multiply_conjugate_add_32fc_H
++#include <float.h>
+ #include <inttypes.h>
+ #include <stdio.h>
+ #include <volk/volk_complex.h>
+-#include <float.h>
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32fc_x2_s32fc_multiply_conjugate_add_32fc_generic(lv_32fc_t* cVector, const lv_32fc_t* aVector, const lv_32fc_t* bVector, const lv_32fc_t scalar, unsigned int num_points){
++static inline void
++volk_32fc_x2_s32fc_multiply_conjugate_add_32fc_generic(lv_32fc_t* cVector,
++                                                       const lv_32fc_t* aVector,
++                                                       const lv_32fc_t* bVector,
++                                                       const lv_32fc_t scalar,
++                                                       unsigned int num_points)
++{
+     const lv_32fc_t* aPtr = aVector;
+     const lv_32fc_t* bPtr = bVector;
+     lv_32fc_t* cPtr = cVector;
+@@ -123,14 +131,20 @@ static inline void volk_32fc_x2_s32fc_multiply_conjugate_add_32fc_generic(lv_32f
+ #include <immintrin.h>
+ #include <volk/volk_avx_intrinsics.h>
+-static inline void volk_32fc_x2_s32fc_multiply_conjugate_add_32fc_u_avx(lv_32fc_t* cVector, const lv_32fc_t* aVector, const lv_32fc_t* bVector, const lv_32fc_t scalar, unsigned int num_points) {
++static inline void
++volk_32fc_x2_s32fc_multiply_conjugate_add_32fc_u_avx(lv_32fc_t* cVector,
++                                                     const lv_32fc_t* aVector,
++                                                     const lv_32fc_t* bVector,
++                                                     const lv_32fc_t scalar,
++                                                     unsigned int num_points)
++{
+     unsigned int number = 0;
+     unsigned int i = 0;
+     const unsigned int quarterPoints = num_points / 4;
+     unsigned int isodd = num_points & 3;
+     __m256 x, y, s, z;
+-    lv_32fc_t v_scalar[4] = {scalar, scalar, scalar, scalar};
++    lv_32fc_t v_scalar[4] = { scalar, scalar, scalar, scalar };
+     const lv_32fc_t* a = aVector;
+     const lv_32fc_t* b = bVector;
+@@ -139,19 +153,19 @@ static inline void volk_32fc_x2_s32fc_multiply_conjugate_add_32fc_u_avx(lv_32fc_
+     // Set up constant scalar vector
+     s = _mm256_loadu_ps((float*)v_scalar);
+-    for(;number < quarterPoints; number++) {
++    for (; number < quarterPoints; number++) {
+         x = _mm256_loadu_ps((float*)b);
+         y = _mm256_loadu_ps((float*)a);
+         z = _mm256_complexconjugatemul_ps(s, x);
+         z = _mm256_add_ps(y, z);
+-        _mm256_storeu_ps((float*)c,z);
++        _mm256_storeu_ps((float*)c, z);
+         a += 4;
+         b += 4;
+         c += 4;
+     }
+-    for(i = num_points-isodd; i < num_points; i++) {
++    for (i = num_points - isodd; i < num_points; i++) {
+         *c++ = (*a++) + lv_conj(*b++) * scalar;
+     }
+ }
+@@ -162,12 +176,18 @@ static inline void volk_32fc_x2_s32fc_multiply_conjugate_add_32fc_u_avx(lv_32fc_
+ #include <pmmintrin.h>
+ #include <volk/volk_sse3_intrinsics.h>
+-static inline void volk_32fc_x2_s32fc_multiply_conjugate_add_32fc_u_sse3(lv_32fc_t* cVector, const lv_32fc_t* aVector, const lv_32fc_t* bVector, const lv_32fc_t scalar, unsigned int num_points) {
++static inline void
++volk_32fc_x2_s32fc_multiply_conjugate_add_32fc_u_sse3(lv_32fc_t* cVector,
++                                                      const lv_32fc_t* aVector,
++                                                      const lv_32fc_t* bVector,
++                                                      const lv_32fc_t scalar,
++                                                      unsigned int num_points)
++{
+     unsigned int number = 0;
+     const unsigned int halfPoints = num_points / 2;
+     __m128 x, y, s, z;
+-    lv_32fc_t v_scalar[2] = {scalar, scalar};
++    lv_32fc_t v_scalar[2] = { scalar, scalar };
+     const lv_32fc_t* a = aVector;
+     const lv_32fc_t* b = bVector;
+@@ -176,19 +196,19 @@ static inline void volk_32fc_x2_s32fc_multiply_conjugate_add_32fc_u_sse3(lv_32fc
+     // Set up constant scalar vector
+     s = _mm_loadu_ps((float*)v_scalar);
+-    for(;number < halfPoints; number++){
++    for (; number < halfPoints; number++) {
+         x = _mm_loadu_ps((float*)b);
+         y = _mm_loadu_ps((float*)a);
+         z = _mm_complexconjugatemul_ps(s, x);
+         z = _mm_add_ps(y, z);
+-        _mm_storeu_ps((float*)c,z);
++        _mm_storeu_ps((float*)c, z);
+         a += 2;
+         b += 2;
+         c += 2;
+     }
+-    if((num_points % 2) != 0) {
++    if ((num_points % 2) != 0) {
+         *c = *a + lv_conj(*b) * scalar;
+     }
+ }
+@@ -199,14 +219,20 @@ static inline void volk_32fc_x2_s32fc_multiply_conjugate_add_32fc_u_sse3(lv_32fc
+ #include <immintrin.h>
+ #include <volk/volk_avx_intrinsics.h>
+-static inline void volk_32fc_x2_s32fc_multiply_conjugate_add_32fc_a_avx(lv_32fc_t* cVector, const lv_32fc_t* aVector, const lv_32fc_t* bVector, const lv_32fc_t scalar, unsigned int num_points) {
++static inline void
++volk_32fc_x2_s32fc_multiply_conjugate_add_32fc_a_avx(lv_32fc_t* cVector,
++                                                     const lv_32fc_t* aVector,
++                                                     const lv_32fc_t* bVector,
++                                                     const lv_32fc_t scalar,
++                                                     unsigned int num_points)
++{
+     unsigned int number = 0;
+     unsigned int i = 0;
+     const unsigned int quarterPoints = num_points / 4;
+     unsigned int isodd = num_points & 3;
+     __m256 x, y, s, z;
+-    lv_32fc_t v_scalar[4] = {scalar, scalar, scalar, scalar};
++    lv_32fc_t v_scalar[4] = { scalar, scalar, scalar, scalar };
+     const lv_32fc_t* a = aVector;
+     const lv_32fc_t* b = bVector;
+@@ -215,19 +241,19 @@ static inline void volk_32fc_x2_s32fc_multiply_conjugate_add_32fc_a_avx(lv_32fc_
+     // Set up constant scalar vector
+     s = _mm256_load_ps((float*)v_scalar);
+-    for(;number < quarterPoints; number++) {
++    for (; number < quarterPoints; number++) {
+         x = _mm256_load_ps((float*)b);
+         y = _mm256_load_ps((float*)a);
+         z = _mm256_complexconjugatemul_ps(s, x);
+         z = _mm256_add_ps(y, z);
+-        _mm256_store_ps((float*)c,z);
++        _mm256_store_ps((float*)c, z);
+         a += 4;
+         b += 4;
+         c += 4;
+     }
+-    for(i = num_points-isodd; i < num_points; i++) {
++    for (i = num_points - isodd; i < num_points; i++) {
+         *c++ = (*a++) + lv_conj(*b++) * scalar;
+     }
+ }
+@@ -238,12 +264,18 @@ static inline void volk_32fc_x2_s32fc_multiply_conjugate_add_32fc_a_avx(lv_32fc_
+ #include <pmmintrin.h>
+ #include <volk/volk_sse3_intrinsics.h>
+-static inline void volk_32fc_x2_s32fc_multiply_conjugate_add_32fc_a_sse3(lv_32fc_t* cVector, const lv_32fc_t* aVector, const lv_32fc_t* bVector, const lv_32fc_t scalar, unsigned int num_points) {
++static inline void
++volk_32fc_x2_s32fc_multiply_conjugate_add_32fc_a_sse3(lv_32fc_t* cVector,
++                                                      const lv_32fc_t* aVector,
++                                                      const lv_32fc_t* bVector,
++                                                      const lv_32fc_t scalar,
++                                                      unsigned int num_points)
++{
+     unsigned int number = 0;
+     const unsigned int halfPoints = num_points / 2;
+     __m128 x, y, s, z;
+-    lv_32fc_t v_scalar[2] = {scalar, scalar};
++    lv_32fc_t v_scalar[2] = { scalar, scalar };
+     const lv_32fc_t* a = aVector;
+     const lv_32fc_t* b = bVector;
+@@ -252,19 +284,19 @@ static inline void volk_32fc_x2_s32fc_multiply_conjugate_add_32fc_a_sse3(lv_32fc
+     // Set up constant scalar vector
+     s = _mm_load_ps((float*)v_scalar);
+-    for(;number < halfPoints; number++){
++    for (; number < halfPoints; number++) {
+         x = _mm_load_ps((float*)b);
+         y = _mm_load_ps((float*)a);
+         z = _mm_complexconjugatemul_ps(s, x);
+         z = _mm_add_ps(y, z);
+-        _mm_store_ps((float*)c,z);
++        _mm_store_ps((float*)c, z);
+         a += 2;
+         b += 2;
+         c += 2;
+     }
+-    if((num_points % 2) != 0) {
++    if ((num_points % 2) != 0) {
+         *c = *a + lv_conj(*b) * scalar;
+     }
+ }
+@@ -272,9 +304,15 @@ static inline void volk_32fc_x2_s32fc_multiply_conjugate_add_32fc_a_sse3(lv_32fc
+ #ifdef LV_HAVE_NEON
+-#include  <arm_neon.h>
+-
+-static inline void volk_32fc_x2_s32fc_multiply_conjugate_add_32fc_neon(lv_32fc_t* cVector, const lv_32fc_t* aVector, const lv_32fc_t* bVector, const lv_32fc_t scalar, unsigned int num_points){
++#include <arm_neon.h>
++
++static inline void
++volk_32fc_x2_s32fc_multiply_conjugate_add_32fc_neon(lv_32fc_t* cVector,
++                                                    const lv_32fc_t* aVector,
++                                                    const lv_32fc_t* bVector,
++                                                    const lv_32fc_t scalar,
++                                                    unsigned int num_points)
++{
+     const lv_32fc_t* bPtr = bVector;
+     const lv_32fc_t* aPtr = aVector;
+     lv_32fc_t* cPtr = cVector;
+@@ -287,7 +325,7 @@ static inline void volk_32fc_x2_s32fc_multiply_conjugate_add_32fc_neon(lv_32fc_t
+     scalar_val.val[0] = vld1q_dup_f32((const float*)&scalar);
+     scalar_val.val[1] = vld1q_dup_f32(((const float*)&scalar) + 1);
+-    for(number = 0; number < quarter_points; ++number) {
++    for (number = 0; number < quarter_points; ++number) {
+         a_val = vld2q_f32((float*)aPtr);
+         b_val = vld2q_f32((float*)bPtr);
+         b_val.val[1] = vnegq_f32(b_val.val[1]);
+@@ -310,7 +348,7 @@ static inline void volk_32fc_x2_s32fc_multiply_conjugate_add_32fc_neon(lv_32fc_t
+         cPtr += 4;
+     }
+-    for(number = quarter_points*4; number < num_points; number++){
++    for (number = quarter_points * 4; number < num_points; number++) {
+         *cPtr++ = (*aPtr++) + lv_conj(*bPtr++) * scalar;
+     }
+ }
+diff --git a/kernels/volk/volk_32fc_x2_square_dist_32f.h b/kernels/volk/volk_32fc_x2_square_dist_32f.h
+index d6c6dff..75f4072 100644
+--- a/kernels/volk/volk_32fc_x2_square_dist_32f.h
++++ b/kernels/volk/volk_32fc_x2_square_dist_32f.h
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32fc_x2_square_dist_32f(float* target, lv_32fc_t* src0, lv_32fc_t* points, unsigned int num_points) {
+- * \endcode
++ * void volk_32fc_x2_square_dist_32f(float* target, lv_32fc_t* src0, lv_32fc_t* points,
++ * unsigned int num_points) { \endcode
+  *
+  * \b Inputs
+  * \li src0: The complex input. Only the first point is used.
+@@ -78,183 +78,185 @@
+ #ifndef INCLUDED_volk_32fc_x2_square_dist_32f_a_H
+ #define INCLUDED_volk_32fc_x2_square_dist_32f_a_H
+-#include<inttypes.h>
+-#include<stdio.h>
+-#include<volk/volk_complex.h>
++#include <inttypes.h>
++#include <stdio.h>
++#include <volk/volk_complex.h>
+ #ifdef LV_HAVE_AVX2
+-#include<immintrin.h>
++#include <immintrin.h>
+-static inline void
+-volk_32fc_x2_square_dist_32f_a_avx2(float* target, lv_32fc_t* src0, lv_32fc_t* points,
+-                                    unsigned int num_points)
++static inline void volk_32fc_x2_square_dist_32f_a_avx2(float* target,
++                                                       lv_32fc_t* src0,
++                                                       lv_32fc_t* points,
++                                                       unsigned int num_points)
+ {
+-  const unsigned int num_bytes = num_points*8;
+-  __m128 xmm0, xmm9, xmm10;
+-  __m256 xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
+-
+-  lv_32fc_t diff;
+-  float sq_dist;
+-  int bound = num_bytes >> 6;
+-  int leftovers0 = (num_bytes >> 5) & 1;
+-  int leftovers1 = (num_bytes >> 4) & 1;
+-  int leftovers2 = (num_bytes >> 3) & 1;
+-  int i = 0;
+-
+-  __m256i idx = _mm256_set_epi32(7,6,3,2,5,4,1,0);
+-  xmm1 = _mm256_setzero_ps();
+-  xmm2 = _mm256_load_ps((float*)&points[0]);
+-  xmm0 = _mm_load_ps((float*)src0);
+-  xmm0 = _mm_permute_ps(xmm0, 0b01000100);
+-  xmm1 = _mm256_insertf128_ps(xmm1, xmm0, 0);
+-  xmm1 = _mm256_insertf128_ps(xmm1, xmm0, 1);
+-  xmm3 = _mm256_load_ps((float*)&points[4]);
+-
+-  for(; i < bound; ++i) {
+-    xmm4 = _mm256_sub_ps(xmm1, xmm2);
+-    xmm5 = _mm256_sub_ps(xmm1, xmm3);
+-    points += 8;
+-    xmm6 = _mm256_mul_ps(xmm4, xmm4);
+-    xmm7 = _mm256_mul_ps(xmm5, xmm5);
+-
++    const unsigned int num_bytes = num_points * 8;
++    __m128 xmm0, xmm9, xmm10;
++    __m256 xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
++
++    lv_32fc_t diff;
++    float sq_dist;
++    int bound = num_bytes >> 6;
++    int leftovers0 = (num_bytes >> 5) & 1;
++    int leftovers1 = (num_bytes >> 4) & 1;
++    int leftovers2 = (num_bytes >> 3) & 1;
++    int i = 0;
++
++    __m256i idx = _mm256_set_epi32(7, 6, 3, 2, 5, 4, 1, 0);
++    xmm1 = _mm256_setzero_ps();
+     xmm2 = _mm256_load_ps((float*)&points[0]);
++    xmm0 = _mm_load_ps((float*)src0);
++    xmm0 = _mm_permute_ps(xmm0, 0b01000100);
++    xmm1 = _mm256_insertf128_ps(xmm1, xmm0, 0);
++    xmm1 = _mm256_insertf128_ps(xmm1, xmm0, 1);
++    xmm3 = _mm256_load_ps((float*)&points[4]);
+-    xmm4 = _mm256_hadd_ps(xmm6, xmm7);
+-    xmm4 = _mm256_permutevar8x32_ps(xmm4, idx);
++    for (; i < bound; ++i) {
++        xmm4 = _mm256_sub_ps(xmm1, xmm2);
++        xmm5 = _mm256_sub_ps(xmm1, xmm3);
++        points += 8;
++        xmm6 = _mm256_mul_ps(xmm4, xmm4);
++        xmm7 = _mm256_mul_ps(xmm5, xmm5);
+-    xmm3 = _mm256_load_ps((float*)&points[4]);
++        xmm2 = _mm256_load_ps((float*)&points[0]);
+-    _mm256_store_ps(target, xmm4);
++        xmm4 = _mm256_hadd_ps(xmm6, xmm7);
++        xmm4 = _mm256_permutevar8x32_ps(xmm4, idx);
+-    target += 8;
+-  }
++        xmm3 = _mm256_load_ps((float*)&points[4]);
+-  for(i = 0; i < leftovers0; ++i) {
++        _mm256_store_ps(target, xmm4);
+-    xmm2 = _mm256_load_ps((float*)&points[0]);
++        target += 8;
++    }
+-    xmm4 = _mm256_sub_ps(xmm1, xmm2);
++    for (i = 0; i < leftovers0; ++i) {
+-    points += 4;
++        xmm2 = _mm256_load_ps((float*)&points[0]);
+-    xmm6 = _mm256_mul_ps(xmm4, xmm4);
++        xmm4 = _mm256_sub_ps(xmm1, xmm2);
+-    xmm4 = _mm256_hadd_ps(xmm6, xmm6);
+-    xmm4 = _mm256_permutevar8x32_ps(xmm4, idx);
++        points += 4;
+-    xmm9 = _mm256_extractf128_ps(xmm4, 1);
+-    _mm_store_ps(target,xmm9);
++        xmm6 = _mm256_mul_ps(xmm4, xmm4);
+-    target += 4;
+-  }
++        xmm4 = _mm256_hadd_ps(xmm6, xmm6);
++        xmm4 = _mm256_permutevar8x32_ps(xmm4, idx);
++
++        xmm9 = _mm256_extractf128_ps(xmm4, 1);
++        _mm_store_ps(target, xmm9);
+-  for(i = 0; i < leftovers1; ++i) {
+-    xmm9 = _mm_load_ps((float*)&points[0]);
++        target += 4;
++    }
+-    xmm10 = _mm_sub_ps(xmm0, xmm9);
++    for (i = 0; i < leftovers1; ++i) {
++        xmm9 = _mm_load_ps((float*)&points[0]);
+-    points += 2;
++        xmm10 = _mm_sub_ps(xmm0, xmm9);
+-    xmm9 = _mm_mul_ps(xmm10, xmm10);
++        points += 2;
+-    xmm10 = _mm_hadd_ps(xmm9, xmm9);
++        xmm9 = _mm_mul_ps(xmm10, xmm10);
+-    _mm_storeh_pi((__m64*)target, xmm10);
++        xmm10 = _mm_hadd_ps(xmm9, xmm9);
+-    target += 2;
+-  }
++        _mm_storeh_pi((__m64*)target, xmm10);
+-  for(i = 0; i < leftovers2; ++i) {
++        target += 2;
++    }
+-    diff = src0[0] - points[0];
++    for (i = 0; i < leftovers2; ++i) {
+-    sq_dist = lv_creal(diff) * lv_creal(diff) + lv_cimag(diff) * lv_cimag(diff);
++        diff = src0[0] - points[0];
+-    target[0] = sq_dist;
+-  }
++        sq_dist = lv_creal(diff) * lv_creal(diff) + lv_cimag(diff) * lv_cimag(diff);
++
++        target[0] = sq_dist;
++    }
+ }
+ #endif /*LV_HAVE_AVX2*/
+ #ifdef LV_HAVE_SSE3
+-#include<xmmintrin.h>
+-#include<pmmintrin.h>
++#include <pmmintrin.h>
++#include <xmmintrin.h>
+-static inline void
+-volk_32fc_x2_square_dist_32f_a_sse3(float* target, lv_32fc_t* src0, lv_32fc_t* points,
+-                                    unsigned int num_points)
++static inline void volk_32fc_x2_square_dist_32f_a_sse3(float* target,
++                                                       lv_32fc_t* src0,
++                                                       lv_32fc_t* points,
++                                                       unsigned int num_points)
+ {
+-  const unsigned int num_bytes = num_points*8;
++    const unsigned int num_bytes = num_points * 8;
+-  __m128 xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
++    __m128 xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
+-  lv_32fc_t diff;
+-  float sq_dist;
+-  int bound = num_bytes >> 5;
+-  int i = 0;
++    lv_32fc_t diff;
++    float sq_dist;
++    int bound = num_bytes >> 5;
++    int i = 0;
+-  xmm1 = _mm_setzero_ps();
+-  xmm1 = _mm_loadl_pi(xmm1, (__m64*)src0);
+-  xmm2 = _mm_load_ps((float*)&points[0]);
+-  xmm1 = _mm_movelh_ps(xmm1, xmm1);
+-  xmm3 = _mm_load_ps((float*)&points[2]);
++    xmm1 = _mm_setzero_ps();
++    xmm1 = _mm_loadl_pi(xmm1, (__m64*)src0);
++    xmm2 = _mm_load_ps((float*)&points[0]);
++    xmm1 = _mm_movelh_ps(xmm1, xmm1);
++    xmm3 = _mm_load_ps((float*)&points[2]);
++
++    for (; i < bound - 1; ++i) {
++        xmm4 = _mm_sub_ps(xmm1, xmm2);
++        xmm5 = _mm_sub_ps(xmm1, xmm3);
++        points += 4;
++        xmm6 = _mm_mul_ps(xmm4, xmm4);
++        xmm7 = _mm_mul_ps(xmm5, xmm5);
++
++        xmm2 = _mm_load_ps((float*)&points[0]);
++
++        xmm4 = _mm_hadd_ps(xmm6, xmm7);
++
++        xmm3 = _mm_load_ps((float*)&points[2]);
++
++        _mm_store_ps(target, xmm4);
++
++        target += 4;
++    }
+-  for(; i < bound - 1; ++i) {
+     xmm4 = _mm_sub_ps(xmm1, xmm2);
+     xmm5 = _mm_sub_ps(xmm1, xmm3);
++
+     points += 4;
+     xmm6 = _mm_mul_ps(xmm4, xmm4);
+     xmm7 = _mm_mul_ps(xmm5, xmm5);
+-    xmm2 = _mm_load_ps((float*)&points[0]);
+-
+     xmm4 = _mm_hadd_ps(xmm6, xmm7);
+-    xmm3 = _mm_load_ps((float*)&points[2]);
+-
+     _mm_store_ps(target, xmm4);
+     target += 4;
+-  }
+-
+-  xmm4 = _mm_sub_ps(xmm1, xmm2);
+-  xmm5 = _mm_sub_ps(xmm1, xmm3);
+-
+-  points += 4;
+-  xmm6 = _mm_mul_ps(xmm4, xmm4);
+-  xmm7 = _mm_mul_ps(xmm5, xmm5);
+-  xmm4 = _mm_hadd_ps(xmm6, xmm7);
++    if (num_bytes >> 4 & 1) {
+-  _mm_store_ps(target, xmm4);
++        xmm2 = _mm_load_ps((float*)&points[0]);
+-  target += 4;
++        xmm4 = _mm_sub_ps(xmm1, xmm2);
+-  if (num_bytes >> 4 & 1) {
++        points += 2;
+-    xmm2 = _mm_load_ps((float*)&points[0]);
+-
+-    xmm4 = _mm_sub_ps(xmm1, xmm2);
++        xmm6 = _mm_mul_ps(xmm4, xmm4);
+-    points += 2;
+-
+-    xmm6 = _mm_mul_ps(xmm4, xmm4);
++        xmm4 = _mm_hadd_ps(xmm6, xmm6);
+-    xmm4 = _mm_hadd_ps(xmm6, xmm6);
++        _mm_storeh_pi((__m64*)target, xmm4);
+-    _mm_storeh_pi((__m64*)target, xmm4);
++        target += 2;
++    }
+-    target += 2;
+-  }
++    if (num_bytes >> 3 & 1) {
+-  if (num_bytes >> 3 & 1) {
++        diff = src0[0] - points[0];
+-    diff = src0[0] - points[0];
++        sq_dist = lv_creal(diff) * lv_creal(diff) + lv_cimag(diff) * lv_cimag(diff);
+-    sq_dist = lv_creal(diff) * lv_creal(diff) + lv_cimag(diff) * lv_cimag(diff);
+-
+-    target[0] = sq_dist;
+-  }
++        target[0] = sq_dist;
++    }
+ }
+ #endif /*LV_HAVE_SSE3*/
+@@ -262,55 +264,58 @@ volk_32fc_x2_square_dist_32f_a_sse3(float* target, lv_32fc_t* src0, lv_32fc_t* p
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_32fc_x2_square_dist_32f_neon(float* target, lv_32fc_t* src0, lv_32fc_t* points, unsigned int num_points)
++static inline void volk_32fc_x2_square_dist_32f_neon(float* target,
++                                                     lv_32fc_t* src0,
++                                                     lv_32fc_t* points,
++                                                     unsigned int num_points)
+ {
+-  const unsigned int quarter_points = num_points / 4;
+-  unsigned int number;
+-
+-  float32x4x2_t a_vec, b_vec;
+-  float32x4x2_t diff_vec;
+-  float32x4_t tmp, tmp1, dist_sq;
+-  a_vec.val[0] = vdupq_n_f32( lv_creal(src0[0]) );
+-  a_vec.val[1] = vdupq_n_f32( lv_cimag(src0[0]) );
+-  for(number=0; number < quarter_points; ++number) {
+-    b_vec = vld2q_f32((float*)points);
+-    diff_vec.val[0] = vsubq_f32(a_vec.val[0], b_vec.val[0]);
+-    diff_vec.val[1] = vsubq_f32(a_vec.val[1], b_vec.val[1]);
+-    tmp = vmulq_f32(diff_vec.val[0], diff_vec.val[0]);
+-    tmp1 = vmulq_f32(diff_vec.val[1], diff_vec.val[1]);
+-
+-    dist_sq = vaddq_f32(tmp, tmp1);
+-    vst1q_f32(target, dist_sq);
+-    points += 4;
+-    target += 4;
+-  }
+-  for(number=quarter_points*4; number < num_points; ++number) {
+-    lv_32fc_t diff = src0[0] - *points++;
+-    *target++ = lv_creal(diff) * lv_creal(diff) + lv_cimag(diff) * lv_cimag(diff);
+-  }
++    const unsigned int quarter_points = num_points / 4;
++    unsigned int number;
++
++    float32x4x2_t a_vec, b_vec;
++    float32x4x2_t diff_vec;
++    float32x4_t tmp, tmp1, dist_sq;
++    a_vec.val[0] = vdupq_n_f32(lv_creal(src0[0]));
++    a_vec.val[1] = vdupq_n_f32(lv_cimag(src0[0]));
++    for (number = 0; number < quarter_points; ++number) {
++        b_vec = vld2q_f32((float*)points);
++        diff_vec.val[0] = vsubq_f32(a_vec.val[0], b_vec.val[0]);
++        diff_vec.val[1] = vsubq_f32(a_vec.val[1], b_vec.val[1]);
++        tmp = vmulq_f32(diff_vec.val[0], diff_vec.val[0]);
++        tmp1 = vmulq_f32(diff_vec.val[1], diff_vec.val[1]);
++
++        dist_sq = vaddq_f32(tmp, tmp1);
++        vst1q_f32(target, dist_sq);
++        points += 4;
++        target += 4;
++    }
++    for (number = quarter_points * 4; number < num_points; ++number) {
++        lv_32fc_t diff = src0[0] - *points++;
++        *target++ = lv_creal(diff) * lv_creal(diff) + lv_cimag(diff) * lv_cimag(diff);
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32fc_x2_square_dist_32f_generic(float* target, lv_32fc_t* src0, lv_32fc_t* points,
+-                                     unsigned int num_points)
++static inline void volk_32fc_x2_square_dist_32f_generic(float* target,
++                                                        lv_32fc_t* src0,
++                                                        lv_32fc_t* points,
++                                                        unsigned int num_points)
+ {
+-  const unsigned int num_bytes = num_points*8;
++    const unsigned int num_bytes = num_points * 8;
+-  lv_32fc_t diff;
+-  float sq_dist;
+-  unsigned int i = 0;
++    lv_32fc_t diff;
++    float sq_dist;
++    unsigned int i = 0;
+-  for(; i < num_bytes >> 3; ++i) {
+-    diff = src0[0] - points[i];
++    for (; i<num_bytes>> 3; ++i) {
++        diff = src0[0] - points[i];
+-    sq_dist = lv_creal(diff) * lv_creal(diff) + lv_cimag(diff) * lv_cimag(diff);
++        sq_dist = lv_creal(diff) * lv_creal(diff) + lv_cimag(diff) * lv_cimag(diff);
+-    target[i] = sq_dist;
+-  }
++        target[i] = sq_dist;
++    }
+ }
+ #endif /*LV_HAVE_GENERIC*/
+@@ -321,80 +326,85 @@ volk_32fc_x2_square_dist_32f_generic(float* target, lv_32fc_t* src0, lv_32fc_t*
+ #ifndef INCLUDED_volk_32fc_x2_square_dist_32f_u_H
+ #define INCLUDED_volk_32fc_x2_square_dist_32f_u_H
+-#include<inttypes.h>
+-#include<stdio.h>
+-#include<volk/volk_complex.h>
++#include <inttypes.h>
++#include <stdio.h>
++#include <volk/volk_complex.h>
+ #ifdef LV_HAVE_AVX2
+-#include<immintrin.h>
++#include <immintrin.h>
+-static inline void
+-volk_32fc_x2_square_dist_32f_u_avx2(float* target, lv_32fc_t* src0, lv_32fc_t* points,
+-                                    unsigned int num_points)
++static inline void volk_32fc_x2_square_dist_32f_u_avx2(float* target,
++                                                       lv_32fc_t* src0,
++                                                       lv_32fc_t* points,
++                                                       unsigned int num_points)
+ {
+-  const unsigned int num_bytes = num_points*8;
+-  __m128 xmm0, xmm9;
+-  __m256 xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
+-
+-  lv_32fc_t diff;
+-  float sq_dist;
+-  int bound = num_bytes >> 6;
+-  int leftovers1 = (num_bytes >> 3) & 0b11;
+-  int i = 0;
+-
+-  __m256i idx = _mm256_set_epi32(7,6,3,2,5,4,1,0);
+-  xmm1 = _mm256_setzero_ps();
+-  xmm0 = _mm_loadu_ps((float*)src0);
+-  xmm0 = _mm_permute_ps(xmm0, 0b01000100);
+-  xmm1 = _mm256_insertf128_ps(xmm1, xmm0, 0);
+-  xmm1 = _mm256_insertf128_ps(xmm1, xmm0, 1);
+-
+-  for(; i < bound; ++i) {
++    const unsigned int num_bytes = num_points * 8;
++    __m128 xmm0, xmm9;
++    __m256 xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
++
++    lv_32fc_t diff;
++    float sq_dist;
++    int bound = num_bytes >> 6;
++    int leftovers1 = (num_bytes >> 3) & 0b11;
++    int i = 0;
++
++    __m256i idx = _mm256_set_epi32(7, 6, 3, 2, 5, 4, 1, 0);
++    xmm1 = _mm256_setzero_ps();
+     xmm2 = _mm256_loadu_ps((float*)&points[0]);
++    xmm0 = _mm_loadu_ps((float*)src0);
++    xmm0 = _mm_permute_ps(xmm0, 0b01000100);
++    xmm1 = _mm256_insertf128_ps(xmm1, xmm0, 0);
++    xmm1 = _mm256_insertf128_ps(xmm1, xmm0, 1);
+     xmm3 = _mm256_loadu_ps((float*)&points[4]);
+-    xmm4 = _mm256_sub_ps(xmm1, xmm2);
+-    xmm5 = _mm256_sub_ps(xmm1, xmm3);
+-    points += 8;
+-    xmm6 = _mm256_mul_ps(xmm4, xmm4);
+-    xmm7 = _mm256_mul_ps(xmm5, xmm5);
+-    xmm4 = _mm256_hadd_ps(xmm6, xmm7);
+-    xmm4 = _mm256_permutevar8x32_ps(xmm4, idx);
++    for (; i < bound; ++i) {
++        xmm4 = _mm256_sub_ps(xmm1, xmm2);
++        xmm5 = _mm256_sub_ps(xmm1, xmm3);
++        points += 8;
++        xmm6 = _mm256_mul_ps(xmm4, xmm4);
++        xmm7 = _mm256_mul_ps(xmm5, xmm5);
+-    _mm256_storeu_ps(target, xmm4);
++        xmm2 = _mm256_loadu_ps((float*)&points[0]);
+-    target += 8;
+-  }
++        xmm4 = _mm256_hadd_ps(xmm6, xmm7);
++        xmm4 = _mm256_permutevar8x32_ps(xmm4, idx);
+-  if (num_bytes >> 5 & 1) {
++        xmm3 = _mm256_loadu_ps((float*)&points[4]);
+-    xmm2 = _mm256_loadu_ps((float*)&points[0]);
++        _mm256_storeu_ps(target, xmm4);
+-    xmm4 = _mm256_sub_ps(xmm1, xmm2);
++        target += 8;
++    }
+-    points += 4;
++    if (num_bytes >> 5 & 1) {
+-    xmm6 = _mm256_mul_ps(xmm4, xmm4);
++        xmm2 = _mm256_loadu_ps((float*)&points[0]);
+-    xmm4 = _mm256_hadd_ps(xmm6, xmm6);
+-    xmm4 = _mm256_permutevar8x32_ps(xmm4, idx);
++        xmm4 = _mm256_sub_ps(xmm1, xmm2);
+-    xmm9 = _mm256_extractf128_ps(xmm4, 1);
+-    _mm_storeu_ps(target,xmm9);
++        points += 4;
+-    target += 4;
+-  }
++        xmm6 = _mm256_mul_ps(xmm4, xmm4);
++
++        xmm4 = _mm256_hadd_ps(xmm6, xmm6);
++        xmm4 = _mm256_permutevar8x32_ps(xmm4, idx);
++
++        xmm9 = _mm256_extractf128_ps(xmm4, 1);
++        _mm_storeu_ps(target, xmm9);
++
++        target += 4;
++    }
+-  for(i = 0; i < leftovers1; ++i) {
++    for (i = 0; i < leftovers1; ++i) {
+-    diff = src0[0] - points[0];
+-    points += 1;
++        diff = src0[0] - points[0];
++        points += 1;
+-    sq_dist = lv_creal(diff) * lv_creal(diff) + lv_cimag(diff) * lv_cimag(diff);
++        sq_dist = lv_creal(diff) * lv_creal(diff) + lv_cimag(diff) * lv_cimag(diff);
+-    target[0] = sq_dist;
+-    target += 1;
+-  }
++        target[0] = sq_dist;
++        target += 1;
++    }
+ }
+ #endif /*LV_HAVE_AVX2*/
+diff --git a/kernels/volk/volk_32i_s32f_convert_32f.h b/kernels/volk/volk_32i_s32f_convert_32f.h
+index 87d94f9..6b67cdb 100644
+--- a/kernels/volk/volk_32i_s32f_convert_32f.h
++++ b/kernels/volk/volk_32i_s32f_convert_32f.h
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32i_s32f_convert_32f(float* outputVector, const int32_t* inputVector, const float scalar, unsigned int num_points)
+- * \endcode
++ * void volk_32i_s32f_convert_32f(float* outputVector, const int32_t* inputVector, const
++ * float scalar, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li inputVector: The vector of 32-bit integers.
+@@ -70,37 +70,38 @@
+ #ifdef LV_HAVE_AVX512F
+ #include <immintrin.h>
+-static inline void
+-volk_32i_s32f_convert_32f_u_avx512f(float* outputVector, const int32_t* inputVector,
+-                                 const float scalar, unsigned int num_points)
++static inline void volk_32i_s32f_convert_32f_u_avx512f(float* outputVector,
++                                                       const int32_t* inputVector,
++                                                       const float scalar,
++                                                       unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int onesixteenthPoints = num_points / 16;
++    unsigned int number = 0;
++    const unsigned int onesixteenthPoints = num_points / 16;
+-  float* outputVectorPtr = outputVector;
+-  const float iScalar = 1.0 / scalar;
+-  __m512 invScalar = _mm512_set1_ps(iScalar);
+-  int32_t* inputPtr = (int32_t*)inputVector;
+-  __m512i inputVal;
+-  __m512 ret;
++    float* outputVectorPtr = outputVector;
++    const float iScalar = 1.0 / scalar;
++    __m512 invScalar = _mm512_set1_ps(iScalar);
++    int32_t* inputPtr = (int32_t*)inputVector;
++    __m512i inputVal;
++    __m512 ret;
+-  for(;number < onesixteenthPoints; number++){
+-    // Load the values
+-    inputVal = _mm512_loadu_si512((__m512i*)inputPtr);
++    for (; number < onesixteenthPoints; number++) {
++        // Load the values
++        inputVal = _mm512_loadu_si512((__m512i*)inputPtr);
+-    ret = _mm512_cvtepi32_ps(inputVal);
+-    ret = _mm512_mul_ps(ret, invScalar);
++        ret = _mm512_cvtepi32_ps(inputVal);
++        ret = _mm512_mul_ps(ret, invScalar);
+-    _mm512_storeu_ps(outputVectorPtr, ret);
++        _mm512_storeu_ps(outputVectorPtr, ret);
+-    outputVectorPtr += 16;
+-    inputPtr += 16;
+-  }
++        outputVectorPtr += 16;
++        inputPtr += 16;
++    }
+-  number = onesixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    outputVector[number] =((float)(inputVector[number])) * iScalar;
+-  }
++    number = onesixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        outputVector[number] = ((float)(inputVector[number])) * iScalar;
++    }
+ }
+ #endif /* LV_HAVE_AVX512F */
+@@ -108,37 +109,38 @@ volk_32i_s32f_convert_32f_u_avx512f(float* outputVector, const int32_t* inputVec
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_32i_s32f_convert_32f_u_avx2(float* outputVector, const int32_t* inputVector,
+-                                 const float scalar, unsigned int num_points)
++static inline void volk_32i_s32f_convert_32f_u_avx2(float* outputVector,
++                                                    const int32_t* inputVector,
++                                                    const float scalar,
++                                                    unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int oneEightPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int oneEightPoints = num_points / 8;
+-  float* outputVectorPtr = outputVector;
+-  const float iScalar = 1.0 / scalar;
+-  __m256 invScalar = _mm256_set1_ps(iScalar);
+-  int32_t* inputPtr = (int32_t*)inputVector;
+-  __m256i inputVal;
+-  __m256 ret;
++    float* outputVectorPtr = outputVector;
++    const float iScalar = 1.0 / scalar;
++    __m256 invScalar = _mm256_set1_ps(iScalar);
++    int32_t* inputPtr = (int32_t*)inputVector;
++    __m256i inputVal;
++    __m256 ret;
+-  for(;number < oneEightPoints; number++){
+-    // Load the 4 values
+-    inputVal = _mm256_loadu_si256((__m256i*)inputPtr);
++    for (; number < oneEightPoints; number++) {
++        // Load the 4 values
++        inputVal = _mm256_loadu_si256((__m256i*)inputPtr);
+-    ret = _mm256_cvtepi32_ps(inputVal);
+-    ret = _mm256_mul_ps(ret, invScalar);
++        ret = _mm256_cvtepi32_ps(inputVal);
++        ret = _mm256_mul_ps(ret, invScalar);
+-    _mm256_storeu_ps(outputVectorPtr, ret);
++        _mm256_storeu_ps(outputVectorPtr, ret);
+-    outputVectorPtr += 8;
+-    inputPtr += 8;
+-  }
++        outputVectorPtr += 8;
++        inputPtr += 8;
++    }
+-  number = oneEightPoints * 8;
+-  for(; number < num_points; number++){
+-    outputVector[number] =((float)(inputVector[number])) * iScalar;
+-  }
++    number = oneEightPoints * 8;
++    for (; number < num_points; number++) {
++        outputVector[number] = ((float)(inputVector[number])) * iScalar;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -146,62 +148,63 @@ volk_32i_s32f_convert_32f_u_avx2(float* outputVector, const int32_t* inputVector
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void
+-volk_32i_s32f_convert_32f_u_sse2(float* outputVector, const int32_t* inputVector,
+-                                 const float scalar, unsigned int num_points)
++static inline void volk_32i_s32f_convert_32f_u_sse2(float* outputVector,
++                                                    const int32_t* inputVector,
++                                                    const float scalar,
++                                                    unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  float* outputVectorPtr = outputVector;
+-  const float iScalar = 1.0 / scalar;
+-  __m128 invScalar = _mm_set_ps1(iScalar);
+-  int32_t* inputPtr = (int32_t*)inputVector;
+-  __m128i inputVal;
+-  __m128 ret;
++    float* outputVectorPtr = outputVector;
++    const float iScalar = 1.0 / scalar;
++    __m128 invScalar = _mm_set_ps1(iScalar);
++    int32_t* inputPtr = (int32_t*)inputVector;
++    __m128i inputVal;
++    __m128 ret;
+-  for(;number < quarterPoints; number++){
+-    // Load the 4 values
+-    inputVal = _mm_loadu_si128((__m128i*)inputPtr);
++    for (; number < quarterPoints; number++) {
++        // Load the 4 values
++        inputVal = _mm_loadu_si128((__m128i*)inputPtr);
+-    ret = _mm_cvtepi32_ps(inputVal);
+-    ret = _mm_mul_ps(ret, invScalar);
++        ret = _mm_cvtepi32_ps(inputVal);
++        ret = _mm_mul_ps(ret, invScalar);
+-    _mm_storeu_ps(outputVectorPtr, ret);
++        _mm_storeu_ps(outputVectorPtr, ret);
+-    outputVectorPtr += 4;
+-    inputPtr += 4;
+-  }
++        outputVectorPtr += 4;
++        inputPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    outputVector[number] =((float)(inputVector[number])) * iScalar;
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        outputVector[number] = ((float)(inputVector[number])) * iScalar;
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32i_s32f_convert_32f_generic(float* outputVector, const int32_t* inputVector,
+-                                  const float scalar, unsigned int num_points)
++static inline void volk_32i_s32f_convert_32f_generic(float* outputVector,
++                                                     const int32_t* inputVector,
++                                                     const float scalar,
++                                                     unsigned int num_points)
+ {
+-  float* outputVectorPtr = outputVector;
+-  const int32_t* inputVectorPtr = inputVector;
+-  unsigned int number = 0;
+-  const float iScalar = 1.0 / scalar;
+-
+-  for(number = 0; number < num_points; number++){
+-    *outputVectorPtr++ = ((float)(*inputVectorPtr++)) * iScalar;
+-  }
++    float* outputVectorPtr = outputVector;
++    const int32_t* inputVectorPtr = inputVector;
++    unsigned int number = 0;
++    const float iScalar = 1.0 / scalar;
++
++    for (number = 0; number < num_points; number++) {
++        *outputVectorPtr++ = ((float)(*inputVectorPtr++)) * iScalar;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #endif /* INCLUDED_volk_32i_s32f_convert_32f_u_H */
+-
+ #ifndef INCLUDED_volk_32i_s32f_convert_32f_a_H
+ #define INCLUDED_volk_32i_s32f_convert_32f_a_H
+@@ -211,74 +214,76 @@ volk_32i_s32f_convert_32f_generic(float* outputVector, const int32_t* inputVecto
+ #ifdef LV_HAVE_AVX512F
+ #include <immintrin.h>
+-static inline void
+-volk_32i_s32f_convert_32f_a_avx512f(float* outputVector, const int32_t* inputVector,
+-                                 const float scalar, unsigned int num_points)
++static inline void volk_32i_s32f_convert_32f_a_avx512f(float* outputVector,
++                                                       const int32_t* inputVector,
++                                                       const float scalar,
++                                                       unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int onesixteenthPoints = num_points / 16;
++    unsigned int number = 0;
++    const unsigned int onesixteenthPoints = num_points / 16;
+-  float* outputVectorPtr = outputVector;
+-  const float iScalar = 1.0 / scalar;
+-  __m512 invScalar = _mm512_set1_ps(iScalar);
+-  int32_t* inputPtr = (int32_t*)inputVector;
+-  __m512i inputVal;
+-  __m512 ret;
++    float* outputVectorPtr = outputVector;
++    const float iScalar = 1.0 / scalar;
++    __m512 invScalar = _mm512_set1_ps(iScalar);
++    int32_t* inputPtr = (int32_t*)inputVector;
++    __m512i inputVal;
++    __m512 ret;
+-  for(;number < onesixteenthPoints; number++){
+-    // Load the values
+-    inputVal = _mm512_load_si512((__m512i*)inputPtr);
++    for (; number < onesixteenthPoints; number++) {
++        // Load the values
++        inputVal = _mm512_load_si512((__m512i*)inputPtr);
+-    ret = _mm512_cvtepi32_ps(inputVal);
+-    ret = _mm512_mul_ps(ret, invScalar);
++        ret = _mm512_cvtepi32_ps(inputVal);
++        ret = _mm512_mul_ps(ret, invScalar);
+-    _mm512_store_ps(outputVectorPtr, ret);
++        _mm512_store_ps(outputVectorPtr, ret);
+-    outputVectorPtr += 16;
+-    inputPtr += 16;
+-  }
++        outputVectorPtr += 16;
++        inputPtr += 16;
++    }
+-  number = onesixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    outputVector[number] =((float)(inputVector[number])) * iScalar;
+-  }
++    number = onesixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        outputVector[number] = ((float)(inputVector[number])) * iScalar;
++    }
+ }
+ #endif /* LV_HAVE_AVX512F */
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_32i_s32f_convert_32f_a_avx2(float* outputVector, const int32_t* inputVector,
+-                                 const float scalar, unsigned int num_points)
++static inline void volk_32i_s32f_convert_32f_a_avx2(float* outputVector,
++                                                    const int32_t* inputVector,
++                                                    const float scalar,
++                                                    unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int oneEightPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int oneEightPoints = num_points / 8;
+-  float* outputVectorPtr = outputVector;
+-  const float iScalar = 1.0 / scalar;
+-  __m256 invScalar = _mm256_set1_ps(iScalar);
+-  int32_t* inputPtr = (int32_t*)inputVector;
+-  __m256i inputVal;
+-  __m256 ret;
++    float* outputVectorPtr = outputVector;
++    const float iScalar = 1.0 / scalar;
++    __m256 invScalar = _mm256_set1_ps(iScalar);
++    int32_t* inputPtr = (int32_t*)inputVector;
++    __m256i inputVal;
++    __m256 ret;
+-  for(;number < oneEightPoints; number++){
+-    // Load the 4 values
+-    inputVal = _mm256_load_si256((__m256i*)inputPtr);
++    for (; number < oneEightPoints; number++) {
++        // Load the 4 values
++        inputVal = _mm256_load_si256((__m256i*)inputPtr);
+-    ret = _mm256_cvtepi32_ps(inputVal);
+-    ret = _mm256_mul_ps(ret, invScalar);
++        ret = _mm256_cvtepi32_ps(inputVal);
++        ret = _mm256_mul_ps(ret, invScalar);
+-    _mm256_store_ps(outputVectorPtr, ret);
++        _mm256_store_ps(outputVectorPtr, ret);
+-    outputVectorPtr += 8;
+-    inputPtr += 8;
+-  }
++        outputVectorPtr += 8;
++        inputPtr += 8;
++    }
+-  number = oneEightPoints * 8;
+-  for(; number < num_points; number++){
+-    outputVector[number] =((float)(inputVector[number])) * iScalar;
+-  }
++    number = oneEightPoints * 8;
++    for (; number < num_points; number++) {
++        outputVector[number] = ((float)(inputVector[number])) * iScalar;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -286,59 +291,59 @@ volk_32i_s32f_convert_32f_a_avx2(float* outputVector, const int32_t* inputVector
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void
+-volk_32i_s32f_convert_32f_a_sse2(float* outputVector, const int32_t* inputVector,
+-                                 const float scalar, unsigned int num_points)
++static inline void volk_32i_s32f_convert_32f_a_sse2(float* outputVector,
++                                                    const int32_t* inputVector,
++                                                    const float scalar,
++                                                    unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  float* outputVectorPtr = outputVector;
+-  const float iScalar = 1.0 / scalar;
+-  __m128 invScalar = _mm_set_ps1(iScalar);
+-  int32_t* inputPtr = (int32_t*)inputVector;
+-  __m128i inputVal;
+-  __m128 ret;
++    float* outputVectorPtr = outputVector;
++    const float iScalar = 1.0 / scalar;
++    __m128 invScalar = _mm_set_ps1(iScalar);
++    int32_t* inputPtr = (int32_t*)inputVector;
++    __m128i inputVal;
++    __m128 ret;
+-  for(;number < quarterPoints; number++){
+-    // Load the 4 values
+-    inputVal = _mm_load_si128((__m128i*)inputPtr);
++    for (; number < quarterPoints; number++) {
++        // Load the 4 values
++        inputVal = _mm_load_si128((__m128i*)inputPtr);
+-    ret = _mm_cvtepi32_ps(inputVal);
+-    ret = _mm_mul_ps(ret, invScalar);
++        ret = _mm_cvtepi32_ps(inputVal);
++        ret = _mm_mul_ps(ret, invScalar);
+-    _mm_store_ps(outputVectorPtr, ret);
++        _mm_store_ps(outputVectorPtr, ret);
+-    outputVectorPtr += 4;
+-    inputPtr += 4;
+-  }
++        outputVectorPtr += 4;
++        inputPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    outputVector[number] =((float)(inputVector[number])) * iScalar;
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        outputVector[number] = ((float)(inputVector[number])) * iScalar;
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32i_s32f_convert_32f_a_generic(float* outputVector, const int32_t* inputVector,
+-                                    const float scalar, unsigned int num_points)
++static inline void volk_32i_s32f_convert_32f_a_generic(float* outputVector,
++                                                       const int32_t* inputVector,
++                                                       const float scalar,
++                                                       unsigned int num_points)
+ {
+-  float* outputVectorPtr = outputVector;
+-  const int32_t* inputVectorPtr = inputVector;
+-  unsigned int number = 0;
+-  const float iScalar = 1.0 / scalar;
+-
+-  for(number = 0; number < num_points; number++){
+-    *outputVectorPtr++ = ((float)(*inputVectorPtr++)) * iScalar;
+-  }
++    float* outputVectorPtr = outputVector;
++    const int32_t* inputVectorPtr = inputVector;
++    unsigned int number = 0;
++    const float iScalar = 1.0 / scalar;
++
++    for (number = 0; number < num_points; number++) {
++        *outputVectorPtr++ = ((float)(*inputVectorPtr++)) * iScalar;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+-
+-
+ #endif /* INCLUDED_volk_32i_s32f_convert_32f_a_H */
+diff --git a/kernels/volk/volk_32i_x2_and_32i.h b/kernels/volk/volk_32i_x2_and_32i.h
+index 76f0175..755cfdc 100644
+--- a/kernels/volk/volk_32i_x2_and_32i.h
++++ b/kernels/volk/volk_32i_x2_and_32i.h
+@@ -29,8 +29,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32i_x2_and_32i(int32_t* cVector, const int32_t* aVector, const int32_t* bVector, unsigned int num_points)
+- * \endcode
++ * void volk_32i_x2_and_32i(int32_t* cVector, const int32_t* aVector, const int32_t*
++ * bVector, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li aVector: Input vector of samples.
+@@ -87,72 +87,75 @@
+ #ifdef LV_HAVE_AVX512F
+ #include <immintrin.h>
+-static inline void
+-volk_32i_x2_and_32i_a_avx512f(int32_t* cVector, const int32_t* aVector,
+-                          const int32_t* bVector, unsigned int num_points)
++static inline void volk_32i_x2_and_32i_a_avx512f(int32_t* cVector,
++                                                 const int32_t* aVector,
++                                                 const int32_t* bVector,
++                                                 unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
+-  int32_t* cPtr = (int32_t*)cVector;
+-  const int32_t* aPtr = (int32_t*)aVector;
+-  const int32_t* bPtr = (int32_t*)bVector;
++    int32_t* cPtr = (int32_t*)cVector;
++    const int32_t* aPtr = (int32_t*)aVector;
++    const int32_t* bPtr = (int32_t*)bVector;
+-  __m512i aVal, bVal, cVal;
+-  for(;number < sixteenthPoints; number++){
++    __m512i aVal, bVal, cVal;
++    for (; number < sixteenthPoints; number++) {
+-    aVal = _mm512_load_si512(aPtr);
+-    bVal = _mm512_load_si512(bPtr);
++        aVal = _mm512_load_si512(aPtr);
++        bVal = _mm512_load_si512(bPtr);
+-    cVal = _mm512_and_si512(aVal, bVal);
++        cVal = _mm512_and_si512(aVal, bVal);
+-    _mm512_store_si512(cPtr,cVal); // Store the results back into the C container
++        _mm512_store_si512(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 16;
+-    bPtr += 16;
+-    cPtr += 16;
+-  }
++        aPtr += 16;
++        bPtr += 16;
++        cPtr += 16;
++    }
+-  number = sixteenthPoints * 16;
+-  for(;number < num_points; number++){
+-    cVector[number] = aVector[number] & bVector[number];
+-  }
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        cVector[number] = aVector[number] & bVector[number];
++    }
+ }
+ #endif /* LV_HAVE_AVX512F */
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_32i_x2_and_32i_a_avx2(int32_t* cVector, const int32_t* aVector,
+-                          const int32_t* bVector, unsigned int num_points)
++static inline void volk_32i_x2_and_32i_a_avx2(int32_t* cVector,
++                                              const int32_t* aVector,
++                                              const int32_t* bVector,
++                                              unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int oneEightPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int oneEightPoints = num_points / 8;
+-  int32_t* cPtr = cVector;
+-  const int32_t* aPtr = aVector;
+-  const int32_t* bPtr = bVector;
++    int32_t* cPtr = cVector;
++    const int32_t* aPtr = aVector;
++    const int32_t* bPtr = bVector;
+-  __m256i aVal, bVal, cVal;
+-  for(;number < oneEightPoints; number++){
++    __m256i aVal, bVal, cVal;
++    for (; number < oneEightPoints; number++) {
+-    aVal = _mm256_load_si256((__m256i*)aPtr);
+-    bVal = _mm256_load_si256((__m256i*)bPtr);
++        aVal = _mm256_load_si256((__m256i*)aPtr);
++        bVal = _mm256_load_si256((__m256i*)bPtr);
+-    cVal = _mm256_and_si256(aVal, bVal);
++        cVal = _mm256_and_si256(aVal, bVal);
+-    _mm256_store_si256((__m256i*)cPtr,cVal); // Store the results back into the C container
++        _mm256_store_si256((__m256i*)cPtr,
++                           cVal); // Store the results back into the C container
+-    aPtr += 8;
+-    bPtr += 8;
+-    cPtr += 8;
+-  }
++        aPtr += 8;
++        bPtr += 8;
++        cPtr += 8;
++    }
+-  number = oneEightPoints * 8;
+-  for(;number < num_points; number++){
+-    cVector[number] = aVector[number] & bVector[number];
+-  }
++    number = oneEightPoints * 8;
++    for (; number < num_points; number++) {
++        cVector[number] = aVector[number] & bVector[number];
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -160,36 +163,37 @@ volk_32i_x2_and_32i_a_avx2(int32_t* cVector, const int32_t* aVector,
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32i_x2_and_32i_a_sse(int32_t* cVector, const int32_t* aVector,
+-                          const int32_t* bVector, unsigned int num_points)
++static inline void volk_32i_x2_and_32i_a_sse(int32_t* cVector,
++                                             const int32_t* aVector,
++                                             const int32_t* bVector,
++                                             unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  float* cPtr = (float*)cVector;
+-  const float* aPtr = (float*)aVector;
+-  const float* bPtr = (float*)bVector;
++    float* cPtr = (float*)cVector;
++    const float* aPtr = (float*)aVector;
++    const float* bPtr = (float*)bVector;
+-  __m128 aVal, bVal, cVal;
+-  for(;number < quarterPoints; number++){
++    __m128 aVal, bVal, cVal;
++    for (; number < quarterPoints; number++) {
+-    aVal = _mm_load_ps(aPtr);
+-    bVal = _mm_load_ps(bPtr);
++        aVal = _mm_load_ps(aPtr);
++        bVal = _mm_load_ps(bPtr);
+-    cVal = _mm_and_ps(aVal, bVal);
++        cVal = _mm_and_ps(aVal, bVal);
+-    _mm_store_ps(cPtr,cVal); // Store the results back into the C container
++        _mm_store_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 4;
+-    bPtr += 4;
+-    cPtr += 4;
+-  }
++        aPtr += 4;
++        bPtr += 4;
++        cPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    cVector[number] = aVector[number] & bVector[number];
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        cVector[number] = aVector[number] & bVector[number];
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+@@ -197,62 +201,67 @@ volk_32i_x2_and_32i_a_sse(int32_t* cVector, const int32_t* aVector,
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_32i_x2_and_32i_neon(int32_t* cVector, const int32_t* aVector, const int32_t* bVector, unsigned int num_points)
++static inline void volk_32i_x2_and_32i_neon(int32_t* cVector,
++                                            const int32_t* aVector,
++                                            const int32_t* bVector,
++                                            unsigned int num_points)
+ {
+-  int32_t* cPtr = cVector;
+-  const int32_t* aPtr = aVector;
+-  const int32_t* bPtr=  bVector;
+-  unsigned int number = 0;
+-  unsigned int quarter_points = num_points / 4;
+-
+-  int32x4_t a_val, b_val, c_val;
+-
+-  for(number = 0; number < quarter_points; number++){
+-    a_val = vld1q_s32(aPtr);
+-    b_val = vld1q_s32(bPtr);
+-    c_val = vandq_s32(a_val, b_val);
+-    vst1q_s32(cPtr, c_val);
+-    aPtr += 4;
+-    bPtr += 4;
+-    cPtr += 4;
+-  }
+-
+-  for(number = quarter_points * 4; number < num_points; number++){
+-    *cPtr++ = (*aPtr++) & (*bPtr++);
+-  }
++    int32_t* cPtr = cVector;
++    const int32_t* aPtr = aVector;
++    const int32_t* bPtr = bVector;
++    unsigned int number = 0;
++    unsigned int quarter_points = num_points / 4;
++
++    int32x4_t a_val, b_val, c_val;
++
++    for (number = 0; number < quarter_points; number++) {
++        a_val = vld1q_s32(aPtr);
++        b_val = vld1q_s32(bPtr);
++        c_val = vandq_s32(a_val, b_val);
++        vst1q_s32(cPtr, c_val);
++        aPtr += 4;
++        bPtr += 4;
++        cPtr += 4;
++    }
++
++    for (number = quarter_points * 4; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) & (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32i_x2_and_32i_generic(int32_t* cVector, const int32_t* aVector,
+-                            const int32_t* bVector, unsigned int num_points)
++static inline void volk_32i_x2_and_32i_generic(int32_t* cVector,
++                                               const int32_t* aVector,
++                                               const int32_t* bVector,
++                                               unsigned int num_points)
+ {
+-  int32_t* cPtr = cVector;
+-  const int32_t* aPtr = aVector;
+-  const int32_t* bPtr=  bVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    *cPtr++ = (*aPtr++) & (*bPtr++);
+-  }
++    int32_t* cPtr = cVector;
++    const int32_t* aPtr = aVector;
++    const int32_t* bPtr = bVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) & (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_ORC
+-extern void
+-volk_32i_x2_and_32i_a_orc_impl(int32_t* cVector, const int32_t* aVector,
+-                               const int32_t* bVector, unsigned int num_points);
+-
+-static inline void
+-volk_32i_x2_and_32i_u_orc(int32_t* cVector, const int32_t* aVector,
+-                          const int32_t* bVector, unsigned int num_points)
++extern void volk_32i_x2_and_32i_a_orc_impl(int32_t* cVector,
++                                           const int32_t* aVector,
++                                           const int32_t* bVector,
++                                           unsigned int num_points);
++
++static inline void volk_32i_x2_and_32i_u_orc(int32_t* cVector,
++                                             const int32_t* aVector,
++                                             const int32_t* bVector,
++                                             unsigned int num_points)
+ {
+-  volk_32i_x2_and_32i_a_orc_impl(cVector, aVector, bVector, num_points);
++    volk_32i_x2_and_32i_a_orc_impl(cVector, aVector, bVector, num_points);
+ }
+ #endif /* LV_HAVE_ORC */
+@@ -269,72 +278,75 @@ volk_32i_x2_and_32i_u_orc(int32_t* cVector, const int32_t* aVector,
+ #ifdef LV_HAVE_AVX512F
+ #include <immintrin.h>
+-static inline void
+-volk_32i_x2_and_32i_u_avx512f(int32_t* cVector, const int32_t* aVector,
+-                          const int32_t* bVector, unsigned int num_points)
++static inline void volk_32i_x2_and_32i_u_avx512f(int32_t* cVector,
++                                                 const int32_t* aVector,
++                                                 const int32_t* bVector,
++                                                 unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
+-  int32_t* cPtr = (int32_t*)cVector;
+-  const int32_t* aPtr = (int32_t*)aVector;
+-  const int32_t* bPtr = (int32_t*)bVector;
++    int32_t* cPtr = (int32_t*)cVector;
++    const int32_t* aPtr = (int32_t*)aVector;
++    const int32_t* bPtr = (int32_t*)bVector;
+-  __m512i aVal, bVal, cVal;
+-  for(;number < sixteenthPoints; number++){
++    __m512i aVal, bVal, cVal;
++    for (; number < sixteenthPoints; number++) {
+-    aVal = _mm512_loadu_si512(aPtr);
+-    bVal = _mm512_loadu_si512(bPtr);
++        aVal = _mm512_loadu_si512(aPtr);
++        bVal = _mm512_loadu_si512(bPtr);
+-    cVal = _mm512_and_si512(aVal, bVal);
++        cVal = _mm512_and_si512(aVal, bVal);
+-    _mm512_storeu_si512(cPtr,cVal); // Store the results back into the C container
++        _mm512_storeu_si512(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 16;
+-    bPtr += 16;
+-    cPtr += 16;
+-  }
++        aPtr += 16;
++        bPtr += 16;
++        cPtr += 16;
++    }
+-  number = sixteenthPoints * 16;
+-  for(;number < num_points; number++){
+-    cVector[number] = aVector[number] & bVector[number];
+-  }
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        cVector[number] = aVector[number] & bVector[number];
++    }
+ }
+ #endif /* LV_HAVE_AVX512F */
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_32i_x2_and_32i_u_avx2(int32_t* cVector, const int32_t* aVector,
+-                          const int32_t* bVector, unsigned int num_points)
++static inline void volk_32i_x2_and_32i_u_avx2(int32_t* cVector,
++                                              const int32_t* aVector,
++                                              const int32_t* bVector,
++                                              unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int oneEightPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int oneEightPoints = num_points / 8;
+-  int32_t* cPtr = cVector;
+-  const int32_t* aPtr = aVector;
+-  const int32_t* bPtr = bVector;
++    int32_t* cPtr = cVector;
++    const int32_t* aPtr = aVector;
++    const int32_t* bPtr = bVector;
+-  __m256i aVal, bVal, cVal;
+-  for(;number < oneEightPoints; number++){
++    __m256i aVal, bVal, cVal;
++    for (; number < oneEightPoints; number++) {
+-    aVal = _mm256_loadu_si256((__m256i*)aPtr);
+-    bVal = _mm256_loadu_si256((__m256i*)bPtr);
++        aVal = _mm256_loadu_si256((__m256i*)aPtr);
++        bVal = _mm256_loadu_si256((__m256i*)bPtr);
+-    cVal = _mm256_and_si256(aVal, bVal);
++        cVal = _mm256_and_si256(aVal, bVal);
+-    _mm256_storeu_si256((__m256i*)cPtr,cVal); // Store the results back into the C container
++        _mm256_storeu_si256((__m256i*)cPtr,
++                            cVal); // Store the results back into the C container
+-    aPtr += 8;
+-    bPtr += 8;
+-    cPtr += 8;
+-  }
++        aPtr += 8;
++        bPtr += 8;
++        cPtr += 8;
++    }
+-  number = oneEightPoints * 8;
+-  for(;number < num_points; number++){
+-    cVector[number] = aVector[number] & bVector[number];
+-  }
++    number = oneEightPoints * 8;
++    for (; number < num_points; number++) {
++        cVector[number] = aVector[number] & bVector[number];
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+diff --git a/kernels/volk/volk_32i_x2_or_32i.h b/kernels/volk/volk_32i_x2_or_32i.h
+index be4c086..b03db89 100644
+--- a/kernels/volk/volk_32i_x2_or_32i.h
++++ b/kernels/volk/volk_32i_x2_or_32i.h
+@@ -29,8 +29,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32i_x2_or_32i(int32_t* cVector, const int32_t* aVector, const int32_t* bVector, unsigned int num_points)
+- * \endcode
++ * void volk_32i_x2_or_32i(int32_t* cVector, const int32_t* aVector, const int32_t*
++ * bVector, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li aVector: Input vector of samples.
+@@ -87,72 +87,75 @@
+ #ifdef LV_HAVE_AVX512F
+ #include <immintrin.h>
+-static inline void
+-volk_32i_x2_or_32i_a_avx512f(int32_t* cVector, const int32_t* aVector,
+-                          const int32_t* bVector, unsigned int num_points)
++static inline void volk_32i_x2_or_32i_a_avx512f(int32_t* cVector,
++                                                const int32_t* aVector,
++                                                const int32_t* bVector,
++                                                unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
+-  int32_t* cPtr = (int32_t*)cVector;
+-  const int32_t* aPtr = (int32_t*)aVector;
+-  const int32_t* bPtr = (int32_t*)bVector;
++    int32_t* cPtr = (int32_t*)cVector;
++    const int32_t* aPtr = (int32_t*)aVector;
++    const int32_t* bPtr = (int32_t*)bVector;
+-  __m512i aVal, bVal, cVal;
+-  for(;number < sixteenthPoints; number++){
++    __m512i aVal, bVal, cVal;
++    for (; number < sixteenthPoints; number++) {
+-    aVal = _mm512_load_si512(aPtr);
+-    bVal = _mm512_load_si512(bPtr);
++        aVal = _mm512_load_si512(aPtr);
++        bVal = _mm512_load_si512(bPtr);
+-    cVal = _mm512_or_si512(aVal, bVal);
++        cVal = _mm512_or_si512(aVal, bVal);
+-    _mm512_store_si512(cPtr,cVal); // Store the results back into the C container
++        _mm512_store_si512(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 16;
+-    bPtr += 16;
+-    cPtr += 16;
+-  }
++        aPtr += 16;
++        bPtr += 16;
++        cPtr += 16;
++    }
+-  number = sixteenthPoints * 16;
+-  for(;number < num_points; number++){
+-    cVector[number] = aVector[number] | bVector[number];
+-  }
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        cVector[number] = aVector[number] | bVector[number];
++    }
+ }
+ #endif /* LV_HAVE_AVX512F */
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_32i_x2_or_32i_a_avx2(int32_t* cVector, const int32_t* aVector,
+-                          const int32_t* bVector, unsigned int num_points)
++static inline void volk_32i_x2_or_32i_a_avx2(int32_t* cVector,
++                                             const int32_t* aVector,
++                                             const int32_t* bVector,
++                                             unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int oneEightPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int oneEightPoints = num_points / 8;
+-  int32_t* cPtr = cVector;
+-  const int32_t* aPtr = aVector;
+-  const int32_t* bPtr = bVector;
++    int32_t* cPtr = cVector;
++    const int32_t* aPtr = aVector;
++    const int32_t* bPtr = bVector;
+-  __m256i aVal, bVal, cVal;
+-  for(;number < oneEightPoints; number++){
++    __m256i aVal, bVal, cVal;
++    for (; number < oneEightPoints; number++) {
+-    aVal = _mm256_load_si256((__m256i*)aPtr);
+-    bVal = _mm256_load_si256((__m256i*)bPtr);
++        aVal = _mm256_load_si256((__m256i*)aPtr);
++        bVal = _mm256_load_si256((__m256i*)bPtr);
+-    cVal = _mm256_or_si256(aVal, bVal);
++        cVal = _mm256_or_si256(aVal, bVal);
+-    _mm256_store_si256((__m256i*)cPtr,cVal); // Store the results back into the C container
++        _mm256_store_si256((__m256i*)cPtr,
++                           cVal); // Store the results back into the C container
+-    aPtr += 8;
+-    bPtr += 8;
+-    cPtr += 8;
+-  }
++        aPtr += 8;
++        bPtr += 8;
++        cPtr += 8;
++    }
+-  number = oneEightPoints * 8;
+-  for(;number < num_points; number++){
+-    cVector[number] = aVector[number] | bVector[number];
+-  }
++    number = oneEightPoints * 8;
++    for (; number < num_points; number++) {
++        cVector[number] = aVector[number] | bVector[number];
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -160,35 +163,36 @@ volk_32i_x2_or_32i_a_avx2(int32_t* cVector, const int32_t* aVector,
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_32i_x2_or_32i_a_sse(int32_t* cVector, const int32_t* aVector,
+-                         const int32_t* bVector, unsigned int num_points)
++static inline void volk_32i_x2_or_32i_a_sse(int32_t* cVector,
++                                            const int32_t* aVector,
++                                            const int32_t* bVector,
++                                            unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  float* cPtr = (float*)cVector;
+-  const float* aPtr = (float*)aVector;
+-  const float* bPtr = (float*)bVector;
++    float* cPtr = (float*)cVector;
++    const float* aPtr = (float*)aVector;
++    const float* bPtr = (float*)bVector;
+-  __m128 aVal, bVal, cVal;
+-  for(;number < quarterPoints; number++){
+-    aVal = _mm_load_ps(aPtr);
+-    bVal = _mm_load_ps(bPtr);
++    __m128 aVal, bVal, cVal;
++    for (; number < quarterPoints; number++) {
++        aVal = _mm_load_ps(aPtr);
++        bVal = _mm_load_ps(bPtr);
+-    cVal = _mm_or_ps(aVal, bVal);
++        cVal = _mm_or_ps(aVal, bVal);
+-    _mm_store_ps(cPtr,cVal); // Store the results back into the C container
++        _mm_store_ps(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 4;
+-    bPtr += 4;
+-    cPtr += 4;
+-  }
++        aPtr += 4;
++        bPtr += 4;
++        cPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    cVector[number] = aVector[number] | bVector[number];
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        cVector[number] = aVector[number] | bVector[number];
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+@@ -196,63 +200,67 @@ volk_32i_x2_or_32i_a_sse(int32_t* cVector, const int32_t* aVector,
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_32i_x2_or_32i_neon(int32_t* cVector, const int32_t* aVector,
+-                        const int32_t* bVector, unsigned int num_points)
++static inline void volk_32i_x2_or_32i_neon(int32_t* cVector,
++                                           const int32_t* aVector,
++                                           const int32_t* bVector,
++                                           unsigned int num_points)
+ {
+-  int32_t* cPtr = cVector;
+-  const int32_t* aPtr = aVector;
+-  const int32_t* bPtr=  bVector;
+-  unsigned int number = 0;
+-  unsigned int quarter_points = num_points / 4;
+-
+-  int32x4_t a_val, b_val, c_val;
+-
+-  for(number = 0; number < quarter_points; number++){
+-    a_val = vld1q_s32(aPtr);
+-    b_val = vld1q_s32(bPtr);
+-    c_val = vorrq_s32(a_val, b_val);
+-    vst1q_s32(cPtr, c_val);
+-    aPtr += 4;
+-    bPtr += 4;
+-    cPtr += 4;
+-  }
+-
+-  for(number = quarter_points * 4; number < num_points; number++){
+-    *cPtr++ = (*aPtr++) | (*bPtr++);
+-  }
++    int32_t* cPtr = cVector;
++    const int32_t* aPtr = aVector;
++    const int32_t* bPtr = bVector;
++    unsigned int number = 0;
++    unsigned int quarter_points = num_points / 4;
++
++    int32x4_t a_val, b_val, c_val;
++
++    for (number = 0; number < quarter_points; number++) {
++        a_val = vld1q_s32(aPtr);
++        b_val = vld1q_s32(bPtr);
++        c_val = vorrq_s32(a_val, b_val);
++        vst1q_s32(cPtr, c_val);
++        aPtr += 4;
++        bPtr += 4;
++        cPtr += 4;
++    }
++
++    for (number = quarter_points * 4; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) | (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32i_x2_or_32i_generic(int32_t* cVector, const int32_t* aVector,
+-                           const int32_t* bVector, unsigned int num_points)
++static inline void volk_32i_x2_or_32i_generic(int32_t* cVector,
++                                              const int32_t* aVector,
++                                              const int32_t* bVector,
++                                              unsigned int num_points)
+ {
+-  int32_t* cPtr = cVector;
+-  const int32_t* aPtr = aVector;
+-  const int32_t* bPtr=  bVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    *cPtr++ = (*aPtr++) | (*bPtr++);
+-  }
++    int32_t* cPtr = cVector;
++    const int32_t* aPtr = aVector;
++    const int32_t* bPtr = bVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) | (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_ORC
+-extern void
+-volk_32i_x2_or_32i_a_orc_impl(int32_t* cVector, const int32_t* aVector,
+-                              const int32_t* bVector, unsigned int num_points);
+-
+-static inline void
+-volk_32i_x2_or_32i_u_orc(int32_t* cVector, const int32_t* aVector,
+-                         const int32_t* bVector, unsigned int num_points)
++extern void volk_32i_x2_or_32i_a_orc_impl(int32_t* cVector,
++                                          const int32_t* aVector,
++                                          const int32_t* bVector,
++                                          unsigned int num_points);
++
++static inline void volk_32i_x2_or_32i_u_orc(int32_t* cVector,
++                                            const int32_t* aVector,
++                                            const int32_t* bVector,
++                                            unsigned int num_points)
+ {
+-  volk_32i_x2_or_32i_a_orc_impl(cVector, aVector, bVector, num_points);
++    volk_32i_x2_or_32i_a_orc_impl(cVector, aVector, bVector, num_points);
+ }
+ #endif /* LV_HAVE_ORC */
+@@ -269,72 +277,75 @@ volk_32i_x2_or_32i_u_orc(int32_t* cVector, const int32_t* aVector,
+ #ifdef LV_HAVE_AVX512F
+ #include <immintrin.h>
+-static inline void
+-volk_32i_x2_or_32i_u_avx512f(int32_t* cVector, const int32_t* aVector,
+-                          const int32_t* bVector, unsigned int num_points)
++static inline void volk_32i_x2_or_32i_u_avx512f(int32_t* cVector,
++                                                const int32_t* aVector,
++                                                const int32_t* bVector,
++                                                unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
+-  int32_t* cPtr = (int32_t*)cVector;
+-  const int32_t* aPtr = (int32_t*)aVector;
+-  const int32_t* bPtr = (int32_t*)bVector;
++    int32_t* cPtr = (int32_t*)cVector;
++    const int32_t* aPtr = (int32_t*)aVector;
++    const int32_t* bPtr = (int32_t*)bVector;
+-  __m512i aVal, bVal, cVal;
+-  for(;number < sixteenthPoints; number++){
++    __m512i aVal, bVal, cVal;
++    for (; number < sixteenthPoints; number++) {
+-    aVal = _mm512_loadu_si512(aPtr);
+-    bVal = _mm512_loadu_si512(bPtr);
++        aVal = _mm512_loadu_si512(aPtr);
++        bVal = _mm512_loadu_si512(bPtr);
+-    cVal = _mm512_or_si512(aVal, bVal);
++        cVal = _mm512_or_si512(aVal, bVal);
+-    _mm512_storeu_si512(cPtr,cVal); // Store the results back into the C container
++        _mm512_storeu_si512(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 16;
+-    bPtr += 16;
+-    cPtr += 16;
+-  }
++        aPtr += 16;
++        bPtr += 16;
++        cPtr += 16;
++    }
+-  number = sixteenthPoints * 16;
+-  for(;number < num_points; number++){
+-    cVector[number] = aVector[number] | bVector[number];
+-  }
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        cVector[number] = aVector[number] | bVector[number];
++    }
+ }
+ #endif /* LV_HAVE_AVX512F */
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_32i_x2_or_32i_u_avx2(int32_t* cVector, const int32_t* aVector,
+-                          const int32_t* bVector, unsigned int num_points)
++static inline void volk_32i_x2_or_32i_u_avx2(int32_t* cVector,
++                                             const int32_t* aVector,
++                                             const int32_t* bVector,
++                                             unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int oneEightPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int oneEightPoints = num_points / 8;
+-  int32_t* cPtr = cVector;
+-  const int32_t* aPtr = aVector;
+-  const int32_t* bPtr = bVector;
++    int32_t* cPtr = cVector;
++    const int32_t* aPtr = aVector;
++    const int32_t* bPtr = bVector;
+-  __m256i aVal, bVal, cVal;
+-  for(;number < oneEightPoints; number++){
++    __m256i aVal, bVal, cVal;
++    for (; number < oneEightPoints; number++) {
+-    aVal = _mm256_loadu_si256((__m256i*)aPtr);
+-    bVal = _mm256_loadu_si256((__m256i*)bPtr);
++        aVal = _mm256_loadu_si256((__m256i*)aPtr);
++        bVal = _mm256_loadu_si256((__m256i*)bPtr);
+-    cVal = _mm256_or_si256(aVal, bVal);
++        cVal = _mm256_or_si256(aVal, bVal);
+-    _mm256_storeu_si256((__m256i*)cPtr,cVal); // Store the results back into the C container
++        _mm256_storeu_si256((__m256i*)cPtr,
++                            cVal); // Store the results back into the C container
+-    aPtr += 8;
+-    bPtr += 8;
+-    cPtr += 8;
+-  }
++        aPtr += 8;
++        bPtr += 8;
++        cPtr += 8;
++    }
+-  number = oneEightPoints * 8;
+-  for(;number < num_points; number++){
+-    cVector[number] = aVector[number] | bVector[number];
+-  }
++    number = oneEightPoints * 8;
++    for (; number < num_points; number++) {
++        cVector[number] = aVector[number] | bVector[number];
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+diff --git a/kernels/volk/volk_32u_byteswap.h b/kernels/volk/volk_32u_byteswap.h
+index f5e6f11..185047c 100644
+--- a/kernels/volk/volk_32u_byteswap.h
++++ b/kernels/volk/volk_32u_byteswap.h
+@@ -71,38 +71,42 @@
+ #if LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void volk_32u_byteswap_u_avx2(uint32_t* intsToSwap, unsigned int num_points){
++static inline void volk_32u_byteswap_u_avx2(uint32_t* intsToSwap, unsigned int num_points)
++{
+-  unsigned int number;
++    unsigned int number;
+-  const unsigned int nPerSet = 8;
+-  const uint64_t     nSets   = num_points / nPerSet;
++    const unsigned int nPerSet = 8;
++    const uint64_t nSets = num_points / nPerSet;
+-  uint32_t* inputPtr = intsToSwap;
++    uint32_t* inputPtr = intsToSwap;
+-  const uint8_t shuffleVector[32] = { 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12, 19, 18, 17, 16, 23, 22, 21, 20, 27, 26, 25, 24, 31, 30, 29, 28 };
++    const uint8_t shuffleVector[32] = { 3,  2,  1,  0,  7,  6,  5,  4,  11, 10, 9,
++                                        8,  15, 14, 13, 12, 19, 18, 17, 16, 23, 22,
++                                        21, 20, 27, 26, 25, 24, 31, 30, 29, 28 };
+-  const __m256i myShuffle = _mm256_loadu_si256((__m256i*) &shuffleVector);
++    const __m256i myShuffle = _mm256_loadu_si256((__m256i*)&shuffleVector);
+-  for (number = 0 ;number < nSets; number++) {
++    for (number = 0; number < nSets; number++) {
+-    // Load the 32t values, increment inputPtr later since we're doing it in-place.
+-    const __m256i input  = _mm256_loadu_si256((__m256i*)inputPtr);
+-    const __m256i output = _mm256_shuffle_epi8(input,myShuffle);
++        // Load the 32t values, increment inputPtr later since we're doing it in-place.
++        const __m256i input = _mm256_loadu_si256((__m256i*)inputPtr);
++        const __m256i output = _mm256_shuffle_epi8(input, myShuffle);
+-    // Store the results
+-    _mm256_storeu_si256((__m256i*)inputPtr, output);
+-    inputPtr += nPerSet;
+-  }
+-  _mm256_zeroupper();
+-
+-  // Byteswap any remaining points:
+-  for(number = nSets * nPerSet; number < num_points; number++){
+-    uint32_t outputVal = *inputPtr;
+-    outputVal = (((outputVal >> 24) & 0xff) | ((outputVal >> 8) & 0x0000ff00) | ((outputVal << 8) & 0x00ff0000) | ((outputVal << 24) & 0xff000000));
+-    *inputPtr = outputVal;
+-    inputPtr++;
+-  }
++        // Store the results
++        _mm256_storeu_si256((__m256i*)inputPtr, output);
++        inputPtr += nPerSet;
++    }
++    _mm256_zeroupper();
++
++    // Byteswap any remaining points:
++    for (number = nSets * nPerSet; number < num_points; number++) {
++        uint32_t outputVal = *inputPtr;
++        outputVal = (((outputVal >> 24) & 0xff) | ((outputVal >> 8) & 0x0000ff00) |
++                     ((outputVal << 8) & 0x00ff0000) | ((outputVal << 24) & 0xff000000));
++        *inputPtr = outputVal;
++        inputPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -110,42 +114,44 @@ static inline void volk_32u_byteswap_u_avx2(uint32_t* intsToSwap, unsigned int n
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void volk_32u_byteswap_u_sse2(uint32_t* intsToSwap, unsigned int num_points){
+-  unsigned int number = 0;
+-
+-  uint32_t* inputPtr = intsToSwap;
+-  __m128i input, byte1, byte2, byte3, byte4, output;
+-  __m128i byte2mask = _mm_set1_epi32(0x00FF0000);
+-  __m128i byte3mask = _mm_set1_epi32(0x0000FF00);
+-
+-  const uint64_t quarterPoints = num_points / 4;
+-  for(;number < quarterPoints; number++){
+-    // Load the 32t values, increment inputPtr later since we're doing it in-place.
+-    input = _mm_loadu_si128((__m128i*)inputPtr);
+-    // Do the four shifts
+-    byte1 = _mm_slli_epi32(input, 24);
+-    byte2 = _mm_slli_epi32(input, 8);
+-    byte3 = _mm_srli_epi32(input, 8);
+-    byte4 = _mm_srli_epi32(input, 24);
+-    // Or bytes together
+-    output = _mm_or_si128(byte1, byte4);
+-    byte2 = _mm_and_si128(byte2, byte2mask);
+-    output = _mm_or_si128(output, byte2);
+-    byte3 = _mm_and_si128(byte3, byte3mask);
+-    output = _mm_or_si128(output, byte3);
+-    // Store the results
+-    _mm_storeu_si128((__m128i*)inputPtr, output);
+-    inputPtr += 4;
+-  }
+-
+-  // Byteswap any remaining points:
+-  number = quarterPoints*4;
+-  for(; number < num_points; number++){
+-    uint32_t outputVal = *inputPtr;
+-    outputVal = (((outputVal >> 24) & 0xff) | ((outputVal >> 8) & 0x0000ff00) | ((outputVal << 8) & 0x00ff0000) | ((outputVal << 24) & 0xff000000));
+-    *inputPtr = outputVal;
+-    inputPtr++;
+-  }
++static inline void volk_32u_byteswap_u_sse2(uint32_t* intsToSwap, unsigned int num_points)
++{
++    unsigned int number = 0;
++
++    uint32_t* inputPtr = intsToSwap;
++    __m128i input, byte1, byte2, byte3, byte4, output;
++    __m128i byte2mask = _mm_set1_epi32(0x00FF0000);
++    __m128i byte3mask = _mm_set1_epi32(0x0000FF00);
++
++    const uint64_t quarterPoints = num_points / 4;
++    for (; number < quarterPoints; number++) {
++        // Load the 32t values, increment inputPtr later since we're doing it in-place.
++        input = _mm_loadu_si128((__m128i*)inputPtr);
++        // Do the four shifts
++        byte1 = _mm_slli_epi32(input, 24);
++        byte2 = _mm_slli_epi32(input, 8);
++        byte3 = _mm_srli_epi32(input, 8);
++        byte4 = _mm_srli_epi32(input, 24);
++        // Or bytes together
++        output = _mm_or_si128(byte1, byte4);
++        byte2 = _mm_and_si128(byte2, byte2mask);
++        output = _mm_or_si128(output, byte2);
++        byte3 = _mm_and_si128(byte3, byte3mask);
++        output = _mm_or_si128(output, byte3);
++        // Store the results
++        _mm_storeu_si128((__m128i*)inputPtr, output);
++        inputPtr += 4;
++    }
++
++    // Byteswap any remaining points:
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        uint32_t outputVal = *inputPtr;
++        outputVal = (((outputVal >> 24) & 0xff) | ((outputVal >> 8) & 0x0000ff00) |
++                     ((outputVal << 8) & 0x00ff0000) | ((outputVal << 24) & 0xff000000));
++        *inputPtr = outputVal;
++        inputPtr++;
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+@@ -153,100 +159,106 @@ static inline void volk_32u_byteswap_u_sse2(uint32_t* intsToSwap, unsigned int n
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void volk_32u_byteswap_neon(uint32_t* intsToSwap, unsigned int num_points){
+-  uint32_t* inputPtr = intsToSwap;
+-  unsigned int number = 0;
+-  unsigned int n8points = num_points / 8;
+-
+-  uint8x8x4_t input_table;
+-  uint8x8_t int_lookup01, int_lookup23, int_lookup45, int_lookup67;
+-  uint8x8_t swapped_int01, swapped_int23, swapped_int45, swapped_int67;
+-
+-  /* these magic numbers are used as byte-indices in the LUT.
+-     they are pre-computed to save time. A simple C program
+-     can calculate them; for example for lookup01:
+-    uint8_t chars[8] = {24, 16, 8, 0, 25, 17, 9, 1};
+-    for(ii=0; ii < 8; ++ii) {
+-        index += ((uint64_t)(*(chars+ii))) << (ii*8);
++static inline void volk_32u_byteswap_neon(uint32_t* intsToSwap, unsigned int num_points)
++{
++    uint32_t* inputPtr = intsToSwap;
++    unsigned int number = 0;
++    unsigned int n8points = num_points / 8;
++
++    uint8x8x4_t input_table;
++    uint8x8_t int_lookup01, int_lookup23, int_lookup45, int_lookup67;
++    uint8x8_t swapped_int01, swapped_int23, swapped_int45, swapped_int67;
++
++    /* these magic numbers are used as byte-indices in the LUT.
++       they are pre-computed to save time. A simple C program
++       can calculate them; for example for lookup01:
++      uint8_t chars[8] = {24, 16, 8, 0, 25, 17, 9, 1};
++      for(ii=0; ii < 8; ++ii) {
++          index += ((uint64_t)(*(chars+ii))) << (ii*8);
++      }
++    */
++    int_lookup01 = vcreate_u8(74609667900706840);
++    int_lookup23 = vcreate_u8(219290013576860186);
++    int_lookup45 = vcreate_u8(363970359253013532);
++    int_lookup67 = vcreate_u8(508650704929166878);
++
++    for (number = 0; number < n8points; ++number) {
++        input_table = vld4_u8((uint8_t*)inputPtr);
++        swapped_int01 = vtbl4_u8(input_table, int_lookup01);
++        swapped_int23 = vtbl4_u8(input_table, int_lookup23);
++        swapped_int45 = vtbl4_u8(input_table, int_lookup45);
++        swapped_int67 = vtbl4_u8(input_table, int_lookup67);
++        vst1_u8((uint8_t*)inputPtr, swapped_int01);
++        vst1_u8((uint8_t*)(inputPtr + 2), swapped_int23);
++        vst1_u8((uint8_t*)(inputPtr + 4), swapped_int45);
++        vst1_u8((uint8_t*)(inputPtr + 6), swapped_int67);
++
++        inputPtr += 8;
++    }
++
++    for (number = n8points * 8; number < num_points; ++number) {
++        uint32_t output = *inputPtr;
++        output = (((output >> 24) & 0xff) | ((output >> 8) & 0x0000ff00) |
++                  ((output << 8) & 0x00ff0000) | ((output << 24) & 0xff000000));
++
++        *inputPtr = output;
++        inputPtr++;
+     }
+-  */
+-  int_lookup01 = vcreate_u8(74609667900706840);
+-  int_lookup23 = vcreate_u8(219290013576860186);
+-  int_lookup45 = vcreate_u8(363970359253013532);
+-  int_lookup67 = vcreate_u8(508650704929166878);
+-
+-  for(number = 0; number < n8points; ++number){
+-    input_table = vld4_u8((uint8_t*) inputPtr);
+-    swapped_int01 = vtbl4_u8(input_table, int_lookup01);
+-    swapped_int23 = vtbl4_u8(input_table, int_lookup23);
+-    swapped_int45 = vtbl4_u8(input_table, int_lookup45);
+-    swapped_int67 = vtbl4_u8(input_table, int_lookup67);
+-    vst1_u8((uint8_t*) inputPtr, swapped_int01);
+-    vst1_u8((uint8_t*) (inputPtr+2), swapped_int23);
+-    vst1_u8((uint8_t*) (inputPtr+4), swapped_int45);
+-    vst1_u8((uint8_t*) (inputPtr+6), swapped_int67);
+-
+-    inputPtr += 8;
+-  }
+-
+-  for(number = n8points * 8; number < num_points; ++number){
+-    uint32_t output = *inputPtr;
+-    output = (((output >> 24) & 0xff) | ((output >> 8) & 0x0000ff00) | ((output << 8) & 0x00ff0000) | ((output << 24) & 0xff000000));
+-
+-    *inputPtr = output;
+-    inputPtr++;
+-  }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_NEONV8
+ #include <arm_neon.h>
+-static inline void volk_32u_byteswap_neonv8(uint32_t* intsToSwap, unsigned int num_points){
+-  uint32_t* inputPtr = (uint32_t*)intsToSwap;
+-  const unsigned int n8points = num_points / 8;
+-  uint8x16_t input;
+-  uint8x16_t idx = { 3,2,1,0, 7,6,5,4, 11,10,9,8, 15,14,13,12 };
+-
+-  unsigned int number = 0;
+-  for(number = 0; number < n8points; ++number){
+-    __VOLK_PREFETCH(inputPtr+8);
+-    input = vld1q_u8((uint8_t*) inputPtr);
+-    input = vqtbl1q_u8(input, idx);
+-    vst1q_u8((uint8_t*) inputPtr, input);
+-    inputPtr += 4;
+-
+-    input = vld1q_u8((uint8_t*) inputPtr);
+-    input = vqtbl1q_u8(input, idx);
+-    vst1q_u8((uint8_t*) inputPtr, input);
+-    inputPtr += 4;
+-  }
+-
+-  for(number = n8points * 8; number < num_points; ++number){
+-    uint32_t output = *inputPtr;
++static inline void volk_32u_byteswap_neonv8(uint32_t* intsToSwap, unsigned int num_points)
++{
++    uint32_t* inputPtr = (uint32_t*)intsToSwap;
++    const unsigned int n8points = num_points / 8;
++    uint8x16_t input;
++    uint8x16_t idx = { 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12 };
++
++    unsigned int number = 0;
++    for (number = 0; number < n8points; ++number) {
++        __VOLK_PREFETCH(inputPtr + 8);
++        input = vld1q_u8((uint8_t*)inputPtr);
++        input = vqtbl1q_u8(input, idx);
++        vst1q_u8((uint8_t*)inputPtr, input);
++        inputPtr += 4;
++
++        input = vld1q_u8((uint8_t*)inputPtr);
++        input = vqtbl1q_u8(input, idx);
++        vst1q_u8((uint8_t*)inputPtr, input);
++        inputPtr += 4;
++    }
+-    output = (((output >> 24) & 0xff) | ((output >> 8) & 0x0000ff00) | ((output << 8) & 0x00ff0000) | ((output << 24) & 0xff000000));
++    for (number = n8points * 8; number < num_points; ++number) {
++        uint32_t output = *inputPtr;
+-    *inputPtr++ = output;
+-  }
++        output = (((output >> 24) & 0xff) | ((output >> 8) & 0x0000ff00) |
++                  ((output << 8) & 0x00ff0000) | ((output << 24) & 0xff000000));
++        *inputPtr++ = output;
++    }
+ }
+ #endif /* LV_HAVE_NEONV8 */
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32u_byteswap_generic(uint32_t* intsToSwap, unsigned int num_points){
+-  uint32_t* inputPtr = intsToSwap;
++static inline void volk_32u_byteswap_generic(uint32_t* intsToSwap,
++                                             unsigned int num_points)
++{
++    uint32_t* inputPtr = intsToSwap;
+-  unsigned int point;
+-  for(point = 0; point < num_points; point++){
+-    uint32_t output = *inputPtr;
+-    output = (((output >> 24) & 0xff) | ((output >> 8) & 0x0000ff00) | ((output << 8) & 0x00ff0000) | ((output << 24) & 0xff000000));
++    unsigned int point;
++    for (point = 0; point < num_points; point++) {
++        uint32_t output = *inputPtr;
++        output = (((output >> 24) & 0xff) | ((output >> 8) & 0x0000ff00) |
++                  ((output << 8) & 0x00ff0000) | ((output << 24) & 0xff000000));
+-    *inputPtr = output;
+-    inputPtr++;
+-  }
++        *inputPtr = output;
++        inputPtr++;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -261,38 +273,42 @@ static inline void volk_32u_byteswap_generic(uint32_t* intsToSwap, unsigned int
+ #if LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void volk_32u_byteswap_a_avx2(uint32_t* intsToSwap, unsigned int num_points){
++static inline void volk_32u_byteswap_a_avx2(uint32_t* intsToSwap, unsigned int num_points)
++{
+-  unsigned int number;
++    unsigned int number;
+-  const unsigned int nPerSet = 8;
+-  const uint64_t     nSets   = num_points / nPerSet;
++    const unsigned int nPerSet = 8;
++    const uint64_t nSets = num_points / nPerSet;
+-  uint32_t* inputPtr = intsToSwap;
++    uint32_t* inputPtr = intsToSwap;
+-  const uint8_t shuffleVector[32] = { 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12, 19, 18, 17, 16, 23, 22, 21, 20, 27, 26, 25, 24, 31, 30, 29, 28 };
++    const uint8_t shuffleVector[32] = { 3,  2,  1,  0,  7,  6,  5,  4,  11, 10, 9,
++                                        8,  15, 14, 13, 12, 19, 18, 17, 16, 23, 22,
++                                        21, 20, 27, 26, 25, 24, 31, 30, 29, 28 };
+-  const __m256i myShuffle = _mm256_loadu_si256((__m256i*) &shuffleVector);
++    const __m256i myShuffle = _mm256_loadu_si256((__m256i*)&shuffleVector);
+-  for (number = 0 ;number < nSets; number++) {
++    for (number = 0; number < nSets; number++) {
+-    // Load the 32t values, increment inputPtr later since we're doing it in-place.
+-    const __m256i input  = _mm256_load_si256((__m256i*)inputPtr);
+-    const __m256i output = _mm256_shuffle_epi8(input,myShuffle);
++        // Load the 32t values, increment inputPtr later since we're doing it in-place.
++        const __m256i input = _mm256_load_si256((__m256i*)inputPtr);
++        const __m256i output = _mm256_shuffle_epi8(input, myShuffle);
+-    // Store the results
+-    _mm256_store_si256((__m256i*)inputPtr, output);
+-    inputPtr += nPerSet;
+-  }
+-  _mm256_zeroupper();
+-
+-  // Byteswap any remaining points:
+-  for(number = nSets * nPerSet; number < num_points; number++){
+-    uint32_t outputVal = *inputPtr;
+-    outputVal = (((outputVal >> 24) & 0xff) | ((outputVal >> 8) & 0x0000ff00) | ((outputVal << 8) & 0x00ff0000) | ((outputVal << 24) & 0xff000000));
+-    *inputPtr = outputVal;
+-    inputPtr++;
+-  }
++        // Store the results
++        _mm256_store_si256((__m256i*)inputPtr, output);
++        inputPtr += nPerSet;
++    }
++    _mm256_zeroupper();
++
++    // Byteswap any remaining points:
++    for (number = nSets * nPerSet; number < num_points; number++) {
++        uint32_t outputVal = *inputPtr;
++        outputVal = (((outputVal >> 24) & 0xff) | ((outputVal >> 8) & 0x0000ff00) |
++                     ((outputVal << 8) & 0x00ff0000) | ((outputVal << 24) & 0xff000000));
++        *inputPtr = outputVal;
++        inputPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -301,63 +317,66 @@ static inline void volk_32u_byteswap_a_avx2(uint32_t* intsToSwap, unsigned int n
+ #include <emmintrin.h>
+-static inline void volk_32u_byteswap_a_sse2(uint32_t* intsToSwap, unsigned int num_points){
+-  unsigned int number = 0;
+-
+-  uint32_t* inputPtr = intsToSwap;
+-  __m128i input, byte1, byte2, byte3, byte4, output;
+-  __m128i byte2mask = _mm_set1_epi32(0x00FF0000);
+-  __m128i byte3mask = _mm_set1_epi32(0x0000FF00);
+-
+-  const uint64_t quarterPoints = num_points / 4;
+-  for(;number < quarterPoints; number++){
+-    // Load the 32t values, increment inputPtr later since we're doing it in-place.
+-    input = _mm_load_si128((__m128i*)inputPtr);
+-    // Do the four shifts
+-    byte1 = _mm_slli_epi32(input, 24);
+-    byte2 = _mm_slli_epi32(input, 8);
+-    byte3 = _mm_srli_epi32(input, 8);
+-    byte4 = _mm_srli_epi32(input, 24);
+-    // Or bytes together
+-    output = _mm_or_si128(byte1, byte4);
+-    byte2 = _mm_and_si128(byte2, byte2mask);
+-    output = _mm_or_si128(output, byte2);
+-    byte3 = _mm_and_si128(byte3, byte3mask);
+-    output = _mm_or_si128(output, byte3);
+-    // Store the results
+-    _mm_store_si128((__m128i*)inputPtr, output);
+-    inputPtr += 4;
+-  }
+-
+-  // Byteswap any remaining points:
+-  number = quarterPoints*4;
+-  for(; number < num_points; number++){
+-    uint32_t outputVal = *inputPtr;
+-    outputVal = (((outputVal >> 24) & 0xff) | ((outputVal >> 8) & 0x0000ff00) | ((outputVal << 8) & 0x00ff0000) | ((outputVal << 24) & 0xff000000));
+-    *inputPtr = outputVal;
+-    inputPtr++;
+-  }
++static inline void volk_32u_byteswap_a_sse2(uint32_t* intsToSwap, unsigned int num_points)
++{
++    unsigned int number = 0;
++
++    uint32_t* inputPtr = intsToSwap;
++    __m128i input, byte1, byte2, byte3, byte4, output;
++    __m128i byte2mask = _mm_set1_epi32(0x00FF0000);
++    __m128i byte3mask = _mm_set1_epi32(0x0000FF00);
++
++    const uint64_t quarterPoints = num_points / 4;
++    for (; number < quarterPoints; number++) {
++        // Load the 32t values, increment inputPtr later since we're doing it in-place.
++        input = _mm_load_si128((__m128i*)inputPtr);
++        // Do the four shifts
++        byte1 = _mm_slli_epi32(input, 24);
++        byte2 = _mm_slli_epi32(input, 8);
++        byte3 = _mm_srli_epi32(input, 8);
++        byte4 = _mm_srli_epi32(input, 24);
++        // Or bytes together
++        output = _mm_or_si128(byte1, byte4);
++        byte2 = _mm_and_si128(byte2, byte2mask);
++        output = _mm_or_si128(output, byte2);
++        byte3 = _mm_and_si128(byte3, byte3mask);
++        output = _mm_or_si128(output, byte3);
++        // Store the results
++        _mm_store_si128((__m128i*)inputPtr, output);
++        inputPtr += 4;
++    }
++
++    // Byteswap any remaining points:
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        uint32_t outputVal = *inputPtr;
++        outputVal = (((outputVal >> 24) & 0xff) | ((outputVal >> 8) & 0x0000ff00) |
++                     ((outputVal << 8) & 0x00ff0000) | ((outputVal << 24) & 0xff000000));
++        *inputPtr = outputVal;
++        inputPtr++;
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32u_byteswap_a_generic(uint32_t* intsToSwap, unsigned int num_points){
+-  uint32_t* inputPtr = intsToSwap;
++static inline void volk_32u_byteswap_a_generic(uint32_t* intsToSwap,
++                                               unsigned int num_points)
++{
++    uint32_t* inputPtr = intsToSwap;
+-  unsigned int point;
+-  for(point = 0; point < num_points; point++){
+-    uint32_t output = *inputPtr;
+-    output = (((output >> 24) & 0xff) | ((output >> 8) & 0x0000ff00) | ((output << 8) & 0x00ff0000) | ((output << 24) & 0xff000000));
++    unsigned int point;
++    for (point = 0; point < num_points; point++) {
++        uint32_t output = *inputPtr;
++        output = (((output >> 24) & 0xff) | ((output >> 8) & 0x0000ff00) |
++                  ((output << 8) & 0x00ff0000) | ((output << 24) & 0xff000000));
+-    *inputPtr = output;
+-    inputPtr++;
+-  }
++        *inputPtr = output;
++        inputPtr++;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+-
+-
+ #endif /* INCLUDED_volk_32u_byteswap_a_H */
+diff --git a/kernels/volk/volk_32u_byteswappuppet_32u.h b/kernels/volk/volk_32u_byteswappuppet_32u.h
+index c33a5fc..ca5ca17 100644
+--- a/kernels/volk/volk_32u_byteswappuppet_32u.h
++++ b/kernels/volk/volk_32u_byteswappuppet_32u.h
+@@ -1,70 +1,84 @@
+ #ifndef INCLUDED_volk_32u_byteswappuppet_32u_H
+ #define INCLUDED_volk_32u_byteswappuppet_32u_H
+-#include <volk/volk_32u_byteswap.h>
+ #include <stdint.h>
+ #include <string.h>
++#include <volk/volk_32u_byteswap.h>
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32u_byteswappuppet_32u_generic(uint32_t*output, uint32_t* intsToSwap, unsigned int num_points){
++static inline void volk_32u_byteswappuppet_32u_generic(uint32_t* output,
++                                                       uint32_t* intsToSwap,
++                                                       unsigned int num_points)
++{
+     volk_32u_byteswap_generic((uint32_t*)intsToSwap, num_points);
+     memcpy((void*)output, (void*)intsToSwap, num_points * sizeof(uint32_t));
+-
+ }
+ #endif
+ #ifdef LV_HAVE_NEON
+-static inline void volk_32u_byteswappuppet_32u_neon(uint32_t*output, uint32_t* intsToSwap, unsigned int num_points){
++static inline void volk_32u_byteswappuppet_32u_neon(uint32_t* output,
++                                                    uint32_t* intsToSwap,
++                                                    unsigned int num_points)
++{
+     volk_32u_byteswap_neon((uint32_t*)intsToSwap, num_points);
+     memcpy((void*)output, (void*)intsToSwap, num_points * sizeof(uint32_t));
+-
+ }
+ #endif
+ #ifdef LV_HAVE_NEONV8
+-static inline void volk_32u_byteswappuppet_32u_neonv8(uint32_t*output, uint32_t* intsToSwap, unsigned int num_points){
++static inline void volk_32u_byteswappuppet_32u_neonv8(uint32_t* output,
++                                                      uint32_t* intsToSwap,
++                                                      unsigned int num_points)
++{
+     volk_32u_byteswap_neonv8((uint32_t*)intsToSwap, num_points);
+     memcpy((void*)output, (void*)intsToSwap, num_points * sizeof(uint32_t));
+-
+ }
+ #endif
+ #ifdef LV_HAVE_SSE2
+-static inline void volk_32u_byteswappuppet_32u_u_sse2(uint32_t *output, uint32_t* intsToSwap, unsigned int num_points){
++static inline void volk_32u_byteswappuppet_32u_u_sse2(uint32_t* output,
++                                                      uint32_t* intsToSwap,
++                                                      unsigned int num_points)
++{
+     volk_32u_byteswap_u_sse2((uint32_t*)intsToSwap, num_points);
+     memcpy((void*)output, (void*)intsToSwap, num_points * sizeof(uint32_t));
+-
+ }
+ #endif
+ #ifdef LV_HAVE_SSE2
+-static inline void volk_32u_byteswappuppet_32u_a_sse2(uint32_t* output, uint32_t* intsToSwap, unsigned int num_points){
++static inline void volk_32u_byteswappuppet_32u_a_sse2(uint32_t* output,
++                                                      uint32_t* intsToSwap,
++                                                      unsigned int num_points)
++{
+     volk_32u_byteswap_a_sse2((uint32_t*)intsToSwap, num_points);
+     memcpy((void*)output, (void*)intsToSwap, num_points * sizeof(uint32_t));
+-
+ }
+ #endif
+ #ifdef LV_HAVE_AVX2
+-static inline void volk_32u_byteswappuppet_32u_u_avx2(uint32_t* output, uint32_t* intsToSwap, unsigned int num_points){
++static inline void volk_32u_byteswappuppet_32u_u_avx2(uint32_t* output,
++                                                      uint32_t* intsToSwap,
++                                                      unsigned int num_points)
++{
+     volk_32u_byteswap_u_avx2((uint32_t*)intsToSwap, num_points);
+     memcpy((void*)output, (void*)intsToSwap, num_points * sizeof(uint32_t));
+-
+ }
+ #endif
+ #ifdef LV_HAVE_AVX2
+-static inline void volk_32u_byteswappuppet_32u_a_avx2(uint32_t* output, uint32_t* intsToSwap, unsigned int num_points){
++static inline void volk_32u_byteswappuppet_32u_a_avx2(uint32_t* output,
++                                                      uint32_t* intsToSwap,
++                                                      unsigned int num_points)
++{
+     volk_32u_byteswap_a_avx2((uint32_t*)intsToSwap, num_points);
+     memcpy((void*)output, (void*)intsToSwap, num_points * sizeof(uint32_t));
+-
+ }
+ #endif
+diff --git a/kernels/volk/volk_32u_popcnt.h b/kernels/volk/volk_32u_popcnt.h
+index 7aa4d43..f6f0c10 100644
+--- a/kernels/volk/volk_32u_popcnt.h
++++ b/kernels/volk/volk_32u_popcnt.h
+@@ -56,24 +56,23 @@
+ #ifndef INCLUDED_VOLK_32u_POPCNT_A16_H
+ #define INCLUDED_VOLK_32u_POPCNT_A16_H
+-#include <stdio.h>
+ #include <inttypes.h>
++#include <stdio.h>
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_32u_popcnt_generic(uint32_t* ret, const uint32_t value)
++static inline void volk_32u_popcnt_generic(uint32_t* ret, const uint32_t value)
+ {
+-  // This is faster than a lookup table
+-  uint32_t retVal = value;
++    // This is faster than a lookup table
++    uint32_t retVal = value;
+-  retVal = (retVal & 0x55555555) + (retVal >> 1 & 0x55555555);
+-  retVal = (retVal & 0x33333333) + (retVal >> 2 & 0x33333333);
+-  retVal = (retVal + (retVal >> 4)) & 0x0F0F0F0F;
+-  retVal = (retVal + (retVal >> 8));
+-  retVal = (retVal + (retVal >> 16)) & 0x0000003F;
++    retVal = (retVal & 0x55555555) + (retVal >> 1 & 0x55555555);
++    retVal = (retVal & 0x33333333) + (retVal >> 2 & 0x33333333);
++    retVal = (retVal + (retVal >> 4)) & 0x0F0F0F0F;
++    retVal = (retVal + (retVal >> 8));
++    retVal = (retVal + (retVal >> 16)) & 0x0000003F;
+-  *ret = retVal;
++    *ret = retVal;
+ }
+ #endif /*LV_HAVE_GENERIC*/
+@@ -83,10 +82,9 @@ volk_32u_popcnt_generic(uint32_t* ret, const uint32_t value)
+ #include <nmmintrin.h>
+-static inline void
+-volk_32u_popcnt_a_sse4_2(uint32_t* ret, const uint32_t value)
++static inline void volk_32u_popcnt_a_sse4_2(uint32_t* ret, const uint32_t value)
+ {
+-  *ret = _mm_popcnt_u32(value);
++    *ret = _mm_popcnt_u32(value);
+ }
+ #endif /*LV_HAVE_SSE4_2*/
+diff --git a/kernels/volk/volk_32u_popcntpuppet_32u.h b/kernels/volk/volk_32u_popcntpuppet_32u.h
+index d5edd35..c0389cc 100644
+--- a/kernels/volk/volk_32u_popcntpuppet_32u.h
++++ b/kernels/volk/volk_32u_popcntpuppet_32u.h
+@@ -27,19 +27,25 @@
+ #include <volk/volk_32u_popcnt.h>
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32u_popcntpuppet_32u_generic(uint32_t* outVector, const uint32_t* inVector, unsigned int num_points){
++static inline void volk_32u_popcntpuppet_32u_generic(uint32_t* outVector,
++                                                     const uint32_t* inVector,
++                                                     unsigned int num_points)
++{
+     unsigned int ii;
+-    for(ii=0; ii < num_points; ++ii) {
+-        volk_32u_popcnt_generic(outVector+ii, *(inVector+ii) );
++    for (ii = 0; ii < num_points; ++ii) {
++        volk_32u_popcnt_generic(outVector + ii, *(inVector + ii));
+     }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_SSE4_2
+-static inline void volk_32u_popcntpuppet_32u_a_sse4_2(uint32_t* outVector, const uint32_t* inVector, unsigned int num_points){
++static inline void volk_32u_popcntpuppet_32u_a_sse4_2(uint32_t* outVector,
++                                                      const uint32_t* inVector,
++                                                      unsigned int num_points)
++{
+     unsigned int ii;
+-    for(ii=0; ii < num_points; ++ii) {
+-        volk_32u_popcnt_a_sse4_2(outVector+ii, *(inVector+ii) );
++    for (ii = 0; ii < num_points; ++ii) {
++        volk_32u_popcnt_a_sse4_2(outVector + ii, *(inVector + ii));
+     }
+ }
+ #endif /* LV_HAVE_SSE4_2 */
+diff --git a/kernels/volk/volk_32u_reverse_32u.h b/kernels/volk/volk_32u_reverse_32u.h
+index b670b13..aff0a9e 100644
+--- a/kernels/volk/volk_32u_reverse_32u.h
++++ b/kernels/volk/volk_32u_reverse_32u.h
+@@ -24,7 +24,8 @@
+  * \b bit reversal of the input 32 bit word
+  * <b>Dispatcher Prototype</b>
+- * \code volk_32u_reverse_32u(uint32_t *outputVector, uint32_t *inputVector; unsigned int num_points);
++ * \code volk_32u_reverse_32u(uint32_t *outputVector, uint32_t *inputVector; unsigned int
++ num_points);
+  * \endcode
+  *
+  * \b Inputs
+@@ -32,338 +33,344 @@
+  * \li num_points The number of data points.
+  *
+  * \b Outputs
+- * \li outputVector: The vector where the results will be stored, which is the bit-reversed input
++ * \li outputVector: The vector where the results will be stored, which is the
++ bit-reversed input
+  *
+  * \endcode
+  */
+ #ifndef INCLUDED_VOLK_32u_REVERSE_32u_U_H
+ struct dword_split {
+-  int b00: 1;
+-  int b01: 1;
+-  int b02: 1;
+-  int b03: 1;
+-  int b04: 1;
+-  int b05: 1;
+-  int b06: 1;
+-  int b07: 1;
+-  int b08: 1;
+-  int b09: 1;
+-  int b10: 1;
+-  int b11: 1;
+-  int b12: 1;
+-  int b13: 1;
+-  int b14: 1;
+-  int b15: 1;
+-  int b16: 1;
+-  int b17: 1;
+-  int b18: 1;
+-  int b19: 1;
+-  int b20: 1;
+-  int b21: 1;
+-  int b22: 1;
+-  int b23: 1;
+-  int b24: 1;
+-  int b25: 1;
+-  int b26: 1;
+-  int b27: 1;
+-  int b28: 1;
+-  int b29: 1;
+-  int b30: 1;
+-  int b31: 1;
++    int b00 : 1;
++    int b01 : 1;
++    int b02 : 1;
++    int b03 : 1;
++    int b04 : 1;
++    int b05 : 1;
++    int b06 : 1;
++    int b07 : 1;
++    int b08 : 1;
++    int b09 : 1;
++    int b10 : 1;
++    int b11 : 1;
++    int b12 : 1;
++    int b13 : 1;
++    int b14 : 1;
++    int b15 : 1;
++    int b16 : 1;
++    int b17 : 1;
++    int b18 : 1;
++    int b19 : 1;
++    int b20 : 1;
++    int b21 : 1;
++    int b22 : 1;
++    int b23 : 1;
++    int b24 : 1;
++    int b25 : 1;
++    int b26 : 1;
++    int b27 : 1;
++    int b28 : 1;
++    int b29 : 1;
++    int b30 : 1;
++    int b31 : 1;
+ };
+ struct char_split {
+-  uint8_t b00: 1;
+-  uint8_t b01: 1;
+-  uint8_t b02: 1;
+-  uint8_t b03: 1;
+-  uint8_t b04: 1;
+-  uint8_t b05: 1;
+-  uint8_t b06: 1;
+-  uint8_t b07: 1;
++    uint8_t b00 : 1;
++    uint8_t b01 : 1;
++    uint8_t b02 : 1;
++    uint8_t b03 : 1;
++    uint8_t b04 : 1;
++    uint8_t b05 : 1;
++    uint8_t b06 : 1;
++    uint8_t b07 : 1;
+ };
+-//Idea from "Bit Twiddling Hacks", which dedicates this method to public domain
+-//http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
++// Idea from "Bit Twiddling Hacks", which dedicates this method to public domain
++// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
+ static const unsigned char BitReverseTable256[] = {
+-  0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30,
+-  0xB0, 0x70, 0xF0, 0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98,
+-  0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8, 0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64,
+-  0xE4, 0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4, 0x0C, 0x8C, 0x4C, 0xCC,
+-  0x2C, 0xAC, 0x6C, 0xEC, 0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC, 0x02,
+-  0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2,
+-  0x72, 0xF2, 0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A,
+-  0xDA, 0x3A, 0xBA, 0x7A, 0xFA, 0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6,
+-  0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6, 0x0E, 0x8E, 0x4E, 0xCE, 0x2E,
+-  0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE, 0x01, 0x81,
+-  0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71,
+-  0xF1, 0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99, 0x59, 0xD9,
+-  0x39, 0xB9, 0x79, 0xF9, 0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5, 0x15,
+-  0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5, 0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD,
+-  0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD, 0x03, 0x83, 0x43,
+-  0xC3, 0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
+-  0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B,
+-  0xBB, 0x7B, 0xFB, 0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97,
+-  0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7, 0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F,
+-  0xEF, 0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF
++    0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0, 0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0,
++    0x70, 0xF0, 0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8, 0x18, 0x98, 0x58, 0xD8,
++    0x38, 0xB8, 0x78, 0xF8, 0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4, 0x14, 0x94,
++    0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4, 0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC,
++    0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC, 0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2,
++    0x62, 0xE2, 0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2, 0x0A, 0x8A, 0x4A, 0xCA,
++    0x2A, 0xAA, 0x6A, 0xEA, 0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA, 0x06, 0x86,
++    0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6, 0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
++    0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE, 0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE,
++    0x7E, 0xFE, 0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1, 0x11, 0x91, 0x51, 0xD1,
++    0x31, 0xB1, 0x71, 0xF1, 0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9, 0x19, 0x99,
++    0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9, 0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5,
++    0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5, 0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD,
++    0x6D, 0xED, 0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD, 0x03, 0x83, 0x43, 0xC3,
++    0x23, 0xA3, 0x63, 0xE3, 0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3, 0x0B, 0x8B,
++    0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB, 0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
++    0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7, 0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7,
++    0x77, 0xF7, 0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF, 0x1F, 0x9F, 0x5F, 0xDF,
++    0x3F, 0xBF, 0x7F, 0xFF
+ };
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32u_reverse_32u_dword_shuffle(uint32_t* out, const uint32_t* in,
+-                           unsigned int num_points)
++static inline void volk_32u_reverse_32u_dword_shuffle(uint32_t* out,
++                                                      const uint32_t* in,
++                                                      unsigned int num_points)
+ {
+-  const struct dword_split *in_ptr = (const struct dword_split*)in;
+-  struct dword_split * out_ptr = (struct dword_split*)out;
+-  unsigned int number = 0;
+-  for(; number < num_points; ++number){
+-    out_ptr->b00 = in_ptr->b31;
+-    out_ptr->b01 = in_ptr->b30;
+-    out_ptr->b02 = in_ptr->b29;
+-    out_ptr->b03 = in_ptr->b28;
+-    out_ptr->b04 = in_ptr->b27;
+-    out_ptr->b05 = in_ptr->b26;
+-    out_ptr->b06 = in_ptr->b25;
+-    out_ptr->b07 = in_ptr->b24;
+-    out_ptr->b08 = in_ptr->b23;
+-    out_ptr->b09 = in_ptr->b22;
+-    out_ptr->b10 = in_ptr->b21;
+-    out_ptr->b11 = in_ptr->b20;
+-    out_ptr->b12 = in_ptr->b19;
+-    out_ptr->b13 = in_ptr->b18;
+-    out_ptr->b14 = in_ptr->b17;
+-    out_ptr->b15 = in_ptr->b16;
+-    out_ptr->b16 = in_ptr->b15;
+-    out_ptr->b17 = in_ptr->b14;
+-    out_ptr->b18 = in_ptr->b13;
+-    out_ptr->b19 = in_ptr->b12;
+-    out_ptr->b20 = in_ptr->b11;
+-    out_ptr->b21 = in_ptr->b10;
+-    out_ptr->b22 = in_ptr->b09;
+-    out_ptr->b23 = in_ptr->b08;
+-    out_ptr->b24 = in_ptr->b07;
+-    out_ptr->b25 = in_ptr->b06;
+-    out_ptr->b26 = in_ptr->b05;
+-    out_ptr->b27 = in_ptr->b04;
+-    out_ptr->b28 = in_ptr->b03;
+-    out_ptr->b29 = in_ptr->b02;
+-    out_ptr->b30 = in_ptr->b01;
+-    out_ptr->b31 = in_ptr->b00;
+-    ++in_ptr;
+-    ++out_ptr;
+-  }
++    const struct dword_split* in_ptr = (const struct dword_split*)in;
++    struct dword_split* out_ptr = (struct dword_split*)out;
++    unsigned int number = 0;
++    for (; number < num_points; ++number) {
++        out_ptr->b00 = in_ptr->b31;
++        out_ptr->b01 = in_ptr->b30;
++        out_ptr->b02 = in_ptr->b29;
++        out_ptr->b03 = in_ptr->b28;
++        out_ptr->b04 = in_ptr->b27;
++        out_ptr->b05 = in_ptr->b26;
++        out_ptr->b06 = in_ptr->b25;
++        out_ptr->b07 = in_ptr->b24;
++        out_ptr->b08 = in_ptr->b23;
++        out_ptr->b09 = in_ptr->b22;
++        out_ptr->b10 = in_ptr->b21;
++        out_ptr->b11 = in_ptr->b20;
++        out_ptr->b12 = in_ptr->b19;
++        out_ptr->b13 = in_ptr->b18;
++        out_ptr->b14 = in_ptr->b17;
++        out_ptr->b15 = in_ptr->b16;
++        out_ptr->b16 = in_ptr->b15;
++        out_ptr->b17 = in_ptr->b14;
++        out_ptr->b18 = in_ptr->b13;
++        out_ptr->b19 = in_ptr->b12;
++        out_ptr->b20 = in_ptr->b11;
++        out_ptr->b21 = in_ptr->b10;
++        out_ptr->b22 = in_ptr->b09;
++        out_ptr->b23 = in_ptr->b08;
++        out_ptr->b24 = in_ptr->b07;
++        out_ptr->b25 = in_ptr->b06;
++        out_ptr->b26 = in_ptr->b05;
++        out_ptr->b27 = in_ptr->b04;
++        out_ptr->b28 = in_ptr->b03;
++        out_ptr->b29 = in_ptr->b02;
++        out_ptr->b30 = in_ptr->b01;
++        out_ptr->b31 = in_ptr->b00;
++        ++in_ptr;
++        ++out_ptr;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32u_reverse_32u_byte_shuffle(uint32_t* out, const uint32_t* in,
+-                           unsigned int num_points)
++static inline void volk_32u_reverse_32u_byte_shuffle(uint32_t* out,
++                                                     const uint32_t* in,
++                                                     unsigned int num_points)
+ {
+-  const uint32_t *in_ptr = in;
+-  uint32_t *out_ptr = out;
+-  unsigned int number = 0;
+-  for(; number < num_points; ++number){
+-    const struct char_split *in8 = (const struct char_split*)in_ptr;
+-    struct char_split *out8 = (struct char_split*)out_ptr;
++    const uint32_t* in_ptr = in;
++    uint32_t* out_ptr = out;
++    unsigned int number = 0;
++    for (; number < num_points; ++number) {
++        const struct char_split* in8 = (const struct char_split*)in_ptr;
++        struct char_split* out8 = (struct char_split*)out_ptr;
+-    out8[3].b00 = in8[0].b07;
+-    out8[3].b01 = in8[0].b06;
+-    out8[3].b02 = in8[0].b05;
+-    out8[3].b03 = in8[0].b04;
+-    out8[3].b04 = in8[0].b03;
+-    out8[3].b05 = in8[0].b02;
+-    out8[3].b06 = in8[0].b01;
+-    out8[3].b07 = in8[0].b00;
++        out8[3].b00 = in8[0].b07;
++        out8[3].b01 = in8[0].b06;
++        out8[3].b02 = in8[0].b05;
++        out8[3].b03 = in8[0].b04;
++        out8[3].b04 = in8[0].b03;
++        out8[3].b05 = in8[0].b02;
++        out8[3].b06 = in8[0].b01;
++        out8[3].b07 = in8[0].b00;
+-    out8[2].b00 = in8[1].b07;
+-    out8[2].b01 = in8[1].b06;
+-    out8[2].b02 = in8[1].b05;
+-    out8[2].b03 = in8[1].b04;
+-    out8[2].b04 = in8[1].b03;
+-    out8[2].b05 = in8[1].b02;
+-    out8[2].b06 = in8[1].b01;
+-    out8[2].b07 = in8[1].b00;
++        out8[2].b00 = in8[1].b07;
++        out8[2].b01 = in8[1].b06;
++        out8[2].b02 = in8[1].b05;
++        out8[2].b03 = in8[1].b04;
++        out8[2].b04 = in8[1].b03;
++        out8[2].b05 = in8[1].b02;
++        out8[2].b06 = in8[1].b01;
++        out8[2].b07 = in8[1].b00;
+-    out8[1].b00 = in8[2].b07;
+-    out8[1].b01 = in8[2].b06;
+-    out8[1].b02 = in8[2].b05;
+-    out8[1].b03 = in8[2].b04;
+-    out8[1].b04 = in8[2].b03;
+-    out8[1].b05 = in8[2].b02;
+-    out8[1].b06 = in8[2].b01;
+-    out8[1].b07 = in8[2].b00;
++        out8[1].b00 = in8[2].b07;
++        out8[1].b01 = in8[2].b06;
++        out8[1].b02 = in8[2].b05;
++        out8[1].b03 = in8[2].b04;
++        out8[1].b04 = in8[2].b03;
++        out8[1].b05 = in8[2].b02;
++        out8[1].b06 = in8[2].b01;
++        out8[1].b07 = in8[2].b00;
+-    out8[0].b00 = in8[3].b07;
+-    out8[0].b01 = in8[3].b06;
+-    out8[0].b02 = in8[3].b05;
+-    out8[0].b03 = in8[3].b04;
+-    out8[0].b04 = in8[3].b03;
+-    out8[0].b05 = in8[3].b02;
+-    out8[0].b06 = in8[3].b01;
+-    out8[0].b07 = in8[3].b00;
+-    ++in_ptr;
+-    ++out_ptr;
+-  }
++        out8[0].b00 = in8[3].b07;
++        out8[0].b01 = in8[3].b06;
++        out8[0].b02 = in8[3].b05;
++        out8[0].b03 = in8[3].b04;
++        out8[0].b04 = in8[3].b03;
++        out8[0].b05 = in8[3].b02;
++        out8[0].b06 = in8[3].b01;
++        out8[0].b07 = in8[3].b00;
++        ++in_ptr;
++        ++out_ptr;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+-//Idea from "Bit Twiddling Hacks", which dedicates this method to public domain
+-//http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
++// Idea from "Bit Twiddling Hacks", which dedicates this method to public domain
++// http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32u_reverse_32u_lut(uint32_t* out, const uint32_t* in,
+-                           unsigned int num_points)
++static inline void
++volk_32u_reverse_32u_lut(uint32_t* out, const uint32_t* in, unsigned int num_points)
+ {
+-  const uint32_t *in_ptr = in;
+-  uint32_t *out_ptr = out;
+-  unsigned int number = 0;
+-  for(; number < num_points; ++number){
+-    *out_ptr =
+-      (BitReverseTable256[*in_ptr & 0xff]         << 24) |
+-      (BitReverseTable256[(*in_ptr >>  8) & 0xff] << 16) |
+-      (BitReverseTable256[(*in_ptr >> 16) & 0xff] <<  8) |
+-      (BitReverseTable256[(*in_ptr >> 24) & 0xff]);
+-    ++in_ptr;
+-    ++out_ptr;
+-  }
++    const uint32_t* in_ptr = in;
++    uint32_t* out_ptr = out;
++    unsigned int number = 0;
++    for (; number < num_points; ++number) {
++        *out_ptr = (BitReverseTable256[*in_ptr & 0xff] << 24) |
++                   (BitReverseTable256[(*in_ptr >> 8) & 0xff] << 16) |
++                   (BitReverseTable256[(*in_ptr >> 16) & 0xff] << 8) |
++                   (BitReverseTable256[(*in_ptr >> 24) & 0xff]);
++        ++in_ptr;
++        ++out_ptr;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+-//Single-Byte code from "Bit Twiddling Hacks", which dedicates this method to public domain
+-//http://graphics.stanford.edu/~seander/bithacks.html#ReverseByteWith64Bits
++// Single-Byte code from "Bit Twiddling Hacks", which dedicates this method to public
++// domain http://graphics.stanford.edu/~seander/bithacks.html#ReverseByteWith64Bits
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32u_reverse_32u_2001magic(uint32_t* out, const uint32_t* in,
+-                                           unsigned int num_points)
++static inline void
++volk_32u_reverse_32u_2001magic(uint32_t* out, const uint32_t* in, unsigned int num_points)
+ {
+-  const uint32_t *in_ptr = in;
+-  uint32_t *out_ptr = out;
+-  const uint8_t *in8;
+-  uint8_t *out8;
+-  unsigned int number = 0;
+-  for(; number < num_points; ++number){
+-    in8 = (const uint8_t*)in_ptr;
+-    out8 = (uint8_t*)out_ptr;
+-    out8[3] = ((in8[0] * 0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32;
+-    out8[2] = ((in8[1] * 0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32;
+-    out8[1] = ((in8[2] * 0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32;
+-    out8[0] = ((in8[3] * 0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32;
+-    ++in_ptr;
+-    ++out_ptr;
+-  }
++    const uint32_t* in_ptr = in;
++    uint32_t* out_ptr = out;
++    const uint8_t* in8;
++    uint8_t* out8;
++    unsigned int number = 0;
++    for (; number < num_points; ++number) {
++        in8 = (const uint8_t*)in_ptr;
++        out8 = (uint8_t*)out_ptr;
++        out8[3] = ((in8[0] * 0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32;
++        out8[2] = ((in8[1] * 0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32;
++        out8[1] = ((in8[2] * 0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32;
++        out8[0] = ((in8[3] * 0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32;
++        ++in_ptr;
++        ++out_ptr;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_GENERIC
+ // Current gr-pager implementation
+-static inline void volk_32u_reverse_32u_1972magic(uint32_t* out, const uint32_t* in,
+-                                                 unsigned int num_points)
++static inline void
++volk_32u_reverse_32u_1972magic(uint32_t* out, const uint32_t* in, unsigned int num_points)
+ {
+-  const uint32_t *in_ptr = in;
+-  uint32_t *out_ptr = out;
+-  const uint8_t *in8;
+-  uint8_t *out8;
+-  unsigned int number = 0;
+-  for(; number < num_points; ++number){
+-    in8 = (const uint8_t*)in_ptr;
+-    out8 = (uint8_t*)out_ptr;
+-    out8[3] =  (in8[0] * 0x0202020202ULL & 0x010884422010ULL) % 1023;
+-    out8[2] =  (in8[1] * 0x0202020202ULL & 0x010884422010ULL) % 1023;
+-    out8[1] =  (in8[2] * 0x0202020202ULL & 0x010884422010ULL) % 1023;
+-    out8[0] =  (in8[3] * 0x0202020202ULL & 0x010884422010ULL) % 1023;
+-    ++in_ptr;
+-    ++out_ptr;
+-  }
++    const uint32_t* in_ptr = in;
++    uint32_t* out_ptr = out;
++    const uint8_t* in8;
++    uint8_t* out8;
++    unsigned int number = 0;
++    for (; number < num_points; ++number) {
++        in8 = (const uint8_t*)in_ptr;
++        out8 = (uint8_t*)out_ptr;
++        out8[3] = (in8[0] * 0x0202020202ULL & 0x010884422010ULL) % 1023;
++        out8[2] = (in8[1] * 0x0202020202ULL & 0x010884422010ULL) % 1023;
++        out8[1] = (in8[2] * 0x0202020202ULL & 0x010884422010ULL) % 1023;
++        out8[0] = (in8[3] * 0x0202020202ULL & 0x010884422010ULL) % 1023;
++        ++in_ptr;
++        ++out_ptr;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+-//After lengthy thought and quite a bit of whiteboarding:
++// After lengthy thought and quite a bit of whiteboarding:
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32u_reverse_32u_bintree_permute_top_down(uint32_t* out, const uint32_t* in,
+-                                                 unsigned int num_points)
++static inline void volk_32u_reverse_32u_bintree_permute_top_down(uint32_t* out,
++                                                                 const uint32_t* in,
++                                                                 unsigned int num_points)
+ {
+-  const uint32_t *in_ptr = in;
+-  uint32_t *out_ptr = out;
+-  unsigned int number = 0;
+-  for(; number < num_points; ++number){
+-    uint32_t tmp = *in_ptr;
+-    /* permute uint16:
+-       The idea is to simply shift the lower 16 bit up, and the upper 16 bit down.
+-     */
+-    tmp = ( tmp << 16 ) | ( tmp >> 16 );
+-    /* permute bytes:
+-       shift up by 1 B first, then only consider even bytes, and OR with the unshifted even bytes
+-     */
+-    tmp = ((tmp & (0xFF | 0xFF << 16)) << 8) | ((tmp >> 8) & (0xFF | 0xFF << 16));
+-    /* permute 4bit tuples:
+-       Same idea, but the "consideration" mask expression becomes unwieldy
+-     */
+-    tmp = ((tmp & (0xF | 0xF << 8 | 0xF << 16 | 0xF << 24)) << 4) | ((tmp >> 4) & (0xF | 0xF << 8 | 0xF << 16 | 0xF << 24));
+-    /* permute 2bit tuples:
+-       Here, we collapsed the "consideration" mask to a simple hexmask: 0b0011 =
+-       3; we need those every 4b, which coincides with a hex digit!
+-    */
+-    tmp = ((tmp & (0x33333333)) << 2) | ((tmp >> 2) & (0x33333333));
+-    /* permute odd/even:
+-       0x01 = 0x1;  we need these every 2b, which works out: 0x01 | (0x01 << 2) = 0x05!
+-     */
+-    tmp = ((tmp & (0x55555555)) << 1) | ((tmp >> 1) & (0x55555555));
++    const uint32_t* in_ptr = in;
++    uint32_t* out_ptr = out;
++    unsigned int number = 0;
++    for (; number < num_points; ++number) {
++        uint32_t tmp = *in_ptr;
++        /* permute uint16:
++           The idea is to simply shift the lower 16 bit up, and the upper 16 bit down.
++         */
++        tmp = (tmp << 16) | (tmp >> 16);
++        /* permute bytes:
++           shift up by 1 B first, then only consider even bytes, and OR with the unshifted
++           even bytes
++         */
++        tmp = ((tmp & (0xFF | 0xFF << 16)) << 8) | ((tmp >> 8) & (0xFF | 0xFF << 16));
++        /* permute 4bit tuples:
++           Same idea, but the "consideration" mask expression becomes unwieldy
++         */
++        tmp = ((tmp & (0xF | 0xF << 8 | 0xF << 16 | 0xF << 24)) << 4) |
++              ((tmp >> 4) & (0xF | 0xF << 8 | 0xF << 16 | 0xF << 24));
++        /* permute 2bit tuples:
++           Here, we collapsed the "consideration" mask to a simple hexmask: 0b0011 =
++           3; we need those every 4b, which coincides with a hex digit!
++        */
++        tmp = ((tmp & (0x33333333)) << 2) | ((tmp >> 2) & (0x33333333));
++        /* permute odd/even:
++           0x01 = 0x1;  we need these every 2b, which works out: 0x01 | (0x01 << 2) =
++           0x05!
++         */
++        tmp = ((tmp & (0x55555555)) << 1) | ((tmp >> 1) & (0x55555555));
+-    *out_ptr = tmp;
+-    ++in_ptr;
+-    ++out_ptr;
+-  }
++        *out_ptr = tmp;
++        ++in_ptr;
++        ++out_ptr;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_32u_reverse_32u_bintree_permute_bottom_up(uint32_t* out, const uint32_t* in,
+-                                                 unsigned int num_points)
++static inline void volk_32u_reverse_32u_bintree_permute_bottom_up(uint32_t* out,
++                                                                  const uint32_t* in,
++                                                                  unsigned int num_points)
+ {
+-  //same stuff as top_down, inverted order (permutation matrices don't care, you know!)
+-  const uint32_t *in_ptr = in;
+-  uint32_t *out_ptr = out;
+-  unsigned int number = 0;
+-  for(; number < num_points; ++number){
+-    uint32_t tmp = *in_ptr;
+-    tmp = ((tmp & (0x55555555)) << 1) | ((tmp >> 1) & (0x55555555));
+-    tmp = ((tmp & (0x33333333)) << 2) | ((tmp >> 2) & (0x33333333));
+-    tmp = ((tmp & (0xF | 0xF << 8 | 0xF << 16 | 0xF << 24)) << 4) | ((tmp >> 4) & (0xF | 0xF << 8 | 0xF << 16 | 0xF << 24));
+-    tmp = ((tmp & (0xFF | 0xFF << 16)) << 8) | ((tmp >> 8) & (0xFF | 0xFF << 16));
+-    tmp = ( tmp << 16 ) | ( tmp >> 16 );
++    // same stuff as top_down, inverted order (permutation matrices don't care, you know!)
++    const uint32_t* in_ptr = in;
++    uint32_t* out_ptr = out;
++    unsigned int number = 0;
++    for (; number < num_points; ++number) {
++        uint32_t tmp = *in_ptr;
++        tmp = ((tmp & (0x55555555)) << 1) | ((tmp >> 1) & (0x55555555));
++        tmp = ((tmp & (0x33333333)) << 2) | ((tmp >> 2) & (0x33333333));
++        tmp = ((tmp & (0xF | 0xF << 8 | 0xF << 16 | 0xF << 24)) << 4) |
++              ((tmp >> 4) & (0xF | 0xF << 8 | 0xF << 16 | 0xF << 24));
++        tmp = ((tmp & (0xFF | 0xFF << 16)) << 8) | ((tmp >> 8) & (0xFF | 0xFF << 16));
++        tmp = (tmp << 16) | (tmp >> 16);
+-    *out_ptr = tmp;
+-    ++in_ptr;
+-    ++out_ptr;
+-  }
++        *out_ptr = tmp;
++        ++in_ptr;
++        ++out_ptr;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_NEONV8
+ #include <arm_neon.h>
+-static inline void volk_32u_reverse_32u_neonv8(uint32_t* out, const uint32_t* in,
+-                                             unsigned int num_points)
+-{ 
+-    const uint32_t *in_ptr = in;
+-    uint32_t *out_ptr = out;
++static inline void
++volk_32u_reverse_32u_neonv8(uint32_t* out, const uint32_t* in, unsigned int num_points)
++{
++    const uint32_t* in_ptr = in;
++    uint32_t* out_ptr = out;
+-    const uint8x16_t idx = { 3,2,1,0, 7,6,5,4, 11,10,9,8, 15,14,13,12 };
++    const uint8x16_t idx = { 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12 };
+-    const unsigned int quarterPoints = num_points/4;
++    const unsigned int quarterPoints = num_points / 4;
+     unsigned int number = 0;
+-    for(; number < quarterPoints; ++number){
+-        __VOLK_PREFETCH(in_ptr+4);
+-      uint32x4_t x = vld1q_u32(in_ptr);
+-      uint32x4_t z = vreinterpretq_u32_u8(vqtbl1q_u8(vrbitq_u8(vreinterpretq_u8_u32 (x)),
+-                                                     idx));
+-      vst1q_u32 (out_ptr, z);
+-      in_ptr  += 4;
+-      out_ptr += 4;
++    for (; number < quarterPoints; ++number) {
++        __VOLK_PREFETCH(in_ptr + 4);
++        uint32x4_t x = vld1q_u32(in_ptr);
++        uint32x4_t z =
++            vreinterpretq_u32_u8(vqtbl1q_u8(vrbitq_u8(vreinterpretq_u8_u32(x)), idx));
++        vst1q_u32(out_ptr, z);
++        in_ptr += 4;
++        out_ptr += 4;
+     }
+-    number = quarterPoints*4;
+-    for(; number < num_points; ++number){
+-      *out_ptr =
+-      (BitReverseTable256[*in_ptr & 0xff]         << 24) |
+-      (BitReverseTable256[(*in_ptr >>  8) & 0xff] << 16) |
+-      (BitReverseTable256[(*in_ptr >> 16) & 0xff] <<  8) |
+-      (BitReverseTable256[(*in_ptr >> 24) & 0xff]);
+-      ++in_ptr;
+-      ++out_ptr;
++    number = quarterPoints * 4;
++    for (; number < num_points; ++number) {
++        *out_ptr = (BitReverseTable256[*in_ptr & 0xff] << 24) |
++                   (BitReverseTable256[(*in_ptr >> 8) & 0xff] << 16) |
++                   (BitReverseTable256[(*in_ptr >> 16) & 0xff] << 8) |
++                   (BitReverseTable256[(*in_ptr >> 24) & 0xff]);
++        ++in_ptr;
++        ++out_ptr;
+     }
+ }
+@@ -371,29 +378,35 @@ static inline void volk_32u_reverse_32u_neonv8(uint32_t* out, const uint32_t* in
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-#define DO_RBIT                                       \
+-  __VOLK_ASM("rbit %[result], %[value]"         \
+-             : [result]"=r" (*out_ptr)          \
+-             : [value] "r"  (*in_ptr)           \
+-             : );                               \
+-  in_ptr++;                                   \
+-  out_ptr++;
++#define DO_RBIT                           \
++    __VOLK_ASM("rbit %[result], %[value]" \
++               : [result] "=r"(*out_ptr)  \
++               : [value] "r"(*in_ptr)     \
++               :);                        \
++    in_ptr++;                             \
++    out_ptr++;
+-static inline void volk_32u_reverse_32u_arm(uint32_t* out, const uint32_t* in,
+-                                            unsigned int num_points)
++static inline void
++volk_32u_reverse_32u_arm(uint32_t* out, const uint32_t* in, unsigned int num_points)
+ {
+-    const uint32_t *in_ptr = in;
+-    uint32_t *out_ptr = out;
+-    const unsigned int eighthPoints = num_points/8;
++    const uint32_t* in_ptr = in;
++    uint32_t* out_ptr = out;
++    const unsigned int eighthPoints = num_points / 8;
+     unsigned int number = 0;
+-    for(; number < eighthPoints; ++number){
+-        __VOLK_PREFETCH(in_ptr+8);
+-        DO_RBIT; DO_RBIT; DO_RBIT; DO_RBIT;
+-        DO_RBIT; DO_RBIT; DO_RBIT; DO_RBIT;
++    for (; number < eighthPoints; ++number) {
++        __VOLK_PREFETCH(in_ptr + 8);
++        DO_RBIT;
++        DO_RBIT;
++        DO_RBIT;
++        DO_RBIT;
++        DO_RBIT;
++        DO_RBIT;
++        DO_RBIT;
++        DO_RBIT;
+     }
+-    number = eighthPoints*8;
+-    for(; number < num_points; ++number){
++    number = eighthPoints * 8;
++    for (; number < num_points; ++number) {
+         DO_RBIT;
+     }
+ }
+@@ -403,4 +416,3 @@ static inline void volk_32u_reverse_32u_arm(uint32_t* out, const uint32_t* in,
+ #endif /* INCLUDED_volk_32u_reverse_32u_u_H */
+-
+diff --git a/kernels/volk/volk_64f_convert_32f.h b/kernels/volk/volk_64f_convert_32f.h
+index 20422cf..4ebccc0 100644
+--- a/kernels/volk/volk_64f_convert_32f.h
++++ b/kernels/volk/volk_64f_convert_32f.h
+@@ -29,8 +29,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_64f_convert_32f(float* outputVector, const double* inputVector, unsigned int num_points)
+- * \endcode
++ * void volk_64f_convert_32f(float* outputVector, const double* inputVector, unsigned int
++ * num_points) \endcode
+  *
+  * \b Inputs
+  * \li inputVector: The vector of doubles to convert to floats.
+@@ -70,34 +70,39 @@
+ #ifdef LV_HAVE_AVX512F
+ #include <immintrin.h>
+-static inline void volk_64f_convert_32f_u_avx512f(float* outputVector, const double* inputVector, unsigned int num_points){
+-  unsigned int number = 0;
++static inline void volk_64f_convert_32f_u_avx512f(float* outputVector,
++                                                  const double* inputVector,
++                                                  unsigned int num_points)
++{
++    unsigned int number = 0;
+-  const unsigned int oneSixteenthPoints = num_points / 16;
++    const unsigned int oneSixteenthPoints = num_points / 16;
+-  const double* inputVectorPtr = (const double*)inputVector;
+-  float* outputVectorPtr = outputVector;
+-  __m256 ret1, ret2;
+-  __m512d inputVal1, inputVal2;
++    const double* inputVectorPtr = (const double*)inputVector;
++    float* outputVectorPtr = outputVector;
++    __m256 ret1, ret2;
++    __m512d inputVal1, inputVal2;
+-  for(;number < oneSixteenthPoints; number++){
+-    inputVal1 = _mm512_loadu_pd(inputVectorPtr); inputVectorPtr += 8;
+-    inputVal2 = _mm512_loadu_pd(inputVectorPtr); inputVectorPtr += 8;
++    for (; number < oneSixteenthPoints; number++) {
++        inputVal1 = _mm512_loadu_pd(inputVectorPtr);
++        inputVectorPtr += 8;
++        inputVal2 = _mm512_loadu_pd(inputVectorPtr);
++        inputVectorPtr += 8;
+-    ret1 = _mm512_cvtpd_ps(inputVal1);
+-    ret2 = _mm512_cvtpd_ps(inputVal2);
++        ret1 = _mm512_cvtpd_ps(inputVal1);
++        ret2 = _mm512_cvtpd_ps(inputVal2);
+-    _mm256_storeu_ps(outputVectorPtr, ret1);
+-    outputVectorPtr += 8;
++        _mm256_storeu_ps(outputVectorPtr, ret1);
++        outputVectorPtr += 8;
+-    _mm256_storeu_ps(outputVectorPtr, ret2);
+-    outputVectorPtr += 8;
+-  }
++        _mm256_storeu_ps(outputVectorPtr, ret2);
++        outputVectorPtr += 8;
++    }
+-  number = oneSixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    outputVector[number] = (float)(inputVector[number]);
+-  }
++    number = oneSixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        outputVector[number] = (float)(inputVector[number]);
++    }
+ }
+ #endif /* LV_HAVE_AVX512F */
+@@ -105,34 +110,39 @@ static inline void volk_64f_convert_32f_u_avx512f(float* outputVector, const dou
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void volk_64f_convert_32f_u_avx(float* outputVector, const double* inputVector, unsigned int num_points){
+-  unsigned int number = 0;
++static inline void volk_64f_convert_32f_u_avx(float* outputVector,
++                                              const double* inputVector,
++                                              unsigned int num_points)
++{
++    unsigned int number = 0;
+-  const unsigned int oneEightPoints = num_points / 8;
++    const unsigned int oneEightPoints = num_points / 8;
+-  const double* inputVectorPtr = (const double*)inputVector;
+-  float* outputVectorPtr = outputVector;
+-  __m128 ret1, ret2;
+-  __m256d inputVal1, inputVal2;
++    const double* inputVectorPtr = (const double*)inputVector;
++    float* outputVectorPtr = outputVector;
++    __m128 ret1, ret2;
++    __m256d inputVal1, inputVal2;
+-  for(;number < oneEightPoints; number++){
+-    inputVal1 = _mm256_loadu_pd(inputVectorPtr); inputVectorPtr += 4;
+-    inputVal2 = _mm256_loadu_pd(inputVectorPtr); inputVectorPtr += 4;
++    for (; number < oneEightPoints; number++) {
++        inputVal1 = _mm256_loadu_pd(inputVectorPtr);
++        inputVectorPtr += 4;
++        inputVal2 = _mm256_loadu_pd(inputVectorPtr);
++        inputVectorPtr += 4;
+-    ret1 = _mm256_cvtpd_ps(inputVal1);
+-    ret2 = _mm256_cvtpd_ps(inputVal2);
++        ret1 = _mm256_cvtpd_ps(inputVal1);
++        ret2 = _mm256_cvtpd_ps(inputVal2);
+-    _mm_storeu_ps(outputVectorPtr, ret1);
+-    outputVectorPtr += 4;
++        _mm_storeu_ps(outputVectorPtr, ret1);
++        outputVectorPtr += 4;
+-    _mm_storeu_ps(outputVectorPtr, ret2);
+-    outputVectorPtr += 4;
+-  }
++        _mm_storeu_ps(outputVectorPtr, ret2);
++        outputVectorPtr += 4;
++    }
+-  number = oneEightPoints * 8;
+-  for(; number < num_points; number++){
+-    outputVector[number] = (float)(inputVector[number]);
+-  }
++    number = oneEightPoints * 8;
++    for (; number < num_points; number++) {
++        outputVector[number] = (float)(inputVector[number]);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -140,53 +150,59 @@ static inline void volk_64f_convert_32f_u_avx(float* outputVector, const double*
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void volk_64f_convert_32f_u_sse2(float* outputVector, const double* inputVector, unsigned int num_points){
+-  unsigned int number = 0;
++static inline void volk_64f_convert_32f_u_sse2(float* outputVector,
++                                               const double* inputVector,
++                                               unsigned int num_points)
++{
++    unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    const unsigned int quarterPoints = num_points / 4;
+-  const double* inputVectorPtr = (const double*)inputVector;
+-  float* outputVectorPtr = outputVector;
+-  __m128 ret, ret2;
+-  __m128d inputVal1, inputVal2;
++    const double* inputVectorPtr = (const double*)inputVector;
++    float* outputVectorPtr = outputVector;
++    __m128 ret, ret2;
++    __m128d inputVal1, inputVal2;
+-  for(;number < quarterPoints; number++){
+-    inputVal1 = _mm_loadu_pd(inputVectorPtr); inputVectorPtr += 2;
+-    inputVal2 = _mm_loadu_pd(inputVectorPtr); inputVectorPtr += 2;
++    for (; number < quarterPoints; number++) {
++        inputVal1 = _mm_loadu_pd(inputVectorPtr);
++        inputVectorPtr += 2;
++        inputVal2 = _mm_loadu_pd(inputVectorPtr);
++        inputVectorPtr += 2;
+-    ret = _mm_cvtpd_ps(inputVal1);
+-    ret2 = _mm_cvtpd_ps(inputVal2);
++        ret = _mm_cvtpd_ps(inputVal1);
++        ret2 = _mm_cvtpd_ps(inputVal2);
+-    ret = _mm_movelh_ps(ret, ret2);
++        ret = _mm_movelh_ps(ret, ret2);
+-    _mm_storeu_ps(outputVectorPtr, ret);
+-    outputVectorPtr += 4;
+-  }
++        _mm_storeu_ps(outputVectorPtr, ret);
++        outputVectorPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    outputVector[number] = (float)(inputVector[number]);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        outputVector[number] = (float)(inputVector[number]);
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_64f_convert_32f_generic(float* outputVector, const double* inputVector, unsigned int num_points){
+-  float* outputVectorPtr = outputVector;
+-  const double* inputVectorPtr = inputVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    *outputVectorPtr++ = ((float)(*inputVectorPtr++));
+-  }
++static inline void volk_64f_convert_32f_generic(float* outputVector,
++                                                const double* inputVector,
++                                                unsigned int num_points)
++{
++    float* outputVectorPtr = outputVector;
++    const double* inputVectorPtr = inputVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        *outputVectorPtr++ = ((float)(*inputVectorPtr++));
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+-
+-
+ #endif /* INCLUDED_volk_64f_convert_32f_u_H */
+ #ifndef INCLUDED_volk_64f_convert_32f_a_H
+ #define INCLUDED_volk_64f_convert_32f_a_H
+@@ -197,34 +213,39 @@ static inline void volk_64f_convert_32f_generic(float* outputVector, const doubl
+ #ifdef LV_HAVE_AVX512F
+ #include <immintrin.h>
+-static inline void volk_64f_convert_32f_a_avx512f(float* outputVector, const double* inputVector, unsigned int num_points){
+-  unsigned int number = 0;
++static inline void volk_64f_convert_32f_a_avx512f(float* outputVector,
++                                                  const double* inputVector,
++                                                  unsigned int num_points)
++{
++    unsigned int number = 0;
+-  const unsigned int oneSixteenthPoints = num_points / 16;
++    const unsigned int oneSixteenthPoints = num_points / 16;
+-  const double* inputVectorPtr = (const double*)inputVector;
+-  float* outputVectorPtr = outputVector;
+-  __m256 ret1, ret2;
+-  __m512d inputVal1, inputVal2;
++    const double* inputVectorPtr = (const double*)inputVector;
++    float* outputVectorPtr = outputVector;
++    __m256 ret1, ret2;
++    __m512d inputVal1, inputVal2;
+-  for(;number < oneSixteenthPoints; number++){
+-    inputVal1 = _mm512_load_pd(inputVectorPtr); inputVectorPtr += 8;
+-    inputVal2 = _mm512_load_pd(inputVectorPtr); inputVectorPtr += 8;
++    for (; number < oneSixteenthPoints; number++) {
++        inputVal1 = _mm512_load_pd(inputVectorPtr);
++        inputVectorPtr += 8;
++        inputVal2 = _mm512_load_pd(inputVectorPtr);
++        inputVectorPtr += 8;
+-    ret1 = _mm512_cvtpd_ps(inputVal1);
+-    ret2 = _mm512_cvtpd_ps(inputVal2);
++        ret1 = _mm512_cvtpd_ps(inputVal1);
++        ret2 = _mm512_cvtpd_ps(inputVal2);
+-    _mm256_store_ps(outputVectorPtr, ret1);
+-    outputVectorPtr += 8;
++        _mm256_store_ps(outputVectorPtr, ret1);
++        outputVectorPtr += 8;
+-    _mm256_store_ps(outputVectorPtr, ret2);
+-    outputVectorPtr += 8;
+-  }
++        _mm256_store_ps(outputVectorPtr, ret2);
++        outputVectorPtr += 8;
++    }
+-  number = oneSixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    outputVector[number] = (float)(inputVector[number]);
+-  }
++    number = oneSixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        outputVector[number] = (float)(inputVector[number]);
++    }
+ }
+ #endif /* LV_HAVE_AVX512F */
+@@ -232,34 +253,39 @@ static inline void volk_64f_convert_32f_a_avx512f(float* outputVector, const dou
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void volk_64f_convert_32f_a_avx(float* outputVector, const double* inputVector, unsigned int num_points){
+-  unsigned int number = 0;
++static inline void volk_64f_convert_32f_a_avx(float* outputVector,
++                                              const double* inputVector,
++                                              unsigned int num_points)
++{
++    unsigned int number = 0;
+-  const unsigned int oneEightPoints = num_points / 8;
++    const unsigned int oneEightPoints = num_points / 8;
+-  const double* inputVectorPtr = (const double*)inputVector;
+-  float* outputVectorPtr = outputVector;
+-  __m128 ret1, ret2;
+-  __m256d inputVal1, inputVal2;
++    const double* inputVectorPtr = (const double*)inputVector;
++    float* outputVectorPtr = outputVector;
++    __m128 ret1, ret2;
++    __m256d inputVal1, inputVal2;
+-  for(;number < oneEightPoints; number++){
+-    inputVal1 = _mm256_load_pd(inputVectorPtr); inputVectorPtr += 4;
+-    inputVal2 = _mm256_load_pd(inputVectorPtr); inputVectorPtr += 4;
++    for (; number < oneEightPoints; number++) {
++        inputVal1 = _mm256_load_pd(inputVectorPtr);
++        inputVectorPtr += 4;
++        inputVal2 = _mm256_load_pd(inputVectorPtr);
++        inputVectorPtr += 4;
+-    ret1 = _mm256_cvtpd_ps(inputVal1);
+-    ret2 = _mm256_cvtpd_ps(inputVal2);
++        ret1 = _mm256_cvtpd_ps(inputVal1);
++        ret2 = _mm256_cvtpd_ps(inputVal2);
+-    _mm_store_ps(outputVectorPtr, ret1);
+-    outputVectorPtr += 4;
++        _mm_store_ps(outputVectorPtr, ret1);
++        outputVectorPtr += 4;
+-    _mm_store_ps(outputVectorPtr, ret2);
+-    outputVectorPtr += 4;
+-  }
++        _mm_store_ps(outputVectorPtr, ret2);
++        outputVectorPtr += 4;
++    }
+-  number = oneEightPoints * 8;
+-  for(; number < num_points; number++){
+-    outputVector[number] = (float)(inputVector[number]);
+-  }
++    number = oneEightPoints * 8;
++    for (; number < num_points; number++) {
++        outputVector[number] = (float)(inputVector[number]);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -267,51 +293,57 @@ static inline void volk_64f_convert_32f_a_avx(float* outputVector, const double*
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void volk_64f_convert_32f_a_sse2(float* outputVector, const double* inputVector, unsigned int num_points){
+-  unsigned int number = 0;
++static inline void volk_64f_convert_32f_a_sse2(float* outputVector,
++                                               const double* inputVector,
++                                               unsigned int num_points)
++{
++    unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    const unsigned int quarterPoints = num_points / 4;
+-  const double* inputVectorPtr = (const double*)inputVector;
+-  float* outputVectorPtr = outputVector;
+-  __m128 ret, ret2;
+-  __m128d inputVal1, inputVal2;
++    const double* inputVectorPtr = (const double*)inputVector;
++    float* outputVectorPtr = outputVector;
++    __m128 ret, ret2;
++    __m128d inputVal1, inputVal2;
+-  for(;number < quarterPoints; number++){
+-    inputVal1 = _mm_load_pd(inputVectorPtr); inputVectorPtr += 2;
+-    inputVal2 = _mm_load_pd(inputVectorPtr); inputVectorPtr += 2;
++    for (; number < quarterPoints; number++) {
++        inputVal1 = _mm_load_pd(inputVectorPtr);
++        inputVectorPtr += 2;
++        inputVal2 = _mm_load_pd(inputVectorPtr);
++        inputVectorPtr += 2;
+-    ret = _mm_cvtpd_ps(inputVal1);
+-    ret2 = _mm_cvtpd_ps(inputVal2);
++        ret = _mm_cvtpd_ps(inputVal1);
++        ret2 = _mm_cvtpd_ps(inputVal2);
+-    ret = _mm_movelh_ps(ret, ret2);
++        ret = _mm_movelh_ps(ret, ret2);
+-    _mm_store_ps(outputVectorPtr, ret);
+-    outputVectorPtr += 4;
+-  }
++        _mm_store_ps(outputVectorPtr, ret);
++        outputVectorPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    outputVector[number] = (float)(inputVector[number]);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        outputVector[number] = (float)(inputVector[number]);
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_64f_convert_32f_a_generic(float* outputVector, const double* inputVector, unsigned int num_points){
+-  float* outputVectorPtr = outputVector;
+-  const double* inputVectorPtr = inputVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    *outputVectorPtr++ = ((float)(*inputVectorPtr++));
+-  }
++static inline void volk_64f_convert_32f_a_generic(float* outputVector,
++                                                  const double* inputVector,
++                                                  unsigned int num_points)
++{
++    float* outputVectorPtr = outputVector;
++    const double* inputVectorPtr = inputVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        *outputVectorPtr++ = ((float)(*inputVectorPtr++));
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+-
+-
+ #endif /* INCLUDED_volk_64f_convert_32f_a_H */
+diff --git a/kernels/volk/volk_64f_x2_add_64f.h b/kernels/volk/volk_64f_x2_add_64f.h
+index 03b8e4c..5c512cc 100644
+--- a/kernels/volk/volk_64f_x2_add_64f.h
++++ b/kernels/volk/volk_64f_x2_add_64f.h
+@@ -31,8 +31,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_64f_x2_add_64f(float* cVector, const float* aVector, const float* bVector, unsigned int num_points)
+- * \endcode
++ * void volk_64f_x2_add_64f(float* cVector, const float* aVector, const float* bVector,
++ * unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li aVector: First input vector.
+@@ -76,18 +76,19 @@
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_64f_x2_add_64f_generic(double *cVector, const double *aVector,
+-                                 const double *bVector, unsigned int num_points)
++static inline void volk_64f_x2_add_64f_generic(double* cVector,
++                                               const double* aVector,
++                                               const double* bVector,
++                                               unsigned int num_points)
+ {
+-  double *cPtr = cVector;
+-  const double *aPtr = aVector;
+-  const double *bPtr = bVector;
+-  unsigned int number = 0;
+-
+-  for (number = 0; number < num_points; number++) {
+-    *cPtr++ = (*aPtr++) + (*bPtr++);
+-  }
++    double* cPtr = cVector;
++    const double* aPtr = aVector;
++    const double* bPtr = bVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) + (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -100,35 +101,36 @@ volk_64f_x2_add_64f_generic(double *cVector, const double *aVector,
+ #include <emmintrin.h>
+-static inline void
+-volk_64f_x2_add_64f_u_sse2(double *cVector, const double *aVector,
+-                                const double *bVector, unsigned int num_points)
++static inline void volk_64f_x2_add_64f_u_sse2(double* cVector,
++                                              const double* aVector,
++                                              const double* bVector,
++                                              unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int half_points = num_points / 2;
++    unsigned int number = 0;
++    const unsigned int half_points = num_points / 2;
+-  double *cPtr = cVector;
+-  const double *aPtr = aVector;
+-  const double *bPtr = bVector;
++    double* cPtr = cVector;
++    const double* aPtr = aVector;
++    const double* bPtr = bVector;
+-  __m128d aVal, bVal, cVal;
+-  for (; number < half_points; number++) {
+-    aVal = _mm_loadu_pd(aPtr);
+-    bVal = _mm_loadu_pd(bPtr);
++    __m128d aVal, bVal, cVal;
++    for (; number < half_points; number++) {
++        aVal = _mm_loadu_pd(aPtr);
++        bVal = _mm_loadu_pd(bPtr);
+-    cVal = _mm_add_pd(aVal, bVal);
++        cVal = _mm_add_pd(aVal, bVal);
+-    _mm_storeu_pd(cPtr, cVal); // Store the results back into the C container
++        _mm_storeu_pd(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 2;
+-    bPtr += 2;
+-    cPtr += 2;
+-  }
++        aPtr += 2;
++        bPtr += 2;
++        cPtr += 2;
++    }
+-  number = half_points * 2;
+-  for (; number < num_points; number++) {
+-    *cPtr++ = (*aPtr++) + (*bPtr++);
+-  }
++    number = half_points * 2;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) + (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+@@ -138,36 +140,37 @@ volk_64f_x2_add_64f_u_sse2(double *cVector, const double *aVector,
+ #include <immintrin.h>
+-static inline void
+-volk_64f_x2_add_64f_u_avx(double *cVector, const double *aVector,
+-                               const double *bVector, unsigned int num_points)
++static inline void volk_64f_x2_add_64f_u_avx(double* cVector,
++                                             const double* aVector,
++                                             const double* bVector,
++                                             unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarter_points = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarter_points = num_points / 4;
+-  double *cPtr = cVector;
+-  const double *aPtr = aVector;
+-  const double *bPtr = bVector;
++    double* cPtr = cVector;
++    const double* aPtr = aVector;
++    const double* bPtr = bVector;
+-  __m256d aVal, bVal, cVal;
+-  for (; number < quarter_points; number++) {
++    __m256d aVal, bVal, cVal;
++    for (; number < quarter_points; number++) {
+-    aVal = _mm256_loadu_pd(aPtr);
+-    bVal = _mm256_loadu_pd(bPtr);
++        aVal = _mm256_loadu_pd(aPtr);
++        bVal = _mm256_loadu_pd(bPtr);
+-    cVal = _mm256_add_pd(aVal, bVal);
++        cVal = _mm256_add_pd(aVal, bVal);
+-    _mm256_storeu_pd(cPtr, cVal); // Store the results back into the C container
++        _mm256_storeu_pd(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 4;
+-    bPtr += 4;
+-    cPtr += 4;
+-  }
++        aPtr += 4;
++        bPtr += 4;
++        cPtr += 4;
++    }
+-  number = quarter_points * 4;
+-  for (; number < num_points; number++) {
+-    *cPtr++ = (*aPtr++) + (*bPtr++);
+-  }
++    number = quarter_points * 4;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) + (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -180,35 +183,36 @@ volk_64f_x2_add_64f_u_avx(double *cVector, const double *aVector,
+ #include <emmintrin.h>
+-static inline void
+-volk_64f_x2_add_64f_a_sse2(double *cVector, const double *aVector,
+-                                const double *bVector, unsigned int num_points)
++static inline void volk_64f_x2_add_64f_a_sse2(double* cVector,
++                                              const double* aVector,
++                                              const double* bVector,
++                                              unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int half_points = num_points / 2;
++    unsigned int number = 0;
++    const unsigned int half_points = num_points / 2;
+-  double *cPtr = cVector;
+-  const double *aPtr = aVector;
+-  const double *bPtr = bVector;
++    double* cPtr = cVector;
++    const double* aPtr = aVector;
++    const double* bPtr = bVector;
+-  __m128d aVal, bVal, cVal;
+-  for (; number < half_points; number++) {
+-    aVal = _mm_load_pd(aPtr);
+-    bVal = _mm_load_pd(bPtr);
++    __m128d aVal, bVal, cVal;
++    for (; number < half_points; number++) {
++        aVal = _mm_load_pd(aPtr);
++        bVal = _mm_load_pd(bPtr);
+-    cVal = _mm_add_pd(aVal, bVal);
++        cVal = _mm_add_pd(aVal, bVal);
+-    _mm_store_pd(cPtr, cVal); // Store the results back into the C container
++        _mm_store_pd(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 2;
+-    bPtr += 2;
+-    cPtr += 2;
+-  }
++        aPtr += 2;
++        bPtr += 2;
++        cPtr += 2;
++    }
+-  number = half_points * 2;
+-  for (; number < num_points; number++) {
+-    *cPtr++ = (*aPtr++) + (*bPtr++);
+-  }
++    number = half_points * 2;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) + (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+@@ -218,36 +222,37 @@ volk_64f_x2_add_64f_a_sse2(double *cVector, const double *aVector,
+ #include <immintrin.h>
+-static inline void
+-volk_64f_x2_add_64f_a_avx(double *cVector, const double *aVector,
+-                               const double *bVector, unsigned int num_points)
++static inline void volk_64f_x2_add_64f_a_avx(double* cVector,
++                                             const double* aVector,
++                                             const double* bVector,
++                                             unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarter_points = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarter_points = num_points / 4;
+-  double *cPtr = cVector;
+-  const double *aPtr = aVector;
+-  const double *bPtr = bVector;
++    double* cPtr = cVector;
++    const double* aPtr = aVector;
++    const double* bPtr = bVector;
+-  __m256d aVal, bVal, cVal;
+-  for (; number < quarter_points; number++) {
++    __m256d aVal, bVal, cVal;
++    for (; number < quarter_points; number++) {
+-    aVal = _mm256_load_pd(aPtr);
+-    bVal = _mm256_load_pd(bPtr);
++        aVal = _mm256_load_pd(aPtr);
++        bVal = _mm256_load_pd(bPtr);
+-    cVal = _mm256_add_pd(aVal, bVal);
++        cVal = _mm256_add_pd(aVal, bVal);
+-    _mm256_store_pd(cPtr, cVal); // Store the results back into the C container
++        _mm256_store_pd(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 4;
+-    bPtr += 4;
+-    cPtr += 4;
+-  }
++        aPtr += 4;
++        bPtr += 4;
++        cPtr += 4;
++    }
+-  number = quarter_points * 4;
+-  for (; number < num_points; number++) {
+-    *cPtr++ = (*aPtr++) + (*bPtr++);
+-  }
++    number = quarter_points * 4;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) + (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+diff --git a/kernels/volk/volk_64f_x2_max_64f.h b/kernels/volk/volk_64f_x2_max_64f.h
+index d4464b7..8f7f743 100644
+--- a/kernels/volk/volk_64f_x2_max_64f.h
++++ b/kernels/volk/volk_64f_x2_max_64f.h
+@@ -32,8 +32,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_64f_x2_max_64f(double* cVector, const double* aVector, const double* bVector, unsigned int num_points)
+- * \endcode
++ * void volk_64f_x2_max_64f(double* cVector, const double* aVector, const double* bVector,
++ * unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li aVector: First input vector.
+@@ -77,38 +77,39 @@
+ #ifdef LV_HAVE_AVX512F
+ #include <immintrin.h>
+-static inline void
+-volk_64f_x2_max_64f_a_avx512f(double* cVector, const double* aVector,
+-                           const double* bVector, unsigned int num_points)
++static inline void volk_64f_x2_max_64f_a_avx512f(double* cVector,
++                                                 const double* aVector,
++                                                 const double* bVector,
++                                                 unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eigthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eigthPoints = num_points / 8;
+-  double* cPtr = cVector;
+-  const double* aPtr = aVector;
+-  const double* bPtr=  bVector;
++    double* cPtr = cVector;
++    const double* aPtr = aVector;
++    const double* bPtr = bVector;
+-  __m512d aVal, bVal, cVal;
+-  for(;number < eigthPoints; number++){
++    __m512d aVal, bVal, cVal;
++    for (; number < eigthPoints; number++) {
+-    aVal = _mm512_load_pd(aPtr);
+-    bVal = _mm512_load_pd(bPtr);
++        aVal = _mm512_load_pd(aPtr);
++        bVal = _mm512_load_pd(bPtr);
+-    cVal = _mm512_max_pd(aVal, bVal);
++        cVal = _mm512_max_pd(aVal, bVal);
+-    _mm512_store_pd(cPtr,cVal); // Store the results back into the C container
++        _mm512_store_pd(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 8;
+-    bPtr += 8;
+-    cPtr += 8;
+-  }
++        aPtr += 8;
++        bPtr += 8;
++        cPtr += 8;
++    }
+-  number = eigthPoints * 8;
+-  for(;number < num_points; number++){
+-    const double a = *aPtr++;
+-    const double b = *bPtr++;
+-    *cPtr++ = ( a > b ? a : b);
+-  }
++    number = eigthPoints * 8;
++    for (; number < num_points; number++) {
++        const double a = *aPtr++;
++        const double b = *bPtr++;
++        *cPtr++ = (a > b ? a : b);
++    }
+ }
+ #endif /* LV_HAVE_AVX512F */
+@@ -116,38 +117,39 @@ volk_64f_x2_max_64f_a_avx512f(double* cVector, const double* aVector,
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_64f_x2_max_64f_a_avx(double* cVector, const double* aVector,
+-                           const double* bVector, unsigned int num_points)
++static inline void volk_64f_x2_max_64f_a_avx(double* cVector,
++                                             const double* aVector,
++                                             const double* bVector,
++                                             unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  double* cPtr = cVector;
+-  const double* aPtr = aVector;
+-  const double* bPtr=  bVector;
++    double* cPtr = cVector;
++    const double* aPtr = aVector;
++    const double* bPtr = bVector;
+-  __m256d aVal, bVal, cVal;
+-  for(;number < quarterPoints; number++){
++    __m256d aVal, bVal, cVal;
++    for (; number < quarterPoints; number++) {
+-    aVal = _mm256_load_pd(aPtr);
+-    bVal = _mm256_load_pd(bPtr);
++        aVal = _mm256_load_pd(aPtr);
++        bVal = _mm256_load_pd(bPtr);
+-    cVal = _mm256_max_pd(aVal, bVal);
++        cVal = _mm256_max_pd(aVal, bVal);
+-    _mm256_store_pd(cPtr,cVal); // Store the results back into the C container
++        _mm256_store_pd(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 4;
+-    bPtr += 4;
+-    cPtr += 4;
+-  }
++        aPtr += 4;
++        bPtr += 4;
++        cPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    const double a = *aPtr++;
+-    const double b = *bPtr++;
+-    *cPtr++ = ( a > b ? a : b);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        const double a = *aPtr++;
++        const double b = *bPtr++;
++        *cPtr++ = (a > b ? a : b);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -155,58 +157,60 @@ volk_64f_x2_max_64f_a_avx(double* cVector, const double* aVector,
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void
+-volk_64f_x2_max_64f_a_sse2(double* cVector, const double* aVector,
+-                           const double* bVector, unsigned int num_points)
++static inline void volk_64f_x2_max_64f_a_sse2(double* cVector,
++                                              const double* aVector,
++                                              const double* bVector,
++                                              unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int halfPoints = num_points / 2;
++    unsigned int number = 0;
++    const unsigned int halfPoints = num_points / 2;
+-  double* cPtr = cVector;
+-  const double* aPtr = aVector;
+-  const double* bPtr=  bVector;
++    double* cPtr = cVector;
++    const double* aPtr = aVector;
++    const double* bPtr = bVector;
+-  __m128d aVal, bVal, cVal;
+-  for(;number < halfPoints; number++){
++    __m128d aVal, bVal, cVal;
++    for (; number < halfPoints; number++) {
+-    aVal = _mm_load_pd(aPtr);
+-    bVal = _mm_load_pd(bPtr);
++        aVal = _mm_load_pd(aPtr);
++        bVal = _mm_load_pd(bPtr);
+-    cVal = _mm_max_pd(aVal, bVal);
++        cVal = _mm_max_pd(aVal, bVal);
+-    _mm_store_pd(cPtr,cVal); // Store the results back into the C container
++        _mm_store_pd(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 2;
+-    bPtr += 2;
+-    cPtr += 2;
+-  }
++        aPtr += 2;
++        bPtr += 2;
++        cPtr += 2;
++    }
+-  number = halfPoints * 2;
+-  for(;number < num_points; number++){
+-    const double a = *aPtr++;
+-    const double b = *bPtr++;
+-    *cPtr++ = ( a > b ? a : b);
+-  }
++    number = halfPoints * 2;
++    for (; number < num_points; number++) {
++        const double a = *aPtr++;
++        const double b = *bPtr++;
++        *cPtr++ = (a > b ? a : b);
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_64f_x2_max_64f_generic(double* cVector, const double* aVector,
+-                            const double* bVector, unsigned int num_points)
++static inline void volk_64f_x2_max_64f_generic(double* cVector,
++                                               const double* aVector,
++                                               const double* bVector,
++                                               unsigned int num_points)
+ {
+-  double* cPtr = cVector;
+-  const double* aPtr = aVector;
+-  const double* bPtr=  bVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    const double a = *aPtr++;
+-    const double b = *bPtr++;
+-    *cPtr++ = ( a > b ? a : b);
+-  }
++    double* cPtr = cVector;
++    const double* aPtr = aVector;
++    const double* bPtr = bVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        const double a = *aPtr++;
++        const double b = *bPtr++;
++        *cPtr++ = (a > b ? a : b);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -223,38 +227,39 @@ volk_64f_x2_max_64f_generic(double* cVector, const double* aVector,
+ #ifdef LV_HAVE_AVX512F
+ #include <immintrin.h>
+-static inline void
+-volk_64f_x2_max_64f_u_avx512f(double* cVector, const double* aVector,
+-                           const double* bVector, unsigned int num_points)
++static inline void volk_64f_x2_max_64f_u_avx512f(double* cVector,
++                                                 const double* aVector,
++                                                 const double* bVector,
++                                                 unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eigthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eigthPoints = num_points / 8;
+-  double* cPtr = cVector;
+-  const double* aPtr = aVector;
+-  const double* bPtr=  bVector;
++    double* cPtr = cVector;
++    const double* aPtr = aVector;
++    const double* bPtr = bVector;
+-  __m512d aVal, bVal, cVal;
+-  for(;number < eigthPoints; number++){
++    __m512d aVal, bVal, cVal;
++    for (; number < eigthPoints; number++) {
+-    aVal = _mm512_loadu_pd(aPtr);
+-    bVal = _mm512_loadu_pd(bPtr);
++        aVal = _mm512_loadu_pd(aPtr);
++        bVal = _mm512_loadu_pd(bPtr);
+-    cVal = _mm512_max_pd(aVal, bVal);
++        cVal = _mm512_max_pd(aVal, bVal);
+-    _mm512_storeu_pd(cPtr,cVal); // Store the results back into the C container
++        _mm512_storeu_pd(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 8;
+-    bPtr += 8;
+-    cPtr += 8;
+-  }
++        aPtr += 8;
++        bPtr += 8;
++        cPtr += 8;
++    }
+-  number = eigthPoints * 8;
+-  for(;number < num_points; number++){
+-    const double a = *aPtr++;
+-    const double b = *bPtr++;
+-    *cPtr++ = ( a > b ? a : b);
+-  }
++    number = eigthPoints * 8;
++    for (; number < num_points; number++) {
++        const double a = *aPtr++;
++        const double b = *bPtr++;
++        *cPtr++ = (a > b ? a : b);
++    }
+ }
+ #endif /* LV_HAVE_AVX512F */
+@@ -262,38 +267,39 @@ volk_64f_x2_max_64f_u_avx512f(double* cVector, const double* aVector,
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_64f_x2_max_64f_u_avx(double* cVector, const double* aVector,
+-                           const double* bVector, unsigned int num_points)
++static inline void volk_64f_x2_max_64f_u_avx(double* cVector,
++                                             const double* aVector,
++                                             const double* bVector,
++                                             unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  double* cPtr = cVector;
+-  const double* aPtr = aVector;
+-  const double* bPtr=  bVector;
++    double* cPtr = cVector;
++    const double* aPtr = aVector;
++    const double* bPtr = bVector;
+-  __m256d aVal, bVal, cVal;
+-  for(;number < quarterPoints; number++){
++    __m256d aVal, bVal, cVal;
++    for (; number < quarterPoints; number++) {
+-    aVal = _mm256_loadu_pd(aPtr);
+-    bVal = _mm256_loadu_pd(bPtr);
++        aVal = _mm256_loadu_pd(aPtr);
++        bVal = _mm256_loadu_pd(bPtr);
+-    cVal = _mm256_max_pd(aVal, bVal);
++        cVal = _mm256_max_pd(aVal, bVal);
+-    _mm256_storeu_pd(cPtr,cVal); // Store the results back into the C container
++        _mm256_storeu_pd(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 4;
+-    bPtr += 4;
+-    cPtr += 4;
+-  }
++        aPtr += 4;
++        bPtr += 4;
++        cPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    const double a = *aPtr++;
+-    const double b = *bPtr++;
+-    *cPtr++ = ( a > b ? a : b);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        const double a = *aPtr++;
++        const double b = *bPtr++;
++        *cPtr++ = (a > b ? a : b);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+diff --git a/kernels/volk/volk_64f_x2_min_64f.h b/kernels/volk/volk_64f_x2_min_64f.h
+index 0ffa305..7dc4d59 100644
+--- a/kernels/volk/volk_64f_x2_min_64f.h
++++ b/kernels/volk/volk_64f_x2_min_64f.h
+@@ -32,7 +32,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_64f_x2_min_64f(double* cVector, const double* aVector, const double* bVector, unsigned int num_points)
++ * void volk_64f_x2_min_64f(double* cVector, const double* aVector, const double* bVector,
++ unsigned int num_points)
+  * \endcode
+  *
+  * \b Inputs
+@@ -77,38 +78,39 @@
+ #ifdef LV_HAVE_AVX512F
+ #include <immintrin.h>
+-static inline void
+-volk_64f_x2_min_64f_a_avx512f(double* cVector, const double* aVector,
+-                           const double* bVector, unsigned int num_points)
++static inline void volk_64f_x2_min_64f_a_avx512f(double* cVector,
++                                                 const double* aVector,
++                                                 const double* bVector,
++                                                 unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eigthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eigthPoints = num_points / 8;
+-  double* cPtr = cVector;
+-  const double* aPtr = aVector;
+-  const double* bPtr=  bVector;
++    double* cPtr = cVector;
++    const double* aPtr = aVector;
++    const double* bPtr = bVector;
+-  __m512d aVal, bVal, cVal;
+-  for(;number < eigthPoints; number++){
++    __m512d aVal, bVal, cVal;
++    for (; number < eigthPoints; number++) {
+-    aVal = _mm512_load_pd(aPtr);
+-    bVal = _mm512_load_pd(bPtr);
++        aVal = _mm512_load_pd(aPtr);
++        bVal = _mm512_load_pd(bPtr);
+-    cVal = _mm512_min_pd(aVal, bVal);
++        cVal = _mm512_min_pd(aVal, bVal);
+-    _mm512_store_pd(cPtr,cVal); // Store the results back into the C container
++        _mm512_store_pd(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 8;
+-    bPtr += 8;
+-    cPtr += 8;
+-  }
++        aPtr += 8;
++        bPtr += 8;
++        cPtr += 8;
++    }
+-  number = eigthPoints * 8;
+-  for(;number < num_points; number++){
+-    const double a = *aPtr++;
+-    const double b = *bPtr++;
+-    *cPtr++ = ( a < b ? a : b);
+-  }
++    number = eigthPoints * 8;
++    for (; number < num_points; number++) {
++        const double a = *aPtr++;
++        const double b = *bPtr++;
++        *cPtr++ = (a < b ? a : b);
++    }
+ }
+ #endif /* LV_HAVE_AVX512F */
+@@ -116,38 +118,39 @@ volk_64f_x2_min_64f_a_avx512f(double* cVector, const double* aVector,
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_64f_x2_min_64f_a_avx(double* cVector, const double* aVector,
+-                           const double* bVector, unsigned int num_points)
++static inline void volk_64f_x2_min_64f_a_avx(double* cVector,
++                                             const double* aVector,
++                                             const double* bVector,
++                                             unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  double* cPtr = cVector;
+-  const double* aPtr = aVector;
+-  const double* bPtr=  bVector;
++    double* cPtr = cVector;
++    const double* aPtr = aVector;
++    const double* bPtr = bVector;
+-  __m256d aVal, bVal, cVal;
+-  for(;number < quarterPoints; number++){
++    __m256d aVal, bVal, cVal;
++    for (; number < quarterPoints; number++) {
+-    aVal = _mm256_load_pd(aPtr);
+-    bVal = _mm256_load_pd(bPtr);
++        aVal = _mm256_load_pd(aPtr);
++        bVal = _mm256_load_pd(bPtr);
+-    cVal = _mm256_min_pd(aVal, bVal);
++        cVal = _mm256_min_pd(aVal, bVal);
+-    _mm256_store_pd(cPtr,cVal); // Store the results back into the C container
++        _mm256_store_pd(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 4;
+-    bPtr += 4;
+-    cPtr += 4;
+-  }
++        aPtr += 4;
++        bPtr += 4;
++        cPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    const double a = *aPtr++;
+-    const double b = *bPtr++;
+-    *cPtr++ = ( a < b ? a : b);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        const double a = *aPtr++;
++        const double b = *bPtr++;
++        *cPtr++ = (a < b ? a : b);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -155,58 +158,60 @@ volk_64f_x2_min_64f_a_avx(double* cVector, const double* aVector,
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void
+-volk_64f_x2_min_64f_a_sse2(double* cVector, const double* aVector,
+-                           const double* bVector, unsigned int num_points)
++static inline void volk_64f_x2_min_64f_a_sse2(double* cVector,
++                                              const double* aVector,
++                                              const double* bVector,
++                                              unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int halfPoints = num_points / 2;
++    unsigned int number = 0;
++    const unsigned int halfPoints = num_points / 2;
+-  double* cPtr = cVector;
+-  const double* aPtr = aVector;
+-  const double* bPtr=  bVector;
++    double* cPtr = cVector;
++    const double* aPtr = aVector;
++    const double* bPtr = bVector;
+-  __m128d aVal, bVal, cVal;
+-  for(;number < halfPoints; number++){
++    __m128d aVal, bVal, cVal;
++    for (; number < halfPoints; number++) {
+-    aVal = _mm_load_pd(aPtr);
+-    bVal = _mm_load_pd(bPtr);
++        aVal = _mm_load_pd(aPtr);
++        bVal = _mm_load_pd(bPtr);
+-    cVal = _mm_min_pd(aVal, bVal);
++        cVal = _mm_min_pd(aVal, bVal);
+-    _mm_store_pd(cPtr,cVal); // Store the results back into the C container
++        _mm_store_pd(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 2;
+-    bPtr += 2;
+-    cPtr += 2;
+-  }
++        aPtr += 2;
++        bPtr += 2;
++        cPtr += 2;
++    }
+-  number = halfPoints * 2;
+-  for(;number < num_points; number++){
+-    const double a = *aPtr++;
+-    const double b = *bPtr++;
+-    *cPtr++ = ( a < b ? a : b);
+-  }
++    number = halfPoints * 2;
++    for (; number < num_points; number++) {
++        const double a = *aPtr++;
++        const double b = *bPtr++;
++        *cPtr++ = (a < b ? a : b);
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_64f_x2_min_64f_generic(double* cVector, const double* aVector,
+-                            const double* bVector, unsigned int num_points)
++static inline void volk_64f_x2_min_64f_generic(double* cVector,
++                                               const double* aVector,
++                                               const double* bVector,
++                                               unsigned int num_points)
+ {
+-  double* cPtr = cVector;
+-  const double* aPtr = aVector;
+-  const double* bPtr=  bVector;
+-  unsigned int number = 0;
+-
+-  for(number = 0; number < num_points; number++){
+-    const double a = *aPtr++;
+-    const double b = *bPtr++;
+-    *cPtr++ = ( a < b ? a : b);
+-  }
++    double* cPtr = cVector;
++    const double* aPtr = aVector;
++    const double* bPtr = bVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        const double a = *aPtr++;
++        const double b = *bPtr++;
++        *cPtr++ = (a < b ? a : b);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -222,38 +227,39 @@ volk_64f_x2_min_64f_generic(double* cVector, const double* aVector,
+ #ifdef LV_HAVE_AVX512F
+ #include <immintrin.h>
+-static inline void
+-volk_64f_x2_min_64f_u_avx512f(double* cVector, const double* aVector,
+-                           const double* bVector, unsigned int num_points)
++static inline void volk_64f_x2_min_64f_u_avx512f(double* cVector,
++                                                 const double* aVector,
++                                                 const double* bVector,
++                                                 unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int eigthPoints = num_points / 8;
++    unsigned int number = 0;
++    const unsigned int eigthPoints = num_points / 8;
+-  double* cPtr = cVector;
+-  const double* aPtr = aVector;
+-  const double* bPtr=  bVector;
++    double* cPtr = cVector;
++    const double* aPtr = aVector;
++    const double* bPtr = bVector;
+-  __m512d aVal, bVal, cVal;
+-  for(;number < eigthPoints; number++){
++    __m512d aVal, bVal, cVal;
++    for (; number < eigthPoints; number++) {
+-    aVal = _mm512_loadu_pd(aPtr);
+-    bVal = _mm512_loadu_pd(bPtr);
++        aVal = _mm512_loadu_pd(aPtr);
++        bVal = _mm512_loadu_pd(bPtr);
+-    cVal = _mm512_min_pd(aVal, bVal);
++        cVal = _mm512_min_pd(aVal, bVal);
+-    _mm512_storeu_pd(cPtr,cVal); // Store the results back into the C container
++        _mm512_storeu_pd(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 8;
+-    bPtr += 8;
+-    cPtr += 8;
+-  }
++        aPtr += 8;
++        bPtr += 8;
++        cPtr += 8;
++    }
+-  number = eigthPoints * 8;
+-  for(;number < num_points; number++){
+-    const double a = *aPtr++;
+-    const double b = *bPtr++;
+-    *cPtr++ = ( a < b ? a : b);
+-  }
++    number = eigthPoints * 8;
++    for (; number < num_points; number++) {
++        const double a = *aPtr++;
++        const double b = *bPtr++;
++        *cPtr++ = (a < b ? a : b);
++    }
+ }
+ #endif /* LV_HAVE_AVX512F */
+@@ -261,38 +267,39 @@ volk_64f_x2_min_64f_u_avx512f(double* cVector, const double* aVector,
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_64f_x2_min_64f_u_avx(double* cVector, const double* aVector,
+-                           const double* bVector, unsigned int num_points)
++static inline void volk_64f_x2_min_64f_u_avx(double* cVector,
++                                             const double* aVector,
++                                             const double* bVector,
++                                             unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
+-  double* cPtr = cVector;
+-  const double* aPtr = aVector;
+-  const double* bPtr=  bVector;
++    double* cPtr = cVector;
++    const double* aPtr = aVector;
++    const double* bPtr = bVector;
+-  __m256d aVal, bVal, cVal;
+-  for(;number < quarterPoints; number++){
++    __m256d aVal, bVal, cVal;
++    for (; number < quarterPoints; number++) {
+-    aVal = _mm256_loadu_pd(aPtr);
+-    bVal = _mm256_loadu_pd(bPtr);
++        aVal = _mm256_loadu_pd(aPtr);
++        bVal = _mm256_loadu_pd(bPtr);
+-    cVal = _mm256_min_pd(aVal, bVal);
++        cVal = _mm256_min_pd(aVal, bVal);
+-    _mm256_storeu_pd(cPtr,cVal); // Store the results back into the C container
++        _mm256_storeu_pd(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 4;
+-    bPtr += 4;
+-    cPtr += 4;
+-  }
++        aPtr += 4;
++        bPtr += 4;
++        cPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    const double a = *aPtr++;
+-    const double b = *bPtr++;
+-    *cPtr++ = ( a < b ? a : b);
+-  }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        const double a = *aPtr++;
++        const double b = *bPtr++;
++        *cPtr++ = (a < b ? a : b);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+diff --git a/kernels/volk/volk_64f_x2_multiply_64f.h b/kernels/volk/volk_64f_x2_multiply_64f.h
+index 6fa9e8e..39a155d 100644
+--- a/kernels/volk/volk_64f_x2_multiply_64f.h
++++ b/kernels/volk/volk_64f_x2_multiply_64f.h
+@@ -31,8 +31,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_64f_x2_multiply_64f(float* cVector, const float* aVector, const float* bVector, unsigned int num_points)
+- * \endcode
++ * void volk_64f_x2_multiply_64f(float* cVector, const float* aVector, const float*
++ * bVector, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li aVector: First input vector.
+@@ -76,18 +76,19 @@
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_64f_x2_multiply_64f_generic(double *cVector, const double *aVector,
+-                                 const double *bVector, unsigned int num_points)
++static inline void volk_64f_x2_multiply_64f_generic(double* cVector,
++                                                    const double* aVector,
++                                                    const double* bVector,
++                                                    unsigned int num_points)
+ {
+-  double *cPtr = cVector;
+-  const double *aPtr = aVector;
+-  const double *bPtr = bVector;
+-  unsigned int number = 0;
+-
+-  for (number = 0; number < num_points; number++) {
+-    *cPtr++ = (*aPtr++) * (*bPtr++);
+-  }
++    double* cPtr = cVector;
++    const double* aPtr = aVector;
++    const double* bPtr = bVector;
++    unsigned int number = 0;
++
++    for (number = 0; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) * (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -100,35 +101,36 @@ volk_64f_x2_multiply_64f_generic(double *cVector, const double *aVector,
+ #include <emmintrin.h>
+-static inline void
+-volk_64f_x2_multiply_64f_u_sse2(double *cVector, const double *aVector,
+-                                const double *bVector, unsigned int num_points)
++static inline void volk_64f_x2_multiply_64f_u_sse2(double* cVector,
++                                                   const double* aVector,
++                                                   const double* bVector,
++                                                   unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int half_points = num_points / 2;
++    unsigned int number = 0;
++    const unsigned int half_points = num_points / 2;
+-  double *cPtr = cVector;
+-  const double *aPtr = aVector;
+-  const double *bPtr = bVector;
++    double* cPtr = cVector;
++    const double* aPtr = aVector;
++    const double* bPtr = bVector;
+-  __m128d aVal, bVal, cVal;
+-  for (; number < half_points; number++) {
+-    aVal = _mm_loadu_pd(aPtr);
+-    bVal = _mm_loadu_pd(bPtr);
++    __m128d aVal, bVal, cVal;
++    for (; number < half_points; number++) {
++        aVal = _mm_loadu_pd(aPtr);
++        bVal = _mm_loadu_pd(bPtr);
+-    cVal = _mm_mul_pd(aVal, bVal);
++        cVal = _mm_mul_pd(aVal, bVal);
+-    _mm_storeu_pd(cPtr, cVal); // Store the results back into the C container
++        _mm_storeu_pd(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 2;
+-    bPtr += 2;
+-    cPtr += 2;
+-  }
++        aPtr += 2;
++        bPtr += 2;
++        cPtr += 2;
++    }
+-  number = half_points * 2;
+-  for (; number < num_points; number++) {
+-    *cPtr++ = (*aPtr++) * (*bPtr++);
+-  }
++    number = half_points * 2;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) * (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+@@ -138,36 +140,37 @@ volk_64f_x2_multiply_64f_u_sse2(double *cVector, const double *aVector,
+ #include <immintrin.h>
+-static inline void
+-volk_64f_x2_multiply_64f_u_avx(double *cVector, const double *aVector,
+-                               const double *bVector, unsigned int num_points)
++static inline void volk_64f_x2_multiply_64f_u_avx(double* cVector,
++                                                  const double* aVector,
++                                                  const double* bVector,
++                                                  unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarter_points = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarter_points = num_points / 4;
+-  double *cPtr = cVector;
+-  const double *aPtr = aVector;
+-  const double *bPtr = bVector;
++    double* cPtr = cVector;
++    const double* aPtr = aVector;
++    const double* bPtr = bVector;
+-  __m256d aVal, bVal, cVal;
+-  for (; number < quarter_points; number++) {
++    __m256d aVal, bVal, cVal;
++    for (; number < quarter_points; number++) {
+-    aVal = _mm256_loadu_pd(aPtr);
+-    bVal = _mm256_loadu_pd(bPtr);
++        aVal = _mm256_loadu_pd(aPtr);
++        bVal = _mm256_loadu_pd(bPtr);
+-    cVal = _mm256_mul_pd(aVal, bVal);
++        cVal = _mm256_mul_pd(aVal, bVal);
+-    _mm256_storeu_pd(cPtr, cVal); // Store the results back into the C container
++        _mm256_storeu_pd(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 4;
+-    bPtr += 4;
+-    cPtr += 4;
+-  }
++        aPtr += 4;
++        bPtr += 4;
++        cPtr += 4;
++    }
+-  number = quarter_points * 4;
+-  for (; number < num_points; number++) {
+-    *cPtr++ = (*aPtr++) * (*bPtr++);
+-  }
++    number = quarter_points * 4;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) * (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+@@ -180,35 +183,36 @@ volk_64f_x2_multiply_64f_u_avx(double *cVector, const double *aVector,
+ #include <emmintrin.h>
+-static inline void
+-volk_64f_x2_multiply_64f_a_sse2(double *cVector, const double *aVector,
+-                                const double *bVector, unsigned int num_points)
++static inline void volk_64f_x2_multiply_64f_a_sse2(double* cVector,
++                                                   const double* aVector,
++                                                   const double* bVector,
++                                                   unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int half_points = num_points / 2;
++    unsigned int number = 0;
++    const unsigned int half_points = num_points / 2;
+-  double *cPtr = cVector;
+-  const double *aPtr = aVector;
+-  const double *bPtr = bVector;
++    double* cPtr = cVector;
++    const double* aPtr = aVector;
++    const double* bPtr = bVector;
+-  __m128d aVal, bVal, cVal;
+-  for (; number < half_points; number++) {
+-    aVal = _mm_load_pd(aPtr);
+-    bVal = _mm_load_pd(bPtr);
++    __m128d aVal, bVal, cVal;
++    for (; number < half_points; number++) {
++        aVal = _mm_load_pd(aPtr);
++        bVal = _mm_load_pd(bPtr);
+-    cVal = _mm_mul_pd(aVal, bVal);
++        cVal = _mm_mul_pd(aVal, bVal);
+-    _mm_store_pd(cPtr, cVal); // Store the results back into the C container
++        _mm_store_pd(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 2;
+-    bPtr += 2;
+-    cPtr += 2;
+-  }
++        aPtr += 2;
++        bPtr += 2;
++        cPtr += 2;
++    }
+-  number = half_points * 2;
+-  for (; number < num_points; number++) {
+-    *cPtr++ = (*aPtr++) * (*bPtr++);
+-  }
++    number = half_points * 2;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) * (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_SSE2 */
+@@ -218,36 +222,37 @@ volk_64f_x2_multiply_64f_a_sse2(double *cVector, const double *aVector,
+ #include <immintrin.h>
+-static inline void
+-volk_64f_x2_multiply_64f_a_avx(double *cVector, const double *aVector,
+-                               const double *bVector, unsigned int num_points)
++static inline void volk_64f_x2_multiply_64f_a_avx(double* cVector,
++                                                  const double* aVector,
++                                                  const double* bVector,
++                                                  unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarter_points = num_points / 4;
++    unsigned int number = 0;
++    const unsigned int quarter_points = num_points / 4;
+-  double *cPtr = cVector;
+-  const double *aPtr = aVector;
+-  const double *bPtr = bVector;
++    double* cPtr = cVector;
++    const double* aPtr = aVector;
++    const double* bPtr = bVector;
+-  __m256d aVal, bVal, cVal;
+-  for (; number < quarter_points; number++) {
++    __m256d aVal, bVal, cVal;
++    for (; number < quarter_points; number++) {
+-    aVal = _mm256_load_pd(aPtr);
+-    bVal = _mm256_load_pd(bPtr);
++        aVal = _mm256_load_pd(aPtr);
++        bVal = _mm256_load_pd(bPtr);
+-    cVal = _mm256_mul_pd(aVal, bVal);
++        cVal = _mm256_mul_pd(aVal, bVal);
+-    _mm256_store_pd(cPtr, cVal); // Store the results back into the C container
++        _mm256_store_pd(cPtr, cVal); // Store the results back into the C container
+-    aPtr += 4;
+-    bPtr += 4;
+-    cPtr += 4;
+-  }
++        aPtr += 4;
++        bPtr += 4;
++        cPtr += 4;
++    }
+-  number = quarter_points * 4;
+-  for (; number < num_points; number++) {
+-    *cPtr++ = (*aPtr++) * (*bPtr++);
+-  }
++    number = quarter_points * 4;
++    for (; number < num_points; number++) {
++        *cPtr++ = (*aPtr++) * (*bPtr++);
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+diff --git a/kernels/volk/volk_64u_byteswap.h b/kernels/volk/volk_64u_byteswap.h
+index 96e0661..38621a4 100644
+--- a/kernels/volk/volk_64u_byteswap.h
++++ b/kernels/volk/volk_64u_byteswap.h
+@@ -72,71 +72,77 @@
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void volk_64u_byteswap_u_sse2(uint64_t* intsToSwap, unsigned int num_points){
++static inline void volk_64u_byteswap_u_sse2(uint64_t* intsToSwap, unsigned int num_points)
++{
+     uint32_t* inputPtr = (uint32_t*)intsToSwap;
+     __m128i input, byte1, byte2, byte3, byte4, output;
+     __m128i byte2mask = _mm_set1_epi32(0x00FF0000);
+     __m128i byte3mask = _mm_set1_epi32(0x0000FF00);
+     uint64_t number = 0;
+     const unsigned int halfPoints = num_points / 2;
+-    for(;number < halfPoints; number++){
+-      // Load the 32t values, increment inputPtr later since we're doing it in-place.
+-      input = _mm_loadu_si128((__m128i*)inputPtr);
+-
+-      // Do the four shifts
+-      byte1 = _mm_slli_epi32(input, 24);
+-      byte2 = _mm_slli_epi32(input, 8);
+-      byte3 = _mm_srli_epi32(input, 8);
+-      byte4 = _mm_srli_epi32(input, 24);
+-      // Or bytes together
+-      output = _mm_or_si128(byte1, byte4);
+-      byte2 = _mm_and_si128(byte2, byte2mask);
+-      output = _mm_or_si128(output, byte2);
+-      byte3 = _mm_and_si128(byte3, byte3mask);
+-      output = _mm_or_si128(output, byte3);
+-
+-      // Reorder the two words
+-      output = _mm_shuffle_epi32(output, _MM_SHUFFLE(2, 3, 0, 1));
+-
+-      // Store the results
+-      _mm_storeu_si128((__m128i*)inputPtr, output);
+-      inputPtr += 4;
++    for (; number < halfPoints; number++) {
++        // Load the 32t values, increment inputPtr later since we're doing it in-place.
++        input = _mm_loadu_si128((__m128i*)inputPtr);
++
++        // Do the four shifts
++        byte1 = _mm_slli_epi32(input, 24);
++        byte2 = _mm_slli_epi32(input, 8);
++        byte3 = _mm_srli_epi32(input, 8);
++        byte4 = _mm_srli_epi32(input, 24);
++        // Or bytes together
++        output = _mm_or_si128(byte1, byte4);
++        byte2 = _mm_and_si128(byte2, byte2mask);
++        output = _mm_or_si128(output, byte2);
++        byte3 = _mm_and_si128(byte3, byte3mask);
++        output = _mm_or_si128(output, byte3);
++
++        // Reorder the two words
++        output = _mm_shuffle_epi32(output, _MM_SHUFFLE(2, 3, 0, 1));
++
++        // Store the results
++        _mm_storeu_si128((__m128i*)inputPtr, output);
++        inputPtr += 4;
+     }
+     // Byteswap any remaining points:
+-    number = halfPoints*2;
+-    for(; number < num_points; number++){
+-    uint32_t output1 = *inputPtr;
+-    uint32_t output2 = inputPtr[1];
++    number = halfPoints * 2;
++    for (; number < num_points; number++) {
++        uint32_t output1 = *inputPtr;
++        uint32_t output2 = inputPtr[1];
+-    output1 = (((output1 >> 24) & 0xff) | ((output1 >> 8) & 0x0000ff00) | ((output1 << 8) & 0x00ff0000) | ((output1 << 24) & 0xff000000));
++        output1 = (((output1 >> 24) & 0xff) | ((output1 >> 8) & 0x0000ff00) |
++                   ((output1 << 8) & 0x00ff0000) | ((output1 << 24) & 0xff000000));
+-    output2 = (((output2 >> 24) & 0xff) | ((output2 >> 8) & 0x0000ff00) | ((output2 << 8) & 0x00ff0000) | ((output2 << 24) & 0xff000000));
++        output2 = (((output2 >> 24) & 0xff) | ((output2 >> 8) & 0x0000ff00) |
++                   ((output2 << 8) & 0x00ff0000) | ((output2 << 24) & 0xff000000));
+-    *inputPtr++ = output2;
+-    *inputPtr++ = output1;
++        *inputPtr++ = output2;
++        *inputPtr++ = output1;
+     }
+ }
+ #endif /* LV_HAVE_SSE2 */
+-
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_64u_byteswap_generic(uint64_t* intsToSwap, unsigned int num_points){
+-  uint32_t* inputPtr = (uint32_t*)intsToSwap;
+-  unsigned int point;
+-  for(point = 0; point < num_points; point++){
+-    uint32_t output1 = *inputPtr;
+-    uint32_t output2 = inputPtr[1];
++static inline void volk_64u_byteswap_generic(uint64_t* intsToSwap,
++                                             unsigned int num_points)
++{
++    uint32_t* inputPtr = (uint32_t*)intsToSwap;
++    unsigned int point;
++    for (point = 0; point < num_points; point++) {
++        uint32_t output1 = *inputPtr;
++        uint32_t output2 = inputPtr[1];
+-    output1 = (((output1 >> 24) & 0xff) | ((output1 >> 8) & 0x0000ff00) | ((output1 << 8) & 0x00ff0000) | ((output1 << 24) & 0xff000000));
++        output1 = (((output1 >> 24) & 0xff) | ((output1 >> 8) & 0x0000ff00) |
++                   ((output1 << 8) & 0x00ff0000) | ((output1 << 24) & 0xff000000));
+-    output2 = (((output2 >> 24) & 0xff) | ((output2 >> 8) & 0x0000ff00) | ((output2 << 8) & 0x00ff0000) | ((output2 << 24) & 0xff000000));
++        output2 = (((output2 >> 24) & 0xff) | ((output2 >> 8) & 0x0000ff00) |
++                   ((output2 << 8) & 0x00ff0000) | ((output2 << 24) & 0xff000000));
+-    *inputPtr++ = output2;
+-    *inputPtr++ = output1;
+-  }
++        *inputPtr++ = output2;
++        *inputPtr++ = output1;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -144,47 +150,47 @@ static inline void volk_64u_byteswap_generic(uint64_t* intsToSwap, unsigned int
+ #include <immintrin.h>
+ static inline void volk_64u_byteswap_a_avx2(uint64_t* intsToSwap, unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-
+-  const unsigned int nPerSet = 4;
+-  const uint64_t     nSets   = num_points / nPerSet;
++    unsigned int number = 0;
+-  uint32_t* inputPtr = (uint32_t*)intsToSwap;
++    const unsigned int nPerSet = 4;
++    const uint64_t nSets = num_points / nPerSet;
+-  const uint8_t shuffleVector[32] = { 7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8, 23, 22, 21, 20, 19, 18, 17, 16, 31, 30, 29, 28, 27, 26, 25, 24 };
++    uint32_t* inputPtr = (uint32_t*)intsToSwap;
+-  const __m256i myShuffle = _mm256_loadu_si256((__m256i*) &shuffleVector[0]);
++    const uint8_t shuffleVector[32] = { 7,  6,  5,  4,  3,  2,  1,  0,  15, 14, 13,
++                                        12, 11, 10, 9,  8,  23, 22, 21, 20, 19, 18,
++                                        17, 16, 31, 30, 29, 28, 27, 26, 25, 24 };
+-  for ( ;number < nSets; number++ ) {
++    const __m256i myShuffle = _mm256_loadu_si256((__m256i*)&shuffleVector[0]);
+-    // Load the 32t values, increment inputPtr later since we're doing it in-place.
+-    const __m256i input  = _mm256_load_si256((__m256i*)inputPtr);
+-    const __m256i output = _mm256_shuffle_epi8(input, myShuffle);
++    for (; number < nSets; number++) {
+-    // Store the results
+-    _mm256_store_si256((__m256i*)inputPtr, output);
++        // Load the 32t values, increment inputPtr later since we're doing it in-place.
++        const __m256i input = _mm256_load_si256((__m256i*)inputPtr);
++        const __m256i output = _mm256_shuffle_epi8(input, myShuffle);
+-    /*  inputPtr is 32bit so increment twice  */
+-    inputPtr += 2 * nPerSet;
+-  }
+-  _mm256_zeroupper();
++        // Store the results
++        _mm256_store_si256((__m256i*)inputPtr, output);
+-  // Byteswap any remaining points:
+-  for(number = nSets * nPerSet; number < num_points; ++number ) {
+-    uint32_t output1 = *inputPtr;
+-    uint32_t output2 = inputPtr[1];
+-    uint32_t out1 = ((((output1) >> 24) & 0x000000ff) |
+-                   (((output1) >>  8) & 0x0000ff00) |
+-                   (((output1) <<  8) & 0x00ff0000) |
+-                   (((output1) << 24) & 0xff000000)   );
++        /*  inputPtr is 32bit so increment twice  */
++        inputPtr += 2 * nPerSet;
++    }
++    _mm256_zeroupper();
+-    uint32_t out2 = ((((output2) >> 24) & 0x000000ff) |
+-                   (((output2) >>  8) & 0x0000ff00) |
+-                   (((output2) <<  8) & 0x00ff0000) |
+-                   (((output2) << 24) & 0xff000000)   );
+-    *inputPtr++ = out2;
+-    *inputPtr++ = out1;
+-  }
++    // Byteswap any remaining points:
++    for (number = nSets * nPerSet; number < num_points; ++number) {
++        uint32_t output1 = *inputPtr;
++        uint32_t output2 = inputPtr[1];
++        uint32_t out1 =
++            ((((output1) >> 24) & 0x000000ff) | (((output1) >> 8) & 0x0000ff00) |
++             (((output1) << 8) & 0x00ff0000) | (((output1) << 24) & 0xff000000));
++
++        uint32_t out2 =
++            ((((output2) >> 24) & 0x000000ff) | (((output2) >> 8) & 0x0000ff00) |
++             (((output2) << 8) & 0x00ff0000) | (((output2) << 24) & 0xff000000));
++        *inputPtr++ = out2;
++        *inputPtr++ = out1;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -192,48 +198,47 @@ static inline void volk_64u_byteswap_a_avx2(uint64_t* intsToSwap, unsigned int n
+ #if LV_HAVE_SSSE3
+ #include <tmmintrin.h>
+-static inline void volk_64u_byteswap_a_ssse3(uint64_t* intsToSwap, unsigned int num_points)
++static inline void volk_64u_byteswap_a_ssse3(uint64_t* intsToSwap,
++                                             unsigned int num_points)
+ {
+-  unsigned int number = 0;
++    unsigned int number = 0;
+-  const unsigned int nPerSet = 2;
+-  const uint64_t     nSets   = num_points / nPerSet;
++    const unsigned int nPerSet = 2;
++    const uint64_t nSets = num_points / nPerSet;
+-  uint32_t* inputPtr = (uint32_t*)intsToSwap;
+-
+-  uint8_t shuffleVector[16] = { 7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8 };
++    uint32_t* inputPtr = (uint32_t*)intsToSwap;
+-  const __m128i myShuffle = _mm_loadu_si128((__m128i*) &shuffleVector);
++    uint8_t shuffleVector[16] = { 7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8 };
+-  for ( ;number < nSets; number++ ) {
++    const __m128i myShuffle = _mm_loadu_si128((__m128i*)&shuffleVector);
+-    // Load the 32t values, increment inputPtr later since we're doing it in-place.
+-    const __m128i input  = _mm_load_si128((__m128i*)inputPtr);
+-    const __m128i output = _mm_shuffle_epi8(input,myShuffle);
++    for (; number < nSets; number++) {
+-    // Store the results
+-    _mm_store_si128((__m128i*)inputPtr, output);
++        // Load the 32t values, increment inputPtr later since we're doing it in-place.
++        const __m128i input = _mm_load_si128((__m128i*)inputPtr);
++        const __m128i output = _mm_shuffle_epi8(input, myShuffle);
+-    /*  inputPtr is 32bit so increment twice  */
+-    inputPtr += 2 * nPerSet;
+-  }
++        // Store the results
++        _mm_store_si128((__m128i*)inputPtr, output);
+-  // Byteswap any remaining points:
+-  for(number = nSets * nPerSet; number < num_points; ++number ) {
+-    uint32_t output1 = *inputPtr;
+-    uint32_t output2 = inputPtr[1];
+-    uint32_t out1 = ((((output1) >> 24) & 0x000000ff) |
+-                   (((output1) >>  8) & 0x0000ff00) |
+-                   (((output1) <<  8) & 0x00ff0000) |
+-                   (((output1) << 24) & 0xff000000)   );
++        /*  inputPtr is 32bit so increment twice  */
++        inputPtr += 2 * nPerSet;
++    }
+-    uint32_t out2 = ((((output2) >> 24) & 0x000000ff) |
+-                   (((output2) >>  8) & 0x0000ff00) |
+-                   (((output2) <<  8) & 0x00ff0000) |
+-                   (((output2) << 24) & 0xff000000)   );
+-    *inputPtr++ = out2;
+-    *inputPtr++ = out1;
+-  }
++    // Byteswap any remaining points:
++    for (number = nSets * nPerSet; number < num_points; ++number) {
++        uint32_t output1 = *inputPtr;
++        uint32_t output2 = inputPtr[1];
++        uint32_t out1 =
++            ((((output1) >> 24) & 0x000000ff) | (((output1) >> 8) & 0x0000ff00) |
++             (((output1) << 8) & 0x00ff0000) | (((output1) << 24) & 0xff000000));
++
++        uint32_t out2 =
++            ((((output2) >> 24) & 0x000000ff) | (((output2) >> 8) & 0x0000ff00) |
++             (((output2) << 8) & 0x00ff0000) | (((output2) << 24) & 0xff000000));
++        *inputPtr++ = out2;
++        *inputPtr++ = out1;
++    }
+ }
+ #endif /* LV_HAVE_SSSE3 */
+@@ -241,86 +246,90 @@ static inline void volk_64u_byteswap_a_ssse3(uint64_t* intsToSwap, unsigned int
+ #ifdef LV_HAVE_NEONV8
+ #include <arm_neon.h>
+-static inline void volk_64u_byteswap_neonv8(uint64_t* intsToSwap, unsigned int num_points){
+-  uint32_t* inputPtr = (uint32_t*)intsToSwap;
+-  const unsigned int n4points = num_points / 4;
+-  uint8x16x2_t input;
+-  uint8x16_t idx = { 7,6,5,4, 3,2,1,0, 15,14,13,12, 11,10,9,8 };
+-
+-  unsigned int number = 0;
+-  for(number = 0; number < n4points; ++number){
+-    __VOLK_PREFETCH(inputPtr+8);
+-    input = vld2q_u8((uint8_t*) inputPtr);
+-    input.val[0] = vqtbl1q_u8(input.val[0], idx);
+-    input.val[1] = vqtbl1q_u8(input.val[1], idx);
+-    vst2q_u8((uint8_t*) inputPtr, input);
+-
+-    inputPtr += 8;
+-  }
+-
+-  for(number = n4points * 4; number < num_points; ++number){
+-    uint32_t output1 = *inputPtr;
+-    uint32_t output2 =  inputPtr[1];
++static inline void volk_64u_byteswap_neonv8(uint64_t* intsToSwap, unsigned int num_points)
++{
++    uint32_t* inputPtr = (uint32_t*)intsToSwap;
++    const unsigned int n4points = num_points / 4;
++    uint8x16x2_t input;
++    uint8x16_t idx = { 7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8 };
++
++    unsigned int number = 0;
++    for (number = 0; number < n4points; ++number) {
++        __VOLK_PREFETCH(inputPtr + 8);
++        input = vld2q_u8((uint8_t*)inputPtr);
++        input.val[0] = vqtbl1q_u8(input.val[0], idx);
++        input.val[1] = vqtbl1q_u8(input.val[1], idx);
++        vst2q_u8((uint8_t*)inputPtr, input);
++
++        inputPtr += 8;
++    }
+-    output1 = (((output1 >> 24) & 0xff) | ((output1 >> 8) & 0x0000ff00) | ((output1 << 8) & 0x00ff0000) | ((output1 << 24) & 0xff000000));
+-    output2 = (((output2 >> 24) & 0xff) | ((output2 >> 8) & 0x0000ff00) | ((output2 << 8) & 0x00ff0000) | ((output2 << 24) & 0xff000000));
++    for (number = n4points * 4; number < num_points; ++number) {
++        uint32_t output1 = *inputPtr;
++        uint32_t output2 = inputPtr[1];
+-    *inputPtr++ = output2;
+-    *inputPtr++ = output1;
+-  }
++        output1 = (((output1 >> 24) & 0xff) | ((output1 >> 8) & 0x0000ff00) |
++                   ((output1 << 8) & 0x00ff0000) | ((output1 << 24) & 0xff000000));
++        output2 = (((output2 >> 24) & 0xff) | ((output2 >> 8) & 0x0000ff00) |
++                   ((output2 << 8) & 0x00ff0000) | ((output2 << 24) & 0xff000000));
++        *inputPtr++ = output2;
++        *inputPtr++ = output1;
++    }
+ }
+ #else
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void volk_64u_byteswap_neon(uint64_t* intsToSwap, unsigned int num_points){
+-  uint32_t* inputPtr = (uint32_t*)intsToSwap;
+-  unsigned int number = 0;
+-  unsigned int n8points = num_points / 4;
+-
+-  uint8x8x4_t input_table;
+-  uint8x8_t int_lookup01, int_lookup23, int_lookup45, int_lookup67;
+-  uint8x8_t swapped_int01, swapped_int23, swapped_int45, swapped_int67;
+-
+-  /* these magic numbers are used as byte-indices in the LUT.
+-     they are pre-computed to save time. A simple C program
+-     can calculate them; for example for lookup01:
+-    uint8_t chars[8] = {24, 16, 8, 0, 25, 17, 9, 1};
+-    for(ii=0; ii < 8; ++ii) {
+-        index += ((uint64_t)(*(chars+ii))) << (ii*8);
++static inline void volk_64u_byteswap_neon(uint64_t* intsToSwap, unsigned int num_points)
++{
++    uint32_t* inputPtr = (uint32_t*)intsToSwap;
++    unsigned int number = 0;
++    unsigned int n8points = num_points / 4;
++
++    uint8x8x4_t input_table;
++    uint8x8_t int_lookup01, int_lookup23, int_lookup45, int_lookup67;
++    uint8x8_t swapped_int01, swapped_int23, swapped_int45, swapped_int67;
++
++    /* these magic numbers are used as byte-indices in the LUT.
++       they are pre-computed to save time. A simple C program
++       can calculate them; for example for lookup01:
++      uint8_t chars[8] = {24, 16, 8, 0, 25, 17, 9, 1};
++      for(ii=0; ii < 8; ++ii) {
++          index += ((uint64_t)(*(chars+ii))) << (ii*8);
++      }
++    */
++    int_lookup01 = vcreate_u8(2269495096316185);
++    int_lookup23 = vcreate_u8(146949840772469531);
++    int_lookup45 = vcreate_u8(291630186448622877);
++    int_lookup67 = vcreate_u8(436310532124776223);
++
++    for (number = 0; number < n8points; ++number) {
++        input_table = vld4_u8((uint8_t*)inputPtr);
++        swapped_int01 = vtbl4_u8(input_table, int_lookup01);
++        swapped_int23 = vtbl4_u8(input_table, int_lookup23);
++        swapped_int45 = vtbl4_u8(input_table, int_lookup45);
++        swapped_int67 = vtbl4_u8(input_table, int_lookup67);
++        vst1_u8((uint8_t*)inputPtr, swapped_int01);
++        vst1_u8((uint8_t*)(inputPtr + 2), swapped_int23);
++        vst1_u8((uint8_t*)(inputPtr + 4), swapped_int45);
++        vst1_u8((uint8_t*)(inputPtr + 6), swapped_int67);
++
++        inputPtr += 4;
+     }
+-  */
+-  int_lookup01 = vcreate_u8(2269495096316185);
+-  int_lookup23 = vcreate_u8(146949840772469531);
+-  int_lookup45 = vcreate_u8(291630186448622877);
+-  int_lookup67 = vcreate_u8(436310532124776223);
+-
+-  for(number = 0; number < n8points; ++number){
+-    input_table = vld4_u8((uint8_t*) inputPtr);
+-    swapped_int01 = vtbl4_u8(input_table, int_lookup01);
+-    swapped_int23 = vtbl4_u8(input_table, int_lookup23);
+-    swapped_int45 = vtbl4_u8(input_table, int_lookup45);
+-    swapped_int67 = vtbl4_u8(input_table, int_lookup67);
+-    vst1_u8((uint8_t*) inputPtr, swapped_int01);
+-    vst1_u8((uint8_t*) (inputPtr+2), swapped_int23);
+-    vst1_u8((uint8_t*) (inputPtr+4), swapped_int45);
+-    vst1_u8((uint8_t*) (inputPtr+6), swapped_int67);
+-
+-    inputPtr += 4;
+-  }
+-
+-  for(number = n8points * 4; number < num_points; ++number){
+-    uint32_t output1 = *inputPtr;
+-    uint32_t output2 = inputPtr[1];
+-
+-    output1 = (((output1 >> 24) & 0xff) | ((output1 >> 8) & 0x0000ff00) | ((output1 << 8) & 0x00ff0000) | ((output1 << 24) & 0xff000000));
+-    output2 = (((output2 >> 24) & 0xff) | ((output2 >> 8) & 0x0000ff00) | ((output2 << 8) & 0x00ff0000) | ((output2 << 24) & 0xff000000));
+-
+-    *inputPtr++ = output2;
+-    *inputPtr++ = output1;
+-  }
++    for (number = n8points * 4; number < num_points; ++number) {
++        uint32_t output1 = *inputPtr;
++        uint32_t output2 = inputPtr[1];
++
++        output1 = (((output1 >> 24) & 0xff) | ((output1 >> 8) & 0x0000ff00) |
++                   ((output1 << 8) & 0x00ff0000) | ((output1 << 24) & 0xff000000));
++        output2 = (((output2 >> 24) & 0xff) | ((output2 >> 8) & 0x0000ff00) |
++                   ((output2 << 8) & 0x00ff0000) | ((output2 << 24) & 0xff000000));
++
++        *inputPtr++ = output2;
++        *inputPtr++ = output1;
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+ #endif
+@@ -336,49 +345,52 @@ static inline void volk_64u_byteswap_neon(uint64_t* intsToSwap, unsigned int num
+ #ifdef LV_HAVE_SSE2
+ #include <emmintrin.h>
+-static inline void volk_64u_byteswap_a_sse2(uint64_t* intsToSwap, unsigned int num_points){
++static inline void volk_64u_byteswap_a_sse2(uint64_t* intsToSwap, unsigned int num_points)
++{
+     uint32_t* inputPtr = (uint32_t*)intsToSwap;
+     __m128i input, byte1, byte2, byte3, byte4, output;
+     __m128i byte2mask = _mm_set1_epi32(0x00FF0000);
+     __m128i byte3mask = _mm_set1_epi32(0x0000FF00);
+     uint64_t number = 0;
+     const unsigned int halfPoints = num_points / 2;
+-    for(;number < halfPoints; number++){
+-      // Load the 32t values, increment inputPtr later since we're doing it in-place.
+-      input = _mm_load_si128((__m128i*)inputPtr);
+-
+-      // Do the four shifts
+-      byte1 = _mm_slli_epi32(input, 24);
+-      byte2 = _mm_slli_epi32(input, 8);
+-      byte3 = _mm_srli_epi32(input, 8);
+-      byte4 = _mm_srli_epi32(input, 24);
+-      // Or bytes together
+-      output = _mm_or_si128(byte1, byte4);
+-      byte2 = _mm_and_si128(byte2, byte2mask);
+-      output = _mm_or_si128(output, byte2);
+-      byte3 = _mm_and_si128(byte3, byte3mask);
+-      output = _mm_or_si128(output, byte3);
+-
+-      // Reorder the two words
+-      output = _mm_shuffle_epi32(output, _MM_SHUFFLE(2, 3, 0, 1));
+-
+-      // Store the results
+-      _mm_store_si128((__m128i*)inputPtr, output);
+-      inputPtr += 4;
++    for (; number < halfPoints; number++) {
++        // Load the 32t values, increment inputPtr later since we're doing it in-place.
++        input = _mm_load_si128((__m128i*)inputPtr);
++
++        // Do the four shifts
++        byte1 = _mm_slli_epi32(input, 24);
++        byte2 = _mm_slli_epi32(input, 8);
++        byte3 = _mm_srli_epi32(input, 8);
++        byte4 = _mm_srli_epi32(input, 24);
++        // Or bytes together
++        output = _mm_or_si128(byte1, byte4);
++        byte2 = _mm_and_si128(byte2, byte2mask);
++        output = _mm_or_si128(output, byte2);
++        byte3 = _mm_and_si128(byte3, byte3mask);
++        output = _mm_or_si128(output, byte3);
++
++        // Reorder the two words
++        output = _mm_shuffle_epi32(output, _MM_SHUFFLE(2, 3, 0, 1));
++
++        // Store the results
++        _mm_store_si128((__m128i*)inputPtr, output);
++        inputPtr += 4;
+     }
+     // Byteswap any remaining points:
+-    number = halfPoints*2;
+-    for(; number < num_points; number++){
+-      uint32_t output1 = *inputPtr;
+-      uint32_t output2 = inputPtr[1];
++    number = halfPoints * 2;
++    for (; number < num_points; number++) {
++        uint32_t output1 = *inputPtr;
++        uint32_t output2 = inputPtr[1];
+-      output1 = (((output1 >> 24) & 0xff) | ((output1 >> 8) & 0x0000ff00) | ((output1 << 8) & 0x00ff0000) | ((output1 << 24) & 0xff000000));
++        output1 = (((output1 >> 24) & 0xff) | ((output1 >> 8) & 0x0000ff00) |
++                   ((output1 << 8) & 0x00ff0000) | ((output1 << 24) & 0xff000000));
+-      output2 = (((output2 >> 24) & 0xff) | ((output2 >> 8) & 0x0000ff00) | ((output2 << 8) & 0x00ff0000) | ((output2 << 24) & 0xff000000));
++        output2 = (((output2 >> 24) & 0xff) | ((output2 >> 8) & 0x0000ff00) |
++                   ((output2 << 8) & 0x00ff0000) | ((output2 << 24) & 0xff000000));
+-      *inputPtr++ = output2;
+-      *inputPtr++ = output1;
++        *inputPtr++ = output2;
++        *inputPtr++ = output1;
+     }
+ }
+ #endif /* LV_HAVE_SSE2 */
+@@ -387,46 +399,46 @@ static inline void volk_64u_byteswap_a_sse2(uint64_t* intsToSwap, unsigned int n
+ #include <immintrin.h>
+ static inline void volk_64u_byteswap_u_avx2(uint64_t* intsToSwap, unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-
+-  const unsigned int nPerSet = 4;
+-  const uint64_t     nSets   = num_points / nPerSet;
+-
+-  uint32_t* inputPtr = (uint32_t*)intsToSwap;
+-
+-  const uint8_t shuffleVector[32] = { 7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8, 23, 22, 21, 20, 19, 18, 17, 16, 31, 30, 29, 28, 27, 26, 25, 24 };
+-
+-  const __m256i myShuffle = _mm256_loadu_si256((__m256i*) &shuffleVector[0]);
+-
+-  for ( ;number < nSets; number++ ) {
+-    // Load the 32t values, increment inputPtr later since we're doing it in-place.
+-    const __m256i input  = _mm256_loadu_si256((__m256i*)inputPtr);
+-    const __m256i output = _mm256_shuffle_epi8(input,myShuffle);
+-
+-    // Store the results
+-    _mm256_storeu_si256((__m256i*)inputPtr, output);
+-
+-    /*  inputPtr is 32bit so increment twice  */
+-    inputPtr += 2 * nPerSet;
+-  }
+-  _mm256_zeroupper();
+-
+-  // Byteswap any remaining points:
+-  for(number = nSets * nPerSet; number < num_points; ++number ) {
+-    uint32_t output1 = *inputPtr;
+-    uint32_t output2 = inputPtr[1];
+-    uint32_t out1 = ((((output1) >> 24) & 0x000000ff) |
+-                   (((output1) >>  8) & 0x0000ff00) |
+-                   (((output1) <<  8) & 0x00ff0000) |
+-                   (((output1) << 24) & 0xff000000)   );
+-
+-    uint32_t out2 = ((((output2) >> 24) & 0x000000ff) |
+-                   (((output2) >>  8) & 0x0000ff00) |
+-                   (((output2) <<  8) & 0x00ff0000) |
+-                   (((output2) << 24) & 0xff000000)   );
+-    *inputPtr++ = out2;
+-    *inputPtr++ = out1;
+-  }
++    unsigned int number = 0;
++
++    const unsigned int nPerSet = 4;
++    const uint64_t nSets = num_points / nPerSet;
++
++    uint32_t* inputPtr = (uint32_t*)intsToSwap;
++
++    const uint8_t shuffleVector[32] = { 7,  6,  5,  4,  3,  2,  1,  0,  15, 14, 13,
++                                        12, 11, 10, 9,  8,  23, 22, 21, 20, 19, 18,
++                                        17, 16, 31, 30, 29, 28, 27, 26, 25, 24 };
++
++    const __m256i myShuffle = _mm256_loadu_si256((__m256i*)&shuffleVector[0]);
++
++    for (; number < nSets; number++) {
++        // Load the 32t values, increment inputPtr later since we're doing it in-place.
++        const __m256i input = _mm256_loadu_si256((__m256i*)inputPtr);
++        const __m256i output = _mm256_shuffle_epi8(input, myShuffle);
++
++        // Store the results
++        _mm256_storeu_si256((__m256i*)inputPtr, output);
++
++        /*  inputPtr is 32bit so increment twice  */
++        inputPtr += 2 * nPerSet;
++    }
++    _mm256_zeroupper();
++
++    // Byteswap any remaining points:
++    for (number = nSets * nPerSet; number < num_points; ++number) {
++        uint32_t output1 = *inputPtr;
++        uint32_t output2 = inputPtr[1];
++        uint32_t out1 =
++            ((((output1) >> 24) & 0x000000ff) | (((output1) >> 8) & 0x0000ff00) |
++             (((output1) << 8) & 0x00ff0000) | (((output1) << 24) & 0xff000000));
++
++        uint32_t out2 =
++            ((((output2) >> 24) & 0x000000ff) | (((output2) >> 8) & 0x0000ff00) |
++             (((output2) << 8) & 0x00ff0000) | (((output2) << 24) & 0xff000000));
++        *inputPtr++ = out2;
++        *inputPtr++ = out1;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -434,70 +446,71 @@ static inline void volk_64u_byteswap_u_avx2(uint64_t* intsToSwap, unsigned int n
+ #if LV_HAVE_SSSE3
+ #include <tmmintrin.h>
+-static inline void volk_64u_byteswap_u_ssse3(uint64_t* intsToSwap, unsigned int num_points)
++static inline void volk_64u_byteswap_u_ssse3(uint64_t* intsToSwap,
++                                             unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-
+-  const unsigned int nPerSet = 2;
+-  const uint64_t     nSets   = num_points / nPerSet;
++    unsigned int number = 0;
+-  uint32_t* inputPtr = (uint32_t*)intsToSwap;
++    const unsigned int nPerSet = 2;
++    const uint64_t nSets = num_points / nPerSet;
+-  uint8_t shuffleVector[16] = { 7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8 };
++    uint32_t* inputPtr = (uint32_t*)intsToSwap;
+-  const __m128i myShuffle = _mm_loadu_si128((__m128i*) &shuffleVector);
++    uint8_t shuffleVector[16] = { 7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8 };
+-  for ( ;number < nSets; number++ ) {
+-    // Load the 32t values, increment inputPtr later since we're doing it in-place.
+-    const __m128i input  = _mm_loadu_si128((__m128i*)inputPtr);
+-    const __m128i output = _mm_shuffle_epi8(input,myShuffle);
++    const __m128i myShuffle = _mm_loadu_si128((__m128i*)&shuffleVector);
+-    // Store the results
+-    _mm_storeu_si128((__m128i*)inputPtr, output);
++    for (; number < nSets; number++) {
++        // Load the 32t values, increment inputPtr later since we're doing it in-place.
++        const __m128i input = _mm_loadu_si128((__m128i*)inputPtr);
++        const __m128i output = _mm_shuffle_epi8(input, myShuffle);
+-    /*  inputPtr is 32bit so increment twice  */
+-    inputPtr += 2 * nPerSet;
+-  }
++        // Store the results
++        _mm_storeu_si128((__m128i*)inputPtr, output);
+-  // Byteswap any remaining points:
+-  for(number = nSets * nPerSet; number < num_points; ++number ) {
+-    uint32_t output1 = *inputPtr;
+-    uint32_t output2 = inputPtr[1];
+-    uint32_t out1 = ((((output1) >> 24) & 0x000000ff) |
+-                   (((output1) >>  8) & 0x0000ff00) |
+-                   (((output1) <<  8) & 0x00ff0000) |
+-                   (((output1) << 24) & 0xff000000)   );
++        /*  inputPtr is 32bit so increment twice  */
++        inputPtr += 2 * nPerSet;
++    }
+-    uint32_t out2 = ((((output2) >> 24) & 0x000000ff) |
+-                   (((output2) >>  8) & 0x0000ff00) |
+-                   (((output2) <<  8) & 0x00ff0000) |
+-                   (((output2) << 24) & 0xff000000)   );
+-    *inputPtr++ = out2;
+-    *inputPtr++ = out1;
+-  }
++    // Byteswap any remaining points:
++    for (number = nSets * nPerSet; number < num_points; ++number) {
++        uint32_t output1 = *inputPtr;
++        uint32_t output2 = inputPtr[1];
++        uint32_t out1 =
++            ((((output1) >> 24) & 0x000000ff) | (((output1) >> 8) & 0x0000ff00) |
++             (((output1) << 8) & 0x00ff0000) | (((output1) << 24) & 0xff000000));
++
++        uint32_t out2 =
++            ((((output2) >> 24) & 0x000000ff) | (((output2) >> 8) & 0x0000ff00) |
++             (((output2) << 8) & 0x00ff0000) | (((output2) << 24) & 0xff000000));
++        *inputPtr++ = out2;
++        *inputPtr++ = out1;
++    }
+ }
+ #endif /* LV_HAVE_SSSE3 */
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_64u_byteswap_a_generic(uint64_t* intsToSwap, unsigned int num_points){
+-  uint32_t* inputPtr = (uint32_t*)intsToSwap;
+-  unsigned int point;
+-  for(point = 0; point < num_points; point++){
+-    uint32_t output1 = *inputPtr;
+-    uint32_t output2 = inputPtr[1];
++static inline void volk_64u_byteswap_a_generic(uint64_t* intsToSwap,
++                                               unsigned int num_points)
++{
++    uint32_t* inputPtr = (uint32_t*)intsToSwap;
++    unsigned int point;
++    for (point = 0; point < num_points; point++) {
++        uint32_t output1 = *inputPtr;
++        uint32_t output2 = inputPtr[1];
+-    output1 = (((output1 >> 24) & 0xff) | ((output1 >> 8) & 0x0000ff00) | ((output1 << 8) & 0x00ff0000) | ((output1 << 24) & 0xff000000));
++        output1 = (((output1 >> 24) & 0xff) | ((output1 >> 8) & 0x0000ff00) |
++                   ((output1 << 8) & 0x00ff0000) | ((output1 << 24) & 0xff000000));
+-    output2 = (((output2 >> 24) & 0xff) | ((output2 >> 8) & 0x0000ff00) | ((output2 << 8) & 0x00ff0000) | ((output2 << 24) & 0xff000000));
++        output2 = (((output2 >> 24) & 0xff) | ((output2 >> 8) & 0x0000ff00) |
++                   ((output2 << 8) & 0x00ff0000) | ((output2 << 24) & 0xff000000));
+-    *inputPtr++ = output2;
+-    *inputPtr++ = output1;
+-  }
++        *inputPtr++ = output2;
++        *inputPtr++ = output1;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+-
+-
+ #endif /* INCLUDED_volk_64u_byteswap_a_H */
+diff --git a/kernels/volk/volk_64u_byteswappuppet_64u.h b/kernels/volk/volk_64u_byteswappuppet_64u.h
+index 2db0171..ded54ee 100644
+--- a/kernels/volk/volk_64u_byteswappuppet_64u.h
++++ b/kernels/volk/volk_64u_byteswappuppet_64u.h
+@@ -3,87 +3,105 @@
+ #include <stdint.h>
+-#include <volk/volk_64u_byteswap.h>
+ #include <string.h>
++#include <volk/volk_64u_byteswap.h>
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_64u_byteswappuppet_64u_generic(uint64_t*output, uint64_t* intsToSwap, unsigned int num_points){
++static inline void volk_64u_byteswappuppet_64u_generic(uint64_t* output,
++                                                       uint64_t* intsToSwap,
++                                                       unsigned int num_points)
++{
+     volk_64u_byteswap_generic((uint64_t*)intsToSwap, num_points);
+     memcpy((void*)output, (void*)intsToSwap, num_points * sizeof(uint64_t));
+-
+ }
+ #endif
+ #ifdef LV_HAVE_NEONV8
+-static inline void volk_64u_byteswappuppet_64u_neonv8(uint64_t*output, uint64_t* intsToSwap, unsigned int num_points){
++static inline void volk_64u_byteswappuppet_64u_neonv8(uint64_t* output,
++                                                      uint64_t* intsToSwap,
++                                                      unsigned int num_points)
++{
+     volk_64u_byteswap_neonv8((uint64_t*)intsToSwap, num_points);
+     memcpy((void*)output, (void*)intsToSwap, num_points * sizeof(uint64_t));
+-
+ }
+ #else
+ #ifdef LV_HAVE_NEON
+-static inline void volk_64u_byteswappuppet_64u_neon(uint64_t*output, uint64_t* intsToSwap, unsigned int num_points){
++static inline void volk_64u_byteswappuppet_64u_neon(uint64_t* output,
++                                                    uint64_t* intsToSwap,
++                                                    unsigned int num_points)
++{
+     volk_64u_byteswap_neon((uint64_t*)intsToSwap, num_points);
+     memcpy((void*)output, (void*)intsToSwap, num_points * sizeof(uint64_t));
+-
+ }
+ #endif
+ #endif
+ #ifdef LV_HAVE_SSE2
+-static inline void volk_64u_byteswappuppet_64u_u_sse2(uint64_t* output, uint64_t* intsToSwap, unsigned int num_points){
++static inline void volk_64u_byteswappuppet_64u_u_sse2(uint64_t* output,
++                                                      uint64_t* intsToSwap,
++                                                      unsigned int num_points)
++{
+     volk_64u_byteswap_u_sse2((uint64_t*)intsToSwap, num_points);
+     memcpy((void*)output, (void*)intsToSwap, num_points * sizeof(uint64_t));
+-
+ }
+ #endif
+ #ifdef LV_HAVE_SSE2
+-static inline void volk_64u_byteswappuppet_64u_a_sse2(uint64_t* output, uint64_t* intsToSwap, unsigned int num_points){
++static inline void volk_64u_byteswappuppet_64u_a_sse2(uint64_t* output,
++                                                      uint64_t* intsToSwap,
++                                                      unsigned int num_points)
++{
+     volk_64u_byteswap_a_sse2((uint64_t*)intsToSwap, num_points);
+     memcpy((void*)output, (void*)intsToSwap, num_points * sizeof(uint64_t));
+-
+ }
+ #endif
+ #ifdef LV_HAVE_SSSE3
+-static inline void volk_64u_byteswappuppet_64u_u_ssse3(uint64_t* output, uint64_t* intsToSwap, unsigned int num_points){
++static inline void volk_64u_byteswappuppet_64u_u_ssse3(uint64_t* output,
++                                                       uint64_t* intsToSwap,
++                                                       unsigned int num_points)
++{
+     volk_64u_byteswap_u_ssse3((uint64_t*)intsToSwap, num_points);
+     memcpy((void*)output, (void*)intsToSwap, num_points * sizeof(uint64_t));
+-
+ }
+ #endif
+ #ifdef LV_HAVE_SSSE3
+-static inline void volk_64u_byteswappuppet_64u_a_ssse3(uint64_t* output, uint64_t* intsToSwap, unsigned int num_points){
++static inline void volk_64u_byteswappuppet_64u_a_ssse3(uint64_t* output,
++                                                       uint64_t* intsToSwap,
++                                                       unsigned int num_points)
++{
+     volk_64u_byteswap_a_ssse3((uint64_t*)intsToSwap, num_points);
+     memcpy((void*)output, (void*)intsToSwap, num_points * sizeof(uint64_t));
+-
+ }
+ #endif
+ #ifdef LV_HAVE_AVX2
+-static inline void volk_64u_byteswappuppet_64u_u_avx2(uint64_t* output, uint64_t* intsToSwap, unsigned int num_points){
++static inline void volk_64u_byteswappuppet_64u_u_avx2(uint64_t* output,
++                                                      uint64_t* intsToSwap,
++                                                      unsigned int num_points)
++{
+     volk_64u_byteswap_u_avx2((uint64_t*)intsToSwap, num_points);
+     memcpy((void*)output, (void*)intsToSwap, num_points * sizeof(uint64_t));
+-
+ }
+ #endif
+ #ifdef LV_HAVE_AVX2
+-static inline void volk_64u_byteswappuppet_64u_a_avx2(uint64_t* output, uint64_t* intsToSwap, unsigned int num_points){
++static inline void volk_64u_byteswappuppet_64u_a_avx2(uint64_t* output,
++                                                      uint64_t* intsToSwap,
++                                                      unsigned int num_points)
++{
+     volk_64u_byteswap_a_avx2((uint64_t*)intsToSwap, num_points);
+     memcpy((void*)output, (void*)intsToSwap, num_points * sizeof(uint64_t));
+-
+ }
+ #endif
+diff --git a/kernels/volk/volk_64u_popcnt.h b/kernels/volk/volk_64u_popcnt.h
+index cbce2ec..43c2ae0 100644
+--- a/kernels/volk/volk_64u_popcnt.h
++++ b/kernels/volk/volk_64u_popcnt.h
+@@ -60,39 +60,38 @@
+ #ifndef INCLUDED_volk_64u_popcnt_a_H
+ #define INCLUDED_volk_64u_popcnt_a_H
+-#include <stdio.h>
+ #include <inttypes.h>
++#include <stdio.h>
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_64u_popcnt_generic(uint64_t* ret, const uint64_t value)
++static inline void volk_64u_popcnt_generic(uint64_t* ret, const uint64_t value)
+ {
+-  //const uint32_t* valueVector = (const uint32_t*)&value;
+-
+-  // This is faster than a lookup table
+-  //uint32_t retVal = valueVector[0];
+-  uint32_t retVal = (uint32_t)(value & 0x00000000FFFFFFFFull);
+-
+-  retVal = (retVal & 0x55555555) + (retVal >> 1 & 0x55555555);
+-  retVal = (retVal & 0x33333333) + (retVal >> 2 & 0x33333333);
+-  retVal = (retVal + (retVal >> 4)) & 0x0F0F0F0F;
+-  retVal = (retVal + (retVal >> 8));
+-  retVal = (retVal + (retVal >> 16)) & 0x0000003F;
+-  uint64_t retVal64  = retVal;
+-
+-  //retVal = valueVector[1];
+-  retVal = (uint32_t)((value & 0xFFFFFFFF00000000ull) >> 32);
+-  retVal = (retVal & 0x55555555) + (retVal >> 1 & 0x55555555);
+-  retVal = (retVal & 0x33333333) + (retVal >> 2 & 0x33333333);
+-  retVal = (retVal + (retVal >> 4)) & 0x0F0F0F0F;
+-  retVal = (retVal + (retVal >> 8));
+-  retVal = (retVal + (retVal >> 16)) & 0x0000003F;
+-  retVal64 += retVal;
+-
+-  *ret = retVal64;
++    // const uint32_t* valueVector = (const uint32_t*)&value;
++
++    // This is faster than a lookup table
++    // uint32_t retVal = valueVector[0];
++    uint32_t retVal = (uint32_t)(value & 0x00000000FFFFFFFFull);
++
++    retVal = (retVal & 0x55555555) + (retVal >> 1 & 0x55555555);
++    retVal = (retVal & 0x33333333) + (retVal >> 2 & 0x33333333);
++    retVal = (retVal + (retVal >> 4)) & 0x0F0F0F0F;
++    retVal = (retVal + (retVal >> 8));
++    retVal = (retVal + (retVal >> 16)) & 0x0000003F;
++    uint64_t retVal64 = retVal;
++
++    // retVal = valueVector[1];
++    retVal = (uint32_t)((value & 0xFFFFFFFF00000000ull) >> 32);
++    retVal = (retVal & 0x55555555) + (retVal >> 1 & 0x55555555);
++    retVal = (retVal & 0x33333333) + (retVal >> 2 & 0x33333333);
++    retVal = (retVal + (retVal >> 4)) & 0x0F0F0F0F;
++    retVal = (retVal + (retVal >> 8));
++    retVal = (retVal + (retVal >> 16)) & 0x0000003F;
++    retVal64 += retVal;
++
++    *ret = retVal64;
+ }
+ #endif /*LV_HAVE_GENERIC*/
+@@ -104,7 +103,7 @@ volk_64u_popcnt_generic(uint64_t* ret, const uint64_t value)
+ static inline void volk_64u_popcnt_a_sse4_2(uint64_t* ret, const uint64_t value)
+ {
+-  *ret = _mm_popcnt_u64(value);
++    *ret = _mm_popcnt_u64(value);
+ }
+ #endif /*LV_HAVE_SSE4_2*/
+@@ -114,19 +113,19 @@ static inline void volk_64u_popcnt_a_sse4_2(uint64_t* ret, const uint64_t value)
+ #include <arm_neon.h>
+ static inline void volk_64u_popcnt_neon(uint64_t* ret, const uint64_t value)
+ {
+-  uint8x8_t input_val, count8x8_val;
+-  uint16x4_t count16x4_val;
+-  uint32x2_t count32x2_val;
+-  uint64x1_t count64x1_val;
+-
+-  input_val = vld1_u8((unsigned char *) &value);
+-  count8x8_val = vcnt_u8(input_val);
+-  count16x4_val = vpaddl_u8(count8x8_val);
+-  count32x2_val = vpaddl_u16(count16x4_val);
+-  count64x1_val = vpaddl_u32(count32x2_val);
+-  vst1_u64(ret, count64x1_val);
+-
+-  //*ret = _mm_popcnt_u64(value);
++    uint8x8_t input_val, count8x8_val;
++    uint16x4_t count16x4_val;
++    uint32x2_t count32x2_val;
++    uint64x1_t count64x1_val;
++
++    input_val = vld1_u8((unsigned char*)&value);
++    count8x8_val = vcnt_u8(input_val);
++    count16x4_val = vpaddl_u8(count8x8_val);
++    count32x2_val = vpaddl_u16(count16x4_val);
++    count64x1_val = vpaddl_u32(count32x2_val);
++    vst1_u64(ret, count64x1_val);
++
++    //*ret = _mm_popcnt_u64(value);
+ }
+ #endif /*LV_HAVE_NEON*/
+diff --git a/kernels/volk/volk_64u_popcntpuppet_64u.h b/kernels/volk/volk_64u_popcntpuppet_64u.h
+index e38ebb3..688281a 100644
+--- a/kernels/volk/volk_64u_popcntpuppet_64u.h
++++ b/kernels/volk/volk_64u_popcntpuppet_64u.h
+@@ -23,35 +23,44 @@
+ #ifndef INCLUDED_volk_64u_popcntpuppet_64u_H
+ #define INCLUDED_volk_64u_popcntpuppet_64u_H
+-#include <volk/volk_64u_popcnt.h>
+ #include <stdint.h>
+ #include <string.h>
++#include <volk/volk_64u_popcnt.h>
+ #ifdef LV_HAVE_GENERIC
+-static inline void volk_64u_popcntpuppet_64u_generic(uint64_t* outVector, const uint64_t* inVector, unsigned int num_points){
++static inline void volk_64u_popcntpuppet_64u_generic(uint64_t* outVector,
++                                                     const uint64_t* inVector,
++                                                     unsigned int num_points)
++{
+     unsigned int ii;
+-    for(ii=0; ii < num_points; ++ii) {
+-        volk_64u_popcnt_generic(outVector+ii, num_points );
++    for (ii = 0; ii < num_points; ++ii) {
++        volk_64u_popcnt_generic(outVector + ii, num_points);
+     }
+     memcpy((void*)outVector, (void*)inVector, num_points * sizeof(uint64_t));
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #if LV_HAVE_SSE4_2 && LV_HAVE_64
+-static inline void volk_64u_popcntpuppet_64u_a_sse4_2(uint64_t* outVector, const uint64_t* inVector, unsigned int num_points){
++static inline void volk_64u_popcntpuppet_64u_a_sse4_2(uint64_t* outVector,
++                                                      const uint64_t* inVector,
++                                                      unsigned int num_points)
++{
+     unsigned int ii;
+-    for(ii=0; ii < num_points; ++ii) {
+-        volk_64u_popcnt_a_sse4_2(outVector+ii, num_points );
++    for (ii = 0; ii < num_points; ++ii) {
++        volk_64u_popcnt_a_sse4_2(outVector + ii, num_points);
+     }
+     memcpy((void*)outVector, (void*)inVector, num_points * sizeof(uint64_t));
+ }
+ #endif /* LV_HAVE_SSE4_2 */
+ #ifdef LV_HAVE_NEON
+-static inline void volk_64u_popcntpuppet_64u_neon(uint64_t* outVector, const uint64_t* inVector, unsigned int num_points){
++static inline void volk_64u_popcntpuppet_64u_neon(uint64_t* outVector,
++                                                  const uint64_t* inVector,
++                                                  unsigned int num_points)
++{
+     unsigned int ii;
+-    for(ii=0; ii < num_points; ++ii) {
+-        volk_64u_popcnt_neon(outVector+ii, num_points );
++    for (ii = 0; ii < num_points; ++ii) {
++        volk_64u_popcnt_neon(outVector + ii, num_points);
+     }
+     memcpy((void*)outVector, (void*)inVector, num_points * sizeof(uint64_t));
+ }
+diff --git a/kernels/volk/volk_8i_convert_16i.h b/kernels/volk/volk_8i_convert_16i.h
+index 40400c3..69d8f6a 100644
+--- a/kernels/volk/volk_8i_convert_16i.h
++++ b/kernels/volk/volk_8i_convert_16i.h
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_8i_convert_16i(int16_t* outputVector, const int8_t* inputVector, unsigned int num_points)
+- * \endcode
++ * void volk_8i_convert_16i(int16_t* outputVector, const int8_t* inputVector, unsigned int
++ * num_points) \endcode
+  *
+  * \b Inputs
+  * \li inputVector: The input vector of 8-bit chars.
+@@ -59,32 +59,32 @@
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_8i_convert_16i_u_avx2(int16_t* outputVector, const int8_t* inputVector,
+-                             unsigned int num_points)
++static inline void volk_8i_convert_16i_u_avx2(int16_t* outputVector,
++                                              const int8_t* inputVector,
++                                              unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
+-
+-  const __m128i* inputVectorPtr = (const __m128i*)inputVector;
+-  __m256i* outputVectorPtr = (__m256i*)outputVector;
+-  __m128i inputVal;
+-  __m256i ret;
+-
+-  for(;number < sixteenthPoints; number++){
+-    inputVal = _mm_loadu_si128(inputVectorPtr);
+-    ret = _mm256_cvtepi8_epi16(inputVal);
+-    ret = _mm256_slli_epi16(ret, 8); // Multiply by 256
+-    _mm256_storeu_si256(outputVectorPtr, ret);
+-
+-    outputVectorPtr++;
+-    inputVectorPtr++;
+-  }
+-
+-  number = sixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    outputVector[number] = (int16_t)(inputVector[number])*256;
+-  }
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
++
++    const __m128i* inputVectorPtr = (const __m128i*)inputVector;
++    __m256i* outputVectorPtr = (__m256i*)outputVector;
++    __m128i inputVal;
++    __m256i ret;
++
++    for (; number < sixteenthPoints; number++) {
++        inputVal = _mm_loadu_si128(inputVectorPtr);
++        ret = _mm256_cvtepi8_epi16(inputVal);
++        ret = _mm256_slli_epi16(ret, 8); // Multiply by 256
++        _mm256_storeu_si256(outputVectorPtr, ret);
++
++        outputVectorPtr++;
++        inputVectorPtr++;
++    }
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        outputVector[number] = (int16_t)(inputVector[number]) * 256;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -92,57 +92,57 @@ volk_8i_convert_16i_u_avx2(int16_t* outputVector, const int8_t* inputVector,
+ #ifdef LV_HAVE_SSE4_1
+ #include <smmintrin.h>
+-static inline void
+-volk_8i_convert_16i_u_sse4_1(int16_t* outputVector, const int8_t* inputVector,
+-                             unsigned int num_points)
++static inline void volk_8i_convert_16i_u_sse4_1(int16_t* outputVector,
++                                                const int8_t* inputVector,
++                                                unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
+-  const __m128i* inputVectorPtr = (const __m128i*)inputVector;
+-  __m128i* outputVectorPtr = (__m128i*)outputVector;
+-  __m128i inputVal;
+-  __m128i ret;
++    const __m128i* inputVectorPtr = (const __m128i*)inputVector;
++    __m128i* outputVectorPtr = (__m128i*)outputVector;
++    __m128i inputVal;
++    __m128i ret;
+-  for(;number < sixteenthPoints; number++){
+-    inputVal = _mm_loadu_si128(inputVectorPtr);
+-    ret = _mm_cvtepi8_epi16(inputVal);
+-    ret = _mm_slli_epi16(ret, 8); // Multiply by 256
+-    _mm_storeu_si128(outputVectorPtr, ret);
++    for (; number < sixteenthPoints; number++) {
++        inputVal = _mm_loadu_si128(inputVectorPtr);
++        ret = _mm_cvtepi8_epi16(inputVal);
++        ret = _mm_slli_epi16(ret, 8); // Multiply by 256
++        _mm_storeu_si128(outputVectorPtr, ret);
+-    outputVectorPtr++;
++        outputVectorPtr++;
+-    inputVal = _mm_srli_si128(inputVal, 8);
+-    ret = _mm_cvtepi8_epi16(inputVal);
+-    ret = _mm_slli_epi16(ret, 8); // Multiply by 256
+-    _mm_storeu_si128(outputVectorPtr, ret);
++        inputVal = _mm_srli_si128(inputVal, 8);
++        ret = _mm_cvtepi8_epi16(inputVal);
++        ret = _mm_slli_epi16(ret, 8); // Multiply by 256
++        _mm_storeu_si128(outputVectorPtr, ret);
+-    outputVectorPtr++;
++        outputVectorPtr++;
+-    inputVectorPtr++;
+-  }
++        inputVectorPtr++;
++    }
+-  number = sixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    outputVector[number] = (int16_t)(inputVector[number])*256;
+-  }
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        outputVector[number] = (int16_t)(inputVector[number]) * 256;
++    }
+ }
+ #endif /* LV_HAVE_SSE4_1 */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_8i_convert_16i_generic(int16_t* outputVector, const int8_t* inputVector,
+-                            unsigned int num_points)
++static inline void volk_8i_convert_16i_generic(int16_t* outputVector,
++                                               const int8_t* inputVector,
++                                               unsigned int num_points)
+ {
+-  int16_t* outputVectorPtr = outputVector;
+-  const int8_t* inputVectorPtr = inputVector;
+-  unsigned int number = 0;
++    int16_t* outputVectorPtr = outputVector;
++    const int8_t* inputVectorPtr = inputVector;
++    unsigned int number = 0;
+-  for(number = 0; number < num_points; number++){
+-    *outputVectorPtr++ = ((int16_t)(*inputVectorPtr++)) * 256;
+-  }
++    for (number = 0; number < num_points; number++) {
++        *outputVectorPtr++ = ((int16_t)(*inputVectorPtr++)) * 256;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -150,7 +150,6 @@ volk_8i_convert_16i_generic(int16_t* outputVector, const int8_t* inputVector,
+ #endif /* INCLUDED_VOLK_8s_CONVERT_16s_UNALIGNED8_H */
+-
+ #ifndef INCLUDED_volk_8i_convert_16i_a_H
+ #define INCLUDED_volk_8i_convert_16i_a_H
+@@ -160,32 +159,32 @@ volk_8i_convert_16i_generic(int16_t* outputVector, const int8_t* inputVector,
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_8i_convert_16i_a_avx2(int16_t* outputVector, const int8_t* inputVector,
+-                             unsigned int num_points)
++static inline void volk_8i_convert_16i_a_avx2(int16_t* outputVector,
++                                              const int8_t* inputVector,
++                                              unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
+-
+-  const __m128i* inputVectorPtr = (const __m128i*)inputVector;
+-  __m256i* outputVectorPtr = (__m256i*)outputVector;
+-  __m128i inputVal;
+-  __m256i ret;
+-
+-  for(;number < sixteenthPoints; number++){
+-    inputVal = _mm_load_si128(inputVectorPtr);
+-    ret = _mm256_cvtepi8_epi16(inputVal);
+-    ret = _mm256_slli_epi16(ret, 8); // Multiply by 256
+-    _mm256_store_si256(outputVectorPtr, ret);
+-
+-    outputVectorPtr++;
+-    inputVectorPtr++;
+-  }
+-
+-  number = sixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    outputVector[number] = (int16_t)(inputVector[number])*256;
+-  }
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
++
++    const __m128i* inputVectorPtr = (const __m128i*)inputVector;
++    __m256i* outputVectorPtr = (__m256i*)outputVector;
++    __m128i inputVal;
++    __m256i ret;
++
++    for (; number < sixteenthPoints; number++) {
++        inputVal = _mm_load_si128(inputVectorPtr);
++        ret = _mm256_cvtepi8_epi16(inputVal);
++        ret = _mm256_slli_epi16(ret, 8); // Multiply by 256
++        _mm256_store_si256(outputVectorPtr, ret);
++
++        outputVectorPtr++;
++        inputVectorPtr++;
++    }
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        outputVector[number] = (int16_t)(inputVector[number]) * 256;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -193,57 +192,57 @@ volk_8i_convert_16i_a_avx2(int16_t* outputVector, const int8_t* inputVector,
+ #ifdef LV_HAVE_SSE4_1
+ #include <smmintrin.h>
+-static inline void
+-volk_8i_convert_16i_a_sse4_1(int16_t* outputVector, const int8_t* inputVector,
+-                             unsigned int num_points)
++static inline void volk_8i_convert_16i_a_sse4_1(int16_t* outputVector,
++                                                const int8_t* inputVector,
++                                                unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
+-  const __m128i* inputVectorPtr = (const __m128i*)inputVector;
+-  __m128i* outputVectorPtr = (__m128i*)outputVector;
+-  __m128i inputVal;
+-  __m128i ret;
++    const __m128i* inputVectorPtr = (const __m128i*)inputVector;
++    __m128i* outputVectorPtr = (__m128i*)outputVector;
++    __m128i inputVal;
++    __m128i ret;
+-  for(;number < sixteenthPoints; number++){
+-    inputVal = _mm_load_si128(inputVectorPtr);
+-    ret = _mm_cvtepi8_epi16(inputVal);
+-    ret = _mm_slli_epi16(ret, 8); // Multiply by 256
+-    _mm_store_si128(outputVectorPtr, ret);
++    for (; number < sixteenthPoints; number++) {
++        inputVal = _mm_load_si128(inputVectorPtr);
++        ret = _mm_cvtepi8_epi16(inputVal);
++        ret = _mm_slli_epi16(ret, 8); // Multiply by 256
++        _mm_store_si128(outputVectorPtr, ret);
+-    outputVectorPtr++;
++        outputVectorPtr++;
+-    inputVal = _mm_srli_si128(inputVal, 8);
+-    ret = _mm_cvtepi8_epi16(inputVal);
+-    ret = _mm_slli_epi16(ret, 8); // Multiply by 256
+-    _mm_store_si128(outputVectorPtr, ret);
++        inputVal = _mm_srli_si128(inputVal, 8);
++        ret = _mm_cvtepi8_epi16(inputVal);
++        ret = _mm_slli_epi16(ret, 8); // Multiply by 256
++        _mm_store_si128(outputVectorPtr, ret);
+-    outputVectorPtr++;
++        outputVectorPtr++;
+-    inputVectorPtr++;
+-  }
++        inputVectorPtr++;
++    }
+-  number = sixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    outputVector[number] = (int16_t)(inputVector[number])*256;
+-  }
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        outputVector[number] = (int16_t)(inputVector[number]) * 256;
++    }
+ }
+ #endif /* LV_HAVE_SSE4_1 */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_8i_convert_16i_a_generic(int16_t* outputVector, const int8_t* inputVector,
+-                              unsigned int num_points)
++static inline void volk_8i_convert_16i_a_generic(int16_t* outputVector,
++                                                 const int8_t* inputVector,
++                                                 unsigned int num_points)
+ {
+-  int16_t* outputVectorPtr = outputVector;
+-  const int8_t* inputVectorPtr = inputVector;
+-  unsigned int number = 0;
++    int16_t* outputVectorPtr = outputVector;
++    const int8_t* inputVectorPtr = inputVector;
++    unsigned int number = 0;
+-  for(number = 0; number < num_points; number++){
+-    *outputVectorPtr++ = ((int16_t)(*inputVectorPtr++)) * 256;
+-  }
++    for (number = 0; number < num_points; number++) {
++        *outputVectorPtr++ = ((int16_t)(*inputVectorPtr++)) * 256;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -251,51 +250,51 @@ volk_8i_convert_16i_a_generic(int16_t* outputVector, const int8_t* inputVector,
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_8i_convert_16i_neon(int16_t* outputVector, const int8_t* inputVector, unsigned int num_points)
++static inline void volk_8i_convert_16i_neon(int16_t* outputVector,
++                                            const int8_t* inputVector,
++                                            unsigned int num_points)
+ {
+-  int16_t* outputVectorPtr = outputVector;
+-  const int8_t* inputVectorPtr = inputVector;
+-  unsigned int number;
+-  const unsigned int eighth_points = num_points / 8;
+-
+-  int8x8_t input_vec ;
+-  int16x8_t converted_vec;
+-
+-  // NEON doesn't have a concept of 8 bit registers, so we are really
+-  // dealing with the low half of 16-bit registers. Since this requires
+-  // a move instruction we likely do better with ASM here.
+-  for(number = 0; number < eighth_points; ++number) {
+-    input_vec = vld1_s8(inputVectorPtr);
+-    converted_vec = vmovl_s8(input_vec);
+-    //converted_vec = vmulq_s16(converted_vec, scale_factor);
+-    converted_vec = vshlq_n_s16(converted_vec, 8);
+-    vst1q_s16( outputVectorPtr, converted_vec);
+-
+-    inputVectorPtr += 8;
+-    outputVectorPtr += 8;
+-  }
+-
+-  for(number = eighth_points * 8; number < num_points; number++){
+-    *outputVectorPtr++ = ((int16_t)(*inputVectorPtr++)) * 256;
+-  }
++    int16_t* outputVectorPtr = outputVector;
++    const int8_t* inputVectorPtr = inputVector;
++    unsigned int number;
++    const unsigned int eighth_points = num_points / 8;
++
++    int8x8_t input_vec;
++    int16x8_t converted_vec;
++
++    // NEON doesn't have a concept of 8 bit registers, so we are really
++    // dealing with the low half of 16-bit registers. Since this requires
++    // a move instruction we likely do better with ASM here.
++    for (number = 0; number < eighth_points; ++number) {
++        input_vec = vld1_s8(inputVectorPtr);
++        converted_vec = vmovl_s8(input_vec);
++        // converted_vec = vmulq_s16(converted_vec, scale_factor);
++        converted_vec = vshlq_n_s16(converted_vec, 8);
++        vst1q_s16(outputVectorPtr, converted_vec);
++
++        inputVectorPtr += 8;
++        outputVectorPtr += 8;
++    }
++
++    for (number = eighth_points * 8; number < num_points; number++) {
++        *outputVectorPtr++ = ((int16_t)(*inputVectorPtr++)) * 256;
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_ORC
+-extern void
+-volk_8i_convert_16i_a_orc_impl(int16_t* outputVector, const int8_t* inputVector,
+-                               unsigned int num_points);
++extern void volk_8i_convert_16i_a_orc_impl(int16_t* outputVector,
++                                           const int8_t* inputVector,
++                                           unsigned int num_points);
+-static inline void
+-volk_8i_convert_16i_u_orc(int16_t* outputVector, const int8_t* inputVector,
+-                          unsigned int num_points)
++static inline void volk_8i_convert_16i_u_orc(int16_t* outputVector,
++                                             const int8_t* inputVector,
++                                             unsigned int num_points)
+ {
+-  volk_8i_convert_16i_a_orc_impl(outputVector, inputVector, num_points);
++    volk_8i_convert_16i_a_orc_impl(outputVector, inputVector, num_points);
+ }
+ #endif /* LV_HAVE_ORC */
+-
+ #endif /* INCLUDED_VOLK_8s_CONVERT_16s_ALIGNED8_H */
+diff --git a/kernels/volk/volk_8i_s32f_convert_32f.h b/kernels/volk/volk_8i_s32f_convert_32f.h
+index 97d160b..c3d5666 100644
+--- a/kernels/volk/volk_8i_s32f_convert_32f.h
++++ b/kernels/volk/volk_8i_s32f_convert_32f.h
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_8i_s32f_convert_32f(float* outputVector, const int8_t* inputVector, const float scalar, unsigned int num_points)
+- * \endcode
++ * void volk_8i_s32f_convert_32f(float* outputVector, const int8_t* inputVector, const
++ * float scalar, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li inputVector: The input vector of 8-bit chars.
+@@ -60,44 +60,45 @@
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_8i_s32f_convert_32f_u_avx2(float* outputVector, const int8_t* inputVector,
+-                                  const float scalar, unsigned int num_points)
++static inline void volk_8i_s32f_convert_32f_u_avx2(float* outputVector,
++                                                   const int8_t* inputVector,
++                                                   const float scalar,
++                                                   unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
+-
+-  float* outputVectorPtr = outputVector;
+-  const float iScalar = 1.0 / scalar;
+-  __m256 invScalar = _mm256_set1_ps( iScalar );
+-  const int8_t* inputVectorPtr = inputVector;
+-  __m256 ret;
+-  __m128i inputVal128;
+-  __m256i interimVal;
+-
+-  for(;number < sixteenthPoints; number++){
+-    inputVal128 = _mm_loadu_si128((__m128i*)inputVectorPtr);
+-
+-    interimVal = _mm256_cvtepi8_epi32(inputVal128);
+-    ret = _mm256_cvtepi32_ps(interimVal);
+-    ret = _mm256_mul_ps(ret, invScalar);
+-    _mm256_storeu_ps(outputVectorPtr, ret);
+-    outputVectorPtr += 8;
+-
+-    inputVal128 = _mm_srli_si128(inputVal128, 8);
+-    interimVal = _mm256_cvtepi8_epi32(inputVal128);
+-    ret = _mm256_cvtepi32_ps(interimVal);
+-    ret = _mm256_mul_ps(ret, invScalar);
+-    _mm256_storeu_ps(outputVectorPtr, ret);
+-    outputVectorPtr += 8;
+-
+-    inputVectorPtr += 16;
+-  }
+-
+-  number = sixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    outputVector[number] = (float)(inputVector[number]) * iScalar;
+-  }
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
++
++    float* outputVectorPtr = outputVector;
++    const float iScalar = 1.0 / scalar;
++    __m256 invScalar = _mm256_set1_ps(iScalar);
++    const int8_t* inputVectorPtr = inputVector;
++    __m256 ret;
++    __m128i inputVal128;
++    __m256i interimVal;
++
++    for (; number < sixteenthPoints; number++) {
++        inputVal128 = _mm_loadu_si128((__m128i*)inputVectorPtr);
++
++        interimVal = _mm256_cvtepi8_epi32(inputVal128);
++        ret = _mm256_cvtepi32_ps(interimVal);
++        ret = _mm256_mul_ps(ret, invScalar);
++        _mm256_storeu_ps(outputVectorPtr, ret);
++        outputVectorPtr += 8;
++
++        inputVal128 = _mm_srli_si128(inputVal128, 8);
++        interimVal = _mm256_cvtepi8_epi32(inputVal128);
++        ret = _mm256_cvtepi32_ps(interimVal);
++        ret = _mm256_mul_ps(ret, invScalar);
++        _mm256_storeu_ps(outputVectorPtr, ret);
++        outputVectorPtr += 8;
++
++        inputVectorPtr += 16;
++    }
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        outputVector[number] = (float)(inputVector[number]) * iScalar;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -105,80 +106,81 @@ volk_8i_s32f_convert_32f_u_avx2(float* outputVector, const int8_t* inputVector,
+ #ifdef LV_HAVE_SSE4_1
+ #include <smmintrin.h>
+-static inline void
+-volk_8i_s32f_convert_32f_u_sse4_1(float* outputVector, const int8_t* inputVector,
+-                                  const float scalar, unsigned int num_points)
++static inline void volk_8i_s32f_convert_32f_u_sse4_1(float* outputVector,
++                                                     const int8_t* inputVector,
++                                                     const float scalar,
++                                                     unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
+-
+-  float* outputVectorPtr = outputVector;
+-  const float iScalar = 1.0 / scalar;
+-  __m128 invScalar = _mm_set_ps1( iScalar );
+-  const int8_t* inputVectorPtr = inputVector;
+-  __m128 ret;
+-  __m128i inputVal;
+-  __m128i interimVal;
+-
+-  for(;number < sixteenthPoints; number++){
+-    inputVal = _mm_loadu_si128((__m128i*)inputVectorPtr);
+-
+-    interimVal = _mm_cvtepi8_epi32(inputVal);
+-    ret = _mm_cvtepi32_ps(interimVal);
+-    ret = _mm_mul_ps(ret, invScalar);
+-    _mm_storeu_ps(outputVectorPtr, ret);
+-    outputVectorPtr += 4;
+-
+-    inputVal = _mm_srli_si128(inputVal, 4);
+-    interimVal = _mm_cvtepi8_epi32(inputVal);
+-    ret = _mm_cvtepi32_ps(interimVal);
+-    ret = _mm_mul_ps(ret, invScalar);
+-    _mm_storeu_ps(outputVectorPtr, ret);
+-    outputVectorPtr += 4;
+-
+-    inputVal = _mm_srli_si128(inputVal, 4);
+-    interimVal = _mm_cvtepi8_epi32(inputVal);
+-    ret = _mm_cvtepi32_ps(interimVal);
+-    ret = _mm_mul_ps(ret, invScalar);
+-    _mm_storeu_ps(outputVectorPtr, ret);
+-    outputVectorPtr += 4;
+-
+-    inputVal = _mm_srli_si128(inputVal, 4);
+-    interimVal = _mm_cvtepi8_epi32(inputVal);
+-    ret = _mm_cvtepi32_ps(interimVal);
+-    ret = _mm_mul_ps(ret, invScalar);
+-    _mm_storeu_ps(outputVectorPtr, ret);
+-    outputVectorPtr += 4;
+-
+-    inputVectorPtr += 16;
+-  }
+-
+-  number = sixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    outputVector[number] = (float)(inputVector[number]) * iScalar;
+-  }
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
++
++    float* outputVectorPtr = outputVector;
++    const float iScalar = 1.0 / scalar;
++    __m128 invScalar = _mm_set_ps1(iScalar);
++    const int8_t* inputVectorPtr = inputVector;
++    __m128 ret;
++    __m128i inputVal;
++    __m128i interimVal;
++
++    for (; number < sixteenthPoints; number++) {
++        inputVal = _mm_loadu_si128((__m128i*)inputVectorPtr);
++
++        interimVal = _mm_cvtepi8_epi32(inputVal);
++        ret = _mm_cvtepi32_ps(interimVal);
++        ret = _mm_mul_ps(ret, invScalar);
++        _mm_storeu_ps(outputVectorPtr, ret);
++        outputVectorPtr += 4;
++
++        inputVal = _mm_srli_si128(inputVal, 4);
++        interimVal = _mm_cvtepi8_epi32(inputVal);
++        ret = _mm_cvtepi32_ps(interimVal);
++        ret = _mm_mul_ps(ret, invScalar);
++        _mm_storeu_ps(outputVectorPtr, ret);
++        outputVectorPtr += 4;
++
++        inputVal = _mm_srli_si128(inputVal, 4);
++        interimVal = _mm_cvtepi8_epi32(inputVal);
++        ret = _mm_cvtepi32_ps(interimVal);
++        ret = _mm_mul_ps(ret, invScalar);
++        _mm_storeu_ps(outputVectorPtr, ret);
++        outputVectorPtr += 4;
++
++        inputVal = _mm_srli_si128(inputVal, 4);
++        interimVal = _mm_cvtepi8_epi32(inputVal);
++        ret = _mm_cvtepi32_ps(interimVal);
++        ret = _mm_mul_ps(ret, invScalar);
++        _mm_storeu_ps(outputVectorPtr, ret);
++        outputVectorPtr += 4;
++
++        inputVectorPtr += 16;
++    }
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        outputVector[number] = (float)(inputVector[number]) * iScalar;
++    }
+ }
+ #endif /* LV_HAVE_SSE4_1 */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_8i_s32f_convert_32f_generic(float* outputVector, const int8_t* inputVector,
+-                                 const float scalar, unsigned int num_points)
++static inline void volk_8i_s32f_convert_32f_generic(float* outputVector,
++                                                    const int8_t* inputVector,
++                                                    const float scalar,
++                                                    unsigned int num_points)
+ {
+-  float* outputVectorPtr = outputVector;
+-  const int8_t* inputVectorPtr = inputVector;
+-  unsigned int number = 0;
+-  const float iScalar = 1.0 / scalar;
+-
+-  for(number = 0; number < num_points; number++){
+-    *outputVectorPtr++ = ((float)(*inputVectorPtr++)) * iScalar;
+-  }
++    float* outputVectorPtr = outputVector;
++    const int8_t* inputVectorPtr = inputVector;
++    unsigned int number = 0;
++    const float iScalar = 1.0 / scalar;
++
++    for (number = 0; number < num_points; number++) {
++        *outputVectorPtr++ = ((float)(*inputVectorPtr++)) * iScalar;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+-
+ #endif /* INCLUDED_VOLK_8s_CONVERT_32f_UNALIGNED8_H */
+ #ifndef INCLUDED_volk_8i_s32f_convert_32f_a_H
+@@ -190,195 +192,199 @@ volk_8i_s32f_convert_32f_generic(float* outputVector, const int8_t* inputVector,
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_8i_s32f_convert_32f_a_avx2(float* outputVector, const int8_t* inputVector,
+-                                  const float scalar, unsigned int num_points)
++static inline void volk_8i_s32f_convert_32f_a_avx2(float* outputVector,
++                                                   const int8_t* inputVector,
++                                                   const float scalar,
++                                                   unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
+-
+-  float* outputVectorPtr = outputVector;
+-  const float iScalar = 1.0 / scalar;
+-  __m256 invScalar = _mm256_set1_ps( iScalar );
+-  const int8_t* inputVectorPtr = inputVector;
+-  __m256 ret;
+-  __m128i inputVal128;
+-  __m256i interimVal;
+-
+-  for(;number < sixteenthPoints; number++){
+-    inputVal128 = _mm_load_si128((__m128i*)inputVectorPtr);
+-
+-    interimVal = _mm256_cvtepi8_epi32(inputVal128);
+-    ret = _mm256_cvtepi32_ps(interimVal);
+-    ret = _mm256_mul_ps(ret, invScalar);
+-    _mm256_store_ps(outputVectorPtr, ret);
+-    outputVectorPtr += 8;
+-
+-    inputVal128 = _mm_srli_si128(inputVal128, 8);
+-    interimVal = _mm256_cvtepi8_epi32(inputVal128);
+-    ret = _mm256_cvtepi32_ps(interimVal);
+-    ret = _mm256_mul_ps(ret, invScalar);
+-    _mm256_store_ps(outputVectorPtr, ret);
+-    outputVectorPtr += 8;
+-
+-    inputVectorPtr += 16;
+-  }
+-
+-  number = sixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    outputVector[number] = (float)(inputVector[number]) * iScalar;
+-  }
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
++
++    float* outputVectorPtr = outputVector;
++    const float iScalar = 1.0 / scalar;
++    __m256 invScalar = _mm256_set1_ps(iScalar);
++    const int8_t* inputVectorPtr = inputVector;
++    __m256 ret;
++    __m128i inputVal128;
++    __m256i interimVal;
++
++    for (; number < sixteenthPoints; number++) {
++        inputVal128 = _mm_load_si128((__m128i*)inputVectorPtr);
++
++        interimVal = _mm256_cvtepi8_epi32(inputVal128);
++        ret = _mm256_cvtepi32_ps(interimVal);
++        ret = _mm256_mul_ps(ret, invScalar);
++        _mm256_store_ps(outputVectorPtr, ret);
++        outputVectorPtr += 8;
++
++        inputVal128 = _mm_srli_si128(inputVal128, 8);
++        interimVal = _mm256_cvtepi8_epi32(inputVal128);
++        ret = _mm256_cvtepi32_ps(interimVal);
++        ret = _mm256_mul_ps(ret, invScalar);
++        _mm256_store_ps(outputVectorPtr, ret);
++        outputVectorPtr += 8;
++
++        inputVectorPtr += 16;
++    }
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        outputVector[number] = (float)(inputVector[number]) * iScalar;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+ #ifdef LV_HAVE_SSE4_1
+ #include <smmintrin.h>
+-static inline void
+-volk_8i_s32f_convert_32f_a_sse4_1(float* outputVector, const int8_t* inputVector,
+-                                  const float scalar, unsigned int num_points)
++static inline void volk_8i_s32f_convert_32f_a_sse4_1(float* outputVector,
++                                                     const int8_t* inputVector,
++                                                     const float scalar,
++                                                     unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
+-
+-  float* outputVectorPtr = outputVector;
+-  const float iScalar = 1.0 / scalar;
+-  __m128 invScalar = _mm_set_ps1(iScalar);
+-  const int8_t* inputVectorPtr = inputVector;
+-  __m128 ret;
+-  __m128i inputVal;
+-  __m128i interimVal;
+-
+-  for(;number < sixteenthPoints; number++){
+-    inputVal = _mm_load_si128((__m128i*)inputVectorPtr);
+-
+-    interimVal = _mm_cvtepi8_epi32(inputVal);
+-    ret = _mm_cvtepi32_ps(interimVal);
+-    ret = _mm_mul_ps(ret, invScalar);
+-    _mm_store_ps(outputVectorPtr, ret);
+-    outputVectorPtr += 4;
+-
+-    inputVal = _mm_srli_si128(inputVal, 4);
+-    interimVal = _mm_cvtepi8_epi32(inputVal);
+-    ret = _mm_cvtepi32_ps(interimVal);
+-    ret = _mm_mul_ps(ret, invScalar);
+-    _mm_store_ps(outputVectorPtr, ret);
+-    outputVectorPtr += 4;
+-
+-    inputVal = _mm_srli_si128(inputVal, 4);
+-    interimVal = _mm_cvtepi8_epi32(inputVal);
+-    ret = _mm_cvtepi32_ps(interimVal);
+-    ret = _mm_mul_ps(ret, invScalar);
+-    _mm_store_ps(outputVectorPtr, ret);
+-    outputVectorPtr += 4;
+-
+-    inputVal = _mm_srli_si128(inputVal, 4);
+-    interimVal = _mm_cvtepi8_epi32(inputVal);
+-    ret = _mm_cvtepi32_ps(interimVal);
+-    ret = _mm_mul_ps(ret, invScalar);
+-    _mm_store_ps(outputVectorPtr, ret);
+-    outputVectorPtr += 4;
+-
+-    inputVectorPtr += 16;
+-  }
+-
+-  number = sixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    outputVector[number] = (float)(inputVector[number]) * iScalar;
+-  }
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
++
++    float* outputVectorPtr = outputVector;
++    const float iScalar = 1.0 / scalar;
++    __m128 invScalar = _mm_set_ps1(iScalar);
++    const int8_t* inputVectorPtr = inputVector;
++    __m128 ret;
++    __m128i inputVal;
++    __m128i interimVal;
++
++    for (; number < sixteenthPoints; number++) {
++        inputVal = _mm_load_si128((__m128i*)inputVectorPtr);
++
++        interimVal = _mm_cvtepi8_epi32(inputVal);
++        ret = _mm_cvtepi32_ps(interimVal);
++        ret = _mm_mul_ps(ret, invScalar);
++        _mm_store_ps(outputVectorPtr, ret);
++        outputVectorPtr += 4;
++
++        inputVal = _mm_srli_si128(inputVal, 4);
++        interimVal = _mm_cvtepi8_epi32(inputVal);
++        ret = _mm_cvtepi32_ps(interimVal);
++        ret = _mm_mul_ps(ret, invScalar);
++        _mm_store_ps(outputVectorPtr, ret);
++        outputVectorPtr += 4;
++
++        inputVal = _mm_srli_si128(inputVal, 4);
++        interimVal = _mm_cvtepi8_epi32(inputVal);
++        ret = _mm_cvtepi32_ps(interimVal);
++        ret = _mm_mul_ps(ret, invScalar);
++        _mm_store_ps(outputVectorPtr, ret);
++        outputVectorPtr += 4;
++
++        inputVal = _mm_srli_si128(inputVal, 4);
++        interimVal = _mm_cvtepi8_epi32(inputVal);
++        ret = _mm_cvtepi32_ps(interimVal);
++        ret = _mm_mul_ps(ret, invScalar);
++        _mm_store_ps(outputVectorPtr, ret);
++        outputVectorPtr += 4;
++
++        inputVectorPtr += 16;
++    }
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        outputVector[number] = (float)(inputVector[number]) * iScalar;
++    }
+ }
+ #endif /* LV_HAVE_SSE4_1 */
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_8i_s32f_convert_32f_neon(float* outputVector, const int8_t* inputVector,
+-                              const float scalar, unsigned int num_points)
++static inline void volk_8i_s32f_convert_32f_neon(float* outputVector,
++                                                 const int8_t* inputVector,
++                                                 const float scalar,
++                                                 unsigned int num_points)
+ {
+-  float* outputVectorPtr = outputVector;
+-  const int8_t* inputVectorPtr = inputVector;
+-
+-  const float iScalar = 1.0 / scalar;
+-  const float32x4_t qiScalar = vdupq_n_f32(iScalar);
+-
+-  int8x8x2_t inputVal;
+-  float32x4x2_t outputFloat;
+-  int16x8_t tmp;
+-  
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
+-  for(;number < sixteenthPoints; number++){
+-      __VOLK_PREFETCH(inputVectorPtr+16);
+-
+-        inputVal = vld2_s8(inputVectorPtr);
+-        inputVal = vzip_s8(inputVal.val[0], inputVal.val[1]);
+-        inputVectorPtr += 16;
+-
+-      tmp = vmovl_s8(inputVal.val[0]);
+-
+-      outputFloat.val[0] = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp)));
+-      outputFloat.val[0] = vmulq_f32(outputFloat.val[0], qiScalar);
+-      vst1q_f32(outputVectorPtr, outputFloat.val[0]);
+-      outputVectorPtr += 4;
+-
+-      outputFloat.val[1] = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp)));
+-      outputFloat.val[1] = vmulq_f32(outputFloat.val[1], qiScalar);
+-      vst1q_f32(outputVectorPtr, outputFloat.val[1]);
+-      outputVectorPtr += 4;
+-
+-      tmp = vmovl_s8(inputVal.val[1]);
+-
+-      outputFloat.val[0] = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp)));
+-      outputFloat.val[0] = vmulq_f32(outputFloat.val[0], qiScalar);
+-      vst1q_f32(outputVectorPtr, outputFloat.val[0]);
+-      outputVectorPtr += 4;
+-
+-      outputFloat.val[1] = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp)));
+-      outputFloat.val[1] = vmulq_f32(outputFloat.val[1], qiScalar);
+-      vst1q_f32(outputVectorPtr, outputFloat.val[1]);
+-      outputVectorPtr += 4;
+-  }
+-  for(number = sixteenthPoints * 16; number < num_points; number++){
+-      *outputVectorPtr++ = ((float)(*inputVectorPtr++)) * iScalar;
+-  }
++    float* outputVectorPtr = outputVector;
++    const int8_t* inputVectorPtr = inputVector;
++
++    const float iScalar = 1.0 / scalar;
++    const float32x4_t qiScalar = vdupq_n_f32(iScalar);
++
++    int8x8x2_t inputVal;
++    float32x4x2_t outputFloat;
++    int16x8_t tmp;
++
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
++    for (; number < sixteenthPoints; number++) {
++        __VOLK_PREFETCH(inputVectorPtr + 16);
++
++        inputVal = vld2_s8(inputVectorPtr);
++        inputVal = vzip_s8(inputVal.val[0], inputVal.val[1]);
++        inputVectorPtr += 16;
++
++        tmp = vmovl_s8(inputVal.val[0]);
++
++        outputFloat.val[0] = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp)));
++        outputFloat.val[0] = vmulq_f32(outputFloat.val[0], qiScalar);
++        vst1q_f32(outputVectorPtr, outputFloat.val[0]);
++        outputVectorPtr += 4;
++
++        outputFloat.val[1] = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp)));
++        outputFloat.val[1] = vmulq_f32(outputFloat.val[1], qiScalar);
++        vst1q_f32(outputVectorPtr, outputFloat.val[1]);
++        outputVectorPtr += 4;
++
++        tmp = vmovl_s8(inputVal.val[1]);
++
++        outputFloat.val[0] = vcvtq_f32_s32(vmovl_s16(vget_low_s16(tmp)));
++        outputFloat.val[0] = vmulq_f32(outputFloat.val[0], qiScalar);
++        vst1q_f32(outputVectorPtr, outputFloat.val[0]);
++        outputVectorPtr += 4;
++
++        outputFloat.val[1] = vcvtq_f32_s32(vmovl_s16(vget_high_s16(tmp)));
++        outputFloat.val[1] = vmulq_f32(outputFloat.val[1], qiScalar);
++        vst1q_f32(outputVectorPtr, outputFloat.val[1]);
++        outputVectorPtr += 4;
++    }
++    for (number = sixteenthPoints * 16; number < num_points; number++) {
++        *outputVectorPtr++ = ((float)(*inputVectorPtr++)) * iScalar;
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_8i_s32f_convert_32f_a_generic(float* outputVector, const int8_t* inputVector,
+-                                   const float scalar, unsigned int num_points)
++static inline void volk_8i_s32f_convert_32f_a_generic(float* outputVector,
++                                                      const int8_t* inputVector,
++                                                      const float scalar,
++                                                      unsigned int num_points)
+ {
+-  float* outputVectorPtr = outputVector;
+-  const int8_t* inputVectorPtr = inputVector;
+-  unsigned int number = 0;
+-  const float iScalar = 1.0 / scalar;
+-
+-  for(number = 0; number < num_points; number++){
+-    *outputVectorPtr++ = ((float)(*inputVectorPtr++)) * iScalar;
+-  }
++    float* outputVectorPtr = outputVector;
++    const int8_t* inputVectorPtr = inputVector;
++    unsigned int number = 0;
++    const float iScalar = 1.0 / scalar;
++
++    for (number = 0; number < num_points; number++) {
++        *outputVectorPtr++ = ((float)(*inputVectorPtr++)) * iScalar;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_ORC
+-extern void
+-volk_8i_s32f_convert_32f_a_orc_impl(float* outputVector, const int8_t* inputVector,
+-                                    const float scalar, unsigned int num_points);
+-
+-static inline void
+-volk_8i_s32f_convert_32f_u_orc(float* outputVector, const int8_t* inputVector,
+-                               const float scalar, unsigned int num_points)
++extern void volk_8i_s32f_convert_32f_a_orc_impl(float* outputVector,
++                                                const int8_t* inputVector,
++                                                const float scalar,
++                                                unsigned int num_points);
++
++static inline void volk_8i_s32f_convert_32f_u_orc(float* outputVector,
++                                                  const int8_t* inputVector,
++                                                  const float scalar,
++                                                  unsigned int num_points)
+ {
+-  float invscalar = 1.0 / scalar;
+-  volk_8i_s32f_convert_32f_a_orc_impl(outputVector, inputVector, invscalar, num_points);
++    float invscalar = 1.0 / scalar;
++    volk_8i_s32f_convert_32f_a_orc_impl(outputVector, inputVector, invscalar, num_points);
+ }
+ #endif /* LV_HAVE_ORC */
+-
+ #endif /* INCLUDED_VOLK_8s_CONVERT_32f_ALIGNED8_H */
+-
+diff --git a/kernels/volk/volk_8ic_deinterleave_16i_x2.h b/kernels/volk/volk_8ic_deinterleave_16i_x2.h
+index b4cf251..fa998a0 100644
+--- a/kernels/volk/volk_8ic_deinterleave_16i_x2.h
++++ b/kernels/volk/volk_8ic_deinterleave_16i_x2.h
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_8ic_deinterleave_16i_x2(int16_t* iBuffer, int16_t* qBuffer, const lv_8sc_t* complexVector, unsigned int num_points)
+- * \endcode
++ * void volk_8ic_deinterleave_16i_x2(int16_t* iBuffer, int16_t* qBuffer, const lv_8sc_t*
++ * complexVector, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li complexVector: The complex input vector.
+@@ -60,91 +60,150 @@
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_8ic_deinterleave_16i_x2_a_avx2(int16_t* iBuffer, int16_t* qBuffer,
+-                                   const lv_8sc_t* complexVector, unsigned int num_points)
++static inline void volk_8ic_deinterleave_16i_x2_a_avx2(int16_t* iBuffer,
++                                                       int16_t* qBuffer,
++                                                       const lv_8sc_t* complexVector,
++                                                       unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const int8_t* complexVectorPtr = (int8_t*)complexVector;
+-  int16_t* iBufferPtr = iBuffer;
+-  int16_t* qBufferPtr = qBuffer;
+-  __m256i MoveMask = _mm256_set_epi8(15, 13, 11, 9, 7, 5, 3, 1, 14, 12, 10, 8, 6, 4, 2, 0, 15, 13, 11, 9, 7, 5, 3, 1, 14, 12, 10, 8, 6, 4, 2, 0);  
+-  __m256i complexVal, iOutputVal, qOutputVal;
+-  __m128i iOutputVal0, qOutputVal0;
+-
+-  unsigned int sixteenthPoints = num_points / 16;
+-
+-  for(number = 0; number < sixteenthPoints; number++){
+-    complexVal = _mm256_load_si256((__m256i*)complexVectorPtr);  complexVectorPtr += 32;    
+-
+-    complexVal = _mm256_shuffle_epi8(complexVal, MoveMask);
+-    complexVal = _mm256_permute4x64_epi64(complexVal, 0xd8);
+-
+-    iOutputVal0 = _mm256_extracti128_si256(complexVal, 0);
+-    qOutputVal0 = _mm256_extracti128_si256(complexVal, 1);
+-
+-    iOutputVal = _mm256_cvtepi8_epi16(iOutputVal0);
+-    iOutputVal = _mm256_slli_epi16(iOutputVal, 8);
+-
+-    qOutputVal = _mm256_cvtepi8_epi16(qOutputVal0);
+-    qOutputVal = _mm256_slli_epi16(qOutputVal, 8);
+-
+-    _mm256_store_si256((__m256i*)iBufferPtr, iOutputVal);   
+-    _mm256_store_si256((__m256i*)qBufferPtr, qOutputVal);
+-
+-    iBufferPtr += 16;
+-    qBufferPtr += 16;
+-  }
+-
+-  number = sixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = ((int16_t)*complexVectorPtr++) * 256;   // load 8 bit Complexvector into 16 bit, shift left by 8 bits and store
+-    *qBufferPtr++ = ((int16_t)*complexVectorPtr++) * 256;
+-  }
++    unsigned int number = 0;
++    const int8_t* complexVectorPtr = (int8_t*)complexVector;
++    int16_t* iBufferPtr = iBuffer;
++    int16_t* qBufferPtr = qBuffer;
++    __m256i MoveMask = _mm256_set_epi8(15,
++                                       13,
++                                       11,
++                                       9,
++                                       7,
++                                       5,
++                                       3,
++                                       1,
++                                       14,
++                                       12,
++                                       10,
++                                       8,
++                                       6,
++                                       4,
++                                       2,
++                                       0,
++                                       15,
++                                       13,
++                                       11,
++                                       9,
++                                       7,
++                                       5,
++                                       3,
++                                       1,
++                                       14,
++                                       12,
++                                       10,
++                                       8,
++                                       6,
++                                       4,
++                                       2,
++                                       0);
++    __m256i complexVal, iOutputVal, qOutputVal;
++    __m128i iOutputVal0, qOutputVal0;
++
++    unsigned int sixteenthPoints = num_points / 16;
++
++    for (number = 0; number < sixteenthPoints; number++) {
++        complexVal = _mm256_load_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32;
++
++        complexVal = _mm256_shuffle_epi8(complexVal, MoveMask);
++        complexVal = _mm256_permute4x64_epi64(complexVal, 0xd8);
++
++        iOutputVal0 = _mm256_extracti128_si256(complexVal, 0);
++        qOutputVal0 = _mm256_extracti128_si256(complexVal, 1);
++
++        iOutputVal = _mm256_cvtepi8_epi16(iOutputVal0);
++        iOutputVal = _mm256_slli_epi16(iOutputVal, 8);
++
++        qOutputVal = _mm256_cvtepi8_epi16(qOutputVal0);
++        qOutputVal = _mm256_slli_epi16(qOutputVal, 8);
++
++        _mm256_store_si256((__m256i*)iBufferPtr, iOutputVal);
++        _mm256_store_si256((__m256i*)qBufferPtr, qOutputVal);
++
++        iBufferPtr += 16;
++        qBufferPtr += 16;
++    }
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ =
++            ((int16_t)*complexVectorPtr++) *
++            256; // load 8 bit Complexvector into 16 bit, shift left by 8 bits and store
++        *qBufferPtr++ = ((int16_t)*complexVectorPtr++) * 256;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+ #ifdef LV_HAVE_SSE4_1
+ #include <smmintrin.h>
+-static inline void
+-volk_8ic_deinterleave_16i_x2_a_sse4_1(int16_t* iBuffer, int16_t* qBuffer,
+-                                      const lv_8sc_t* complexVector, unsigned int num_points)
++static inline void volk_8ic_deinterleave_16i_x2_a_sse4_1(int16_t* iBuffer,
++                                                         int16_t* qBuffer,
++                                                         const lv_8sc_t* complexVector,
++                                                         unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const int8_t* complexVectorPtr = (int8_t*)complexVector;
+-  int16_t* iBufferPtr = iBuffer;
+-  int16_t* qBufferPtr = qBuffer;
+-  __m128i iMoveMask = _mm_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 14, 12, 10, 8, 6, 4, 2, 0);  // set 16 byte values
+-  __m128i qMoveMask = _mm_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 15, 13, 11, 9, 7, 5, 3, 1);
+-  __m128i complexVal, iOutputVal, qOutputVal;
+-
+-  unsigned int eighthPoints = num_points / 8;
+-
+-  for(number = 0; number < eighthPoints; number++){
+-    complexVal = _mm_load_si128((__m128i*)complexVectorPtr);  complexVectorPtr += 16;   // aligned load
+-
+-    iOutputVal = _mm_shuffle_epi8(complexVal, iMoveMask);   // shuffle 16 bytes of 128bit complexVal
+-    qOutputVal = _mm_shuffle_epi8(complexVal, qMoveMask);
+-
+-    iOutputVal = _mm_cvtepi8_epi16(iOutputVal);     // fills 2-byte sign extended versions of lower 8 bytes of input to output
+-    iOutputVal = _mm_slli_epi16(iOutputVal, 8);     // shift in left by 8 bits, each of the 8 16-bit integers, shift in with zeros
+-
+-    qOutputVal = _mm_cvtepi8_epi16(qOutputVal);
+-    qOutputVal = _mm_slli_epi16(qOutputVal, 8);
+-
+-    _mm_store_si128((__m128i*)iBufferPtr, iOutputVal);  // aligned store
+-    _mm_store_si128((__m128i*)qBufferPtr, qOutputVal);
+-
+-    iBufferPtr += 8;
+-    qBufferPtr += 8;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = ((int16_t)*complexVectorPtr++) * 256;   // load 8 bit Complexvector into 16 bit, shift left by 8 bits and store
+-    *qBufferPtr++ = ((int16_t)*complexVectorPtr++) * 256;
+-  }
++    unsigned int number = 0;
++    const int8_t* complexVectorPtr = (int8_t*)complexVector;
++    int16_t* iBufferPtr = iBuffer;
++    int16_t* qBufferPtr = qBuffer;
++    __m128i iMoveMask = _mm_set_epi8(0x80,
++                                     0x80,
++                                     0x80,
++                                     0x80,
++                                     0x80,
++                                     0x80,
++                                     0x80,
++                                     0x80,
++                                     14,
++                                     12,
++                                     10,
++                                     8,
++                                     6,
++                                     4,
++                                     2,
++                                     0); // set 16 byte values
++    __m128i qMoveMask = _mm_set_epi8(
++        0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 15, 13, 11, 9, 7, 5, 3, 1);
++    __m128i complexVal, iOutputVal, qOutputVal;
++
++    unsigned int eighthPoints = num_points / 8;
++
++    for (number = 0; number < eighthPoints; number++) {
++        complexVal = _mm_load_si128((__m128i*)complexVectorPtr);
++        complexVectorPtr += 16; // aligned load
++
++        iOutputVal = _mm_shuffle_epi8(complexVal,
++                                      iMoveMask); // shuffle 16 bytes of 128bit complexVal
++        qOutputVal = _mm_shuffle_epi8(complexVal, qMoveMask);
++
++        iOutputVal = _mm_cvtepi8_epi16(iOutputVal); // fills 2-byte sign extended versions
++                                                    // of lower 8 bytes of input to output
++        iOutputVal =
++            _mm_slli_epi16(iOutputVal, 8); // shift in left by 8 bits, each of the 8
++                                           // 16-bit integers, shift in with zeros
++
++        qOutputVal = _mm_cvtepi8_epi16(qOutputVal);
++        qOutputVal = _mm_slli_epi16(qOutputVal, 8);
++
++        _mm_store_si128((__m128i*)iBufferPtr, iOutputVal); // aligned store
++        _mm_store_si128((__m128i*)qBufferPtr, qOutputVal);
++
++        iBufferPtr += 8;
++        qBufferPtr += 8;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ =
++            ((int16_t)*complexVectorPtr++) *
++            256; // load 8 bit Complexvector into 16 bit, shift left by 8 bits and store
++        *qBufferPtr++ = ((int16_t)*complexVectorPtr++) * 256;
++    }
+ }
+ #endif /* LV_HAVE_SSE4_1 */
+@@ -152,86 +211,111 @@ volk_8ic_deinterleave_16i_x2_a_sse4_1(int16_t* iBuffer, int16_t* qBuffer,
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_8ic_deinterleave_16i_x2_a_avx(int16_t* iBuffer, int16_t* qBuffer,
+-                                   const lv_8sc_t* complexVector, unsigned int num_points)
++static inline void volk_8ic_deinterleave_16i_x2_a_avx(int16_t* iBuffer,
++                                                      int16_t* qBuffer,
++                                                      const lv_8sc_t* complexVector,
++                                                      unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const int8_t* complexVectorPtr = (int8_t*)complexVector;
+-  int16_t* iBufferPtr = iBuffer;
+-  int16_t* qBufferPtr = qBuffer;
+-  __m128i iMoveMask = _mm_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 14, 12, 10, 8, 6, 4, 2, 0);  // set 16 byte values
+-  __m128i qMoveMask = _mm_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 15, 13, 11, 9, 7, 5, 3, 1);
+-  __m256i complexVal, iOutputVal, qOutputVal;
+-  __m128i complexVal1, complexVal0;
+-  __m128i iOutputVal1, iOutputVal0, qOutputVal1, qOutputVal0;
+-
+-  unsigned int sixteenthPoints = num_points / 16;
+-
+-  for(number = 0; number < sixteenthPoints; number++){
+-    complexVal = _mm256_load_si256((__m256i*)complexVectorPtr);  complexVectorPtr += 32;    // aligned load
+-
+-    // Extract from complexVal to iOutputVal and qOutputVal
+-    complexVal1 = _mm256_extractf128_si256(complexVal, 1);
+-    complexVal0 = _mm256_extractf128_si256(complexVal, 0);
+-
+-    iOutputVal1 = _mm_shuffle_epi8(complexVal1, iMoveMask);     // shuffle 16 bytes of 128bit complexVal
+-    iOutputVal0 = _mm_shuffle_epi8(complexVal0, iMoveMask);
+-    qOutputVal1 = _mm_shuffle_epi8(complexVal1, qMoveMask);
+-    qOutputVal0 = _mm_shuffle_epi8(complexVal0, qMoveMask);
+-
+-    iOutputVal1 = _mm_cvtepi8_epi16(iOutputVal1);   // fills 2-byte sign extended versions of lower 8 bytes of input to output
+-    iOutputVal1 = _mm_slli_epi16(iOutputVal1, 8);   // shift in left by 8 bits, each of the 8 16-bit integers, shift in with zeros
+-    iOutputVal0 = _mm_cvtepi8_epi16(iOutputVal0);
+-    iOutputVal0 = _mm_slli_epi16(iOutputVal0, 8);
+-
+-    qOutputVal1 = _mm_cvtepi8_epi16(qOutputVal1);
+-    qOutputVal1 = _mm_slli_epi16(qOutputVal1, 8);
+-    qOutputVal0 = _mm_cvtepi8_epi16(qOutputVal0);
+-    qOutputVal0 = _mm_slli_epi16(qOutputVal0, 8);
+-
+-    // Pack iOutputVal0,1 to iOutputVal
+-    __m256i dummy = _mm256_setzero_si256();
+-    iOutputVal = _mm256_insertf128_si256(dummy, iOutputVal0, 0);
+-    iOutputVal = _mm256_insertf128_si256(iOutputVal, iOutputVal1, 1);
+-    qOutputVal = _mm256_insertf128_si256(dummy, qOutputVal0, 0);
+-    qOutputVal = _mm256_insertf128_si256(qOutputVal, qOutputVal1, 1);
+-
+-    _mm256_store_si256((__m256i*)iBufferPtr, iOutputVal);   // aligned store
+-    _mm256_store_si256((__m256i*)qBufferPtr, qOutputVal);
+-
+-    iBufferPtr += 16;
+-    qBufferPtr += 16;
+-  }
+-
+-  number = sixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = ((int16_t)*complexVectorPtr++) * 256;   // load 8 bit Complexvector into 16 bit, shift left by 8 bits and store
+-    *qBufferPtr++ = ((int16_t)*complexVectorPtr++) * 256;
+-  }
++    unsigned int number = 0;
++    const int8_t* complexVectorPtr = (int8_t*)complexVector;
++    int16_t* iBufferPtr = iBuffer;
++    int16_t* qBufferPtr = qBuffer;
++    __m128i iMoveMask = _mm_set_epi8(0x80,
++                                     0x80,
++                                     0x80,
++                                     0x80,
++                                     0x80,
++                                     0x80,
++                                     0x80,
++                                     0x80,
++                                     14,
++                                     12,
++                                     10,
++                                     8,
++                                     6,
++                                     4,
++                                     2,
++                                     0); // set 16 byte values
++    __m128i qMoveMask = _mm_set_epi8(
++        0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 15, 13, 11, 9, 7, 5, 3, 1);
++    __m256i complexVal, iOutputVal, qOutputVal;
++    __m128i complexVal1, complexVal0;
++    __m128i iOutputVal1, iOutputVal0, qOutputVal1, qOutputVal0;
++
++    unsigned int sixteenthPoints = num_points / 16;
++
++    for (number = 0; number < sixteenthPoints; number++) {
++        complexVal = _mm256_load_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32; // aligned load
++
++        // Extract from complexVal to iOutputVal and qOutputVal
++        complexVal1 = _mm256_extractf128_si256(complexVal, 1);
++        complexVal0 = _mm256_extractf128_si256(complexVal, 0);
++
++        iOutputVal1 = _mm_shuffle_epi8(
++            complexVal1, iMoveMask); // shuffle 16 bytes of 128bit complexVal
++        iOutputVal0 = _mm_shuffle_epi8(complexVal0, iMoveMask);
++        qOutputVal1 = _mm_shuffle_epi8(complexVal1, qMoveMask);
++        qOutputVal0 = _mm_shuffle_epi8(complexVal0, qMoveMask);
++
++        iOutputVal1 =
++            _mm_cvtepi8_epi16(iOutputVal1); // fills 2-byte sign extended versions of
++                                            // lower 8 bytes of input to output
++        iOutputVal1 =
++            _mm_slli_epi16(iOutputVal1, 8); // shift in left by 8 bits, each of the 8
++                                            // 16-bit integers, shift in with zeros
++        iOutputVal0 = _mm_cvtepi8_epi16(iOutputVal0);
++        iOutputVal0 = _mm_slli_epi16(iOutputVal0, 8);
++
++        qOutputVal1 = _mm_cvtepi8_epi16(qOutputVal1);
++        qOutputVal1 = _mm_slli_epi16(qOutputVal1, 8);
++        qOutputVal0 = _mm_cvtepi8_epi16(qOutputVal0);
++        qOutputVal0 = _mm_slli_epi16(qOutputVal0, 8);
++
++        // Pack iOutputVal0,1 to iOutputVal
++        __m256i dummy = _mm256_setzero_si256();
++        iOutputVal = _mm256_insertf128_si256(dummy, iOutputVal0, 0);
++        iOutputVal = _mm256_insertf128_si256(iOutputVal, iOutputVal1, 1);
++        qOutputVal = _mm256_insertf128_si256(dummy, qOutputVal0, 0);
++        qOutputVal = _mm256_insertf128_si256(qOutputVal, qOutputVal1, 1);
++
++        _mm256_store_si256((__m256i*)iBufferPtr, iOutputVal); // aligned store
++        _mm256_store_si256((__m256i*)qBufferPtr, qOutputVal);
++
++        iBufferPtr += 16;
++        qBufferPtr += 16;
++    }
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ =
++            ((int16_t)*complexVectorPtr++) *
++            256; // load 8 bit Complexvector into 16 bit, shift left by 8 bits and store
++        *qBufferPtr++ = ((int16_t)*complexVectorPtr++) * 256;
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_8ic_deinterleave_16i_x2_generic(int16_t* iBuffer, int16_t* qBuffer,
+-                                     const lv_8sc_t* complexVector, unsigned int num_points)
++static inline void volk_8ic_deinterleave_16i_x2_generic(int16_t* iBuffer,
++                                                        int16_t* qBuffer,
++                                                        const lv_8sc_t* complexVector,
++                                                        unsigned int num_points)
+ {
+-  const int8_t* complexVectorPtr = (const int8_t*)complexVector;
+-  int16_t* iBufferPtr = iBuffer;
+-  int16_t* qBufferPtr = qBuffer;
+-  unsigned int number;
+-  for(number = 0; number < num_points; number++){
+-    *iBufferPtr++ = (int16_t)(*complexVectorPtr++)*256;
+-    *qBufferPtr++ = (int16_t)(*complexVectorPtr++)*256;
+-  }
++    const int8_t* complexVectorPtr = (const int8_t*)complexVector;
++    int16_t* iBufferPtr = iBuffer;
++    int16_t* qBufferPtr = qBuffer;
++    unsigned int number;
++    for (number = 0; number < num_points; number++) {
++        *iBufferPtr++ = (int16_t)(*complexVectorPtr++) * 256;
++        *qBufferPtr++ = (int16_t)(*complexVectorPtr++) * 256;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+-
+ #endif /* INCLUDED_volk_8ic_deinterleave_16i_x2_a_H */
+ #ifndef INCLUDED_volk_8ic_deinterleave_16i_x2_u_H
+@@ -243,47 +327,82 @@ volk_8ic_deinterleave_16i_x2_generic(int16_t* iBuffer, int16_t* qBuffer,
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_8ic_deinterleave_16i_x2_u_avx2(int16_t* iBuffer, int16_t* qBuffer,
+-                                   const lv_8sc_t* complexVector, unsigned int num_points)
++static inline void volk_8ic_deinterleave_16i_x2_u_avx2(int16_t* iBuffer,
++                                                       int16_t* qBuffer,
++                                                       const lv_8sc_t* complexVector,
++                                                       unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const int8_t* complexVectorPtr = (int8_t*)complexVector;
+-  int16_t* iBufferPtr = iBuffer;
+-  int16_t* qBufferPtr = qBuffer;
+-  __m256i MoveMask = _mm256_set_epi8(15, 13, 11, 9, 7, 5, 3, 1, 14, 12, 10, 8, 6, 4, 2, 0, 15, 13, 11, 9, 7, 5, 3, 1, 14, 12, 10, 8, 6, 4, 2, 0);  
+-  __m256i complexVal, iOutputVal, qOutputVal;
+-  __m128i iOutputVal0, qOutputVal0;
+-
+-  unsigned int sixteenthPoints = num_points / 16;
+-
+-  for(number = 0; number < sixteenthPoints; number++){
+-    complexVal = _mm256_loadu_si256((__m256i*)complexVectorPtr);  complexVectorPtr += 32;    
+-
+-    complexVal = _mm256_shuffle_epi8(complexVal, MoveMask);
+-    complexVal = _mm256_permute4x64_epi64(complexVal, 0xd8);
+-
+-    iOutputVal0 = _mm256_extracti128_si256(complexVal, 0);
+-    qOutputVal0 = _mm256_extracti128_si256(complexVal, 1);
+-
+-    iOutputVal = _mm256_cvtepi8_epi16(iOutputVal0);
+-    iOutputVal = _mm256_slli_epi16(iOutputVal, 8);
+-
+-    qOutputVal = _mm256_cvtepi8_epi16(qOutputVal0);
+-    qOutputVal = _mm256_slli_epi16(qOutputVal, 8);
+-
+-    _mm256_storeu_si256((__m256i*)iBufferPtr, iOutputVal);   
+-    _mm256_storeu_si256((__m256i*)qBufferPtr, qOutputVal);
+-
+-    iBufferPtr += 16;
+-    qBufferPtr += 16;
+-  }
+-
+-  number = sixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = ((int16_t)*complexVectorPtr++) * 256;   // load 8 bit Complexvector into 16 bit, shift left by 8 bits and store
+-    *qBufferPtr++ = ((int16_t)*complexVectorPtr++) * 256;
+-  }
++    unsigned int number = 0;
++    const int8_t* complexVectorPtr = (int8_t*)complexVector;
++    int16_t* iBufferPtr = iBuffer;
++    int16_t* qBufferPtr = qBuffer;
++    __m256i MoveMask = _mm256_set_epi8(15,
++                                       13,
++                                       11,
++                                       9,
++                                       7,
++                                       5,
++                                       3,
++                                       1,
++                                       14,
++                                       12,
++                                       10,
++                                       8,
++                                       6,
++                                       4,
++                                       2,
++                                       0,
++                                       15,
++                                       13,
++                                       11,
++                                       9,
++                                       7,
++                                       5,
++                                       3,
++                                       1,
++                                       14,
++                                       12,
++                                       10,
++                                       8,
++                                       6,
++                                       4,
++                                       2,
++                                       0);
++    __m256i complexVal, iOutputVal, qOutputVal;
++    __m128i iOutputVal0, qOutputVal0;
++
++    unsigned int sixteenthPoints = num_points / 16;
++
++    for (number = 0; number < sixteenthPoints; number++) {
++        complexVal = _mm256_loadu_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32;
++
++        complexVal = _mm256_shuffle_epi8(complexVal, MoveMask);
++        complexVal = _mm256_permute4x64_epi64(complexVal, 0xd8);
++
++        iOutputVal0 = _mm256_extracti128_si256(complexVal, 0);
++        qOutputVal0 = _mm256_extracti128_si256(complexVal, 1);
++
++        iOutputVal = _mm256_cvtepi8_epi16(iOutputVal0);
++        iOutputVal = _mm256_slli_epi16(iOutputVal, 8);
++
++        qOutputVal = _mm256_cvtepi8_epi16(qOutputVal0);
++        qOutputVal = _mm256_slli_epi16(qOutputVal, 8);
++
++        _mm256_storeu_si256((__m256i*)iBufferPtr, iOutputVal);
++        _mm256_storeu_si256((__m256i*)qBufferPtr, qOutputVal);
++
++        iBufferPtr += 16;
++        qBufferPtr += 16;
++    }
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ =
++            ((int16_t)*complexVectorPtr++) *
++            256; // load 8 bit Complexvector into 16 bit, shift left by 8 bits and store
++        *qBufferPtr++ = ((int16_t)*complexVectorPtr++) * 256;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+ #endif /* INCLUDED_volk_8ic_deinterleave_16i_x2_u_H */
+diff --git a/kernels/volk/volk_8ic_deinterleave_real_16i.h b/kernels/volk/volk_8ic_deinterleave_real_16i.h
+index f15879a..aaebb47 100644
+--- a/kernels/volk/volk_8ic_deinterleave_real_16i.h
++++ b/kernels/volk/volk_8ic_deinterleave_real_16i.h
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_8ic_deinterleave_real_16i(int16_t* iBuffer, const lv_8sc_t* complexVector, unsigned int num_points)
+- * \endcode
++ * void volk_8ic_deinterleave_real_16i(int16_t* iBuffer, const lv_8sc_t* complexVector,
++ * unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li complexVector: The complex input vector.
+@@ -60,75 +60,109 @@
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_8ic_deinterleave_real_16i_a_avx2(int16_t* iBuffer, const lv_8sc_t* complexVector,
+-                                     unsigned int num_points)
++static inline void volk_8ic_deinterleave_real_16i_a_avx2(int16_t* iBuffer,
++                                                         const lv_8sc_t* complexVector,
++                                                         unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const int8_t* complexVectorPtr = (int8_t*)complexVector;
+-  int16_t* iBufferPtr = iBuffer;
+-  __m256i moveMask = _mm256_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 14, 12, 10, 8, 6, 4, 2, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 14, 12, 10, 8, 6, 4, 2, 0);
+-  __m256i complexVal, outputVal;
+-  __m128i outputVal0;
+-
+-  unsigned int sixteenthPoints = num_points / 16;
+-
+-  for(number = 0; number < sixteenthPoints; number++){
+-    complexVal = _mm256_load_si256((__m256i*)complexVectorPtr);  complexVectorPtr += 32;
+-
+-    complexVal = _mm256_shuffle_epi8(complexVal, moveMask);
+-    complexVal = _mm256_permute4x64_epi64(complexVal, 0xd8);
+-
+-    outputVal0 = _mm256_extractf128_si256(complexVal, 0);
+-
+-    outputVal = _mm256_cvtepi8_epi16(outputVal0);
+-    outputVal = _mm256_slli_epi16(outputVal, 7);
+-
+-    _mm256_store_si256((__m256i*)iBufferPtr, outputVal);
+-
+-    iBufferPtr += 16;
+-  }
+-
+-  number = sixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = ((int16_t)*complexVectorPtr++) * 128;
+-    complexVectorPtr++;
+-  }
++    unsigned int number = 0;
++    const int8_t* complexVectorPtr = (int8_t*)complexVector;
++    int16_t* iBufferPtr = iBuffer;
++    __m256i moveMask = _mm256_set_epi8(0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       14,
++                                       12,
++                                       10,
++                                       8,
++                                       6,
++                                       4,
++                                       2,
++                                       0,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       14,
++                                       12,
++                                       10,
++                                       8,
++                                       6,
++                                       4,
++                                       2,
++                                       0);
++    __m256i complexVal, outputVal;
++    __m128i outputVal0;
++
++    unsigned int sixteenthPoints = num_points / 16;
++
++    for (number = 0; number < sixteenthPoints; number++) {
++        complexVal = _mm256_load_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32;
++
++        complexVal = _mm256_shuffle_epi8(complexVal, moveMask);
++        complexVal = _mm256_permute4x64_epi64(complexVal, 0xd8);
++
++        outputVal0 = _mm256_extractf128_si256(complexVal, 0);
++
++        outputVal = _mm256_cvtepi8_epi16(outputVal0);
++        outputVal = _mm256_slli_epi16(outputVal, 7);
++
++        _mm256_store_si256((__m256i*)iBufferPtr, outputVal);
++
++        iBufferPtr += 16;
++    }
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = ((int16_t)*complexVectorPtr++) * 128;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+ #ifdef LV_HAVE_SSE4_1
+ #include <smmintrin.h>
+-static inline void
+-volk_8ic_deinterleave_real_16i_a_sse4_1(int16_t* iBuffer, const lv_8sc_t* complexVector,
+-                                        unsigned int num_points)
++static inline void volk_8ic_deinterleave_real_16i_a_sse4_1(int16_t* iBuffer,
++                                                           const lv_8sc_t* complexVector,
++                                                           unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const int8_t* complexVectorPtr = (int8_t*)complexVector;
+-  int16_t* iBufferPtr = iBuffer;
+-  __m128i moveMask = _mm_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 14, 12, 10, 8, 6, 4, 2, 0);
+-  __m128i complexVal, outputVal;
++    unsigned int number = 0;
++    const int8_t* complexVectorPtr = (int8_t*)complexVector;
++    int16_t* iBufferPtr = iBuffer;
++    __m128i moveMask = _mm_set_epi8(
++        0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 14, 12, 10, 8, 6, 4, 2, 0);
++    __m128i complexVal, outputVal;
+-  unsigned int eighthPoints = num_points / 8;
++    unsigned int eighthPoints = num_points / 8;
+-  for(number = 0; number < eighthPoints; number++){
+-    complexVal = _mm_load_si128((__m128i*)complexVectorPtr);  complexVectorPtr += 16;
++    for (number = 0; number < eighthPoints; number++) {
++        complexVal = _mm_load_si128((__m128i*)complexVectorPtr);
++        complexVectorPtr += 16;
+-    complexVal = _mm_shuffle_epi8(complexVal, moveMask);
++        complexVal = _mm_shuffle_epi8(complexVal, moveMask);
+-    outputVal = _mm_cvtepi8_epi16(complexVal);
+-    outputVal = _mm_slli_epi16(outputVal, 7);
++        outputVal = _mm_cvtepi8_epi16(complexVal);
++        outputVal = _mm_slli_epi16(outputVal, 7);
+-    _mm_store_si128((__m128i*)iBufferPtr, outputVal);
+-    iBufferPtr += 8;
+-  }
++        _mm_store_si128((__m128i*)iBufferPtr, outputVal);
++        iBufferPtr += 8;
++    }
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = ((int16_t)*complexVectorPtr++) * 128;
+-    complexVectorPtr++;
+-  }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = ((int16_t)*complexVectorPtr++) * 128;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_SSE4_1 */
+@@ -136,63 +170,65 @@ volk_8ic_deinterleave_real_16i_a_sse4_1(int16_t* iBuffer, const lv_8sc_t* comple
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_8ic_deinterleave_real_16i_a_avx(int16_t* iBuffer, const lv_8sc_t* complexVector,
+-                                     unsigned int num_points)
++static inline void volk_8ic_deinterleave_real_16i_a_avx(int16_t* iBuffer,
++                                                        const lv_8sc_t* complexVector,
++                                                        unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const int8_t* complexVectorPtr = (int8_t*)complexVector;
+-  int16_t* iBufferPtr = iBuffer;
+-  __m128i moveMask = _mm_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 14, 12, 10, 8, 6, 4, 2, 0);
+-  __m256i complexVal, outputVal;
+-  __m128i complexVal1, complexVal0, outputVal1, outputVal0;
+-
+-  unsigned int sixteenthPoints = num_points / 16;
+-
+-  for(number = 0; number < sixteenthPoints; number++){
+-    complexVal = _mm256_load_si256((__m256i*)complexVectorPtr);  complexVectorPtr += 32;
+-
+-    complexVal1 = _mm256_extractf128_si256(complexVal, 1);
+-    complexVal0 = _mm256_extractf128_si256(complexVal, 0);
+-
+-    outputVal1 = _mm_shuffle_epi8(complexVal1, moveMask);
+-    outputVal0 = _mm_shuffle_epi8(complexVal0, moveMask);
+-
+-    outputVal1 = _mm_cvtepi8_epi16(outputVal1);
+-    outputVal1 = _mm_slli_epi16(outputVal1, 7);
+-    outputVal0 = _mm_cvtepi8_epi16(outputVal0);
+-    outputVal0 = _mm_slli_epi16(outputVal0, 7);
+-
+-    __m256i dummy = _mm256_setzero_si256();
+-    outputVal = _mm256_insertf128_si256(dummy, outputVal0, 0);
+-    outputVal = _mm256_insertf128_si256(outputVal, outputVal1, 1);
+-    _mm256_store_si256((__m256i*)iBufferPtr, outputVal);
+-
+-    iBufferPtr += 16;
+-  }
+-
+-  number = sixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = ((int16_t)*complexVectorPtr++) * 128;
+-    complexVectorPtr++;
+-  }
++    unsigned int number = 0;
++    const int8_t* complexVectorPtr = (int8_t*)complexVector;
++    int16_t* iBufferPtr = iBuffer;
++    __m128i moveMask = _mm_set_epi8(
++        0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 14, 12, 10, 8, 6, 4, 2, 0);
++    __m256i complexVal, outputVal;
++    __m128i complexVal1, complexVal0, outputVal1, outputVal0;
++
++    unsigned int sixteenthPoints = num_points / 16;
++
++    for (number = 0; number < sixteenthPoints; number++) {
++        complexVal = _mm256_load_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32;
++
++        complexVal1 = _mm256_extractf128_si256(complexVal, 1);
++        complexVal0 = _mm256_extractf128_si256(complexVal, 0);
++
++        outputVal1 = _mm_shuffle_epi8(complexVal1, moveMask);
++        outputVal0 = _mm_shuffle_epi8(complexVal0, moveMask);
++
++        outputVal1 = _mm_cvtepi8_epi16(outputVal1);
++        outputVal1 = _mm_slli_epi16(outputVal1, 7);
++        outputVal0 = _mm_cvtepi8_epi16(outputVal0);
++        outputVal0 = _mm_slli_epi16(outputVal0, 7);
++
++        __m256i dummy = _mm256_setzero_si256();
++        outputVal = _mm256_insertf128_si256(dummy, outputVal0, 0);
++        outputVal = _mm256_insertf128_si256(outputVal, outputVal1, 1);
++        _mm256_store_si256((__m256i*)iBufferPtr, outputVal);
++
++        iBufferPtr += 16;
++    }
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = ((int16_t)*complexVectorPtr++) * 128;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_8ic_deinterleave_real_16i_generic(int16_t* iBuffer, const lv_8sc_t* complexVector,
+-                                       unsigned int num_points)
++static inline void volk_8ic_deinterleave_real_16i_generic(int16_t* iBuffer,
++                                                          const lv_8sc_t* complexVector,
++                                                          unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const int8_t* complexVectorPtr = (const int8_t*)complexVector;
+-  int16_t* iBufferPtr = iBuffer;
+-  for(number = 0; number < num_points; number++){
+-    *iBufferPtr++ = ((int16_t)(*complexVectorPtr++)) * 128;
+-    complexVectorPtr++;
+-  }
++    unsigned int number = 0;
++    const int8_t* complexVectorPtr = (const int8_t*)complexVector;
++    int16_t* iBufferPtr = iBuffer;
++    for (number = 0; number < num_points; number++) {
++        *iBufferPtr++ = ((int16_t)(*complexVectorPtr++)) * 128;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -209,40 +245,72 @@ volk_8ic_deinterleave_real_16i_generic(int16_t* iBuffer, const lv_8sc_t* complex
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_8ic_deinterleave_real_16i_u_avx2(int16_t* iBuffer, const lv_8sc_t* complexVector,
+-                                     unsigned int num_points)
++static inline void volk_8ic_deinterleave_real_16i_u_avx2(int16_t* iBuffer,
++                                                         const lv_8sc_t* complexVector,
++                                                         unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const int8_t* complexVectorPtr = (int8_t*)complexVector;
+-  int16_t* iBufferPtr = iBuffer;
+-  __m256i moveMask = _mm256_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 14, 12, 10, 8, 6, 4, 2, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 14, 12, 10, 8, 6, 4, 2, 0);
+-  __m256i complexVal, outputVal;
+-  __m128i outputVal0;
+-
+-  unsigned int sixteenthPoints = num_points / 16;
+-
+-  for(number = 0; number < sixteenthPoints; number++){
+-    complexVal = _mm256_loadu_si256((__m256i*)complexVectorPtr);  complexVectorPtr += 32;
+-
+-    complexVal = _mm256_shuffle_epi8(complexVal, moveMask);
+-    complexVal = _mm256_permute4x64_epi64(complexVal, 0xd8);
+-
+-    outputVal0 = _mm256_extractf128_si256(complexVal, 0);
+-
+-    outputVal = _mm256_cvtepi8_epi16(outputVal0);
+-    outputVal = _mm256_slli_epi16(outputVal, 7);
+-
+-    _mm256_storeu_si256((__m256i*)iBufferPtr, outputVal);
+-
+-    iBufferPtr += 16;
+-  }
+-
+-  number = sixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = ((int16_t)*complexVectorPtr++) * 128;
+-    complexVectorPtr++;
+-  }
++    unsigned int number = 0;
++    const int8_t* complexVectorPtr = (int8_t*)complexVector;
++    int16_t* iBufferPtr = iBuffer;
++    __m256i moveMask = _mm256_set_epi8(0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       14,
++                                       12,
++                                       10,
++                                       8,
++                                       6,
++                                       4,
++                                       2,
++                                       0,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       14,
++                                       12,
++                                       10,
++                                       8,
++                                       6,
++                                       4,
++                                       2,
++                                       0);
++    __m256i complexVal, outputVal;
++    __m128i outputVal0;
++
++    unsigned int sixteenthPoints = num_points / 16;
++
++    for (number = 0; number < sixteenthPoints; number++) {
++        complexVal = _mm256_loadu_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32;
++
++        complexVal = _mm256_shuffle_epi8(complexVal, moveMask);
++        complexVal = _mm256_permute4x64_epi64(complexVal, 0xd8);
++
++        outputVal0 = _mm256_extractf128_si256(complexVal, 0);
++
++        outputVal = _mm256_cvtepi8_epi16(outputVal0);
++        outputVal = _mm256_slli_epi16(outputVal, 7);
++
++        _mm256_storeu_si256((__m256i*)iBufferPtr, outputVal);
++
++        iBufferPtr += 16;
++    }
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = ((int16_t)*complexVectorPtr++) * 128;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+ #endif /* INCLUDED_volk_8ic_deinterleave_real_16i_u_H */
+diff --git a/kernels/volk/volk_8ic_deinterleave_real_8i.h b/kernels/volk/volk_8ic_deinterleave_real_8i.h
+index 6cc3f15..a1a835d 100644
+--- a/kernels/volk/volk_8ic_deinterleave_real_8i.h
++++ b/kernels/volk/volk_8ic_deinterleave_real_8i.h
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_8ic_deinterleave_real_8i(int8_t* iBuffer, const lv_8sc_t* complexVector, unsigned int num_points)
+- * \endcode
++ * void volk_8ic_deinterleave_real_8i(int8_t* iBuffer, const lv_8sc_t* complexVector,
++ * unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li complexVector: The complex input vector.
+@@ -59,40 +59,102 @@
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_8ic_deinterleave_real_8i_a_avx2(int8_t* iBuffer, const lv_8sc_t* complexVector,
+-                                    unsigned int num_points)
++static inline void volk_8ic_deinterleave_real_8i_a_avx2(int8_t* iBuffer,
++                                                        const lv_8sc_t* complexVector,
++                                                        unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const int8_t* complexVectorPtr = (int8_t*)complexVector;
+-  int8_t* iBufferPtr = iBuffer;
+-  __m256i moveMask1 = _mm256_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 14, 12, 10, 8, 6, 4, 2, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 14, 12, 10, 8, 6, 4, 2, 0);
+-  __m256i moveMask2 = _mm256_set_epi8(14, 12, 10, 8, 6, 4, 2, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 14, 12, 10, 8, 6, 4, 2, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80);
+-  __m256i complexVal1, complexVal2, outputVal;
+-
+-  unsigned int thirtysecondPoints = num_points / 32;
+-
+-  for(number = 0; number < thirtysecondPoints; number++){
+-
+-    complexVal1 = _mm256_load_si256((__m256i*)complexVectorPtr);
+-    complexVectorPtr += 32;
+-    complexVal2 = _mm256_load_si256((__m256i*)complexVectorPtr);
+-    complexVectorPtr += 32;
+-
+-    complexVal1 = _mm256_shuffle_epi8(complexVal1, moveMask1);
+-    complexVal2 = _mm256_shuffle_epi8(complexVal2, moveMask2);
+-    outputVal = _mm256_or_si256(complexVal1, complexVal2);
+-    outputVal = _mm256_permute4x64_epi64(outputVal, 0xd8);
+-
+-    _mm256_store_si256((__m256i*)iBufferPtr, outputVal);
+-    iBufferPtr += 32;
+-  }
+-
+-  number = thirtysecondPoints * 32;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = *complexVectorPtr++;
+-    complexVectorPtr++;
+-  }
++    unsigned int number = 0;
++    const int8_t* complexVectorPtr = (int8_t*)complexVector;
++    int8_t* iBufferPtr = iBuffer;
++    __m256i moveMask1 = _mm256_set_epi8(0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        14,
++                                        12,
++                                        10,
++                                        8,
++                                        6,
++                                        4,
++                                        2,
++                                        0,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        14,
++                                        12,
++                                        10,
++                                        8,
++                                        6,
++                                        4,
++                                        2,
++                                        0);
++    __m256i moveMask2 = _mm256_set_epi8(14,
++                                        12,
++                                        10,
++                                        8,
++                                        6,
++                                        4,
++                                        2,
++                                        0,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        14,
++                                        12,
++                                        10,
++                                        8,
++                                        6,
++                                        4,
++                                        2,
++                                        0,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80);
++    __m256i complexVal1, complexVal2, outputVal;
++
++    unsigned int thirtysecondPoints = num_points / 32;
++
++    for (number = 0; number < thirtysecondPoints; number++) {
++
++        complexVal1 = _mm256_load_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32;
++        complexVal2 = _mm256_load_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32;
++
++        complexVal1 = _mm256_shuffle_epi8(complexVal1, moveMask1);
++        complexVal2 = _mm256_shuffle_epi8(complexVal2, moveMask2);
++        outputVal = _mm256_or_si256(complexVal1, complexVal2);
++        outputVal = _mm256_permute4x64_epi64(outputVal, 0xd8);
++
++        _mm256_store_si256((__m256i*)iBufferPtr, outputVal);
++        iBufferPtr += 32;
++    }
++
++    number = thirtysecondPoints * 32;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = *complexVectorPtr++;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -100,37 +162,41 @@ volk_8ic_deinterleave_real_8i_a_avx2(int8_t* iBuffer, const lv_8sc_t* complexVec
+ #ifdef LV_HAVE_SSSE3
+ #include <tmmintrin.h>
+-static inline void
+-volk_8ic_deinterleave_real_8i_a_ssse3(int8_t* iBuffer, const lv_8sc_t* complexVector,
+-                                      unsigned int num_points)
++static inline void volk_8ic_deinterleave_real_8i_a_ssse3(int8_t* iBuffer,
++                                                         const lv_8sc_t* complexVector,
++                                                         unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const int8_t* complexVectorPtr = (int8_t*)complexVector;
+-  int8_t* iBufferPtr = iBuffer;
+-  __m128i moveMask1 = _mm_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 14, 12, 10, 8, 6, 4, 2, 0);
+-  __m128i moveMask2 = _mm_set_epi8(14, 12, 10, 8, 6, 4, 2, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80);
+-  __m128i complexVal1, complexVal2, outputVal;
+-
+-  unsigned int sixteenthPoints = num_points / 16;
+-
+-  for(number = 0; number < sixteenthPoints; number++){
+-    complexVal1 = _mm_load_si128((__m128i*)complexVectorPtr);  complexVectorPtr += 16;
+-    complexVal2 = _mm_load_si128((__m128i*)complexVectorPtr);  complexVectorPtr += 16;
+-
+-    complexVal1 = _mm_shuffle_epi8(complexVal1, moveMask1);
+-    complexVal2 = _mm_shuffle_epi8(complexVal2, moveMask2);
+-
+-    outputVal = _mm_or_si128(complexVal1, complexVal2);
+-
+-    _mm_store_si128((__m128i*)iBufferPtr, outputVal);
+-    iBufferPtr += 16;
+-  }
+-
+-  number = sixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = *complexVectorPtr++;
+-    complexVectorPtr++;
+-  }
++    unsigned int number = 0;
++    const int8_t* complexVectorPtr = (int8_t*)complexVector;
++    int8_t* iBufferPtr = iBuffer;
++    __m128i moveMask1 = _mm_set_epi8(
++        0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 14, 12, 10, 8, 6, 4, 2, 0);
++    __m128i moveMask2 = _mm_set_epi8(
++        14, 12, 10, 8, 6, 4, 2, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80);
++    __m128i complexVal1, complexVal2, outputVal;
++
++    unsigned int sixteenthPoints = num_points / 16;
++
++    for (number = 0; number < sixteenthPoints; number++) {
++        complexVal1 = _mm_load_si128((__m128i*)complexVectorPtr);
++        complexVectorPtr += 16;
++        complexVal2 = _mm_load_si128((__m128i*)complexVectorPtr);
++        complexVectorPtr += 16;
++
++        complexVal1 = _mm_shuffle_epi8(complexVal1, moveMask1);
++        complexVal2 = _mm_shuffle_epi8(complexVal2, moveMask2);
++
++        outputVal = _mm_or_si128(complexVal1, complexVal2);
++
++        _mm_store_si128((__m128i*)iBufferPtr, outputVal);
++        iBufferPtr += 16;
++    }
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = *complexVectorPtr++;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_SSSE3 */
+@@ -138,72 +204,75 @@ volk_8ic_deinterleave_real_8i_a_ssse3(int8_t* iBuffer, const lv_8sc_t* complexVe
+ #ifdef LV_HAVE_AVX
+ #include <immintrin.h>
+-static inline void
+-volk_8ic_deinterleave_real_8i_a_avx(int8_t* iBuffer, const lv_8sc_t* complexVector,
+-                                    unsigned int num_points)
++static inline void volk_8ic_deinterleave_real_8i_a_avx(int8_t* iBuffer,
++                                                       const lv_8sc_t* complexVector,
++                                                       unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const int8_t* complexVectorPtr = (int8_t*)complexVector;
+-  int8_t* iBufferPtr = iBuffer;
+-  __m128i moveMaskL = _mm_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 14, 12, 10, 8, 6, 4, 2, 0);
+-  __m128i moveMaskH = _mm_set_epi8(14, 12, 10, 8, 6, 4, 2, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80);
+-  __m256i complexVal1, complexVal2, outputVal;
+-  __m128i complexVal1H, complexVal1L, complexVal2H, complexVal2L, outputVal1, outputVal2;
+-
+-  unsigned int thirtysecondPoints = num_points / 32;
+-
+-  for(number = 0; number < thirtysecondPoints; number++){
+-
+-    complexVal1 = _mm256_load_si256((__m256i*)complexVectorPtr);
+-    complexVectorPtr += 32;
+-    complexVal2 = _mm256_load_si256((__m256i*)complexVectorPtr);
+-    complexVectorPtr += 32;
+-
+-    complexVal1H = _mm256_extractf128_si256(complexVal1, 1);
+-    complexVal1L = _mm256_extractf128_si256(complexVal1, 0);
+-    complexVal2H = _mm256_extractf128_si256(complexVal2, 1);
+-    complexVal2L = _mm256_extractf128_si256(complexVal2, 0);
+-
+-    complexVal1H = _mm_shuffle_epi8(complexVal1H, moveMaskH);
+-    complexVal1L = _mm_shuffle_epi8(complexVal1L, moveMaskL);
+-    outputVal1 = _mm_or_si128(complexVal1H, complexVal1L);
+-
+-
+-    complexVal2H = _mm_shuffle_epi8(complexVal2H, moveMaskH);
+-    complexVal2L = _mm_shuffle_epi8(complexVal2L, moveMaskL);
+-    outputVal2 = _mm_or_si128(complexVal2H, complexVal2L);
+-
+-    __m256i dummy = _mm256_setzero_si256();
+-    outputVal = _mm256_insertf128_si256(dummy, outputVal1, 0);
+-    outputVal = _mm256_insertf128_si256(outputVal, outputVal2, 1);
+-
+-
+-    _mm256_store_si256((__m256i*)iBufferPtr, outputVal);
+-    iBufferPtr += 32;
+-  }
+-
+-  number = thirtysecondPoints * 32;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = *complexVectorPtr++;
+-    complexVectorPtr++;
+-  }
++    unsigned int number = 0;
++    const int8_t* complexVectorPtr = (int8_t*)complexVector;
++    int8_t* iBufferPtr = iBuffer;
++    __m128i moveMaskL = _mm_set_epi8(
++        0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 14, 12, 10, 8, 6, 4, 2, 0);
++    __m128i moveMaskH = _mm_set_epi8(
++        14, 12, 10, 8, 6, 4, 2, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80);
++    __m256i complexVal1, complexVal2, outputVal;
++    __m128i complexVal1H, complexVal1L, complexVal2H, complexVal2L, outputVal1,
++        outputVal2;
++
++    unsigned int thirtysecondPoints = num_points / 32;
++
++    for (number = 0; number < thirtysecondPoints; number++) {
++
++        complexVal1 = _mm256_load_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32;
++        complexVal2 = _mm256_load_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32;
++
++        complexVal1H = _mm256_extractf128_si256(complexVal1, 1);
++        complexVal1L = _mm256_extractf128_si256(complexVal1, 0);
++        complexVal2H = _mm256_extractf128_si256(complexVal2, 1);
++        complexVal2L = _mm256_extractf128_si256(complexVal2, 0);
++
++        complexVal1H = _mm_shuffle_epi8(complexVal1H, moveMaskH);
++        complexVal1L = _mm_shuffle_epi8(complexVal1L, moveMaskL);
++        outputVal1 = _mm_or_si128(complexVal1H, complexVal1L);
++
++
++        complexVal2H = _mm_shuffle_epi8(complexVal2H, moveMaskH);
++        complexVal2L = _mm_shuffle_epi8(complexVal2L, moveMaskL);
++        outputVal2 = _mm_or_si128(complexVal2H, complexVal2L);
++
++        __m256i dummy = _mm256_setzero_si256();
++        outputVal = _mm256_insertf128_si256(dummy, outputVal1, 0);
++        outputVal = _mm256_insertf128_si256(outputVal, outputVal2, 1);
++
++
++        _mm256_store_si256((__m256i*)iBufferPtr, outputVal);
++        iBufferPtr += 32;
++    }
++
++    number = thirtysecondPoints * 32;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = *complexVectorPtr++;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX */
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_8ic_deinterleave_real_8i_generic(int8_t* iBuffer, const lv_8sc_t* complexVector,
+-                                      unsigned int num_points)
++static inline void volk_8ic_deinterleave_real_8i_generic(int8_t* iBuffer,
++                                                         const lv_8sc_t* complexVector,
++                                                         unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const int8_t* complexVectorPtr = (int8_t*)complexVector;
+-  int8_t* iBufferPtr = iBuffer;
+-  for(number = 0; number < num_points; number++){
+-    *iBufferPtr++ = *complexVectorPtr++;
+-    complexVectorPtr++;
+-  }
++    unsigned int number = 0;
++    const int8_t* complexVectorPtr = (int8_t*)complexVector;
++    int8_t* iBufferPtr = iBuffer;
++    for (number = 0; number < num_points; number++) {
++        *iBufferPtr++ = *complexVectorPtr++;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -211,26 +280,27 @@ volk_8ic_deinterleave_real_8i_generic(int8_t* iBuffer, const lv_8sc_t* complexVe
+ #ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+-static inline void
+-volk_8ic_deinterleave_real_8i_neon(int8_t* iBuffer, const lv_8sc_t* complexVector, unsigned int num_points)
++static inline void volk_8ic_deinterleave_real_8i_neon(int8_t* iBuffer,
++                                                      const lv_8sc_t* complexVector,
++                                                      unsigned int num_points)
+ {
+-  unsigned int number;
+-  unsigned int sixteenth_points = num_points / 16;
+-
+-  int8x16x2_t input_vector;
+-  for(number=0; number < sixteenth_points; ++number) {
+-    input_vector = vld2q_s8((int8_t*) complexVector );
+-    vst1q_s8(iBuffer, input_vector.val[0]);
+-    iBuffer += 16;
+-    complexVector += 16;
+-  }
+-
+-  const int8_t* complexVectorPtr = (int8_t*)complexVector;
+-  int8_t* iBufferPtr = iBuffer;
+-  for(number = sixteenth_points*16; number < num_points; number++){
+-    *iBufferPtr++ = *complexVectorPtr++;
+-    complexVectorPtr++;
+-  }
++    unsigned int number;
++    unsigned int sixteenth_points = num_points / 16;
++
++    int8x16x2_t input_vector;
++    for (number = 0; number < sixteenth_points; ++number) {
++        input_vector = vld2q_s8((int8_t*)complexVector);
++        vst1q_s8(iBuffer, input_vector.val[0]);
++        iBuffer += 16;
++        complexVector += 16;
++    }
++
++    const int8_t* complexVectorPtr = (int8_t*)complexVector;
++    int8_t* iBufferPtr = iBuffer;
++    for (number = sixteenth_points * 16; number < num_points; number++) {
++        *iBufferPtr++ = *complexVectorPtr++;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_NEON */
+@@ -246,40 +316,102 @@ volk_8ic_deinterleave_real_8i_neon(int8_t* iBuffer, const lv_8sc_t* complexVecto
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_8ic_deinterleave_real_8i_u_avx2(int8_t* iBuffer, const lv_8sc_t* complexVector,
+-                                    unsigned int num_points)
++static inline void volk_8ic_deinterleave_real_8i_u_avx2(int8_t* iBuffer,
++                                                        const lv_8sc_t* complexVector,
++                                                        unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const int8_t* complexVectorPtr = (int8_t*)complexVector;
+-  int8_t* iBufferPtr = iBuffer;
+-  __m256i moveMask1 = _mm256_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 14, 12, 10, 8, 6, 4, 2, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 14, 12, 10, 8, 6, 4, 2, 0);
+-  __m256i moveMask2 = _mm256_set_epi8(14, 12, 10, 8, 6, 4, 2, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 14, 12, 10, 8, 6, 4, 2, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80);
+-  __m256i complexVal1, complexVal2, outputVal;
+-
+-  unsigned int thirtysecondPoints = num_points / 32;
+-
+-  for(number = 0; number < thirtysecondPoints; number++){
+-
+-    complexVal1 = _mm256_loadu_si256((__m256i*)complexVectorPtr);
+-    complexVectorPtr += 32;
+-    complexVal2 = _mm256_loadu_si256((__m256i*)complexVectorPtr);
+-    complexVectorPtr += 32;
+-
+-    complexVal1 = _mm256_shuffle_epi8(complexVal1, moveMask1);
+-    complexVal2 = _mm256_shuffle_epi8(complexVal2, moveMask2);
+-    outputVal = _mm256_or_si256(complexVal1, complexVal2);
+-    outputVal = _mm256_permute4x64_epi64(outputVal, 0xd8);
+-
+-    _mm256_storeu_si256((__m256i*)iBufferPtr, outputVal);
+-    iBufferPtr += 32;
+-  }
+-
+-  number = thirtysecondPoints * 32;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = *complexVectorPtr++;
+-    complexVectorPtr++;
+-  }
++    unsigned int number = 0;
++    const int8_t* complexVectorPtr = (int8_t*)complexVector;
++    int8_t* iBufferPtr = iBuffer;
++    __m256i moveMask1 = _mm256_set_epi8(0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        14,
++                                        12,
++                                        10,
++                                        8,
++                                        6,
++                                        4,
++                                        2,
++                                        0,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        14,
++                                        12,
++                                        10,
++                                        8,
++                                        6,
++                                        4,
++                                        2,
++                                        0);
++    __m256i moveMask2 = _mm256_set_epi8(14,
++                                        12,
++                                        10,
++                                        8,
++                                        6,
++                                        4,
++                                        2,
++                                        0,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        14,
++                                        12,
++                                        10,
++                                        8,
++                                        6,
++                                        4,
++                                        2,
++                                        0,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80);
++    __m256i complexVal1, complexVal2, outputVal;
++
++    unsigned int thirtysecondPoints = num_points / 32;
++
++    for (number = 0; number < thirtysecondPoints; number++) {
++
++        complexVal1 = _mm256_loadu_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32;
++        complexVal2 = _mm256_loadu_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32;
++
++        complexVal1 = _mm256_shuffle_epi8(complexVal1, moveMask1);
++        complexVal2 = _mm256_shuffle_epi8(complexVal2, moveMask2);
++        outputVal = _mm256_or_si256(complexVal1, complexVal2);
++        outputVal = _mm256_permute4x64_epi64(outputVal, 0xd8);
++
++        _mm256_storeu_si256((__m256i*)iBufferPtr, outputVal);
++        iBufferPtr += 32;
++    }
++
++    number = thirtysecondPoints * 32;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = *complexVectorPtr++;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+diff --git a/kernels/volk/volk_8ic_s32f_deinterleave_32f_x2.h b/kernels/volk/volk_8ic_s32f_deinterleave_32f_x2.h
+index 736f7c0..f622752 100644
+--- a/kernels/volk/volk_8ic_s32f_deinterleave_32f_x2.h
++++ b/kernels/volk/volk_8ic_s32f_deinterleave_32f_x2.h
+@@ -31,8 +31,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_8ic_s32f_deinterleave_32f_x2(float* iBuffer, float* qBuffer, const lv_8sc_t* complexVector, const float scalar, unsigned int num_points)
+- * \endcode
++ * void volk_8ic_s32f_deinterleave_32f_x2(float* iBuffer, float* qBuffer, const lv_8sc_t*
++ * complexVector, const float scalar, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li complexVector: The complex input vector.
+@@ -56,74 +56,79 @@
+ #ifndef INCLUDED_volk_8ic_s32f_deinterleave_32f_x2_a_H
+ #define INCLUDED_volk_8ic_s32f_deinterleave_32f_x2_a_H
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+ #include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_SSE4_1
+ #include <smmintrin.h>
+ static inline void
+-volk_8ic_s32f_deinterleave_32f_x2_a_sse4_1(float* iBuffer, float* qBuffer, const lv_8sc_t* complexVector,
+-                                           const float scalar, unsigned int num_points)
++volk_8ic_s32f_deinterleave_32f_x2_a_sse4_1(float* iBuffer,
++                                           float* qBuffer,
++                                           const lv_8sc_t* complexVector,
++                                           const float scalar,
++                                           unsigned int num_points)
+ {
+-  float* iBufferPtr = iBuffer;
+-  float* qBufferPtr = qBuffer;
+-
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-  __m128 iFloatValue, qFloatValue;
+-
+-  const float iScalar= 1.0 / scalar;
+-  __m128 invScalar = _mm_set_ps1(iScalar);
+-  __m128i complexVal, iIntVal, qIntVal, iComplexVal, qComplexVal;
+-  int8_t* complexVectorPtr = (int8_t*)complexVector;
+-
+-  __m128i iMoveMask = _mm_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 14, 12, 10, 8, 6, 4, 2, 0);
+-  __m128i qMoveMask = _mm_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 15, 13, 11, 9, 7, 5, 3, 1);
+-
+-  for(;number < eighthPoints; number++){
+-    complexVal = _mm_load_si128((__m128i*)complexVectorPtr); complexVectorPtr += 16;
+-    iComplexVal = _mm_shuffle_epi8(complexVal, iMoveMask);
+-    qComplexVal = _mm_shuffle_epi8(complexVal, qMoveMask);
+-
+-    iIntVal = _mm_cvtepi8_epi32(iComplexVal);
+-    iFloatValue = _mm_cvtepi32_ps(iIntVal);
+-    iFloatValue = _mm_mul_ps(iFloatValue, invScalar);
+-    _mm_store_ps(iBufferPtr, iFloatValue);
+-    iBufferPtr += 4;
+-
+-    iComplexVal = _mm_srli_si128(iComplexVal, 4);
+-
+-    iIntVal = _mm_cvtepi8_epi32(iComplexVal);
+-    iFloatValue = _mm_cvtepi32_ps(iIntVal);
+-    iFloatValue = _mm_mul_ps(iFloatValue, invScalar);
+-    _mm_store_ps(iBufferPtr, iFloatValue);
+-    iBufferPtr += 4;
+-
+-    qIntVal = _mm_cvtepi8_epi32(qComplexVal);
+-    qFloatValue = _mm_cvtepi32_ps(qIntVal);
+-    qFloatValue = _mm_mul_ps(qFloatValue, invScalar);
+-    _mm_store_ps(qBufferPtr, qFloatValue);
+-    qBufferPtr += 4;
+-
+-    qComplexVal = _mm_srli_si128(qComplexVal, 4);
+-
+-    qIntVal = _mm_cvtepi8_epi32(qComplexVal);
+-    qFloatValue = _mm_cvtepi32_ps(qIntVal);
+-    qFloatValue = _mm_mul_ps(qFloatValue, invScalar);
+-    _mm_store_ps(qBufferPtr, qFloatValue);
+-
+-    qBufferPtr += 4;
+-  }
+-
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = (float)(*complexVectorPtr++) * iScalar;
+-    *qBufferPtr++ = (float)(*complexVectorPtr++) * iScalar;
+-  }
+-
++    float* iBufferPtr = iBuffer;
++    float* qBufferPtr = qBuffer;
++
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++    __m128 iFloatValue, qFloatValue;
++
++    const float iScalar = 1.0 / scalar;
++    __m128 invScalar = _mm_set_ps1(iScalar);
++    __m128i complexVal, iIntVal, qIntVal, iComplexVal, qComplexVal;
++    int8_t* complexVectorPtr = (int8_t*)complexVector;
++
++    __m128i iMoveMask = _mm_set_epi8(
++        0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 14, 12, 10, 8, 6, 4, 2, 0);
++    __m128i qMoveMask = _mm_set_epi8(
++        0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 15, 13, 11, 9, 7, 5, 3, 1);
++
++    for (; number < eighthPoints; number++) {
++        complexVal = _mm_load_si128((__m128i*)complexVectorPtr);
++        complexVectorPtr += 16;
++        iComplexVal = _mm_shuffle_epi8(complexVal, iMoveMask);
++        qComplexVal = _mm_shuffle_epi8(complexVal, qMoveMask);
++
++        iIntVal = _mm_cvtepi8_epi32(iComplexVal);
++        iFloatValue = _mm_cvtepi32_ps(iIntVal);
++        iFloatValue = _mm_mul_ps(iFloatValue, invScalar);
++        _mm_store_ps(iBufferPtr, iFloatValue);
++        iBufferPtr += 4;
++
++        iComplexVal = _mm_srli_si128(iComplexVal, 4);
++
++        iIntVal = _mm_cvtepi8_epi32(iComplexVal);
++        iFloatValue = _mm_cvtepi32_ps(iIntVal);
++        iFloatValue = _mm_mul_ps(iFloatValue, invScalar);
++        _mm_store_ps(iBufferPtr, iFloatValue);
++        iBufferPtr += 4;
++
++        qIntVal = _mm_cvtepi8_epi32(qComplexVal);
++        qFloatValue = _mm_cvtepi32_ps(qIntVal);
++        qFloatValue = _mm_mul_ps(qFloatValue, invScalar);
++        _mm_store_ps(qBufferPtr, qFloatValue);
++        qBufferPtr += 4;
++
++        qComplexVal = _mm_srli_si128(qComplexVal, 4);
++
++        qIntVal = _mm_cvtepi8_epi32(qComplexVal);
++        qFloatValue = _mm_cvtepi32_ps(qIntVal);
++        qFloatValue = _mm_mul_ps(qFloatValue, invScalar);
++        _mm_store_ps(qBufferPtr, qFloatValue);
++
++        qBufferPtr += 4;
++    }
++
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = (float)(*complexVectorPtr++) * iScalar;
++        *qBufferPtr++ = (float)(*complexVectorPtr++) * iScalar;
++    }
+ }
+ #endif /* LV_HAVE_SSE4_1 */
+@@ -131,59 +136,60 @@ volk_8ic_s32f_deinterleave_32f_x2_a_sse4_1(float* iBuffer, float* qBuffer, const
+ #ifdef LV_HAVE_SSE
+ #include <xmmintrin.h>
+-static inline void
+-volk_8ic_s32f_deinterleave_32f_x2_a_sse(float* iBuffer, float* qBuffer,
+-                                        const lv_8sc_t* complexVector,
+-                                        const float scalar, unsigned int num_points)
++static inline void volk_8ic_s32f_deinterleave_32f_x2_a_sse(float* iBuffer,
++                                                           float* qBuffer,
++                                                           const lv_8sc_t* complexVector,
++                                                           const float scalar,
++                                                           unsigned int num_points)
+ {
+-  float* iBufferPtr = iBuffer;
+-  float* qBufferPtr = qBuffer;
++    float* iBufferPtr = iBuffer;
++    float* qBufferPtr = qBuffer;
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-  __m128 cplxValue1, cplxValue2, iValue, qValue;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++    __m128 cplxValue1, cplxValue2, iValue, qValue;
+-  __m128 invScalar = _mm_set_ps1(1.0/scalar);
+-  int8_t* complexVectorPtr = (int8_t*)complexVector;
++    __m128 invScalar = _mm_set_ps1(1.0 / scalar);
++    int8_t* complexVectorPtr = (int8_t*)complexVector;
+-  __VOLK_ATTR_ALIGNED(16) float floatBuffer[8];
++    __VOLK_ATTR_ALIGNED(16) float floatBuffer[8];
+-  for(;number < quarterPoints; number++){
+-    floatBuffer[0] = (float)(complexVectorPtr[0]);
+-    floatBuffer[1] = (float)(complexVectorPtr[1]);
+-    floatBuffer[2] = (float)(complexVectorPtr[2]);
+-    floatBuffer[3] = (float)(complexVectorPtr[3]);
++    for (; number < quarterPoints; number++) {
++        floatBuffer[0] = (float)(complexVectorPtr[0]);
++        floatBuffer[1] = (float)(complexVectorPtr[1]);
++        floatBuffer[2] = (float)(complexVectorPtr[2]);
++        floatBuffer[3] = (float)(complexVectorPtr[3]);
+-    floatBuffer[4] = (float)(complexVectorPtr[4]);
+-    floatBuffer[5] = (float)(complexVectorPtr[5]);
+-    floatBuffer[6] = (float)(complexVectorPtr[6]);
+-    floatBuffer[7] = (float)(complexVectorPtr[7]);
++        floatBuffer[4] = (float)(complexVectorPtr[4]);
++        floatBuffer[5] = (float)(complexVectorPtr[5]);
++        floatBuffer[6] = (float)(complexVectorPtr[6]);
++        floatBuffer[7] = (float)(complexVectorPtr[7]);
+-    cplxValue1 = _mm_load_ps(&floatBuffer[0]);
+-    cplxValue2 = _mm_load_ps(&floatBuffer[4]);
++        cplxValue1 = _mm_load_ps(&floatBuffer[0]);
++        cplxValue2 = _mm_load_ps(&floatBuffer[4]);
+-    complexVectorPtr += 8;
++        complexVectorPtr += 8;
+-    cplxValue1 = _mm_mul_ps(cplxValue1, invScalar);
+-    cplxValue2 = _mm_mul_ps(cplxValue2, invScalar);
++        cplxValue1 = _mm_mul_ps(cplxValue1, invScalar);
++        cplxValue2 = _mm_mul_ps(cplxValue2, invScalar);
+-    // Arrange in i1i2i3i4 format
+-    iValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2,0,2,0));
+-    qValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(3,1,3,1));
++        // Arrange in i1i2i3i4 format
++        iValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(2, 0, 2, 0));
++        qValue = _mm_shuffle_ps(cplxValue1, cplxValue2, _MM_SHUFFLE(3, 1, 3, 1));
+-    _mm_store_ps(iBufferPtr, iValue);
+-    _mm_store_ps(qBufferPtr, qValue);
++        _mm_store_ps(iBufferPtr, iValue);
++        _mm_store_ps(qBufferPtr, qValue);
+-    iBufferPtr += 4;
+-    qBufferPtr += 4;
+-  }
++        iBufferPtr += 4;
++        qBufferPtr += 4;
++    }
+-  number = quarterPoints * 4;
+-  complexVectorPtr = (int8_t*)&complexVector[number];
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = (float)(*complexVectorPtr++) / scalar;
+-    *qBufferPtr++ = (float)(*complexVectorPtr++) / scalar;
+-  }
++    number = quarterPoints * 4;
++    complexVectorPtr = (int8_t*)&complexVector[number];
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = (float)(*complexVectorPtr++) / scalar;
++        *qBufferPtr++ = (float)(*complexVectorPtr++) / scalar;
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+@@ -191,70 +197,127 @@ volk_8ic_s32f_deinterleave_32f_x2_a_sse(float* iBuffer, float* qBuffer,
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_8ic_s32f_deinterleave_32f_x2_a_avx2(float* iBuffer, float* qBuffer, const lv_8sc_t* complexVector,
+-                                           const float scalar, unsigned int num_points)
++static inline void volk_8ic_s32f_deinterleave_32f_x2_a_avx2(float* iBuffer,
++                                                            float* qBuffer,
++                                                            const lv_8sc_t* complexVector,
++                                                            const float scalar,
++                                                            unsigned int num_points)
+ {
+-  float* iBufferPtr = iBuffer;
+-  float* qBufferPtr = qBuffer;
+-
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
+-  __m256 iFloatValue, qFloatValue;
+-
+-  const float iScalar= 1.0 / scalar;
+-  __m256 invScalar = _mm256_set1_ps(iScalar);
+-  __m256i complexVal, iIntVal, qIntVal, iComplexVal, qComplexVal;
+-  int8_t* complexVectorPtr = (int8_t*)complexVector;
+-
+-  __m256i iMoveMask = _mm256_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
+-                                      14, 12, 10, 8, 6, 4, 2, 0,
+-                                      0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
+-                                      14, 12, 10, 8, 6, 4, 2, 0);
+-  __m256i qMoveMask = _mm256_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
+-                                      15, 13, 11, 9, 7, 5, 3, 1,
+-                                      0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
+-                                      15, 13, 11, 9, 7, 5, 3, 1);
+-
+-  for(;number < sixteenthPoints; number++){
+-    complexVal = _mm256_load_si256((__m256i*)complexVectorPtr);
+-    complexVectorPtr += 32;
+-    iComplexVal = _mm256_shuffle_epi8(complexVal, iMoveMask);
+-    qComplexVal = _mm256_shuffle_epi8(complexVal, qMoveMask);
+-
+-    iIntVal     = _mm256_cvtepi8_epi32(_mm256_castsi256_si128(iComplexVal));
+-    iFloatValue = _mm256_cvtepi32_ps(iIntVal);
+-    iFloatValue = _mm256_mul_ps(iFloatValue, invScalar);
+-    _mm256_store_ps(iBufferPtr, iFloatValue);
+-    iBufferPtr += 8;
+-
+-    iComplexVal = _mm256_permute4x64_epi64(iComplexVal, 0b11000110);
+-    iIntVal     = _mm256_cvtepi8_epi32(_mm256_castsi256_si128(iComplexVal));
+-    iFloatValue = _mm256_cvtepi32_ps(iIntVal);
+-    iFloatValue = _mm256_mul_ps(iFloatValue, invScalar);
+-    _mm256_store_ps(iBufferPtr, iFloatValue);
+-    iBufferPtr += 8;
+-
+-    qIntVal     = _mm256_cvtepi8_epi32(_mm256_castsi256_si128(qComplexVal));
+-    qFloatValue = _mm256_cvtepi32_ps(qIntVal);
+-    qFloatValue = _mm256_mul_ps(qFloatValue, invScalar);
+-    _mm256_store_ps(qBufferPtr, qFloatValue);
+-    qBufferPtr += 8;
+-
+-    qComplexVal = _mm256_permute4x64_epi64(qComplexVal, 0b11000110);
+-    qIntVal     = _mm256_cvtepi8_epi32(_mm256_castsi256_si128(qComplexVal));
+-    qFloatValue = _mm256_cvtepi32_ps(qIntVal);
+-    qFloatValue = _mm256_mul_ps(qFloatValue, invScalar);
+-    _mm256_store_ps(qBufferPtr, qFloatValue);
+-    qBufferPtr += 8;
+-  }
+-
+-  number = sixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = (float)(*complexVectorPtr++) * iScalar;
+-    *qBufferPtr++ = (float)(*complexVectorPtr++) * iScalar;
+-  }
+-
++    float* iBufferPtr = iBuffer;
++    float* qBufferPtr = qBuffer;
++
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
++    __m256 iFloatValue, qFloatValue;
++
++    const float iScalar = 1.0 / scalar;
++    __m256 invScalar = _mm256_set1_ps(iScalar);
++    __m256i complexVal, iIntVal, qIntVal, iComplexVal, qComplexVal;
++    int8_t* complexVectorPtr = (int8_t*)complexVector;
++
++    __m256i iMoveMask = _mm256_set_epi8(0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        14,
++                                        12,
++                                        10,
++                                        8,
++                                        6,
++                                        4,
++                                        2,
++                                        0,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        14,
++                                        12,
++                                        10,
++                                        8,
++                                        6,
++                                        4,
++                                        2,
++                                        0);
++    __m256i qMoveMask = _mm256_set_epi8(0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        15,
++                                        13,
++                                        11,
++                                        9,
++                                        7,
++                                        5,
++                                        3,
++                                        1,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        0x80,
++                                        15,
++                                        13,
++                                        11,
++                                        9,
++                                        7,
++                                        5,
++                                        3,
++                                        1);
++
++    for (; number < sixteenthPoints; number++) {
++        complexVal = _mm256_load_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32;
++        iComplexVal = _mm256_shuffle_epi8(complexVal, iMoveMask);
++        qComplexVal = _mm256_shuffle_epi8(complexVal, qMoveMask);
++
++        iIntVal = _mm256_cvtepi8_epi32(_mm256_castsi256_si128(iComplexVal));
++        iFloatValue = _mm256_cvtepi32_ps(iIntVal);
++        iFloatValue = _mm256_mul_ps(iFloatValue, invScalar);
++        _mm256_store_ps(iBufferPtr, iFloatValue);
++        iBufferPtr += 8;
++
++        iComplexVal = _mm256_permute4x64_epi64(iComplexVal, 0b11000110);
++        iIntVal = _mm256_cvtepi8_epi32(_mm256_castsi256_si128(iComplexVal));
++        iFloatValue = _mm256_cvtepi32_ps(iIntVal);
++        iFloatValue = _mm256_mul_ps(iFloatValue, invScalar);
++        _mm256_store_ps(iBufferPtr, iFloatValue);
++        iBufferPtr += 8;
++
++        qIntVal = _mm256_cvtepi8_epi32(_mm256_castsi256_si128(qComplexVal));
++        qFloatValue = _mm256_cvtepi32_ps(qIntVal);
++        qFloatValue = _mm256_mul_ps(qFloatValue, invScalar);
++        _mm256_store_ps(qBufferPtr, qFloatValue);
++        qBufferPtr += 8;
++
++        qComplexVal = _mm256_permute4x64_epi64(qComplexVal, 0b11000110);
++        qIntVal = _mm256_cvtepi8_epi32(_mm256_castsi256_si128(qComplexVal));
++        qFloatValue = _mm256_cvtepi32_ps(qIntVal);
++        qFloatValue = _mm256_mul_ps(qFloatValue, invScalar);
++        _mm256_store_ps(qBufferPtr, qFloatValue);
++        qBufferPtr += 8;
++    }
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = (float)(*complexVectorPtr++) * iScalar;
++        *qBufferPtr++ = (float)(*complexVectorPtr++) * iScalar;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -262,19 +325,21 @@ volk_8ic_s32f_deinterleave_32f_x2_a_avx2(float* iBuffer, float* qBuffer, const l
+ #ifdef LV_HAVE_GENERIC
+ static inline void
+-volk_8ic_s32f_deinterleave_32f_x2_generic(float* iBuffer, float* qBuffer,
++volk_8ic_s32f_deinterleave_32f_x2_generic(float* iBuffer,
++                                          float* qBuffer,
+                                           const lv_8sc_t* complexVector,
+-                                          const float scalar, unsigned int num_points)
++                                          const float scalar,
++                                          unsigned int num_points)
+ {
+-  const int8_t* complexVectorPtr = (const int8_t*)complexVector;
+-  float* iBufferPtr = iBuffer;
+-  float* qBufferPtr = qBuffer;
+-  unsigned int number;
+-  const float invScalar = 1.0 / scalar;
+-  for(number = 0; number < num_points; number++){
+-    *iBufferPtr++ = (float)(*complexVectorPtr++)*invScalar;
+-    *qBufferPtr++ = (float)(*complexVectorPtr++)*invScalar;
+-  }
++    const int8_t* complexVectorPtr = (const int8_t*)complexVector;
++    float* iBufferPtr = iBuffer;
++    float* qBufferPtr = qBuffer;
++    unsigned int number;
++    const float invScalar = 1.0 / scalar;
++    for (number = 0; number < num_points; number++) {
++        *iBufferPtr++ = (float)(*complexVectorPtr++) * invScalar;
++        *qBufferPtr++ = (float)(*complexVectorPtr++) * invScalar;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -285,75 +350,107 @@ volk_8ic_s32f_deinterleave_32f_x2_generic(float* iBuffer, float* qBuffer,
+ #ifndef INCLUDED_volk_8ic_s32f_deinterleave_32f_x2_u_H
+ #define INCLUDED_volk_8ic_s32f_deinterleave_32f_x2_u_H
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+ #include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_8ic_s32f_deinterleave_32f_x2_u_avx2(float* iBuffer, float* qBuffer, const lv_8sc_t* complexVector,
+-                                           const float scalar, unsigned int num_points)
++static inline void volk_8ic_s32f_deinterleave_32f_x2_u_avx2(float* iBuffer,
++                                                            float* qBuffer,
++                                                            const lv_8sc_t* complexVector,
++                                                            const float scalar,
++                                                            unsigned int num_points)
+ {
+-  float* iBufferPtr = iBuffer;
+-  float* qBufferPtr = qBuffer;
+-
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
+-  __m256 iFloatValue, qFloatValue;
+-
+-  const float iScalar= 1.0 / scalar;
+-  __m256 invScalar = _mm256_set1_ps(iScalar);
+-  __m256i complexVal, iIntVal, qIntVal;
+-  __m128i iComplexVal, qComplexVal;
+-  int8_t* complexVectorPtr = (int8_t*)complexVector;
+-
+-  __m256i MoveMask = _mm256_set_epi8(15, 13, 11, 9, 7, 5, 3, 1, 14, 12, 10, 8,
+-      6, 4, 2, 0,15, 13, 11, 9, 7, 5, 3, 1, 14, 12, 10, 8, 6, 4, 2, 0);
+-
+-  for(;number < sixteenthPoints; number++){
+-    complexVal = _mm256_loadu_si256((__m256i*)complexVectorPtr); complexVectorPtr += 32;
+-    complexVal = _mm256_shuffle_epi8(complexVal, MoveMask);
+-    complexVal = _mm256_permute4x64_epi64(complexVal,0xd8);
+-    iComplexVal = _mm256_extractf128_si256(complexVal,0);
+-    qComplexVal = _mm256_extractf128_si256(complexVal,1);
+-
+-    iIntVal = _mm256_cvtepi8_epi32(iComplexVal);
+-    iFloatValue = _mm256_cvtepi32_ps(iIntVal);
+-    iFloatValue = _mm256_mul_ps(iFloatValue, invScalar);
+-    _mm256_storeu_ps(iBufferPtr, iFloatValue);
+-    iBufferPtr += 8;
+-
+-    qIntVal = _mm256_cvtepi8_epi32(qComplexVal);
+-    qFloatValue = _mm256_cvtepi32_ps(qIntVal);
+-    qFloatValue = _mm256_mul_ps(qFloatValue, invScalar);
+-    _mm256_storeu_ps(qBufferPtr, qFloatValue);
+-    qBufferPtr += 8;
+-
+-    complexVal = _mm256_srli_si256(complexVal, 8);
+-    iComplexVal = _mm256_extractf128_si256(complexVal,0);
+-    qComplexVal = _mm256_extractf128_si256(complexVal,1);
+-
+-    iIntVal = _mm256_cvtepi8_epi32(iComplexVal);
+-    iFloatValue = _mm256_cvtepi32_ps(iIntVal);
+-    iFloatValue = _mm256_mul_ps(iFloatValue, invScalar);
+-    _mm256_storeu_ps(iBufferPtr, iFloatValue);
+-    iBufferPtr += 8;
+-
+-    qIntVal = _mm256_cvtepi8_epi32(qComplexVal);
+-    qFloatValue = _mm256_cvtepi32_ps(qIntVal);
+-    qFloatValue = _mm256_mul_ps(qFloatValue, invScalar);
+-    _mm256_storeu_ps(qBufferPtr, qFloatValue);
+-    qBufferPtr += 8;
+-  }
+-
+-  number = sixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = (float)(*complexVectorPtr++) * iScalar;
+-    *qBufferPtr++ = (float)(*complexVectorPtr++) * iScalar;
+-  }
+-
++    float* iBufferPtr = iBuffer;
++    float* qBufferPtr = qBuffer;
++
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
++    __m256 iFloatValue, qFloatValue;
++
++    const float iScalar = 1.0 / scalar;
++    __m256 invScalar = _mm256_set1_ps(iScalar);
++    __m256i complexVal, iIntVal, qIntVal;
++    __m128i iComplexVal, qComplexVal;
++    int8_t* complexVectorPtr = (int8_t*)complexVector;
++
++    __m256i MoveMask = _mm256_set_epi8(15,
++                                       13,
++                                       11,
++                                       9,
++                                       7,
++                                       5,
++                                       3,
++                                       1,
++                                       14,
++                                       12,
++                                       10,
++                                       8,
++                                       6,
++                                       4,
++                                       2,
++                                       0,
++                                       15,
++                                       13,
++                                       11,
++                                       9,
++                                       7,
++                                       5,
++                                       3,
++                                       1,
++                                       14,
++                                       12,
++                                       10,
++                                       8,
++                                       6,
++                                       4,
++                                       2,
++                                       0);
++
++    for (; number < sixteenthPoints; number++) {
++        complexVal = _mm256_loadu_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32;
++        complexVal = _mm256_shuffle_epi8(complexVal, MoveMask);
++        complexVal = _mm256_permute4x64_epi64(complexVal, 0xd8);
++        iComplexVal = _mm256_extractf128_si256(complexVal, 0);
++        qComplexVal = _mm256_extractf128_si256(complexVal, 1);
++
++        iIntVal = _mm256_cvtepi8_epi32(iComplexVal);
++        iFloatValue = _mm256_cvtepi32_ps(iIntVal);
++        iFloatValue = _mm256_mul_ps(iFloatValue, invScalar);
++        _mm256_storeu_ps(iBufferPtr, iFloatValue);
++        iBufferPtr += 8;
++
++        qIntVal = _mm256_cvtepi8_epi32(qComplexVal);
++        qFloatValue = _mm256_cvtepi32_ps(qIntVal);
++        qFloatValue = _mm256_mul_ps(qFloatValue, invScalar);
++        _mm256_storeu_ps(qBufferPtr, qFloatValue);
++        qBufferPtr += 8;
++
++        complexVal = _mm256_srli_si256(complexVal, 8);
++        iComplexVal = _mm256_extractf128_si256(complexVal, 0);
++        qComplexVal = _mm256_extractf128_si256(complexVal, 1);
++
++        iIntVal = _mm256_cvtepi8_epi32(iComplexVal);
++        iFloatValue = _mm256_cvtepi32_ps(iIntVal);
++        iFloatValue = _mm256_mul_ps(iFloatValue, invScalar);
++        _mm256_storeu_ps(iBufferPtr, iFloatValue);
++        iBufferPtr += 8;
++
++        qIntVal = _mm256_cvtepi8_epi32(qComplexVal);
++        qFloatValue = _mm256_cvtepi32_ps(qIntVal);
++        qFloatValue = _mm256_mul_ps(qFloatValue, invScalar);
++        _mm256_storeu_ps(qBufferPtr, qFloatValue);
++        qBufferPtr += 8;
++    }
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = (float)(*complexVectorPtr++) * iScalar;
++        *qBufferPtr++ = (float)(*complexVectorPtr++) * iScalar;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+diff --git a/kernels/volk/volk_8ic_s32f_deinterleave_real_32f.h b/kernels/volk/volk_8ic_s32f_deinterleave_real_32f.h
+index 0c85ee9..4c1afe7 100644
+--- a/kernels/volk/volk_8ic_s32f_deinterleave_real_32f.h
++++ b/kernels/volk/volk_8ic_s32f_deinterleave_real_32f.h
+@@ -31,8 +31,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_8ic_s32f_deinterleave_real_32f(float* iBuffer, const lv_8sc_t* complexVector, const float scalar, unsigned int num_points)
+- * \endcode
++ * void volk_8ic_s32f_deinterleave_real_32f(float* iBuffer, const lv_8sc_t* complexVector,
++ * const float scalar, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li complexVector: The complex input vector.
+@@ -55,57 +55,86 @@
+ #ifndef INCLUDED_volk_8ic_s32f_deinterleave_real_32f_a_H
+ #define INCLUDED_volk_8ic_s32f_deinterleave_real_32f_a_H
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+ #include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+ static inline void
+-volk_8ic_s32f_deinterleave_real_32f_a_avx2(float* iBuffer, const lv_8sc_t* complexVector,
+-                                             const float scalar, unsigned int num_points)
++volk_8ic_s32f_deinterleave_real_32f_a_avx2(float* iBuffer,
++                                           const lv_8sc_t* complexVector,
++                                           const float scalar,
++                                           unsigned int num_points)
+ {
+-  float* iBufferPtr = iBuffer;
+-
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
+-  __m256 iFloatValue;
+-
+-  const float iScalar= 1.0 / scalar;
+-  __m256 invScalar = _mm256_set1_ps(iScalar);
+-  __m256i complexVal, iIntVal;
+-  int8_t* complexVectorPtr = (int8_t*)complexVector;
+-
+-  __m256i moveMask = _mm256_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
+-                                     14, 12, 10, 8, 6, 4, 2, 0,
+-                                     0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
+-                                     14, 12, 10, 8, 6, 4, 2, 0);
+-  for(;number < sixteenthPoints; number++){
+-    complexVal = _mm256_load_si256((__m256i*)complexVectorPtr);
+-    complexVectorPtr += 32;
+-    complexVal = _mm256_shuffle_epi8(complexVal, moveMask);
+-
+-    iIntVal = _mm256_cvtepi8_epi32(_mm256_castsi256_si128(complexVal));
+-    iFloatValue = _mm256_cvtepi32_ps(iIntVal);
+-    iFloatValue = _mm256_mul_ps(iFloatValue, invScalar);
+-    _mm256_store_ps(iBufferPtr, iFloatValue);
+-    iBufferPtr += 8;
+-
+-    complexVal = _mm256_permute4x64_epi64(complexVal, 0b11000110);
+-    iIntVal = _mm256_cvtepi8_epi32(_mm256_castsi256_si128(complexVal));
+-    iFloatValue = _mm256_cvtepi32_ps(iIntVal);
+-    iFloatValue = _mm256_mul_ps(iFloatValue, invScalar);
+-    _mm256_store_ps(iBufferPtr, iFloatValue);
+-    iBufferPtr += 8;
+-  }
+-
+-  number = sixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = (float)(*complexVectorPtr++) * iScalar;
+-    complexVectorPtr++;
+-  }
+-
++    float* iBufferPtr = iBuffer;
++
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
++    __m256 iFloatValue;
++
++    const float iScalar = 1.0 / scalar;
++    __m256 invScalar = _mm256_set1_ps(iScalar);
++    __m256i complexVal, iIntVal;
++    int8_t* complexVectorPtr = (int8_t*)complexVector;
++
++    __m256i moveMask = _mm256_set_epi8(0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       14,
++                                       12,
++                                       10,
++                                       8,
++                                       6,
++                                       4,
++                                       2,
++                                       0,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       14,
++                                       12,
++                                       10,
++                                       8,
++                                       6,
++                                       4,
++                                       2,
++                                       0);
++    for (; number < sixteenthPoints; number++) {
++        complexVal = _mm256_load_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32;
++        complexVal = _mm256_shuffle_epi8(complexVal, moveMask);
++
++        iIntVal = _mm256_cvtepi8_epi32(_mm256_castsi256_si128(complexVal));
++        iFloatValue = _mm256_cvtepi32_ps(iIntVal);
++        iFloatValue = _mm256_mul_ps(iFloatValue, invScalar);
++        _mm256_store_ps(iBufferPtr, iFloatValue);
++        iBufferPtr += 8;
++
++        complexVal = _mm256_permute4x64_epi64(complexVal, 0b11000110);
++        iIntVal = _mm256_cvtepi8_epi32(_mm256_castsi256_si128(complexVal));
++        iFloatValue = _mm256_cvtepi32_ps(iIntVal);
++        iFloatValue = _mm256_mul_ps(iFloatValue, invScalar);
++        _mm256_store_ps(iBufferPtr, iFloatValue);
++        iBufferPtr += 8;
++    }
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = (float)(*complexVectorPtr++) * iScalar;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -114,52 +143,55 @@ volk_8ic_s32f_deinterleave_real_32f_a_avx2(float* iBuffer, const lv_8sc_t* compl
+ #include <smmintrin.h>
+ static inline void
+-volk_8ic_s32f_deinterleave_real_32f_a_sse4_1(float* iBuffer, const lv_8sc_t* complexVector,
+-                                             const float scalar, unsigned int num_points)
++volk_8ic_s32f_deinterleave_real_32f_a_sse4_1(float* iBuffer,
++                                             const lv_8sc_t* complexVector,
++                                             const float scalar,
++                                             unsigned int num_points)
+ {
+-  float* iBufferPtr = iBuffer;
+-
+-  unsigned int number = 0;
+-  const unsigned int eighthPoints = num_points / 8;
+-  __m128 iFloatValue;
++    float* iBufferPtr = iBuffer;
+-  const float iScalar= 1.0 / scalar;
+-  __m128 invScalar = _mm_set_ps1(iScalar);
+-  __m128i complexVal, iIntVal;
+-  int8_t* complexVectorPtr = (int8_t*)complexVector;
++    unsigned int number = 0;
++    const unsigned int eighthPoints = num_points / 8;
++    __m128 iFloatValue;
+-  __m128i moveMask = _mm_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 14, 12, 10, 8, 6, 4, 2, 0);
++    const float iScalar = 1.0 / scalar;
++    __m128 invScalar = _mm_set_ps1(iScalar);
++    __m128i complexVal, iIntVal;
++    int8_t* complexVectorPtr = (int8_t*)complexVector;
+-  for(;number < eighthPoints; number++){
+-    complexVal = _mm_load_si128((__m128i*)complexVectorPtr); complexVectorPtr += 16;
+-    complexVal = _mm_shuffle_epi8(complexVal, moveMask);
++    __m128i moveMask = _mm_set_epi8(
++        0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 14, 12, 10, 8, 6, 4, 2, 0);
+-    iIntVal = _mm_cvtepi8_epi32(complexVal);
+-    iFloatValue = _mm_cvtepi32_ps(iIntVal);
++    for (; number < eighthPoints; number++) {
++        complexVal = _mm_load_si128((__m128i*)complexVectorPtr);
++        complexVectorPtr += 16;
++        complexVal = _mm_shuffle_epi8(complexVal, moveMask);
+-    iFloatValue = _mm_mul_ps(iFloatValue, invScalar);
++        iIntVal = _mm_cvtepi8_epi32(complexVal);
++        iFloatValue = _mm_cvtepi32_ps(iIntVal);
+-    _mm_store_ps(iBufferPtr, iFloatValue);
++        iFloatValue = _mm_mul_ps(iFloatValue, invScalar);
+-    iBufferPtr += 4;
++        _mm_store_ps(iBufferPtr, iFloatValue);
+-    complexVal = _mm_srli_si128(complexVal, 4);
+-    iIntVal = _mm_cvtepi8_epi32(complexVal);
+-    iFloatValue = _mm_cvtepi32_ps(iIntVal);
++        iBufferPtr += 4;
+-    iFloatValue = _mm_mul_ps(iFloatValue, invScalar);
++        complexVal = _mm_srli_si128(complexVal, 4);
++        iIntVal = _mm_cvtepi8_epi32(complexVal);
++        iFloatValue = _mm_cvtepi32_ps(iIntVal);
+-    _mm_store_ps(iBufferPtr, iFloatValue);
++        iFloatValue = _mm_mul_ps(iFloatValue, invScalar);
+-    iBufferPtr += 4;
+-  }
++        _mm_store_ps(iBufferPtr, iFloatValue);
+-  number = eighthPoints * 8;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = (float)(*complexVectorPtr++) * iScalar;
+-    complexVectorPtr++;
+-  }
++        iBufferPtr += 4;
++    }
++    number = eighthPoints * 8;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = (float)(*complexVectorPtr++) * iScalar;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_SSE4_1 */
+@@ -168,42 +200,47 @@ volk_8ic_s32f_deinterleave_real_32f_a_sse4_1(float* iBuffer, const lv_8sc_t* com
+ #include <xmmintrin.h>
+ static inline void
+-volk_8ic_s32f_deinterleave_real_32f_a_sse(float* iBuffer, const lv_8sc_t* complexVector,
+-                                          const float scalar, unsigned int num_points)
++volk_8ic_s32f_deinterleave_real_32f_a_sse(float* iBuffer,
++                                          const lv_8sc_t* complexVector,
++                                          const float scalar,
++                                          unsigned int num_points)
+ {
+-  float* iBufferPtr = iBuffer;
+-
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-  __m128 iValue;
++    float* iBufferPtr = iBuffer;
+-  const float iScalar= 1.0 / scalar;
+-  __m128 invScalar = _mm_set_ps1(iScalar);
+-  int8_t* complexVectorPtr = (int8_t*)complexVector;
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++    __m128 iValue;
+-  __VOLK_ATTR_ALIGNED(16) float floatBuffer[4];
++    const float iScalar = 1.0 / scalar;
++    __m128 invScalar = _mm_set_ps1(iScalar);
++    int8_t* complexVectorPtr = (int8_t*)complexVector;
+-  for(;number < quarterPoints; number++){
+-    floatBuffer[0] = (float)(*complexVectorPtr); complexVectorPtr += 2;
+-    floatBuffer[1] = (float)(*complexVectorPtr); complexVectorPtr += 2;
+-    floatBuffer[2] = (float)(*complexVectorPtr); complexVectorPtr += 2;
+-    floatBuffer[3] = (float)(*complexVectorPtr); complexVectorPtr += 2;
++    __VOLK_ATTR_ALIGNED(16) float floatBuffer[4];
+-    iValue = _mm_load_ps(floatBuffer);
++    for (; number < quarterPoints; number++) {
++        floatBuffer[0] = (float)(*complexVectorPtr);
++        complexVectorPtr += 2;
++        floatBuffer[1] = (float)(*complexVectorPtr);
++        complexVectorPtr += 2;
++        floatBuffer[2] = (float)(*complexVectorPtr);
++        complexVectorPtr += 2;
++        floatBuffer[3] = (float)(*complexVectorPtr);
++        complexVectorPtr += 2;
+-    iValue = _mm_mul_ps(iValue, invScalar);
++        iValue = _mm_load_ps(floatBuffer);
+-    _mm_store_ps(iBufferPtr, iValue);
++        iValue = _mm_mul_ps(iValue, invScalar);
+-    iBufferPtr += 4;
+-  }
++        _mm_store_ps(iBufferPtr, iValue);
+-  number = quarterPoints * 4;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = (float)(*complexVectorPtr++) * iScalar;
+-    complexVectorPtr++;
+-  }
++        iBufferPtr += 4;
++    }
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = (float)(*complexVectorPtr++) * iScalar;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_SSE */
+@@ -211,83 +248,117 @@ volk_8ic_s32f_deinterleave_real_32f_a_sse(float* iBuffer, const lv_8sc_t* comple
+ #ifdef LV_HAVE_GENERIC
+ static inline void
+-volk_8ic_s32f_deinterleave_real_32f_generic(float* iBuffer, const lv_8sc_t* complexVector,
+-                                            const float scalar, unsigned int num_points)
++volk_8ic_s32f_deinterleave_real_32f_generic(float* iBuffer,
++                                            const lv_8sc_t* complexVector,
++                                            const float scalar,
++                                            unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const int8_t* complexVectorPtr = (const int8_t*)complexVector;
+-  float* iBufferPtr = iBuffer;
+-  const float invScalar = 1.0 / scalar;
+-  for(number = 0; number < num_points; number++){
+-    *iBufferPtr++ = ((float)(*complexVectorPtr++)) * invScalar;
+-    complexVectorPtr++;
+-  }
++    unsigned int number = 0;
++    const int8_t* complexVectorPtr = (const int8_t*)complexVector;
++    float* iBufferPtr = iBuffer;
++    const float invScalar = 1.0 / scalar;
++    for (number = 0; number < num_points; number++) {
++        *iBufferPtr++ = ((float)(*complexVectorPtr++)) * invScalar;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+-
+ #endif /* INCLUDED_volk_8ic_s32f_deinterleave_real_32f_a_H */
+ #ifndef INCLUDED_volk_8ic_s32f_deinterleave_real_32f_u_H
+ #define INCLUDED_volk_8ic_s32f_deinterleave_real_32f_u_H
+-#include <volk/volk_common.h>
+ #include <inttypes.h>
+ #include <stdio.h>
++#include <volk/volk_common.h>
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+ static inline void
+-volk_8ic_s32f_deinterleave_real_32f_u_avx2(float* iBuffer, const lv_8sc_t* complexVector,
+-                                             const float scalar, unsigned int num_points)
++volk_8ic_s32f_deinterleave_real_32f_u_avx2(float* iBuffer,
++                                           const lv_8sc_t* complexVector,
++                                           const float scalar,
++                                           unsigned int num_points)
+ {
+-  float* iBufferPtr = iBuffer;
+-
+-  unsigned int number = 0;
+-  const unsigned int sixteenthPoints = num_points / 16;
+-  __m256 iFloatValue;
+-
+-  const float iScalar= 1.0 / scalar;
+-  __m256 invScalar = _mm256_set1_ps(iScalar);
+-  __m256i complexVal, iIntVal;
+-  __m128i hcomplexVal;
+-  int8_t* complexVectorPtr = (int8_t*)complexVector;
+-
+-  __m256i moveMask = _mm256_set_epi8(0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 14, 12, 10, 8, 6, 4, 2, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 14, 12, 10, 8, 6, 4, 2, 0);
+-
+-  for(;number < sixteenthPoints; number++){
+-    complexVal = _mm256_loadu_si256((__m256i*)complexVectorPtr); complexVectorPtr += 32;
+-    complexVal = _mm256_shuffle_epi8(complexVal, moveMask);
+-
+-    hcomplexVal = _mm256_extracti128_si256(complexVal,0);
+-    iIntVal = _mm256_cvtepi8_epi32(hcomplexVal);
+-    iFloatValue = _mm256_cvtepi32_ps(iIntVal);
+-
+-    iFloatValue = _mm256_mul_ps(iFloatValue, invScalar);
+-
+-    _mm256_storeu_ps(iBufferPtr, iFloatValue);
+-
+-    iBufferPtr += 8;
+-
+-    hcomplexVal = _mm256_extracti128_si256(complexVal,1);
+-    iIntVal = _mm256_cvtepi8_epi32(hcomplexVal);
+-    iFloatValue = _mm256_cvtepi32_ps(iIntVal);
+-
+-    iFloatValue = _mm256_mul_ps(iFloatValue, invScalar);
+-
+-    _mm256_storeu_ps(iBufferPtr, iFloatValue);
+-
+-    iBufferPtr += 8;
+-  }
+-
+-  number = sixteenthPoints * 16;
+-  for(; number < num_points; number++){
+-    *iBufferPtr++ = (float)(*complexVectorPtr++) * iScalar;
+-    complexVectorPtr++;
+-  }
+-
++    float* iBufferPtr = iBuffer;
++
++    unsigned int number = 0;
++    const unsigned int sixteenthPoints = num_points / 16;
++    __m256 iFloatValue;
++
++    const float iScalar = 1.0 / scalar;
++    __m256 invScalar = _mm256_set1_ps(iScalar);
++    __m256i complexVal, iIntVal;
++    __m128i hcomplexVal;
++    int8_t* complexVectorPtr = (int8_t*)complexVector;
++
++    __m256i moveMask = _mm256_set_epi8(0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       14,
++                                       12,
++                                       10,
++                                       8,
++                                       6,
++                                       4,
++                                       2,
++                                       0,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       0x80,
++                                       14,
++                                       12,
++                                       10,
++                                       8,
++                                       6,
++                                       4,
++                                       2,
++                                       0);
++
++    for (; number < sixteenthPoints; number++) {
++        complexVal = _mm256_loadu_si256((__m256i*)complexVectorPtr);
++        complexVectorPtr += 32;
++        complexVal = _mm256_shuffle_epi8(complexVal, moveMask);
++
++        hcomplexVal = _mm256_extracti128_si256(complexVal, 0);
++        iIntVal = _mm256_cvtepi8_epi32(hcomplexVal);
++        iFloatValue = _mm256_cvtepi32_ps(iIntVal);
++
++        iFloatValue = _mm256_mul_ps(iFloatValue, invScalar);
++
++        _mm256_storeu_ps(iBufferPtr, iFloatValue);
++
++        iBufferPtr += 8;
++
++        hcomplexVal = _mm256_extracti128_si256(complexVal, 1);
++        iIntVal = _mm256_cvtepi8_epi32(hcomplexVal);
++        iFloatValue = _mm256_cvtepi32_ps(iIntVal);
++
++        iFloatValue = _mm256_mul_ps(iFloatValue, invScalar);
++
++        _mm256_storeu_ps(iBufferPtr, iFloatValue);
++
++        iBufferPtr += 8;
++    }
++
++    number = sixteenthPoints * 16;
++    for (; number < num_points; number++) {
++        *iBufferPtr++ = (float)(*complexVectorPtr++) * iScalar;
++        complexVectorPtr++;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+diff --git a/kernels/volk/volk_8ic_x2_multiply_conjugate_16ic.h b/kernels/volk/volk_8ic_x2_multiply_conjugate_16ic.h
+index 6762658..7f9fd96 100644
+--- a/kernels/volk/volk_8ic_x2_multiply_conjugate_16ic.h
++++ b/kernels/volk/volk_8ic_x2_multiply_conjugate_16ic.h
+@@ -30,64 +30,73 @@
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+ /*!
+-  \brief Multiplys the one complex vector with the complex conjugate of the second complex vector and stores their results in the third vector
+-  \param cVector The complex vector where the results will be stored
+-  \param aVector One of the complex vectors to be multiplied
+-  \param bVector The complex vector which will be converted to complex conjugate and multiplied
+-  \param num_points The number of complex values in aVector and bVector to be multiplied together and stored into cVector
++  \brief Multiplys the one complex vector with the complex conjugate of the second complex
++  vector and stores their results in the third vector \param cVector The complex vector
++  where the results will be stored \param aVector One of the complex vectors to be
++  multiplied \param bVector The complex vector which will be converted to complex
++  conjugate and multiplied \param num_points The number of complex values in aVector and
++  bVector to be multiplied together and stored into cVector
+ */
+-static inline void volk_8ic_x2_multiply_conjugate_16ic_a_avx2(lv_16sc_t* cVector, const lv_8sc_t* aVector, const lv_8sc_t* bVector, unsigned int num_points){
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 8;
+-
+-  __m256i x, y, realz, imagz;
+-  lv_16sc_t* c = cVector;
+-  const lv_8sc_t* a = aVector;
+-  const lv_8sc_t* b = bVector;
+-  __m256i conjugateSign = _mm256_set_epi16(-1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1);
+-
+-  for(;number < quarterPoints; number++){
+-    // Convert 8 bit values into 16 bit values
+-    x = _mm256_cvtepi8_epi16(_mm_load_si128((__m128i*)a));
+-    y = _mm256_cvtepi8_epi16(_mm_load_si128((__m128i*)b));
+-
+-    // Calculate the ar*cr - ai*(-ci) portions
+-    realz = _mm256_madd_epi16(x,y);
+-
+-    // Calculate the complex conjugate of the cr + ci j values
+-    y = _mm256_sign_epi16(y, conjugateSign);
+-
+-    // Shift the order of the cr and ci values
+-    y = _mm256_shufflehi_epi16(_mm256_shufflelo_epi16(y, _MM_SHUFFLE(2,3,0,1) ), _MM_SHUFFLE(2,3,0,1));
+-
+-    // Calculate the ar*(-ci) + cr*(ai)
+-    imagz = _mm256_madd_epi16(x,y);
+-
+-    // Perform the addition of products
+-
+-    _mm256_store_si256((__m256i*)c, _mm256_packs_epi32(_mm256_unpacklo_epi32(realz, imagz), _mm256_unpackhi_epi32(realz, imagz)));
+-
+-    a += 8;
+-    b += 8;
+-    c += 8;
+-  }
+-
+-  number = quarterPoints * 8;
+-  int16_t* c16Ptr = (int16_t*)&cVector[number];
+-  int8_t* a8Ptr = (int8_t*)&aVector[number];
+-  int8_t* b8Ptr = (int8_t*)&bVector[number];
+-  for(; number < num_points; number++){
+-    float aReal =  (float)*a8Ptr++;
+-    float aImag =  (float)*a8Ptr++;
+-    lv_32fc_t aVal = lv_cmake(aReal, aImag );
+-    float bReal = (float)*b8Ptr++;
+-    float bImag = (float)*b8Ptr++;
+-    lv_32fc_t bVal = lv_cmake( bReal, -bImag );
+-    lv_32fc_t temp = aVal * bVal;
+-
+-    *c16Ptr++ = (int16_t)lv_creal(temp);
+-    *c16Ptr++ = (int16_t)lv_cimag(temp);
+-  }
++static inline void volk_8ic_x2_multiply_conjugate_16ic_a_avx2(lv_16sc_t* cVector,
++                                                              const lv_8sc_t* aVector,
++                                                              const lv_8sc_t* bVector,
++                                                              unsigned int num_points)
++{
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 8;
++
++    __m256i x, y, realz, imagz;
++    lv_16sc_t* c = cVector;
++    const lv_8sc_t* a = aVector;
++    const lv_8sc_t* b = bVector;
++    __m256i conjugateSign =
++        _mm256_set_epi16(-1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1);
++
++    for (; number < quarterPoints; number++) {
++        // Convert 8 bit values into 16 bit values
++        x = _mm256_cvtepi8_epi16(_mm_load_si128((__m128i*)a));
++        y = _mm256_cvtepi8_epi16(_mm_load_si128((__m128i*)b));
++
++        // Calculate the ar*cr - ai*(-ci) portions
++        realz = _mm256_madd_epi16(x, y);
++
++        // Calculate the complex conjugate of the cr + ci j values
++        y = _mm256_sign_epi16(y, conjugateSign);
++
++        // Shift the order of the cr and ci values
++        y = _mm256_shufflehi_epi16(_mm256_shufflelo_epi16(y, _MM_SHUFFLE(2, 3, 0, 1)),
++                                   _MM_SHUFFLE(2, 3, 0, 1));
++
++        // Calculate the ar*(-ci) + cr*(ai)
++        imagz = _mm256_madd_epi16(x, y);
++
++        // Perform the addition of products
++
++        _mm256_store_si256((__m256i*)c,
++                           _mm256_packs_epi32(_mm256_unpacklo_epi32(realz, imagz),
++                                              _mm256_unpackhi_epi32(realz, imagz)));
++
++        a += 8;
++        b += 8;
++        c += 8;
++    }
++
++    number = quarterPoints * 8;
++    int16_t* c16Ptr = (int16_t*)&cVector[number];
++    int8_t* a8Ptr = (int8_t*)&aVector[number];
++    int8_t* b8Ptr = (int8_t*)&bVector[number];
++    for (; number < num_points; number++) {
++        float aReal = (float)*a8Ptr++;
++        float aImag = (float)*a8Ptr++;
++        lv_32fc_t aVal = lv_cmake(aReal, aImag);
++        float bReal = (float)*b8Ptr++;
++        float bImag = (float)*b8Ptr++;
++        lv_32fc_t bVal = lv_cmake(bReal, -bImag);
++        lv_32fc_t temp = aVal * bVal;
++
++        *c16Ptr++ = (int16_t)lv_creal(temp);
++        *c16Ptr++ = (int16_t)lv_cimag(temp);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -95,90 +104,103 @@ static inline void volk_8ic_x2_multiply_conjugate_16ic_a_avx2(lv_16sc_t* cVector
+ #ifdef LV_HAVE_SSE4_1
+ #include <smmintrin.h>
+ /*!
+-  \brief Multiplys the one complex vector with the complex conjugate of the second complex vector and stores their results in the third vector
+-  \param cVector The complex vector where the results will be stored
+-  \param aVector One of the complex vectors to be multiplied
+-  \param bVector The complex vector which will be converted to complex conjugate and multiplied
+-  \param num_points The number of complex values in aVector and bVector to be multiplied together and stored into cVector
++  \brief Multiplys the one complex vector with the complex conjugate of the second complex
++  vector and stores their results in the third vector \param cVector The complex vector
++  where the results will be stored \param aVector One of the complex vectors to be
++  multiplied \param bVector The complex vector which will be converted to complex
++  conjugate and multiplied \param num_points The number of complex values in aVector and
++  bVector to be multiplied together and stored into cVector
+ */
+-static inline void volk_8ic_x2_multiply_conjugate_16ic_a_sse4_1(lv_16sc_t* cVector, const lv_8sc_t* aVector, const lv_8sc_t* bVector, unsigned int num_points){
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  __m128i x, y, realz, imagz;
+-  lv_16sc_t* c = cVector;
+-  const lv_8sc_t* a = aVector;
+-  const lv_8sc_t* b = bVector;
+-  __m128i conjugateSign = _mm_set_epi16(-1, 1, -1, 1, -1, 1, -1, 1);
+-
+-  for(;number < quarterPoints; number++){
+-    // Convert into 8 bit values into 16 bit values
+-    x = _mm_cvtepi8_epi16(_mm_loadl_epi64((__m128i*)a));
+-    y = _mm_cvtepi8_epi16(_mm_loadl_epi64((__m128i*)b));
+-
+-    // Calculate the ar*cr - ai*(-ci) portions
+-    realz = _mm_madd_epi16(x,y);
+-
+-    // Calculate the complex conjugate of the cr + ci j values
+-    y = _mm_sign_epi16(y, conjugateSign);
+-
+-    // Shift the order of the cr and ci values
+-    y = _mm_shufflehi_epi16(_mm_shufflelo_epi16(y, _MM_SHUFFLE(2,3,0,1) ), _MM_SHUFFLE(2,3,0,1));
+-
+-    // Calculate the ar*(-ci) + cr*(ai)
+-    imagz = _mm_madd_epi16(x,y);
+-
+-    _mm_store_si128((__m128i*)c, _mm_packs_epi32(_mm_unpacklo_epi32(realz, imagz), _mm_unpackhi_epi32(realz, imagz)));
+-
+-    a += 4;
+-    b += 4;
+-    c += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  int16_t* c16Ptr = (int16_t*)&cVector[number];
+-  int8_t* a8Ptr = (int8_t*)&aVector[number];
+-  int8_t* b8Ptr = (int8_t*)&bVector[number];
+-  for(; number < num_points; number++){
+-    float aReal =  (float)*a8Ptr++;
+-    float aImag =  (float)*a8Ptr++;
+-    lv_32fc_t aVal = lv_cmake(aReal, aImag );
+-    float bReal = (float)*b8Ptr++;
+-    float bImag = (float)*b8Ptr++;
+-    lv_32fc_t bVal = lv_cmake( bReal, -bImag );
+-    lv_32fc_t temp = aVal * bVal;
+-
+-    *c16Ptr++ = (int16_t)lv_creal(temp);
+-    *c16Ptr++ = (int16_t)lv_cimag(temp);
+-  }
++static inline void volk_8ic_x2_multiply_conjugate_16ic_a_sse4_1(lv_16sc_t* cVector,
++                                                                const lv_8sc_t* aVector,
++                                                                const lv_8sc_t* bVector,
++                                                                unsigned int num_points)
++{
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++
++    __m128i x, y, realz, imagz;
++    lv_16sc_t* c = cVector;
++    const lv_8sc_t* a = aVector;
++    const lv_8sc_t* b = bVector;
++    __m128i conjugateSign = _mm_set_epi16(-1, 1, -1, 1, -1, 1, -1, 1);
++
++    for (; number < quarterPoints; number++) {
++        // Convert into 8 bit values into 16 bit values
++        x = _mm_cvtepi8_epi16(_mm_loadl_epi64((__m128i*)a));
++        y = _mm_cvtepi8_epi16(_mm_loadl_epi64((__m128i*)b));
++
++        // Calculate the ar*cr - ai*(-ci) portions
++        realz = _mm_madd_epi16(x, y);
++
++        // Calculate the complex conjugate of the cr + ci j values
++        y = _mm_sign_epi16(y, conjugateSign);
++
++        // Shift the order of the cr and ci values
++        y = _mm_shufflehi_epi16(_mm_shufflelo_epi16(y, _MM_SHUFFLE(2, 3, 0, 1)),
++                                _MM_SHUFFLE(2, 3, 0, 1));
++
++        // Calculate the ar*(-ci) + cr*(ai)
++        imagz = _mm_madd_epi16(x, y);
++
++        _mm_store_si128((__m128i*)c,
++                        _mm_packs_epi32(_mm_unpacklo_epi32(realz, imagz),
++                                        _mm_unpackhi_epi32(realz, imagz)));
++
++        a += 4;
++        b += 4;
++        c += 4;
++    }
++
++    number = quarterPoints * 4;
++    int16_t* c16Ptr = (int16_t*)&cVector[number];
++    int8_t* a8Ptr = (int8_t*)&aVector[number];
++    int8_t* b8Ptr = (int8_t*)&bVector[number];
++    for (; number < num_points; number++) {
++        float aReal = (float)*a8Ptr++;
++        float aImag = (float)*a8Ptr++;
++        lv_32fc_t aVal = lv_cmake(aReal, aImag);
++        float bReal = (float)*b8Ptr++;
++        float bImag = (float)*b8Ptr++;
++        lv_32fc_t bVal = lv_cmake(bReal, -bImag);
++        lv_32fc_t temp = aVal * bVal;
++
++        *c16Ptr++ = (int16_t)lv_creal(temp);
++        *c16Ptr++ = (int16_t)lv_cimag(temp);
++    }
+ }
+ #endif /* LV_HAVE_SSE4_1 */
+ #ifdef LV_HAVE_GENERIC
+ /*!
+-  \brief Multiplys the one complex vector with the complex conjugate of the second complex vector and stores their results in the third vector
+-  \param cVector The complex vector where the results will be stored
+-  \param aVector One of the complex vectors to be multiplied
+-  \param bVector The complex vector which will be converted to complex conjugate and multiplied
+-  \param num_points The number of complex values in aVector and bVector to be multiplied together and stored into cVector
++  \brief Multiplys the one complex vector with the complex conjugate of the second complex
++  vector and stores their results in the third vector \param cVector The complex vector
++  where the results will be stored \param aVector One of the complex vectors to be
++  multiplied \param bVector The complex vector which will be converted to complex
++  conjugate and multiplied \param num_points The number of complex values in aVector and
++  bVector to be multiplied together and stored into cVector
+ */
+-static inline void volk_8ic_x2_multiply_conjugate_16ic_generic(lv_16sc_t* cVector, const lv_8sc_t* aVector, const lv_8sc_t* bVector, unsigned int num_points){
+-  unsigned int number = 0;
+-  int16_t* c16Ptr = (int16_t*)cVector;
+-  int8_t* a8Ptr = (int8_t*)aVector;
+-  int8_t* b8Ptr = (int8_t*)bVector;
+-  for(number =0; number < num_points; number++){
+-    float aReal =  (float)*a8Ptr++;
+-    float aImag =  (float)*a8Ptr++;
+-    lv_32fc_t aVal = lv_cmake(aReal, aImag );
+-    float bReal = (float)*b8Ptr++;
+-    float bImag = (float)*b8Ptr++;
+-    lv_32fc_t bVal = lv_cmake( bReal, -bImag );
+-    lv_32fc_t temp = aVal * bVal;
+-
+-    *c16Ptr++ = (int16_t)lv_creal(temp);
+-    *c16Ptr++ = (int16_t)lv_cimag(temp);
+-  }
++static inline void volk_8ic_x2_multiply_conjugate_16ic_generic(lv_16sc_t* cVector,
++                                                               const lv_8sc_t* aVector,
++                                                               const lv_8sc_t* bVector,
++                                                               unsigned int num_points)
++{
++    unsigned int number = 0;
++    int16_t* c16Ptr = (int16_t*)cVector;
++    int8_t* a8Ptr = (int8_t*)aVector;
++    int8_t* b8Ptr = (int8_t*)bVector;
++    for (number = 0; number < num_points; number++) {
++        float aReal = (float)*a8Ptr++;
++        float aImag = (float)*a8Ptr++;
++        lv_32fc_t aVal = lv_cmake(aReal, aImag);
++        float bReal = (float)*b8Ptr++;
++        float bImag = (float)*b8Ptr++;
++        lv_32fc_t bVal = lv_cmake(bReal, -bImag);
++        lv_32fc_t temp = aVal * bVal;
++
++        *c16Ptr++ = (int16_t)lv_creal(temp);
++        *c16Ptr++ = (int16_t)lv_cimag(temp);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -194,64 +216,73 @@ static inline void volk_8ic_x2_multiply_conjugate_16ic_generic(lv_16sc_t* cVecto
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+ /*!
+-  \brief Multiplys the one complex vector with the complex conjugate of the second complex vector and stores their results in the third vector
+-  \param cVector The complex vector where the results will be stored
+-  \param aVector One of the complex vectors to be multiplied
+-  \param bVector The complex vector which will be converted to complex conjugate and multiplied
+-  \param num_points The number of complex values in aVector and bVector to be multiplied together and stored into cVector
++  \brief Multiplys the one complex vector with the complex conjugate of the second complex
++  vector and stores their results in the third vector \param cVector The complex vector
++  where the results will be stored \param aVector One of the complex vectors to be
++  multiplied \param bVector The complex vector which will be converted to complex
++  conjugate and multiplied \param num_points The number of complex values in aVector and
++  bVector to be multiplied together and stored into cVector
+ */
+-static inline void volk_8ic_x2_multiply_conjugate_16ic_u_avx2(lv_16sc_t* cVector, const lv_8sc_t* aVector, const lv_8sc_t* bVector, unsigned int num_points){
+-  unsigned int number = 0;
+-  const unsigned int oneEigthPoints = num_points / 8;
+-
+-  __m256i x, y, realz, imagz;
+-  lv_16sc_t* c = cVector;
+-  const lv_8sc_t* a = aVector;
+-  const lv_8sc_t* b = bVector;
+-  __m256i conjugateSign = _mm256_set_epi16(-1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1);
+-
+-  for(;number < oneEigthPoints; number++){
+-    // Convert 8 bit values into 16 bit values
+-    x = _mm256_cvtepi8_epi16(_mm_loadu_si128((__m128i*)a));
+-    y = _mm256_cvtepi8_epi16(_mm_loadu_si128((__m128i*)b));
+-
+-    // Calculate the ar*cr - ai*(-ci) portions
+-    realz = _mm256_madd_epi16(x,y);
+-
+-    // Calculate the complex conjugate of the cr + ci j values
+-    y = _mm256_sign_epi16(y, conjugateSign);
+-
+-    // Shift the order of the cr and ci values
+-    y = _mm256_shufflehi_epi16(_mm256_shufflelo_epi16(y, _MM_SHUFFLE(2,3,0,1) ), _MM_SHUFFLE(2,3,0,1));
+-
+-    // Calculate the ar*(-ci) + cr*(ai)
+-    imagz = _mm256_madd_epi16(x,y);
+-
+-    // Perform the addition of products
+-
+-    _mm256_storeu_si256((__m256i*)c, _mm256_packs_epi32(_mm256_unpacklo_epi32(realz, imagz), _mm256_unpackhi_epi32(realz, imagz)));
+-
+-    a += 8;
+-    b += 8;
+-    c += 8;
+-  }
+-
+-  number = oneEigthPoints * 8;
+-  int16_t* c16Ptr = (int16_t*)&cVector[number];
+-  int8_t* a8Ptr = (int8_t*)&aVector[number];
+-  int8_t* b8Ptr = (int8_t*)&bVector[number];
+-  for(; number < num_points; number++){
+-    float aReal =  (float)*a8Ptr++;
+-    float aImag =  (float)*a8Ptr++;
+-    lv_32fc_t aVal = lv_cmake(aReal, aImag );
+-    float bReal = (float)*b8Ptr++;
+-    float bImag = (float)*b8Ptr++;
+-    lv_32fc_t bVal = lv_cmake( bReal, -bImag );
+-    lv_32fc_t temp = aVal * bVal;
+-
+-    *c16Ptr++ = (int16_t)lv_creal(temp);
+-    *c16Ptr++ = (int16_t)lv_cimag(temp);
+-  }
++static inline void volk_8ic_x2_multiply_conjugate_16ic_u_avx2(lv_16sc_t* cVector,
++                                                              const lv_8sc_t* aVector,
++                                                              const lv_8sc_t* bVector,
++                                                              unsigned int num_points)
++{
++    unsigned int number = 0;
++    const unsigned int oneEigthPoints = num_points / 8;
++
++    __m256i x, y, realz, imagz;
++    lv_16sc_t* c = cVector;
++    const lv_8sc_t* a = aVector;
++    const lv_8sc_t* b = bVector;
++    __m256i conjugateSign =
++        _mm256_set_epi16(-1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1);
++
++    for (; number < oneEigthPoints; number++) {
++        // Convert 8 bit values into 16 bit values
++        x = _mm256_cvtepi8_epi16(_mm_loadu_si128((__m128i*)a));
++        y = _mm256_cvtepi8_epi16(_mm_loadu_si128((__m128i*)b));
++
++        // Calculate the ar*cr - ai*(-ci) portions
++        realz = _mm256_madd_epi16(x, y);
++
++        // Calculate the complex conjugate of the cr + ci j values
++        y = _mm256_sign_epi16(y, conjugateSign);
++
++        // Shift the order of the cr and ci values
++        y = _mm256_shufflehi_epi16(_mm256_shufflelo_epi16(y, _MM_SHUFFLE(2, 3, 0, 1)),
++                                   _MM_SHUFFLE(2, 3, 0, 1));
++
++        // Calculate the ar*(-ci) + cr*(ai)
++        imagz = _mm256_madd_epi16(x, y);
++
++        // Perform the addition of products
++
++        _mm256_storeu_si256((__m256i*)c,
++                            _mm256_packs_epi32(_mm256_unpacklo_epi32(realz, imagz),
++                                               _mm256_unpackhi_epi32(realz, imagz)));
++
++        a += 8;
++        b += 8;
++        c += 8;
++    }
++
++    number = oneEigthPoints * 8;
++    int16_t* c16Ptr = (int16_t*)&cVector[number];
++    int8_t* a8Ptr = (int8_t*)&aVector[number];
++    int8_t* b8Ptr = (int8_t*)&bVector[number];
++    for (; number < num_points; number++) {
++        float aReal = (float)*a8Ptr++;
++        float aImag = (float)*a8Ptr++;
++        lv_32fc_t aVal = lv_cmake(aReal, aImag);
++        float bReal = (float)*b8Ptr++;
++        float bImag = (float)*b8Ptr++;
++        lv_32fc_t bVal = lv_cmake(bReal, -bImag);
++        lv_32fc_t temp = aVal * bVal;
++
++        *c16Ptr++ = (int16_t)lv_creal(temp);
++        *c16Ptr++ = (int16_t)lv_cimag(temp);
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+diff --git a/kernels/volk/volk_8ic_x2_s32f_multiply_conjugate_32fc.h b/kernels/volk/volk_8ic_x2_s32f_multiply_conjugate_32fc.h
+index 82e40c8..db6bd7a 100644
+--- a/kernels/volk/volk_8ic_x2_s32f_multiply_conjugate_32fc.h
++++ b/kernels/volk/volk_8ic_x2_s32f_multiply_conjugate_32fc.h
+@@ -30,14 +30,15 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_8ic_x2_s32f_multiply_conjugate_32fc(lv_32fc_t* cVector, const lv_8sc_t* aVector, const lv_8sc_t* bVector, const float scalar, unsigned int num_points)
+- * \endcode
++ * void volk_8ic_x2_s32f_multiply_conjugate_32fc(lv_32fc_t* cVector, const lv_8sc_t*
++ * aVector, const lv_8sc_t* bVector, const float scalar, unsigned int num_points) \endcode
+  *
+  * \b Inputs
+  * \li aVector: One of the complex vectors to be multiplied.
+- * \li bVector: The complex vector which will be converted to complex conjugate and multiplied.
+- * \li scalar: each output value is scaled by 1/scalar.
+- * \li num_points: The number of complex values in aVector and bVector to be multiplied together and stored into cVector.
++ * \li bVector: The complex vector which will be converted to complex conjugate and
++ * multiplied. \li scalar: each output value is scaled by 1/scalar. \li num_points: The
++ * number of complex values in aVector and bVector to be multiplied together and stored
++ * into cVector.
+  *
+  * \b Outputs
+  * \li cVector: The complex vector where the results will be stored.
+@@ -64,160 +65,167 @@
+ #include <immintrin.h>
+ static inline void
+-volk_8ic_x2_s32f_multiply_conjugate_32fc_a_avx2(lv_32fc_t* cVector, const lv_8sc_t* aVector,
+-                                                  const lv_8sc_t* bVector, const float scalar,
+-                                                  unsigned int num_points)
++volk_8ic_x2_s32f_multiply_conjugate_32fc_a_avx2(lv_32fc_t* cVector,
++                                                const lv_8sc_t* aVector,
++                                                const lv_8sc_t* bVector,
++                                                const float scalar,
++                                                unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int oneEigthPoints = num_points / 8;
+-
+-  __m256i x, y, realz, imagz;
+-  __m256 ret, retlo, rethi;
+-  lv_32fc_t* c = cVector;
+-  const lv_8sc_t* a = aVector;
+-  const lv_8sc_t* b = bVector;
+-  __m256i conjugateSign = _mm256_set_epi16(-1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1);
+-
+-  __m256 invScalar = _mm256_set1_ps(1.0/scalar);
+-
+-  for(;number < oneEigthPoints; number++){
+-    // Convert  8 bit values into 16 bit values
+-    x = _mm256_cvtepi8_epi16(_mm_load_si128((__m128i*)a));
+-    y = _mm256_cvtepi8_epi16(_mm_load_si128((__m128i*)b));
+-
+-    // Calculate the ar*cr - ai*(-ci) portions
+-    realz = _mm256_madd_epi16(x,y);
+-
+-    // Calculate the complex conjugate of the cr + ci j values
+-    y = _mm256_sign_epi16(y, conjugateSign);
+-
+-    // Shift the order of the cr and ci values
+-    y = _mm256_shufflehi_epi16(_mm256_shufflelo_epi16(y, _MM_SHUFFLE(2,3,0,1) ), _MM_SHUFFLE(2,3,0,1));
+-
+-    // Calculate the ar*(-ci) + cr*(ai)
+-    imagz = _mm256_madd_epi16(x,y);
+-
+-    // Interleave real and imaginary and then convert to float values
+-    retlo = _mm256_cvtepi32_ps(_mm256_unpacklo_epi32(realz, imagz));
+-
+-    // Normalize the floating point values
+-    retlo = _mm256_mul_ps(retlo, invScalar);
+-
+-    // Interleave real and imaginary and then convert to float values
+-    rethi = _mm256_cvtepi32_ps(_mm256_unpackhi_epi32(realz, imagz));
+-
+-    // Normalize the floating point values
+-    rethi = _mm256_mul_ps(rethi, invScalar);
+-
+-    ret = _mm256_permute2f128_ps(retlo, rethi, 0b00100000);
+-    _mm256_store_ps((float*)c, ret);
+-    c += 4;
+-
+-    ret = _mm256_permute2f128_ps(retlo, rethi, 0b00110001);
+-    _mm256_store_ps((float*)c, ret);
+-    c += 4;
+-
+-    a += 8;
+-    b += 8;
+-  }
+-
+-  number = oneEigthPoints * 8;
+-  float* cFloatPtr = (float*)&cVector[number];
+-  int8_t* a8Ptr = (int8_t*)&aVector[number];
+-  int8_t* b8Ptr = (int8_t*)&bVector[number];
+-  for(; number < num_points; number++){
+-    float aReal =  (float)*a8Ptr++;
+-    float aImag =  (float)*a8Ptr++;
+-    lv_32fc_t aVal = lv_cmake(aReal, aImag );
+-    float bReal = (float)*b8Ptr++;
+-    float bImag = (float)*b8Ptr++;
+-    lv_32fc_t bVal = lv_cmake( bReal, -bImag );
+-    lv_32fc_t temp = aVal * bVal;
+-
+-    *cFloatPtr++ = lv_creal(temp) / scalar;
+-    *cFloatPtr++ = lv_cimag(temp) / scalar;
+-  }
++    unsigned int number = 0;
++    const unsigned int oneEigthPoints = num_points / 8;
++
++    __m256i x, y, realz, imagz;
++    __m256 ret, retlo, rethi;
++    lv_32fc_t* c = cVector;
++    const lv_8sc_t* a = aVector;
++    const lv_8sc_t* b = bVector;
++    __m256i conjugateSign =
++        _mm256_set_epi16(-1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1);
++
++    __m256 invScalar = _mm256_set1_ps(1.0 / scalar);
++
++    for (; number < oneEigthPoints; number++) {
++        // Convert  8 bit values into 16 bit values
++        x = _mm256_cvtepi8_epi16(_mm_load_si128((__m128i*)a));
++        y = _mm256_cvtepi8_epi16(_mm_load_si128((__m128i*)b));
++
++        // Calculate the ar*cr - ai*(-ci) portions
++        realz = _mm256_madd_epi16(x, y);
++
++        // Calculate the complex conjugate of the cr + ci j values
++        y = _mm256_sign_epi16(y, conjugateSign);
++
++        // Shift the order of the cr and ci values
++        y = _mm256_shufflehi_epi16(_mm256_shufflelo_epi16(y, _MM_SHUFFLE(2, 3, 0, 1)),
++                                   _MM_SHUFFLE(2, 3, 0, 1));
++
++        // Calculate the ar*(-ci) + cr*(ai)
++        imagz = _mm256_madd_epi16(x, y);
++
++        // Interleave real and imaginary and then convert to float values
++        retlo = _mm256_cvtepi32_ps(_mm256_unpacklo_epi32(realz, imagz));
++
++        // Normalize the floating point values
++        retlo = _mm256_mul_ps(retlo, invScalar);
++
++        // Interleave real and imaginary and then convert to float values
++        rethi = _mm256_cvtepi32_ps(_mm256_unpackhi_epi32(realz, imagz));
++
++        // Normalize the floating point values
++        rethi = _mm256_mul_ps(rethi, invScalar);
++
++        ret = _mm256_permute2f128_ps(retlo, rethi, 0b00100000);
++        _mm256_store_ps((float*)c, ret);
++        c += 4;
++
++        ret = _mm256_permute2f128_ps(retlo, rethi, 0b00110001);
++        _mm256_store_ps((float*)c, ret);
++        c += 4;
++
++        a += 8;
++        b += 8;
++    }
++
++    number = oneEigthPoints * 8;
++    float* cFloatPtr = (float*)&cVector[number];
++    int8_t* a8Ptr = (int8_t*)&aVector[number];
++    int8_t* b8Ptr = (int8_t*)&bVector[number];
++    for (; number < num_points; number++) {
++        float aReal = (float)*a8Ptr++;
++        float aImag = (float)*a8Ptr++;
++        lv_32fc_t aVal = lv_cmake(aReal, aImag);
++        float bReal = (float)*b8Ptr++;
++        float bImag = (float)*b8Ptr++;
++        lv_32fc_t bVal = lv_cmake(bReal, -bImag);
++        lv_32fc_t temp = aVal * bVal;
++
++        *cFloatPtr++ = lv_creal(temp) / scalar;
++        *cFloatPtr++ = lv_cimag(temp) / scalar;
++    }
+ }
+-#endif  /* LV_HAVE_AVX2*/
++#endif /* LV_HAVE_AVX2*/
+ #ifdef LV_HAVE_SSE4_1
+ #include <smmintrin.h>
+ static inline void
+-volk_8ic_x2_s32f_multiply_conjugate_32fc_a_sse4_1(lv_32fc_t* cVector, const lv_8sc_t* aVector,
+-                                                  const lv_8sc_t* bVector, const float scalar,
++volk_8ic_x2_s32f_multiply_conjugate_32fc_a_sse4_1(lv_32fc_t* cVector,
++                                                  const lv_8sc_t* aVector,
++                                                  const lv_8sc_t* bVector,
++                                                  const float scalar,
+                                                   unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int quarterPoints = num_points / 4;
+-
+-  __m128i x, y, realz, imagz;
+-  __m128 ret;
+-  lv_32fc_t* c = cVector;
+-  const lv_8sc_t* a = aVector;
+-  const lv_8sc_t* b = bVector;
+-  __m128i conjugateSign = _mm_set_epi16(-1, 1, -1, 1, -1, 1, -1, 1);
+-
+-  __m128 invScalar = _mm_set_ps1(1.0/scalar);
+-
+-  for(;number < quarterPoints; number++){
+-    // Convert into 8 bit values into 16 bit values
+-    x = _mm_cvtepi8_epi16(_mm_loadl_epi64((__m128i*)a));
+-    y = _mm_cvtepi8_epi16(_mm_loadl_epi64((__m128i*)b));
+-
+-    // Calculate the ar*cr - ai*(-ci) portions
+-    realz = _mm_madd_epi16(x,y);
+-
+-    // Calculate the complex conjugate of the cr + ci j values
+-    y = _mm_sign_epi16(y, conjugateSign);
+-
+-    // Shift the order of the cr and ci values
+-    y = _mm_shufflehi_epi16(_mm_shufflelo_epi16(y, _MM_SHUFFLE(2,3,0,1) ), _MM_SHUFFLE(2,3,0,1));
+-
+-    // Calculate the ar*(-ci) + cr*(ai)
+-    imagz = _mm_madd_epi16(x,y);
+-
+-    // Interleave real and imaginary and then convert to float values
+-    ret = _mm_cvtepi32_ps(_mm_unpacklo_epi32(realz, imagz));
+-
+-    // Normalize the floating point values
+-    ret = _mm_mul_ps(ret, invScalar);
+-
+-    // Store the floating point values
+-    _mm_store_ps((float*)c, ret);
+-    c += 2;
+-
+-    // Interleave real and imaginary and then convert to float values
+-    ret = _mm_cvtepi32_ps(_mm_unpackhi_epi32(realz, imagz));
+-
+-    // Normalize the floating point values
+-    ret = _mm_mul_ps(ret, invScalar);
+-
+-    // Store the floating point values
+-    _mm_store_ps((float*)c, ret);
+-    c += 2;
+-
+-    a += 4;
+-    b += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  float* cFloatPtr = (float*)&cVector[number];
+-  int8_t* a8Ptr = (int8_t*)&aVector[number];
+-  int8_t* b8Ptr = (int8_t*)&bVector[number];
+-  for(; number < num_points; number++){
+-    float aReal =  (float)*a8Ptr++;
+-    float aImag =  (float)*a8Ptr++;
+-    lv_32fc_t aVal = lv_cmake(aReal, aImag );
+-    float bReal = (float)*b8Ptr++;
+-    float bImag = (float)*b8Ptr++;
+-    lv_32fc_t bVal = lv_cmake( bReal, -bImag );
+-    lv_32fc_t temp = aVal * bVal;
+-
+-    *cFloatPtr++ = lv_creal(temp) / scalar;
+-    *cFloatPtr++ = lv_cimag(temp) / scalar;
+-  }
++    unsigned int number = 0;
++    const unsigned int quarterPoints = num_points / 4;
++
++    __m128i x, y, realz, imagz;
++    __m128 ret;
++    lv_32fc_t* c = cVector;
++    const lv_8sc_t* a = aVector;
++    const lv_8sc_t* b = bVector;
++    __m128i conjugateSign = _mm_set_epi16(-1, 1, -1, 1, -1, 1, -1, 1);
++
++    __m128 invScalar = _mm_set_ps1(1.0 / scalar);
++
++    for (; number < quarterPoints; number++) {
++        // Convert into 8 bit values into 16 bit values
++        x = _mm_cvtepi8_epi16(_mm_loadl_epi64((__m128i*)a));
++        y = _mm_cvtepi8_epi16(_mm_loadl_epi64((__m128i*)b));
++
++        // Calculate the ar*cr - ai*(-ci) portions
++        realz = _mm_madd_epi16(x, y);
++
++        // Calculate the complex conjugate of the cr + ci j values
++        y = _mm_sign_epi16(y, conjugateSign);
++
++        // Shift the order of the cr and ci values
++        y = _mm_shufflehi_epi16(_mm_shufflelo_epi16(y, _MM_SHUFFLE(2, 3, 0, 1)),
++                                _MM_SHUFFLE(2, 3, 0, 1));
++
++        // Calculate the ar*(-ci) + cr*(ai)
++        imagz = _mm_madd_epi16(x, y);
++
++        // Interleave real and imaginary and then convert to float values
++        ret = _mm_cvtepi32_ps(_mm_unpacklo_epi32(realz, imagz));
++
++        // Normalize the floating point values
++        ret = _mm_mul_ps(ret, invScalar);
++
++        // Store the floating point values
++        _mm_store_ps((float*)c, ret);
++        c += 2;
++
++        // Interleave real and imaginary and then convert to float values
++        ret = _mm_cvtepi32_ps(_mm_unpackhi_epi32(realz, imagz));
++
++        // Normalize the floating point values
++        ret = _mm_mul_ps(ret, invScalar);
++
++        // Store the floating point values
++        _mm_store_ps((float*)c, ret);
++        c += 2;
++
++        a += 4;
++        b += 4;
++    }
++
++    number = quarterPoints * 4;
++    float* cFloatPtr = (float*)&cVector[number];
++    int8_t* a8Ptr = (int8_t*)&aVector[number];
++    int8_t* b8Ptr = (int8_t*)&bVector[number];
++    for (; number < num_points; number++) {
++        float aReal = (float)*a8Ptr++;
++        float aImag = (float)*a8Ptr++;
++        lv_32fc_t aVal = lv_cmake(aReal, aImag);
++        float bReal = (float)*b8Ptr++;
++        float bImag = (float)*b8Ptr++;
++        lv_32fc_t bVal = lv_cmake(bReal, -bImag);
++        lv_32fc_t temp = aVal * bVal;
++
++        *cFloatPtr++ = lv_creal(temp) / scalar;
++        *cFloatPtr++ = lv_cimag(temp) / scalar;
++    }
+ }
+ #endif /* LV_HAVE_SSE4_1 */
+@@ -225,27 +233,29 @@ volk_8ic_x2_s32f_multiply_conjugate_32fc_a_sse4_1(lv_32fc_t* cVector, const lv_8
+ #ifdef LV_HAVE_GENERIC
+ static inline void
+-volk_8ic_x2_s32f_multiply_conjugate_32fc_generic(lv_32fc_t* cVector, const lv_8sc_t* aVector,
+-                                                 const lv_8sc_t* bVector, const float scalar,
++volk_8ic_x2_s32f_multiply_conjugate_32fc_generic(lv_32fc_t* cVector,
++                                                 const lv_8sc_t* aVector,
++                                                 const lv_8sc_t* bVector,
++                                                 const float scalar,
+                                                  unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  float* cPtr = (float*)cVector;
+-  const float invScalar = 1.0 / scalar;
+-  int8_t* a8Ptr = (int8_t*)aVector;
+-  int8_t* b8Ptr = (int8_t*)bVector;
+-  for(number = 0; number < num_points; number++){
+-    float aReal =  (float)*a8Ptr++;
+-    float aImag =  (float)*a8Ptr++;
+-    lv_32fc_t aVal = lv_cmake(aReal, aImag );
+-    float bReal = (float)*b8Ptr++;
+-    float bImag = (float)*b8Ptr++;
+-    lv_32fc_t bVal = lv_cmake( bReal, -bImag );
+-    lv_32fc_t temp = aVal * bVal;
+-
+-    *cPtr++ = (lv_creal(temp) * invScalar);
+-    *cPtr++ = (lv_cimag(temp) * invScalar);
+-  }
++    unsigned int number = 0;
++    float* cPtr = (float*)cVector;
++    const float invScalar = 1.0 / scalar;
++    int8_t* a8Ptr = (int8_t*)aVector;
++    int8_t* b8Ptr = (int8_t*)bVector;
++    for (number = 0; number < num_points; number++) {
++        float aReal = (float)*a8Ptr++;
++        float aImag = (float)*a8Ptr++;
++        lv_32fc_t aVal = lv_cmake(aReal, aImag);
++        float bReal = (float)*b8Ptr++;
++        float bImag = (float)*b8Ptr++;
++        lv_32fc_t bVal = lv_cmake(bReal, -bImag);
++        lv_32fc_t temp = aVal * bVal;
++
++        *cPtr++ = (lv_creal(temp) * invScalar);
++        *cPtr++ = (lv_cimag(temp) * invScalar);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -263,81 +273,85 @@ volk_8ic_x2_s32f_multiply_conjugate_32fc_generic(lv_32fc_t* cVector, const lv_8s
+ #include <immintrin.h>
+ static inline void
+-volk_8ic_x2_s32f_multiply_conjugate_32fc_u_avx2(lv_32fc_t* cVector, const lv_8sc_t* aVector,
+-                                                  const lv_8sc_t* bVector, const float scalar,
+-                                                  unsigned int num_points)
++volk_8ic_x2_s32f_multiply_conjugate_32fc_u_avx2(lv_32fc_t* cVector,
++                                                const lv_8sc_t* aVector,
++                                                const lv_8sc_t* bVector,
++                                                const float scalar,
++                                                unsigned int num_points)
+ {
+-  unsigned int number = 0;
+-  const unsigned int oneEigthPoints = num_points / 8;
+-
+-  __m256i x, y, realz, imagz;
+-  __m256 ret, retlo, rethi;
+-  lv_32fc_t* c = cVector;
+-  const lv_8sc_t* a = aVector;
+-  const lv_8sc_t* b = bVector;
+-  __m256i conjugateSign = _mm256_set_epi16(-1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1);
+-
+-  __m256 invScalar = _mm256_set1_ps(1.0/scalar);
+-
+-  for(;number < oneEigthPoints; number++){
+-    // Convert  8 bit values into 16 bit values
+-    x = _mm256_cvtepi8_epi16(_mm_loadu_si128((__m128i*)a));
+-    y = _mm256_cvtepi8_epi16(_mm_loadu_si128((__m128i*)b));
+-
+-    // Calculate the ar*cr - ai*(-ci) portions
+-    realz = _mm256_madd_epi16(x,y);
+-
+-    // Calculate the complex conjugate of the cr + ci j values
+-    y = _mm256_sign_epi16(y, conjugateSign);
+-
+-    // Shift the order of the cr and ci values
+-    y = _mm256_shufflehi_epi16(_mm256_shufflelo_epi16(y, _MM_SHUFFLE(2,3,0,1) ), _MM_SHUFFLE(2,3,0,1));
+-
+-    // Calculate the ar*(-ci) + cr*(ai)
+-    imagz = _mm256_madd_epi16(x,y);
+-
+-    // Interleave real and imaginary and then convert to float values
+-    retlo = _mm256_cvtepi32_ps(_mm256_unpacklo_epi32(realz, imagz));
+-
+-    // Normalize the floating point values
+-    retlo = _mm256_mul_ps(retlo, invScalar);
+-
+-    // Interleave real and imaginary and then convert to float values
+-    rethi = _mm256_cvtepi32_ps(_mm256_unpackhi_epi32(realz, imagz));
+-
+-    // Normalize the floating point values
+-    rethi = _mm256_mul_ps(rethi, invScalar);
+-
+-    ret = _mm256_permute2f128_ps(retlo, rethi, 0b00100000);
+-    _mm256_storeu_ps((float*)c, ret);
+-    c += 4;
+-
+-    ret = _mm256_permute2f128_ps(retlo, rethi, 0b00110001);
+-    _mm256_storeu_ps((float*)c, ret);
+-    c += 4;
+-
+-    a += 8;
+-    b += 8;
+-  }
+-
+-  number = oneEigthPoints * 8;
+-  float* cFloatPtr = (float*)&cVector[number];
+-  int8_t* a8Ptr = (int8_t*)&aVector[number];
+-  int8_t* b8Ptr = (int8_t*)&bVector[number];
+-  for(; number < num_points; number++){
+-    float aReal =  (float)*a8Ptr++;
+-    float aImag =  (float)*a8Ptr++;
+-    lv_32fc_t aVal = lv_cmake(aReal, aImag );
+-    float bReal = (float)*b8Ptr++;
+-    float bImag = (float)*b8Ptr++;
+-    lv_32fc_t bVal = lv_cmake( bReal, -bImag );
+-    lv_32fc_t temp = aVal * bVal;
+-
+-    *cFloatPtr++ = lv_creal(temp) / scalar;
+-    *cFloatPtr++ = lv_cimag(temp) / scalar;
+-  }
++    unsigned int number = 0;
++    const unsigned int oneEigthPoints = num_points / 8;
++
++    __m256i x, y, realz, imagz;
++    __m256 ret, retlo, rethi;
++    lv_32fc_t* c = cVector;
++    const lv_8sc_t* a = aVector;
++    const lv_8sc_t* b = bVector;
++    __m256i conjugateSign =
++        _mm256_set_epi16(-1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1);
++
++    __m256 invScalar = _mm256_set1_ps(1.0 / scalar);
++
++    for (; number < oneEigthPoints; number++) {
++        // Convert  8 bit values into 16 bit values
++        x = _mm256_cvtepi8_epi16(_mm_loadu_si128((__m128i*)a));
++        y = _mm256_cvtepi8_epi16(_mm_loadu_si128((__m128i*)b));
++
++        // Calculate the ar*cr - ai*(-ci) portions
++        realz = _mm256_madd_epi16(x, y);
++
++        // Calculate the complex conjugate of the cr + ci j values
++        y = _mm256_sign_epi16(y, conjugateSign);
++
++        // Shift the order of the cr and ci values
++        y = _mm256_shufflehi_epi16(_mm256_shufflelo_epi16(y, _MM_SHUFFLE(2, 3, 0, 1)),
++                                   _MM_SHUFFLE(2, 3, 0, 1));
++
++        // Calculate the ar*(-ci) + cr*(ai)
++        imagz = _mm256_madd_epi16(x, y);
++
++        // Interleave real and imaginary and then convert to float values
++        retlo = _mm256_cvtepi32_ps(_mm256_unpacklo_epi32(realz, imagz));
++
++        // Normalize the floating point values
++        retlo = _mm256_mul_ps(retlo, invScalar);
++
++        // Interleave real and imaginary and then convert to float values
++        rethi = _mm256_cvtepi32_ps(_mm256_unpackhi_epi32(realz, imagz));
++
++        // Normalize the floating point values
++        rethi = _mm256_mul_ps(rethi, invScalar);
++
++        ret = _mm256_permute2f128_ps(retlo, rethi, 0b00100000);
++        _mm256_storeu_ps((float*)c, ret);
++        c += 4;
++
++        ret = _mm256_permute2f128_ps(retlo, rethi, 0b00110001);
++        _mm256_storeu_ps((float*)c, ret);
++        c += 4;
++
++        a += 8;
++        b += 8;
++    }
++
++    number = oneEigthPoints * 8;
++    float* cFloatPtr = (float*)&cVector[number];
++    int8_t* a8Ptr = (int8_t*)&aVector[number];
++    int8_t* b8Ptr = (int8_t*)&bVector[number];
++    for (; number < num_points; number++) {
++        float aReal = (float)*a8Ptr++;
++        float aImag = (float)*a8Ptr++;
++        lv_32fc_t aVal = lv_cmake(aReal, aImag);
++        float bReal = (float)*b8Ptr++;
++        float bImag = (float)*b8Ptr++;
++        lv_32fc_t bVal = lv_cmake(bReal, -bImag);
++        lv_32fc_t temp = aVal * bVal;
++
++        *cFloatPtr++ = lv_creal(temp) / scalar;
++        *cFloatPtr++ = lv_cimag(temp) / scalar;
++    }
+ }
+-#endif  /* LV_HAVE_AVX2*/
++#endif /* LV_HAVE_AVX2*/
+ #endif /* INCLUDED_volk_8ic_x2_s32f_multiply_conjugate_32fc_u_H */
+diff --git a/kernels/volk/volk_8u_conv_k7_r2puppet_8u.h b/kernels/volk/volk_8u_conv_k7_r2puppet_8u.h
+index 00f83de..69287cd 100644
+--- a/kernels/volk/volk_8u_conv_k7_r2puppet_8u.h
++++ b/kernels/volk/volk_8u_conv_k7_r2puppet_8u.h
+@@ -23,21 +23,21 @@
+ #ifndef INCLUDED_volk_8u_conv_k7_r2puppet_8u_H
+ #define INCLUDED_volk_8u_conv_k7_r2puppet_8u_H
++#include <string.h>
+ #include <volk/volk.h>
+ #include <volk/volk_8u_x4_conv_k7_r2_8u.h>
+-#include <string.h>
+ typedef union {
+-  //decision_t is a BIT vector
+-  unsigned char* t;
+-  unsigned int* w;
++    // decision_t is a BIT vector
++    unsigned char* t;
++    unsigned int* w;
+ } p_decision_t;
+ static inline int parity(int x, unsigned char* Partab)
+ {
+-  x ^= (x >> 16);
+-  x ^= (x >> 8);
+-  return Partab[x];
++    x ^= (x >> 16);
++    x ^= (x >> 8);
++    return Partab[x];
+ }
+ static inline int chainback_viterbi(unsigned char* data,
+@@ -46,135 +46,143 @@ static inline int chainback_viterbi(unsigned char* data,
+                                     unsigned int tailsize,
+                                     unsigned char* decisions)
+ {
+-  unsigned char* d;
+-  int d_ADDSHIFT = 0;
+-  int d_numstates = (1 << 6);
+-  int d_decision_t_size = d_numstates/8;
+-  unsigned int d_k = 7;
+-  int d_framebits = nbits;
+-  /* ADDSHIFT and SUBSHIFT make sure that the thing returned is a byte. */
+-  d = decisions;
+-  /* Make room beyond the end of the encoder register so we can
+-   * accumulate a full byte of decoded data
+-   */
+-
+-  endstate = (endstate%d_numstates) << d_ADDSHIFT;
+-
+-  /* The store into data[] only needs to be done every 8 bits.
+-   * But this avoids a conditional branch, and the writes will
+-   * combine in the cache anyway
+-   */
+-
+-  d += tailsize * d_decision_t_size ; /* Look past tail */
+-  int retval;
+-  int dif = tailsize - (d_k - 1);
+-  //printf("break, %d, %d\n", dif, (nbits+dif)%d_framebits);
+-  p_decision_t dec;
+-  while(nbits-- > d_framebits - (d_k - 1)) {
+-    int k;
+-    dec.t =  &d[nbits * d_decision_t_size];
+-    k = (dec.w[(endstate>>d_ADDSHIFT)/32] >> ((endstate>>d_ADDSHIFT)%32)) & 1;
+-
+-    endstate = (endstate >> 1) | (k << (d_k-2+d_ADDSHIFT));
+-    //data[((nbits+dif)%nbits)>>3] = endstate>>d_SUBSHIFT;
+-    //printf("%d, %d\n", k, (nbits+dif)%d_framebits);
+-    data[((nbits+dif)%d_framebits)] = k;
+-
+-    retval = endstate;
+-  }
+-  nbits += 1;
+-
+-  while(nbits-- != 0) {
+-    int k;
+-
+-    dec.t = &d[nbits * d_decision_t_size];
+-
+-    k = (dec.w[(endstate>>d_ADDSHIFT)/32] >> ((endstate>>d_ADDSHIFT)%32)) & 1;
+-
+-    endstate = (endstate >> 1) | (k << (d_k-2+d_ADDSHIFT));
+-    data[((nbits+dif)%d_framebits)] = k;
+-  }
+-  //printf("%d, %d, %d, %d, %d, %d, %d, %d\n", data[4095],data[4094],data[4093],data[4092],data[4091],data[4090],data[4089],data[4088]);
+-
+-
+-  return retval >> d_ADDSHIFT;
++    unsigned char* d;
++    int d_ADDSHIFT = 0;
++    int d_numstates = (1 << 6);
++    int d_decision_t_size = d_numstates / 8;
++    unsigned int d_k = 7;
++    int d_framebits = nbits;
++    /* ADDSHIFT and SUBSHIFT make sure that the thing returned is a byte. */
++    d = decisions;
++    /* Make room beyond the end of the encoder register so we can
++     * accumulate a full byte of decoded data
++     */
++
++    endstate = (endstate % d_numstates) << d_ADDSHIFT;
++
++    /* The store into data[] only needs to be done every 8 bits.
++     * But this avoids a conditional branch, and the writes will
++     * combine in the cache anyway
++     */
++
++    d += tailsize * d_decision_t_size; /* Look past tail */
++    int retval;
++    int dif = tailsize - (d_k - 1);
++    // printf("break, %d, %d\n", dif, (nbits+dif)%d_framebits);
++    p_decision_t dec;
++    while (nbits-- > d_framebits - (d_k - 1)) {
++        int k;
++        dec.t = &d[nbits * d_decision_t_size];
++        k = (dec.w[(endstate >> d_ADDSHIFT) / 32] >> ((endstate >> d_ADDSHIFT) % 32)) & 1;
++
++        endstate = (endstate >> 1) | (k << (d_k - 2 + d_ADDSHIFT));
++        // data[((nbits+dif)%nbits)>>3] = endstate>>d_SUBSHIFT;
++        // printf("%d, %d\n", k, (nbits+dif)%d_framebits);
++        data[((nbits + dif) % d_framebits)] = k;
++
++        retval = endstate;
++    }
++    nbits += 1;
++
++    while (nbits-- != 0) {
++        int k;
++
++        dec.t = &d[nbits * d_decision_t_size];
++
++        k = (dec.w[(endstate >> d_ADDSHIFT) / 32] >> ((endstate >> d_ADDSHIFT) % 32)) & 1;
++
++        endstate = (endstate >> 1) | (k << (d_k - 2 + d_ADDSHIFT));
++        data[((nbits + dif) % d_framebits)] = k;
++    }
++    // printf("%d, %d, %d, %d, %d, %d, %d, %d\n",
++    // data[4095],data[4094],data[4093],data[4092],data[4091],data[4090],data[4089],data[4088]);
++
++
++    return retval >> d_ADDSHIFT;
+ }
+ #if LV_HAVE_SSE3
+-#include <pmmintrin.h>
+ #include <emmintrin.h>
+-#include <xmmintrin.h>
+ #include <mmintrin.h>
++#include <pmmintrin.h>
+ #include <stdio.h>
++#include <xmmintrin.h>
+-static inline void volk_8u_conv_k7_r2puppet_8u_spiral(unsigned char* syms, unsigned char* dec, unsigned int framebits) {
+-
+-
+-  static int once = 1;
+-  int d_numstates = (1 << 6);
+-  int rate = 2;
+-  static unsigned char* D;
+-  static unsigned char* Y;
+-  static unsigned char* X;
+-  static unsigned int excess = 6;
+-  static unsigned char* Branchtab;
+-  static unsigned char Partab[256];
+-
+-  int d_polys[2] = {79, 109};
+-
+-
+-  if(once) {
+-
+-    X = (unsigned char*)volk_malloc(2*d_numstates, volk_get_alignment());
+-    Y = X + d_numstates;
+-    Branchtab = (unsigned char*)volk_malloc(d_numstates/2*rate, volk_get_alignment());
+-    D = (unsigned char*)volk_malloc((d_numstates/8) * (framebits + 6), volk_get_alignment());
+-    int state, i;
+-    int cnt,ti;
+-
+-    /* Initialize parity lookup table */
+-    for(i=0;i<256;i++){
+-      cnt = 0;
+-      ti = i;
+-      while(ti){
+-        if(ti & 1)
+-          cnt++;
+-        ti >>= 1;
+-      }
+-      Partab[i] = cnt & 1;
+-    }
+-    /*  Initialize the branch table */
+-    for(state=0;state < d_numstates/2;state++){
+-      for(i=0; i<rate; i++){
+-        Branchtab[i*d_numstates/2+state] = parity((2*state) & d_polys[i], Partab) ? 255 : 0;
+-      }
+-    }
++static inline void volk_8u_conv_k7_r2puppet_8u_spiral(unsigned char* syms,
++                                                      unsigned char* dec,
++                                                      unsigned int framebits)
++{
+-    once = 0;
+-  }
+-  //unbias the old_metrics
+-  memset(X, 31, d_numstates);
++    static int once = 1;
++    int d_numstates = (1 << 6);
++    int rate = 2;
++    static unsigned char* D;
++    static unsigned char* Y;
++    static unsigned char* X;
++    static unsigned int excess = 6;
++    static unsigned char* Branchtab;
++    static unsigned char Partab[256];
++
++    int d_polys[2] = { 79, 109 };
++
++
++    if (once) {
++
++        X = (unsigned char*)volk_malloc(2 * d_numstates, volk_get_alignment());
++        Y = X + d_numstates;
++        Branchtab =
++            (unsigned char*)volk_malloc(d_numstates / 2 * rate, volk_get_alignment());
++        D = (unsigned char*)volk_malloc((d_numstates / 8) * (framebits + 6),
++                                        volk_get_alignment());
++        int state, i;
++        int cnt, ti;
++
++        /* Initialize parity lookup table */
++        for (i = 0; i < 256; i++) {
++            cnt = 0;
++            ti = i;
++            while (ti) {
++                if (ti & 1)
++                    cnt++;
++                ti >>= 1;
++            }
++            Partab[i] = cnt & 1;
++        }
++        /*  Initialize the branch table */
++        for (state = 0; state < d_numstates / 2; state++) {
++            for (i = 0; i < rate; i++) {
++                Branchtab[i * d_numstates / 2 + state] =
++                    parity((2 * state) & d_polys[i], Partab) ? 255 : 0;
++            }
++        }
++
++        once = 0;
++    }
++
++    // unbias the old_metrics
++    memset(X, 31, d_numstates);
+-  // initialize decisions
+-  memset(D, 0, (d_numstates/8) * (framebits + 6));
++    // initialize decisions
++    memset(D, 0, (d_numstates / 8) * (framebits + 6));
+-  volk_8u_x4_conv_k7_r2_8u_spiral(Y, X, syms, D, framebits/2 - excess, excess, Branchtab);
++    volk_8u_x4_conv_k7_r2_8u_spiral(
++        Y, X, syms, D, framebits / 2 - excess, excess, Branchtab);
+-  unsigned int min = X[0];
+-  int i = 0, state = 0;
+-  for(i = 0; i < (d_numstates); ++i) {
+-    if(X[i] < min) {
+-      min = X[i];
+-      state = i;
++    unsigned int min = X[0];
++    int i = 0, state = 0;
++    for (i = 0; i < (d_numstates); ++i) {
++        if (X[i] < min) {
++            min = X[i];
++            state = i;
++        }
+     }
+-  }
+-  chainback_viterbi(dec, framebits/2 -excess, state, excess, D);
++    chainback_viterbi(dec, framebits / 2 - excess, state, excess, D);
+-  return;
++    return;
+ }
+ #endif /*LV_HAVE_SSE3*/
+@@ -185,151 +193,161 @@ static inline void volk_8u_conv_k7_r2puppet_8u_spiral(unsigned char* syms, unsig
+ #include <immintrin.h>
+ #include <stdio.h>
+-static inline void volk_8u_conv_k7_r2puppet_8u_avx2(unsigned char* syms, unsigned char* dec, unsigned int framebits) {
+-
+-
+-  static int once = 1;
+-  int d_numstates = (1 << 6);
+-  int rate = 2;
+-  static unsigned char* D;
+-  static unsigned char* Y;
+-  static unsigned char* X;
+-  static unsigned int excess = 6;
+-  static unsigned char* Branchtab;
+-  static unsigned char Partab[256];
+-
+-  int d_polys[2] = {79, 109};
+-
+-
+-  if(once) {
+-
+-    X = (unsigned char*)volk_malloc(2*d_numstates, volk_get_alignment());
+-    Y = X + d_numstates;
+-    Branchtab = (unsigned char*)volk_malloc(d_numstates/2*rate, volk_get_alignment());
+-    D = (unsigned char*)volk_malloc((d_numstates/8) * (framebits + 6), volk_get_alignment());
+-    int state, i;
+-    int cnt,ti;
+-
+-    /* Initialize parity lookup table */
+-    for(i=0;i<256;i++){
+-      cnt = 0;
+-      ti = i;
+-      while(ti){
+-        if(ti & 1)
+-          cnt++;
+-        ti >>= 1;
+-      }
+-      Partab[i] = cnt & 1;
+-    }
+-    /*  Initialize the branch table */
+-    for(state=0;state < d_numstates/2;state++){
+-      for(i=0; i<rate; i++){
+-        Branchtab[i*d_numstates/2+state] = parity((2*state) & d_polys[i], Partab) ? 255 : 0;
+-      }
+-    }
++static inline void volk_8u_conv_k7_r2puppet_8u_avx2(unsigned char* syms,
++                                                    unsigned char* dec,
++                                                    unsigned int framebits)
++{
+-    once = 0;
+-  }
+-  //unbias the old_metrics
+-  memset(X, 31, d_numstates);
++    static int once = 1;
++    int d_numstates = (1 << 6);
++    int rate = 2;
++    static unsigned char* D;
++    static unsigned char* Y;
++    static unsigned char* X;
++    static unsigned int excess = 6;
++    static unsigned char* Branchtab;
++    static unsigned char Partab[256];
++
++    int d_polys[2] = { 79, 109 };
++
++
++    if (once) {
++
++        X = (unsigned char*)volk_malloc(2 * d_numstates, volk_get_alignment());
++        Y = X + d_numstates;
++        Branchtab =
++            (unsigned char*)volk_malloc(d_numstates / 2 * rate, volk_get_alignment());
++        D = (unsigned char*)volk_malloc((d_numstates / 8) * (framebits + 6),
++                                        volk_get_alignment());
++        int state, i;
++        int cnt, ti;
++
++        /* Initialize parity lookup table */
++        for (i = 0; i < 256; i++) {
++            cnt = 0;
++            ti = i;
++            while (ti) {
++                if (ti & 1)
++                    cnt++;
++                ti >>= 1;
++            }
++            Partab[i] = cnt & 1;
++        }
++        /*  Initialize the branch table */
++        for (state = 0; state < d_numstates / 2; state++) {
++            for (i = 0; i < rate; i++) {
++                Branchtab[i * d_numstates / 2 + state] =
++                    parity((2 * state) & d_polys[i], Partab) ? 255 : 0;
++            }
++        }
++
++        once = 0;
++    }
++
++    // unbias the old_metrics
++    memset(X, 31, d_numstates);
+-  // initialize decisions
+-  memset(D, 0, (d_numstates/8) * (framebits + 6));
++    // initialize decisions
++    memset(D, 0, (d_numstates / 8) * (framebits + 6));
+-  volk_8u_x4_conv_k7_r2_8u_avx2(Y, X, syms, D, framebits/2 - excess, excess, Branchtab);
++    volk_8u_x4_conv_k7_r2_8u_avx2(
++        Y, X, syms, D, framebits / 2 - excess, excess, Branchtab);
+-  unsigned int min = X[0];
+-  int i = 0, state = 0;
+-  for(i = 0; i < (d_numstates); ++i) {
+-    if(X[i] < min) {
+-      min = X[i];
+-      state = i;
++    unsigned int min = X[0];
++    int i = 0, state = 0;
++    for (i = 0; i < (d_numstates); ++i) {
++        if (X[i] < min) {
++            min = X[i];
++            state = i;
++        }
+     }
+-  }
+-  chainback_viterbi(dec, framebits/2 -excess, state, excess, D);
++    chainback_viterbi(dec, framebits / 2 - excess, state, excess, D);
+-  return;
++    return;
+ }
+ #endif /*LV_HAVE_AVX2*/
+-
+ #if LV_HAVE_GENERIC
+-static inline void volk_8u_conv_k7_r2puppet_8u_generic(unsigned char* syms, unsigned char* dec, unsigned int framebits) {
+-
+-
+-
+-  static int once = 1;
+-  int d_numstates = (1 << 6);
+-  int rate = 2;
+-  static unsigned char* Y;
+-  static unsigned char* X;
+-  static unsigned char* D;
+-  static unsigned int excess = 6;
+-  static unsigned char* Branchtab;
+-  static unsigned char Partab[256];
+-
+-  int d_polys[2] = {79, 109};
+-
+-
+-  if(once) {
+-
+-    X = (unsigned char*)volk_malloc(2*d_numstates, volk_get_alignment());
+-    Y = X + d_numstates;
+-    Branchtab = (unsigned char*)volk_malloc(d_numstates/2*rate, volk_get_alignment());
+-    D = (unsigned char*)volk_malloc((d_numstates/8) * (framebits + 6), volk_get_alignment());
++static inline void volk_8u_conv_k7_r2puppet_8u_generic(unsigned char* syms,
++                                                       unsigned char* dec,
++                                                       unsigned int framebits)
++{
+-    int state, i;
+-    int cnt,ti;
+-    /* Initialize parity lookup table */
+-    for(i=0;i<256;i++){
+-      cnt = 0;
+-      ti = i;
+-      while(ti){
+-        if(ti & 1)
+-          cnt++;
+-        ti >>= 1;
+-      }
+-      Partab[i] = cnt & 1;
++    static int once = 1;
++    int d_numstates = (1 << 6);
++    int rate = 2;
++    static unsigned char* Y;
++    static unsigned char* X;
++    static unsigned char* D;
++    static unsigned int excess = 6;
++    static unsigned char* Branchtab;
++    static unsigned char Partab[256];
++
++    int d_polys[2] = { 79, 109 };
++
++
++    if (once) {
++
++        X = (unsigned char*)volk_malloc(2 * d_numstates, volk_get_alignment());
++        Y = X + d_numstates;
++        Branchtab =
++            (unsigned char*)volk_malloc(d_numstates / 2 * rate, volk_get_alignment());
++        D = (unsigned char*)volk_malloc((d_numstates / 8) * (framebits + 6),
++                                        volk_get_alignment());
++
++        int state, i;
++        int cnt, ti;
++
++        /* Initialize parity lookup table */
++        for (i = 0; i < 256; i++) {
++            cnt = 0;
++            ti = i;
++            while (ti) {
++                if (ti & 1)
++                    cnt++;
++                ti >>= 1;
++            }
++            Partab[i] = cnt & 1;
++        }
++        /*  Initialize the branch table */
++        for (state = 0; state < d_numstates / 2; state++) {
++            for (i = 0; i < rate; i++) {
++                Branchtab[i * d_numstates / 2 + state] =
++                    parity((2 * state) & d_polys[i], Partab) ? 255 : 0;
++            }
++        }
++
++        once = 0;
+     }
+-    /*  Initialize the branch table */
+-    for(state=0;state < d_numstates/2;state++){
+-      for(i=0; i<rate; i++){
+-        Branchtab[i*d_numstates/2+state] = parity((2*state) & d_polys[i], Partab) ? 255 : 0;
+-      }
+-    }
+-
+-    once = 0;
+-  }
+-  //unbias the old_metrics
+-  memset(X, 31, d_numstates);
++    // unbias the old_metrics
++    memset(X, 31, d_numstates);
+-  // initialize decisions
+-  memset(D, 0, (d_numstates/8) * (framebits + 6));
++    // initialize decisions
++    memset(D, 0, (d_numstates / 8) * (framebits + 6));
+-  volk_8u_x4_conv_k7_r2_8u_generic(Y, X, syms, D, framebits/2 - excess, excess, Branchtab);
++    volk_8u_x4_conv_k7_r2_8u_generic(
++        Y, X, syms, D, framebits / 2 - excess, excess, Branchtab);
+-  unsigned int min = X[0];
+-  int i = 0, state = 0;
+-  for(i = 0; i < (d_numstates); ++i) {
+-    if(X[i] < min) {
+-      min = X[i];
+-      state = i;
++    unsigned int min = X[0];
++    int i = 0, state = 0;
++    for (i = 0; i < (d_numstates); ++i) {
++        if (X[i] < min) {
++            min = X[i];
++            state = i;
++        }
+     }
+-  }
+-
+-  chainback_viterbi(dec, framebits/2 -excess, state, excess, D);
+-
+-  return;
++    chainback_viterbi(dec, framebits / 2 - excess, state, excess, D);
++    return;
+ }
+ #endif /* LV_HAVE_GENERIC */
+diff --git a/kernels/volk/volk_8u_x2_encodeframepolar_8u.h b/kernels/volk/volk_8u_x2_encodeframepolar_8u.h
+index bc176ec..e8d980d 100644
+--- a/kernels/volk/volk_8u_x2_encodeframepolar_8u.h
++++ b/kernels/volk/volk_8u_x2_encodeframepolar_8u.h
+@@ -28,172 +28,236 @@
+ #define VOLK_KERNELS_VOLK_VOLK_8U_X2_ENCODEFRAMEPOLAR_8U_U_H_
+ #include <string.h>
+-static inline unsigned int
+-log2_of_power_of_2(unsigned int val){
+-  // algorithm from: http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog
+-  static const unsigned int b[] = {0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0,
+-                                   0xFF00FF00, 0xFFFF0000};
+-
+-  unsigned int res = (val & b[0]) != 0;
+-  res |= ((val & b[4]) != 0) << 4;
+-  res |= ((val & b[3]) != 0) << 3;
+-  res |= ((val & b[2]) != 0) << 2;
+-  res |= ((val & b[1]) != 0) << 1;
+-  return res;
++static inline unsigned int log2_of_power_of_2(unsigned int val)
++{
++    // algorithm from: http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog
++    static const unsigned int b[] = {
++        0xAAAAAAAA, 0xCCCCCCCC, 0xF0F0F0F0, 0xFF00FF00, 0xFFFF0000
++    };
++
++    unsigned int res = (val & b[0]) != 0;
++    res |= ((val & b[4]) != 0) << 4;
++    res |= ((val & b[3]) != 0) << 3;
++    res |= ((val & b[2]) != 0) << 2;
++    res |= ((val & b[1]) != 0) << 1;
++    return res;
+ }
+-static inline void
+-encodepolar_single_stage(unsigned char* frame_ptr, const unsigned char* temp_ptr,
+-                         const unsigned int num_branches, const unsigned int frame_half)
++static inline void encodepolar_single_stage(unsigned char* frame_ptr,
++                                            const unsigned char* temp_ptr,
++                                            const unsigned int num_branches,
++                                            const unsigned int frame_half)
+ {
+-  unsigned int branch, bit;
+-  for(branch = 0; branch < num_branches; ++branch){
+-    for(bit = 0; bit < frame_half; ++bit){
+-      *frame_ptr = *temp_ptr ^ *(temp_ptr + 1);
+-      *(frame_ptr + frame_half) = *(temp_ptr + 1);
+-      ++frame_ptr;
+-      temp_ptr += 2;
++    unsigned int branch, bit;
++    for (branch = 0; branch < num_branches; ++branch) {
++        for (bit = 0; bit < frame_half; ++bit) {
++            *frame_ptr = *temp_ptr ^ *(temp_ptr + 1);
++            *(frame_ptr + frame_half) = *(temp_ptr + 1);
++            ++frame_ptr;
++            temp_ptr += 2;
++        }
++        frame_ptr += frame_half;
+     }
+-    frame_ptr += frame_half;
+-  }
+ }
+ #ifdef LV_HAVE_GENERIC
+-static inline void
+-volk_8u_x2_encodeframepolar_8u_generic(unsigned char* frame, unsigned char* temp,
+-                                       unsigned int frame_size)
++static inline void volk_8u_x2_encodeframepolar_8u_generic(unsigned char* frame,
++                                                          unsigned char* temp,
++                                                          unsigned int frame_size)
+ {
+-  unsigned int stage = log2_of_power_of_2(frame_size);
+-  unsigned int frame_half = frame_size >> 1;
+-  unsigned int num_branches = 1;
+-
+-  while(stage){
+-    // encode stage
+-    encodepolar_single_stage(frame, temp, num_branches, frame_half);
+-    memcpy(temp, frame, sizeof(unsigned char) * frame_size);
+-
+-    // update all the parameters.
+-    num_branches = num_branches << 1;
+-    frame_half = frame_half >> 1;
+-    --stage;
+-  }
++    unsigned int stage = log2_of_power_of_2(frame_size);
++    unsigned int frame_half = frame_size >> 1;
++    unsigned int num_branches = 1;
++
++    while (stage) {
++        // encode stage
++        encodepolar_single_stage(frame, temp, num_branches, frame_half);
++        memcpy(temp, frame, sizeof(unsigned char) * frame_size);
++
++        // update all the parameters.
++        num_branches = num_branches << 1;
++        frame_half = frame_half >> 1;
++        --stage;
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_SSSE3
+ #include <tmmintrin.h>
+-static inline void
+-volk_8u_x2_encodeframepolar_8u_u_ssse3(unsigned char* frame, unsigned char* temp,
+-                                       unsigned int frame_size)
++static inline void volk_8u_x2_encodeframepolar_8u_u_ssse3(unsigned char* frame,
++                                                          unsigned char* temp,
++                                                          unsigned int frame_size)
+ {
+-  const unsigned int po2 = log2_of_power_of_2(frame_size);
+-
+-  unsigned int stage = po2;
+-  unsigned char* frame_ptr = frame;
+-  unsigned char* temp_ptr = temp;
+-
+-  unsigned int frame_half = frame_size >> 1;
+-  unsigned int num_branches = 1;
+-  unsigned int branch;
+-  unsigned int bit;
+-
+-  // prepare constants
+-  const __m128i mask_stage1 = _mm_set_epi8(0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF);
+-
+-  // get some SIMD registers to play with.
+-  __m128i r_frame0, r_temp0, shifted;
+-
+-  {
+-    __m128i r_frame1, r_temp1;
+-    const __m128i shuffle_separate = _mm_setr_epi8(0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15);
+-
+-    while(stage > 4){
+-      frame_ptr = frame;
+-      temp_ptr = temp;
+-
+-      // for stage = 5 a branch has 32 elements. So upper stages are even bigger.
+-      for(branch = 0; branch < num_branches; ++branch){
+-        for(bit = 0; bit < frame_half; bit += 16){
+-          r_temp0 = _mm_loadu_si128((__m128i *) temp_ptr);
+-          temp_ptr += 16;
+-          r_temp1 = _mm_loadu_si128((__m128i *) temp_ptr);
+-          temp_ptr += 16;
+-
+-          shifted = _mm_srli_si128(r_temp0, 1);
+-          shifted = _mm_and_si128(shifted, mask_stage1);
+-          r_temp0 = _mm_xor_si128(shifted, r_temp0);
+-          r_temp0 = _mm_shuffle_epi8(r_temp0, shuffle_separate);
+-
+-          shifted = _mm_srli_si128(r_temp1, 1);
+-          shifted = _mm_and_si128(shifted, mask_stage1);
+-          r_temp1 = _mm_xor_si128(shifted, r_temp1);
+-          r_temp1 = _mm_shuffle_epi8(r_temp1, shuffle_separate);
+-
+-          r_frame0 = _mm_unpacklo_epi64(r_temp0, r_temp1);
+-          _mm_storeu_si128((__m128i*) frame_ptr, r_frame0);
+-
+-          r_frame1 = _mm_unpackhi_epi64(r_temp0, r_temp1);
+-          _mm_storeu_si128((__m128i*) (frame_ptr + frame_half), r_frame1);
+-          frame_ptr += 16;
++    const unsigned int po2 = log2_of_power_of_2(frame_size);
++
++    unsigned int stage = po2;
++    unsigned char* frame_ptr = frame;
++    unsigned char* temp_ptr = temp;
++
++    unsigned int frame_half = frame_size >> 1;
++    unsigned int num_branches = 1;
++    unsigned int branch;
++    unsigned int bit;
++
++    // prepare constants
++    const __m128i mask_stage1 = _mm_set_epi8(0x0,
++                                             0xFF,
++                                             0x0,
++                                             0xFF,
++                                             0x0,
++                                             0xFF,
++                                             0x0,
++                                             0xFF,
++                                             0x0,
++                                             0xFF,
++                                             0x0,
++                                             0xFF,
++                                             0x0,
++                                             0xFF,
++                                             0x0,
++                                             0xFF);
++
++    // get some SIMD registers to play with.
++    __m128i r_frame0, r_temp0, shifted;
++
++    {
++        __m128i r_frame1, r_temp1;
++        const __m128i shuffle_separate =
++            _mm_setr_epi8(0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15);
++
++        while (stage > 4) {
++            frame_ptr = frame;
++            temp_ptr = temp;
++
++            // for stage = 5 a branch has 32 elements. So upper stages are even bigger.
++            for (branch = 0; branch < num_branches; ++branch) {
++                for (bit = 0; bit < frame_half; bit += 16) {
++                    r_temp0 = _mm_loadu_si128((__m128i*)temp_ptr);
++                    temp_ptr += 16;
++                    r_temp1 = _mm_loadu_si128((__m128i*)temp_ptr);
++                    temp_ptr += 16;
++
++                    shifted = _mm_srli_si128(r_temp0, 1);
++                    shifted = _mm_and_si128(shifted, mask_stage1);
++                    r_temp0 = _mm_xor_si128(shifted, r_temp0);
++                    r_temp0 = _mm_shuffle_epi8(r_temp0, shuffle_separate);
++
++                    shifted = _mm_srli_si128(r_temp1, 1);
++                    shifted = _mm_and_si128(shifted, mask_stage1);
++                    r_temp1 = _mm_xor_si128(shifted, r_temp1);
++                    r_temp1 = _mm_shuffle_epi8(r_temp1, shuffle_separate);
++
++                    r_frame0 = _mm_unpacklo_epi64(r_temp0, r_temp1);
++                    _mm_storeu_si128((__m128i*)frame_ptr, r_frame0);
++
++                    r_frame1 = _mm_unpackhi_epi64(r_temp0, r_temp1);
++                    _mm_storeu_si128((__m128i*)(frame_ptr + frame_half), r_frame1);
++                    frame_ptr += 16;
++                }
++
++                frame_ptr += frame_half;
++            }
++            memcpy(temp, frame, sizeof(unsigned char) * frame_size);
++
++            num_branches = num_branches << 1;
++            frame_half = frame_half >> 1;
++            stage--;
+         }
+-
+-        frame_ptr += frame_half;
+-      }
+-      memcpy(temp, frame, sizeof(unsigned char) * frame_size);
+-
+-      num_branches = num_branches << 1;
+-      frame_half = frame_half >> 1;
+-      stage--;
+     }
+-  }
+-  // This last part requires at least 16-bit frames.
+-  // Smaller frames are useless for SIMD optimization anyways. Just choose GENERIC!
++    // This last part requires at least 16-bit frames.
++    // Smaller frames are useless for SIMD optimization anyways. Just choose GENERIC!
+-  // reset pointers to correct positions.
+-  frame_ptr = frame;
+-  temp_ptr = temp;
++    // reset pointers to correct positions.
++    frame_ptr = frame;
++    temp_ptr = temp;
+-  // prefetch first chunk
+-  __VOLK_PREFETCH(temp_ptr);
+-
+-  const __m128i shuffle_stage4 = _mm_setr_epi8(0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15);
+-  const __m128i mask_stage4 = _mm_set_epi8(0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF);
+-  const __m128i mask_stage3 = _mm_set_epi8(0x0, 0x0, 0x0, 0x0, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x0, 0x0, 0x0, 0xFF, 0xFF, 0xFF, 0xFF);
+-  const __m128i mask_stage2 = _mm_set_epi8(0x0, 0x0, 0xFF, 0xFF, 0x0, 0x0, 0xFF, 0xFF, 0x0, 0x0, 0xFF, 0xFF, 0x0, 0x0, 0xFF, 0xFF);
+-
+-  for(branch = 0; branch < num_branches; ++branch){
+-    r_temp0 = _mm_loadu_si128((__m128i*) temp_ptr);
+-
+-    // prefetch next chunk
+-    temp_ptr += 16;
++    // prefetch first chunk
+     __VOLK_PREFETCH(temp_ptr);
+-    // shuffle once for bit-reversal.
+-    r_temp0 = _mm_shuffle_epi8(r_temp0, shuffle_stage4);
+-
+-    shifted = _mm_srli_si128(r_temp0, 8);
+-    shifted = _mm_and_si128(shifted, mask_stage4);
+-    r_frame0 = _mm_xor_si128(shifted, r_temp0);
+-
+-    shifted = _mm_srli_si128(r_frame0, 4);
+-    shifted = _mm_and_si128(shifted, mask_stage3);
+-    r_frame0 = _mm_xor_si128(shifted, r_frame0);
+-
+-    shifted = _mm_srli_si128(r_frame0, 2);
+-    shifted = _mm_and_si128(shifted, mask_stage2);
+-    r_frame0 = _mm_xor_si128(shifted, r_frame0);
+-
+-    shifted = _mm_srli_si128(r_frame0, 1);
+-    shifted = _mm_and_si128(shifted, mask_stage1);
+-    r_frame0 = _mm_xor_si128(shifted, r_frame0);
+-
+-    // store result of chunk.
+-    _mm_storeu_si128((__m128i*)frame_ptr, r_frame0);
+-    frame_ptr += 16;
+-  }
++    const __m128i shuffle_stage4 =
++        _mm_setr_epi8(0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15);
++    const __m128i mask_stage4 = _mm_set_epi8(0x0,
++                                             0x0,
++                                             0x0,
++                                             0x0,
++                                             0x0,
++                                             0x0,
++                                             0x0,
++                                             0x0,
++                                             0xFF,
++                                             0xFF,
++                                             0xFF,
++                                             0xFF,
++                                             0xFF,
++                                             0xFF,
++                                             0xFF,
++                                             0xFF);
++    const __m128i mask_stage3 = _mm_set_epi8(0x0,
++                                             0x0,
++                                             0x0,
++                                             0x0,
++                                             0xFF,
++                                             0xFF,
++                                             0xFF,
++                                             0xFF,
++                                             0x0,
++                                             0x0,
++                                             0x0,
++                                             0x0,
++                                             0xFF,
++                                             0xFF,
++                                             0xFF,
++                                             0xFF);
++    const __m128i mask_stage2 = _mm_set_epi8(0x0,
++                                             0x0,
++                                             0xFF,
++                                             0xFF,
++                                             0x0,
++                                             0x0,
++                                             0xFF,
++                                             0xFF,
++                                             0x0,
++                                             0x0,
++                                             0xFF,
++                                             0xFF,
++                                             0x0,
++                                             0x0,
++                                             0xFF,
++                                             0xFF);
++
++    for (branch = 0; branch < num_branches; ++branch) {
++        r_temp0 = _mm_loadu_si128((__m128i*)temp_ptr);
++
++        // prefetch next chunk
++        temp_ptr += 16;
++        __VOLK_PREFETCH(temp_ptr);
++
++        // shuffle once for bit-reversal.
++        r_temp0 = _mm_shuffle_epi8(r_temp0, shuffle_stage4);
++
++        shifted = _mm_srli_si128(r_temp0, 8);
++        shifted = _mm_and_si128(shifted, mask_stage4);
++        r_frame0 = _mm_xor_si128(shifted, r_temp0);
++
++        shifted = _mm_srli_si128(r_frame0, 4);
++        shifted = _mm_and_si128(shifted, mask_stage3);
++        r_frame0 = _mm_xor_si128(shifted, r_frame0);
++
++        shifted = _mm_srli_si128(r_frame0, 2);
++        shifted = _mm_and_si128(shifted, mask_stage2);
++        r_frame0 = _mm_xor_si128(shifted, r_frame0);
++
++        shifted = _mm_srli_si128(r_frame0, 1);
++        shifted = _mm_and_si128(shifted, mask_stage1);
++        r_frame0 = _mm_xor_si128(shifted, r_frame0);
++
++        // store result of chunk.
++        _mm_storeu_si128((__m128i*)frame_ptr, r_frame0);
++        frame_ptr += 16;
++    }
+ }
+ #endif /* LV_HAVE_SSSE3 */
+@@ -201,154 +265,351 @@ volk_8u_x2_encodeframepolar_8u_u_ssse3(unsigned char* frame, unsigned char* temp
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_8u_x2_encodeframepolar_8u_u_avx2(unsigned char* frame, unsigned char* temp,
+-                                       unsigned int frame_size)
++static inline void volk_8u_x2_encodeframepolar_8u_u_avx2(unsigned char* frame,
++                                                         unsigned char* temp,
++                                                         unsigned int frame_size)
+ {
+-  const unsigned int po2 = log2_of_power_of_2(frame_size);
+-
+-  unsigned int stage = po2;
+-  unsigned char* frame_ptr = frame;
+-  unsigned char* temp_ptr = temp;
+-
+-  unsigned int frame_half = frame_size >> 1;
+-  unsigned int num_branches = 1;
+-  unsigned int branch;
+-  unsigned int bit;
+-
+-  // prepare constants
+-  const __m256i mask_stage1 = _mm256_set_epi8(0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF,
+-                                              0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF);
+-
+-  const __m128i mask_stage0 = _mm_set_epi8(0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF);
+-  // get some SIMD registers to play with.
+-  __m256i r_frame0, r_temp0, shifted;
+-  __m128i r_temp2, r_frame2, shifted2;
+-  {
+-    __m256i r_frame1, r_temp1;
+-    __m128i r_frame3, r_temp3;
+-    const __m256i shuffle_separate = _mm256_setr_epi8(0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15,
+-                                                      0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15);
+-    const __m128i shuffle_separate128 = _mm_setr_epi8(0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15);
+-
+-    while(stage > 4){
+-      frame_ptr = frame;
+-      temp_ptr = temp;
+-
+-      // for stage = 5 a branch has 32 elements. So upper stages are even bigger.
+-      for(branch = 0; branch < num_branches; ++branch){
+-        for(bit = 0; bit < frame_half; bit += 32){
+-          if ((frame_half-bit)<32) //if only 16 bits remaining in frame, not 32
+-          {
+-              r_temp2 = _mm_loadu_si128((__m128i *) temp_ptr);
+-              temp_ptr += 16;
+-              r_temp3 = _mm_loadu_si128((__m128i *) temp_ptr);
+-              temp_ptr += 16;
+-
+-              shifted2 = _mm_srli_si128(r_temp2, 1);
+-              shifted2 = _mm_and_si128(shifted2, mask_stage0);
+-              r_temp2 = _mm_xor_si128(shifted2, r_temp2);
+-              r_temp2 = _mm_shuffle_epi8(r_temp2, shuffle_separate128);
+-
+-              shifted2 = _mm_srli_si128(r_temp3, 1);
+-              shifted2 = _mm_and_si128(shifted2, mask_stage0);
+-              r_temp3 = _mm_xor_si128(shifted2, r_temp3);
+-              r_temp3 = _mm_shuffle_epi8(r_temp3, shuffle_separate128);
+-
+-              r_frame2 = _mm_unpacklo_epi64(r_temp2, r_temp3);
+-              _mm_storeu_si128((__m128i*) frame_ptr, r_frame2);
+-
+-              r_frame3 = _mm_unpackhi_epi64(r_temp2, r_temp3);
+-              _mm_storeu_si128((__m128i*) (frame_ptr + frame_half), r_frame3);
+-              frame_ptr += 16;
+-              break;
+-          }
+-          r_temp0 = _mm256_loadu_si256((__m256i *) temp_ptr);
+-          temp_ptr += 32;
+-          r_temp1 = _mm256_loadu_si256((__m256i *) temp_ptr);
+-          temp_ptr += 32;
+-
+-          shifted = _mm256_srli_si256(r_temp0, 1);//operate on 128 bit lanes
+-          shifted = _mm256_and_si256(shifted, mask_stage1);
+-          r_temp0 = _mm256_xor_si256(shifted, r_temp0);
+-          r_temp0 = _mm256_shuffle_epi8(r_temp0, shuffle_separate);
+-
+-          shifted = _mm256_srli_si256(r_temp1, 1);
+-          shifted = _mm256_and_si256(shifted, mask_stage1);
+-          r_temp1 = _mm256_xor_si256(shifted, r_temp1);
+-          r_temp1 = _mm256_shuffle_epi8(r_temp1, shuffle_separate);
+-
+-          r_frame0 = _mm256_unpacklo_epi64(r_temp0, r_temp1);
+-          r_temp1 = _mm256_unpackhi_epi64(r_temp0, r_temp1);
+-          r_frame0 = _mm256_permute4x64_epi64(r_frame0, 0xd8);
+-          r_frame1 = _mm256_permute4x64_epi64(r_temp1, 0xd8);
+-
+-          _mm256_storeu_si256((__m256i*) frame_ptr, r_frame0);
+-
+-          _mm256_storeu_si256((__m256i*) (frame_ptr + frame_half), r_frame1);
+-          frame_ptr += 32;
++    const unsigned int po2 = log2_of_power_of_2(frame_size);
++
++    unsigned int stage = po2;
++    unsigned char* frame_ptr = frame;
++    unsigned char* temp_ptr = temp;
++
++    unsigned int frame_half = frame_size >> 1;
++    unsigned int num_branches = 1;
++    unsigned int branch;
++    unsigned int bit;
++
++    // prepare constants
++    const __m256i mask_stage1 = _mm256_set_epi8(0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF);
++
++    const __m128i mask_stage0 = _mm_set_epi8(0x0,
++                                             0xFF,
++                                             0x0,
++                                             0xFF,
++                                             0x0,
++                                             0xFF,
++                                             0x0,
++                                             0xFF,
++                                             0x0,
++                                             0xFF,
++                                             0x0,
++                                             0xFF,
++                                             0x0,
++                                             0xFF,
++                                             0x0,
++                                             0xFF);
++    // get some SIMD registers to play with.
++    __m256i r_frame0, r_temp0, shifted;
++    __m128i r_temp2, r_frame2, shifted2;
++    {
++        __m256i r_frame1, r_temp1;
++        __m128i r_frame3, r_temp3;
++        const __m256i shuffle_separate = _mm256_setr_epi8(0,
++                                                          2,
++                                                          4,
++                                                          6,
++                                                          8,
++                                                          10,
++                                                          12,
++                                                          14,
++                                                          1,
++                                                          3,
++                                                          5,
++                                                          7,
++                                                          9,
++                                                          11,
++                                                          13,
++                                                          15,
++                                                          0,
++                                                          2,
++                                                          4,
++                                                          6,
++                                                          8,
++                                                          10,
++                                                          12,
++                                                          14,
++                                                          1,
++                                                          3,
++                                                          5,
++                                                          7,
++                                                          9,
++                                                          11,
++                                                          13,
++                                                          15);
++        const __m128i shuffle_separate128 =
++            _mm_setr_epi8(0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15);
++
++        while (stage > 4) {
++            frame_ptr = frame;
++            temp_ptr = temp;
++
++            // for stage = 5 a branch has 32 elements. So upper stages are even bigger.
++            for (branch = 0; branch < num_branches; ++branch) {
++                for (bit = 0; bit < frame_half; bit += 32) {
++                    if ((frame_half - bit) <
++                        32) // if only 16 bits remaining in frame, not 32
++                    {
++                        r_temp2 = _mm_loadu_si128((__m128i*)temp_ptr);
++                        temp_ptr += 16;
++                        r_temp3 = _mm_loadu_si128((__m128i*)temp_ptr);
++                        temp_ptr += 16;
++
++                        shifted2 = _mm_srli_si128(r_temp2, 1);
++                        shifted2 = _mm_and_si128(shifted2, mask_stage0);
++                        r_temp2 = _mm_xor_si128(shifted2, r_temp2);
++                        r_temp2 = _mm_shuffle_epi8(r_temp2, shuffle_separate128);
++
++                        shifted2 = _mm_srli_si128(r_temp3, 1);
++                        shifted2 = _mm_and_si128(shifted2, mask_stage0);
++                        r_temp3 = _mm_xor_si128(shifted2, r_temp3);
++                        r_temp3 = _mm_shuffle_epi8(r_temp3, shuffle_separate128);
++
++                        r_frame2 = _mm_unpacklo_epi64(r_temp2, r_temp3);
++                        _mm_storeu_si128((__m128i*)frame_ptr, r_frame2);
++
++                        r_frame3 = _mm_unpackhi_epi64(r_temp2, r_temp3);
++                        _mm_storeu_si128((__m128i*)(frame_ptr + frame_half), r_frame3);
++                        frame_ptr += 16;
++                        break;
++                    }
++                    r_temp0 = _mm256_loadu_si256((__m256i*)temp_ptr);
++                    temp_ptr += 32;
++                    r_temp1 = _mm256_loadu_si256((__m256i*)temp_ptr);
++                    temp_ptr += 32;
++
++                    shifted = _mm256_srli_si256(r_temp0, 1); // operate on 128 bit lanes
++                    shifted = _mm256_and_si256(shifted, mask_stage1);
++                    r_temp0 = _mm256_xor_si256(shifted, r_temp0);
++                    r_temp0 = _mm256_shuffle_epi8(r_temp0, shuffle_separate);
++
++                    shifted = _mm256_srli_si256(r_temp1, 1);
++                    shifted = _mm256_and_si256(shifted, mask_stage1);
++                    r_temp1 = _mm256_xor_si256(shifted, r_temp1);
++                    r_temp1 = _mm256_shuffle_epi8(r_temp1, shuffle_separate);
++
++                    r_frame0 = _mm256_unpacklo_epi64(r_temp0, r_temp1);
++                    r_temp1 = _mm256_unpackhi_epi64(r_temp0, r_temp1);
++                    r_frame0 = _mm256_permute4x64_epi64(r_frame0, 0xd8);
++                    r_frame1 = _mm256_permute4x64_epi64(r_temp1, 0xd8);
++
++                    _mm256_storeu_si256((__m256i*)frame_ptr, r_frame0);
++
++                    _mm256_storeu_si256((__m256i*)(frame_ptr + frame_half), r_frame1);
++                    frame_ptr += 32;
++                }
++
++                frame_ptr += frame_half;
++            }
++            memcpy(temp, frame, sizeof(unsigned char) * frame_size);
++
++            num_branches = num_branches << 1;
++            frame_half = frame_half >> 1;
++            stage--;
+         }
+-
+-        frame_ptr += frame_half;
+-      }
+-      memcpy(temp, frame, sizeof(unsigned char) * frame_size);
+-
+-      num_branches = num_branches << 1;
+-      frame_half = frame_half >> 1;
+-      stage--;
+     }
+-  }
+-
+-  // This last part requires at least 32-bit frames.
+-  // Smaller frames are useless for SIMD optimization anyways. Just choose GENERIC!
+-
+-  // reset pointers to correct positions.
+-  frame_ptr = frame;
+-  temp_ptr = temp;
+-  // prefetch first chunk
+-  __VOLK_PREFETCH(temp_ptr);
++    // This last part requires at least 32-bit frames.
++    // Smaller frames are useless for SIMD optimization anyways. Just choose GENERIC!
+-  const __m256i shuffle_stage4 = _mm256_setr_epi8(0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15,
+-                                                  0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15);
+-  const __m256i mask_stage4 = _mm256_set_epi8(0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+-                                              0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF);
+-  const __m256i mask_stage3 = _mm256_set_epi8(0x0, 0x0, 0x0, 0x0, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x0, 0x0, 0x0, 0xFF, 0xFF, 0xFF, 0xFF,
+-                                              0x0, 0x0, 0x0, 0x0, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x0, 0x0, 0x0, 0xFF, 0xFF, 0xFF, 0xFF);
+-  const __m256i mask_stage2 = _mm256_set_epi8(0x0, 0x0, 0xFF, 0xFF, 0x0, 0x0, 0xFF, 0xFF, 0x0, 0x0, 0xFF, 0xFF, 0x0, 0x0, 0xFF, 0xFF,
+-                                              0x0, 0x0, 0xFF, 0xFF, 0x0, 0x0, 0xFF, 0xFF, 0x0, 0x0, 0xFF, 0xFF, 0x0, 0x0, 0xFF, 0xFF);
++    // reset pointers to correct positions.
++    frame_ptr = frame;
++    temp_ptr = temp;
+-  for(branch = 0; branch < num_branches/2; ++branch){
+-    r_temp0 = _mm256_loadu_si256((__m256i*) temp_ptr);
+-
+-    // prefetch next chunk
+-    temp_ptr += 32;
++    // prefetch first chunk
+     __VOLK_PREFETCH(temp_ptr);
+-    // shuffle once for bit-reversal.
+-    r_temp0 = _mm256_shuffle_epi8(r_temp0, shuffle_stage4);
+-
+-    shifted = _mm256_srli_si256(r_temp0, 8); //128 bit lanes
+-    shifted = _mm256_and_si256(shifted, mask_stage4);
+-    r_frame0 = _mm256_xor_si256(shifted, r_temp0);
+-
+-
+-    shifted = _mm256_srli_si256(r_frame0, 4);
+-    shifted = _mm256_and_si256(shifted, mask_stage3);
+-    r_frame0 = _mm256_xor_si256(shifted, r_frame0);
+-
+-    shifted = _mm256_srli_si256(r_frame0, 2);
+-    shifted = _mm256_and_si256(shifted, mask_stage2);
+-    r_frame0 = _mm256_xor_si256(shifted, r_frame0);
+-
+-    shifted = _mm256_srli_si256(r_frame0, 1);
+-    shifted = _mm256_and_si256(shifted, mask_stage1);
+-    r_frame0 = _mm256_xor_si256(shifted, r_frame0);
+-
+-    // store result of chunk.
+-    _mm256_storeu_si256((__m256i*)frame_ptr, r_frame0);
+-    frame_ptr += 32;
+-  }
++    const __m256i shuffle_stage4 = _mm256_setr_epi8(0,
++                                                    8,
++                                                    4,
++                                                    12,
++                                                    2,
++                                                    10,
++                                                    6,
++                                                    14,
++                                                    1,
++                                                    9,
++                                                    5,
++                                                    13,
++                                                    3,
++                                                    11,
++                                                    7,
++                                                    15,
++                                                    0,
++                                                    8,
++                                                    4,
++                                                    12,
++                                                    2,
++                                                    10,
++                                                    6,
++                                                    14,
++                                                    1,
++                                                    9,
++                                                    5,
++                                                    13,
++                                                    3,
++                                                    11,
++                                                    7,
++                                                    15);
++    const __m256i mask_stage4 = _mm256_set_epi8(0x0,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF);
++    const __m256i mask_stage3 = _mm256_set_epi8(0x0,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF);
++    const __m256i mask_stage2 = _mm256_set_epi8(0x0,
++                                                0x0,
++                                                0xFF,
++                                                0xFF,
++                                                0x0,
++                                                0x0,
++                                                0xFF,
++                                                0xFF,
++                                                0x0,
++                                                0x0,
++                                                0xFF,
++                                                0xFF,
++                                                0x0,
++                                                0x0,
++                                                0xFF,
++                                                0xFF,
++                                                0x0,
++                                                0x0,
++                                                0xFF,
++                                                0xFF,
++                                                0x0,
++                                                0x0,
++                                                0xFF,
++                                                0xFF,
++                                                0x0,
++                                                0x0,
++                                                0xFF,
++                                                0xFF,
++                                                0x0,
++                                                0x0,
++                                                0xFF,
++                                                0xFF);
++
++    for (branch = 0; branch < num_branches / 2; ++branch) {
++        r_temp0 = _mm256_loadu_si256((__m256i*)temp_ptr);
++
++        // prefetch next chunk
++        temp_ptr += 32;
++        __VOLK_PREFETCH(temp_ptr);
++
++        // shuffle once for bit-reversal.
++        r_temp0 = _mm256_shuffle_epi8(r_temp0, shuffle_stage4);
++
++        shifted = _mm256_srli_si256(r_temp0, 8); // 128 bit lanes
++        shifted = _mm256_and_si256(shifted, mask_stage4);
++        r_frame0 = _mm256_xor_si256(shifted, r_temp0);
++
++
++        shifted = _mm256_srli_si256(r_frame0, 4);
++        shifted = _mm256_and_si256(shifted, mask_stage3);
++        r_frame0 = _mm256_xor_si256(shifted, r_frame0);
++
++        shifted = _mm256_srli_si256(r_frame0, 2);
++        shifted = _mm256_and_si256(shifted, mask_stage2);
++        r_frame0 = _mm256_xor_si256(shifted, r_frame0);
++
++        shifted = _mm256_srli_si256(r_frame0, 1);
++        shifted = _mm256_and_si256(shifted, mask_stage1);
++        r_frame0 = _mm256_xor_si256(shifted, r_frame0);
++
++        // store result of chunk.
++        _mm256_storeu_si256((__m256i*)frame_ptr, r_frame0);
++        frame_ptr += 32;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -360,272 +621,530 @@ volk_8u_x2_encodeframepolar_8u_u_avx2(unsigned char* frame, unsigned char* temp,
+ #ifdef LV_HAVE_SSSE3
+ #include <tmmintrin.h>
+-static inline void
+-volk_8u_x2_encodeframepolar_8u_a_ssse3(unsigned char* frame, unsigned char* temp,
+-                                       unsigned int frame_size)
++static inline void volk_8u_x2_encodeframepolar_8u_a_ssse3(unsigned char* frame,
++                                                          unsigned char* temp,
++                                                          unsigned int frame_size)
+ {
+-  const unsigned int po2 = log2_of_power_of_2(frame_size);
+-
+-  unsigned int stage = po2;
+-  unsigned char* frame_ptr = frame;
+-  unsigned char* temp_ptr = temp;
+-
+-  unsigned int frame_half = frame_size >> 1;
+-  unsigned int num_branches = 1;
+-  unsigned int branch;
+-  unsigned int bit;
+-
+-  // prepare constants
+-  const __m128i mask_stage1 = _mm_set_epi8(0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF);
+-
+-  // get some SIMD registers to play with.
+-  __m128i r_frame0, r_temp0, shifted;
+-
+-  {
+-    __m128i r_frame1, r_temp1;
+-    const __m128i shuffle_separate = _mm_setr_epi8(0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15);
+-
+-    while(stage > 4){
+-      frame_ptr = frame;
+-      temp_ptr = temp;
+-
+-      // for stage = 5 a branch has 32 elements. So upper stages are even bigger.
+-      for(branch = 0; branch < num_branches; ++branch){
+-        for(bit = 0; bit < frame_half; bit += 16){
+-          r_temp0 = _mm_load_si128((__m128i *) temp_ptr);
+-          temp_ptr += 16;
+-          r_temp1 = _mm_load_si128((__m128i *) temp_ptr);
+-          temp_ptr += 16;
+-
+-          shifted = _mm_srli_si128(r_temp0, 1);
+-          shifted = _mm_and_si128(shifted, mask_stage1);
+-          r_temp0 = _mm_xor_si128(shifted, r_temp0);
+-          r_temp0 = _mm_shuffle_epi8(r_temp0, shuffle_separate);
+-
+-          shifted = _mm_srli_si128(r_temp1, 1);
+-          shifted = _mm_and_si128(shifted, mask_stage1);
+-          r_temp1 = _mm_xor_si128(shifted, r_temp1);
+-          r_temp1 = _mm_shuffle_epi8(r_temp1, shuffle_separate);
+-
+-          r_frame0 = _mm_unpacklo_epi64(r_temp0, r_temp1);
+-          _mm_store_si128((__m128i*) frame_ptr, r_frame0);
+-
+-          r_frame1 = _mm_unpackhi_epi64(r_temp0, r_temp1);
+-          _mm_store_si128((__m128i*) (frame_ptr + frame_half), r_frame1);
+-          frame_ptr += 16;
++    const unsigned int po2 = log2_of_power_of_2(frame_size);
++
++    unsigned int stage = po2;
++    unsigned char* frame_ptr = frame;
++    unsigned char* temp_ptr = temp;
++
++    unsigned int frame_half = frame_size >> 1;
++    unsigned int num_branches = 1;
++    unsigned int branch;
++    unsigned int bit;
++
++    // prepare constants
++    const __m128i mask_stage1 = _mm_set_epi8(0x0,
++                                             0xFF,
++                                             0x0,
++                                             0xFF,
++                                             0x0,
++                                             0xFF,
++                                             0x0,
++                                             0xFF,
++                                             0x0,
++                                             0xFF,
++                                             0x0,
++                                             0xFF,
++                                             0x0,
++                                             0xFF,
++                                             0x0,
++                                             0xFF);
++
++    // get some SIMD registers to play with.
++    __m128i r_frame0, r_temp0, shifted;
++
++    {
++        __m128i r_frame1, r_temp1;
++        const __m128i shuffle_separate =
++            _mm_setr_epi8(0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15);
++
++        while (stage > 4) {
++            frame_ptr = frame;
++            temp_ptr = temp;
++
++            // for stage = 5 a branch has 32 elements. So upper stages are even bigger.
++            for (branch = 0; branch < num_branches; ++branch) {
++                for (bit = 0; bit < frame_half; bit += 16) {
++                    r_temp0 = _mm_load_si128((__m128i*)temp_ptr);
++                    temp_ptr += 16;
++                    r_temp1 = _mm_load_si128((__m128i*)temp_ptr);
++                    temp_ptr += 16;
++
++                    shifted = _mm_srli_si128(r_temp0, 1);
++                    shifted = _mm_and_si128(shifted, mask_stage1);
++                    r_temp0 = _mm_xor_si128(shifted, r_temp0);
++                    r_temp0 = _mm_shuffle_epi8(r_temp0, shuffle_separate);
++
++                    shifted = _mm_srli_si128(r_temp1, 1);
++                    shifted = _mm_and_si128(shifted, mask_stage1);
++                    r_temp1 = _mm_xor_si128(shifted, r_temp1);
++                    r_temp1 = _mm_shuffle_epi8(r_temp1, shuffle_separate);
++
++                    r_frame0 = _mm_unpacklo_epi64(r_temp0, r_temp1);
++                    _mm_store_si128((__m128i*)frame_ptr, r_frame0);
++
++                    r_frame1 = _mm_unpackhi_epi64(r_temp0, r_temp1);
++                    _mm_store_si128((__m128i*)(frame_ptr + frame_half), r_frame1);
++                    frame_ptr += 16;
++                }
++
++                frame_ptr += frame_half;
++            }
++            memcpy(temp, frame, sizeof(unsigned char) * frame_size);
++
++            num_branches = num_branches << 1;
++            frame_half = frame_half >> 1;
++            stage--;
+         }
+-
+-        frame_ptr += frame_half;
+-      }
+-      memcpy(temp, frame, sizeof(unsigned char) * frame_size);
+-
+-      num_branches = num_branches << 1;
+-      frame_half = frame_half >> 1;
+-      stage--;
+     }
+-  }
+-
+-  // This last part requires at least 16-bit frames.
+-  // Smaller frames are useless for SIMD optimization anyways. Just choose GENERIC!
+-
+-  // reset pointers to correct positions.
+-  frame_ptr = frame;
+-  temp_ptr = temp;
+-  // prefetch first chunk
+-  __VOLK_PREFETCH(temp_ptr);
++    // This last part requires at least 16-bit frames.
++    // Smaller frames are useless for SIMD optimization anyways. Just choose GENERIC!
+-  const __m128i shuffle_stage4 = _mm_setr_epi8(0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15);
+-  const __m128i mask_stage4 = _mm_set_epi8(0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF);
+-  const __m128i mask_stage3 = _mm_set_epi8(0x0, 0x0, 0x0, 0x0, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x0, 0x0, 0x0, 0xFF, 0xFF, 0xFF, 0xFF);
+-  const __m128i mask_stage2 = _mm_set_epi8(0x0, 0x0, 0xFF, 0xFF, 0x0, 0x0, 0xFF, 0xFF, 0x0, 0x0, 0xFF, 0xFF, 0x0, 0x0, 0xFF, 0xFF);
++    // reset pointers to correct positions.
++    frame_ptr = frame;
++    temp_ptr = temp;
+-  for(branch = 0; branch < num_branches; ++branch){
+-    r_temp0 = _mm_load_si128((__m128i*) temp_ptr);
+-
+-    // prefetch next chunk
+-    temp_ptr += 16;
++    // prefetch first chunk
+     __VOLK_PREFETCH(temp_ptr);
+-    // shuffle once for bit-reversal.
+-    r_temp0 = _mm_shuffle_epi8(r_temp0, shuffle_stage4);
+-
+-    shifted = _mm_srli_si128(r_temp0, 8);
+-    shifted = _mm_and_si128(shifted, mask_stage4);
+-    r_frame0 = _mm_xor_si128(shifted, r_temp0);
+-
+-    shifted = _mm_srli_si128(r_frame0, 4);
+-    shifted = _mm_and_si128(shifted, mask_stage3);
+-    r_frame0 = _mm_xor_si128(shifted, r_frame0);
+-
+-    shifted = _mm_srli_si128(r_frame0, 2);
+-    shifted = _mm_and_si128(shifted, mask_stage2);
+-    r_frame0 = _mm_xor_si128(shifted, r_frame0);
+-
+-    shifted = _mm_srli_si128(r_frame0, 1);
+-    shifted = _mm_and_si128(shifted, mask_stage1);
+-    r_frame0 = _mm_xor_si128(shifted, r_frame0);
+-
+-    // store result of chunk.
+-    _mm_store_si128((__m128i*)frame_ptr, r_frame0);
+-    frame_ptr += 16;
+-  }
++    const __m128i shuffle_stage4 =
++        _mm_setr_epi8(0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15);
++    const __m128i mask_stage4 = _mm_set_epi8(0x0,
++                                             0x0,
++                                             0x0,
++                                             0x0,
++                                             0x0,
++                                             0x0,
++                                             0x0,
++                                             0x0,
++                                             0xFF,
++                                             0xFF,
++                                             0xFF,
++                                             0xFF,
++                                             0xFF,
++                                             0xFF,
++                                             0xFF,
++                                             0xFF);
++    const __m128i mask_stage3 = _mm_set_epi8(0x0,
++                                             0x0,
++                                             0x0,
++                                             0x0,
++                                             0xFF,
++                                             0xFF,
++                                             0xFF,
++                                             0xFF,
++                                             0x0,
++                                             0x0,
++                                             0x0,
++                                             0x0,
++                                             0xFF,
++                                             0xFF,
++                                             0xFF,
++                                             0xFF);
++    const __m128i mask_stage2 = _mm_set_epi8(0x0,
++                                             0x0,
++                                             0xFF,
++                                             0xFF,
++                                             0x0,
++                                             0x0,
++                                             0xFF,
++                                             0xFF,
++                                             0x0,
++                                             0x0,
++                                             0xFF,
++                                             0xFF,
++                                             0x0,
++                                             0x0,
++                                             0xFF,
++                                             0xFF);
++
++    for (branch = 0; branch < num_branches; ++branch) {
++        r_temp0 = _mm_load_si128((__m128i*)temp_ptr);
++
++        // prefetch next chunk
++        temp_ptr += 16;
++        __VOLK_PREFETCH(temp_ptr);
++
++        // shuffle once for bit-reversal.
++        r_temp0 = _mm_shuffle_epi8(r_temp0, shuffle_stage4);
++
++        shifted = _mm_srli_si128(r_temp0, 8);
++        shifted = _mm_and_si128(shifted, mask_stage4);
++        r_frame0 = _mm_xor_si128(shifted, r_temp0);
++
++        shifted = _mm_srli_si128(r_frame0, 4);
++        shifted = _mm_and_si128(shifted, mask_stage3);
++        r_frame0 = _mm_xor_si128(shifted, r_frame0);
++
++        shifted = _mm_srli_si128(r_frame0, 2);
++        shifted = _mm_and_si128(shifted, mask_stage2);
++        r_frame0 = _mm_xor_si128(shifted, r_frame0);
++
++        shifted = _mm_srli_si128(r_frame0, 1);
++        shifted = _mm_and_si128(shifted, mask_stage1);
++        r_frame0 = _mm_xor_si128(shifted, r_frame0);
++
++        // store result of chunk.
++        _mm_store_si128((__m128i*)frame_ptr, r_frame0);
++        frame_ptr += 16;
++    }
+ }
+ #endif /* LV_HAVE_SSSE3 */
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+-static inline void
+-volk_8u_x2_encodeframepolar_8u_a_avx2(unsigned char* frame, unsigned char* temp,
+-                                       unsigned int frame_size)
++static inline void volk_8u_x2_encodeframepolar_8u_a_avx2(unsigned char* frame,
++                                                         unsigned char* temp,
++                                                         unsigned int frame_size)
+ {
+-  const unsigned int po2 = log2_of_power_of_2(frame_size);
+-
+-  unsigned int stage = po2;
+-  unsigned char* frame_ptr = frame;
+-  unsigned char* temp_ptr = temp;
+-
+-  unsigned int frame_half = frame_size >> 1;
+-  unsigned int num_branches = 1;
+-  unsigned int branch;
+-  unsigned int bit;
+-
+-  // prepare constants
+-  const __m256i mask_stage1 = _mm256_set_epi8(0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF,
+-                                              0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF);
+-
+-  const __m128i mask_stage0 = _mm_set_epi8(0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF, 0x0, 0xFF);
+-  // get some SIMD registers to play with.
+-  __m256i r_frame0, r_temp0, shifted;
+-  __m128i r_temp2, r_frame2, shifted2;
+-  {
+-    __m256i r_frame1, r_temp1;
+-    __m128i r_frame3, r_temp3;
+-    const __m256i shuffle_separate = _mm256_setr_epi8(0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15,
+-                                                      0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15);
+-    const __m128i shuffle_separate128 = _mm_setr_epi8(0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15);
+-
+-    while(stage > 4){
+-      frame_ptr = frame;
+-      temp_ptr = temp;
+-
+-      // for stage = 5 a branch has 32 elements. So upper stages are even bigger.
+-      for(branch = 0; branch < num_branches; ++branch){
+-        for(bit = 0; bit < frame_half; bit += 32){
+-          if ((frame_half-bit)<32) //if only 16 bits remaining in frame, not 32
+-          {
+-              r_temp2 = _mm_load_si128((__m128i *) temp_ptr);
+-              temp_ptr += 16;
+-              r_temp3 = _mm_load_si128((__m128i *) temp_ptr);
+-              temp_ptr += 16;
+-
+-              shifted2 = _mm_srli_si128(r_temp2, 1);
+-              shifted2 = _mm_and_si128(shifted2, mask_stage0);
+-              r_temp2 = _mm_xor_si128(shifted2, r_temp2);
+-              r_temp2 = _mm_shuffle_epi8(r_temp2, shuffle_separate128);
+-
+-              shifted2 = _mm_srli_si128(r_temp3, 1);
+-              shifted2 = _mm_and_si128(shifted2, mask_stage0);
+-              r_temp3 = _mm_xor_si128(shifted2, r_temp3);
+-              r_temp3 = _mm_shuffle_epi8(r_temp3, shuffle_separate128);
+-
+-              r_frame2 = _mm_unpacklo_epi64(r_temp2, r_temp3);
+-              _mm_store_si128((__m128i*) frame_ptr, r_frame2);
+-
+-              r_frame3 = _mm_unpackhi_epi64(r_temp2, r_temp3);
+-              _mm_store_si128((__m128i*) (frame_ptr + frame_half), r_frame3);
+-              frame_ptr += 16;
+-              break;
+-          }
+-          r_temp0 = _mm256_load_si256((__m256i *) temp_ptr);
+-          temp_ptr += 32;
+-          r_temp1 = _mm256_load_si256((__m256i *) temp_ptr);
+-          temp_ptr += 32;
+-
+-          shifted = _mm256_srli_si256(r_temp0, 1);//operate on 128 bit lanes
+-          shifted = _mm256_and_si256(shifted, mask_stage1);
+-          r_temp0 = _mm256_xor_si256(shifted, r_temp0);
+-          r_temp0 = _mm256_shuffle_epi8(r_temp0, shuffle_separate);
+-
+-          shifted = _mm256_srli_si256(r_temp1, 1);
+-          shifted = _mm256_and_si256(shifted, mask_stage1);
+-          r_temp1 = _mm256_xor_si256(shifted, r_temp1);
+-          r_temp1 = _mm256_shuffle_epi8(r_temp1, shuffle_separate);
+-
+-          r_frame0 = _mm256_unpacklo_epi64(r_temp0, r_temp1);
+-          r_temp1 = _mm256_unpackhi_epi64(r_temp0, r_temp1);
+-          r_frame0 = _mm256_permute4x64_epi64(r_frame0, 0xd8);
+-          r_frame1 = _mm256_permute4x64_epi64(r_temp1, 0xd8);
+-
+-          _mm256_store_si256((__m256i*) frame_ptr, r_frame0);
+-
+-          _mm256_store_si256((__m256i*) (frame_ptr + frame_half), r_frame1);
+-          frame_ptr += 32;
++    const unsigned int po2 = log2_of_power_of_2(frame_size);
++
++    unsigned int stage = po2;
++    unsigned char* frame_ptr = frame;
++    unsigned char* temp_ptr = temp;
++
++    unsigned int frame_half = frame_size >> 1;
++    unsigned int num_branches = 1;
++    unsigned int branch;
++    unsigned int bit;
++
++    // prepare constants
++    const __m256i mask_stage1 = _mm256_set_epi8(0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF,
++                                                0x0,
++                                                0xFF);
++
++    const __m128i mask_stage0 = _mm_set_epi8(0x0,
++                                             0xFF,
++                                             0x0,
++                                             0xFF,
++                                             0x0,
++                                             0xFF,
++                                             0x0,
++                                             0xFF,
++                                             0x0,
++                                             0xFF,
++                                             0x0,
++                                             0xFF,
++                                             0x0,
++                                             0xFF,
++                                             0x0,
++                                             0xFF);
++    // get some SIMD registers to play with.
++    __m256i r_frame0, r_temp0, shifted;
++    __m128i r_temp2, r_frame2, shifted2;
++    {
++        __m256i r_frame1, r_temp1;
++        __m128i r_frame3, r_temp3;
++        const __m256i shuffle_separate = _mm256_setr_epi8(0,
++                                                          2,
++                                                          4,
++                                                          6,
++                                                          8,
++                                                          10,
++                                                          12,
++                                                          14,
++                                                          1,
++                                                          3,
++                                                          5,
++                                                          7,
++                                                          9,
++                                                          11,
++                                                          13,
++                                                          15,
++                                                          0,
++                                                          2,
++                                                          4,
++                                                          6,
++                                                          8,
++                                                          10,
++                                                          12,
++                                                          14,
++                                                          1,
++                                                          3,
++                                                          5,
++                                                          7,
++                                                          9,
++                                                          11,
++                                                          13,
++                                                          15);
++        const __m128i shuffle_separate128 =
++            _mm_setr_epi8(0, 2, 4, 6, 8, 10, 12, 14, 1, 3, 5, 7, 9, 11, 13, 15);
++
++        while (stage > 4) {
++            frame_ptr = frame;
++            temp_ptr = temp;
++
++            // for stage = 5 a branch has 32 elements. So upper stages are even bigger.
++            for (branch = 0; branch < num_branches; ++branch) {
++                for (bit = 0; bit < frame_half; bit += 32) {
++                    if ((frame_half - bit) <
++                        32) // if only 16 bits remaining in frame, not 32
++                    {
++                        r_temp2 = _mm_load_si128((__m128i*)temp_ptr);
++                        temp_ptr += 16;
++                        r_temp3 = _mm_load_si128((__m128i*)temp_ptr);
++                        temp_ptr += 16;
++
++                        shifted2 = _mm_srli_si128(r_temp2, 1);
++                        shifted2 = _mm_and_si128(shifted2, mask_stage0);
++                        r_temp2 = _mm_xor_si128(shifted2, r_temp2);
++                        r_temp2 = _mm_shuffle_epi8(r_temp2, shuffle_separate128);
++
++                        shifted2 = _mm_srli_si128(r_temp3, 1);
++                        shifted2 = _mm_and_si128(shifted2, mask_stage0);
++                        r_temp3 = _mm_xor_si128(shifted2, r_temp3);
++                        r_temp3 = _mm_shuffle_epi8(r_temp3, shuffle_separate128);
++
++                        r_frame2 = _mm_unpacklo_epi64(r_temp2, r_temp3);
++                        _mm_store_si128((__m128i*)frame_ptr, r_frame2);
++
++                        r_frame3 = _mm_unpackhi_epi64(r_temp2, r_temp3);
++                        _mm_store_si128((__m128i*)(frame_ptr + frame_half), r_frame3);
++                        frame_ptr += 16;
++                        break;
++                    }
++                    r_temp0 = _mm256_load_si256((__m256i*)temp_ptr);
++                    temp_ptr += 32;
++                    r_temp1 = _mm256_load_si256((__m256i*)temp_ptr);
++                    temp_ptr += 32;
++
++                    shifted = _mm256_srli_si256(r_temp0, 1); // operate on 128 bit lanes
++                    shifted = _mm256_and_si256(shifted, mask_stage1);
++                    r_temp0 = _mm256_xor_si256(shifted, r_temp0);
++                    r_temp0 = _mm256_shuffle_epi8(r_temp0, shuffle_separate);
++
++                    shifted = _mm256_srli_si256(r_temp1, 1);
++                    shifted = _mm256_and_si256(shifted, mask_stage1);
++                    r_temp1 = _mm256_xor_si256(shifted, r_temp1);
++                    r_temp1 = _mm256_shuffle_epi8(r_temp1, shuffle_separate);
++
++                    r_frame0 = _mm256_unpacklo_epi64(r_temp0, r_temp1);
++                    r_temp1 = _mm256_unpackhi_epi64(r_temp0, r_temp1);
++                    r_frame0 = _mm256_permute4x64_epi64(r_frame0, 0xd8);
++                    r_frame1 = _mm256_permute4x64_epi64(r_temp1, 0xd8);
++
++                    _mm256_store_si256((__m256i*)frame_ptr, r_frame0);
++
++                    _mm256_store_si256((__m256i*)(frame_ptr + frame_half), r_frame1);
++                    frame_ptr += 32;
++                }
++
++                frame_ptr += frame_half;
++            }
++            memcpy(temp, frame, sizeof(unsigned char) * frame_size);
++
++            num_branches = num_branches << 1;
++            frame_half = frame_half >> 1;
++            stage--;
+         }
+-
+-        frame_ptr += frame_half;
+-      }
+-      memcpy(temp, frame, sizeof(unsigned char) * frame_size);
+-
+-      num_branches = num_branches << 1;
+-      frame_half = frame_half >> 1;
+-      stage--;
+     }
+-  }
+-
+-  // This last part requires at least 32-bit frames.
+-  // Smaller frames are useless for SIMD optimization anyways. Just choose GENERIC!
+-  // reset pointers to correct positions.
+-  frame_ptr = frame;
+-  temp_ptr = temp;
++    // This last part requires at least 32-bit frames.
++    // Smaller frames are useless for SIMD optimization anyways. Just choose GENERIC!
+-  // prefetch first chunk.
+-  __VOLK_PREFETCH(temp_ptr);
++    // reset pointers to correct positions.
++    frame_ptr = frame;
++    temp_ptr = temp;
+-  const __m256i shuffle_stage4 = _mm256_setr_epi8(0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15,
+-                                                  0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15);
+-  const __m256i mask_stage4 = _mm256_set_epi8(0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+-                                              0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF);
+-  const __m256i mask_stage3 = _mm256_set_epi8(0x0, 0x0, 0x0, 0x0, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x0, 0x0, 0x0, 0xFF, 0xFF, 0xFF, 0xFF,
+-                                              0x0, 0x0, 0x0, 0x0, 0xFF, 0xFF, 0xFF, 0xFF, 0x0, 0x0, 0x0, 0x0, 0xFF, 0xFF, 0xFF, 0xFF);
+-  const __m256i mask_stage2 = _mm256_set_epi8(0x0, 0x0, 0xFF, 0xFF, 0x0, 0x0, 0xFF, 0xFF, 0x0, 0x0, 0xFF, 0xFF, 0x0, 0x0, 0xFF, 0xFF,
+-                                              0x0, 0x0, 0xFF, 0xFF, 0x0, 0x0, 0xFF, 0xFF, 0x0, 0x0, 0xFF, 0xFF, 0x0, 0x0, 0xFF, 0xFF);
+-
+-  for(branch = 0; branch < num_branches/2; ++branch){
+-    r_temp0 = _mm256_load_si256((__m256i*) temp_ptr);
+-
+-    // prefetch next chunk
+-    temp_ptr += 32;
++    // prefetch first chunk.
+     __VOLK_PREFETCH(temp_ptr);
+-    // shuffle once for bit-reversal.
+-    r_temp0 = _mm256_shuffle_epi8(r_temp0, shuffle_stage4);
+-
+-    shifted = _mm256_srli_si256(r_temp0, 8); //128 bit lanes
+-    shifted = _mm256_and_si256(shifted, mask_stage4);
+-    r_frame0 = _mm256_xor_si256(shifted, r_temp0);
+-
+-    shifted = _mm256_srli_si256(r_frame0, 4);
+-    shifted = _mm256_and_si256(shifted, mask_stage3);
+-    r_frame0 = _mm256_xor_si256(shifted, r_frame0);
+-
+-    shifted = _mm256_srli_si256(r_frame0, 2);
+-    shifted = _mm256_and_si256(shifted, mask_stage2);
+-    r_frame0 = _mm256_xor_si256(shifted, r_frame0);
+-
+-    shifted = _mm256_srli_si256(r_frame0, 1);
+-    shifted = _mm256_and_si256(shifted, mask_stage1);
+-    r_frame0 = _mm256_xor_si256(shifted, r_frame0);
+-
+-    // store result of chunk.
+-    _mm256_store_si256((__m256i*)frame_ptr, r_frame0);
+-    frame_ptr += 32;
+-  }
++    const __m256i shuffle_stage4 = _mm256_setr_epi8(0,
++                                                    8,
++                                                    4,
++                                                    12,
++                                                    2,
++                                                    10,
++                                                    6,
++                                                    14,
++                                                    1,
++                                                    9,
++                                                    5,
++                                                    13,
++                                                    3,
++                                                    11,
++                                                    7,
++                                                    15,
++                                                    0,
++                                                    8,
++                                                    4,
++                                                    12,
++                                                    2,
++                                                    10,
++                                                    6,
++                                                    14,
++                                                    1,
++                                                    9,
++                                                    5,
++                                                    13,
++                                                    3,
++                                                    11,
++                                                    7,
++                                                    15);
++    const __m256i mask_stage4 = _mm256_set_epi8(0x0,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF);
++    const __m256i mask_stage3 = _mm256_set_epi8(0x0,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0x0,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF,
++                                                0xFF);
++    const __m256i mask_stage2 = _mm256_set_epi8(0x0,
++                                                0x0,
++                                                0xFF,
++                                                0xFF,
++                                                0x0,
++                                                0x0,
++                                                0xFF,
++                                                0xFF,
++                                                0x0,
++                                                0x0,
++                                                0xFF,
++                                                0xFF,
++                                                0x0,
++                                                0x0,
++                                                0xFF,
++                                                0xFF,
++                                                0x0,
++                                                0x0,
++                                                0xFF,
++                                                0xFF,
++                                                0x0,
++                                                0x0,
++                                                0xFF,
++                                                0xFF,
++                                                0x0,
++                                                0x0,
++                                                0xFF,
++                                                0xFF,
++                                                0x0,
++                                                0x0,
++                                                0xFF,
++                                                0xFF);
++
++    for (branch = 0; branch < num_branches / 2; ++branch) {
++        r_temp0 = _mm256_load_si256((__m256i*)temp_ptr);
++
++        // prefetch next chunk
++        temp_ptr += 32;
++        __VOLK_PREFETCH(temp_ptr);
++
++        // shuffle once for bit-reversal.
++        r_temp0 = _mm256_shuffle_epi8(r_temp0, shuffle_stage4);
++
++        shifted = _mm256_srli_si256(r_temp0, 8); // 128 bit lanes
++        shifted = _mm256_and_si256(shifted, mask_stage4);
++        r_frame0 = _mm256_xor_si256(shifted, r_temp0);
++
++        shifted = _mm256_srli_si256(r_frame0, 4);
++        shifted = _mm256_and_si256(shifted, mask_stage3);
++        r_frame0 = _mm256_xor_si256(shifted, r_frame0);
++
++        shifted = _mm256_srli_si256(r_frame0, 2);
++        shifted = _mm256_and_si256(shifted, mask_stage2);
++        r_frame0 = _mm256_xor_si256(shifted, r_frame0);
++
++        shifted = _mm256_srli_si256(r_frame0, 1);
++        shifted = _mm256_and_si256(shifted, mask_stage1);
++        r_frame0 = _mm256_xor_si256(shifted, r_frame0);
++
++        // store result of chunk.
++        _mm256_store_si256((__m256i*)frame_ptr, r_frame0);
++        frame_ptr += 32;
++    }
+ }
+ #endif /* LV_HAVE_AVX2 */
+-
+ #endif /* VOLK_KERNELS_VOLK_VOLK_8U_X2_ENCODEFRAMEPOLAR_8U_A_H_ */
+diff --git a/kernels/volk/volk_8u_x3_encodepolar_8u_x2.h b/kernels/volk/volk_8u_x3_encodepolar_8u_x2.h
+index 5bccd95..413836e 100644
+--- a/kernels/volk/volk_8u_x3_encodepolar_8u_x2.h
++++ b/kernels/volk/volk_8u_x3_encodepolar_8u_x2.h
+@@ -29,9 +29,9 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_8u_x3_encodepolar_8u(unsigned char* frame, const unsigned char* frozen_bit_mask, const unsigned char* frozen_bits,
+- *                                  const unsigned char* info_bits, unsigned int frame_size, unsigned int info_bit_size)
+- * \endcode
++ * void volk_8u_x3_encodepolar_8u(unsigned char* frame, const unsigned char*
++ * frozen_bit_mask, const unsigned char* frozen_bits, const unsigned char* info_bits,
++ * unsigned int frame_size, unsigned int info_bit_size) \endcode
+  *
+  * \b Inputs
+  * \li frame: buffer for encoded frame
+@@ -55,14 +55,17 @@
+  * unsigned char* frozen_bit_mask = get_frozen_bit_mask(frame_size, num_frozen_bits);
+  *
+  * // set elements to desired values. Typically all zero.
+- * unsigned char* frozen_bits = (unsigned char) volk_malloc(sizeof(unsigned char) * num_frozen_bits, volk_get_alignment());
++ * unsigned char* frozen_bits = (unsigned char) volk_malloc(sizeof(unsigned char) *
++ * num_frozen_bits, volk_get_alignment());
+  *
+- * unsigned char* frame = (unsigned char) volk_malloc(sizeof(unsigned char) * frame_size, volk_get_alignment());
+- * unsigned char* temp = (unsigned char) volk_malloc(sizeof(unsigned char) * frame_size, volk_get_alignment());
++ * unsigned char* frame = (unsigned char) volk_malloc(sizeof(unsigned char) * frame_size,
++ * volk_get_alignment()); unsigned char* temp = (unsigned char)
++ * volk_malloc(sizeof(unsigned char) * frame_size, volk_get_alignment());
+  *
+  * unsigned char* info_bits = get_info_bits_to_encode(num_info_bits);
+  *
+- * volk_8u_x3_encodepolar_8u_x2_generic(frame, temp, frozen_bit_mask, frozen_bits, info_bits, frame_size);
++ * volk_8u_x3_encodepolar_8u_x2_generic(frame, temp, frozen_bit_mask, frozen_bits,
++ * info_bits, frame_size);
+  *
+  * volk_free(frozen_bit_mask);
+  * volk_free(frozen_bits);
+@@ -77,27 +80,32 @@
+ #include <stdio.h>
+ #include <volk/volk_8u_x2_encodeframepolar_8u.h>
+-static inline void
+-interleave_frozen_and_info_bits(unsigned char* target, const unsigned char* frozen_bit_mask,
+-                                const unsigned char* frozen_bits, const unsigned char* info_bits,
+-                                const unsigned int frame_size)
++static inline void interleave_frozen_and_info_bits(unsigned char* target,
++                                                   const unsigned char* frozen_bit_mask,
++                                                   const unsigned char* frozen_bits,
++                                                   const unsigned char* info_bits,
++                                                   const unsigned int frame_size)
+ {
+-  unsigned int bit;
+-  for(bit = 0; bit < frame_size; ++bit){
+-    *target++ = *frozen_bit_mask++ ? *frozen_bits++ : *info_bits++;
+-  }
++    unsigned int bit;
++    for (bit = 0; bit < frame_size; ++bit) {
++        *target++ = *frozen_bit_mask++ ? *frozen_bits++ : *info_bits++;
++    }
+ }
+ #ifdef LV_HAVE_GENERIC
+ static inline void
+-volk_8u_x3_encodepolar_8u_x2_generic(unsigned char* frame, unsigned char* temp, const unsigned char* frozen_bit_mask,
+-                                     const unsigned char* frozen_bits, const unsigned char* info_bits,
++volk_8u_x3_encodepolar_8u_x2_generic(unsigned char* frame,
++                                     unsigned char* temp,
++                                     const unsigned char* frozen_bit_mask,
++                                     const unsigned char* frozen_bits,
++                                     const unsigned char* info_bits,
+                                      unsigned int frame_size)
+ {
+-  // interleave
+-  interleave_frozen_and_info_bits(temp, frozen_bit_mask, frozen_bits, info_bits, frame_size);
+-  volk_8u_x2_encodeframepolar_8u_generic(frame, temp, frame_size);
++    // interleave
++    interleave_frozen_and_info_bits(
++        temp, frozen_bit_mask, frozen_bits, info_bits, frame_size);
++    volk_8u_x2_encodeframepolar_8u_generic(frame, temp, frame_size);
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -106,14 +114,17 @@ volk_8u_x3_encodepolar_8u_x2_generic(unsigned char* frame, unsigned char* temp,
+ #include <tmmintrin.h>
+ static inline void
+-volk_8u_x3_encodepolar_8u_x2_u_ssse3(unsigned char* frame, unsigned char* temp,
+-                                   const unsigned char* frozen_bit_mask,
+-                                   const unsigned char* frozen_bits, const unsigned char* info_bits,
+-                                   unsigned int frame_size)
++volk_8u_x3_encodepolar_8u_x2_u_ssse3(unsigned char* frame,
++                                     unsigned char* temp,
++                                     const unsigned char* frozen_bit_mask,
++                                     const unsigned char* frozen_bits,
++                                     const unsigned char* info_bits,
++                                     unsigned int frame_size)
+ {
+-  // interleave
+-  interleave_frozen_and_info_bits(temp, frozen_bit_mask, frozen_bits, info_bits, frame_size);
+-  volk_8u_x2_encodeframepolar_8u_u_ssse3(frame, temp, frame_size);
++    // interleave
++    interleave_frozen_and_info_bits(
++        temp, frozen_bit_mask, frozen_bits, info_bits, frame_size);
++    volk_8u_x2_encodeframepolar_8u_u_ssse3(frame, temp, frame_size);
+ }
+ #endif /* LV_HAVE_SSSE3 */
+@@ -121,13 +132,16 @@ volk_8u_x3_encodepolar_8u_x2_u_ssse3(unsigned char* frame, unsigned char* temp,
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+ static inline void
+-volk_8u_x3_encodepolar_8u_x2_u_avx2(unsigned char* frame, unsigned char* temp,
+-                                   const unsigned char* frozen_bit_mask,
+-                                   const unsigned char* frozen_bits, const unsigned char* info_bits,
+-                                   unsigned int frame_size)
++volk_8u_x3_encodepolar_8u_x2_u_avx2(unsigned char* frame,
++                                    unsigned char* temp,
++                                    const unsigned char* frozen_bit_mask,
++                                    const unsigned char* frozen_bits,
++                                    const unsigned char* info_bits,
++                                    unsigned int frame_size)
+ {
+-  interleave_frozen_and_info_bits(temp, frozen_bit_mask, frozen_bits, info_bits, frame_size);
+-  volk_8u_x2_encodeframepolar_8u_u_avx2(frame, temp, frame_size);
++    interleave_frozen_and_info_bits(
++        temp, frozen_bit_mask, frozen_bits, info_bits, frame_size);
++    volk_8u_x2_encodeframepolar_8u_u_avx2(frame, temp, frame_size);
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -139,26 +153,32 @@ volk_8u_x3_encodepolar_8u_x2_u_avx2(unsigned char* frame, unsigned char* temp,
+ #ifdef LV_HAVE_SSSE3
+ #include <tmmintrin.h>
+ static inline void
+-volk_8u_x3_encodepolar_8u_x2_a_ssse3(unsigned char* frame, unsigned char* temp,
+-                                   const unsigned char* frozen_bit_mask,
+-                                   const unsigned char* frozen_bits, const unsigned char* info_bits,
+-                                   unsigned int frame_size)
++volk_8u_x3_encodepolar_8u_x2_a_ssse3(unsigned char* frame,
++                                     unsigned char* temp,
++                                     const unsigned char* frozen_bit_mask,
++                                     const unsigned char* frozen_bits,
++                                     const unsigned char* info_bits,
++                                     unsigned int frame_size)
+ {
+-  interleave_frozen_and_info_bits(temp, frozen_bit_mask, frozen_bits, info_bits, frame_size);
+-  volk_8u_x2_encodeframepolar_8u_a_ssse3(frame, temp, frame_size);
++    interleave_frozen_and_info_bits(
++        temp, frozen_bit_mask, frozen_bits, info_bits, frame_size);
++    volk_8u_x2_encodeframepolar_8u_a_ssse3(frame, temp, frame_size);
+ }
+ #endif /* LV_HAVE_SSSE3 */
+ #ifdef LV_HAVE_AVX2
+ #include <immintrin.h>
+ static inline void
+-volk_8u_x3_encodepolar_8u_x2_a_avx2(unsigned char* frame, unsigned char* temp,
+-                                   const unsigned char* frozen_bit_mask,
+-                                   const unsigned char* frozen_bits, const unsigned char* info_bits,
+-                                   unsigned int frame_size)
++volk_8u_x3_encodepolar_8u_x2_a_avx2(unsigned char* frame,
++                                    unsigned char* temp,
++                                    const unsigned char* frozen_bit_mask,
++                                    const unsigned char* frozen_bits,
++                                    const unsigned char* info_bits,
++                                    unsigned int frame_size)
+ {
+-  interleave_frozen_and_info_bits(temp, frozen_bit_mask, frozen_bits, info_bits, frame_size);
+-  volk_8u_x2_encodeframepolar_8u_a_avx2(frame, temp, frame_size);
++    interleave_frozen_and_info_bits(
++        temp, frozen_bit_mask, frozen_bits, info_bits, frame_size);
++    volk_8u_x2_encodeframepolar_8u_a_avx2(frame, temp, frame_size);
+ }
+ #endif /* LV_HAVE_AVX2 */
+diff --git a/kernels/volk/volk_8u_x3_encodepolarpuppet_8u.h b/kernels/volk/volk_8u_x3_encodepolarpuppet_8u.h
+index 1f6be2c..1badbf1 100644
+--- a/kernels/volk/volk_8u_x3_encodepolarpuppet_8u.h
++++ b/kernels/volk/volk_8u_x3_encodepolarpuppet_8u.h
+@@ -29,71 +29,82 @@
+ #include <volk/volk.h>
+ #include <volk/volk_8u_x3_encodepolar_8u_x2.h>
+-static inline unsigned int
+-next_lower_power_of_two(const unsigned int val)
++static inline unsigned int next_lower_power_of_two(const unsigned int val)
+ {
+-  // algorithm found and adopted from: http://acius2.blogspot.de/2007/11/calculating-next-power-of-2.html
+-  unsigned int res = val;
+-  res = (res >> 1) | res;
+-  res = (res >> 2) | res;
+-  res = (res >> 4) | res;
+-  res = (res >> 8) | res;
+-  res = (res >> 16) | res;
+-  res += 1;
+-  return res >> 1;
++    // algorithm found and adopted from:
++    // http://acius2.blogspot.de/2007/11/calculating-next-power-of-2.html
++    unsigned int res = val;
++    res = (res >> 1) | res;
++    res = (res >> 2) | res;
++    res = (res >> 4) | res;
++    res = (res >> 8) | res;
++    res = (res >> 16) | res;
++    res += 1;
++    return res >> 1;
+ }
+-static inline void
+-adjust_frozen_mask(unsigned char* mask, const unsigned int frame_size)
++static inline void adjust_frozen_mask(unsigned char* mask, const unsigned int frame_size)
+ {
+-  // just like the rest of the puppet this function exists for test purposes only.
+-  unsigned int i;
+-  for(i = 0; i < frame_size; ++i){
+-    *mask = (*mask & 0x80) ? 0xFF : 0x00;
+-    mask++;
+-  }
++    // just like the rest of the puppet this function exists for test purposes only.
++    unsigned int i;
++    for (i = 0; i < frame_size; ++i) {
++        *mask = (*mask & 0x80) ? 0xFF : 0x00;
++        mask++;
++    }
+ }
+ #ifdef LV_HAVE_GENERIC
+ static inline void
+-volk_8u_x3_encodepolarpuppet_8u_generic(unsigned char* frame, unsigned char* frozen_bit_mask,
+-    const unsigned char* frozen_bits, const unsigned char* info_bits,
+-    unsigned int frame_size)
++volk_8u_x3_encodepolarpuppet_8u_generic(unsigned char* frame,
++                                        unsigned char* frozen_bit_mask,
++                                        const unsigned char* frozen_bits,
++                                        const unsigned char* info_bits,
++                                        unsigned int frame_size)
+ {
+-  frame_size = next_lower_power_of_two(frame_size);
+-  unsigned char* temp = (unsigned char*) volk_malloc(sizeof(unsigned char) * frame_size, volk_get_alignment());
+-  adjust_frozen_mask(frozen_bit_mask, frame_size);
+-  volk_8u_x3_encodepolar_8u_x2_generic(frame, temp, frozen_bit_mask, frozen_bits, info_bits, frame_size);
+-  volk_free(temp);
++    frame_size = next_lower_power_of_two(frame_size);
++    unsigned char* temp = (unsigned char*)volk_malloc(sizeof(unsigned char) * frame_size,
++                                                      volk_get_alignment());
++    adjust_frozen_mask(frozen_bit_mask, frame_size);
++    volk_8u_x3_encodepolar_8u_x2_generic(
++        frame, temp, frozen_bit_mask, frozen_bits, info_bits, frame_size);
++    volk_free(temp);
+ }
+ #endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_SSSE3
+ static inline void
+-volk_8u_x3_encodepolarpuppet_8u_u_ssse3(unsigned char* frame, unsigned char* frozen_bit_mask,
+-    const unsigned char* frozen_bits, const unsigned char* info_bits,
+-    unsigned int frame_size)
++volk_8u_x3_encodepolarpuppet_8u_u_ssse3(unsigned char* frame,
++                                        unsigned char* frozen_bit_mask,
++                                        const unsigned char* frozen_bits,
++                                        const unsigned char* info_bits,
++                                        unsigned int frame_size)
+ {
+-  frame_size = next_lower_power_of_two(frame_size);
+-  unsigned char* temp = (unsigned char*) volk_malloc(sizeof(unsigned char) * frame_size, volk_get_alignment());
+-  adjust_frozen_mask(frozen_bit_mask, frame_size);
+-  volk_8u_x3_encodepolar_8u_x2_u_ssse3(frame, temp, frozen_bit_mask, frozen_bits, info_bits, frame_size);
+-  volk_free(temp);
++    frame_size = next_lower_power_of_two(frame_size);
++    unsigned char* temp = (unsigned char*)volk_malloc(sizeof(unsigned char) * frame_size,
++                                                      volk_get_alignment());
++    adjust_frozen_mask(frozen_bit_mask, frame_size);
++    volk_8u_x3_encodepolar_8u_x2_u_ssse3(
++        frame, temp, frozen_bit_mask, frozen_bits, info_bits, frame_size);
++    volk_free(temp);
+ }
+ #endif /* LV_HAVE_SSSE3 */
+ #ifdef LV_HAVE_AVX2
+ static inline void
+-volk_8u_x3_encodepolarpuppet_8u_u_avx2(unsigned char* frame, unsigned char* frozen_bit_mask,
+-    const unsigned char* frozen_bits, const unsigned char* info_bits,
+-    unsigned int frame_size)
++volk_8u_x3_encodepolarpuppet_8u_u_avx2(unsigned char* frame,
++                                       unsigned char* frozen_bit_mask,
++                                       const unsigned char* frozen_bits,
++                                       const unsigned char* info_bits,
++                                       unsigned int frame_size)
+ {
+-  frame_size = next_lower_power_of_two(frame_size);
+-  unsigned char* temp = (unsigned char*) volk_malloc(sizeof(unsigned char) * frame_size, volk_get_alignment());
+-  adjust_frozen_mask(frozen_bit_mask, frame_size);
+-  volk_8u_x3_encodepolar_8u_x2_u_avx2(frame, temp, frozen_bit_mask, frozen_bits, info_bits, frame_size);
+-  volk_free(temp);
++    frame_size = next_lower_power_of_two(frame_size);
++    unsigned char* temp = (unsigned char*)volk_malloc(sizeof(unsigned char) * frame_size,
++                                                      volk_get_alignment());
++    adjust_frozen_mask(frozen_bit_mask, frame_size);
++    volk_8u_x3_encodepolar_8u_x2_u_avx2(
++        frame, temp, frozen_bit_mask, frozen_bits, info_bits, frame_size);
++    volk_free(temp);
+ }
+ #endif /* LV_HAVE_AVX2 */
+@@ -104,29 +115,37 @@ volk_8u_x3_encodepolarpuppet_8u_u_avx2(unsigned char* frame, unsigned char* froz
+ #ifdef LV_HAVE_SSSE3
+ static inline void
+-volk_8u_x3_encodepolarpuppet_8u_a_ssse3(unsigned char* frame, unsigned char* frozen_bit_mask,
+-    const unsigned char* frozen_bits, const unsigned char* info_bits,
+-    unsigned int frame_size)
++volk_8u_x3_encodepolarpuppet_8u_a_ssse3(unsigned char* frame,
++                                        unsigned char* frozen_bit_mask,
++                                        const unsigned char* frozen_bits,
++                                        const unsigned char* info_bits,
++                                        unsigned int frame_size)
+ {
+-  frame_size = next_lower_power_of_two(frame_size);
+-  unsigned char* temp = (unsigned char*) volk_malloc(sizeof(unsigned char) * frame_size, volk_get_alignment());
+-  adjust_frozen_mask(frozen_bit_mask, frame_size);
+-  volk_8u_x3_encodepolar_8u_x2_a_ssse3(frame, temp, frozen_bit_mask, frozen_bits, info_bits, frame_size);
+-  volk_free(temp);
++    frame_size = next_lower_power_of_two(frame_size);
++    unsigned char* temp = (unsigned char*)volk_malloc(sizeof(unsigned char) * frame_size,
++                                                      volk_get_alignment());
++    adjust_frozen_mask(frozen_bit_mask, frame_size);
++    volk_8u_x3_encodepolar_8u_x2_a_ssse3(
++        frame, temp, frozen_bit_mask, frozen_bits, info_bits, frame_size);
++    volk_free(temp);
+ }
+ #endif /* LV_HAVE_SSSE3 */
+ #ifdef LV_HAVE_AVX2
+ static inline void
+-volk_8u_x3_encodepolarpuppet_8u_a_avx2(unsigned char* frame, unsigned char* frozen_bit_mask,
+-    const unsigned char* frozen_bits, const unsigned char* info_bits,
+-    unsigned int frame_size)
++volk_8u_x3_encodepolarpuppet_8u_a_avx2(unsigned char* frame,
++                                       unsigned char* frozen_bit_mask,
++                                       const unsigned char* frozen_bits,
++                                       const unsigned char* info_bits,
++                                       unsigned int frame_size)
+ {
+-  frame_size = next_lower_power_of_two(frame_size);
+-  unsigned char* temp = (unsigned char*) volk_malloc(sizeof(unsigned char) * frame_size, volk_get_alignment());
+-  adjust_frozen_mask(frozen_bit_mask, frame_size);
+-  volk_8u_x3_encodepolar_8u_x2_a_avx2(frame, temp, frozen_bit_mask, frozen_bits, info_bits, frame_size);
+-  volk_free(temp);
++    frame_size = next_lower_power_of_two(frame_size);
++    unsigned char* temp = (unsigned char*)volk_malloc(sizeof(unsigned char) * frame_size,
++                                                      volk_get_alignment());
++    adjust_frozen_mask(frozen_bit_mask, frame_size);
++    volk_8u_x3_encodepolar_8u_x2_a_avx2(
++        frame, temp, frozen_bit_mask, frozen_bits, info_bits, frame_size);
++    volk_free(temp);
+ }
+ #endif /* LV_HAVE_AVX2 */
+diff --git a/kernels/volk/volk_8u_x4_conv_k7_r2_8u.h b/kernels/volk/volk_8u_x4_conv_k7_r2_8u.h
+index 029ba75..89460a6 100644
+--- a/kernels/volk/volk_8u_x4_conv_k7_r2_8u.h
++++ b/kernels/volk/volk_8u_x4_conv_k7_r2_8u.h
+@@ -30,8 +30,9 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_8u_x4_conv_k7_r2_8u(unsigned char* Y, unsigned char* X, unsigned char* syms, unsigned char* dec, unsigned int framebits, unsigned int excess, unsigned char* Branchtab)
+- * \endcode
++ * void volk_8u_x4_conv_k7_r2_8u(unsigned char* Y, unsigned char* X, unsigned char* syms,
++ * unsigned char* dec, unsigned int framebits, unsigned int excess, unsigned char*
++ * Branchtab) \endcode
+  *
+  * \b Inputs
+  * \li X: <FIXME>
+@@ -58,67 +59,71 @@
+ #define INCLUDED_volk_8u_x4_conv_k7_r2_8u_H
+ typedef union {
+-  unsigned char/*DECISIONTYPE*/ t[64/*NUMSTATES*//8/*DECISIONTYPE_BITSIZE*/];
+-  unsigned int w[64/*NUMSTATES*//32];
+-  unsigned short s[64/*NUMSTATES*//16];
+-  unsigned char c[64/*NUMSTATES*//8];
++    unsigned char /*DECISIONTYPE*/ t[64 /*NUMSTATES*/ / 8 /*DECISIONTYPE_BITSIZE*/];
++    unsigned int w[64 /*NUMSTATES*/ / 32];
++    unsigned short s[64 /*NUMSTATES*/ / 16];
++    unsigned char c[64 /*NUMSTATES*/ / 8];
+ #ifdef _MSC_VER
+ } decision_t;
+ #else
+-} decision_t __attribute__ ((aligned (16)));
++} decision_t __attribute__((aligned(16)));
+ #endif
+-static inline void
+-renormalize(unsigned char* X, unsigned char threshold)
++static inline void renormalize(unsigned char* X, unsigned char threshold)
+ {
+-  int NUMSTATES = 64;
+-  int i;
+-
+-  unsigned char min=X[0];
+-  //if(min > threshold) {
+-  for(i=0;i<NUMSTATES;i++)
+-    if (min>X[i])
+-      min=X[i];
+-  for(i=0;i<NUMSTATES;i++)
+-    X[i]-=min;
+-  //}
++    int NUMSTATES = 64;
++    int i;
++
++    unsigned char min = X[0];
++    // if(min > threshold) {
++    for (i = 0; i < NUMSTATES; i++)
++        if (min > X[i])
++            min = X[i];
++    for (i = 0; i < NUMSTATES; i++)
++        X[i] -= min;
++    //}
+ }
+-//helper BFLY for GENERIC version
+-static inline void
+-BFLY(int i, int s, unsigned char * syms, unsigned char *Y,
+-     unsigned char *X, decision_t * d, unsigned char* Branchtab)
++// helper BFLY for GENERIC version
++static inline void BFLY(int i,
++                        int s,
++                        unsigned char* syms,
++                        unsigned char* Y,
++                        unsigned char* X,
++                        decision_t* d,
++                        unsigned char* Branchtab)
+ {
+-  int j, decision0, decision1;
+-  unsigned char metric,m0,m1,m2,m3;
++    int j, decision0, decision1;
++    unsigned char metric, m0, m1, m2, m3;
+-  int NUMSTATES = 64;
+-  int RATE = 2;
+-  int METRICSHIFT = 1;
+-  int PRECISIONSHIFT = 2;
++    int NUMSTATES = 64;
++    int RATE = 2;
++    int METRICSHIFT = 1;
++    int PRECISIONSHIFT = 2;
+-  metric =0;
+-  for(j=0;j<RATE;j++)
+-    metric += (Branchtab[i+j*NUMSTATES/2] ^ syms[s*RATE+j])>>METRICSHIFT;
+-  metric=metric>>PRECISIONSHIFT;
++    metric = 0;
++    for (j = 0; j < RATE; j++)
++        metric += (Branchtab[i + j * NUMSTATES / 2] ^ syms[s * RATE + j]) >> METRICSHIFT;
++    metric = metric >> PRECISIONSHIFT;
+-  unsigned char max = ((RATE*((256 -1)>>METRICSHIFT))>>PRECISIONSHIFT);
++    unsigned char max = ((RATE * ((256 - 1) >> METRICSHIFT)) >> PRECISIONSHIFT);
+-  m0 = X[i] + metric;
+-  m1 = X[i+NUMSTATES/2] + (max - metric);
+-  m2 = X[i] + (max - metric);
+-  m3 = X[i+NUMSTATES/2] + metric;
++    m0 = X[i] + metric;
++    m1 = X[i + NUMSTATES / 2] + (max - metric);
++    m2 = X[i] + (max - metric);
++    m3 = X[i + NUMSTATES / 2] + metric;
+-  decision0 = (signed int)(m0-m1) > 0;
+-  decision1 = (signed int)(m2-m3) > 0;
++    decision0 = (signed int)(m0 - m1) > 0;
++    decision1 = (signed int)(m2 - m3) > 0;
+-  Y[2*i] = decision0 ? m1 : m0;
+-  Y[2*i+1] =  decision1 ? m3 : m2;
++    Y[2 * i] = decision0 ? m1 : m0;
++    Y[2 * i + 1] = decision1 ? m3 : m2;
+-  d->w[i/(sizeof(unsigned int)*8/2)+s*(sizeof(decision_t)/sizeof(unsigned int))] |=
+-    (decision0|decision1<<1) << ((2*i)&(sizeof(unsigned int)*8-1));
++    d->w[i / (sizeof(unsigned int) * 8 / 2) +
++         s * (sizeof(decision_t) / sizeof(unsigned int))] |=
++        (decision0 | decision1 << 1) << ((2 * i) & (sizeof(unsigned int) * 8 - 1));
+ }
+@@ -127,188 +132,199 @@ BFLY(int i, int s, unsigned char * syms, unsigned char *Y,
+ #include <immintrin.h>
+ #include <stdio.h>
+-static inline void
+-volk_8u_x4_conv_k7_r2_8u_avx2(unsigned char* Y, unsigned char* X,
+-                                unsigned char* syms, unsigned char* dec,
+-                                unsigned int framebits, unsigned int excess,
+-                                unsigned char* Branchtab)
++static inline void volk_8u_x4_conv_k7_r2_8u_avx2(unsigned char* Y,
++                                                 unsigned char* X,
++                                                 unsigned char* syms,
++                                                 unsigned char* dec,
++                                                 unsigned int framebits,
++                                                 unsigned int excess,
++                                                 unsigned char* Branchtab)
+ {
+-  unsigned int i9;
+-  for(i9 = 0; i9 < ((framebits + excess)>>1); i9++) {
+-    unsigned char a75, a81;
+-    int a73, a92;
+-    int s20, s21;
+-    unsigned char  *a80, *b6;
+-    int  *a110, *a91, *a93;
+-    __m256i  *a112, *a71, *a72, *a77, *a83, *a95;
+-    __m256i a86, a87;
+-    __m256i a76, a78, a79, a82, a84, a85, a88, a89
+-      , a90, d10, d9, m23, m24, m25
+-      , m26, s18, s19, s22
+-      , s23, s24, s25, t13, t14, t15;
+-    a71 = ((__m256i  *) X);
+-    s18 = *(a71);
+-    a72 = (a71 + 1);
+-    s19 = *(a72);
+-    s22 = _mm256_permute2x128_si256(s18,s19,0x20);
+-    s19 = _mm256_permute2x128_si256(s18,s19,0x31);
+-    s18 = s22;
+-    a73 = (4 * i9);
+-    b6 = (syms + a73);
+-    a75 = *(b6);
+-    a76 = _mm256_set1_epi8(a75);
+-    a77 = ((__m256i  *) Branchtab);
+-    a78 = *(a77);
+-    a79 = _mm256_xor_si256(a76, a78);
+-    a80 = (b6 + 1);
+-    a81 = *(a80);
+-    a82 = _mm256_set1_epi8(a81);
+-    a83 = (a77 + 1);
+-    a84 = *(a83);
+-    a85 = _mm256_xor_si256(a82, a84);
+-    t13 = _mm256_avg_epu8(a79,a85);
+-    a86 = ((__m256i ) t13);
+-    a87 = _mm256_srli_epi16(a86, 2);
+-    a88 = ((__m256i ) a87);
+-    t14 = _mm256_and_si256(a88, _mm256_set1_epi8(63));
+-    t15 = _mm256_subs_epu8(_mm256_set1_epi8(63), t14);
+-    m23 = _mm256_adds_epu8(s18, t14);
+-    m24 = _mm256_adds_epu8(s19, t15);
+-    m25 = _mm256_adds_epu8(s18, t15);
+-    m26 = _mm256_adds_epu8(s19, t14);
+-    a89 = _mm256_min_epu8(m24, m23);
+-    d9 = _mm256_cmpeq_epi8(a89, m24);
+-    a90 = _mm256_min_epu8(m26, m25);
+-    d10 = _mm256_cmpeq_epi8(a90, m26);
+-    s22 = _mm256_unpacklo_epi8(d9,d10);
+-    s23 = _mm256_unpackhi_epi8(d9,d10);
+-    s20 = _mm256_movemask_epi8(_mm256_permute2x128_si256(s22, s23, 0x20));
+-    a91 = ((int  *) dec);
+-    a92 = (4 * i9);
+-    a93 = (a91 + a92);
+-    *(a93) = s20;
+-    s21 = _mm256_movemask_epi8(_mm256_permute2x128_si256(s22, s23, 0x31));
+-    a110 = (a93 + 1);
+-    *(a110) = s21;
+-    s22 = _mm256_unpacklo_epi8(a89, a90);
+-    s23 = _mm256_unpackhi_epi8(a89, a90);
+-    a95 = ((__m256i  *) Y);
+-    s24 = _mm256_permute2x128_si256(s22, s23, 0x20);
+-    *(a95) = s24;
+-    s23 = _mm256_permute2x128_si256(s22, s23, 0x31);
+-    a112 = (a95 + 1);
+-    *(a112) = s23;
+-    if ((((unsigned char  *) Y)[0]>210)) {
+-      __m256i m5, m6;
+-      m5 = ((__m256i  *) Y)[0];
+-      m5 = _mm256_min_epu8(m5, ((__m256i  *) Y)[1]);
+-      __m256i m7;
+-      m7 = _mm256_min_epu8(_mm256_srli_si256(m5, 8), m5);
+-      m7 = ((__m256i ) _mm256_min_epu8(((__m256i ) _mm256_srli_epi64(m7, 32)), ((__m256i ) m7)));
+-      m7 = ((__m256i ) _mm256_min_epu8(((__m256i ) _mm256_srli_epi64(m7, 16)), ((__m256i ) m7)));
+-      m7 = ((__m256i ) _mm256_min_epu8(((__m256i ) _mm256_srli_epi64(m7, 8)), ((__m256i ) m7)));
+-      m7 = _mm256_unpacklo_epi8(m7, m7);
+-      m7 = _mm256_shufflelo_epi16(m7, 0);
+-      m6 = _mm256_unpacklo_epi64(m7, m7);
+-      m6 = _mm256_permute2x128_si256(m6, m6, 0); //copy lower half of m6 to upper half, since above ops operate on 128 bit lanes
+-      ((__m256i  *) Y)[0] = _mm256_subs_epu8(((__m256i  *) Y)[0], m6);
+-      ((__m256i  *) Y)[1] = _mm256_subs_epu8(((__m256i  *) Y)[1], m6);
++    unsigned int i9;
++    for (i9 = 0; i9 < ((framebits + excess) >> 1); i9++) {
++        unsigned char a75, a81;
++        int a73, a92;
++        int s20, s21;
++        unsigned char *a80, *b6;
++        int *a110, *a91, *a93;
++        __m256i *a112, *a71, *a72, *a77, *a83, *a95;
++        __m256i a86, a87;
++        __m256i a76, a78, a79, a82, a84, a85, a88, a89, a90, d10, d9, m23, m24, m25, m26,
++            s18, s19, s22, s23, s24, s25, t13, t14, t15;
++        a71 = ((__m256i*)X);
++        s18 = *(a71);
++        a72 = (a71 + 1);
++        s19 = *(a72);
++        s22 = _mm256_permute2x128_si256(s18, s19, 0x20);
++        s19 = _mm256_permute2x128_si256(s18, s19, 0x31);
++        s18 = s22;
++        a73 = (4 * i9);
++        b6 = (syms + a73);
++        a75 = *(b6);
++        a76 = _mm256_set1_epi8(a75);
++        a77 = ((__m256i*)Branchtab);
++        a78 = *(a77);
++        a79 = _mm256_xor_si256(a76, a78);
++        a80 = (b6 + 1);
++        a81 = *(a80);
++        a82 = _mm256_set1_epi8(a81);
++        a83 = (a77 + 1);
++        a84 = *(a83);
++        a85 = _mm256_xor_si256(a82, a84);
++        t13 = _mm256_avg_epu8(a79, a85);
++        a86 = ((__m256i)t13);
++        a87 = _mm256_srli_epi16(a86, 2);
++        a88 = ((__m256i)a87);
++        t14 = _mm256_and_si256(a88, _mm256_set1_epi8(63));
++        t15 = _mm256_subs_epu8(_mm256_set1_epi8(63), t14);
++        m23 = _mm256_adds_epu8(s18, t14);
++        m24 = _mm256_adds_epu8(s19, t15);
++        m25 = _mm256_adds_epu8(s18, t15);
++        m26 = _mm256_adds_epu8(s19, t14);
++        a89 = _mm256_min_epu8(m24, m23);
++        d9 = _mm256_cmpeq_epi8(a89, m24);
++        a90 = _mm256_min_epu8(m26, m25);
++        d10 = _mm256_cmpeq_epi8(a90, m26);
++        s22 = _mm256_unpacklo_epi8(d9, d10);
++        s23 = _mm256_unpackhi_epi8(d9, d10);
++        s20 = _mm256_movemask_epi8(_mm256_permute2x128_si256(s22, s23, 0x20));
++        a91 = ((int*)dec);
++        a92 = (4 * i9);
++        a93 = (a91 + a92);
++        *(a93) = s20;
++        s21 = _mm256_movemask_epi8(_mm256_permute2x128_si256(s22, s23, 0x31));
++        a110 = (a93 + 1);
++        *(a110) = s21;
++        s22 = _mm256_unpacklo_epi8(a89, a90);
++        s23 = _mm256_unpackhi_epi8(a89, a90);
++        a95 = ((__m256i*)Y);
++        s24 = _mm256_permute2x128_si256(s22, s23, 0x20);
++        *(a95) = s24;
++        s23 = _mm256_permute2x128_si256(s22, s23, 0x31);
++        a112 = (a95 + 1);
++        *(a112) = s23;
++        if ((((unsigned char*)Y)[0] > 210)) {
++            __m256i m5, m6;
++            m5 = ((__m256i*)Y)[0];
++            m5 = _mm256_min_epu8(m5, ((__m256i*)Y)[1]);
++            __m256i m7;
++            m7 = _mm256_min_epu8(_mm256_srli_si256(m5, 8), m5);
++            m7 = ((__m256i)_mm256_min_epu8(((__m256i)_mm256_srli_epi64(m7, 32)),
++                                           ((__m256i)m7)));
++            m7 = ((__m256i)_mm256_min_epu8(((__m256i)_mm256_srli_epi64(m7, 16)),
++                                           ((__m256i)m7)));
++            m7 = ((__m256i)_mm256_min_epu8(((__m256i)_mm256_srli_epi64(m7, 8)),
++                                           ((__m256i)m7)));
++            m7 = _mm256_unpacklo_epi8(m7, m7);
++            m7 = _mm256_shufflelo_epi16(m7, 0);
++            m6 = _mm256_unpacklo_epi64(m7, m7);
++            m6 = _mm256_permute2x128_si256(
++                m6, m6, 0); // copy lower half of m6 to upper half, since above ops
++                            // operate on 128 bit lanes
++            ((__m256i*)Y)[0] = _mm256_subs_epu8(((__m256i*)Y)[0], m6);
++            ((__m256i*)Y)[1] = _mm256_subs_epu8(((__m256i*)Y)[1], m6);
++        }
++        unsigned char a188, a194;
++        int a205;
++        int s48, s54;
++        unsigned char *a187, *a193;
++        int *a204, *a206, *a223, *b16;
++        __m256i *a184, *a185, *a190, *a196, *a208, *a225;
++        __m256i a199, a200;
++        __m256i a189, a191, a192, a195, a197, a198, a201, a202, a203, d17, d18, m39, m40,
++            m41, m42, s46, s47, s50, s51, t25, t26, t27;
++        a184 = ((__m256i*)Y);
++        s46 = *(a184);
++        a185 = (a184 + 1);
++        s47 = *(a185);
++        s50 = _mm256_permute2x128_si256(s46, s47, 0x20);
++        s47 = _mm256_permute2x128_si256(s46, s47, 0x31);
++        s46 = s50;
++        a187 = (b6 + 2);
++        a188 = *(a187);
++        a189 = _mm256_set1_epi8(a188);
++        a190 = ((__m256i*)Branchtab);
++        a191 = *(a190);
++        a192 = _mm256_xor_si256(a189, a191);
++        a193 = (b6 + 3);
++        a194 = *(a193);
++        a195 = _mm256_set1_epi8(a194);
++        a196 = (a190 + 1);
++        a197 = *(a196);
++        a198 = _mm256_xor_si256(a195, a197);
++        t25 = _mm256_avg_epu8(a192, a198);
++        a199 = ((__m256i)t25);
++        a200 = _mm256_srli_epi16(a199, 2);
++        a201 = ((__m256i)a200);
++        t26 = _mm256_and_si256(a201, _mm256_set1_epi8(63));
++        t27 = _mm256_subs_epu8(_mm256_set1_epi8(63), t26);
++        m39 = _mm256_adds_epu8(s46, t26);
++        m40 = _mm256_adds_epu8(s47, t27);
++        m41 = _mm256_adds_epu8(s46, t27);
++        m42 = _mm256_adds_epu8(s47, t26);
++        a202 = _mm256_min_epu8(m40, m39);
++        d17 = _mm256_cmpeq_epi8(a202, m40);
++        a203 = _mm256_min_epu8(m42, m41);
++        d18 = _mm256_cmpeq_epi8(a203, m42);
++        s24 = _mm256_unpacklo_epi8(d17, d18);
++        s25 = _mm256_unpackhi_epi8(d17, d18);
++        s48 = _mm256_movemask_epi8(_mm256_permute2x128_si256(s24, s25, 0x20));
++        a204 = ((int*)dec);
++        a205 = (4 * i9);
++        b16 = (a204 + a205);
++        a206 = (b16 + 2);
++        *(a206) = s48;
++        s54 = _mm256_movemask_epi8(_mm256_permute2x128_si256(s24, s25, 0x31));
++        a223 = (b16 + 3);
++        *(a223) = s54;
++        s50 = _mm256_unpacklo_epi8(a202, a203);
++        s51 = _mm256_unpackhi_epi8(a202, a203);
++        s25 = _mm256_permute2x128_si256(s50, s51, 0x20);
++        s51 = _mm256_permute2x128_si256(s50, s51, 0x31);
++        a208 = ((__m256i*)X);
++        *(a208) = s25;
++        a225 = (a208 + 1);
++        *(a225) = s51;
++
++        if ((((unsigned char*)X)[0] > 210)) {
++            __m256i m12, m13;
++            m12 = ((__m256i*)X)[0];
++            m12 = _mm256_min_epu8(m12, ((__m256i*)X)[1]);
++            __m256i m14;
++            m14 = _mm256_min_epu8(_mm256_srli_si256(m12, 8), m12);
++            m14 = ((__m256i)_mm256_min_epu8(((__m256i)_mm256_srli_epi64(m14, 32)),
++                                            ((__m256i)m14)));
++            m14 = ((__m256i)_mm256_min_epu8(((__m256i)_mm256_srli_epi64(m14, 16)),
++                                            ((__m256i)m14)));
++            m14 = ((__m256i)_mm256_min_epu8(((__m256i)_mm256_srli_epi64(m14, 8)),
++                                            ((__m256i)m14)));
++            m14 = _mm256_unpacklo_epi8(m14, m14);
++            m14 = _mm256_shufflelo_epi16(m14, 0);
++            m13 = _mm256_unpacklo_epi64(m14, m14);
++            m13 = _mm256_permute2x128_si256(m13, m13, 0);
++            ((__m256i*)X)[0] = _mm256_subs_epu8(((__m256i*)X)[0], m13);
++            ((__m256i*)X)[1] = _mm256_subs_epu8(((__m256i*)X)[1], m13);
++        }
+     }
+-    unsigned char a188, a194;
+-    int a205;
+-    int s48, s54;
+-    unsigned char  *a187, *a193;
+-    int  *a204, *a206, *a223, *b16;
+-    __m256i  *a184, *a185, *a190, *a196, *a208, *a225;
+-    __m256i a199, a200;
+-    __m256i a189, a191, a192, a195, a197, a198, a201
+-      , a202, a203, d17, d18, m39, m40, m41
+-      , m42, s46, s47, s50
+-      , s51, t25, t26, t27;
+-    a184 = ((__m256i  *) Y);
+-    s46 = *(a184);
+-    a185 = (a184 + 1);
+-    s47 = *(a185);
+-    s50 = _mm256_permute2x128_si256(s46,s47,0x20);
+-    s47 = _mm256_permute2x128_si256(s46,s47,0x31);
+-    s46 = s50;
+-    a187 = (b6 + 2);
+-    a188 = *(a187);
+-    a189 = _mm256_set1_epi8(a188);
+-    a190 = ((__m256i  *) Branchtab);
+-    a191 = *(a190);
+-    a192 = _mm256_xor_si256(a189, a191);
+-    a193 = (b6 + 3);
+-    a194 = *(a193);
+-    a195 = _mm256_set1_epi8(a194);
+-    a196 = (a190 + 1);
+-    a197 = *(a196);
+-    a198 = _mm256_xor_si256(a195, a197);
+-    t25 = _mm256_avg_epu8(a192,a198);
+-    a199 = ((__m256i ) t25);
+-    a200 = _mm256_srli_epi16(a199, 2);
+-    a201 = ((__m256i ) a200);
+-    t26 = _mm256_and_si256(a201, _mm256_set1_epi8(63));
+-    t27 = _mm256_subs_epu8(_mm256_set1_epi8(63), t26);
+-    m39 = _mm256_adds_epu8(s46, t26);
+-    m40 = _mm256_adds_epu8(s47, t27);
+-    m41 = _mm256_adds_epu8(s46, t27);
+-    m42 = _mm256_adds_epu8(s47, t26);
+-    a202 = _mm256_min_epu8(m40, m39);
+-    d17 = _mm256_cmpeq_epi8(a202, m40);
+-    a203 = _mm256_min_epu8(m42, m41);
+-    d18 = _mm256_cmpeq_epi8(a203, m42);
+-    s24 = _mm256_unpacklo_epi8(d17,d18);
+-    s25 = _mm256_unpackhi_epi8(d17,d18);
+-    s48 = _mm256_movemask_epi8(_mm256_permute2x128_si256(s24, s25, 0x20));
+-    a204 = ((int  *) dec);
+-    a205 = (4 * i9);
+-    b16 = (a204 + a205);
+-    a206 = (b16 + 2);
+-    *(a206) = s48;
+-    s54 = _mm256_movemask_epi8(_mm256_permute2x128_si256(s24, s25, 0x31));
+-    a223 = (b16 + 3);
+-    *(a223) = s54;
+-    s50 = _mm256_unpacklo_epi8(a202, a203);
+-    s51 = _mm256_unpackhi_epi8(a202, a203);
+-    s25 = _mm256_permute2x128_si256(s50, s51, 0x20);
+-    s51 = _mm256_permute2x128_si256(s50, s51, 0x31);
+-    a208 = ((__m256i  *) X);
+-    *(a208) = s25;
+-    a225 = (a208 + 1);
+-    *(a225) = s51;
+-
+-    if ((((unsigned char  *) X)[0]>210)) {
+-      __m256i m12, m13;
+-      m12 = ((__m256i  *) X)[0];
+-      m12 = _mm256_min_epu8(m12, ((__m256i  *) X)[1]);
+-      __m256i m14;
+-      m14 = _mm256_min_epu8(_mm256_srli_si256(m12, 8), m12);
+-      m14 = ((__m256i ) _mm256_min_epu8(((__m256i ) _mm256_srli_epi64(m14, 32)), ((__m256i ) m14)));
+-      m14 = ((__m256i ) _mm256_min_epu8(((__m256i ) _mm256_srli_epi64(m14, 16)), ((__m256i ) m14)));
+-      m14 = ((__m256i ) _mm256_min_epu8(((__m256i ) _mm256_srli_epi64(m14, 8)), ((__m256i ) m14)));
+-      m14 = _mm256_unpacklo_epi8(m14, m14);
+-      m14 = _mm256_shufflelo_epi16(m14, 0);
+-      m13 = _mm256_unpacklo_epi64(m14, m14);
+-      m13 = _mm256_permute2x128_si256(m13, m13, 0);
+-      ((__m256i  *) X)[0] = _mm256_subs_epu8(((__m256i  *) X)[0], m13);
+-      ((__m256i  *) X)[1] = _mm256_subs_epu8(((__m256i  *) X)[1], m13);
+-    }
+-  }
+-
+-  renormalize(X, 210);
+-  unsigned int j;
+-  for(j=0; j < (framebits + excess) % 2; ++j) {
+-    int i;
+-    for(i=0;i<64/2;i++){
+-      BFLY(i, (((framebits+excess) >> 1) << 1) + j , syms, Y, X, (decision_t *)dec, Branchtab);
++    renormalize(X, 210);
++
++    unsigned int j;
++    for (j = 0; j < (framebits + excess) % 2; ++j) {
++        int i;
++        for (i = 0; i < 64 / 2; i++) {
++            BFLY(i,
++                 (((framebits + excess) >> 1) << 1) + j,
++                 syms,
++                 Y,
++                 X,
++                 (decision_t*)dec,
++                 Branchtab);
++        }
++
++        renormalize(Y, 210);
+     }
+-
+-    renormalize(Y, 210);
+-
+-  }
+-  /*skip*/
++    /*skip*/
+ }
+ #endif /*LV_HAVE_AVX2*/
+@@ -316,295 +332,300 @@ volk_8u_x4_conv_k7_r2_8u_avx2(unsigned char* Y, unsigned char* X,
+ #if LV_HAVE_SSE3
+-#include <pmmintrin.h>
+ #include <emmintrin.h>
+-#include <xmmintrin.h>
+ #include <mmintrin.h>
++#include <pmmintrin.h>
+ #include <stdio.h>
++#include <xmmintrin.h>
+-static inline void
+-volk_8u_x4_conv_k7_r2_8u_spiral(unsigned char* Y, unsigned char* X,
+-                                unsigned char* syms, unsigned char* dec,
+-                                unsigned int framebits, unsigned int excess,
+-                                unsigned char* Branchtab)
++static inline void volk_8u_x4_conv_k7_r2_8u_spiral(unsigned char* Y,
++                                                   unsigned char* X,
++                                                   unsigned char* syms,
++                                                   unsigned char* dec,
++                                                   unsigned int framebits,
++                                                   unsigned int excess,
++                                                   unsigned char* Branchtab)
+ {
+-  unsigned int i9;
+-  for(i9 = 0; i9 < ((framebits + excess) >> 1); i9++) {
+-    unsigned char a75, a81;
+-    int a73, a92;
+-    short int s20, s21, s26, s27;
+-    unsigned char  *a74, *a80, *b6;
+-    short int  *a110, *a111, *a91, *a93, *a94;
+-    __m128i  *a102, *a112, *a113, *a71, *a72, *a77, *a83
+-      , *a95, *a96, *a97, *a98, *a99;
+-    __m128i a105, a106, a86, a87;
+-    __m128i a100, a101, a103, a104, a107, a108, a109
+-      , a76, a78, a79, a82, a84, a85, a88, a89
+-      , a90, d10, d11, d12, d9, m23, m24, m25
+-      , m26, m27, m28, m29, m30, s18, s19, s22
+-      , s23, s24, s25, s28, s29, t13, t14, t15
+-      , t16, t17, t18;
+-    a71 = ((__m128i  *) X);
+-    s18 = *(a71);
+-    a72 = (a71 + 2);
+-    s19 = *(a72);
+-    a73 = (4 * i9);
+-    a74 = (syms + a73);
+-    a75 = *(a74);
+-    a76 = _mm_set1_epi8(a75);
+-    a77 = ((__m128i  *) Branchtab);
+-    a78 = *(a77);
+-    a79 = _mm_xor_si128(a76, a78);
+-    b6 = (a73 + syms);
+-    a80 = (b6 + 1);
+-    a81 = *(a80);
+-    a82 = _mm_set1_epi8(a81);
+-    a83 = (a77 + 2);
+-    a84 = *(a83);
+-    a85 = _mm_xor_si128(a82, a84);
+-    t13 = _mm_avg_epu8(a79,a85);
+-    a86 = ((__m128i ) t13);
+-    a87 = _mm_srli_epi16(a86, 2);
+-    a88 = ((__m128i ) a87);
+-    t14 = _mm_and_si128(a88, _mm_set_epi8(63, 63, 63, 63, 63, 63, 63
+-                                        , 63, 63, 63, 63, 63, 63, 63, 63
+-                                        , 63));
+-    t15 = _mm_subs_epu8(_mm_set_epi8(63, 63, 63, 63, 63, 63, 63
+-                                   , 63, 63, 63, 63, 63, 63, 63, 63
+-                                   , 63), t14);
+-    m23 = _mm_adds_epu8(s18, t14);
+-    m24 = _mm_adds_epu8(s19, t15);
+-    m25 = _mm_adds_epu8(s18, t15);
+-    m26 = _mm_adds_epu8(s19, t14);
+-    a89 = _mm_min_epu8(m24, m23);
+-    d9 = _mm_cmpeq_epi8(a89, m24);
+-    a90 = _mm_min_epu8(m26, m25);
+-    d10 = _mm_cmpeq_epi8(a90, m26);
+-    s20 = _mm_movemask_epi8(_mm_unpacklo_epi8(d9,d10));
+-    a91 = ((short int  *) dec);
+-    a92 = (8 * i9);
+-    a93 = (a91 + a92);
+-    *(a93) = s20;
+-    s21 = _mm_movemask_epi8(_mm_unpackhi_epi8(d9,d10));
+-    a94 = (a93 + 1);
+-    *(a94) = s21;
+-    s22 = _mm_unpacklo_epi8(a89, a90);
+-    s23 = _mm_unpackhi_epi8(a89, a90);
+-    a95 = ((__m128i  *) Y);
+-    *(a95) = s22;
+-    a96 = (a95 + 1);
+-    *(a96) = s23;
+-    a97 = (a71 + 1);
+-    s24 = *(a97);
+-    a98 = (a71 + 3);
+-    s25 = *(a98);
+-    a99 = (a77 + 1);
+-    a100 = *(a99);
+-    a101 = _mm_xor_si128(a76, a100);
+-    a102 = (a77 + 3);
+-    a103 = *(a102);
+-    a104 = _mm_xor_si128(a82, a103);
+-    t16 = _mm_avg_epu8(a101,a104);
+-    a105 = ((__m128i ) t16);
+-    a106 = _mm_srli_epi16(a105, 2);
+-    a107 = ((__m128i ) a106);
+-    t17 = _mm_and_si128(a107, _mm_set_epi8(63, 63, 63, 63, 63, 63, 63
+-                                         , 63, 63, 63, 63, 63, 63, 63, 63
+-                                         , 63));
+-    t18 = _mm_subs_epu8(_mm_set_epi8(63, 63, 63, 63, 63, 63, 63
+-                                   , 63, 63, 63, 63, 63, 63, 63, 63
+-                                   , 63), t17);
+-    m27 = _mm_adds_epu8(s24, t17);
+-    m28 = _mm_adds_epu8(s25, t18);
+-    m29 = _mm_adds_epu8(s24, t18);
+-    m30 = _mm_adds_epu8(s25, t17);
+-    a108 = _mm_min_epu8(m28, m27);
+-    d11 = _mm_cmpeq_epi8(a108, m28);
+-    a109 = _mm_min_epu8(m30, m29);
+-    d12 = _mm_cmpeq_epi8(a109, m30);
+-    s26 = _mm_movemask_epi8(_mm_unpacklo_epi8(d11,d12));
+-    a110 = (a93 + 2);
+-    *(a110) = s26;
+-    s27 = _mm_movemask_epi8(_mm_unpackhi_epi8(d11,d12));
+-    a111 = (a93 + 3);
+-    *(a111) = s27;
+-    s28 = _mm_unpacklo_epi8(a108, a109);
+-    s29 = _mm_unpackhi_epi8(a108, a109);
+-    a112 = (a95 + 2);
+-    *(a112) = s28;
+-    a113 = (a95 + 3);
+-    *(a113) = s29;
+-    if ((((unsigned char  *) Y)[0]>210)) {
+-      __m128i m5, m6;
+-      m5 = ((__m128i  *) Y)[0];
+-      m5 = _mm_min_epu8(m5, ((__m128i  *) Y)[1]);
+-      m5 = _mm_min_epu8(m5, ((__m128i  *) Y)[2]);
+-      m5 = _mm_min_epu8(m5, ((__m128i  *) Y)[3]);
+-      __m128i m7;
+-      m7 = _mm_min_epu8(_mm_srli_si128(m5, 8), m5);
+-      m7 = ((__m128i ) _mm_min_epu8(((__m128i ) _mm_srli_epi64(m7, 32)), ((__m128i ) m7)));
+-      m7 = ((__m128i ) _mm_min_epu8(((__m128i ) _mm_srli_epi64(m7, 16)), ((__m128i ) m7)));
+-      m7 = ((__m128i ) _mm_min_epu8(((__m128i ) _mm_srli_epi64(m7, 8)), ((__m128i ) m7)));
+-      m7 = _mm_unpacklo_epi8(m7, m7);
+-      m7 = _mm_shufflelo_epi16(m7, _MM_SHUFFLE(0, 0, 0, 0));
+-      m6 = _mm_unpacklo_epi64(m7, m7);
+-      ((__m128i  *) Y)[0] = _mm_subs_epu8(((__m128i  *) Y)[0], m6);
+-      ((__m128i  *) Y)[1] = _mm_subs_epu8(((__m128i  *) Y)[1], m6);
+-      ((__m128i  *) Y)[2] = _mm_subs_epu8(((__m128i  *) Y)[2], m6);
+-      ((__m128i  *) Y)[3] = _mm_subs_epu8(((__m128i  *) Y)[3], m6);
+-    }
+-    unsigned char a188, a194;
+-    int a186, a205;
+-    short int s48, s49, s54, s55;
+-    unsigned char  *a187, *a193, *b15;
+-    short int  *a204, *a206, *a207, *a223, *a224, *b16;
+-    __m128i  *a184, *a185, *a190, *a196, *a208, *a209, *a210
+-      , *a211, *a212, *a215, *a225, *a226;
+-    __m128i a199, a200, a218, a219;
+-    __m128i a189, a191, a192, a195, a197, a198, a201
+-      , a202, a203, a213, a214, a216, a217, a220, a221
+-      , a222, d17, d18, d19, d20, m39, m40, m41
+-      , m42, m43, m44, m45, m46, s46, s47, s50
+-      , s51, s52, s53, s56, s57, t25, t26, t27
+-      , t28, t29, t30;
+-    a184 = ((__m128i  *) Y);
+-    s46 = *(a184);
+-    a185 = (a184 + 2);
+-    s47 = *(a185);
+-    a186 = (4 * i9);
+-    b15 = (a186 + syms);
+-    a187 = (b15 + 2);
+-    a188 = *(a187);
+-    a189 = _mm_set1_epi8(a188);
+-    a190 = ((__m128i  *) Branchtab);
+-    a191 = *(a190);
+-    a192 = _mm_xor_si128(a189, a191);
+-    a193 = (b15 + 3);
+-    a194 = *(a193);
+-    a195 = _mm_set1_epi8(a194);
+-    a196 = (a190 + 2);
+-    a197 = *(a196);
+-    a198 = _mm_xor_si128(a195, a197);
+-    t25 = _mm_avg_epu8(a192,a198);
+-    a199 = ((__m128i ) t25);
+-    a200 = _mm_srli_epi16(a199, 2);
+-    a201 = ((__m128i ) a200);
+-    t26 = _mm_and_si128(a201, _mm_set_epi8(63, 63, 63, 63, 63, 63, 63
+-                                         , 63, 63, 63, 63, 63, 63, 63, 63
+-                                         , 63));
+-    t27 = _mm_subs_epu8(_mm_set_epi8(63, 63, 63, 63, 63, 63, 63
+-                                   , 63, 63, 63, 63, 63, 63, 63, 63
+-                                   , 63), t26);
+-    m39 = _mm_adds_epu8(s46, t26);
+-    m40 = _mm_adds_epu8(s47, t27);
+-    m41 = _mm_adds_epu8(s46, t27);
+-    m42 = _mm_adds_epu8(s47, t26);
+-    a202 = _mm_min_epu8(m40, m39);
+-    d17 = _mm_cmpeq_epi8(a202, m40);
+-    a203 = _mm_min_epu8(m42, m41);
+-    d18 = _mm_cmpeq_epi8(a203, m42);
+-    s48 = _mm_movemask_epi8(_mm_unpacklo_epi8(d17,d18));
+-    a204 = ((short int  *) dec);
+-    a205 = (8 * i9);
+-    b16 = (a204 + a205);
+-    a206 = (b16 + 4);
+-    *(a206) = s48;
+-    s49 = _mm_movemask_epi8(_mm_unpackhi_epi8(d17,d18));
+-    a207 = (b16 + 5);
+-    *(a207) = s49;
+-    s50 = _mm_unpacklo_epi8(a202, a203);
+-    s51 = _mm_unpackhi_epi8(a202, a203);
+-    a208 = ((__m128i  *) X);
+-    *(a208) = s50;
+-    a209 = (a208 + 1);
+-    *(a209) = s51;
+-    a210 = (a184 + 1);
+-    s52 = *(a210);
+-    a211 = (a184 + 3);
+-    s53 = *(a211);
+-    a212 = (a190 + 1);
+-    a213 = *(a212);
+-    a214 = _mm_xor_si128(a189, a213);
+-    a215 = (a190 + 3);
+-    a216 = *(a215);
+-    a217 = _mm_xor_si128(a195, a216);
+-    t28 = _mm_avg_epu8(a214,a217);
+-    a218 = ((__m128i ) t28);
+-    a219 = _mm_srli_epi16(a218, 2);
+-    a220 = ((__m128i ) a219);
+-    t29 = _mm_and_si128(a220, _mm_set_epi8(63, 63, 63, 63, 63, 63, 63
+-                                         , 63, 63, 63, 63, 63, 63, 63, 63
+-                                         , 63));
+-    t30 = _mm_subs_epu8(_mm_set_epi8(63, 63, 63, 63, 63, 63, 63
+-                                   , 63, 63, 63, 63, 63, 63, 63, 63
+-                                   , 63), t29);
+-    m43 = _mm_adds_epu8(s52, t29);
+-    m44 = _mm_adds_epu8(s53, t30);
+-    m45 = _mm_adds_epu8(s52, t30);
+-    m46 = _mm_adds_epu8(s53, t29);
+-    a221 = _mm_min_epu8(m44, m43);
+-    d19 = _mm_cmpeq_epi8(a221, m44);
+-    a222 = _mm_min_epu8(m46, m45);
+-    d20 = _mm_cmpeq_epi8(a222, m46);
+-    s54 = _mm_movemask_epi8(_mm_unpacklo_epi8(d19,d20));
+-    a223 = (b16 + 6);
+-    *(a223) = s54;
+-    s55 = _mm_movemask_epi8(_mm_unpackhi_epi8(d19,d20));
+-    a224 = (b16 + 7);
+-    *(a224) = s55;
+-    s56 = _mm_unpacklo_epi8(a221, a222);
+-    s57 = _mm_unpackhi_epi8(a221, a222);
+-    a225 = (a208 + 2);
+-    *(a225) = s56;
+-    a226 = (a208 + 3);
+-    *(a226) = s57;
+-    if ((((unsigned char  *) X)[0]>210)) {
+-      __m128i m12, m13;
+-      m12 = ((__m128i  *) X)[0];
+-      m12 = _mm_min_epu8(m12, ((__m128i  *) X)[1]);
+-      m12 = _mm_min_epu8(m12, ((__m128i  *) X)[2]);
+-      m12 = _mm_min_epu8(m12, ((__m128i  *) X)[3]);
+-      __m128i m14;
+-      m14 = _mm_min_epu8(_mm_srli_si128(m12, 8), m12);
+-      m14 = ((__m128i ) _mm_min_epu8(((__m128i ) _mm_srli_epi64(m14, 32)), ((__m128i ) m14)));
+-      m14 = ((__m128i ) _mm_min_epu8(((__m128i ) _mm_srli_epi64(m14, 16)), ((__m128i ) m14)));
+-      m14 = ((__m128i ) _mm_min_epu8(((__m128i ) _mm_srli_epi64(m14, 8)), ((__m128i ) m14)));
+-      m14 = _mm_unpacklo_epi8(m14, m14);
+-      m14 = _mm_shufflelo_epi16(m14, _MM_SHUFFLE(0, 0, 0, 0));
+-      m13 = _mm_unpacklo_epi64(m14, m14);
+-      ((__m128i  *) X)[0] = _mm_subs_epu8(((__m128i  *) X)[0], m13);
+-      ((__m128i  *) X)[1] = _mm_subs_epu8(((__m128i  *) X)[1], m13);
+-      ((__m128i  *) X)[2] = _mm_subs_epu8(((__m128i  *) X)[2], m13);
+-      ((__m128i  *) X)[3] = _mm_subs_epu8(((__m128i  *) X)[3], m13);
++    unsigned int i9;
++    for (i9 = 0; i9 < ((framebits + excess) >> 1); i9++) {
++        unsigned char a75, a81;
++        int a73, a92;
++        short int s20, s21, s26, s27;
++        unsigned char *a74, *a80, *b6;
++        short int *a110, *a111, *a91, *a93, *a94;
++        __m128i *a102, *a112, *a113, *a71, *a72, *a77, *a83, *a95, *a96, *a97, *a98, *a99;
++        __m128i a105, a106, a86, a87;
++        __m128i a100, a101, a103, a104, a107, a108, a109, a76, a78, a79, a82, a84, a85,
++            a88, a89, a90, d10, d11, d12, d9, m23, m24, m25, m26, m27, m28, m29, m30, s18,
++            s19, s22, s23, s24, s25, s28, s29, t13, t14, t15, t16, t17, t18;
++        a71 = ((__m128i*)X);
++        s18 = *(a71);
++        a72 = (a71 + 2);
++        s19 = *(a72);
++        a73 = (4 * i9);
++        a74 = (syms + a73);
++        a75 = *(a74);
++        a76 = _mm_set1_epi8(a75);
++        a77 = ((__m128i*)Branchtab);
++        a78 = *(a77);
++        a79 = _mm_xor_si128(a76, a78);
++        b6 = (a73 + syms);
++        a80 = (b6 + 1);
++        a81 = *(a80);
++        a82 = _mm_set1_epi8(a81);
++        a83 = (a77 + 2);
++        a84 = *(a83);
++        a85 = _mm_xor_si128(a82, a84);
++        t13 = _mm_avg_epu8(a79, a85);
++        a86 = ((__m128i)t13);
++        a87 = _mm_srli_epi16(a86, 2);
++        a88 = ((__m128i)a87);
++        t14 = _mm_and_si128(
++            a88,
++            _mm_set_epi8(63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63));
++        t15 = _mm_subs_epu8(
++            _mm_set_epi8(63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63),
++            t14);
++        m23 = _mm_adds_epu8(s18, t14);
++        m24 = _mm_adds_epu8(s19, t15);
++        m25 = _mm_adds_epu8(s18, t15);
++        m26 = _mm_adds_epu8(s19, t14);
++        a89 = _mm_min_epu8(m24, m23);
++        d9 = _mm_cmpeq_epi8(a89, m24);
++        a90 = _mm_min_epu8(m26, m25);
++        d10 = _mm_cmpeq_epi8(a90, m26);
++        s20 = _mm_movemask_epi8(_mm_unpacklo_epi8(d9, d10));
++        a91 = ((short int*)dec);
++        a92 = (8 * i9);
++        a93 = (a91 + a92);
++        *(a93) = s20;
++        s21 = _mm_movemask_epi8(_mm_unpackhi_epi8(d9, d10));
++        a94 = (a93 + 1);
++        *(a94) = s21;
++        s22 = _mm_unpacklo_epi8(a89, a90);
++        s23 = _mm_unpackhi_epi8(a89, a90);
++        a95 = ((__m128i*)Y);
++        *(a95) = s22;
++        a96 = (a95 + 1);
++        *(a96) = s23;
++        a97 = (a71 + 1);
++        s24 = *(a97);
++        a98 = (a71 + 3);
++        s25 = *(a98);
++        a99 = (a77 + 1);
++        a100 = *(a99);
++        a101 = _mm_xor_si128(a76, a100);
++        a102 = (a77 + 3);
++        a103 = *(a102);
++        a104 = _mm_xor_si128(a82, a103);
++        t16 = _mm_avg_epu8(a101, a104);
++        a105 = ((__m128i)t16);
++        a106 = _mm_srli_epi16(a105, 2);
++        a107 = ((__m128i)a106);
++        t17 = _mm_and_si128(
++            a107,
++            _mm_set_epi8(63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63));
++        t18 = _mm_subs_epu8(
++            _mm_set_epi8(63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63),
++            t17);
++        m27 = _mm_adds_epu8(s24, t17);
++        m28 = _mm_adds_epu8(s25, t18);
++        m29 = _mm_adds_epu8(s24, t18);
++        m30 = _mm_adds_epu8(s25, t17);
++        a108 = _mm_min_epu8(m28, m27);
++        d11 = _mm_cmpeq_epi8(a108, m28);
++        a109 = _mm_min_epu8(m30, m29);
++        d12 = _mm_cmpeq_epi8(a109, m30);
++        s26 = _mm_movemask_epi8(_mm_unpacklo_epi8(d11, d12));
++        a110 = (a93 + 2);
++        *(a110) = s26;
++        s27 = _mm_movemask_epi8(_mm_unpackhi_epi8(d11, d12));
++        a111 = (a93 + 3);
++        *(a111) = s27;
++        s28 = _mm_unpacklo_epi8(a108, a109);
++        s29 = _mm_unpackhi_epi8(a108, a109);
++        a112 = (a95 + 2);
++        *(a112) = s28;
++        a113 = (a95 + 3);
++        *(a113) = s29;
++        if ((((unsigned char*)Y)[0] > 210)) {
++            __m128i m5, m6;
++            m5 = ((__m128i*)Y)[0];
++            m5 = _mm_min_epu8(m5, ((__m128i*)Y)[1]);
++            m5 = _mm_min_epu8(m5, ((__m128i*)Y)[2]);
++            m5 = _mm_min_epu8(m5, ((__m128i*)Y)[3]);
++            __m128i m7;
++            m7 = _mm_min_epu8(_mm_srli_si128(m5, 8), m5);
++            m7 =
++                ((__m128i)_mm_min_epu8(((__m128i)_mm_srli_epi64(m7, 32)), ((__m128i)m7)));
++            m7 =
++                ((__m128i)_mm_min_epu8(((__m128i)_mm_srli_epi64(m7, 16)), ((__m128i)m7)));
++            m7 = ((__m128i)_mm_min_epu8(((__m128i)_mm_srli_epi64(m7, 8)), ((__m128i)m7)));
++            m7 = _mm_unpacklo_epi8(m7, m7);
++            m7 = _mm_shufflelo_epi16(m7, _MM_SHUFFLE(0, 0, 0, 0));
++            m6 = _mm_unpacklo_epi64(m7, m7);
++            ((__m128i*)Y)[0] = _mm_subs_epu8(((__m128i*)Y)[0], m6);
++            ((__m128i*)Y)[1] = _mm_subs_epu8(((__m128i*)Y)[1], m6);
++            ((__m128i*)Y)[2] = _mm_subs_epu8(((__m128i*)Y)[2], m6);
++            ((__m128i*)Y)[3] = _mm_subs_epu8(((__m128i*)Y)[3], m6);
++        }
++        unsigned char a188, a194;
++        int a186, a205;
++        short int s48, s49, s54, s55;
++        unsigned char *a187, *a193, *b15;
++        short int *a204, *a206, *a207, *a223, *a224, *b16;
++        __m128i *a184, *a185, *a190, *a196, *a208, *a209, *a210, *a211, *a212, *a215,
++            *a225, *a226;
++        __m128i a199, a200, a218, a219;
++        __m128i a189, a191, a192, a195, a197, a198, a201, a202, a203, a213, a214, a216,
++            a217, a220, a221, a222, d17, d18, d19, d20, m39, m40, m41, m42, m43, m44, m45,
++            m46, s46, s47, s50, s51, s52, s53, s56, s57, t25, t26, t27, t28, t29, t30;
++        a184 = ((__m128i*)Y);
++        s46 = *(a184);
++        a185 = (a184 + 2);
++        s47 = *(a185);
++        a186 = (4 * i9);
++        b15 = (a186 + syms);
++        a187 = (b15 + 2);
++        a188 = *(a187);
++        a189 = _mm_set1_epi8(a188);
++        a190 = ((__m128i*)Branchtab);
++        a191 = *(a190);
++        a192 = _mm_xor_si128(a189, a191);
++        a193 = (b15 + 3);
++        a194 = *(a193);
++        a195 = _mm_set1_epi8(a194);
++        a196 = (a190 + 2);
++        a197 = *(a196);
++        a198 = _mm_xor_si128(a195, a197);
++        t25 = _mm_avg_epu8(a192, a198);
++        a199 = ((__m128i)t25);
++        a200 = _mm_srli_epi16(a199, 2);
++        a201 = ((__m128i)a200);
++        t26 = _mm_and_si128(
++            a201,
++            _mm_set_epi8(63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63));
++        t27 = _mm_subs_epu8(
++            _mm_set_epi8(63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63),
++            t26);
++        m39 = _mm_adds_epu8(s46, t26);
++        m40 = _mm_adds_epu8(s47, t27);
++        m41 = _mm_adds_epu8(s46, t27);
++        m42 = _mm_adds_epu8(s47, t26);
++        a202 = _mm_min_epu8(m40, m39);
++        d17 = _mm_cmpeq_epi8(a202, m40);
++        a203 = _mm_min_epu8(m42, m41);
++        d18 = _mm_cmpeq_epi8(a203, m42);
++        s48 = _mm_movemask_epi8(_mm_unpacklo_epi8(d17, d18));
++        a204 = ((short int*)dec);
++        a205 = (8 * i9);
++        b16 = (a204 + a205);
++        a206 = (b16 + 4);
++        *(a206) = s48;
++        s49 = _mm_movemask_epi8(_mm_unpackhi_epi8(d17, d18));
++        a207 = (b16 + 5);
++        *(a207) = s49;
++        s50 = _mm_unpacklo_epi8(a202, a203);
++        s51 = _mm_unpackhi_epi8(a202, a203);
++        a208 = ((__m128i*)X);
++        *(a208) = s50;
++        a209 = (a208 + 1);
++        *(a209) = s51;
++        a210 = (a184 + 1);
++        s52 = *(a210);
++        a211 = (a184 + 3);
++        s53 = *(a211);
++        a212 = (a190 + 1);
++        a213 = *(a212);
++        a214 = _mm_xor_si128(a189, a213);
++        a215 = (a190 + 3);
++        a216 = *(a215);
++        a217 = _mm_xor_si128(a195, a216);
++        t28 = _mm_avg_epu8(a214, a217);
++        a218 = ((__m128i)t28);
++        a219 = _mm_srli_epi16(a218, 2);
++        a220 = ((__m128i)a219);
++        t29 = _mm_and_si128(
++            a220,
++            _mm_set_epi8(63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63));
++        t30 = _mm_subs_epu8(
++            _mm_set_epi8(63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63),
++            t29);
++        m43 = _mm_adds_epu8(s52, t29);
++        m44 = _mm_adds_epu8(s53, t30);
++        m45 = _mm_adds_epu8(s52, t30);
++        m46 = _mm_adds_epu8(s53, t29);
++        a221 = _mm_min_epu8(m44, m43);
++        d19 = _mm_cmpeq_epi8(a221, m44);
++        a222 = _mm_min_epu8(m46, m45);
++        d20 = _mm_cmpeq_epi8(a222, m46);
++        s54 = _mm_movemask_epi8(_mm_unpacklo_epi8(d19, d20));
++        a223 = (b16 + 6);
++        *(a223) = s54;
++        s55 = _mm_movemask_epi8(_mm_unpackhi_epi8(d19, d20));
++        a224 = (b16 + 7);
++        *(a224) = s55;
++        s56 = _mm_unpacklo_epi8(a221, a222);
++        s57 = _mm_unpackhi_epi8(a221, a222);
++        a225 = (a208 + 2);
++        *(a225) = s56;
++        a226 = (a208 + 3);
++        *(a226) = s57;
++        if ((((unsigned char*)X)[0] > 210)) {
++            __m128i m12, m13;
++            m12 = ((__m128i*)X)[0];
++            m12 = _mm_min_epu8(m12, ((__m128i*)X)[1]);
++            m12 = _mm_min_epu8(m12, ((__m128i*)X)[2]);
++            m12 = _mm_min_epu8(m12, ((__m128i*)X)[3]);
++            __m128i m14;
++            m14 = _mm_min_epu8(_mm_srli_si128(m12, 8), m12);
++            m14 = ((__m128i)_mm_min_epu8(((__m128i)_mm_srli_epi64(m14, 32)),
++                                         ((__m128i)m14)));
++            m14 = ((__m128i)_mm_min_epu8(((__m128i)_mm_srli_epi64(m14, 16)),
++                                         ((__m128i)m14)));
++            m14 = ((__m128i)_mm_min_epu8(((__m128i)_mm_srli_epi64(m14, 8)),
++                                         ((__m128i)m14)));
++            m14 = _mm_unpacklo_epi8(m14, m14);
++            m14 = _mm_shufflelo_epi16(m14, _MM_SHUFFLE(0, 0, 0, 0));
++            m13 = _mm_unpacklo_epi64(m14, m14);
++            ((__m128i*)X)[0] = _mm_subs_epu8(((__m128i*)X)[0], m13);
++            ((__m128i*)X)[1] = _mm_subs_epu8(((__m128i*)X)[1], m13);
++            ((__m128i*)X)[2] = _mm_subs_epu8(((__m128i*)X)[2], m13);
++            ((__m128i*)X)[3] = _mm_subs_epu8(((__m128i*)X)[3], m13);
++        }
+     }
+-  }
+-
+-  renormalize(X, 210);
+-  /*int ch;
+-  for(ch = 0; ch < 64; ch++) {
+-    printf("%d,", X[ch]);
+-  }
+-  printf("\n");*/
+-
+-  unsigned int j;
+-  for(j=0; j < (framebits + excess) % 2; ++j) {
+-    int i;
+-    for(i=0;i<64/2;i++){
+-      BFLY(i, (((framebits+excess) >> 1) << 1) + j , syms, Y, X, (decision_t *)dec, Branchtab);
+-    }
++    renormalize(X, 210);
+-
+-    renormalize(Y, 210);
+-
+-    /*printf("\n");
++    /*int ch;
+     for(ch = 0; ch < 64; ch++) {
+-      printf("%d,", Y[ch]);
++      printf("%d,", X[ch]);
+     }
+     printf("\n");*/
+-  }
+-  /*skip*/
++    unsigned int j;
++    for (j = 0; j < (framebits + excess) % 2; ++j) {
++        int i;
++        for (i = 0; i < 64 / 2; i++) {
++            BFLY(i,
++                 (((framebits + excess) >> 1) << 1) + j,
++                 syms,
++                 Y,
++                 X,
++                 (decision_t*)dec,
++                 Branchtab);
++        }
++
++
++        renormalize(Y, 210);
++
++        /*printf("\n");
++        for(ch = 0; ch < 64; ch++) {
++          printf("%d,", Y[ch]);
++        }
++        printf("\n");*/
++    }
++    /*skip*/
+ }
+ #endif /*LV_HAVE_SSE3*/
+@@ -612,30 +633,32 @@ volk_8u_x4_conv_k7_r2_8u_spiral(unsigned char* Y, unsigned char* X,
+ #if LV_HAVE_GENERIC
+-static inline void
+-volk_8u_x4_conv_k7_r2_8u_generic(unsigned char* Y, unsigned char* X,
+-                                 unsigned char* syms, unsigned char* dec,
+-                                 unsigned int framebits, unsigned int excess,
+-                                 unsigned char* Branchtab)
++static inline void volk_8u_x4_conv_k7_r2_8u_generic(unsigned char* Y,
++                                                    unsigned char* X,
++                                                    unsigned char* syms,
++                                                    unsigned char* dec,
++                                                    unsigned int framebits,
++                                                    unsigned int excess,
++                                                    unsigned char* Branchtab)
+ {
+-  int nbits = framebits + excess;
+-  int NUMSTATES = 64;
+-  int RENORMALIZE_THRESHOLD = 210;
+-
+-  int s,i;
+-  for (s=0;s<nbits;s++){
+-    void *tmp;
+-    for(i=0;i<NUMSTATES/2;i++){
+-      BFLY(i, s, syms, Y, X, (decision_t *)dec, Branchtab);
++    int nbits = framebits + excess;
++    int NUMSTATES = 64;
++    int RENORMALIZE_THRESHOLD = 210;
++
++    int s, i;
++    for (s = 0; s < nbits; s++) {
++        void* tmp;
++        for (i = 0; i < NUMSTATES / 2; i++) {
++            BFLY(i, s, syms, Y, X, (decision_t*)dec, Branchtab);
++        }
++
++        renormalize(Y, RENORMALIZE_THRESHOLD);
++
++        ///     Swap pointers to old and new metrics
++        tmp = (void*)X;
++        X = Y;
++        Y = (unsigned char*)tmp;
+     }
+-
+-    renormalize(Y, RENORMALIZE_THRESHOLD);
+-
+-    ///     Swap pointers to old and new metrics
+-    tmp = (void *)X;
+-    X = Y;
+-    Y = (unsigned char*)tmp;
+-  }
+ }
+ #endif /* LV_HAVE_GENERIC */
+diff --git a/lib/kernel_tests.h b/lib/kernel_tests.h
+index 8552488..51be069 100644
+--- a/lib/kernel_tests.h
++++ b/lib/kernel_tests.h
+@@ -8,13 +8,18 @@
+ // for puppets we need to get all the func_variants for the puppet and just
+ // keep track of the actual function name to write to results
+-#define VOLK_INIT_PUPP(func, puppet_master_func, test_params)\
+-    volk_test_case_t(func##_get_func_desc(), (void(*)())func##_manual, std::string(#func),\
+-    std::string(#puppet_master_func), test_params)
++#define VOLK_INIT_PUPP(func, puppet_master_func, test_params) \
++    volk_test_case_t(func##_get_func_desc(),                  \
++                     (void (*)())func##_manual,               \
++                     std::string(#func),                      \
++                     std::string(#puppet_master_func),        \
++                     test_params)
+-#define VOLK_INIT_TEST(func, test_params)\
+-    volk_test_case_t(func##_get_func_desc(), (void(*)())func##_manual, std::string(#func),\
+-    test_params)
++#define VOLK_INIT_TEST(func, test_params)       \
++    volk_test_case_t(func##_get_func_desc(),    \
++                     (void (*)())func##_manual, \
++                     std::string(#func),        \
++                     test_params)
+ #define QA(test) test_cases.push_back(test);
+ std::vector<volk_test_case_t> init_test_list(volk_test_params_t test_params)
+@@ -32,127 +37,135 @@ std::vector<volk_test_case_t> init_test_list(volk_test_params_t test_params)
+     test_params_rotator.set_tol(1e-3);
+     std::vector<volk_test_case_t> test_cases;
+-    QA(VOLK_INIT_PUPP(volk_64u_popcntpuppet_64u, volk_64u_popcnt,     test_params))
+-    QA(VOLK_INIT_PUPP(volk_64u_popcntpuppet_64u, volk_64u_popcnt,     test_params))
+-    QA(VOLK_INIT_PUPP(volk_64u_popcntpuppet_64u, volk_64u_popcnt,     test_params))
++    QA(VOLK_INIT_PUPP(volk_64u_popcntpuppet_64u, volk_64u_popcnt, test_params))
++    QA(VOLK_INIT_PUPP(volk_64u_popcntpuppet_64u, volk_64u_popcnt, test_params))
++    QA(VOLK_INIT_PUPP(volk_64u_popcntpuppet_64u, volk_64u_popcnt, test_params))
+     QA(VOLK_INIT_PUPP(volk_16u_byteswappuppet_16u, volk_16u_byteswap, test_params))
+     QA(VOLK_INIT_PUPP(volk_32u_byteswappuppet_32u, volk_32u_byteswap, test_params))
+-    QA(VOLK_INIT_PUPP(volk_32u_popcntpuppet_32u, volk_32u_popcnt_32u,  test_params))
++    QA(VOLK_INIT_PUPP(volk_32u_popcntpuppet_32u, volk_32u_popcnt_32u, test_params))
+     QA(VOLK_INIT_PUPP(volk_64u_byteswappuppet_64u, volk_64u_byteswap, test_params))
+-    QA(VOLK_INIT_PUPP(volk_32fc_s32fc_rotatorpuppet_32fc, volk_32fc_s32fc_x2_rotator_32fc, test_params_rotator))
+-    QA(VOLK_INIT_PUPP(volk_8u_conv_k7_r2puppet_8u, volk_8u_x4_conv_k7_r2_8u, test_params.make_tol(0)))
+-    QA(VOLK_INIT_PUPP(volk_32f_x2_fm_detectpuppet_32f, volk_32f_s32f_32f_fm_detect_32f, test_params))
+-    QA(VOLK_INIT_TEST(volk_16ic_s32f_deinterleave_real_32f,           test_params))
+-    QA(VOLK_INIT_TEST(volk_16ic_deinterleave_real_8i,                 test_params))
+-    QA(VOLK_INIT_TEST(volk_16ic_deinterleave_16i_x2,                  test_params))
+-    QA(VOLK_INIT_TEST(volk_16ic_s32f_deinterleave_32f_x2,             test_params))
+-    QA(VOLK_INIT_TEST(volk_16ic_deinterleave_real_16i,                test_params))
+-    QA(VOLK_INIT_TEST(volk_16ic_magnitude_16i,                        test_params))
+-    QA(VOLK_INIT_TEST(volk_16ic_s32f_magnitude_32f,                   test_params))
+-    QA(VOLK_INIT_TEST(volk_16ic_convert_32fc,                         test_params))
+-    QA(VOLK_INIT_TEST(volk_16ic_x2_multiply_16ic,                     test_params))
+-    QA(VOLK_INIT_TEST(volk_16ic_x2_dot_prod_16ic,                     test_params))
+-    QA(VOLK_INIT_TEST(volk_16i_s32f_convert_32f,                      test_params))
+-    QA(VOLK_INIT_TEST(volk_16i_convert_8i,                            test_params))
+-    QA(VOLK_INIT_TEST(volk_16i_32fc_dot_prod_32fc,                    test_params_inacc))
+-    QA(VOLK_INIT_TEST(volk_32f_accumulator_s32f,                      test_params_inacc))
+-    QA(VOLK_INIT_TEST(volk_32f_x2_add_32f,                            test_params))
+-    QA(VOLK_INIT_TEST(volk_32f_index_max_16u,                         test_params))
+-    QA(VOLK_INIT_TEST(volk_32f_index_max_32u,                         test_params))
+-    QA(VOLK_INIT_TEST(volk_32fc_32f_multiply_32fc,                    test_params))
+-    QA(VOLK_INIT_TEST(volk_32fc_32f_add_32fc,                         test_params))
+-    QA(VOLK_INIT_TEST(volk_32f_log2_32f,                              test_params.make_absolute(1e-5)))
+-    QA(VOLK_INIT_TEST(volk_32f_expfast_32f,                           test_params_inacc_tenth))
+-    QA(VOLK_INIT_TEST(volk_32f_x2_pow_32f,                            test_params_inacc))
+-    QA(VOLK_INIT_TEST(volk_32f_sin_32f,                               test_params_inacc))
+-    QA(VOLK_INIT_TEST(volk_32f_cos_32f,                               test_params_inacc))
+-    QA(VOLK_INIT_TEST(volk_32f_tan_32f,                               test_params_inacc))
+-    QA(VOLK_INIT_TEST(volk_32f_atan_32f,                              test_params_inacc))
+-    QA(VOLK_INIT_TEST(volk_32f_asin_32f,                              test_params_inacc))
+-    QA(VOLK_INIT_TEST(volk_32f_acos_32f,                              test_params_inacc))
+-    QA(VOLK_INIT_TEST(volk_32fc_s32f_power_32fc,                      test_params_power))
+-    QA(VOLK_INIT_TEST(volk_32f_s32f_calc_spectral_noise_floor_32f,    test_params_inacc))
+-    QA(VOLK_INIT_TEST(volk_32fc_s32f_atan2_32f,                       test_params))
+-    QA(VOLK_INIT_TEST(volk_32fc_x2_conjugate_dot_prod_32fc,           test_params_inacc_tenth))
+-    QA(VOLK_INIT_TEST(volk_32fc_deinterleave_32f_x2,                  test_params))
+-    QA(VOLK_INIT_TEST(volk_32fc_deinterleave_64f_x2,                  test_params))
+-    QA(VOLK_INIT_TEST(volk_32fc_s32f_deinterleave_real_16i,           test_params))
+-    QA(VOLK_INIT_TEST(volk_32fc_deinterleave_imag_32f,                test_params))
+-    QA(VOLK_INIT_TEST(volk_32fc_deinterleave_real_32f,                test_params))
+-    QA(VOLK_INIT_TEST(volk_32fc_deinterleave_real_64f,                test_params))
+-    QA(VOLK_INIT_TEST(volk_32fc_x2_dot_prod_32fc,                     test_params_inacc))
+-    QA(VOLK_INIT_TEST(volk_32fc_32f_dot_prod_32fc,                    test_params_inacc))
+-    QA(VOLK_INIT_TEST(volk_32fc_index_max_16u,                        test_params))
+-    QA(VOLK_INIT_TEST(volk_32fc_index_max_32u,                        test_params))
+-    QA(VOLK_INIT_TEST(volk_32fc_s32f_magnitude_16i,                   test_params))
+-    QA(VOLK_INIT_TEST(volk_32fc_magnitude_32f,                        test_params_inacc_tenth))
+-    QA(VOLK_INIT_TEST(volk_32fc_magnitude_squared_32f,                test_params))
+-    QA(VOLK_INIT_TEST(volk_32fc_x2_add_32fc,                          test_params))
+-    QA(VOLK_INIT_TEST(volk_32fc_x2_multiply_32fc,                     test_params))
+-    QA(VOLK_INIT_TEST(volk_32fc_x2_multiply_conjugate_32fc,           test_params))
+-    QA(VOLK_INIT_TEST(volk_32fc_x2_divide_32fc,                       test_params))
+-    QA(VOLK_INIT_TEST(volk_32fc_conjugate_32fc,                       test_params))
+-    QA(VOLK_INIT_TEST(volk_32f_s32f_convert_16i,                      test_params))
+-    QA(VOLK_INIT_TEST(volk_32f_s32f_convert_32i,                      test_params))
+-    QA(VOLK_INIT_TEST(volk_32f_convert_64f,                           test_params))
+-    QA(VOLK_INIT_TEST(volk_32f_s32f_convert_8i,                       test_params))
+-    QA(VOLK_INIT_TEST(volk_32fc_convert_16ic,                         test_params))
+-    QA(VOLK_INIT_TEST(volk_32fc_s32f_power_spectrum_32f,              test_params))
+-    QA(VOLK_INIT_TEST(volk_32fc_x2_square_dist_32f,                   test_params))
+-    QA(VOLK_INIT_TEST(volk_32fc_x2_s32f_square_dist_scalar_mult_32f,  test_params))
+-    QA(VOLK_INIT_TEST(volk_32f_x2_divide_32f,                         test_params))
+-    QA(VOLK_INIT_TEST(volk_32f_x2_dot_prod_32f,                       test_params_inacc))
+-    QA(VOLK_INIT_TEST(volk_32f_x2_s32f_interleave_16ic,               test_params))
+-    QA(VOLK_INIT_TEST(volk_32f_x2_interleave_32fc,                    test_params))
+-    QA(VOLK_INIT_TEST(volk_32f_x2_max_32f,                            test_params))
+-    QA(VOLK_INIT_TEST(volk_32f_x2_min_32f,                            test_params))
+-    QA(VOLK_INIT_TEST(volk_32f_x2_multiply_32f,                       test_params))
+-    QA(VOLK_INIT_TEST(volk_32f_64f_multiply_64f,                      test_params))
+-    QA(VOLK_INIT_TEST(volk_32f_64f_add_64f,                           test_params))
+-    QA(VOLK_INIT_TEST(volk_32f_s32f_normalize,                        test_params))
+-    QA(VOLK_INIT_TEST(volk_32f_s32f_power_32f,                        test_params))
+-    QA(VOLK_INIT_TEST(volk_32f_sqrt_32f,                              test_params_inacc))
+-    QA(VOLK_INIT_TEST(volk_32f_s32f_stddev_32f,                       test_params_inacc))
+-    QA(VOLK_INIT_TEST(volk_32f_stddev_and_mean_32f_x2,                test_params_inacc))
+-    QA(VOLK_INIT_TEST(volk_32f_x2_subtract_32f,                       test_params))
+-    QA(VOLK_INIT_TEST(volk_32f_x3_sum_of_poly_32f,                    test_params_inacc))
+-    QA(VOLK_INIT_TEST(volk_32i_x2_and_32i,                            test_params))
+-    QA(VOLK_INIT_TEST(volk_32i_s32f_convert_32f,                      test_params))
+-    QA(VOLK_INIT_TEST(volk_32i_x2_or_32i,                             test_params))
+-    QA(VOLK_INIT_TEST(volk_32f_x2_dot_prod_16i,                       test_params))
+-    QA(VOLK_INIT_TEST(volk_64f_convert_32f,                           test_params))
+-    QA(VOLK_INIT_TEST(volk_64f_x2_max_64f,                            test_params))
+-    QA(VOLK_INIT_TEST(volk_64f_x2_min_64f,                            test_params))
+-    QA(VOLK_INIT_TEST(volk_64f_x2_multiply_64f,                       test_params))
+-    QA(VOLK_INIT_TEST(volk_64f_x2_add_64f,                            test_params))
+-    QA(VOLK_INIT_TEST(volk_8ic_deinterleave_16i_x2,                   test_params))
+-    QA(VOLK_INIT_TEST(volk_8ic_s32f_deinterleave_32f_x2,              test_params))
+-    QA(VOLK_INIT_TEST(volk_8ic_deinterleave_real_16i,                 test_params))
+-    QA(VOLK_INIT_TEST(volk_8ic_s32f_deinterleave_real_32f,            test_params))
+-    QA(VOLK_INIT_TEST(volk_8ic_deinterleave_real_8i,                  test_params))
+-    QA(VOLK_INIT_TEST(volk_8ic_x2_multiply_conjugate_16ic,            test_params))
+-    QA(VOLK_INIT_TEST(volk_8ic_x2_s32f_multiply_conjugate_32fc,       test_params))
+-    QA(VOLK_INIT_TEST(volk_8i_convert_16i,                            test_params))
+-    QA(VOLK_INIT_TEST(volk_8i_s32f_convert_32f,                       test_params))
+-    QA(VOLK_INIT_TEST(volk_32fc_s32fc_multiply_32fc,                  test_params))
+-    QA(VOLK_INIT_TEST(volk_32f_s32f_multiply_32f,                     test_params))
+-    QA(VOLK_INIT_TEST(volk_32f_binary_slicer_32i,                     test_params))
+-    QA(VOLK_INIT_TEST(volk_32f_binary_slicer_8i,                      test_params))
+-    QA(VOLK_INIT_TEST(volk_32u_reverse_32u,                            test_params))
+-    QA(VOLK_INIT_TEST(volk_32f_tanh_32f,                              test_params_inacc))
+-    QA(VOLK_INIT_TEST(volk_32f_s32f_mod_rangepuppet_32f,              test_params))
++    QA(VOLK_INIT_PUPP(volk_32fc_s32fc_rotatorpuppet_32fc,
++                      volk_32fc_s32fc_x2_rotator_32fc,
++                      test_params_rotator))
++    QA(VOLK_INIT_PUPP(
++        volk_8u_conv_k7_r2puppet_8u, volk_8u_x4_conv_k7_r2_8u, test_params.make_tol(0)))
++    QA(VOLK_INIT_PUPP(
++        volk_32f_x2_fm_detectpuppet_32f, volk_32f_s32f_32f_fm_detect_32f, test_params))
++    QA(VOLK_INIT_TEST(volk_16ic_s32f_deinterleave_real_32f, test_params))
++    QA(VOLK_INIT_TEST(volk_16ic_deinterleave_real_8i, test_params))
++    QA(VOLK_INIT_TEST(volk_16ic_deinterleave_16i_x2, test_params))
++    QA(VOLK_INIT_TEST(volk_16ic_s32f_deinterleave_32f_x2, test_params))
++    QA(VOLK_INIT_TEST(volk_16ic_deinterleave_real_16i, test_params))
++    QA(VOLK_INIT_TEST(volk_16ic_magnitude_16i, test_params))
++    QA(VOLK_INIT_TEST(volk_16ic_s32f_magnitude_32f, test_params))
++    QA(VOLK_INIT_TEST(volk_16ic_convert_32fc, test_params))
++    QA(VOLK_INIT_TEST(volk_16ic_x2_multiply_16ic, test_params))
++    QA(VOLK_INIT_TEST(volk_16ic_x2_dot_prod_16ic, test_params))
++    QA(VOLK_INIT_TEST(volk_16i_s32f_convert_32f, test_params))
++    QA(VOLK_INIT_TEST(volk_16i_convert_8i, test_params))
++    QA(VOLK_INIT_TEST(volk_16i_32fc_dot_prod_32fc, test_params_inacc))
++    QA(VOLK_INIT_TEST(volk_32f_accumulator_s32f, test_params_inacc))
++    QA(VOLK_INIT_TEST(volk_32f_x2_add_32f, test_params))
++    QA(VOLK_INIT_TEST(volk_32f_index_max_16u, test_params))
++    QA(VOLK_INIT_TEST(volk_32f_index_max_32u, test_params))
++    QA(VOLK_INIT_TEST(volk_32fc_32f_multiply_32fc, test_params))
++    QA(VOLK_INIT_TEST(volk_32fc_32f_add_32fc, test_params))
++    QA(VOLK_INIT_TEST(volk_32f_log2_32f, test_params.make_absolute(1e-5)))
++    QA(VOLK_INIT_TEST(volk_32f_expfast_32f, test_params_inacc_tenth))
++    QA(VOLK_INIT_TEST(volk_32f_x2_pow_32f, test_params_inacc))
++    QA(VOLK_INIT_TEST(volk_32f_sin_32f, test_params_inacc))
++    QA(VOLK_INIT_TEST(volk_32f_cos_32f, test_params_inacc))
++    QA(VOLK_INIT_TEST(volk_32f_tan_32f, test_params_inacc))
++    QA(VOLK_INIT_TEST(volk_32f_atan_32f, test_params_inacc))
++    QA(VOLK_INIT_TEST(volk_32f_asin_32f, test_params_inacc))
++    QA(VOLK_INIT_TEST(volk_32f_acos_32f, test_params_inacc))
++    QA(VOLK_INIT_TEST(volk_32fc_s32f_power_32fc, test_params_power))
++    QA(VOLK_INIT_TEST(volk_32f_s32f_calc_spectral_noise_floor_32f, test_params_inacc))
++    QA(VOLK_INIT_TEST(volk_32fc_s32f_atan2_32f, test_params))
++    QA(VOLK_INIT_TEST(volk_32fc_x2_conjugate_dot_prod_32fc, test_params_inacc_tenth))
++    QA(VOLK_INIT_TEST(volk_32fc_deinterleave_32f_x2, test_params))
++    QA(VOLK_INIT_TEST(volk_32fc_deinterleave_64f_x2, test_params))
++    QA(VOLK_INIT_TEST(volk_32fc_s32f_deinterleave_real_16i, test_params))
++    QA(VOLK_INIT_TEST(volk_32fc_deinterleave_imag_32f, test_params))
++    QA(VOLK_INIT_TEST(volk_32fc_deinterleave_real_32f, test_params))
++    QA(VOLK_INIT_TEST(volk_32fc_deinterleave_real_64f, test_params))
++    QA(VOLK_INIT_TEST(volk_32fc_x2_dot_prod_32fc, test_params_inacc))
++    QA(VOLK_INIT_TEST(volk_32fc_32f_dot_prod_32fc, test_params_inacc))
++    QA(VOLK_INIT_TEST(volk_32fc_index_max_16u, test_params))
++    QA(VOLK_INIT_TEST(volk_32fc_index_max_32u, test_params))
++    QA(VOLK_INIT_TEST(volk_32fc_s32f_magnitude_16i, test_params))
++    QA(VOLK_INIT_TEST(volk_32fc_magnitude_32f, test_params_inacc_tenth))
++    QA(VOLK_INIT_TEST(volk_32fc_magnitude_squared_32f, test_params))
++    QA(VOLK_INIT_TEST(volk_32fc_x2_add_32fc, test_params))
++    QA(VOLK_INIT_TEST(volk_32fc_x2_multiply_32fc, test_params))
++    QA(VOLK_INIT_TEST(volk_32fc_x2_multiply_conjugate_32fc, test_params))
++    QA(VOLK_INIT_TEST(volk_32fc_x2_divide_32fc, test_params))
++    QA(VOLK_INIT_TEST(volk_32fc_conjugate_32fc, test_params))
++    QA(VOLK_INIT_TEST(volk_32f_s32f_convert_16i, test_params))
++    QA(VOLK_INIT_TEST(volk_32f_s32f_convert_32i, test_params))
++    QA(VOLK_INIT_TEST(volk_32f_convert_64f, test_params))
++    QA(VOLK_INIT_TEST(volk_32f_s32f_convert_8i, test_params))
++    QA(VOLK_INIT_TEST(volk_32fc_convert_16ic, test_params))
++    QA(VOLK_INIT_TEST(volk_32fc_s32f_power_spectrum_32f, test_params))
++    QA(VOLK_INIT_TEST(volk_32fc_x2_square_dist_32f, test_params))
++    QA(VOLK_INIT_TEST(volk_32fc_x2_s32f_square_dist_scalar_mult_32f, test_params))
++    QA(VOLK_INIT_TEST(volk_32f_x2_divide_32f, test_params))
++    QA(VOLK_INIT_TEST(volk_32f_x2_dot_prod_32f, test_params_inacc))
++    QA(VOLK_INIT_TEST(volk_32f_x2_s32f_interleave_16ic, test_params))
++    QA(VOLK_INIT_TEST(volk_32f_x2_interleave_32fc, test_params))
++    QA(VOLK_INIT_TEST(volk_32f_x2_max_32f, test_params))
++    QA(VOLK_INIT_TEST(volk_32f_x2_min_32f, test_params))
++    QA(VOLK_INIT_TEST(volk_32f_x2_multiply_32f, test_params))
++    QA(VOLK_INIT_TEST(volk_32f_64f_multiply_64f, test_params))
++    QA(VOLK_INIT_TEST(volk_32f_64f_add_64f, test_params))
++    QA(VOLK_INIT_TEST(volk_32f_s32f_normalize, test_params))
++    QA(VOLK_INIT_TEST(volk_32f_s32f_power_32f, test_params))
++    QA(VOLK_INIT_TEST(volk_32f_sqrt_32f, test_params_inacc))
++    QA(VOLK_INIT_TEST(volk_32f_s32f_stddev_32f, test_params_inacc))
++    QA(VOLK_INIT_TEST(volk_32f_stddev_and_mean_32f_x2, test_params_inacc))
++    QA(VOLK_INIT_TEST(volk_32f_x2_subtract_32f, test_params))
++    QA(VOLK_INIT_TEST(volk_32f_x3_sum_of_poly_32f, test_params_inacc))
++    QA(VOLK_INIT_TEST(volk_32i_x2_and_32i, test_params))
++    QA(VOLK_INIT_TEST(volk_32i_s32f_convert_32f, test_params))
++    QA(VOLK_INIT_TEST(volk_32i_x2_or_32i, test_params))
++    QA(VOLK_INIT_TEST(volk_32f_x2_dot_prod_16i, test_params))
++    QA(VOLK_INIT_TEST(volk_64f_convert_32f, test_params))
++    QA(VOLK_INIT_TEST(volk_64f_x2_max_64f, test_params))
++    QA(VOLK_INIT_TEST(volk_64f_x2_min_64f, test_params))
++    QA(VOLK_INIT_TEST(volk_64f_x2_multiply_64f, test_params))
++    QA(VOLK_INIT_TEST(volk_64f_x2_add_64f, test_params))
++    QA(VOLK_INIT_TEST(volk_8ic_deinterleave_16i_x2, test_params))
++    QA(VOLK_INIT_TEST(volk_8ic_s32f_deinterleave_32f_x2, test_params))
++    QA(VOLK_INIT_TEST(volk_8ic_deinterleave_real_16i, test_params))
++    QA(VOLK_INIT_TEST(volk_8ic_s32f_deinterleave_real_32f, test_params))
++    QA(VOLK_INIT_TEST(volk_8ic_deinterleave_real_8i, test_params))
++    QA(VOLK_INIT_TEST(volk_8ic_x2_multiply_conjugate_16ic, test_params))
++    QA(VOLK_INIT_TEST(volk_8ic_x2_s32f_multiply_conjugate_32fc, test_params))
++    QA(VOLK_INIT_TEST(volk_8i_convert_16i, test_params))
++    QA(VOLK_INIT_TEST(volk_8i_s32f_convert_32f, test_params))
++    QA(VOLK_INIT_TEST(volk_32fc_s32fc_multiply_32fc, test_params))
++    QA(VOLK_INIT_TEST(volk_32f_s32f_multiply_32f, test_params))
++    QA(VOLK_INIT_TEST(volk_32f_binary_slicer_32i, test_params))
++    QA(VOLK_INIT_TEST(volk_32f_binary_slicer_8i, test_params))
++    QA(VOLK_INIT_TEST(volk_32u_reverse_32u, test_params))
++    QA(VOLK_INIT_TEST(volk_32f_tanh_32f, test_params_inacc))
++    QA(VOLK_INIT_TEST(volk_32f_s32f_mod_rangepuppet_32f, test_params))
+     QA(VOLK_INIT_TEST(volk_32fc_x2_s32fc_multiply_conjugate_add_32fc, test_params))
+-    QA(VOLK_INIT_PUPP(volk_8u_x3_encodepolarpuppet_8u, volk_8u_x3_encodepolar_8u_x2, test_params))
+-    QA(VOLK_INIT_PUPP(volk_32f_8u_polarbutterflypuppet_32f, volk_32f_8u_polarbutterfly_32f, test_params))
+-    QA(VOLK_INIT_TEST(volk_32f_exp_32f,                               test_params))
+-
++    QA(VOLK_INIT_PUPP(
++        volk_8u_x3_encodepolarpuppet_8u, volk_8u_x3_encodepolar_8u_x2, test_params))
++    QA(VOLK_INIT_PUPP(volk_32f_8u_polarbutterflypuppet_32f,
++                      volk_32f_8u_polarbutterfly_32f,
++                      test_params))
+     // no one uses these, so don't test them
+-    //VOLK_PROFILE(volk_16i_x5_add_quad_16i_x4, 1e-4, 2046, 10000, &results, benchmark_mode, kernel_regex);
+-    //VOLK_PROFILE(volk_16i_branch_4_state_8, 1e-4, 2046, 10000, &results, benchmark_mode, kernel_regex);
+-    //VOLK_PROFILE(volk_16i_max_star_16i, 0, 0, 204602, 10000, &results, benchmark_mode, kernel_regex);
+-    //VOLK_PROFILE(volk_16i_max_star_horizontal_16i, 0, 0, 204602, 10000, &results, benchmark_mode, kernel_regex);
+-    //VOLK_PROFILE(volk_16i_permute_and_scalar_add, 1e-4, 0, 2046, 10000, &results, benchmark_mode, kernel_regex);
+-    //VOLK_PROFILE(volk_16i_x4_quad_max_star_16i, 1e-4, 0, 2046, 10000, &results, benchmark_mode, kernel_regex);
++    // VOLK_PROFILE(volk_16i_x5_add_quad_16i_x4, 1e-4, 2046, 10000, &results,
++    // benchmark_mode, kernel_regex); VOLK_PROFILE(volk_16i_branch_4_state_8, 1e-4, 2046,
++    // 10000, &results, benchmark_mode, kernel_regex); VOLK_PROFILE(volk_16i_max_star_16i,
++    // 0, 0, 204602, 10000, &results, benchmark_mode, kernel_regex);
++    // VOLK_PROFILE(volk_16i_max_star_horizontal_16i, 0, 0, 204602, 10000, &results,
++    // benchmark_mode, kernel_regex); VOLK_PROFILE(volk_16i_permute_and_scalar_add, 1e-4,
++    // 0, 2046, 10000, &results, benchmark_mode, kernel_regex);
++    // VOLK_PROFILE(volk_16i_x4_quad_max_star_16i, 1e-4, 0, 2046, 10000, &results,
++    // benchmark_mode, kernel_regex);
+     // we need a puppet for this one
+     //(VOLK_INIT_TEST(volk_32fc_s32f_x2_power_spectral_density_32f,   test_params))
+diff --git a/lib/qa_utils.cc b/lib/qa_utils.cc
+index 76df069..1dcee6e 100644
+--- a/lib/qa_utils.cc
++++ b/lib/qa_utils.cc
+@@ -1,79 +1,94 @@
+-#include <volk/volk.h>
+ #include "qa_utils.h"
++#include <volk/volk.h>
+-#include <volk/volk.h>                              // for volk_func_desc_t
+-#include <volk/volk_malloc.h>                       // for volk_free, volk_m...
++#include <volk/volk.h>        // for volk_func_desc_t
++#include <volk/volk_malloc.h> // for volk_free, volk_m...
+-#include <assert.h>                                 // for assert
+-#include <stdint.h>                                 // for uint16_t, uint64_t
+-#include <sys/time.h>                               // for CLOCKS_PER_SEC
+-#include <sys/types.h>                              // for int16_t, int32_t
++#include <assert.h>    // for assert
++#include <stdint.h>    // for uint16_t, uint64_t
++#include <sys/time.h>  // for CLOCKS_PER_SEC
++#include <sys/types.h> // for int16_t, int32_t
+ #include <chrono>
+-#include <cmath>                                    // for sqrt, fabs, abs
+-#include <cstring>                                  // for memcpy, memset
+-#include <ctime>                                    // for clock
+-#include <fstream>                                  // for operator<<, basic...
+-#include <iostream>                                 // for cout, cerr
+-#include <limits>                                   // for numeric_limits
+-#include <map>                                      // for map, map<>::mappe...
++#include <cmath>    // for sqrt, fabs, abs
++#include <cstring>  // for memcpy, memset
++#include <ctime>    // for clock
++#include <fstream>  // for operator<<, basic...
++#include <iostream> // for cout, cerr
++#include <limits>   // for numeric_limits
++#include <map>      // for map, map<>::mappe...
+ #include <random>
+-#include <vector>                                   // for vector, _Bit_refe...
++#include <vector> // for vector, _Bit_refe...
+ template <typename T>
+-void random_floats(void *buf, unsigned int n, std::default_random_engine& rnd_engine)
++void random_floats(void* buf, unsigned int n, std::default_random_engine& rnd_engine)
+ {
+-    T *array = static_cast<T*>(buf);
++    T* array = static_cast<T*>(buf);
+     std::uniform_real_distribution<T> uniform_dist(T(-1), T(1));
+-    for(unsigned int i = 0; i < n; i++) {
++    for (unsigned int i = 0; i < n; i++) {
+         array[i] = uniform_dist(rnd_engine);
+     }
+ }
+-void load_random_data(void *data, volk_type_t type, unsigned int n) {
++void load_random_data(void* data, volk_type_t type, unsigned int n)
++{
+     std::random_device rnd_device;
+     std::default_random_engine rnd_engine(rnd_device());
+-    if(type.is_complex) n *= 2;
+-    if(type.is_float) {
+-        if(type.size == 8) {
++    if (type.is_complex)
++        n *= 2;
++    if (type.is_float) {
++        if (type.size == 8) {
+             random_floats<double>(data, n, rnd_engine);
+         } else {
+-            random_floats<float> (data, n, rnd_engine);
++            random_floats<float>(data, n, rnd_engine);
+         }
+     } else {
+-        float int_max = float(uint64_t(2) << (type.size*8));
+-        if(type.is_signed) int_max /= 2.0;
++        float int_max = float(uint64_t(2) << (type.size * 8));
++        if (type.is_signed)
++            int_max /= 2.0;
+         std::uniform_real_distribution<float> uniform_dist(-int_max, int_max);
+-        for(unsigned int i=0; i<n; i++) {
++        for (unsigned int i = 0; i < n; i++) {
+             float scaled_rand = uniform_dist(rnd_engine);
+-            //man i really don't know how to do this in a more clever way, you have to cast down at some point
+-            switch(type.size) {
++            // man i really don't know how to do this in a more clever way, you have to
++            // cast down at some point
++            switch (type.size) {
+             case 8:
+-                if(type.is_signed) ((int64_t *)data)[i] = (int64_t) scaled_rand;
+-                else ((uint64_t *)data)[i] = (uint64_t) scaled_rand;
+-            break;
++                if (type.is_signed)
++                    ((int64_t*)data)[i] = (int64_t)scaled_rand;
++                else
++                    ((uint64_t*)data)[i] = (uint64_t)scaled_rand;
++                break;
+             case 4:
+-                if(type.is_signed) ((int32_t *)data)[i] = (int32_t) scaled_rand;
+-                else ((uint32_t *)data)[i] = (uint32_t) scaled_rand;
+-            break;
++                if (type.is_signed)
++                    ((int32_t*)data)[i] = (int32_t)scaled_rand;
++                else
++                    ((uint32_t*)data)[i] = (uint32_t)scaled_rand;
++                break;
+             case 2:
+-                if(type.is_signed) ((int16_t *)data)[i] = (int16_t)((int16_t) scaled_rand % 8);
+-                else ((uint16_t *)data)[i] = (uint16_t) ((int16_t) scaled_rand % 8);
+-            break;
++                if (type.is_signed)
++                    ((int16_t*)data)[i] = (int16_t)((int16_t)scaled_rand % 8);
++                else
++                    ((uint16_t*)data)[i] = (uint16_t)((int16_t)scaled_rand % 8);
++                break;
+             case 1:
+-                if(type.is_signed) ((int8_t *)data)[i] = (int8_t) scaled_rand;
+-                else ((uint8_t *)data)[i] = (uint8_t) scaled_rand;
+-            break;
++                if (type.is_signed)
++                    ((int8_t*)data)[i] = (int8_t)scaled_rand;
++                else
++                    ((uint8_t*)data)[i] = (uint8_t)scaled_rand;
++                break;
+             default:
+-                throw "load_random_data: no support for data size > 8 or < 1"; //no shenanigans here
++                throw "load_random_data: no support for data size > 8 or < 1"; // no
++                                                                               // shenanigans
++                                                                               // here
+             }
+         }
+     }
+ }
+-static std::vector<std::string> get_arch_list(volk_func_desc_t desc) {
++static std::vector<std::string> get_arch_list(volk_func_desc_t desc)
++{
+     std::vector<std::string> archlist;
+-    for(size_t i = 0; i < desc.n_impls; i++) {
++    for (size_t i = 0; i < desc.n_impls; i++) {
+         archlist.push_back(std::string(desc.impl_names[i]));
+     }
+@@ -96,7 +111,8 @@ T volk_lexical_cast(const std::string& str)
+     return var;
+ }
+-volk_type_t volk_type_from_string(std::string name) {
++volk_type_t volk_type_from_string(std::string name)
++{
+     volk_type_t type;
+     type.is_float = false;
+     type.is_scalar = false;
+@@ -105,28 +121,28 @@ volk_type_t volk_type_from_string(std::string name) {
+     type.size = 0;
+     type.str = name;
+-    if(name.size() < 2) {
++    if (name.size() < 2) {
+         throw std::string("name too short to be a datatype");
+     }
+-    //is it a scalar?
+-    if(name[0] == 's') {
++    // is it a scalar?
++    if (name[0] == 's') {
+         type.is_scalar = true;
+-        name = name.substr(1, name.size()-1);
++        name = name.substr(1, name.size() - 1);
+     }
+-    //get the data size
++    // get the data size
+     size_t last_size_pos = name.find_last_of("0123456789");
+-    if(last_size_pos == std::string::npos) {
++    if (last_size_pos == std::string::npos) {
+         throw std::string("no size spec in type ").append(name);
+     }
+-    //will throw if malformed
+-    int size = volk_lexical_cast<int>(name.substr(0, last_size_pos+1));
++    // will throw if malformed
++    int size = volk_lexical_cast<int>(name.substr(0, last_size_pos + 1));
+     assert(((size % 8) == 0) && (size <= 64) && (size != 0));
+-    type.size = size/8; //in bytes
++    type.size = size / 8; // in bytes
+-    for(size_t i=last_size_pos+1; i < name.size(); i++) {
++    for (size_t i = last_size_pos + 1; i < name.size(); i++) {
+         switch (name[i]) {
+         case 'f':
+             type.is_float = true;
+@@ -148,7 +164,8 @@ volk_type_t volk_type_from_string(std::string name) {
+     return type;
+ }
+-std::vector<std::string> split_signature(const std::string &protokernel_signature) {
++std::vector<std::string> split_signature(const std::string& protokernel_signature)
++{
+     std::vector<std::string> signature_tokens;
+     std::string token;
+     for (unsigned int loc = 0; loc < protokernel_signature.size(); ++loc) {
+@@ -165,16 +182,17 @@ std::vector<std::string> split_signature(const std::string &protokernel_signatur
+     return signature_tokens;
+ }
+-static void get_signatures_from_name(std::vector<volk_type_t> &inputsig,
+-                                   std::vector<volk_type_t> &outputsig,
+-                                   std::string name) {
++static void get_signatures_from_name(std::vector<volk_type_t>& inputsig,
++                                     std::vector<volk_type_t>& outputsig,
++                                     std::string name)
++{
+     std::vector<std::string> toked = split_signature(name);
+     assert(toked[0] == "volk");
+     toked.erase(toked.begin());
+-    //ok. we're assuming a string in the form
++    // ok. we're assuming a string in the form
+     //(sig)_(multiplier-opt)_..._(name)_(sig)_(multiplier-opt)_..._(alignment)
+     enum { SIDE_INPUT, SIDE_NAME, SIDE_OUTPUT } side = SIDE_INPUT;
+@@ -184,106 +202,184 @@ static void get_signatures_from_name(std::vector<volk_type_t> &inputsig,
+         std::string token = toked[token_index];
+         try {
+             type = volk_type_from_string(token);
+-            if(side == SIDE_NAME) side = SIDE_OUTPUT; //if this is the first one after the name...
+-
+-            if(side == SIDE_INPUT) inputsig.push_back(type);
+-            else outputsig.push_back(type);
+-        } catch (...){
+-            if(token[0] == 'x' && (token.size() > 1) && (token[1] > '0' && token[1] < '9')) { //it's a multiplier
+-                if(side == SIDE_INPUT) assert(inputsig.size() > 0);
+-                else assert(outputsig.size() > 0);
+-                int multiplier = volk_lexical_cast<int>(token.substr(1, token.size()-1)); //will throw if invalid
+-                for(int i=1; i<multiplier; i++) {
+-                    if(side == SIDE_INPUT) inputsig.push_back(inputsig.back());
+-                    else outputsig.push_back(outputsig.back());
++            if (side == SIDE_NAME)
++                side = SIDE_OUTPUT; // if this is the first one after the name...
++
++            if (side == SIDE_INPUT)
++                inputsig.push_back(type);
++            else
++                outputsig.push_back(type);
++        } catch (...) {
++            if (token[0] == 'x' && (token.size() > 1) &&
++                (token[1] > '0' && token[1] < '9')) { // it's a multiplier
++                if (side == SIDE_INPUT)
++                    assert(inputsig.size() > 0);
++                else
++                    assert(outputsig.size() > 0);
++                int multiplier = volk_lexical_cast<int>(
++                    token.substr(1, token.size() - 1)); // will throw if invalid
++                for (int i = 1; i < multiplier; i++) {
++                    if (side == SIDE_INPUT)
++                        inputsig.push_back(inputsig.back());
++                    else
++                        outputsig.push_back(outputsig.back());
+                 }
+-            }
+-            else if(side == SIDE_INPUT) { //it's the function name, at least it better be
++            } else if (side ==
++                       SIDE_INPUT) { // it's the function name, at least it better be
+                 side = SIDE_NAME;
+                 fn_name.append("_");
+                 fn_name.append(token);
+-            }
+-            else if(side == SIDE_OUTPUT) {
+-                if(token != toked.back()) throw; //the last token in the name is the alignment
++            } else if (side == SIDE_OUTPUT) {
++                if (token != toked.back())
++                    throw; // the last token in the name is the alignment
+             }
+         }
+     }
+-    //we don't need an output signature (some fn's operate on the input data, "in place"), but we do need at least one input!
++    // we don't need an output signature (some fn's operate on the input data, "in
++    // place"), but we do need at least one input!
+     assert(inputsig.size() != 0);
+-
+ }
+-inline void run_cast_test1(volk_fn_1arg func, std::vector<void *> &buffs, unsigned int vlen, unsigned int iter, std::string arch) {
+-    while(iter--) func(buffs[0], vlen, arch.c_str());
++inline void run_cast_test1(volk_fn_1arg func,
++                           std::vector<void*>& buffs,
++                           unsigned int vlen,
++                           unsigned int iter,
++                           std::string arch)
++{
++    while (iter--)
++        func(buffs[0], vlen, arch.c_str());
+ }
+-inline void run_cast_test2(volk_fn_2arg func, std::vector<void *> &buffs, unsigned int vlen, unsigned int iter, std::string arch) {
+-    while(iter--) func(buffs[0], buffs[1], vlen, arch.c_str());
++inline void run_cast_test2(volk_fn_2arg func,
++                           std::vector<void*>& buffs,
++                           unsigned int vlen,
++                           unsigned int iter,
++                           std::string arch)
++{
++    while (iter--)
++        func(buffs[0], buffs[1], vlen, arch.c_str());
+ }
+-inline void run_cast_test3(volk_fn_3arg func, std::vector<void *> &buffs, unsigned int vlen, unsigned int iter, std::string arch) {
+-    while(iter--) func(buffs[0], buffs[1], buffs[2], vlen, arch.c_str());
++inline void run_cast_test3(volk_fn_3arg func,
++                           std::vector<void*>& buffs,
++                           unsigned int vlen,
++                           unsigned int iter,
++                           std::string arch)
++{
++    while (iter--)
++        func(buffs[0], buffs[1], buffs[2], vlen, arch.c_str());
+ }
+-inline void run_cast_test4(volk_fn_4arg func, std::vector<void *> &buffs, unsigned int vlen, unsigned int iter, std::string arch) {
+-    while(iter--) func(buffs[0], buffs[1], buffs[2], buffs[3], vlen, arch.c_str());
++inline void run_cast_test4(volk_fn_4arg func,
++                           std::vector<void*>& buffs,
++                           unsigned int vlen,
++                           unsigned int iter,
++                           std::string arch)
++{
++    while (iter--)
++        func(buffs[0], buffs[1], buffs[2], buffs[3], vlen, arch.c_str());
+ }
+-inline void run_cast_test1_s32f(volk_fn_1arg_s32f func, std::vector<void *> &buffs, float scalar, unsigned int vlen, unsigned int iter, std::string arch) {
+-    while(iter--) func(buffs[0], scalar, vlen, arch.c_str());
++inline void run_cast_test1_s32f(volk_fn_1arg_s32f func,
++                                std::vector<void*>& buffs,
++                                float scalar,
++                                unsigned int vlen,
++                                unsigned int iter,
++                                std::string arch)
++{
++    while (iter--)
++        func(buffs[0], scalar, vlen, arch.c_str());
+ }
+-inline void run_cast_test2_s32f(volk_fn_2arg_s32f func, std::vector<void *> &buffs, float scalar, unsigned int vlen, unsigned int iter, std::string arch) {
+-    while(iter--) func(buffs[0], buffs[1], scalar, vlen, arch.c_str());
++inline void run_cast_test2_s32f(volk_fn_2arg_s32f func,
++                                std::vector<void*>& buffs,
++                                float scalar,
++                                unsigned int vlen,
++                                unsigned int iter,
++                                std::string arch)
++{
++    while (iter--)
++        func(buffs[0], buffs[1], scalar, vlen, arch.c_str());
+ }
+-inline void run_cast_test3_s32f(volk_fn_3arg_s32f func, std::vector<void *> &buffs, float scalar, unsigned int vlen, unsigned int iter, std::string arch) {
+-    while(iter--) func(buffs[0], buffs[1], buffs[2], scalar, vlen, arch.c_str());
++inline void run_cast_test3_s32f(volk_fn_3arg_s32f func,
++                                std::vector<void*>& buffs,
++                                float scalar,
++                                unsigned int vlen,
++                                unsigned int iter,
++                                std::string arch)
++{
++    while (iter--)
++        func(buffs[0], buffs[1], buffs[2], scalar, vlen, arch.c_str());
+ }
+-inline void run_cast_test1_s32fc(volk_fn_1arg_s32fc func, std::vector<void *> &buffs, lv_32fc_t scalar, unsigned int vlen, unsigned int iter, std::string arch) {
+-    while(iter--) func(buffs[0], scalar, vlen, arch.c_str());
++inline void run_cast_test1_s32fc(volk_fn_1arg_s32fc func,
++                                 std::vector<void*>& buffs,
++                                 lv_32fc_t scalar,
++                                 unsigned int vlen,
++                                 unsigned int iter,
++                                 std::string arch)
++{
++    while (iter--)
++        func(buffs[0], scalar, vlen, arch.c_str());
+ }
+-inline void run_cast_test2_s32fc(volk_fn_2arg_s32fc func, std::vector<void *> &buffs, lv_32fc_t scalar, unsigned int vlen, unsigned int iter, std::string arch) {
+-    while(iter--) func(buffs[0], buffs[1], scalar, vlen, arch.c_str());
++inline void run_cast_test2_s32fc(volk_fn_2arg_s32fc func,
++                                 std::vector<void*>& buffs,
++                                 lv_32fc_t scalar,
++                                 unsigned int vlen,
++                                 unsigned int iter,
++                                 std::string arch)
++{
++    while (iter--)
++        func(buffs[0], buffs[1], scalar, vlen, arch.c_str());
+ }
+-inline void run_cast_test3_s32fc(volk_fn_3arg_s32fc func, std::vector<void *> &buffs, lv_32fc_t scalar, unsigned int vlen, unsigned int iter, std::string arch) {
+-    while(iter--) func(buffs[0], buffs[1], buffs[2], scalar, vlen, arch.c_str());
++inline void run_cast_test3_s32fc(volk_fn_3arg_s32fc func,
++                                 std::vector<void*>& buffs,
++                                 lv_32fc_t scalar,
++                                 unsigned int vlen,
++                                 unsigned int iter,
++                                 std::string arch)
++{
++    while (iter--)
++        func(buffs[0], buffs[1], buffs[2], scalar, vlen, arch.c_str());
+ }
+ template <class t>
+-bool fcompare(t *in1, t *in2, unsigned int vlen, float tol, bool absolute_mode) {
++bool fcompare(t* in1, t* in2, unsigned int vlen, float tol, bool absolute_mode)
++{
+     bool fail = false;
+     int print_max_errs = 10;
+-    for(unsigned int i=0; i<vlen; i++) {
++    for (unsigned int i = 0; i < vlen; i++) {
+         if (absolute_mode) {
+-            if (fabs(((t *)(in1))[i] - ((t *)(in2))[i]) > tol) {
+-                fail=true;
+-                if(print_max_errs-- > 0) {
+-                    std::cout << "offset " << i << " in1: " << t(((t *)(in1))[i]) << " in2: " << t(((t *)(in2))[i]);
++            if (fabs(((t*)(in1))[i] - ((t*)(in2))[i]) > tol) {
++                fail = true;
++                if (print_max_errs-- > 0) {
++                    std::cout << "offset " << i << " in1: " << t(((t*)(in1))[i])
++                              << " in2: " << t(((t*)(in2))[i]);
+                     std::cout << " tolerance was: " << tol << std::endl;
+                 }
+             }
+         } else {
+             // for very small numbers we'll see round off errors due to limited
+             // precision. So a special test case...
+-            if(fabs(((t *)(in1))[i]) < 1e-30) {
+-                if( fabs( ((t *)(in2))[i] ) > tol )
+-                {
+-                    fail=true;
+-                    if(print_max_errs-- > 0) {
+-                    std::cout << "offset " << i << " in1: " << t(((t *)(in1))[i]) << " in2: " << t(((t *)(in2))[i]);
++            if (fabs(((t*)(in1))[i]) < 1e-30) {
++                if (fabs(((t*)(in2))[i]) > tol) {
++                    fail = true;
++                    if (print_max_errs-- > 0) {
++                        std::cout << "offset " << i << " in1: " << t(((t*)(in1))[i])
++                                  << " in2: " << t(((t*)(in2))[i]);
+                         std::cout << " tolerance was: " << tol << std::endl;
+                     }
+                 }
+             }
+             // the primary test is the percent different greater than given tol
+-            else if(fabs(((t *)(in1))[i] - ((t *)(in2))[i])/fabs(((t *)in1)[i]) > tol) {
+-                fail=true;
+-                if(print_max_errs-- > 0) {
+-                    std::cout << "offset " << i << " in1: " << t(((t *)(in1))[i]) << " in2: " << t(((t *)(in2))[i]);
++            else if (fabs(((t*)(in1))[i] - ((t*)(in2))[i]) / fabs(((t*)in1)[i]) > tol) {
++                fail = true;
++                if (print_max_errs-- > 0) {
++                    std::cout << "offset " << i << " in1: " << t(((t*)(in1))[i])
++                              << " in2: " << t(((t*)(in2))[i]);
+                     std::cout << " tolerance was: " << tol << std::endl;
+                 }
+             }
+@@ -294,43 +390,50 @@ bool fcompare(t *in1, t *in2, unsigned int vlen, float tol, bool absolute_mode)
+ }
+ template <class t>
+-bool ccompare(t *in1, t *in2, unsigned int vlen, float tol, bool absolute_mode) {
++bool ccompare(t* in1, t* in2, unsigned int vlen, float tol, bool absolute_mode)
++{
+     if (absolute_mode) {
+-      std::cout << "ccompare does not support absolute mode" << std::endl;
+-      return true;
++        std::cout << "ccompare does not support absolute mode" << std::endl;
++        return true;
+     }
+     bool fail = false;
+     int print_max_errs = 10;
+-    for(unsigned int i=0; i<2*vlen; i+=2) {
+-        if (std::isnan(in1[i]) || std::isnan(in1[i+1]) || std::isnan(in2[i]) || std::isnan(in2[i+1])
+-                || std::isinf(in1[i]) || std::isinf(in1[i+1]) || std::isinf(in2[i]) || std::isinf(in2[i+1])) {
+-            fail=true;
+-            if(print_max_errs-- > 0) {
+-                std::cout << "offset " << i/2 << " in1: " << in1[i] << " + " << in1[i+1] << "j  in2: " << in2[i] << " + " << in2[i+1] << "j";
++    for (unsigned int i = 0; i < 2 * vlen; i += 2) {
++        if (std::isnan(in1[i]) || std::isnan(in1[i + 1]) || std::isnan(in2[i]) ||
++            std::isnan(in2[i + 1]) || std::isinf(in1[i]) || std::isinf(in1[i + 1]) ||
++            std::isinf(in2[i]) || std::isinf(in2[i + 1])) {
++            fail = true;
++            if (print_max_errs-- > 0) {
++                std::cout << "offset " << i / 2 << " in1: " << in1[i] << " + "
++                          << in1[i + 1] << "j  in2: " << in2[i] << " + " << in2[i + 1]
++                          << "j";
+                 std::cout << " tolerance was: " << tol << std::endl;
+             }
+         }
+-        t diff[2] = { in1[i] - in2[i], in1[i+1] - in2[i+1] };
+-        t err  = std::sqrt(diff[0] * diff[0] + diff[1] * diff[1]);
+-        t norm = std::sqrt(in1[i] * in1[i] + in1[i+1] * in1[i+1]);
++        t diff[2] = { in1[i] - in2[i], in1[i + 1] - in2[i + 1] };
++        t err = std::sqrt(diff[0] * diff[0] + diff[1] * diff[1]);
++        t norm = std::sqrt(in1[i] * in1[i] + in1[i + 1] * in1[i + 1]);
+         // for very small numbers we'll see round off errors due to limited
+         // precision. So a special test case...
+         if (norm < 1e-30) {
+-            if (err > tol)
+-            {
+-                fail=true;
+-                if(print_max_errs-- > 0) {
+-                    std::cout << "offset " << i/2 << " in1: " << in1[i] << " + " << in1[i+1] << "j  in2: " << in2[i] << " + " << in2[i+1] << "j";
++            if (err > tol) {
++                fail = true;
++                if (print_max_errs-- > 0) {
++                    std::cout << "offset " << i / 2 << " in1: " << in1[i] << " + "
++                              << in1[i + 1] << "j  in2: " << in2[i] << " + " << in2[i + 1]
++                              << "j";
+                     std::cout << " tolerance was: " << tol << std::endl;
+                 }
+             }
+         }
+         // the primary test is the percent different greater than given tol
+-        else if((err / norm) > tol) {
+-            fail=true;
+-            if(print_max_errs-- > 0) {
+-                std::cout << "offset " << i/2 << " in1: " << in1[i] << " + " << in1[i+1] << "j  in2: " << in2[i] << " + " << in2[i+1] << "j";
++        else if ((err / norm) > tol) {
++            fail = true;
++            if (print_max_errs-- > 0) {
++                std::cout << "offset " << i / 2 << " in1: " << in1[i] << " + "
++                          << in1[i + 1] << "j  in2: " << in2[i] << " + " << in2[i + 1]
++                          << "j";
+                 std::cout << " tolerance was: " << tol << std::endl;
+             }
+         }
+@@ -340,18 +443,21 @@ bool ccompare(t *in1, t *in2, unsigned int vlen, float tol, bool absolute_mode)
+ }
+ template <class t>
+-bool icompare(t *in1, t *in2, unsigned int vlen, unsigned int tol, bool absolute_mode) {
++bool icompare(t* in1, t* in2, unsigned int vlen, unsigned int tol, bool absolute_mode)
++{
+     if (absolute_mode) {
+-      std::cout << "icompare does not support absolute mode" << std::endl;
+-      return true;
++        std::cout << "icompare does not support absolute mode" << std::endl;
++        return true;
+     }
+     bool fail = false;
+     int print_max_errs = 10;
+-    for(unsigned int i=0; i<vlen; i++) {
+-      if(((unsigned int)abs(int(((t *)(in1))[i]) - int(((t *)(in2))[i]))) > tol) {
+-            fail=true;
+-            if(print_max_errs-- > 0) {
+-                std::cout << "offset " << i << " in1: " << static_cast<int>(t(((t *)(in1))[i])) << " in2: " << static_cast<int>(t(((t *)(in2))[i]));
++    for (unsigned int i = 0; i < vlen; i++) {
++        if (((unsigned int)abs(int(((t*)(in1))[i]) - int(((t*)(in2))[i]))) > tol) {
++            fail = true;
++            if (print_max_errs-- > 0) {
++                std::cout << "offset " << i
++                          << " in1: " << static_cast<int>(t(((t*)(in1))[i]))
++                          << " in2: " << static_cast<int>(t(((t*)(in2))[i]));
+                 std::cout << " tolerance was: " << tol << std::endl;
+             }
+         }
+@@ -360,34 +466,46 @@ bool icompare(t *in1, t *in2, unsigned int vlen, unsigned int tol, bool absolute
+     return fail;
+ }
+-class volk_qa_aligned_mem_pool{
++class volk_qa_aligned_mem_pool
++{
+ public:
+-    void *get_new(size_t size){
++    void* get_new(size_t size)
++    {
+         size_t alignment = volk_get_alignment();
+         void* ptr = volk_malloc(size, alignment);
+         memset(ptr, 0x00, size);
+         _mems.push_back(ptr);
+         return ptr;
+     }
+-    ~volk_qa_aligned_mem_pool() {
+-        for(unsigned int ii = 0; ii < _mems.size(); ++ii) {
++    ~volk_qa_aligned_mem_pool()
++    {
++        for (unsigned int ii = 0; ii < _mems.size(); ++ii) {
+             volk_free(_mems[ii]);
+         }
+     }
+-private: std::vector<void * > _mems;
++
++private:
++    std::vector<void*> _mems;
+ };
+ bool run_volk_tests(volk_func_desc_t desc,
+                     void (*manual_func)(),
+                     std::string name,
+                     volk_test_params_t test_params,
+-                    std::vector<volk_test_results_t> *results,
+-                    std::string puppet_master_name
+-)
++                    std::vector<volk_test_results_t>* results,
++                    std::string puppet_master_name)
+ {
+-    return run_volk_tests(desc, manual_func, name, test_params.tol(), test_params.scalar(),
+-        test_params.vlen(), test_params.iter(), results, puppet_master_name,
+-        test_params.absolute_mode(), test_params.benchmark_mode());
++    return run_volk_tests(desc,
++                          manual_func,
++                          name,
++                          test_params.tol(),
++                          test_params.scalar(),
++                          test_params.vlen(),
++                          test_params.iter(),
++                          results,
++                          puppet_master_name,
++                          test_params.absolute_mode(),
++                          test_params.benchmark_mode());
+ }
+ bool run_volk_tests(volk_func_desc_t desc,
+@@ -397,17 +515,18 @@ bool run_volk_tests(volk_func_desc_t desc,
+                     lv_32fc_t scalar,
+                     unsigned int vlen,
+                     unsigned int iter,
+-                    std::vector<volk_test_results_t> *results,
++                    std::vector<volk_test_results_t>* results,
+                     std::string puppet_master_name,
+                     bool absolute_mode,
+-                    bool benchmark_mode
+-) {
++                    bool benchmark_mode)
++{
+     // Initialize this entry in results vector
+     results->push_back(volk_test_results_t());
+     results->back().name = name;
+     results->back().vlen = vlen;
+     results->back().iter = iter;
+-    std::cout << "RUN_VOLK_TESTS: " << name << "(" << vlen << "," << iter << ")" << std::endl;
++    std::cout << "RUN_VOLK_TESTS: " << name << "(" << vlen << "," << iter << ")"
++              << std::endl;
+     // vlen_twiddle will increase vlen for malloc and data generation
+     // but kernels will still be called with the user provided vlen.
+@@ -418,57 +537,64 @@ bool run_volk_tests(volk_func_desc_t desc,
+     const float tol_f = tol;
+     const unsigned int tol_i = static_cast<const unsigned int>(tol);
+-    //first let's get a list of available architectures for the test
++    // first let's get a list of available architectures for the test
+     std::vector<std::string> arch_list = get_arch_list(desc);
+-    if((!benchmark_mode) && (arch_list.size() < 2)) {
++    if ((!benchmark_mode) && (arch_list.size() < 2)) {
+         std::cout << "no architectures to test" << std::endl;
+         return false;
+     }
+-    //something that can hang onto memory and cleanup when this function exits
++    // something that can hang onto memory and cleanup when this function exits
+     volk_qa_aligned_mem_pool mem_pool;
+-    //now we have to get a function signature by parsing the name
++    // now we have to get a function signature by parsing the name
+     std::vector<volk_type_t> inputsig, outputsig;
+     try {
+         get_signatures_from_name(inputsig, outputsig, name);
+-    }
+-    catch (std::exception &error) {
+-        std::cerr << "Error: unable to get function signature from kernel name" << std::endl;
++    } catch (std::exception& error) {
++        std::cerr << "Error: unable to get function signature from kernel name"
++                  << std::endl;
+         std::cerr << "  - " << name << std::endl;
+         return false;
+     }
+-    //pull the input scalars into their own vector
++    // pull the input scalars into their own vector
+     std::vector<volk_type_t> inputsc;
+-    for(size_t i=0; i<inputsig.size(); i++) {
+-        if(inputsig[i].is_scalar) {
++    for (size_t i = 0; i < inputsig.size(); i++) {
++        if (inputsig[i].is_scalar) {
+             inputsc.push_back(inputsig[i]);
+             inputsig.erase(inputsig.begin() + i);
+             i -= 1;
+         }
+     }
+-    std::vector<void *> inbuffs;
+-    for (unsigned int inputsig_index = 0; inputsig_index < inputsig.size(); ++ inputsig_index) {
++    std::vector<void*> inbuffs;
++    for (unsigned int inputsig_index = 0; inputsig_index < inputsig.size();
++         ++inputsig_index) {
+         volk_type_t sig = inputsig[inputsig_index];
+-        if(!sig.is_scalar) //we don't make buffers for scalars
+-          inbuffs.push_back(mem_pool.get_new(vlen*sig.size*(sig.is_complex ? 2 : 1)));
++        if (!sig.is_scalar) // we don't make buffers for scalars
++            inbuffs.push_back(
++                mem_pool.get_new(vlen * sig.size * (sig.is_complex ? 2 : 1)));
+     }
+-    for(size_t i=0; i<inbuffs.size(); i++) {
++    for (size_t i = 0; i < inbuffs.size(); i++) {
+         load_random_data(inbuffs[i], inputsig[i], vlen);
+     }
+-    //ok let's make a vector of vector of void buffers, which holds the input/output vectors for each arch
+-    std::vector<std::vector<void *> > test_data;
+-    for(size_t i=0; i<arch_list.size(); i++) {
+-        std::vector<void *> arch_buffs;
+-        for(size_t j=0; j<outputsig.size(); j++) {
+-            arch_buffs.push_back(mem_pool.get_new(vlen*outputsig[j].size*(outputsig[j].is_complex ? 2 : 1)));
++    // ok let's make a vector of vector of void buffers, which holds the input/output
++    // vectors for each arch
++    std::vector<std::vector<void*>> test_data;
++    for (size_t i = 0; i < arch_list.size(); i++) {
++        std::vector<void*> arch_buffs;
++        for (size_t j = 0; j < outputsig.size(); j++) {
++            arch_buffs.push_back(mem_pool.get_new(vlen * outputsig[j].size *
++                                                  (outputsig[j].is_complex ? 2 : 1)));
+         }
+-        for(size_t j=0; j<inputsig.size(); j++) {
+-            void *arch_inbuff = mem_pool.get_new(vlen*inputsig[j].size*(inputsig[j].is_complex ? 2 : 1));
+-            memcpy(arch_inbuff, inbuffs[j], vlen * inputsig[j].size * (inputsig[j].is_complex ? 2 : 1));
++        for (size_t j = 0; j < inputsig.size(); j++) {
++            void* arch_inbuff = mem_pool.get_new(vlen * inputsig[j].size *
++                                                 (inputsig[j].is_complex ? 2 : 1));
++            memcpy(arch_inbuff,
++                   inbuffs[j],
++                   vlen * inputsig[j].size * (inputsig[j].is_complex ? 2 : 1));
+             arch_buffs.push_back(arch_inbuff);
+         }
+         test_data.push_back(arch_buffs);
+@@ -478,53 +604,90 @@ bool run_volk_tests(volk_func_desc_t desc,
+     both_sigs.insert(both_sigs.end(), outputsig.begin(), outputsig.end());
+     both_sigs.insert(both_sigs.end(), inputsig.begin(), inputsig.end());
+-    //now run the test
++    // now run the test
+     vlen = vlen - vlen_twiddle;
+     std::chrono::time_point<std::chrono::system_clock> start, end;
+     std::vector<double> profile_times;
+-    for(size_t i = 0; i < arch_list.size(); i++) {
++    for (size_t i = 0; i < arch_list.size(); i++) {
+         start = std::chrono::system_clock::now();
+-        switch(both_sigs.size()) {
+-            case 1:
+-                if(inputsc.size() == 0) {
+-                    run_cast_test1((volk_fn_1arg)(manual_func), test_data[i], vlen, iter, arch_list[i]);
+-                } else if(inputsc.size() == 1 && inputsc[0].is_float) {
+-                    if(inputsc[0].is_complex) {
+-                        run_cast_test1_s32fc((volk_fn_1arg_s32fc)(manual_func), test_data[i], scalar, vlen, iter, arch_list[i]);
+-                    } else {
+-                        run_cast_test1_s32f((volk_fn_1arg_s32f)(manual_func), test_data[i], scalar.real(), vlen, iter, arch_list[i]);
+-                    }
+-                } else throw "unsupported 1 arg function >1 scalars";
+-                break;
+-            case 2:
+-                if(inputsc.size() == 0) {
+-                    run_cast_test2((volk_fn_2arg)(manual_func), test_data[i], vlen, iter, arch_list[i]);
+-                } else if(inputsc.size() == 1 && inputsc[0].is_float) {
+-                    if(inputsc[0].is_complex) {
+-                        run_cast_test2_s32fc((volk_fn_2arg_s32fc)(manual_func), test_data[i], scalar, vlen, iter, arch_list[i]);
+-                    } else {
+-                        run_cast_test2_s32f((volk_fn_2arg_s32f)(manual_func), test_data[i], scalar.real(), vlen, iter, arch_list[i]);
+-                    }
+-                } else throw "unsupported 2 arg function >1 scalars";
+-                break;
+-            case 3:
+-                if(inputsc.size() == 0) {
+-                    run_cast_test3((volk_fn_3arg)(manual_func), test_data[i], vlen, iter, arch_list[i]);
+-                } else if(inputsc.size() == 1 && inputsc[0].is_float) {
+-                    if(inputsc[0].is_complex) {
+-                        run_cast_test3_s32fc((volk_fn_3arg_s32fc)(manual_func), test_data[i], scalar, vlen, iter, arch_list[i]);
+-                    } else {
+-                        run_cast_test3_s32f((volk_fn_3arg_s32f)(manual_func), test_data[i], scalar.real(), vlen, iter, arch_list[i]);
+-                    }
+-                } else throw "unsupported 3 arg function >1 scalars";
+-                break;
+-            case 4:
+-                run_cast_test4((volk_fn_4arg)(manual_func), test_data[i], vlen, iter, arch_list[i]);
+-                break;
+-            default:
+-                throw "no function handler for this signature";
+-                break;
++        switch (both_sigs.size()) {
++        case 1:
++            if (inputsc.size() == 0) {
++                run_cast_test1(
++                    (volk_fn_1arg)(manual_func), test_data[i], vlen, iter, arch_list[i]);
++            } else if (inputsc.size() == 1 && inputsc[0].is_float) {
++                if (inputsc[0].is_complex) {
++                    run_cast_test1_s32fc((volk_fn_1arg_s32fc)(manual_func),
++                                         test_data[i],
++                                         scalar,
++                                         vlen,
++                                         iter,
++                                         arch_list[i]);
++                } else {
++                    run_cast_test1_s32f((volk_fn_1arg_s32f)(manual_func),
++                                        test_data[i],
++                                        scalar.real(),
++                                        vlen,
++                                        iter,
++                                        arch_list[i]);
++                }
++            } else
++                throw "unsupported 1 arg function >1 scalars";
++            break;
++        case 2:
++            if (inputsc.size() == 0) {
++                run_cast_test2(
++                    (volk_fn_2arg)(manual_func), test_data[i], vlen, iter, arch_list[i]);
++            } else if (inputsc.size() == 1 && inputsc[0].is_float) {
++                if (inputsc[0].is_complex) {
++                    run_cast_test2_s32fc((volk_fn_2arg_s32fc)(manual_func),
++                                         test_data[i],
++                                         scalar,
++                                         vlen,
++                                         iter,
++                                         arch_list[i]);
++                } else {
++                    run_cast_test2_s32f((volk_fn_2arg_s32f)(manual_func),
++                                        test_data[i],
++                                        scalar.real(),
++                                        vlen,
++                                        iter,
++                                        arch_list[i]);
++                }
++            } else
++                throw "unsupported 2 arg function >1 scalars";
++            break;
++        case 3:
++            if (inputsc.size() == 0) {
++                run_cast_test3(
++                    (volk_fn_3arg)(manual_func), test_data[i], vlen, iter, arch_list[i]);
++            } else if (inputsc.size() == 1 && inputsc[0].is_float) {
++                if (inputsc[0].is_complex) {
++                    run_cast_test3_s32fc((volk_fn_3arg_s32fc)(manual_func),
++                                         test_data[i],
++                                         scalar,
++                                         vlen,
++                                         iter,
++                                         arch_list[i]);
++                } else {
++                    run_cast_test3_s32f((volk_fn_3arg_s32f)(manual_func),
++                                        test_data[i],
++                                        scalar.real(),
++                                        vlen,
++                                        iter,
++                                        arch_list[i]);
++                }
++            } else
++                throw "unsupported 3 arg function >1 scalars";
++            break;
++        case 4:
++            run_cast_test4(
++                (volk_fn_4arg)(manual_func), test_data[i], vlen, iter, arch_list[i]);
++            break;
++        default:
++            throw "no function handler for this signature";
++            break;
+         }
+         end = std::chrono::system_clock::now();
+@@ -541,10 +704,10 @@ bool run_volk_tests(volk_func_desc_t desc,
+         profile_times.push_back(arch_time);
+     }
+-    //and now compare each output to the generic output
+-    //first we have to know which output is the generic one, they aren't in order...
+-    size_t generic_offset=0;
+-    for(size_t i=0; i<arch_list.size(); i++) {
++    // and now compare each output to the generic output
++    // first we have to know which output is the generic one, they aren't in order...
++    size_t generic_offset = 0;
++    for (size_t i = 0; i < arch_list.size(); i++) {
+         if (arch_list[i] == "generic") {
+             generic_offset = i;
+         }
+@@ -555,72 +718,126 @@ bool run_volk_tests(volk_func_desc_t desc,
+     bool fail;
+     bool fail_global = false;
+     std::vector<bool> arch_results;
+-    for(size_t i=0; i<arch_list.size(); i++) {
++    for (size_t i = 0; i < arch_list.size(); i++) {
+         fail = false;
+-        if(i != generic_offset) {
+-            for(size_t j=0; j<both_sigs.size(); j++) {
+-                if(both_sigs[j].is_float) {
+-                    if(both_sigs[j].size == 8) {
++        if (i != generic_offset) {
++            for (size_t j = 0; j < both_sigs.size(); j++) {
++                if (both_sigs[j].is_float) {
++                    if (both_sigs[j].size == 8) {
+                         if (both_sigs[j].is_complex) {
+-                            fail = ccompare((double *) test_data[generic_offset][j], (double *) test_data[i][j], vlen, tol_f, absolute_mode);
++                            fail = ccompare((double*)test_data[generic_offset][j],
++                                            (double*)test_data[i][j],
++                                            vlen,
++                                            tol_f,
++                                            absolute_mode);
+                         } else {
+-                            fail = fcompare((double *) test_data[generic_offset][j], (double *) test_data[i][j], vlen, tol_f, absolute_mode);
++                            fail = fcompare((double*)test_data[generic_offset][j],
++                                            (double*)test_data[i][j],
++                                            vlen,
++                                            tol_f,
++                                            absolute_mode);
+                         }
+                     } else {
+                         if (both_sigs[j].is_complex) {
+-                            fail = ccompare((float *) test_data[generic_offset][j], (float *) test_data[i][j], vlen, tol_f, absolute_mode);
++                            fail = ccompare((float*)test_data[generic_offset][j],
++                                            (float*)test_data[i][j],
++                                            vlen,
++                                            tol_f,
++                                            absolute_mode);
+                         } else {
+-                            fail = fcompare((float *) test_data[generic_offset][j], (float *) test_data[i][j], vlen, tol_f, absolute_mode);
++                            fail = fcompare((float*)test_data[generic_offset][j],
++                                            (float*)test_data[i][j],
++                                            vlen,
++                                            tol_f,
++                                            absolute_mode);
+                         }
+                     }
+                 } else {
+-                    //i could replace this whole switch statement with a memcmp if i wasn't interested in printing the outputs where they differ
+-                    switch(both_sigs[j].size) {
++                    // i could replace this whole switch statement with a memcmp if i
++                    // wasn't interested in printing the outputs where they differ
++                    switch (both_sigs[j].size) {
+                     case 8:
+-                        if(both_sigs[j].is_signed) {
+-                            fail = icompare((int64_t *) test_data[generic_offset][j], (int64_t *) test_data[i][j], vlen*(both_sigs[j].is_complex ? 2 : 1), tol_i, absolute_mode);
++                        if (both_sigs[j].is_signed) {
++                            fail = icompare((int64_t*)test_data[generic_offset][j],
++                                            (int64_t*)test_data[i][j],
++                                            vlen * (both_sigs[j].is_complex ? 2 : 1),
++                                            tol_i,
++                                            absolute_mode);
+                         } else {
+-                            fail = icompare((uint64_t *) test_data[generic_offset][j], (uint64_t *) test_data[i][j], vlen*(both_sigs[j].is_complex ? 2 : 1), tol_i, absolute_mode);
++                            fail = icompare((uint64_t*)test_data[generic_offset][j],
++                                            (uint64_t*)test_data[i][j],
++                                            vlen * (both_sigs[j].is_complex ? 2 : 1),
++                                            tol_i,
++                                            absolute_mode);
+                         }
+                         break;
+                     case 4:
+-                        if(both_sigs[j].is_complex) {
+-                            if(both_sigs[j].is_signed) {
+-                                fail = icompare((int16_t *) test_data[generic_offset][j], (int16_t *) test_data[i][j], vlen*(both_sigs[j].is_complex ? 2 : 1), tol_i, absolute_mode);
++                        if (both_sigs[j].is_complex) {
++                            if (both_sigs[j].is_signed) {
++                                fail = icompare((int16_t*)test_data[generic_offset][j],
++                                                (int16_t*)test_data[i][j],
++                                                vlen * (both_sigs[j].is_complex ? 2 : 1),
++                                                tol_i,
++                                                absolute_mode);
+                             } else {
+-                                fail = icompare((uint16_t *) test_data[generic_offset][j], (uint16_t *) test_data[i][j], vlen*(both_sigs[j].is_complex ? 2 : 1), tol_i, absolute_mode);
++                                fail = icompare((uint16_t*)test_data[generic_offset][j],
++                                                (uint16_t*)test_data[i][j],
++                                                vlen * (both_sigs[j].is_complex ? 2 : 1),
++                                                tol_i,
++                                                absolute_mode);
+                             }
+-                        }
+-                        else {
++                        } else {
+                             if (both_sigs[j].is_signed) {
+-                                fail = icompare((int32_t *) test_data[generic_offset][j], (int32_t *) test_data[i][j],
+-                                                vlen * (both_sigs[j].is_complex ? 2 : 1), tol_i, absolute_mode);
++                                fail = icompare((int32_t*)test_data[generic_offset][j],
++                                                (int32_t*)test_data[i][j],
++                                                vlen * (both_sigs[j].is_complex ? 2 : 1),
++                                                tol_i,
++                                                absolute_mode);
+                             } else {
+-                                fail = icompare((uint32_t *) test_data[generic_offset][j], (uint32_t *) test_data[i][j],
+-                                                vlen * (both_sigs[j].is_complex ? 2 : 1), tol_i, absolute_mode);
++                                fail = icompare((uint32_t*)test_data[generic_offset][j],
++                                                (uint32_t*)test_data[i][j],
++                                                vlen * (both_sigs[j].is_complex ? 2 : 1),
++                                                tol_i,
++                                                absolute_mode);
+                             }
+                         }
+                         break;
+                     case 2:
+-                        if(both_sigs[j].is_signed) {
+-                            fail = icompare((int16_t *) test_data[generic_offset][j], (int16_t *) test_data[i][j], vlen*(both_sigs[j].is_complex ? 2 : 1), tol_i, absolute_mode);
++                        if (both_sigs[j].is_signed) {
++                            fail = icompare((int16_t*)test_data[generic_offset][j],
++                                            (int16_t*)test_data[i][j],
++                                            vlen * (both_sigs[j].is_complex ? 2 : 1),
++                                            tol_i,
++                                            absolute_mode);
+                         } else {
+-                            fail = icompare((uint16_t *) test_data[generic_offset][j], (uint16_t *) test_data[i][j], vlen*(both_sigs[j].is_complex ? 2 : 1), tol_i, absolute_mode);
++                            fail = icompare((uint16_t*)test_data[generic_offset][j],
++                                            (uint16_t*)test_data[i][j],
++                                            vlen * (both_sigs[j].is_complex ? 2 : 1),
++                                            tol_i,
++                                            absolute_mode);
+                         }
+                         break;
+                     case 1:
+-                        if(both_sigs[j].is_signed) {
+-                            fail = icompare((int8_t *) test_data[generic_offset][j], (int8_t *) test_data[i][j], vlen*(both_sigs[j].is_complex ? 2 : 1), tol_i, absolute_mode);
++                        if (both_sigs[j].is_signed) {
++                            fail = icompare((int8_t*)test_data[generic_offset][j],
++                                            (int8_t*)test_data[i][j],
++                                            vlen * (both_sigs[j].is_complex ? 2 : 1),
++                                            tol_i,
++                                            absolute_mode);
+                         } else {
+-                            fail = icompare((uint8_t *) test_data[generic_offset][j], (uint8_t *) test_data[i][j], vlen*(both_sigs[j].is_complex ? 2 : 1), tol_i, absolute_mode);
++                            fail = icompare((uint8_t*)test_data[generic_offset][j],
++                                            (uint8_t*)test_data[i][j],
++                                            vlen * (both_sigs[j].is_complex ? 2 : 1),
++                                            tol_i,
++                                            absolute_mode);
+                         }
+                         break;
+                     default:
+-                        fail=1;
++                        fail = 1;
+                     }
+                 }
+-                if(fail) {
+-                    volk_test_time_t *result = &results->back().results[arch_list[i]];
++                if (fail) {
++                    volk_test_time_t* result = &results->back().results[arch_list[i]];
+                     result->pass = false;
+                     fail_global = true;
+                     std::cout << name << ": fail on arch " << arch_list[i] << std::endl;
+@@ -634,15 +851,13 @@ bool run_volk_tests(volk_func_desc_t desc,
+     double best_time_u = std::numeric_limits<double>::max();
+     std::string best_arch_a = "generic";
+     std::string best_arch_u = "generic";
+-    for(size_t i=0; i < arch_list.size(); i++)
+-    {
+-        if((profile_times[i] < best_time_u) && arch_results[i] && desc.impl_alignment[i] == 0)
+-        {
++    for (size_t i = 0; i < arch_list.size(); i++) {
++        if ((profile_times[i] < best_time_u) && arch_results[i] &&
++            desc.impl_alignment[i] == 0) {
+             best_time_u = profile_times[i];
+             best_arch_u = arch_list[i];
+         }
+-        if((profile_times[i] < best_time_a) && arch_results[i])
+-        {
++        if ((profile_times[i] < best_time_a) && arch_results[i]) {
+             best_time_a = profile_times[i];
+             best_arch_a = arch_list[i];
+         }
+@@ -651,7 +866,7 @@ bool run_volk_tests(volk_func_desc_t desc,
+     std::cout << "Best aligned arch: " << best_arch_a << std::endl;
+     std::cout << "Best unaligned arch: " << best_arch_u << std::endl;
+-    if(puppet_master_name == "NULL") {
++    if (puppet_master_name == "NULL") {
+         results->back().config_name = name;
+     } else {
+         results->back().config_name = puppet_master_name;
+diff --git a/lib/qa_utils.h b/lib/qa_utils.h
+index 2d8458b..74c3db4 100644
+--- a/lib/qa_utils.h
++++ b/lib/qa_utils.h
+@@ -1,14 +1,14 @@
+ #ifndef VOLK_QA_UTILS_H
+ #define VOLK_QA_UTILS_H
+-#include <stdbool.h>            // for bool, false
+-#include <volk/volk.h>          // for volk_func_desc_t
+-#include <cstdlib>              // for NULL
+-#include <map>                  // for map
+-#include <string>               // for string, basic_string
+-#include <vector>               // for vector
++#include <stdbool.h>   // for bool, false
++#include <volk/volk.h> // for volk_func_desc_t
++#include <cstdlib>     // for NULL
++#include <map>         // for map
++#include <string>      // for string, basic_string
++#include <vector>      // for vector
+-#include "volk/volk_complex.h"  // for lv_32fc_t
++#include "volk/volk_complex.h" // for lv_32fc_t
+ /************************************************
+  * VOLK QA type definitions                     *
+@@ -22,93 +22,119 @@ struct volk_type_t {
+     std::string str;
+ };
+-class volk_test_time_t {
+-    public:
+-        std::string name;
+-        double time;
+-        std::string units;
+-        bool pass;
++class volk_test_time_t
++{
++public:
++    std::string name;
++    double time;
++    std::string units;
++    bool pass;
+ };
+-class volk_test_results_t {
+-    public:
+-        std::string name;
+-        std::string config_name;
+-        unsigned int vlen;
+-        unsigned int iter;
+-        std::map<std::string, volk_test_time_t> results;
+-        std::string best_arch_a;
+-        std::string best_arch_u;
++class volk_test_results_t
++{
++public:
++    std::string name;
++    std::string config_name;
++    unsigned int vlen;
++    unsigned int iter;
++    std::map<std::string, volk_test_time_t> results;
++    std::string best_arch_a;
++    std::string best_arch_u;
+ };
+-class volk_test_params_t {
+-    private:
+-        float _tol;
+-        lv_32fc_t _scalar;
+-        unsigned int _vlen;
+-        unsigned int _iter;
+-        bool _benchmark_mode;
+-        bool _absolute_mode;
+-        std::string _kernel_regex;
+-    public:
+-        // ctor
+-        volk_test_params_t(float tol, lv_32fc_t scalar, unsigned int vlen, unsigned int iter,
+-                           bool benchmark_mode, std::string kernel_regex) :
+-            _tol(tol), _scalar(scalar), _vlen(vlen), _iter(iter),
+-            _benchmark_mode(benchmark_mode), _absolute_mode(false), _kernel_regex(kernel_regex) {};
+-        // setters
+-        void set_tol(float tol) {_tol=tol;};
+-        void set_scalar(lv_32fc_t scalar) {_scalar=scalar;};
+-        void set_vlen(unsigned int vlen) {_vlen=vlen;};
+-        void set_iter(unsigned int iter) {_iter=iter;};
+-        void set_benchmark(bool benchmark) {_benchmark_mode=benchmark;};
+-        void set_regex(std::string regex) {_kernel_regex=regex;};
+-        // getters
+-        float tol() {return _tol;};
+-        lv_32fc_t scalar() {return _scalar;};
+-        unsigned int vlen() {return _vlen;};
+-        unsigned int iter() {return _iter;};
+-        bool benchmark_mode() {return _benchmark_mode;};
+-        bool absolute_mode() {return _absolute_mode;};
+-        std::string kernel_regex() {return _kernel_regex;};
+-        volk_test_params_t make_absolute(float tol) {
+-          volk_test_params_t t(*this);
+-          t._tol = tol;
+-          t._absolute_mode = true;
+-          return t;
+-        }
+-        volk_test_params_t make_tol(float tol) {
+-          volk_test_params_t t(*this);
+-          t._tol = tol;
+-          return t;
+-        }
++class volk_test_params_t
++{
++private:
++    float _tol;
++    lv_32fc_t _scalar;
++    unsigned int _vlen;
++    unsigned int _iter;
++    bool _benchmark_mode;
++    bool _absolute_mode;
++    std::string _kernel_regex;
++
++public:
++    // ctor
++    volk_test_params_t(float tol,
++                       lv_32fc_t scalar,
++                       unsigned int vlen,
++                       unsigned int iter,
++                       bool benchmark_mode,
++                       std::string kernel_regex)
++        : _tol(tol),
++          _scalar(scalar),
++          _vlen(vlen),
++          _iter(iter),
++          _benchmark_mode(benchmark_mode),
++          _absolute_mode(false),
++          _kernel_regex(kernel_regex){};
++    // setters
++    void set_tol(float tol) { _tol = tol; };
++    void set_scalar(lv_32fc_t scalar) { _scalar = scalar; };
++    void set_vlen(unsigned int vlen) { _vlen = vlen; };
++    void set_iter(unsigned int iter) { _iter = iter; };
++    void set_benchmark(bool benchmark) { _benchmark_mode = benchmark; };
++    void set_regex(std::string regex) { _kernel_regex = regex; };
++    // getters
++    float tol() { return _tol; };
++    lv_32fc_t scalar() { return _scalar; };
++    unsigned int vlen() { return _vlen; };
++    unsigned int iter() { return _iter; };
++    bool benchmark_mode() { return _benchmark_mode; };
++    bool absolute_mode() { return _absolute_mode; };
++    std::string kernel_regex() { return _kernel_regex; };
++    volk_test_params_t make_absolute(float tol)
++    {
++        volk_test_params_t t(*this);
++        t._tol = tol;
++        t._absolute_mode = true;
++        return t;
++    }
++    volk_test_params_t make_tol(float tol)
++    {
++        volk_test_params_t t(*this);
++        t._tol = tol;
++        return t;
++    }
+ };
+-class volk_test_case_t {
+-    private:
+-        volk_func_desc_t _desc;
+-        void(*_kernel_ptr)();
+-        std::string _name;
+-        volk_test_params_t _test_parameters;
+-        std::string _puppet_master_name;
+-    public:
+-        volk_func_desc_t desc() {return _desc;};
+-        void (*kernel_ptr()) () {return _kernel_ptr;};
+-        std::string name() {return _name;};
+-        std::string puppet_master_name() {return _puppet_master_name;};
+-        volk_test_params_t test_parameters() {return _test_parameters;};
+-        // normal ctor
+-        volk_test_case_t(volk_func_desc_t desc, void(*kernel_ptr)(), std::string name,
+-            volk_test_params_t test_parameters) :
+-            _desc(desc), _kernel_ptr(kernel_ptr), _name(name), _test_parameters(test_parameters),
+-            _puppet_master_name("NULL")
+-            {};
+-        // ctor for puppets
+-        volk_test_case_t(volk_func_desc_t desc, void(*kernel_ptr)(), std::string name,
+-            std::string puppet_master_name, volk_test_params_t test_parameters) :
+-            _desc(desc), _kernel_ptr(kernel_ptr), _name(name), _test_parameters(test_parameters),
+-            _puppet_master_name(puppet_master_name)
+-            {};
++class volk_test_case_t
++{
++private:
++    volk_func_desc_t _desc;
++    void (*_kernel_ptr)();
++    std::string _name;
++    volk_test_params_t _test_parameters;
++    std::string _puppet_master_name;
++
++public:
++    volk_func_desc_t desc() { return _desc; };
++    void (*kernel_ptr())() { return _kernel_ptr; };
++    std::string name() { return _name; };
++    std::string puppet_master_name() { return _puppet_master_name; };
++    volk_test_params_t test_parameters() { return _test_parameters; };
++    // normal ctor
++    volk_test_case_t(volk_func_desc_t desc,
++                     void (*kernel_ptr)(),
++                     std::string name,
++                     volk_test_params_t test_parameters)
++        : _desc(desc),
++          _kernel_ptr(kernel_ptr),
++          _name(name),
++          _test_parameters(test_parameters),
++          _puppet_master_name("NULL"){};
++    // ctor for puppets
++    volk_test_case_t(volk_func_desc_t desc,
++                     void (*kernel_ptr)(),
++                     std::string name,
++                     std::string puppet_master_name,
++                     volk_test_params_t test_parameters)
++        : _desc(desc),
++          _kernel_ptr(kernel_ptr),
++          _name(name),
++          _test_parameters(test_parameters),
++          _puppet_master_name(puppet_master_name){};
+ };
+ /************************************************
+@@ -117,42 +143,58 @@ class volk_test_case_t {
+ volk_type_t volk_type_from_string(std::string);
+ float uniform(void);
+-void random_floats(float *buf, unsigned n);
++void random_floats(float* buf, unsigned n);
+-bool run_volk_tests(
+-    volk_func_desc_t,
+-    void(*)(),
+-    std::string,
+-    volk_test_params_t,
+-    std::vector<volk_test_results_t> *results = NULL,
+-    std::string puppet_master_name = "NULL"
+-    );
++bool run_volk_tests(volk_func_desc_t,
++                    void (*)(),
++                    std::string,
++                    volk_test_params_t,
++                    std::vector<volk_test_results_t>* results = NULL,
++                    std::string puppet_master_name = "NULL");
+-bool run_volk_tests(
+-        volk_func_desc_t,
+-        void(*)(),
+-        std::string,
+-        float,
+-        lv_32fc_t,
+-        unsigned int,
+-        unsigned int,
+-        std::vector<volk_test_results_t> *results = NULL,
+-        std::string puppet_master_name = "NULL",
+-        bool absolute_mode = false,
+-        bool benchmark_mode = false
+-);
++bool run_volk_tests(volk_func_desc_t,
++                    void (*)(),
++                    std::string,
++                    float,
++                    lv_32fc_t,
++                    unsigned int,
++                    unsigned int,
++                    std::vector<volk_test_results_t>* results = NULL,
++                    std::string puppet_master_name = "NULL",
++                    bool absolute_mode = false,
++                    bool benchmark_mode = false);
+-#define VOLK_PROFILE(func, test_params, results) run_volk_tests(func##_get_func_desc(), (void (*)())func##_manual, std::string(#func), test_params, results, "NULL")
+-#define VOLK_PUPPET_PROFILE(func, puppet_master_func, test_params, results) run_volk_tests(func##_get_func_desc(), (void (*)())func##_manual, std::string(#func), test_params, results, std::string(#puppet_master_func))
+-typedef void (*volk_fn_1arg)(void *, unsigned int, const char*); //one input, operate in place
+-typedef void (*volk_fn_2arg)(void *, void *, unsigned int, const char*);
+-typedef void (*volk_fn_3arg)(void *, void *, void *, unsigned int, const char*);
+-typedef void (*volk_fn_4arg)(void *, void *, void *, void *, unsigned int, const char*);
+-typedef void (*volk_fn_1arg_s32f)(void *, float, unsigned int, const char*); //one input vector, one scalar float input
+-typedef void (*volk_fn_2arg_s32f)(void *, void *, float, unsigned int, const char*);
+-typedef void (*volk_fn_3arg_s32f)(void *, void *, void *, float, unsigned int, const char*);
+-typedef void (*volk_fn_1arg_s32fc)(void *, lv_32fc_t, unsigned int, const char*); //one input vector, one scalar float input
+-typedef void (*volk_fn_2arg_s32fc)(void *, void *, lv_32fc_t, unsigned int, const char*);
+-typedef void (*volk_fn_3arg_s32fc)(void *, void *, void *, lv_32fc_t, unsigned int, const char*);
++#define VOLK_PROFILE(func, test_params, results) \
++    run_volk_tests(func##_get_func_desc(),       \
++                   (void (*)())func##_manual,    \
++                   std::string(#func),           \
++                   test_params,                  \
++                   results,                      \
++                   "NULL")
++#define VOLK_PUPPET_PROFILE(func, puppet_master_func, test_params, results) \
++    run_volk_tests(func##_get_func_desc(),                                  \
++                   (void (*)())func##_manual,                               \
++                   std::string(#func),                                      \
++                   test_params,                                             \
++                   results,                                                 \
++                   std::string(#puppet_master_func))
++typedef void (*volk_fn_1arg)(void*,
++                             unsigned int,
++                             const char*); // one input, operate in place
++typedef void (*volk_fn_2arg)(void*, void*, unsigned int, const char*);
++typedef void (*volk_fn_3arg)(void*, void*, void*, unsigned int, const char*);
++typedef void (*volk_fn_4arg)(void*, void*, void*, void*, unsigned int, const char*);
++typedef void (*volk_fn_1arg_s32f)(
++    void*, float, unsigned int, const char*); // one input vector, one scalar float input
++typedef void (*volk_fn_2arg_s32f)(void*, void*, float, unsigned int, const char*);
++typedef void (*volk_fn_3arg_s32f)(void*, void*, void*, float, unsigned int, const char*);
++typedef void (*volk_fn_1arg_s32fc)(
++    void*,
++    lv_32fc_t,
++    unsigned int,
++    const char*); // one input vector, one scalar float input
++typedef void (*volk_fn_2arg_s32fc)(void*, void*, lv_32fc_t, unsigned int, const char*);
++typedef void (*volk_fn_3arg_s32fc)(
++    void*, void*, void*, lv_32fc_t, unsigned int, const char*);
+-#endif //VOLK_QA_UTILS_H
++#endif // VOLK_QA_UTILS_H
+diff --git a/lib/testqa.cc b/lib/testqa.cc
+index 8b0f4d6..c885383 100644
+--- a/lib/testqa.cc
++++ b/lib/testqa.cc
+@@ -20,18 +20,18 @@
+  * Boston, MA 02110-1301, USA.
+  */
+-#include <stdbool.h>            // for bool, false, true
+-#include <iostream>             // for operator<<, basic_ostream, endl, char...
+-#include <fstream>             // IWYU pragma: keep
+-#include <map>                  // for map, map<>::iterator, _Rb_tree_iterator
+-#include <string>               // for string, operator<<
+-#include <utility>              // for pair
+-#include <vector>               // for vector
+-
++#include <stdbool.h> // for bool, false, true
++#include <fstream>   // IWYU pragma: keep
++#include <iostream>  // for operator<<, basic_ostream, endl, char...
++#include <map>       // for map, map<>::iterator, _Rb_tree_iterator
++#include <string>    // for string, operator<<
++#include <utility>   // for pair
++#include <vector>    // for vector
++
++#include "kernel_tests.h"      // for init_test_list
++#include "qa_utils.h"          // for volk_test_case_t, volk_test_results_t
++#include "volk/volk_complex.h" // for lv_32fc_t
+ #include <volk/volk.h>
+-#include "kernel_tests.h"       // for init_test_list
+-#include "qa_utils.h"           // for volk_test_case_t, volk_test_results_t
+-#include "volk/volk_complex.h"  // for lv_32fc_t
+ void print_qa_xml(std::vector<volk_test_results_t> results, unsigned int nfails);
+@@ -46,45 +46,52 @@ int main(int argc, char* argv[])
+     bool def_benchmark_mode = true;
+     std::string def_kernel_regex = "";
+-    volk_test_params_t test_params(def_tol, def_scalar, def_vlen, def_iter,
+-        def_benchmark_mode, def_kernel_regex);
++    volk_test_params_t test_params(
++        def_tol, def_scalar, def_vlen, def_iter, def_benchmark_mode, def_kernel_regex);
+     std::vector<volk_test_case_t> test_cases = init_test_list(test_params);
+     std::vector<volk_test_results_t> results;
+-    if (argc > 1){
+-        for(unsigned int ii = 0; ii < test_cases.size(); ++ii){
+-            if (std::string(argv[1]) == test_cases[ii].name()){
++    if (argc > 1) {
++        for (unsigned int ii = 0; ii < test_cases.size(); ++ii) {
++            if (std::string(argv[1]) == test_cases[ii].name()) {
+                 volk_test_case_t test_case = test_cases[ii];
+-                if (run_volk_tests(test_case.desc(), test_case.kernel_ptr(),
++                if (run_volk_tests(test_case.desc(),
++                                   test_case.kernel_ptr(),
+                                    test_case.name(),
+-                                   test_case.test_parameters(), &results,
++                                   test_case.test_parameters(),
++                                   &results,
+                                    test_case.puppet_master_name())) {
+-                  return 1;
++                    return 1;
+                 } else {
+-                  return 0;
++                    return 0;
+                 }
+             }
+         }
+-        std::cerr << "Did not run a test for kernel: " << std::string(argv[1]) << " !" << std::endl;
++        std::cerr << "Did not run a test for kernel: " << std::string(argv[1]) << " !"
++                  << std::endl;
+         return 0;
+-    }else{
++    } else {
+         std::vector<std::string> qa_failures;
+         // Test every kernel reporting failures when they occur
+-        for(unsigned int ii = 0; ii < test_cases.size(); ++ii) {
++        for (unsigned int ii = 0; ii < test_cases.size(); ++ii) {
+             bool qa_result = false;
+             volk_test_case_t test_case = test_cases[ii];
+             try {
+-                qa_result = run_volk_tests(test_case.desc(), test_case.kernel_ptr(), test_case.name(),
+-                                           test_case.test_parameters(), &results, test_case.puppet_master_name());
+-            }
+-            catch(...) {
++                qa_result = run_volk_tests(test_case.desc(),
++                                           test_case.kernel_ptr(),
++                                           test_case.name(),
++                                           test_case.test_parameters(),
++                                           &results,
++                                           test_case.puppet_master_name());
++            } catch (...) {
+                 // TODO: what exceptions might we need to catch and how do we handle them?
+-                std::cerr << "Exception found on kernel: " << test_case.name() << std::endl;
++                std::cerr << "Exception found on kernel: " << test_case.name()
++                          << std::endl;
+                 qa_result = false;
+             }
+-            if(qa_result) {
++            if (qa_result) {
+                 std::cerr << "Failure on " << test_case.name() << std::endl;
+                 qa_failures.push_back(test_case.name());
+             }
+@@ -96,9 +103,9 @@ int main(int argc, char* argv[])
+         // Summarize QA results
+         std::cerr << "Kernel QA finished: " << qa_failures.size() << " failures out of "
+                   << test_cases.size() << " tests." << std::endl;
+-        if(qa_failures.size() > 0) {
++        if (qa_failures.size() > 0) {
+             std::cerr << "The following kernels failed QA:" << std::endl;
+-            for(unsigned int ii = 0; ii < qa_failures.size(); ++ii) {
++            for (unsigned int ii = 0; ii < qa_failures.size(); ++ii) {
+                 std::cerr << "    " << qa_failures[ii] << std::endl;
+             }
+             qa_ret_val = 1;
+@@ -118,26 +125,28 @@ void print_qa_xml(std::vector<volk_test_results_t> results, unsigned int nfails)
+     qa_file.open(".unittest/kernels.xml");
+     qa_file << "<?xml version=\"1.0\" encoding=\"UTF-8\"?>" << std::endl;
+-    qa_file << "<testsuites name=\"kernels\" " <<
+-        "tests=\"" << results.size() << "\" " <<
+-        "failures=\"" << nfails << "\" id=\"1\">" << std::endl;
++    qa_file << "<testsuites name=\"kernels\" "
++            << "tests=\"" << results.size() << "\" "
++            << "failures=\"" << nfails << "\" id=\"1\">" << std::endl;
+     // Results are in a vector by kernel. Each element has a result
+     // map containing time and arch name with test result
+-    for(unsigned int ii=0; ii < results.size(); ++ii) {
++    for (unsigned int ii = 0; ii < results.size(); ++ii) {
+         volk_test_results_t result = results[ii];
+         qa_file << "  <testsuite name=\"" << result.name << "\">" << std::endl;
+         std::map<std::string, volk_test_time_t>::iterator kernel_time_pair;
+-        for(kernel_time_pair = result.results.begin(); kernel_time_pair != result.results.end(); ++kernel_time_pair) {
++        for (kernel_time_pair = result.results.begin();
++             kernel_time_pair != result.results.end();
++             ++kernel_time_pair) {
+             volk_test_time_t test_time = kernel_time_pair->second;
+-            qa_file << "    <testcase name=\"" << test_time.name << "\" " <<
+-                "classname=\"" << result.name << "\" " <<
+-                "time=\"" << test_time.time << "\">" << std::endl;
+-            if(!test_time.pass)
+-                qa_file << "      <failure " <<
+-                    "message=\"fail on arch " <<  test_time.name << "\">" <<
+-                    "</failure>" << std::endl;
++            qa_file << "    <testcase name=\"" << test_time.name << "\" "
++                    << "classname=\"" << result.name << "\" "
++                    << "time=\"" << test_time.time << "\">" << std::endl;
++            if (!test_time.pass)
++                qa_file << "      <failure "
++                        << "message=\"fail on arch " << test_time.name << "\">"
++                        << "</failure>" << std::endl;
+             qa_file << "    </testcase>" << std::endl;
+         }
+         qa_file << "  </testsuite>" << std::endl;
+@@ -146,5 +155,4 @@ void print_qa_xml(std::vector<volk_test_results_t> results, unsigned int nfails)
+     qa_file << "</testsuites>" << std::endl;
+     qa_file.close();
+-
+ }
+diff --git a/lib/volk_malloc.c b/lib/volk_malloc.c
+index df36240..b3779e1 100644
+--- a/lib/volk_malloc.c
++++ b/lib/volk_malloc.c
+@@ -31,7 +31,8 @@
+  * see: https://en.cppreference.com/w/c/memory/aligned_alloc
+  *
+  * MSVC is broken
+- * see: https://docs.microsoft.com/en-us/cpp/overview/visual-cpp-language-conformance?view=vs-2019
++ * see:
++ * https://docs.microsoft.com/en-us/cpp/overview/visual-cpp-language-conformance?view=vs-2019
+  * This section:
+  * C11 The Universal CRT implemented the parts of the
+  * C11 Standard Library that are required by C++17,
+@@ -46,39 +47,43 @@
+  * We must work around this problem because MSVC is non-compliant!
+  */
+-void *volk_malloc(size_t size, size_t alignment)
++
++void* volk_malloc(size_t size, size_t alignment)
+ {
+ #if HAVE_POSIX_MEMALIGN
+-  // quoting posix_memalign() man page:
+-  // "alignment must be a power of two and a multiple of sizeof(void *)"
+-  // volk_get_alignment() could return 1 for some machines (e.g. generic_orc)
+-  if (alignment == 1){
+-    return malloc(size);
+-  }
+-  void *ptr;
+-  int err = posix_memalign(&ptr, alignment, size);
+-  if(err != 0) {
+-    ptr = NULL;
+-    fprintf(stderr,
+-            "VOLK: Error allocating memory "
+-            "(posix_memalign: error %d: %s)\n", err, strerror(err));
+-  }
++    // quoting posix_memalign() man page:
++    // "alignment must be a power of two and a multiple of sizeof(void *)"
++    // volk_get_alignment() could return 1 for some machines (e.g. generic_orc)
++    if (alignment == 1) {
++        return malloc(size);
++    }
++    void* ptr;
++    int err = posix_memalign(&ptr, alignment, size);
++    if (err != 0) {
++        ptr = NULL;
++        fprintf(stderr,
++                "VOLK: Error allocating memory "
++                "(posix_memalign: error %d: %s)\n",
++                err,
++                strerror(err));
++    }
+ #elif defined(_MSC_VER)
+-  void *ptr = _aligned_malloc(size, alignment);
++    void* ptr = _aligned_malloc(size, alignment);
+ #else
+-  void *ptr = aligned_alloc(alignment, size);
++    void* ptr = aligned_alloc(alignment, size);
+ #endif
+-  if(ptr == NULL) {
+-    fprintf(stderr, "VOLK: Error allocating memory (aligned_alloc/_aligned_malloc)\n");
+-  }
+-  return ptr;
++    if (ptr == NULL) {
++        fprintf(stderr,
++                "VOLK: Error allocating memory (aligned_alloc/_aligned_malloc)\n");
++    }
++    return ptr;
+ }
+-void volk_free(void *ptr)
++void volk_free(void* ptr)
+ {
+ #if defined(_MSC_VER)
+-  _aligned_free(ptr);
++    _aligned_free(ptr);
+ #else
+-  free(ptr);
++    free(ptr);
+ #endif
+ }
+diff --git a/lib/volk_prefs.c b/lib/volk_prefs.c
+index 0b5fe8e..8934bf7 100644
+--- a/lib/volk_prefs.c
++++ b/lib/volk_prefs.c
+@@ -1,6 +1,6 @@
++#include <stdbool.h>
+ #include <stdio.h>
+ #include <stdlib.h>
+-#include <stdbool.h>
+ #include <string.h>
+ #if defined(_MSC_VER)
+ #include <io.h>
+@@ -11,82 +11,84 @@
+ #endif
+ #include <volk/volk_prefs.h>
+-void volk_get_config_path(char *path, bool read)
++void volk_get_config_path(char* path, bool read)
+ {
+-    if (!path) return;
+-    const char *suffix = "/.volk/volk_config";
+-    const char *suffix2 = "/volk/volk_config"; //non-hidden
+-    char *home = NULL;
++    if (!path)
++        return;
++    const char* suffix = "/.volk/volk_config";
++    const char* suffix2 = "/volk/volk_config"; // non-hidden
++    char* home = NULL;
+-    //allows config redirection via env variable
++    // allows config redirection via env variable
+     home = getenv("VOLK_CONFIGPATH");
+-    if(home!=NULL){
+-        strncpy(path,home,512);
+-        strcat(path,suffix2);
+-        if (!read || access(path, F_OK) != -1){
++    if (home != NULL) {
++        strncpy(path, home, 512);
++        strcat(path, suffix2);
++        if (!read || access(path, F_OK) != -1) {
+             return;
+         }
+     }
+-    //check for user-local config file
++    // check for user-local config file
+     home = getenv("HOME");
+-    if (home != NULL){
++    if (home != NULL) {
+         strncpy(path, home, 512);
+         strcat(path, suffix);
+-        if (!read || (access(path, F_OK) != -1)){
++        if (!read || (access(path, F_OK) != -1)) {
+             return;
+         }
+     }
+-    //check for config file in APPDATA (Windows)
++    // check for config file in APPDATA (Windows)
+     home = getenv("APPDATA");
+-    if (home != NULL){
++    if (home != NULL) {
+         strncpy(path, home, 512);
+         strcat(path, suffix);
+-        if (!read || (access(path, F_OK) != -1)){
++        if (!read || (access(path, F_OK) != -1)) {
+             return;
+         }
+     }
+-    //check for system-wide config file
+-    if (access("/etc/volk/volk_config", F_OK) != -1){
++    // check for system-wide config file
++    if (access("/etc/volk/volk_config", F_OK) != -1) {
+         strncpy(path, "/etc", 512);
+         strcat(path, suffix2);
+-        if (!read || (access(path, F_OK) != -1)){
++        if (!read || (access(path, F_OK) != -1)) {
+             return;
+         }
+     }
+-    //If still no path was found set path[0] to '0' and fall through
++    // If still no path was found set path[0] to '0' and fall through
+     path[0] = 0;
+     return;
+ }
+-size_t volk_load_preferences(volk_arch_pref_t **prefs_res)
++size_t volk_load_preferences(volk_arch_pref_t** prefs_res)
+ {
+-    FILE *config_file;
++    FILE* config_file;
+     char path[512], line[512];
+     size_t n_arch_prefs = 0;
+-    volk_arch_pref_t *prefs = NULL;
++    volk_arch_pref_t* prefs = NULL;
+-    //get the config path
++    // get the config path
+     volk_get_config_path(path, true);
+-    if (!path[0]) return n_arch_prefs; //no prefs found
++    if (!path[0])
++        return n_arch_prefs; // no prefs found
+     config_file = fopen(path, "r");
+-    if(!config_file) return n_arch_prefs; //no prefs found
++    if (!config_file)
++        return n_arch_prefs; // no prefs found
+-    //reset the file pointer and write the prefs into volk_arch_prefs
+-    while(fgets(line, sizeof(line), config_file) != NULL)
+-    {
+-        void *new_prefs = realloc(prefs, (n_arch_prefs + 1) * sizeof(*prefs));
++    // reset the file pointer and write the prefs into volk_arch_prefs
++    while (fgets(line, sizeof(line), config_file) != NULL) {
++        void* new_prefs = realloc(prefs, (n_arch_prefs + 1) * sizeof(*prefs));
+         if (!new_prefs) {
+-            printf ("volk_load_preferences: bad malloc\n");
++            printf("volk_load_preferences: bad malloc\n");
+             break;
+         }
+-        prefs = (volk_arch_pref_t *) new_prefs;
+-        volk_arch_pref_t *p = prefs + n_arch_prefs;
+-        if(sscanf(line, "%s %s %s", p->name, p->impl_a, p->impl_u) == 3 && !strncmp(p->name, "volk_", 5))
+-        {
++        prefs = (volk_arch_pref_t*)new_prefs;
++        volk_arch_pref_t* p = prefs + n_arch_prefs;
++        if (sscanf(line, "%s %s %s", p->name, p->impl_a, p->impl_u) == 3 &&
++            !strncmp(p->name, "volk_", 5)) {
+             n_arch_prefs++;
+         }
+     }
+diff --git a/lib/volk_rank_archs.c b/lib/volk_rank_archs.c
+index 346619e..7cf3fd7 100644
+--- a/lib/volk_rank_archs.c
++++ b/lib/volk_rank_archs.c
+@@ -24,84 +24,83 @@
+ #include <stdlib.h>
+ #include <string.h>
+-#include <volk_rank_archs.h>
+ #include <volk/volk_prefs.h>
++#include <volk_rank_archs.h>
+-int volk_get_index(
+-    const char *impl_names[], //list of implementations by name
+-    const size_t n_impls,     //number of implementations available
+-    const char *impl_name     //the implementation name to find
+-){
++int volk_get_index(const char* impl_names[], // list of implementations by name
++                   const size_t n_impls,     // number of implementations available
++                   const char* impl_name     // the implementation name to find
++)
++{
+     unsigned int i;
+     for (i = 0; i < n_impls; i++) {
+-        if(!strncmp(impl_names[i], impl_name, 20)) {
++        if (!strncmp(impl_names[i], impl_name, 20)) {
+             return i;
+         }
+     }
+-    //TODO return -1;
+-    //something terrible should happen here
++    // TODO return -1;
++    // something terrible should happen here
+     fprintf(stderr, "Volk warning: no arch found, returning generic impl\n");
+-    return volk_get_index(impl_names, n_impls, "generic"); //but we'll fake it for now
++    return volk_get_index(impl_names, n_impls, "generic"); // but we'll fake it for now
+ }
+-int volk_rank_archs(
+-    const char *kern_name,    //name of the kernel to rank
+-    const char *impl_names[], //list of implementations by name
+-    const int* impl_deps,     //requirement mask per implementation
+-    const bool* alignment,    //alignment status of each implementation
+-    size_t n_impls,            //number of implementations available
+-    const bool align          //if false, filter aligned implementations
++int volk_rank_archs(const char* kern_name,    // name of the kernel to rank
++                    const char* impl_names[], // list of implementations by name
++                    const int* impl_deps,     // requirement mask per implementation
++                    const bool* alignment,    // alignment status of each implementation
++                    size_t n_impls,           // number of implementations available
++                    const bool align          // if false, filter aligned implementations
+ )
+ {
+     size_t i;
+-    static volk_arch_pref_t *volk_arch_prefs;
++    static volk_arch_pref_t* volk_arch_prefs;
+     static size_t n_arch_prefs = 0;
+     static int prefs_loaded = 0;
+-    if(!prefs_loaded) {
++    if (!prefs_loaded) {
+         n_arch_prefs = volk_load_preferences(&volk_arch_prefs);
+         prefs_loaded = 1;
+     }
+     // If we've defined VOLK_GENERIC to be anything, always return the
+     // 'generic' kernel. Used in GR's QA code.
+-    char *gen_env = getenv("VOLK_GENERIC");
+-    if(gen_env) {
+-      return volk_get_index(impl_names, n_impls, "generic");
++    char* gen_env = getenv("VOLK_GENERIC");
++    if (gen_env) {
++        return volk_get_index(impl_names, n_impls, "generic");
+     }
+-    //now look for the function name in the prefs list
+-    for(i = 0; i < n_arch_prefs; i++)
+-    {
+-        if(!strncmp(kern_name, volk_arch_prefs[i].name, sizeof(volk_arch_prefs[i].name))) //found it
++    // now look for the function name in the prefs list
++    for (i = 0; i < n_arch_prefs; i++) {
++        if (!strncmp(kern_name,
++                     volk_arch_prefs[i].name,
++                     sizeof(volk_arch_prefs[i].name))) // found it
+         {
+-            const char *impl_name = align? volk_arch_prefs[i].impl_a : volk_arch_prefs[i].impl_u;
++            const char* impl_name =
++                align ? volk_arch_prefs[i].impl_a : volk_arch_prefs[i].impl_u;
+             return volk_get_index(impl_names, n_impls, impl_name);
+         }
+     }
+-    //return the best index with the largest deps
++    // return the best index with the largest deps
+     size_t best_index_a = 0;
+     size_t best_index_u = 0;
+     int best_value_a = -1;
+     int best_value_u = -1;
+-    for(i = 0; i < n_impls; i++)
+-    {
++    for (i = 0; i < n_impls; i++) {
+         const signed val = impl_deps[i];
+-        if (alignment[i] && val > best_value_a)
+-        {
++        if (alignment[i] && val > best_value_a) {
+             best_index_a = i;
+             best_value_a = val;
+         }
+-        if (!alignment[i] && val > best_value_u)
+-        {
++        if (!alignment[i] && val > best_value_u) {
+             best_index_u = i;
+             best_value_u = val;
+         }
+     }
+-    //when align and we found a best aligned, use it
+-    if (align && best_value_a != -1) return best_index_a;
++    // when align and we found a best aligned, use it
++    if (align && best_value_a != -1)
++        return best_index_a;
+-    //otherwise return the best unaligned
++    // otherwise return the best unaligned
+     return best_index_u;
+ }
+diff --git a/lib/volk_rank_archs.h b/lib/volk_rank_archs.h
+index b3bf8ff..9434778 100644
+--- a/lib/volk_rank_archs.h
++++ b/lib/volk_rank_archs.h
+@@ -22,26 +22,24 @@
+ #ifndef INCLUDED_VOLK_RANK_ARCHS_H
+ #define INCLUDED_VOLK_RANK_ARCHS_H
+-#include <stdlib.h>
+ #include <stdbool.h>
++#include <stdlib.h>
+ #ifdef __cplusplus
+ extern "C" {
+ #endif
+-int volk_get_index(
+-    const char *impl_names[], //list of implementations by name
+-    const size_t n_impls,     //number of implementations available
+-    const char *impl_name     //the implementation name to find
++int volk_get_index(const char* impl_names[], // list of implementations by name
++                   const size_t n_impls,     // number of implementations available
++                   const char* impl_name     // the implementation name to find
+ );
+-int volk_rank_archs(
+-    const char *kern_name,    //name of the kernel to rank
+-    const char *impl_names[], //list of implementations by name
+-    const int* impl_deps,     //requirement mask per implementation
+-    const bool* alignment,    //alignment status of each implementation
+-    size_t n_impls,            //number of implementations available
+-    const bool align          //if false, filter aligned implementations
++int volk_rank_archs(const char* kern_name,    // name of the kernel to rank
++                    const char* impl_names[], // list of implementations by name
++                    const int* impl_deps,     // requirement mask per implementation
++                    const bool* alignment,    // alignment status of each implementation
++                    size_t n_impls,           // number of implementations available
++                    const bool align          // if false, filter aligned implementations
+ );
+ #ifdef __cplusplus
+-- 
+2.20.1
+
diff --git a/patches/0004-clang-format-Update-PR-with-GitHub-Action.patch b/patches/0004-clang-format-Update-PR-with-GitHub-Action.patch
new file mode 100644 (file)
index 0000000..6db7e6c
--- /dev/null
@@ -0,0 +1,53 @@
+From d1a4cc1f775b73c8a14ec2a27513f1d1cc977513 Mon Sep 17 00:00:00 2001
+From: Johannes Demel <demel@uni-bremen.de>
+Date: Tue, 17 Mar 2020 21:53:08 +0100
+Subject: [PATCH 4/7] clang-format: Update PR with GitHub Action
+
+---
+ .github/workflows/check-pr-formatting.yml | 19 +++++++++++++++++++
+ include/volk/volk_common.h                |  2 +-
+ 2 files changed, 20 insertions(+), 1 deletion(-)
+ create mode 100644 .github/workflows/check-pr-formatting.yml
+
+diff --git a/.github/workflows/check-pr-formatting.yml b/.github/workflows/check-pr-formatting.yml
+new file mode 100644
+index 0000000..b1d2d83
+--- /dev/null
++++ b/.github/workflows/check-pr-formatting.yml
+@@ -0,0 +1,19 @@
++name: Check PR Formatting
++
++on:
++  push:
++  pull_request:
++    paths-ignore:
++      - 'tmpl/'
++
++jobs:
++  build:
++    runs-on: ubuntu-latest
++
++    steps:
++    - uses: actions/checkout@v2
++    - uses: gnuradio/clang-format-lint-action@v0.5-4
++      with:
++        source: '.'
++        exclude: './volk'
++        extensions: 'c,cc,cpp,cxx,h,hh'
+\ No newline at end of file
+diff --git a/include/volk/volk_common.h b/include/volk/volk_common.h
+index 8167d23..7e78358 100644
+--- a/include/volk/volk_common.h
++++ b/include/volk/volk_common.h
+@@ -69,7 +69,7 @@
+ ////////////////////////////////////////////////////////////////////////
+ #if defined(_MSC_VER)
+ #pragma warning(disable : 4244) //'conversion' conversion from 'type1' to 'type2',
+-                                //possible loss of data
++                                // possible loss of data
+ #pragma warning(disable : 4305) //'identifier' : truncation from 'type1' to 'type2'
+ #endif
+-- 
+2.20.1
+
diff --git a/patches/0005-clang-format-Rebase-onto-current-master.patch b/patches/0005-clang-format-Rebase-onto-current-master.patch
new file mode 100644 (file)
index 0000000..b83819a
--- /dev/null
@@ -0,0 +1,409 @@
+From 1ed5fa23ad4b298bd2685d2891abfabf14b601e0 Mon Sep 17 00:00:00 2001
+From: Johannes Demel <demel@uni-bremen.de>
+Date: Tue, 17 Mar 2020 22:07:07 +0100
+Subject: [PATCH 5/7] clang-format: Rebase onto current master
+
+This commit applies clang format to the latest master branch.
+---
+ .github/workflows/check-pr-formatting.yml |   4 +-
+ include/volk/volk_common.h                |  18 +-
+ kernels/volk/volk_32f_exp_32f.h           | 302 +++++++++++-----------
+ 3 files changed, 163 insertions(+), 161 deletions(-)
+
+diff --git a/.github/workflows/check-pr-formatting.yml b/.github/workflows/check-pr-formatting.yml
+index b1d2d83..9c7a286 100644
+--- a/.github/workflows/check-pr-formatting.yml
++++ b/.github/workflows/check-pr-formatting.yml
+@@ -2,6 +2,8 @@ name: Check PR Formatting
+ on:
+   push:
++    paths-ignore:
++      - 'tmpl/'
+   pull_request:
+     paths-ignore:
+       - 'tmpl/'
+@@ -15,5 +17,5 @@ jobs:
+     - uses: gnuradio/clang-format-lint-action@v0.5-4
+       with:
+         source: '.'
+-        exclude: './volk'
++        exclude: './tmpl'
+         extensions: 'c,cc,cpp,cxx,h,hh'
+\ No newline at end of file
+diff --git a/include/volk/volk_common.h b/include/volk/volk_common.h
+index 7e78358..4e14982 100644
+--- a/include/volk/volk_common.h
++++ b/include/volk/volk_common.h
+@@ -5,15 +5,15 @@
+ // Cross-platform attribute macros
+ ////////////////////////////////////////////////////////////////////////
+ #if _MSC_VER
+-#  define __VOLK_ATTR_ALIGNED(x) __declspec(align(x))
+-#  define __VOLK_ATTR_UNUSED
+-#  define __VOLK_ATTR_INLINE     __forceinline
+-#  define __VOLK_ATTR_DEPRECATED __declspec(deprecated)
+-#  define __VOLK_ATTR_EXPORT     __declspec(dllexport)
+-#  define __VOLK_ATTR_IMPORT     __declspec(dllimport)
+-#  define __VOLK_PREFETCH(addr)
+-#  define __VOLK_ASM __asm
+-#  define __VOLK_VOLATILE
++#define __VOLK_ATTR_ALIGNED(x) __declspec(align(x))
++#define __VOLK_ATTR_UNUSED
++#define __VOLK_ATTR_INLINE __forceinline
++#define __VOLK_ATTR_DEPRECATED __declspec(deprecated)
++#define __VOLK_ATTR_EXPORT __declspec(dllexport)
++#define __VOLK_ATTR_IMPORT __declspec(dllimport)
++#define __VOLK_PREFETCH(addr)
++#define __VOLK_ASM __asm
++#define __VOLK_VOLATILE
+ #elif defined(__clang__)
+ // AppleClang also defines __GNUC__, so do this check first.  These
+ // will probably be the same as for __GNUC__, but let's keep them
+diff --git a/kernels/volk/volk_32f_exp_32f.h b/kernels/volk/volk_32f_exp_32f.h
+index 26fdf02..da4ada7 100644
+--- a/kernels/volk/volk_32f_exp_32f.h
++++ b/kernels/volk/volk_32f_exp_32f.h
+@@ -92,9 +92,9 @@
+  * \endcode
+  */
+-#include <stdio.h>
+-#include <math.h>
+ #include <inttypes.h>
++#include <math.h>
++#include <stdio.h>
+ #ifndef INCLUDED_volk_32f_exp_32f_a_H
+ #define INCLUDED_volk_32f_exp_32f_a_H
+@@ -105,74 +105,74 @@
+ static inline void
+ volk_32f_exp_32f_a_sse2(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int quarterPoints = num_points / 4;
+-
+-  // Declare variables and constants
+-  __m128 aVal, bVal, tmp, fx, mask, pow2n, z, y;
+-  __m128 one, exp_hi, exp_lo, log2EF, half, exp_C1, exp_C2;
+-  __m128 exp_p0, exp_p1, exp_p2, exp_p3, exp_p4, exp_p5;
+-  __m128i emm0, pi32_0x7f;
+-
+-  one = _mm_set1_ps(1.0);
+-  exp_hi = _mm_set1_ps(88.3762626647949);
+-  exp_lo = _mm_set1_ps(-88.3762626647949);
+-  log2EF = _mm_set1_ps(1.44269504088896341);
+-  half = _mm_set1_ps(0.5);
+-  exp_C1 = _mm_set1_ps(0.693359375);
+-  exp_C2 = _mm_set1_ps(-2.12194440e-4);
+-  pi32_0x7f = _mm_set1_epi32(0x7f);
+-
+-  exp_p0 = _mm_set1_ps(1.9875691500e-4);
+-  exp_p1 = _mm_set1_ps(1.3981999507e-3);
+-  exp_p2 = _mm_set1_ps(8.3334519073e-3);
+-  exp_p3 = _mm_set1_ps(4.1665795894e-2);
+-  exp_p4 = _mm_set1_ps(1.6666665459e-1);
+-  exp_p5 = _mm_set1_ps(5.0000001201e-1);
+-
+-  for(;number < quarterPoints; number++) {
+-    aVal = _mm_load_ps(aPtr);
+-    tmp = _mm_setzero_ps();
+-
+-    aVal = _mm_max_ps(_mm_min_ps(aVal, exp_hi), exp_lo);
+-
+-    /* express exp(x) as exp(g + n*log(2)) */
+-    fx = _mm_add_ps(_mm_mul_ps(aVal, log2EF), half);
+-
+-    emm0 = _mm_cvttps_epi32(fx);
+-    tmp = _mm_cvtepi32_ps(emm0);
+-
+-    mask = _mm_and_ps(_mm_cmpgt_ps(tmp, fx), one);
+-    fx = _mm_sub_ps(tmp, mask);
+-
+-    tmp = _mm_mul_ps(fx, exp_C1);
+-    z = _mm_mul_ps(fx, exp_C2);
+-    aVal = _mm_sub_ps(_mm_sub_ps(aVal, tmp), z);
+-    z = _mm_mul_ps(aVal, aVal);
+-
+-    y = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(exp_p0, aVal), exp_p1), aVal);
+-    y = _mm_add_ps(_mm_mul_ps(_mm_add_ps(y, exp_p2), aVal), exp_p3);
+-    y = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(y, aVal), exp_p4), aVal);
+-    y = _mm_add_ps(_mm_mul_ps(_mm_add_ps(y, exp_p5), z), aVal);
+-    y = _mm_add_ps(y, one);
+-
+-    emm0 = _mm_slli_epi32(_mm_add_epi32(_mm_cvttps_epi32(fx), pi32_0x7f), 23);
+-
+-    pow2n = _mm_castsi128_ps(emm0);
+-    bVal = _mm_mul_ps(y, pow2n);
+-
+-    _mm_store_ps(bPtr, bVal);
+-    aPtr += 4;
+-    bPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++) {
+-    *bPtr++ = expf(*aPtr++);
+-  }
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int quarterPoints = num_points / 4;
++
++    // Declare variables and constants
++    __m128 aVal, bVal, tmp, fx, mask, pow2n, z, y;
++    __m128 one, exp_hi, exp_lo, log2EF, half, exp_C1, exp_C2;
++    __m128 exp_p0, exp_p1, exp_p2, exp_p3, exp_p4, exp_p5;
++    __m128i emm0, pi32_0x7f;
++
++    one = _mm_set1_ps(1.0);
++    exp_hi = _mm_set1_ps(88.3762626647949);
++    exp_lo = _mm_set1_ps(-88.3762626647949);
++    log2EF = _mm_set1_ps(1.44269504088896341);
++    half = _mm_set1_ps(0.5);
++    exp_C1 = _mm_set1_ps(0.693359375);
++    exp_C2 = _mm_set1_ps(-2.12194440e-4);
++    pi32_0x7f = _mm_set1_epi32(0x7f);
++
++    exp_p0 = _mm_set1_ps(1.9875691500e-4);
++    exp_p1 = _mm_set1_ps(1.3981999507e-3);
++    exp_p2 = _mm_set1_ps(8.3334519073e-3);
++    exp_p3 = _mm_set1_ps(4.1665795894e-2);
++    exp_p4 = _mm_set1_ps(1.6666665459e-1);
++    exp_p5 = _mm_set1_ps(5.0000001201e-1);
++
++    for (; number < quarterPoints; number++) {
++        aVal = _mm_load_ps(aPtr);
++        tmp = _mm_setzero_ps();
++
++        aVal = _mm_max_ps(_mm_min_ps(aVal, exp_hi), exp_lo);
++
++        /* express exp(x) as exp(g + n*log(2)) */
++        fx = _mm_add_ps(_mm_mul_ps(aVal, log2EF), half);
++
++        emm0 = _mm_cvttps_epi32(fx);
++        tmp = _mm_cvtepi32_ps(emm0);
++
++        mask = _mm_and_ps(_mm_cmpgt_ps(tmp, fx), one);
++        fx = _mm_sub_ps(tmp, mask);
++
++        tmp = _mm_mul_ps(fx, exp_C1);
++        z = _mm_mul_ps(fx, exp_C2);
++        aVal = _mm_sub_ps(_mm_sub_ps(aVal, tmp), z);
++        z = _mm_mul_ps(aVal, aVal);
++
++        y = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(exp_p0, aVal), exp_p1), aVal);
++        y = _mm_add_ps(_mm_mul_ps(_mm_add_ps(y, exp_p2), aVal), exp_p3);
++        y = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(y, aVal), exp_p4), aVal);
++        y = _mm_add_ps(_mm_mul_ps(_mm_add_ps(y, exp_p5), z), aVal);
++        y = _mm_add_ps(y, one);
++
++        emm0 = _mm_slli_epi32(_mm_add_epi32(_mm_cvttps_epi32(fx), pi32_0x7f), 23);
++
++        pow2n = _mm_castsi128_ps(emm0);
++        bVal = _mm_mul_ps(y, pow2n);
++
++        _mm_store_ps(bPtr, bVal);
++        aPtr += 4;
++        bPtr += 4;
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *bPtr++ = expf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_SSE2 for aligned */
+@@ -183,13 +183,13 @@ volk_32f_exp_32f_a_sse2(float* bVector, const float* aVector, unsigned int num_p
+ static inline void
+ volk_32f_exp_32f_a_generic(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-  unsigned int number = 0;
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++    unsigned int number = 0;
+-  for(number = 0; number < num_points; number++) {
+-    *bPtr++ = expf(*aPtr++);
+-  }
++    for (number = 0; number < num_points; number++) {
++        *bPtr++ = expf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+@@ -205,75 +205,75 @@ volk_32f_exp_32f_a_generic(float* bVector, const float* aVector, unsigned int nu
+ static inline void
+ volk_32f_exp_32f_u_sse2(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-
+-  unsigned int number = 0;
+-  unsigned int quarterPoints = num_points / 4;
+-
+-  // Declare variables and constants
+-  __m128 aVal, bVal, tmp, fx, mask, pow2n, z, y;
+-  __m128 one, exp_hi, exp_lo, log2EF, half, exp_C1, exp_C2;
+-  __m128 exp_p0, exp_p1, exp_p2, exp_p3, exp_p4, exp_p5;
+-  __m128i emm0, pi32_0x7f;
+-
+-  one = _mm_set1_ps(1.0);
+-  exp_hi = _mm_set1_ps(88.3762626647949);
+-  exp_lo = _mm_set1_ps(-88.3762626647949);
+-  log2EF = _mm_set1_ps(1.44269504088896341);
+-  half = _mm_set1_ps(0.5);
+-  exp_C1 = _mm_set1_ps(0.693359375);
+-  exp_C2 = _mm_set1_ps(-2.12194440e-4);
+-  pi32_0x7f = _mm_set1_epi32(0x7f);
+-
+-  exp_p0 = _mm_set1_ps(1.9875691500e-4);
+-  exp_p1 = _mm_set1_ps(1.3981999507e-3);
+-  exp_p2 = _mm_set1_ps(8.3334519073e-3);
+-  exp_p3 = _mm_set1_ps(4.1665795894e-2);
+-  exp_p4 = _mm_set1_ps(1.6666665459e-1);
+-  exp_p5 = _mm_set1_ps(5.0000001201e-1);
+-
+-
+-  for(;number < quarterPoints; number++) {
+-    aVal = _mm_loadu_ps(aPtr);
+-    tmp = _mm_setzero_ps();
+-
+-    aVal = _mm_max_ps(_mm_min_ps(aVal, exp_hi), exp_lo);
+-
+-    /* express exp(x) as exp(g + n*log(2)) */
+-    fx = _mm_add_ps(_mm_mul_ps(aVal, log2EF), half);
+-
+-    emm0 = _mm_cvttps_epi32(fx);
+-    tmp = _mm_cvtepi32_ps(emm0);
+-
+-    mask = _mm_and_ps(_mm_cmpgt_ps(tmp, fx), one);
+-    fx = _mm_sub_ps(tmp, mask);
+-
+-    tmp = _mm_mul_ps(fx, exp_C1);
+-    z = _mm_mul_ps(fx, exp_C2);
+-    aVal = _mm_sub_ps(_mm_sub_ps(aVal, tmp), z);
+-    z = _mm_mul_ps(aVal, aVal);
+-
+-    y = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(exp_p0, aVal), exp_p1), aVal);
+-    y = _mm_add_ps(_mm_mul_ps(_mm_add_ps(y, exp_p2), aVal), exp_p3);
+-    y = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(y, aVal), exp_p4), aVal);
+-    y = _mm_add_ps(_mm_mul_ps(_mm_add_ps(y, exp_p5), z), aVal);
+-    y = _mm_add_ps(y, one);
+-
+-    emm0 = _mm_slli_epi32(_mm_add_epi32(_mm_cvttps_epi32(fx), pi32_0x7f), 23);
+-
+-    pow2n = _mm_castsi128_ps(emm0);
+-    bVal = _mm_mul_ps(y, pow2n);
+-
+-    _mm_storeu_ps(bPtr, bVal);
+-    aPtr += 4;
+-    bPtr += 4;
+-  }
+-
+-  number = quarterPoints * 4;
+-  for(;number < num_points; number++){
+-    *bPtr++ = expf(*aPtr++);
+-  }
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++
++    unsigned int number = 0;
++    unsigned int quarterPoints = num_points / 4;
++
++    // Declare variables and constants
++    __m128 aVal, bVal, tmp, fx, mask, pow2n, z, y;
++    __m128 one, exp_hi, exp_lo, log2EF, half, exp_C1, exp_C2;
++    __m128 exp_p0, exp_p1, exp_p2, exp_p3, exp_p4, exp_p5;
++    __m128i emm0, pi32_0x7f;
++
++    one = _mm_set1_ps(1.0);
++    exp_hi = _mm_set1_ps(88.3762626647949);
++    exp_lo = _mm_set1_ps(-88.3762626647949);
++    log2EF = _mm_set1_ps(1.44269504088896341);
++    half = _mm_set1_ps(0.5);
++    exp_C1 = _mm_set1_ps(0.693359375);
++    exp_C2 = _mm_set1_ps(-2.12194440e-4);
++    pi32_0x7f = _mm_set1_epi32(0x7f);
++
++    exp_p0 = _mm_set1_ps(1.9875691500e-4);
++    exp_p1 = _mm_set1_ps(1.3981999507e-3);
++    exp_p2 = _mm_set1_ps(8.3334519073e-3);
++    exp_p3 = _mm_set1_ps(4.1665795894e-2);
++    exp_p4 = _mm_set1_ps(1.6666665459e-1);
++    exp_p5 = _mm_set1_ps(5.0000001201e-1);
++
++
++    for (; number < quarterPoints; number++) {
++        aVal = _mm_loadu_ps(aPtr);
++        tmp = _mm_setzero_ps();
++
++        aVal = _mm_max_ps(_mm_min_ps(aVal, exp_hi), exp_lo);
++
++        /* express exp(x) as exp(g + n*log(2)) */
++        fx = _mm_add_ps(_mm_mul_ps(aVal, log2EF), half);
++
++        emm0 = _mm_cvttps_epi32(fx);
++        tmp = _mm_cvtepi32_ps(emm0);
++
++        mask = _mm_and_ps(_mm_cmpgt_ps(tmp, fx), one);
++        fx = _mm_sub_ps(tmp, mask);
++
++        tmp = _mm_mul_ps(fx, exp_C1);
++        z = _mm_mul_ps(fx, exp_C2);
++        aVal = _mm_sub_ps(_mm_sub_ps(aVal, tmp), z);
++        z = _mm_mul_ps(aVal, aVal);
++
++        y = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(exp_p0, aVal), exp_p1), aVal);
++        y = _mm_add_ps(_mm_mul_ps(_mm_add_ps(y, exp_p2), aVal), exp_p3);
++        y = _mm_mul_ps(_mm_add_ps(_mm_mul_ps(y, aVal), exp_p4), aVal);
++        y = _mm_add_ps(_mm_mul_ps(_mm_add_ps(y, exp_p5), z), aVal);
++        y = _mm_add_ps(y, one);
++
++        emm0 = _mm_slli_epi32(_mm_add_epi32(_mm_cvttps_epi32(fx), pi32_0x7f), 23);
++
++        pow2n = _mm_castsi128_ps(emm0);
++        bVal = _mm_mul_ps(y, pow2n);
++
++        _mm_storeu_ps(bPtr, bVal);
++        aPtr += 4;
++        bPtr += 4;
++    }
++
++    number = quarterPoints * 4;
++    for (; number < num_points; number++) {
++        *bPtr++ = expf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_SSE2 for unaligned */
+@@ -284,13 +284,13 @@ volk_32f_exp_32f_u_sse2(float* bVector, const float* aVector, unsigned int num_p
+ static inline void
+ volk_32f_exp_32f_u_generic(float* bVector, const float* aVector, unsigned int num_points)
+ {
+-  float* bPtr = bVector;
+-  const float* aPtr = aVector;
+-  unsigned int number = 0;
++    float* bPtr = bVector;
++    const float* aPtr = aVector;
++    unsigned int number = 0;
+-  for(number = 0; number < num_points; number++){
+-    *bPtr++ = expf(*aPtr++);
+-  }
++    for (number = 0; number < num_points; number++) {
++        *bPtr++ = expf(*aPtr++);
++    }
+ }
+ #endif /* LV_HAVE_GENERIC */
+-- 
+2.20.1
+
diff --git a/patches/0006-Fix-the-broken-index-max-kernels.patch b/patches/0006-Fix-the-broken-index-max-kernels.patch
new file mode 100644 (file)
index 0000000..fdeed34
--- /dev/null
@@ -0,0 +1,882 @@
+From 67cbe6fe2aa73608a07c8c294313c42e8ff4d661 Mon Sep 17 00:00:00 2001
+From: Clayton Smith <argilo@gmail.com>
+Date: Sat, 21 Mar 2020 14:59:24 -0400
+Subject: [PATCH 6/7] Fix the broken index max kernels
+
+---
+ kernels/volk/volk_32fc_index_max_16u.h | 299 ++++++-------------------
+ kernels/volk/volk_32fc_index_max_32u.h | 258 ++++++---------------
+ 2 files changed, 128 insertions(+), 429 deletions(-)
+
+diff --git a/kernels/volk/volk_32fc_index_max_16u.h b/kernels/volk/volk_32fc_index_max_16u.h
+index b9f9cfd..16e76cd 100644
+--- a/kernels/volk/volk_32fc_index_max_16u.h
++++ b/kernels/volk/volk_32fc_index_max_16u.h
+@@ -1,6 +1,6 @@
+ /* -*- c++ -*- */
+ /*
+- * Copyright 2012, 2014 Free Software Foundation, Inc.
++ * Copyright 2012, 2014-2016, 2018-2020 Free Software Foundation, Inc.
+  *
+  * This file is part of GNU Radio
+  *
+@@ -36,8 +36,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32fc_index_max_16u(uint16_t* target, lv_32fc_t* src0, uint32_t num_points)
+- * \endcode
++ * void volk_32fc_index_max_16u(uint16_t* target, lv_32fc_t* src0, uint32_t
++ * num_points) \endcode
+  *
+  * \b Inputs
+  * \li src0: The complex input vector.
+@@ -89,33 +89,32 @@ static inline void
+ volk_32fc_index_max_16u_a_avx2(uint16_t* target, lv_32fc_t* src0, uint32_t num_points)
+ {
+     num_points = (num_points > USHRT_MAX) ? USHRT_MAX : num_points;
+-    // Branchless version, if we think it'll make a difference
+-    // num_points = USHRT_MAX ^ ((num_points ^ USHRT_MAX) & -(num_points < USHRT_MAX));
+-
+     const uint32_t num_bytes = num_points * 8;
+     union bit256 holderf;
+     union bit256 holderi;
+     float sq_dist = 0.0;
++    float max = 0.0;
++    uint16_t index = 0;
+     union bit256 xmm5, xmm4;
+     __m256 xmm1, xmm2, xmm3;
+-    __m256i xmm8, xmm11, xmm12, xmmfive, xmmfour, xmm9, holder0, holder1, xmm10;
++    __m256i xmm8, xmm11, xmm12, xmm9, xmm10;
+-    xmm5.int_vec = xmmfive = _mm256_setzero_si256();
+-    xmm4.int_vec = xmmfour = _mm256_setzero_si256();
+-    holderf.int_vec = holder0 = _mm256_setzero_si256();
+-    holderi.int_vec = holder1 = _mm256_setzero_si256();
++    xmm5.int_vec = _mm256_setzero_si256();
++    xmm4.int_vec = _mm256_setzero_si256();
++    holderf.int_vec = _mm256_setzero_si256();
++    holderi.int_vec = _mm256_setzero_si256();
+     int bound = num_bytes >> 6;
+     int i = 0;
+-    xmm8 = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0);
+-    xmm9 = _mm256_setzero_si256(); //=xmm8
++    xmm8 = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7);
++    xmm9 = _mm256_setzero_si256();
+     xmm10 = _mm256_set1_epi32(8);
+     xmm3 = _mm256_setzero_ps();
+-    __m256i idx = _mm256_set_epi32(7, 6, 3, 2, 5, 4, 1, 0);
++    __m256i idx = _mm256_setr_epi32(0, 1, 4, 5, 2, 3, 6, 7);
+     for (; i < bound; ++i) {
+         xmm1 = _mm256_load_ps((float*)src0);
+         xmm2 = _mm256_load_ps((float*)&src0[4]);
+@@ -140,105 +139,27 @@ volk_32fc_index_max_16u_a_avx2(uint16_t* target, lv_32fc_t* src0, uint32_t num_p
+         xmm8 = _mm256_add_epi32(xmm8, xmm10);
+     }
+-    xmm10 = _mm256_set1_epi32(4);
+-    if (num_bytes >> 5 & 1) {
+-        xmm1 = _mm256_load_ps((float*)src0);
+-
+-        src0 += 4;
+-
+-        xmm1 = _mm256_mul_ps(xmm1, xmm1);
+-        xmm1 = _mm256_hadd_ps(xmm1, xmm1);
+-        xmm1 = _mm256_permutevar8x32_ps(xmm1, idx);
+-
+-        xmm3 = _mm256_max_ps(xmm1, xmm3);
+-
+-        xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
+-        xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
+-
+-        xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
+-        xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
+-
+-        xmm9 = _mm256_add_epi32(xmm11, xmm12);
++    _mm256_store_ps((float*)&(holderf.f), xmm3);
++    _mm256_store_si256(&(holderi.int_vec), xmm9);
+-        xmm8 = _mm256_add_epi32(xmm8, xmm10);
++    for (i = 0; i < 8; i++) {
++        if (holderf.f[i] > max) {
++            index = holderi.i[i];
++            max = holderf.f[i];
++        }
+     }
+-    idx = _mm256_set_epi32(1, 0, 1, 0, 1, 0, 1, 0);
+-    xmm10 = _mm256_set1_epi32(2);
+-    if (num_bytes >> 4 & 1) {
+-        xmm2 = _mm256_load_ps((float*)src0);
+-
+-        xmm1 = _mm256_permutevar8x32_ps(bit256_p(&xmm8)->float_vec, idx);
+-        xmm8 = bit256_p(&xmm1)->int_vec;
+-
+-        xmm2 = _mm256_mul_ps(xmm2, xmm2);
+-
+-        src0 += 2;
+-
+-        xmm1 = _mm256_hadd_ps(xmm2, xmm2);
+-
+-        xmm3 = _mm256_max_ps(xmm1, xmm3);
+-
+-        xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
+-        xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
+-
+-        xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
+-        xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
+-
+-        xmm9 = _mm256_add_epi32(xmm11, xmm12);
++    for (i = bound * 8; i < num_points; i++, src0++) {
++        sq_dist =
++            lv_creal(src0[0]) * lv_creal(src0[0]) + lv_cimag(src0[0]) * lv_cimag(src0[0]);
+-        xmm8 = _mm256_add_epi32(xmm8, xmm10);
++        if (sq_dist > max) {
++            index = i;
++            max = sq_dist;
++        }
+     }
+-
+-    /*
+-    idx = _mm256_setzero_si256();
+-    for(i = 0; i < leftovers2; ++i) {
+-      //printf("%u, %u, %u, %u\n", ((uint32_t*)&xmm9)[0], ((uint32_t*)&xmm9)[1],
+-  ((uint32_t*)&xmm9)[2], ((uint32_t*)&xmm9)[3]);
+-
+-      sq_dist = lv_creal(src0[0]) * lv_creal(src0[0]) + lv_cimag(src0[0]) *
+-  lv_cimag(src0[0]);
+-
+-      //xmm = _mm_load1_ps(&sq_dist);//insert?
+-      xmm2 = _mm256_set1_ps(sq_dist);
+-      //xmm2 = _mm256_insertf128_ps(xmm2, xmm, 0);
+-
+-      xmm1 = xmm3;
+-
+-      xmm3 = _mm256_max_ps(xmm3, xmm2);//only lowest 32bit value
+-      xmm3 = _mm256_permutevar8x32_ps(xmm3, idx);
+-
+-      xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
+-      xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
+-
+-      xmm8 = _mm256_permutevar8x32_epi32(xmm8, idx);
+-
+-      xmm11 = _mm256_and_si256(xmm8, xmm4.int_vec);
+-      xmm12 = _mm256_and_si256(xmm9, xmm5.int_vec);
+-
+-      xmm9 = _mm256_add_epi32(xmm11, xmm12);
+-  }*/
+-
+-    _mm256_store_ps((float*)&(holderf.f), xmm3);
+-    _mm256_store_si256(&(holderi.int_vec), xmm9);
+-
+-    target[0] = holderi.i[0];
+-    sq_dist = holderf.f[0];
+-    target[0] = (holderf.f[1] > sq_dist) ? holderi.i[1] : target[0];
+-    sq_dist = (holderf.f[1] > sq_dist) ? holderf.f[1] : sq_dist;
+-    target[0] = (holderf.f[2] > sq_dist) ? holderi.i[2] : target[0];
+-    sq_dist = (holderf.f[2] > sq_dist) ? holderf.f[2] : sq_dist;
+-    target[0] = (holderf.f[3] > sq_dist) ? holderi.i[3] : target[0];
+-    sq_dist = (holderf.f[3] > sq_dist) ? holderf.f[3] : sq_dist;
+-    target[0] = (holderf.f[4] > sq_dist) ? holderi.i[4] : target[0];
+-    sq_dist = (holderf.f[4] > sq_dist) ? holderf.f[4] : sq_dist;
+-    target[0] = (holderf.f[5] > sq_dist) ? holderi.i[5] : target[0];
+-    sq_dist = (holderf.f[5] > sq_dist) ? holderf.f[5] : sq_dist;
+-    target[0] = (holderf.f[6] > sq_dist) ? holderi.i[6] : target[0];
+-    sq_dist = (holderf.f[6] > sq_dist) ? holderf.f[6] : sq_dist;
+-    target[0] = (holderf.f[7] > sq_dist) ? holderi.i[7] : target[0];
+-    sq_dist = (holderf.f[7] > sq_dist) ? holderf.f[7] : sq_dist;
++    target[0] = index;
+ }
+ #endif /*LV_HAVE_AVX2*/
+@@ -251,9 +172,6 @@ static inline void
+ volk_32fc_index_max_16u_a_sse3(uint16_t* target, lv_32fc_t* src0, uint32_t num_points)
+ {
+     num_points = (num_points > USHRT_MAX) ? USHRT_MAX : num_points;
+-    // Branchless version, if we think it'll make a difference
+-    // num_points = USHRT_MAX ^ ((num_points ^ USHRT_MAX) & -(num_points < USHRT_MAX));
+-
+     const uint32_t num_bytes = num_points * 8;
+     union bit128 holderf;
+@@ -262,22 +180,20 @@ volk_32fc_index_max_16u_a_sse3(uint16_t* target, lv_32fc_t* src0, uint32_t num_p
+     union bit128 xmm5, xmm4;
+     __m128 xmm1, xmm2, xmm3;
+-    __m128i xmm8, xmm11, xmm12, xmmfive, xmmfour, xmm9, holder0, holder1, xmm10;
++    __m128i xmm8, xmm11, xmm12, xmm9, xmm10;
+-    xmm5.int_vec = xmmfive = _mm_setzero_si128();
+-    xmm4.int_vec = xmmfour = _mm_setzero_si128();
+-    holderf.int_vec = holder0 = _mm_setzero_si128();
+-    holderi.int_vec = holder1 = _mm_setzero_si128();
++    xmm5.int_vec = _mm_setzero_si128();
++    xmm4.int_vec = _mm_setzero_si128();
++    holderf.int_vec = _mm_setzero_si128();
++    holderi.int_vec = _mm_setzero_si128();
+     int bound = num_bytes >> 5;
+     int i = 0;
+-    xmm8 = _mm_set_epi32(3, 2, 1, 0); // remember the crazy reverse order!
++    xmm8 = _mm_setr_epi32(0, 1, 2, 3);
+     xmm9 = _mm_setzero_si128();
+-    xmm10 = _mm_set_epi32(4, 4, 4, 4);
++    xmm10 = _mm_setr_epi32(4, 4, 4, 4);
+     xmm3 = _mm_setzero_ps();
+-    // printf("%f, %f, %f, %f\n", ((float*)&xmm10)[0], ((float*)&xmm10)[1],
+-    // ((float*)&xmm10)[2], ((float*)&xmm10)[3]);
+     for (; i < bound; ++i) {
+         xmm1 = _mm_load_ps((float*)src0);
+@@ -301,14 +217,8 @@ volk_32fc_index_max_16u_a_sse3(uint16_t* target, lv_32fc_t* src0, uint32_t num_p
+         xmm9 = _mm_add_epi32(xmm11, xmm12);
+         xmm8 = _mm_add_epi32(xmm8, xmm10);
+-
+-        // printf("%f, %f, %f, %f\n", ((float*)&xmm3)[0], ((float*)&xmm3)[1],
+-        // ((float*)&xmm3)[2], ((float*)&xmm3)[3]); printf("%u, %u, %u, %u\n",
+-        // ((uint32_t*)&xmm10)[0], ((uint32_t*)&xmm10)[1], ((uint32_t*)&xmm10)[2],
+-        // ((uint32_t*)&xmm10)[3]);
+     }
+-
+     if (num_bytes >> 4 & 1) {
+         xmm2 = _mm_load_ps((float*)src0);
+@@ -323,7 +233,7 @@ volk_32fc_index_max_16u_a_sse3(uint16_t* target, lv_32fc_t* src0, uint32_t num_p
+         xmm3 = _mm_max_ps(xmm1, xmm3);
+-        xmm10 = _mm_set_epi32(2, 2, 2, 2); // load1_ps((float*)&init[2]);
++        xmm10 = _mm_setr_epi32(2, 2, 2, 2);
+         xmm4.float_vec = _mm_cmplt_ps(xmm1, xmm3);
+         xmm5.float_vec = _mm_cmpeq_ps(xmm1, xmm3);
+@@ -334,14 +244,9 @@ volk_32fc_index_max_16u_a_sse3(uint16_t* target, lv_32fc_t* src0, uint32_t num_p
+         xmm9 = _mm_add_epi32(xmm11, xmm12);
+         xmm8 = _mm_add_epi32(xmm8, xmm10);
+-        // printf("egads%u, %u, %u, %u\n", ((uint32_t*)&xmm9)[0], ((uint32_t*)&xmm9)[1],
+-        // ((uint32_t*)&xmm9)[2], ((uint32_t*)&xmm9)[3]);
+     }
+     if (num_bytes >> 3 & 1) {
+-        // printf("%u, %u, %u, %u\n", ((uint32_t*)&xmm9)[0], ((uint32_t*)&xmm9)[1],
+-        // ((uint32_t*)&xmm9)[2], ((uint32_t*)&xmm9)[3]);
+-
+         sq_dist =
+             lv_creal(src0[0]) * lv_creal(src0[0]) + lv_cimag(src0[0]) * lv_cimag(src0[0]);
+@@ -362,11 +267,6 @@ volk_32fc_index_max_16u_a_sse3(uint16_t* target, lv_32fc_t* src0, uint32_t num_p
+         xmm9 = _mm_add_epi32(xmm11, xmm12);
+     }
+-    // printf("%f, %f, %f, %f\n", ((float*)&xmm3)[0], ((float*)&xmm3)[1],
+-    // ((float*)&xmm3)[2], ((float*)&xmm3)[3]); printf("%u, %u, %u, %u\n",
+-    // ((uint32_t*)&xmm9)[0], ((uint32_t*)&xmm9)[1], ((uint32_t*)&xmm9)[2],
+-    // ((uint32_t*)&xmm9)[3]);
+-
+     _mm_store_ps((float*)&(holderf.f), xmm3);
+     _mm_store_si128(&(holderi.int_vec), xmm9);
+@@ -378,25 +278,6 @@ volk_32fc_index_max_16u_a_sse3(uint16_t* target, lv_32fc_t* src0, uint32_t num_p
+     sq_dist = (holderf.f[2] > sq_dist) ? holderf.f[2] : sq_dist;
+     target[0] = (holderf.f[3] > sq_dist) ? holderi.i[3] : target[0];
+     sq_dist = (holderf.f[3] > sq_dist) ? holderf.f[3] : sq_dist;
+-
+-    /*
+-    float placeholder = 0.0;
+-    uint32_t temp0, temp1;
+-    uint32_t g0 = (((float*)&xmm3)[0] > ((float*)&xmm3)[1]);
+-    uint32_t l0 = g0 ^ 1;
+-
+-    uint32_t g1 = (((float*)&xmm3)[1] > ((float*)&xmm3)[2]);
+-    uint32_t l1 = g1 ^ 1;
+-
+-    temp0 = g0 * ((uint32_t*)&xmm9)[0] + l0 * ((uint32_t*)&xmm9)[1];
+-    temp1 = g0 * ((uint32_t*)&xmm9)[2] + l0 * ((uint32_t*)&xmm9)[3];
+-    sq_dist = g0 * ((float*)&xmm3)[0] + l0 * ((float*)&xmm3)[1];
+-    placeholder = g0 * ((float*)&xmm3)[2] + l0 * ((float*)&xmm3)[3];
+-
+-    g0 = (sq_dist > placeholder);
+-    l0 = g0 ^ 1;
+-    target[0] = g0 * temp0 + l0 * temp1;
+-    */
+ }
+ #endif /*LV_HAVE_SSE3*/
+@@ -419,18 +300,18 @@ volk_32fc_index_max_16u_generic(uint16_t* target, lv_32fc_t* src0, uint32_t num_
+         sq_dist =
+             lv_creal(src0[i]) * lv_creal(src0[i]) + lv_cimag(src0[i]) * lv_cimag(src0[i]);
+-        index = sq_dist > max ? i : index;
+-        max = sq_dist > max ? sq_dist : max;
++        if (sq_dist > max) {
++            index = i;
++            max = sq_dist;
++        }
+     }
+     target[0] = index;
+ }
+ #endif /*LV_HAVE_GENERIC*/
+-
+ #endif /*INCLUDED_volk_32fc_index_max_16u_a_H*/
+-
+ #ifndef INCLUDED_volk_32fc_index_max_16u_u_H
+ #define INCLUDED_volk_32fc_index_max_16u_u_H
+@@ -447,33 +328,32 @@ static inline void
+ volk_32fc_index_max_16u_u_avx2(uint16_t* target, lv_32fc_t* src0, uint32_t num_points)
+ {
+     num_points = (num_points > USHRT_MAX) ? USHRT_MAX : num_points;
+-    // Branchless version, if we think it'll make a difference
+-    // num_points = USHRT_MAX ^ ((num_points ^ USHRT_MAX) & -(num_points < USHRT_MAX));
+-
+     const uint32_t num_bytes = num_points * 8;
+     union bit256 holderf;
+     union bit256 holderi;
+     float sq_dist = 0.0;
++    float max = 0.0;
++    uint16_t index = 0;
+     union bit256 xmm5, xmm4;
+     __m256 xmm1, xmm2, xmm3;
+-    __m256i xmm8, xmm11, xmm12, xmmfive, xmmfour, xmm9, holder0, holder1, xmm10;
++    __m256i xmm8, xmm11, xmm12, xmm9, xmm10;
+-    xmm5.int_vec = xmmfive = _mm256_setzero_si256();
+-    xmm4.int_vec = xmmfour = _mm256_setzero_si256();
+-    holderf.int_vec = holder0 = _mm256_setzero_si256();
+-    holderi.int_vec = holder1 = _mm256_setzero_si256();
++    xmm5.int_vec = _mm256_setzero_si256();
++    xmm4.int_vec = _mm256_setzero_si256();
++    holderf.int_vec = _mm256_setzero_si256();
++    holderi.int_vec = _mm256_setzero_si256();
+     int bound = num_bytes >> 6;
+     int i = 0;
+-    xmm8 = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0);
+-    xmm9 = _mm256_setzero_si256(); //=xmm8
++    xmm8 = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7);
++    xmm9 = _mm256_setzero_si256();
+     xmm10 = _mm256_set1_epi32(8);
+     xmm3 = _mm256_setzero_ps();
+-    __m256i idx = _mm256_set_epi32(7, 6, 3, 2, 5, 4, 1, 0);
++    __m256i idx = _mm256_setr_epi32(0, 1, 4, 5, 2, 3, 6, 7);
+     for (; i < bound; ++i) {
+         xmm1 = _mm256_loadu_ps((float*)src0);
+         xmm2 = _mm256_loadu_ps((float*)&src0[4]);
+@@ -498,76 +378,27 @@ volk_32fc_index_max_16u_u_avx2(uint16_t* target, lv_32fc_t* src0, uint32_t num_p
+         xmm8 = _mm256_add_epi32(xmm8, xmm10);
+     }
+-    xmm10 = _mm256_set1_epi32(4);
+-    if (num_bytes >> 5 & 1) {
+-        xmm1 = _mm256_loadu_ps((float*)src0);
+-
+-        src0 += 4;
+-        xmm1 = _mm256_mul_ps(xmm1, xmm1);
+-
+-        xmm1 = _mm256_hadd_ps(xmm1, xmm1);
+-        xmm1 = _mm256_permutevar8x32_ps(xmm1, idx);
+-
+-        xmm3 = _mm256_max_ps(xmm1, xmm3);
+-
+-        xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
+-        xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
+-
+-        xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
+-        xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
+-
+-        xmm9 = _mm256_add_epi32(xmm11, xmm12);
++    _mm256_storeu_ps((float*)&(holderf.f), xmm3);
++    _mm256_storeu_si256(&(holderi.int_vec), xmm9);
+-        xmm8 = _mm256_add_epi32(xmm8, xmm10);
++    for (i = 0; i < 8; i++) {
++        if (holderf.f[i] > max) {
++            index = holderi.i[i];
++            max = holderf.f[i];
++        }
+     }
+-    idx = _mm256_set_epi32(1, 0, 1, 0, 1, 0, 1, 0);
+-    xmm10 = _mm256_set1_epi32(2);
+-    if (num_bytes >> 4 & 1) {
+-        xmm2 = _mm256_loadu_ps((float*)src0);
+-
+-        xmm1 = _mm256_permutevar8x32_ps(bit256_p(&xmm8)->float_vec, idx);
+-        xmm8 = bit256_p(&xmm1)->int_vec;
+-
+-        xmm2 = _mm256_mul_ps(xmm2, xmm2);
+-
+-        src0 += 2;
+-
+-        xmm1 = _mm256_hadd_ps(xmm2, xmm2);
+-
+-        xmm3 = _mm256_max_ps(xmm1, xmm3);
+-
+-        xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
+-        xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
+-
+-        xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
+-        xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
+-
+-        xmm9 = _mm256_add_epi32(xmm11, xmm12);
++    for (i = bound * 8; i < num_points; i++, src0++) {
++        sq_dist =
++            lv_creal(src0[0]) * lv_creal(src0[0]) + lv_cimag(src0[0]) * lv_cimag(src0[0]);
+-        xmm8 = _mm256_add_epi32(xmm8, xmm10);
++        if (sq_dist > max) {
++            index = i;
++            max = sq_dist;
++        }
+     }
+-
+-    _mm256_storeu_ps((float*)&(holderf.f), xmm3);
+-    _mm256_storeu_si256(&(holderi.int_vec), xmm9);
+-
+-    target[0] = holderi.i[0];
+-    sq_dist = holderf.f[0];
+-    target[0] = (holderf.f[1] > sq_dist) ? holderi.i[1] : target[0];
+-    sq_dist = (holderf.f[1] > sq_dist) ? holderf.f[1] : sq_dist;
+-    target[0] = (holderf.f[2] > sq_dist) ? holderi.i[2] : target[0];
+-    sq_dist = (holderf.f[2] > sq_dist) ? holderf.f[2] : sq_dist;
+-    target[0] = (holderf.f[3] > sq_dist) ? holderi.i[3] : target[0];
+-    sq_dist = (holderf.f[3] > sq_dist) ? holderf.f[3] : sq_dist;
+-    target[0] = (holderf.f[4] > sq_dist) ? holderi.i[4] : target[0];
+-    sq_dist = (holderf.f[4] > sq_dist) ? holderf.f[4] : sq_dist;
+-    target[0] = (holderf.f[5] > sq_dist) ? holderi.i[5] : target[0];
+-    sq_dist = (holderf.f[5] > sq_dist) ? holderf.f[5] : sq_dist;
+-    target[0] = (holderf.f[6] > sq_dist) ? holderi.i[6] : target[0];
+-    sq_dist = (holderf.f[6] > sq_dist) ? holderf.f[6] : sq_dist;
+-    target[0] = (holderf.f[7] > sq_dist) ? holderi.i[7] : target[0];
+-    sq_dist = (holderf.f[7] > sq_dist) ? holderf.f[7] : sq_dist;
++    target[0] = index;
+ }
+ #endif /*LV_HAVE_AVX2*/
+diff --git a/kernels/volk/volk_32fc_index_max_32u.h b/kernels/volk/volk_32fc_index_max_32u.h
+index 7756fc6..556b5fc 100644
+--- a/kernels/volk/volk_32fc_index_max_32u.h
++++ b/kernels/volk/volk_32fc_index_max_32u.h
+@@ -1,6 +1,6 @@
+ /* -*- c++ -*- */
+ /*
+- * Copyright 2016 Free Software Foundation, Inc.
++ * Copyright 2016, 2018-2020 Free Software Foundation, Inc.
+  *
+  * This file is part of GNU Radio
+  *
+@@ -30,8 +30,8 @@
+  *
+  * <b>Dispatcher Prototype</b>
+  * \code
+- * void volk_32fc_index_max_32u(uint32_t* target, lv_32fc_t* src0, uint32_t num_points)
+- * \endcode
++ * void volk_32fc_index_max_32u(uint32_t* target, lv_32fc_t* src0, uint32_t
++ * num_points) \endcode
+  *
+  * \b Inputs
+  * \li src0: The complex input vector.
+@@ -86,24 +86,26 @@ volk_32fc_index_max_32u_a_avx2(uint32_t* target, lv_32fc_t* src0, uint32_t num_p
+     union bit256 holderf;
+     union bit256 holderi;
+     float sq_dist = 0.0;
++    float max = 0.0;
++    uint32_t index = 0;
+     union bit256 xmm5, xmm4;
+     __m256 xmm1, xmm2, xmm3;
+-    __m256i xmm8, xmm11, xmm12, xmmfive, xmmfour, xmm9, holder0, holder1, xmm10;
++    __m256i xmm8, xmm11, xmm12, xmm9, xmm10;
+-    xmm5.int_vec = xmmfive = _mm256_setzero_si256();
+-    xmm4.int_vec = xmmfour = _mm256_setzero_si256();
+-    holderf.int_vec = holder0 = _mm256_setzero_si256();
+-    holderi.int_vec = holder1 = _mm256_setzero_si256();
++    xmm5.int_vec = _mm256_setzero_si256();
++    xmm4.int_vec = _mm256_setzero_si256();
++    holderf.int_vec = _mm256_setzero_si256();
++    holderi.int_vec = _mm256_setzero_si256();
+     int bound = num_bytes >> 6;
+     int i = 0;
+-    xmm8 = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0);
++    xmm8 = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7);
+     xmm9 = _mm256_setzero_si256();
+     xmm10 = _mm256_set1_epi32(8);
+     xmm3 = _mm256_setzero_ps();
+-    __m256i idx = _mm256_set_epi32(7, 6, 3, 2, 5, 4, 1, 0);
++    __m256i idx = _mm256_setr_epi32(0, 1, 4, 5, 2, 3, 6, 7);
+     for (; i < bound; ++i) {
+         xmm1 = _mm256_load_ps((float*)src0);
+@@ -130,75 +132,26 @@ volk_32fc_index_max_32u_a_avx2(uint32_t* target, lv_32fc_t* src0, uint32_t num_p
+         xmm8 = _mm256_add_epi32(xmm8, xmm10);
+     }
+-    xmm10 = _mm256_set1_epi32(4);
+-    if (num_bytes >> 4 & 1) {
+-        xmm1 = _mm256_load_ps((float*)src0);
+-
+-        xmm1 = _mm256_mul_ps(xmm1, xmm1);
+-
+-        src0 += 4;
+-
+-        xmm1 = _mm256_hadd_ps(xmm1, xmm1);
+-
+-        xmm3 = _mm256_max_ps(xmm1, xmm3);
+-
+-        xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
+-        xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
+-
+-        xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
+-        xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
+-
+-        xmm9 = _mm256_add_epi32(xmm11, xmm12);
++    _mm256_store_ps((float*)&(holderf.f), xmm3);
++    _mm256_store_si256(&(holderi.int_vec), xmm9);
+-        xmm8 = _mm256_add_epi32(xmm8, xmm10);
++    for (i = 0; i < 8; i++) {
++        if (holderf.f[i] > max) {
++            index = holderi.i[i];
++            max = holderf.f[i];
++        }
+     }
+-    idx = _mm256_set_epi32(1, 0, 1, 0, 1, 0, 1, 0);
+-    xmm10 = _mm256_set1_epi32(2);
+-    if (num_bytes >> 4 & 1) {
+-        xmm2 = _mm256_load_ps((float*)src0);
+-
+-        xmm1 = _mm256_permutevar8x32_ps(bit256_p(&xmm8)->float_vec, idx);
+-        xmm8 = bit256_p(&xmm1)->int_vec;
+-
+-        xmm2 = _mm256_mul_ps(xmm2, xmm2);
+-
+-        src0 += 2;
+-
+-        xmm1 = _mm256_hadd_ps(xmm2, xmm2);
+-
+-        xmm3 = _mm256_max_ps(xmm1, xmm3);
+-
+-        xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
+-        xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
+-
+-        xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
+-        xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
+-
+-        xmm9 = _mm256_add_epi32(xmm11, xmm12);
++    for (i = bound * 8; i < num_points; i++, src0++) {
++        sq_dist =
++            lv_creal(src0[0]) * lv_creal(src0[0]) + lv_cimag(src0[0]) * lv_cimag(src0[0]);
+-        xmm8 = _mm256_add_epi32(xmm8, xmm10);
++        if (sq_dist > max) {
++            index = i;
++            max = sq_dist;
++        }
+     }
+-
+-    _mm256_store_ps((float*)&(holderf.f), xmm3);
+-    _mm256_store_si256(&(holderi.int_vec), xmm9);
+-
+-    target[0] = holderi.i[0];
+-    sq_dist = holderf.f[0];
+-    target[0] = (holderf.f[1] > sq_dist) ? holderi.i[1] : target[0];
+-    sq_dist = (holderf.f[1] > sq_dist) ? holderf.f[1] : sq_dist;
+-    target[0] = (holderf.f[2] > sq_dist) ? holderi.i[2] : target[0];
+-    sq_dist = (holderf.f[2] > sq_dist) ? holderf.f[2] : sq_dist;
+-    target[0] = (holderf.f[3] > sq_dist) ? holderi.i[3] : target[0];
+-    sq_dist = (holderf.f[3] > sq_dist) ? holderf.f[3] : sq_dist;
+-    target[0] = (holderf.f[4] > sq_dist) ? holderi.i[4] : target[0];
+-    sq_dist = (holderf.f[4] > sq_dist) ? holderf.f[4] : sq_dist;
+-    target[0] = (holderf.f[5] > sq_dist) ? holderi.i[5] : target[0];
+-    sq_dist = (holderf.f[5] > sq_dist) ? holderf.f[5] : sq_dist;
+-    target[0] = (holderf.f[6] > sq_dist) ? holderi.i[6] : target[0];
+-    sq_dist = (holderf.f[6] > sq_dist) ? holderf.f[6] : sq_dist;
+-    target[0] = (holderf.f[7] > sq_dist) ? holderi.i[7] : target[0];
+-    sq_dist = (holderf.f[7] > sq_dist) ? holderf.f[7] : sq_dist;
++    target[0] = index;
+ }
+ #endif /*LV_HAVE_AVX2*/
+@@ -218,24 +171,21 @@ volk_32fc_index_max_32u_a_sse3(uint32_t* target, lv_32fc_t* src0, uint32_t num_p
+     union bit128 xmm5, xmm4;
+     __m128 xmm1, xmm2, xmm3;
+-    __m128i xmm8, xmm11, xmm12, xmmfive, xmmfour, xmm9, holder0, holder1, xmm10;
++    __m128i xmm8, xmm11, xmm12, xmm9, xmm10;
+-    xmm5.int_vec = xmmfive = _mm_setzero_si128();
+-    xmm4.int_vec = xmmfour = _mm_setzero_si128();
+-    holderf.int_vec = holder0 = _mm_setzero_si128();
+-    holderi.int_vec = holder1 = _mm_setzero_si128();
++    xmm5.int_vec = _mm_setzero_si128();
++    xmm4.int_vec = _mm_setzero_si128();
++    holderf.int_vec = _mm_setzero_si128();
++    holderi.int_vec = _mm_setzero_si128();
+     int bound = num_bytes >> 5;
+     int i = 0;
+-    xmm8 = _mm_set_epi32(3, 2, 1, 0); // remember the crazy reverse order!
++    xmm8 = _mm_setr_epi32(0, 1, 2, 3);
+     xmm9 = _mm_setzero_si128();
+-    xmm10 = _mm_set_epi32(4, 4, 4, 4);
++    xmm10 = _mm_setr_epi32(4, 4, 4, 4);
+     xmm3 = _mm_setzero_ps();
+-    // printf("%f, %f, %f, %f\n", ((float*)&xmm10)[0], ((float*)&xmm10)[1],
+-    // ((float*)&xmm10)[2], ((float*)&xmm10)[3]);
+-
+     for (; i < bound; ++i) {
+         xmm1 = _mm_load_ps((float*)src0);
+         xmm2 = _mm_load_ps((float*)&src0[2]);
+@@ -258,14 +208,8 @@ volk_32fc_index_max_32u_a_sse3(uint32_t* target, lv_32fc_t* src0, uint32_t num_p
+         xmm9 = _mm_add_epi32(xmm11, xmm12);
+         xmm8 = _mm_add_epi32(xmm8, xmm10);
+-
+-        // printf("%f, %f, %f, %f\n", ((float*)&xmm3)[0], ((float*)&xmm3)[1],
+-        // ((float*)&xmm3)[2], ((float*)&xmm3)[3]); printf("%u, %u, %u, %u\n",
+-        // ((uint32_t*)&xmm10)[0], ((uint32_t*)&xmm10)[1], ((uint32_t*)&xmm10)[2],
+-        // ((uint32_t*)&xmm10)[3]);
+     }
+-
+     if (num_bytes >> 4 & 1) {
+         xmm2 = _mm_load_ps((float*)src0);
+@@ -280,7 +224,7 @@ volk_32fc_index_max_32u_a_sse3(uint32_t* target, lv_32fc_t* src0, uint32_t num_p
+         xmm3 = _mm_max_ps(xmm1, xmm3);
+-        xmm10 = _mm_set_epi32(2, 2, 2, 2); // load1_ps((float*)&init[2]);
++        xmm10 = _mm_setr_epi32(2, 2, 2, 2);
+         xmm4.float_vec = _mm_cmplt_ps(xmm1, xmm3);
+         xmm5.float_vec = _mm_cmpeq_ps(xmm1, xmm3);
+@@ -291,14 +235,9 @@ volk_32fc_index_max_32u_a_sse3(uint32_t* target, lv_32fc_t* src0, uint32_t num_p
+         xmm9 = _mm_add_epi32(xmm11, xmm12);
+         xmm8 = _mm_add_epi32(xmm8, xmm10);
+-        // printf("egads%u, %u, %u, %u\n", ((uint32_t*)&xmm9)[0], ((uint32_t*)&xmm9)[1],
+-        // ((uint32_t*)&xmm9)[2], ((uint32_t*)&xmm9)[3]);
+     }
+     if (num_bytes >> 3 & 1) {
+-        // printf("%u, %u, %u, %u\n", ((uint32_t*)&xmm9)[0], ((uint32_t*)&xmm9)[1],
+-        // ((uint32_t*)&xmm9)[2], ((uint32_t*)&xmm9)[3]);
+-
+         sq_dist =
+             lv_creal(src0[0]) * lv_creal(src0[0]) + lv_cimag(src0[0]) * lv_cimag(src0[0]);
+@@ -319,11 +258,6 @@ volk_32fc_index_max_32u_a_sse3(uint32_t* target, lv_32fc_t* src0, uint32_t num_p
+         xmm9 = _mm_add_epi32(xmm11, xmm12);
+     }
+-    // printf("%f, %f, %f, %f\n", ((float*)&xmm3)[0], ((float*)&xmm3)[1],
+-    // ((float*)&xmm3)[2], ((float*)&xmm3)[3]); printf("%u, %u, %u, %u\n",
+-    // ((uint32_t*)&xmm9)[0], ((uint32_t*)&xmm9)[1], ((uint32_t*)&xmm9)[2],
+-    // ((uint32_t*)&xmm9)[3]);
+-
+     _mm_store_ps((float*)&(holderf.f), xmm3);
+     _mm_store_si128(&(holderi.int_vec), xmm9);
+@@ -335,25 +269,6 @@ volk_32fc_index_max_32u_a_sse3(uint32_t* target, lv_32fc_t* src0, uint32_t num_p
+     sq_dist = (holderf.f[2] > sq_dist) ? holderf.f[2] : sq_dist;
+     target[0] = (holderf.f[3] > sq_dist) ? holderi.i[3] : target[0];
+     sq_dist = (holderf.f[3] > sq_dist) ? holderf.f[3] : sq_dist;
+-
+-    /*
+-    float placeholder = 0.0;
+-    uint32_t temp0, temp1;
+-    uint32_t g0 = (((float*)&xmm3)[0] > ((float*)&xmm3)[1]);
+-    uint32_t l0 = g0 ^ 1;
+-
+-    uint32_t g1 = (((float*)&xmm3)[1] > ((float*)&xmm3)[2]);
+-    uint32_t l1 = g1 ^ 1;
+-
+-    temp0 = g0 * ((uint32_t*)&xmm9)[0] + l0 * ((uint32_t*)&xmm9)[1];
+-    temp1 = g0 * ((uint32_t*)&xmm9)[2] + l0 * ((uint32_t*)&xmm9)[3];
+-    sq_dist = g0 * ((float*)&xmm3)[0] + l0 * ((float*)&xmm3)[1];
+-    placeholder = g0 * ((float*)&xmm3)[2] + l0 * ((float*)&xmm3)[3];
+-
+-    g0 = (sq_dist > placeholder);
+-    l0 = g0 ^ 1;
+-    target[0] = g0 * temp0 + l0 * temp1;
+-    */
+ }
+ #endif /*LV_HAVE_SSE3*/
+@@ -374,18 +289,18 @@ volk_32fc_index_max_32u_generic(uint32_t* target, lv_32fc_t* src0, uint32_t num_
+         sq_dist =
+             lv_creal(src0[i]) * lv_creal(src0[i]) + lv_cimag(src0[i]) * lv_cimag(src0[i]);
+-        index = sq_dist > max ? i : index;
+-        max = sq_dist > max ? sq_dist : max;
++        if (sq_dist > max) {
++            index = i;
++            max = sq_dist;
++        }
+     }
+     target[0] = index;
+ }
+ #endif /*LV_HAVE_GENERIC*/
+-
+ #endif /*INCLUDED_volk_32fc_index_max_32u_a_H*/
+-
+ #ifndef INCLUDED_volk_32fc_index_max_32u_u_H
+ #define INCLUDED_volk_32fc_index_max_32u_u_H
+@@ -405,24 +320,26 @@ volk_32fc_index_max_32u_u_avx2(uint32_t* target, lv_32fc_t* src0, uint32_t num_p
+     union bit256 holderf;
+     union bit256 holderi;
+     float sq_dist = 0.0;
++    float max = 0.0;
++    uint32_t index = 0;
+     union bit256 xmm5, xmm4;
+     __m256 xmm1, xmm2, xmm3;
+-    __m256i xmm8, xmm11, xmm12, xmmfive, xmmfour, xmm9, holder0, holder1, xmm10;
++    __m256i xmm8, xmm11, xmm12, xmm9, xmm10;
+-    xmm5.int_vec = xmmfive = _mm256_setzero_si256();
+-    xmm4.int_vec = xmmfour = _mm256_setzero_si256();
+-    holderf.int_vec = holder0 = _mm256_setzero_si256();
+-    holderi.int_vec = holder1 = _mm256_setzero_si256();
++    xmm5.int_vec = _mm256_setzero_si256();
++    xmm4.int_vec = _mm256_setzero_si256();
++    holderf.int_vec = _mm256_setzero_si256();
++    holderi.int_vec = _mm256_setzero_si256();
+     int bound = num_bytes >> 6;
+     int i = 0;
+-    xmm8 = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0);
++    xmm8 = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7);
+     xmm9 = _mm256_setzero_si256();
+     xmm10 = _mm256_set1_epi32(8);
+     xmm3 = _mm256_setzero_ps();
+-    __m256i idx = _mm256_set_epi32(7, 6, 3, 2, 5, 4, 1, 0);
++    __m256i idx = _mm256_setr_epi32(0, 1, 4, 5, 2, 3, 6, 7);
+     for (; i < bound; ++i) {
+         xmm1 = _mm256_loadu_ps((float*)src0);
+@@ -449,75 +366,26 @@ volk_32fc_index_max_32u_u_avx2(uint32_t* target, lv_32fc_t* src0, uint32_t num_p
+         xmm8 = _mm256_add_epi32(xmm8, xmm10);
+     }
+-    xmm10 = _mm256_set1_epi32(4);
+-    if (num_bytes >> 4 & 1) {
+-        xmm1 = _mm256_loadu_ps((float*)src0);
+-
+-        xmm1 = _mm256_mul_ps(xmm1, xmm1);
+-
+-        src0 += 4;
+-
+-        xmm1 = _mm256_hadd_ps(xmm1, xmm1);
+-
+-        xmm3 = _mm256_max_ps(xmm1, xmm3);
+-
+-        xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
+-        xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
+-
+-        xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
+-        xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
+-
+-        xmm9 = _mm256_add_epi32(xmm11, xmm12);
++    _mm256_storeu_ps((float*)&(holderf.f), xmm3);
++    _mm256_storeu_si256(&(holderi.int_vec), xmm9);
+-        xmm8 = _mm256_add_epi32(xmm8, xmm10);
++    for (i = 0; i < 8; i++) {
++        if (holderf.f[i] > max) {
++            index = holderi.i[i];
++            max = holderf.f[i];
++        }
+     }
+-    idx = _mm256_set_epi32(1, 0, 1, 0, 1, 0, 1, 0);
+-    xmm10 = _mm256_set1_epi32(2);
+-    if (num_bytes >> 4 & 1) {
+-        xmm2 = _mm256_loadu_ps((float*)src0);
+-
+-        xmm1 = _mm256_permutevar8x32_ps(bit256_p(&xmm8)->float_vec, idx);
+-        xmm8 = bit256_p(&xmm1)->int_vec;
+-
+-        xmm2 = _mm256_mul_ps(xmm2, xmm2);
+-
+-        src0 += 2;
+-
+-        xmm1 = _mm256_hadd_ps(xmm2, xmm2);
+-
+-        xmm3 = _mm256_max_ps(xmm1, xmm3);
+-
+-        xmm4.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_LT_OS);
+-        xmm5.float_vec = _mm256_cmp_ps(xmm1, xmm3, _CMP_EQ_OQ);
+-
+-        xmm11 = _mm256_and_si256(xmm8, xmm5.int_vec);
+-        xmm12 = _mm256_and_si256(xmm9, xmm4.int_vec);
+-
+-        xmm9 = _mm256_add_epi32(xmm11, xmm12);
++    for (i = bound * 8; i < num_points; i++, src0++) {
++        sq_dist =
++            lv_creal(src0[0]) * lv_creal(src0[0]) + lv_cimag(src0[0]) * lv_cimag(src0[0]);
+-        xmm8 = _mm256_add_epi32(xmm8, xmm10);
++        if (sq_dist > max) {
++            index = i;
++            max = sq_dist;
++        }
+     }
+-
+-    _mm256_storeu_ps((float*)&(holderf.f), xmm3);
+-    _mm256_storeu_si256(&(holderi.int_vec), xmm9);
+-
+-    target[0] = holderi.i[0];
+-    sq_dist = holderf.f[0];
+-    target[0] = (holderf.f[1] > sq_dist) ? holderi.i[1] : target[0];
+-    sq_dist = (holderf.f[1] > sq_dist) ? holderf.f[1] : sq_dist;
+-    target[0] = (holderf.f[2] > sq_dist) ? holderi.i[2] : target[0];
+-    sq_dist = (holderf.f[2] > sq_dist) ? holderf.f[2] : sq_dist;
+-    target[0] = (holderf.f[3] > sq_dist) ? holderi.i[3] : target[0];
+-    sq_dist = (holderf.f[3] > sq_dist) ? holderf.f[3] : sq_dist;
+-    target[0] = (holderf.f[4] > sq_dist) ? holderi.i[4] : target[0];
+-    sq_dist = (holderf.f[4] > sq_dist) ? holderf.f[4] : sq_dist;
+-    target[0] = (holderf.f[5] > sq_dist) ? holderi.i[5] : target[0];
+-    sq_dist = (holderf.f[5] > sq_dist) ? holderf.f[5] : sq_dist;
+-    target[0] = (holderf.f[6] > sq_dist) ? holderi.i[6] : target[0];
+-    sq_dist = (holderf.f[6] > sq_dist) ? holderf.f[6] : sq_dist;
+-    target[0] = (holderf.f[7] > sq_dist) ? holderi.i[7] : target[0];
+-    sq_dist = (holderf.f[7] > sq_dist) ? holderf.f[7] : sq_dist;
++    target[0] = index;
+ }
+ #endif /*LV_HAVE_AVX2*/
+-- 
+2.20.1
+
diff --git a/patches/0007-cmake-Remove-the-ORC-from-the-VOLK-public-link-inter.patch b/patches/0007-cmake-Remove-the-ORC-from-the-VOLK-public-link-inter.patch
new file mode 100644 (file)
index 0000000..30ab9cb
--- /dev/null
@@ -0,0 +1,53 @@
+From d214a7f62554341aaee7f66ec259131b5cbe84e3 Mon Sep 17 00:00:00 2001
+From: Vasil Velichkov <vvvelichkov@gmail.com>
+Date: Sun, 22 Mar 2020 22:22:13 +0200
+Subject: [PATCH 7/7] cmake: Remove the ORC from the VOLK public link interface
+
+The ORC is an internal dependency that is used to generate SIMD
+implementations of some the kernels and no ORC types or functions are
+exposed by the VOLK library so adding it to the public link interface is
+unnecessary when linking dynamically.
+
+Currently the ORC is added to the INTERFACE_LINK_LIBRARIES property of
+the Volk::volk target in VolkTargets.cmake and you need to have the ORC
+development files (liborc-*-dev) installed on your system in order to
+successfully link a program or library that uses VOLK.
+---
+ lib/CMakeLists.txt | 7 ++++++-
+ 1 file changed, 6 insertions(+), 1 deletion(-)
+
+diff --git a/lib/CMakeLists.txt b/lib/CMakeLists.txt
+index c5c784a..02ffa40 100644
+--- a/lib/CMakeLists.txt
++++ b/lib/CMakeLists.txt
+@@ -465,7 +465,6 @@ if(ORC_FOUND)
+     #setup orc library usage
+     include_directories(${ORC_INCLUDE_DIRS})
+     link_directories(${ORC_LIBRARY_DIRS})
+-    list(APPEND volk_libraries ${ORC_LIBRARIES})
+     #setup orc functions
+     file(GLOB orc_files ${PROJECT_SOURCE_DIR}/kernels/volk/asm/orc/*.orc)
+@@ -572,6 +571,9 @@ target_include_directories(volk
+ )
+ #Configure target properties
++if(ORC_FOUND)
++  target_link_libraries(volk PRIVATE ${ORC_LIBRARIES})
++endif()
+ if(NOT MSVC)
+   target_link_libraries(volk PUBLIC m)
+ endif()
+@@ -597,6 +599,9 @@ install(TARGETS volk
+ if(ENABLE_STATIC_LIBS)
+   add_library(volk_static STATIC $<TARGET_OBJECTS:volk_obj>)
+   target_link_libraries(volk_static PUBLIC ${volk_libraries} pthread)
++  if(ORC_FOUND)
++    target_link_libraries(volk_static PUBLIC ${ORC_LIBRARIES})
++  endif()
+   if(NOT MSVC)
+     target_link_libraries(volk_static PUBLIC m)
+   endif()
+-- 
+2.20.1
+
diff --git a/patches/avoid-unnecessary-soversion-bump b/patches/avoid-unnecessary-soversion-bump
new file mode 100644 (file)
index 0000000..63865b6
--- /dev/null
@@ -0,0 +1,11 @@
+--- a/CMakeLists.txt
++++ b/CMakeLists.txt
+@@ -67,7 +67,7 @@
+ set(VERSION_INFO_MAJOR_VERSION 2)
+ set(VERSION_INFO_MINOR_VERSION 2)
+-set(VERSION_INFO_MAINT_VERSION 1)
++set(VERSION_INFO_MAINT_VERSION 0)
+ include(VolkVersion) #setup version info
+ macro(set_version_str VAR)
diff --git a/patches/make-acc-happy b/patches/make-acc-happy
new file mode 100644 (file)
index 0000000..7c5c767
--- /dev/null
@@ -0,0 +1,60 @@
+From 799245ea6e9e05cc0ed0fabe783fbbe1a5054fd4 Mon Sep 17 00:00:00 2001
+From: "A. Maitland Bottoms" <bottoms@debian.org>
+Date: Tue, 27 Mar 2018 22:02:59 -0400
+Subject: [PATCH 2/6] make acc happy
+
+The abi-compliance-checker grabs all the .h files it finds
+and tries to compile them all. Even though some are not
+appropriate for the architecture being run on. Being careful
+with preprocessor protections avoids problems.
+---
+ include/volk/volk_neon_intrinsics.h                 | 2 ++
+ kernels/volk/volk_32f_8u_polarbutterflypuppet_32f.h | 1 +
+ kernels/volk/volk_8u_x2_encodeframepolar_8u.h       | 3 ---
+ 3 files changed, 3 insertions(+), 3 deletions(-)
+
+--- a/include/volk/volk_neon_intrinsics.h
++++ b/include/volk/volk_neon_intrinsics.h
+@@ -79,6 +79,7 @@
+ #ifndef INCLUDE_VOLK_VOLK_NEON_INTRINSICS_H_
+ #define INCLUDE_VOLK_VOLK_NEON_INTRINSICS_H_
++#ifdef LV_HAVE_NEON
+ #include <arm_neon.h>
+@@ -278,4 +279,5 @@
+ }
++#endif /*LV_HAVE_NEON*/
+ #endif /* INCLUDE_VOLK_VOLK_NEON_INTRINSICS_H_ */
+--- a/kernels/volk/volk_32f_8u_polarbutterflypuppet_32f.h
++++ b/kernels/volk/volk_32f_8u_polarbutterflypuppet_32f.h
+@@ -31,6 +31,7 @@
+ #include <volk/volk_32f_8u_polarbutterfly_32f.h>
+ #include <volk/volk_8u_x3_encodepolar_8u_x2.h>
+ #include <volk/volk_8u_x3_encodepolarpuppet_8u.h>
++#include <volk/volk_8u_x2_encodeframepolar_8u.h>
+ static inline void sanitize_bytes(unsigned char* u, const int elements)
+--- a/kernels/volk/volk_8u_x2_encodeframepolar_8u.h
++++ b/kernels/volk/volk_8u_x2_encodeframepolar_8u.h
+@@ -60,8 +60,6 @@
+     }
+ }
+-#ifdef LV_HAVE_GENERIC
+-
+ static inline void volk_8u_x2_encodeframepolar_8u_generic(unsigned char* frame,
+                                                           unsigned char* temp,
+                                                           unsigned int frame_size)
+@@ -81,7 +79,6 @@
+         --stage;
+     }
+ }
+-#endif /* LV_HAVE_GENERIC */
+ #ifdef LV_HAVE_SSSE3
+ #include <tmmintrin.h>
diff --git a/patches/optional-static-apps b/patches/optional-static-apps
new file mode 100644 (file)
index 0000000..399ee9b
--- /dev/null
@@ -0,0 +1,20 @@
+--- a/apps/CMakeLists.txt
++++ b/apps/CMakeLists.txt
+@@ -62,7 +62,7 @@
+     target_link_libraries(volk_profile PRIVATE std::filesystem)
+ endif()
+-if(ENABLE_STATIC_LIBS)
++if(ENABLE_STATIC_LIBS AND ENABLE_STATIC_APPS)
+     target_link_libraries(volk_profile PRIVATE volk_static)
+     set_target_properties(volk_profile PROPERTIES LINK_FLAGS "-static")
+ else()
+@@ -79,7 +79,7 @@
+ add_executable(volk-config-info volk-config-info.cc ${CMAKE_CURRENT_SOURCE_DIR}/volk_option_helpers.cc
+         )
+-if(ENABLE_STATIC_LIBS)
++if(ENABLE_STATIC_LIBS AND ENABLE_STATIC_APPS)
+     target_link_libraries(volk-config-info volk_static)
+     set_target_properties(volk-config-info PROPERTIES LINK_FLAGS "-static")
+ else()
diff --git a/patches/remove-external-HTML-resources b/patches/remove-external-HTML-resources
new file mode 100644 (file)
index 0000000..493356f
--- /dev/null
@@ -0,0 +1,8 @@
+--- a/README.md
++++ b/README.md
+@@ -1,5 +1,3 @@
+-[![Build Status](https://travis-ci.org/gnuradio/volk.svg?branch=master)](https://travis-ci.org/gnuradio/volk) [![Build status](https://ci.appveyor.com/api/projects/status/5o56mgw0do20jlh3/branch/master?svg=true)](https://ci.appveyor.com/project/gnuradio/volk/branch/master)
+-
+ ![VOLK Logo](/docs/volk_logo.png)
+ # Welcome to VOLK!
diff --git a/patches/series b/patches/series
new file mode 100644 (file)
index 0000000..1cb8e3d
--- /dev/null
@@ -0,0 +1,11 @@
+0001-volk-accurate-exp-kernel.patch
+0002-exp-Rename-SSE4.1-to-SSE2-kernel.patch
+0003-clang-format-Apply-clang-format.patch
+0004-clang-format-Update-PR-with-GitHub-Action.patch
+0005-clang-format-Rebase-onto-current-master.patch
+0006-Fix-the-broken-index-max-kernels.patch
+0007-cmake-Remove-the-ORC-from-the-VOLK-public-link-inter.patch
+avoid-unnecessary-soversion-bump
+make-acc-happy
+optional-static-apps
+remove-external-HTML-resources
diff --git a/rules b/rules
new file mode 100755 (executable)
index 0000000..f80dbba
--- /dev/null
+++ b/rules
@@ -0,0 +1,23 @@
+#!/usr/bin/make -f
+DEB_HOST_MULTIARCH ?= $(shell dpkg-architecture -qDEB_HOST_MULTIARCH)
+export DEB_HOST_MULTIARCH
+export DH_VERBOSE=1
+
+%:
+       dh $@ --with python3
+
+override_dh_auto_configure:
+       dh_auto_configure -- -DLIB_SUFFIX="/$(DEB_HOST_MULTIARCH)" \
+       -DENABLE_STATIC_LIBS=On, -DPYTHON_EXECUTABLE=/usr/bin/python3 \
+       -DCMAKE_BUILD_TYPE=RelWithDebInfo
+
+override_dh_auto_build-indep:
+       cmake --build obj-* --target volk_doc
+
+override_dh_auto_test:
+       - dh_auto_test -- CTEST_TEST_TIMEOUT=60
+
+override_dh_acc:
+       - abi-compliance-checker -l libvolk2-dev -v1 2.0.0-1 -dump debian/libvolk2-dev.acc -dump-path debian/libvolk2-dev/usr/lib/x86_64-linux-gnu/dh-acc/libvolk2-dev_2.0.0-1.abi.tar.gz
+       - cat logs/libvolk2-dev/2.0.0-1/log.txt
+       - dh_acc
diff --git a/source/format b/source/format
new file mode 100644 (file)
index 0000000..163aaf8
--- /dev/null
@@ -0,0 +1 @@
+3.0 (quilt)
diff --git a/source/include-binaries b/source/include-binaries
new file mode 100644 (file)
index 0000000..2a77b05
--- /dev/null
@@ -0,0 +1 @@
+debian/libvolk2-dev.abi.tar.gz.amd64
diff --git a/upstream/signing-key.asc b/upstream/signing-key.asc
new file mode 100644 (file)
index 0000000..f6d7f93
--- /dev/null
@@ -0,0 +1,52 @@
+-----BEGIN PGP PUBLIC KEY BLOCK-----
+Version: GnuPG v1
+
+mQINBFcTzE0BEACWkwa+pAwjBPwUvL8E9adB6sFlH/bw/3Dj2Vr/bXDkNrZDEQzc
+C3wmoX3AZo0GSWpjlmlOGOPy6u4wZxEPfilKs+eDNnuIZN3gmLoRTThgbbrnH9bw
+kIaUMiUn8VJ0pk5ULaygG6APxl4EOVrMfzgRnxmIbUfggiBLaW/xq2a/BaVrUAuA
+oHv1GTGJkwcK0RfYigJMfZl9iHVJVopffexBt1hOeGYxiyLXSDWjOhLLVzhlfgTE
+T9YdLGyjoXFmImsCvkAA2MA52e5YGUQIBrqmiXdHFit7sve0e5Dw0aLyuTnMR0MO
+a2eIHWU6TYYv5GTJPzjBbWM1pRCgtupNilg2+RfN0tOTp27RQnUtgcCo26uBU+jV
+pyvnidpDGnuUBL3WNLZlUiqmiZs8Hc9BGNw3rKB37sUOMXz6XessnhRspXC1Mot4
+V3I1NoKwb0wjgqlkAYIGCCSuySosC5HH2OssopBUH6U5QXjFp11QbP2e+QkvKPKA
+S9V4ouSMrIDZ4krtu6QFDYsHa0zZ54yRl3O4UpfISlz3yngO2eKM019C5n51kd62
+Ia00rtx8ypvUxMy67PTEFdCKLJ6Ua/hEGcpxGygFMRa0pjHSrC6e9LvPudK92jsq
+qO0TjhUytig5k9YPoEa2JGn/kqP+K1HGAdJPay/HmcNTZWh0hoamhuJ6NwARAQAB
+tCZOYXRoYW4gV2VzdCA8bmF0aGFuLndlc3RAZ251cmFkaW8ub3JnPokCPgQTAQIA
+KAUCVxPMTQIbAwUJA8JnAAYLCQgHAwIGFQgCCQoLBBYCAwECHgECF4AACgkQOFMj
+7mQCCR20CA//VJfDu8W8BI/44JkucC+XBVqwOcfg/rcSHflgi0mNNz7hyJ+idwcB
+JVFSbhSpXucl6baJ0nDe8gcMuGFLyF4uLwCByX3ExDAnFL3Mu/jIyOUX8TGudZU7
+wTEhzOLPxmXfbo8lw3TETC1Xsl8g1gU/KBJnTl3WbdGZUlKW6fP0TR5BMdYskNHm
+CCqAvXWniZwjSX/jlpWremfTU9i9DUad8ufcdJue7uiZRNq4JLaWmSbtGNzDzJIq
+6csHc3GFcd0Q/LDEDcm1AG081yLEmRnbTstZo+xW27yaRyoe1Dpm9ehsl19dVaO7
+9ek2CEarqHjtRfO1MJMSBGiaS1lvujukYKZQRGNDKemDJwuQCVkxBMEef7SNX8XG
+2OPTARVp0hlrhMVFUk3hScekrKobq81YyCfWxBxxjRWySdInFhuT29cxxRLUxb69
+3MKLzFJRlq+oEbWJN8QGqILQ785TZA8MdnMsGywPk43x9spgYbwPhtJYb/Aes9B9
+NFkZ6EzVtzV7ztITuGhefRxt3eEmdFYNDHooWNFQdifcUgLoBgKOkP+oHOc+9mx7
+6CDN9ZJTHb87W3ISw7SLI4YcMPYipEN5g51ceInDc3kXFYQ+EqU691kOuGNtx3ov
+qqvPm9PBR00GSwhLQt7s127MFpYx9+in87+UMBFXyo/VstVBPQW2GLq5Ag0EVxPM
+TQEQAK+fh+ckP728ZVRn5mr8PtsG3gktyS6LlH7EjMsHnvQR16EVAjn5G915OQUY
+Bk6yk9l0VRX0NLautc41NwVlHI4FYBBjz6mEnDocvo+BT0g5KYTyjJPOxmEzgVZW
+3Zp/jPjK5Z9YZTCIalrk2iHVQCe8fFCnaXNGNQoku1jBPRUOOTI979LWPx4d7MI0
+7Yy+8xp5ogCrcTxea9VrMeXqnXzvy2peiceZDlvNmcEUCz222i6t2k9rUwY0+ozg
+TbsorE42h4B+a49ylY4zOX9fTPfsUj59/z/ilrxZy2qP2lBIFC+wFphKF3Qkilxd
+dnVGTsb9oKCQjuMcvh7MR27RVGLjW1pVMWGMmXBkIDu0U88Hn91XKfm1ZmWgksoU
+MC7BZocvUxIKnV+WiKy9ooP/HSzgP7ggdG+16B3yDdicB0DiBFEKZEmIWCBt5NXR
+q853WwFSH7xcrEOTXnqtkRUX4+obdwQhtqTueSC4xqX0+YVixZUC6ewqueFmPn+l
+WItCV7XU67NXTJNRC3i4kIF+hpT5YWtx56NuNcvhN25bZr1frTChOuXcCBNrOU+b
+yo2wpXAcfq+YmnaP0ZFFh7wKRi4leEPL/+JyitQbvSQU4Lejwanzvv7Ug1j4qZo1
+A6WSxXYUWJY5rhh8nWYtJJOn5Wj4Y3gWa1taUpYw1g2lf0o5ABEBAAGJAiUEGAEC
+AA8FAlcTzE0CGwwFCQPCZwAACgkQOFMj7mQCCR2uXRAAiBsOfqp+QuQqO3OPW8OZ
+I2+JNbaaFEC1TorUhGs5XiT4wKyn1wDni4mavO4kJ8nK4Zc1qBYWeMOClj6JySJL
+yf0aVTjLyn+4Q4jt/9Dmn15wbOWZvdSICipfcLWmPLYniizsJWA4Mqoefcztmyxk
+FrJZ+Vri6MH5PxVuZjHhOUVfXIsqRhqqrpRjVnjzGvNxLgP3aLHfQPim/jbxaeRK
+oVtDNDLA+1nwdpZ8Hehe5OVfUKWuz1DXrdM0eY7pTRcms8+7y//AXpRqygH7TLx5
+mXavdmAzgYcamQGfu/K4Mq9Bkgr1BNasgkxnPu+J0Z4jO9HsRBCJWf2BLKXmYedD
+5t0LR8bJHUTV7lsIifo0Ev47qsk1QX41KSKPAMwSzmtTLA0wzPJrkUEeVgm075N7
+btLneqw5EyDcz3pJ7aD3HceWh+HZOREnfYXyMLxWTND7SKx0k6nmM8xasYHP0/6y
+mR8picMjbPlyoETe6B6yKi5rDjOrDwrKqBjulcUHsRhjAAUUI6IHgj4v5gCfTPS7
+WrV98icGSHYnuxV40NT8Nt0lWNrPJhIUm1nu3UkEInznxMii1h6ga6REE/TJsStD
+C46x7fsiH4HkK1FJ+owoLhsVQo0OE4nWh8lWIBhTpR4wxThwfVHKt/H12st3tHuI
+CLIM6szb01rYgHTn9/vDgJE=
+=MlbD
+-----END PGP PUBLIC KEY BLOCK-----
diff --git a/volk-config-info.1 b/volk-config-info.1
new file mode 100644 (file)
index 0000000..e8d6efd
--- /dev/null
@@ -0,0 +1,45 @@
+.\" DO NOT MODIFY THIS FILE!  It was generated by help2man 1.40.10.
+.TH VOLK-CONFIG-INFO "1" "July 2014" "volk-config-info 0.1" "User Commands"
+.SH NAME
+volk-config-info \- pkgconfig-like tool for Vector Optimized Library of Kernels 0.1
+.SH DESCRIPTION
+.SS "Program options: volk-config-info [options]:"
+.TP
+\fB\-h\fR [ \fB\-\-help\fR ]
+print help message
+.TP
+\fB\-\-prefix\fR
+print VOLK installation prefix
+.TP
+\fB\-\-builddate\fR
+print VOLK build date (RFC2822 format)
+.TP
+\fB\-\-cc\fR
+print VOLK C compiler version
+.TP
+\fB\-\-cflags\fR
+print VOLK CFLAGS
+.TP
+\fB\-\-all\-machines\fR
+print VOLK machines built into library
+.TP
+\fB\-\-avail\-machines\fR
+print VOLK machines the current platform can use
+.TP
+\fB\-\-machine\fR
+print the VOLK machine that will be used
+.TP
+\fB\-v\fR [ \fB\-\-version\fR ]
+print VOLK version
+.SH "SEE ALSO"
+The full documentation for
+.B volk-config-info
+is maintained as a Texinfo manual.  If the
+.B info
+and
+.B volk-config-info
+programs are properly installed at your site, the command
+.IP
+.B info volk-config-info
+.PP
+should give you access to the complete manual.
diff --git a/volk_modtool.1 b/volk_modtool.1
new file mode 100644 (file)
index 0000000..752e7f5
--- /dev/null
@@ -0,0 +1,112 @@
+.TH GNURADIO "1" "August 2013" "volk_modtool 3.7" "User Commands"
+.SH NAME
+volk_modtool \- tailor VOLK modules
+.SH DESCRIPTION
+The volk_modtool tool is installed along with VOLK as a way of helping
+to construct, add to, and interogate the VOLK library or companion
+libraries.
+.P
+volk_modtool is installed into $prefix/bin.
+.P
+VOLK modtool enables creating standalone (out-of-tree) VOLK modules
+and provides a few tools for sharing VOLK kernels between VOLK
+modules.  If you need to design or work with VOLK kernels away from
+the canonical VOLK library, this is the tool.  If you need to tailor
+your own VOLK library for whatever reason, this is the tool.
+.P
+The canonical VOLK library installs a volk.h and a libvolk.so.  Your
+own library will install volk_$name.h and libvolk_$name.so.  Ya Gronk?
+Good.
+.P
+There isn't a substantial difference between the canonical VOLK
+module and any other VOLK module.  They're all peers.  Any module
+created via VOLK modtool will come complete with a default
+volk_modtool.cfg file associating the module with the base from which
+it came, its distinctive $name and its destination (or path).  These
+values (created from user input if VOLK modtool runs without a
+user-supplied config file or a default config file) serve as default
+values for some VOLK modtool actions.  It's more or less intended for
+the user to change directories to the top level of a created VOLK
+module and then run volk_modtool to take advantage of the values
+stored in the default volk_modtool.cfg file.
+.P
+Apart from creating new VOLK modules, VOLK modtool allows you to list
+the names of kernels in other modules, list the names of kernels in
+the current module, add kernels from another module into the current
+module, and remove kernels from the current module.  When moving
+kernels between modules, VOLK modtool does its best to keep the qa
+and profiling code for those kernels intact.  If the base has a test
+or a profiling call for some kernel, those calls will follow the
+kernel when VOLK modtool adds that kernel.  If QA or profiling
+requires a puppet kernel, the puppet kernel will follow the original
+kernel when VOLK modtool adds that original kernel.  VOLK modtool
+respects puppets.
+.P
+======================================================================
+.P
+.SH Installing a new VOLK Library:
+.P
+Run the command "volk_modtool -i". This will ask you three questions:
+.P
+  name: // the name to give your VOLK library: volk_<name>
+  destination: // directory new source tree is built under -- must exists.
+               // It will create <directory>/volk_<name>
+  base: // the directory containing the original VOLK source code
+.P
+This will build a new skeleton directory in the destination provided
+with the name volk_<name>. It will contain the necessary structure to
+build:
+.P
+  mkdir build
+  cd build
+  cmake -DCMAKE_INSTALL_PREFIX=/opt/volk ../
+  make
+  sudo make install
+.P
+Right now, the library is empty and contains no kernels. Kernels can
+be added from another VOLK library using the '-a' option. If not
+specified, the kernel will be extracted from the base VOLK
+directory. Using the '-b' allows us to specify another VOLK library to
+use for this purpose.
+.P
+  volk_modtool -a -n 32fc_x2_conjugate_dot_prod_32fc
+.P
+This will put the code for the new kernel into
+<destination>/volk_<name>/kernels/volk_<name>/
+.P
+Other kernels must be added by hand. See the following webpages for
+more information about creating VOLK kernels:
+  http://gnuradio.org/doc/doxygen/volk_guide.html
+  http://gnuradio.org/redmine/projects/gnuradio/wiki/Volk
+.P
+======================================================================
+.P
+.SH OPTIONS
+.P
+Options for Adding and Removing Kernels:
+  -a, --add_kernel
+       Add kernel from existing VOLK module. Uses the base VOLK module
+       unless -b is used. Use -n to specify the kernel name.
+       Requires: -n.
+       Optional: -b
+.P
+  -A, --add_all_kernels
+       Add all kernels from existing VOLK module. Uses the base VOLK
+       module unless -b is used.
+       Optional: -b
+.P
+  -x, --remove_kernel
+       Remove kernel from module. 
+       Required: -n.
+       Optional: -b
+.P
+Options for Listing Kernels:
+  -l, --list
+       Lists all kernels available in the base VOLK module.
+.P
+  -k, --kernels 
+       Lists all kernels in this VOLK module.
+.P
+  -r, --remote-list
+       Lists all kernels in another VOLK module that is specified
+       using the -b option.
diff --git a/volk_profile.1 b/volk_profile.1
new file mode 100644 (file)
index 0000000..405facb
--- /dev/null
@@ -0,0 +1,5 @@
+.TH UHD_FFT "1" "March 2012" "volk_profile 3.5" "User Commands"
+.SH NAME
+volk_profile \- Quality Assurance application for libvolk functions
+.SH DESCRIPTION
+Writes profile results to a file.
diff --git a/watch b/watch
new file mode 100644 (file)
index 0000000..1339ebb
--- /dev/null
+++ b/watch
@@ -0,0 +1,4 @@
+version=4
+ opts="pgpsigurlmangle=s%$%.asc%,filenamemangle=s%(?:.*?)?volk-?(\d[\d.]*)\.tar\.xz%volk_$1.orig.tar.xz%" \
+ https://github.com/gnuradio/volk/releases \
+ (?:.*?/)?volk-?(\d[\d.]*)\.tar\.xz debian uupdate