--- /dev/null
+--- a/make/autoconf/build-aux/config.sub
++++ b/make/autoconf/build-aux/config.sub
+@@ -1,6 +1,6 @@
+ #!/bin/sh
+ #
+-# Copyright (c) 2014, 2020, Oracle and/or its affiliates. All rights reserved.
++# Copyright (c) 2014, 2022, Oracle and/or its affiliates. All rights reserved.
+ # DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ #
+ # This code is free software; you can redistribute it and/or modify it
+@@ -46,6 +46,13 @@ if echo $* | grep pc-msys >/dev/null ; t
+ exit
+ fi
+
++# Canonicalize for riscv which autoconf-config.sub doesn't handle
++if echo $* | grep '^riscv\(32\|64\)-linux' >/dev/null ; then
++ result=`echo $@ | sed 's/linux/unknown-linux/'`
++ echo $result
++ exit
++fi
++
+ # Filter out everything that doesn't begin with "aarch64-"
+ if ! echo $* | grep '^aarch64-' >/dev/null ; then
+ . $DIR/autoconf-config.sub "$@"
+@@ -78,4 +85,3 @@ result=`echo $result | sed "s/^arm-/aarc
+
+ echo $result
+ exit $exitcode
+-
+--- a/make/autoconf/jvm-features.m4
++++ b/make/autoconf/jvm-features.m4
+@@ -311,7 +311,8 @@ AC_DEFUN_ONCE([JVM_FEATURES_CHECK_SHENAN
+ AC_MSG_CHECKING([if platform is supported by Shenandoah])
+ if test "x$OPENJDK_TARGET_CPU_ARCH" = "xx86" || \
+ test "x$OPENJDK_TARGET_CPU" = "xaarch64" || \
+- test "x$OPENJDK_TARGET_CPU" = "xppc64le"; then
++ test "x$OPENJDK_TARGET_CPU" = "xppc64le" || \
++ test "x$OPENJDK_TARGET_CPU" = "xriscv64"; then
+ AC_MSG_RESULT([yes])
+ else
+ AC_MSG_RESULT([no, $OPENJDK_TARGET_CPU])
+@@ -361,7 +362,8 @@ AC_DEFUN_ONCE([JVM_FEATURES_CHECK_ZGC],
+ AC_MSG_RESULT([no, $OPENJDK_TARGET_OS-$OPENJDK_TARGET_CPU])
+ AVAILABLE=false
+ fi
+- elif test "x$OPENJDK_TARGET_CPU" = "xppc64le"; then
++ elif test "x$OPENJDK_TARGET_CPU" = "xppc64le" || \
++ test "x$OPENJDK_TARGET_CPU" = "xriscv64"; then
+ if test "x$OPENJDK_TARGET_OS" = "xlinux"; then
+ AC_MSG_RESULT([yes])
+ else
+--- a/make/autoconf/libraries.m4
++++ b/make/autoconf/libraries.m4
+@@ -1,5 +1,5 @@
+ #
+-# Copyright (c) 2011, 2021, Oracle and/or its affiliates. All rights reserved.
++# Copyright (c) 2011, 2022, Oracle and/or its affiliates. All rights reserved.
+ # DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ #
+ # This code is free software; you can redistribute it and/or modify it
+@@ -146,6 +146,12 @@ AC_DEFUN_ONCE([LIB_SETUP_LIBRARIES],
+ fi
+ fi
+
++ # Because RISC-V only has word-sized atomics, it requries libatomic where
++ # other common architectures do not. So link libatomic by default.
++ if test "x$OPENJDK_TARGET_OS" = xlinux && test "x$OPENJDK_TARGET_CPU" = xriscv64; then
++ BASIC_JVM_LIBS="$BASIC_JVM_LIBS -latomic"
++ fi
++
+ # perfstat lib
+ if test "x$OPENJDK_TARGET_OS" = xaix; then
+ BASIC_JVM_LIBS="$BASIC_JVM_LIBS -lperfstat"
+--- a/make/autoconf/platform.m4
++++ b/make/autoconf/platform.m4
+@@ -1,5 +1,5 @@
+ #
+-# Copyright (c) 2011, 2021, Oracle and/or its affiliates. All rights reserved.
++# Copyright (c) 2011, 2022, Oracle and/or its affiliates. All rights reserved.
+ # DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ #
+ # This code is free software; you can redistribute it and/or modify it
+@@ -565,6 +565,8 @@ AC_DEFUN([PLATFORM_SETUP_LEGACY_VARS_HEL
+ HOTSPOT_$1_CPU_DEFINE=PPC64
+ elif test "x$OPENJDK_$1_CPU" = xppc64le; then
+ HOTSPOT_$1_CPU_DEFINE=PPC64
++ elif test "x$OPENJDK_$1_CPU" = xriscv64; then
++ HOTSPOT_$1_CPU_DEFINE=RISCV64
+
+ # The cpu defines below are for zero, we don't support them directly.
+ elif test "x$OPENJDK_$1_CPU" = xsparc; then
+@@ -575,8 +577,6 @@ AC_DEFUN([PLATFORM_SETUP_LEGACY_VARS_HEL
+ HOTSPOT_$1_CPU_DEFINE=S390
+ elif test "x$OPENJDK_$1_CPU" = xs390x; then
+ HOTSPOT_$1_CPU_DEFINE=S390
+- elif test "x$OPENJDK_$1_CPU" = xriscv64; then
+- HOTSPOT_$1_CPU_DEFINE=RISCV
+ elif test "x$OPENJDK_$1_CPU" != x; then
+ HOTSPOT_$1_CPU_DEFINE=$(echo $OPENJDK_$1_CPU | tr a-z A-Z)
+ fi
+--- a/make/hotspot/gensrc/GensrcAdlc.gmk
++++ b/make/hotspot/gensrc/GensrcAdlc.gmk
+@@ -1,5 +1,5 @@
+ #
+-# Copyright (c) 2013, 2021, Oracle and/or its affiliates. All rights reserved.
++# Copyright (c) 2013, 2022, Oracle and/or its affiliates. All rights reserved.
+ # DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ #
+ # This code is free software; you can redistribute it and/or modify it
+@@ -149,6 +149,13 @@ ifeq ($(call check-jvm-feature, compiler
+ )))
+ endif
+
++ ifeq ($(HOTSPOT_TARGET_CPU_ARCH), riscv)
++ AD_SRC_FILES += $(call uniq, $(wildcard $(foreach d, $(AD_SRC_ROOTS), \
++ $d/cpu/$(HOTSPOT_TARGET_CPU_ARCH)/$(HOTSPOT_TARGET_CPU_ARCH)_v.ad \
++ $d/cpu/$(HOTSPOT_TARGET_CPU_ARCH)/$(HOTSPOT_TARGET_CPU_ARCH)_b.ad \
++ )))
++ endif
++
+ ifeq ($(call check-jvm-feature, shenandoahgc), true)
+ AD_SRC_FILES += $(call uniq, $(wildcard $(foreach d, $(AD_SRC_ROOTS), \
+ $d/cpu/$(HOTSPOT_TARGET_CPU_ARCH)/gc/shenandoah/shenandoah_$(HOTSPOT_TARGET_CPU).ad \
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/abstractInterpreter_riscv.cpp
+@@ -0,0 +1,177 @@
++/*
++ * Copyright (c) 2003, 2017, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "interpreter/interpreter.hpp"
++#include "oops/constMethod.hpp"
++#include "oops/klass.inline.hpp"
++#include "oops/method.hpp"
++#include "runtime/frame.inline.hpp"
++#include "utilities/align.hpp"
++#include "utilities/debug.hpp"
++#include "utilities/macros.hpp"
++
++int AbstractInterpreter::BasicType_as_index(BasicType type) {
++ int i = 0;
++ switch (type) {
++ case T_BOOLEAN: i = 0; break;
++ case T_CHAR : i = 1; break;
++ case T_BYTE : i = 2; break;
++ case T_SHORT : i = 3; break;
++ case T_INT : i = 4; break;
++ case T_LONG : i = 5; break;
++ case T_VOID : i = 6; break;
++ case T_FLOAT : i = 7; break;
++ case T_DOUBLE : i = 8; break;
++ case T_OBJECT : i = 9; break;
++ case T_ARRAY : i = 9; break;
++ default : ShouldNotReachHere();
++ }
++ assert(0 <= i && i < AbstractInterpreter::number_of_result_handlers,
++ "index out of bounds");
++ return i;
++}
++
++// How much stack a method activation needs in words.
++int AbstractInterpreter::size_top_interpreter_activation(Method* method) {
++ const int entry_size = frame::interpreter_frame_monitor_size();
++
++ // total overhead size: entry_size + (saved fp thru expr stack
++ // bottom). be sure to change this if you add/subtract anything
++ // to/from the overhead area
++ const int overhead_size =
++ -(frame::interpreter_frame_initial_sp_offset) + entry_size;
++
++ const int stub_code = frame::entry_frame_after_call_words;
++ assert_cond(method != NULL);
++ const int method_stack = (method->max_locals() + method->max_stack()) *
++ Interpreter::stackElementWords;
++ return (overhead_size + method_stack + stub_code);
++}
++
++// asm based interpreter deoptimization helpers
++int AbstractInterpreter::size_activation(int max_stack,
++ int temps,
++ int extra_args,
++ int monitors,
++ int callee_params,
++ int callee_locals,
++ bool is_top_frame) {
++ // Note: This calculation must exactly parallel the frame setup
++ // in TemplateInterpreterGenerator::generate_method_entry.
++
++ // fixed size of an interpreter frame:
++ int overhead = frame::sender_sp_offset -
++ frame::interpreter_frame_initial_sp_offset;
++ // Our locals were accounted for by the caller (or last_frame_adjust
++ // on the transistion) Since the callee parameters already account
++ // for the callee's params we only need to account for the extra
++ // locals.
++ int size = overhead +
++ (callee_locals - callee_params) +
++ monitors * frame::interpreter_frame_monitor_size() +
++ // On the top frame, at all times SP <= ESP, and SP is
++ // 16-aligned. We ensure this by adjusting SP on method
++ // entry and re-entry to allow room for the maximum size of
++ // the expression stack. When we call another method we bump
++ // SP so that no stack space is wasted. So, only on the top
++ // frame do we need to allow max_stack words.
++ (is_top_frame ? max_stack : temps + extra_args);
++
++ // On riscv we always keep the stack pointer 16-aligned, so we
++ // must round up here.
++ size = align_up(size, 2);
++
++ return size;
++}
++
++void AbstractInterpreter::layout_activation(Method* method,
++ int tempcount,
++ int popframe_extra_args,
++ int moncount,
++ int caller_actual_parameters,
++ int callee_param_count,
++ int callee_locals,
++ frame* caller,
++ frame* interpreter_frame,
++ bool is_top_frame,
++ bool is_bottom_frame) {
++ // The frame interpreter_frame is guaranteed to be the right size,
++ // as determined by a previous call to the size_activation() method.
++ // It is also guaranteed to be walkable even though it is in a
++ // skeletal state
++ assert_cond(method != NULL && caller != NULL && interpreter_frame != NULL);
++ int max_locals = method->max_locals() * Interpreter::stackElementWords;
++ int extra_locals = (method->max_locals() - method->size_of_parameters()) *
++ Interpreter::stackElementWords;
++
++#ifdef ASSERT
++ assert(caller->sp() == interpreter_frame->sender_sp(), "Frame not properly walkable");
++#endif
++
++ interpreter_frame->interpreter_frame_set_method(method);
++ // NOTE the difference in using sender_sp and interpreter_frame_sender_sp
++ // interpreter_frame_sender_sp is the original sp of the caller (the unextended_sp)
++ // and sender_sp is fp
++ intptr_t* locals = NULL;
++ if (caller->is_interpreted_frame()) {
++ locals = caller->interpreter_frame_last_sp() + caller_actual_parameters - 1;
++ } else {
++ locals = interpreter_frame->sender_sp() + max_locals - 1;
++ }
++
++#ifdef ASSERT
++ if (caller->is_interpreted_frame()) {
++ assert(locals < caller->fp() + frame::interpreter_frame_initial_sp_offset, "bad placement");
++ }
++#endif
++
++ interpreter_frame->interpreter_frame_set_locals(locals);
++ BasicObjectLock* montop = interpreter_frame->interpreter_frame_monitor_begin();
++ BasicObjectLock* monbot = montop - moncount;
++ interpreter_frame->interpreter_frame_set_monitor_end(monbot);
++
++ // Set last_sp
++ intptr_t* last_sp = (intptr_t*) monbot -
++ tempcount*Interpreter::stackElementWords -
++ popframe_extra_args;
++ interpreter_frame->interpreter_frame_set_last_sp(last_sp);
++
++ // All frames but the initial (oldest) interpreter frame we fill in have
++ // a value for sender_sp that allows walking the stack but isn't
++ // truly correct. Correct the value here.
++ if (extra_locals != 0 &&
++ interpreter_frame->sender_sp() ==
++ interpreter_frame->interpreter_frame_sender_sp()) {
++ interpreter_frame->set_interpreter_frame_sender_sp(caller->sp() +
++ extra_locals);
++ }
++
++ *interpreter_frame->interpreter_frame_cache_addr() =
++ method->constants()->cache();
++ *interpreter_frame->interpreter_frame_mirror_addr() =
++ method->method_holder()->java_mirror();
++}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/assembler_riscv.cpp
+@@ -0,0 +1,78 @@
++/*
++ * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include <stdio.h>
++#include <sys/types.h>
++
++#include "precompiled.hpp"
++#include "asm/assembler.hpp"
++#include "asm/assembler.inline.hpp"
++#include "compiler/disassembler.hpp"
++#include "interpreter/interpreter.hpp"
++#include "memory/resourceArea.hpp"
++#include "runtime/interfaceSupport.inline.hpp"
++#include "runtime/sharedRuntime.hpp"
++
++int AbstractAssembler::code_fill_byte() {
++ return 0;
++}
++
++Address::Address(address target, relocInfo::relocType rtype) : _base(noreg), _offset(0), _mode(literal) {
++ _target = target;
++ switch (rtype) {
++ case relocInfo::oop_type:
++ case relocInfo::metadata_type:
++ // Oops are a special case. Normally they would be their own section
++ // but in cases like icBuffer they are literals in the code stream that
++ // we don't have a section for. We use none so that we get a literal address
++ // which is always patchable.
++ break;
++ case relocInfo::external_word_type:
++ _rspec = external_word_Relocation::spec(target);
++ break;
++ case relocInfo::internal_word_type:
++ _rspec = internal_word_Relocation::spec(target);
++ break;
++ case relocInfo::opt_virtual_call_type:
++ _rspec = opt_virtual_call_Relocation::spec();
++ break;
++ case relocInfo::static_call_type:
++ _rspec = static_call_Relocation::spec();
++ break;
++ case relocInfo::runtime_call_type:
++ _rspec = runtime_call_Relocation::spec();
++ break;
++ case relocInfo::poll_type:
++ case relocInfo::poll_return_type:
++ _rspec = Relocation::spec_simple(rtype);
++ break;
++ case relocInfo::none:
++ _rspec = RelocationHolder::none;
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/assembler_riscv.hpp
+@@ -0,0 +1,2764 @@
++/*
++ * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_ASSEMBLER_RISCV_HPP
++#define CPU_RISCV_ASSEMBLER_RISCV_HPP
++
++#include "asm/register.hpp"
++#include "code/codeCache.hpp"
++#include "metaprogramming/enableIf.hpp"
++
++#define XLEN 64
++
++// definitions of various symbolic names for machine registers
++
++// First intercalls between C and Java which use 8 general registers
++// and 8 floating registers
++
++class Argument {
++ public:
++ enum {
++ n_int_register_parameters_c = 8, // x10, x11, ... x17 (c_rarg0, c_rarg1, ...)
++ n_float_register_parameters_c = 8, // f10, f11, ... f17 (c_farg0, c_farg1, ... )
++
++ n_int_register_parameters_j = 8, // x11, ... x17, x10 (j_rarg0, j_rarg1, ...)
++ n_float_register_parameters_j = 8 // f10, f11, ... f17 (j_farg0, j_farg1, ...)
++ };
++};
++
++// function argument(caller-save registers)
++REGISTER_DECLARATION(Register, c_rarg0, x10);
++REGISTER_DECLARATION(Register, c_rarg1, x11);
++REGISTER_DECLARATION(Register, c_rarg2, x12);
++REGISTER_DECLARATION(Register, c_rarg3, x13);
++REGISTER_DECLARATION(Register, c_rarg4, x14);
++REGISTER_DECLARATION(Register, c_rarg5, x15);
++REGISTER_DECLARATION(Register, c_rarg6, x16);
++REGISTER_DECLARATION(Register, c_rarg7, x17);
++
++REGISTER_DECLARATION(FloatRegister, c_farg0, f10);
++REGISTER_DECLARATION(FloatRegister, c_farg1, f11);
++REGISTER_DECLARATION(FloatRegister, c_farg2, f12);
++REGISTER_DECLARATION(FloatRegister, c_farg3, f13);
++REGISTER_DECLARATION(FloatRegister, c_farg4, f14);
++REGISTER_DECLARATION(FloatRegister, c_farg5, f15);
++REGISTER_DECLARATION(FloatRegister, c_farg6, f16);
++REGISTER_DECLARATION(FloatRegister, c_farg7, f17);
++
++// Symbolically name the register arguments used by the Java calling convention.
++// We have control over the convention for java so we can do what we please.
++// What pleases us is to offset the java calling convention so that when
++// we call a suitable jni method the arguments are lined up and we don't
++// have to do much shuffling. A suitable jni method is non-static and a
++// small number of arguments.
++//
++// |------------------------------------------------------------------------|
++// | c_rarg0 c_rarg1 c_rarg2 c_rarg3 c_rarg4 c_rarg5 c_rarg6 c_rarg7 |
++// |------------------------------------------------------------------------|
++// | x10 x11 x12 x13 x14 x15 x16 x17 |
++// |------------------------------------------------------------------------|
++// | j_rarg7 j_rarg0 j_rarg1 j_rarg2 j_rarg3 j_rarg4 j_rarg5 j_rarg6 |
++// |------------------------------------------------------------------------|
++
++REGISTER_DECLARATION(Register, j_rarg0, c_rarg1);
++REGISTER_DECLARATION(Register, j_rarg1, c_rarg2);
++REGISTER_DECLARATION(Register, j_rarg2, c_rarg3);
++REGISTER_DECLARATION(Register, j_rarg3, c_rarg4);
++REGISTER_DECLARATION(Register, j_rarg4, c_rarg5);
++REGISTER_DECLARATION(Register, j_rarg5, c_rarg6);
++REGISTER_DECLARATION(Register, j_rarg6, c_rarg7);
++REGISTER_DECLARATION(Register, j_rarg7, c_rarg0);
++
++// Java floating args are passed as per C
++
++REGISTER_DECLARATION(FloatRegister, j_farg0, f10);
++REGISTER_DECLARATION(FloatRegister, j_farg1, f11);
++REGISTER_DECLARATION(FloatRegister, j_farg2, f12);
++REGISTER_DECLARATION(FloatRegister, j_farg3, f13);
++REGISTER_DECLARATION(FloatRegister, j_farg4, f14);
++REGISTER_DECLARATION(FloatRegister, j_farg5, f15);
++REGISTER_DECLARATION(FloatRegister, j_farg6, f16);
++REGISTER_DECLARATION(FloatRegister, j_farg7, f17);
++
++// zero rigster
++REGISTER_DECLARATION(Register, zr, x0);
++// global pointer
++REGISTER_DECLARATION(Register, gp, x3);
++// thread pointer
++REGISTER_DECLARATION(Register, tp, x4);
++
++// registers used to hold VM data either temporarily within a method
++// or across method calls
++
++// volatile (caller-save) registers
++
++// current method -- must be in a call-clobbered register
++REGISTER_DECLARATION(Register, xmethod, x31);
++// return address
++REGISTER_DECLARATION(Register, ra, x1);
++
++// non-volatile (callee-save) registers
++
++// stack pointer
++REGISTER_DECLARATION(Register, sp, x2);
++// frame pointer
++REGISTER_DECLARATION(Register, fp, x8);
++// base of heap
++REGISTER_DECLARATION(Register, xheapbase, x27);
++// constant pool cache
++REGISTER_DECLARATION(Register, xcpool, x26);
++// monitors allocated on stack
++REGISTER_DECLARATION(Register, xmonitors, x25);
++// locals on stack
++REGISTER_DECLARATION(Register, xlocals, x24);
++
++// java thread pointer
++REGISTER_DECLARATION(Register, xthread, x23);
++// bytecode pointer
++REGISTER_DECLARATION(Register, xbcp, x22);
++// Dispatch table base
++REGISTER_DECLARATION(Register, xdispatch, x21);
++// Java stack pointer
++REGISTER_DECLARATION(Register, esp, x20);
++
++// temporary register(caller-save registers)
++REGISTER_DECLARATION(Register, t0, x5);
++REGISTER_DECLARATION(Register, t1, x6);
++REGISTER_DECLARATION(Register, t2, x7);
++
++const Register g_INTArgReg[Argument::n_int_register_parameters_c] = {
++ c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5, c_rarg6, c_rarg7
++};
++
++const FloatRegister g_FPArgReg[Argument::n_float_register_parameters_c] = {
++ c_farg0, c_farg1, c_farg2, c_farg3, c_farg4, c_farg5, c_farg6, c_farg7
++};
++
++#define assert_cond(ARG1) assert(ARG1, #ARG1)
++
++// Addressing modes
++class Address {
++ public:
++
++ enum mode { no_mode, base_plus_offset, pcrel, literal };
++
++ private:
++ Register _base;
++ Register _index;
++ int64_t _offset;
++ enum mode _mode;
++
++ RelocationHolder _rspec;
++
++ // If the target is far we'll need to load the ea of this to a
++ // register to reach it. Otherwise if near we can do PC-relative
++ // addressing.
++ address _target;
++
++ public:
++ Address()
++ : _base(noreg), _index(noreg), _offset(0), _mode(no_mode), _target(NULL) { }
++
++ Address(Register r)
++ : _base(r), _index(noreg), _offset(0), _mode(base_plus_offset), _target(NULL) { }
++
++ template<typename T, ENABLE_IF(std::is_integral<T>::value)>
++ Address(Register r, T o)
++ : _base(r), _index(noreg), _offset(o), _mode(base_plus_offset), _target(NULL) {}
++
++ Address(Register r, ByteSize disp)
++ : Address(r, in_bytes(disp)) {}
++
++ Address(address target, RelocationHolder const& rspec)
++ : _base(noreg),
++ _index(noreg),
++ _offset(0),
++ _mode(literal),
++ _rspec(rspec),
++ _target(target) { }
++
++ Address(address target, relocInfo::relocType rtype = relocInfo::external_word_type);
++
++ const Register base() const {
++ guarantee((_mode == base_plus_offset | _mode == pcrel | _mode == literal), "wrong mode");
++ return _base;
++ }
++ long offset() const {
++ return _offset;
++ }
++ Register index() const {
++ return _index;
++ }
++ mode getMode() const {
++ return _mode;
++ }
++
++ bool uses(Register reg) const { return _base == reg; }
++ const address target() const { return _target; }
++ const RelocationHolder& rspec() const { return _rspec; }
++ ~Address() {
++ _target = NULL;
++ _base = NULL;
++ }
++};
++
++// Convience classes
++class RuntimeAddress: public Address {
++
++ public:
++
++ RuntimeAddress(address target) : Address(target, relocInfo::runtime_call_type) {}
++ ~RuntimeAddress() {}
++};
++
++class OopAddress: public Address {
++
++ public:
++
++ OopAddress(address target) : Address(target, relocInfo::oop_type) {}
++ ~OopAddress() {}
++};
++
++class ExternalAddress: public Address {
++ private:
++ static relocInfo::relocType reloc_for_target(address target) {
++ // Sometimes ExternalAddress is used for values which aren't
++ // exactly addresses, like the card table base.
++ // external_word_type can't be used for values in the first page
++ // so just skip the reloc in that case.
++ return external_word_Relocation::can_be_relocated(target) ? relocInfo::external_word_type : relocInfo::none;
++ }
++
++ public:
++
++ ExternalAddress(address target) : Address(target, reloc_for_target(target)) {}
++ ~ExternalAddress() {}
++};
++
++class InternalAddress: public Address {
++
++ public:
++
++ InternalAddress(address target) : Address(target, relocInfo::internal_word_type) {}
++ ~InternalAddress() {}
++};
++
++class Assembler : public AbstractAssembler {
++public:
++
++ enum {
++ instruction_size = 4,
++ compressed_instruction_size = 2,
++ };
++
++ // instruction must start at passed address
++ static bool is_compressed_instr(address instr) {
++ // The RISC-V ISA Manual, Section 'Base Instruction-Length Encoding':
++ // Instructions are stored in memory as a sequence of 16-bit little-endian parcels, regardless of
++ // memory system endianness. Parcels forming one instruction are stored at increasing halfword
++ // addresses, with the lowest-addressed parcel holding the lowest-numbered bits in the instruction
++ // specification.
++ if (UseRVC && (((uint16_t *)instr)[0] & 0b11) != 0b11) {
++ // 16-bit instructions have their lowest two bits equal to 0b00, 0b01, or 0b10
++ return true;
++ }
++ // 32-bit instructions have their lowest two bits set to 0b11
++ return false;
++ }
++
++ //---< calculate length of instruction >---
++ // We just use the values set above.
++ // instruction must start at passed address
++ static unsigned int instr_len(address instr) {
++ return is_compressed_instr(instr) ? compressed_instruction_size : instruction_size;
++ }
++
++ //---< longest instructions >---
++ static unsigned int instr_maxlen() { return instruction_size; }
++
++ enum RoundingMode {
++ rne = 0b000, // round to Nearest, ties to Even
++ rtz = 0b001, // round towards Zero
++ rdn = 0b010, // round Down (towards eegative infinity)
++ rup = 0b011, // round Up (towards infinity)
++ rmm = 0b100, // round to Nearest, ties to Max Magnitude
++ rdy = 0b111, // in instruction's rm field, selects dynamic rounding mode.In Rounding Mode register, Invalid.
++ };
++
++ static inline uint32_t extract(uint32_t val, unsigned msb, unsigned lsb) {
++ assert_cond(msb >= lsb && msb <= 31);
++ unsigned nbits = msb - lsb + 1;
++ uint32_t mask = (1U << nbits) - 1;
++ uint32_t result = val >> lsb;
++ result &= mask;
++ return result;
++ }
++
++ static inline int32_t sextract(uint32_t val, unsigned msb, unsigned lsb) {
++ assert_cond(msb >= lsb && msb <= 31);
++ int32_t result = val << (31 - msb);
++ result >>= (31 - msb + lsb);
++ return result;
++ }
++
++ static void patch(address a, unsigned msb, unsigned lsb, unsigned val) {
++ assert_cond(a != NULL);
++ assert_cond(msb >= lsb && msb <= 31);
++ unsigned nbits = msb - lsb + 1;
++ guarantee(val < (1U << nbits), "Field too big for insn");
++ unsigned mask = (1U << nbits) - 1;
++ val <<= lsb;
++ mask <<= lsb;
++ unsigned target = *(unsigned *)a;
++ target &= ~mask;
++ target |= val;
++ *(unsigned *)a = target;
++ }
++
++ static void patch(address a, unsigned bit, unsigned val) {
++ patch(a, bit, bit, val);
++ }
++
++ static void patch_reg(address a, unsigned lsb, Register reg) {
++ patch(a, lsb + 4, lsb, reg->encoding_nocheck());
++ }
++
++ static void patch_reg(address a, unsigned lsb, FloatRegister reg) {
++ patch(a, lsb + 4, lsb, reg->encoding_nocheck());
++ }
++
++ static void patch_reg(address a, unsigned lsb, VectorRegister reg) {
++ patch(a, lsb + 4, lsb, reg->encoding_nocheck());
++ }
++
++ void emit(unsigned insn) {
++ emit_int32((jint)insn);
++ }
++
++ enum csr {
++ cycle = 0xc00,
++ time,
++ instret,
++ hpmcounter3,
++ hpmcounter4,
++ hpmcounter5,
++ hpmcounter6,
++ hpmcounter7,
++ hpmcounter8,
++ hpmcounter9,
++ hpmcounter10,
++ hpmcounter11,
++ hpmcounter12,
++ hpmcounter13,
++ hpmcounter14,
++ hpmcounter15,
++ hpmcounter16,
++ hpmcounter17,
++ hpmcounter18,
++ hpmcounter19,
++ hpmcounter20,
++ hpmcounter21,
++ hpmcounter22,
++ hpmcounter23,
++ hpmcounter24,
++ hpmcounter25,
++ hpmcounter26,
++ hpmcounter27,
++ hpmcounter28,
++ hpmcounter29,
++ hpmcounter30,
++ hpmcounter31 = 0xc1f
++ };
++
++ // Emit an illegal instruction that's known to trap, with 32 read-only CSR
++ // to choose as the input operand.
++ // According to the RISC-V Assembly Programmer's Manual, a de facto implementation
++ // of this instruction is the UNIMP pseduo-instruction, 'CSRRW x0, cycle, x0',
++ // attempting to write zero to a read-only CSR 'cycle' (0xC00).
++ // RISC-V ISAs provide a set of up to 32 read-only CSR registers 0xC00-0xC1F,
++ // and an attempt to write into any read-only CSR (whether it exists or not)
++ // will generate an illegal instruction exception.
++ void illegal_instruction(csr csr_reg) {
++ csrrw(x0, (unsigned)csr_reg, x0);
++ }
++
++// Register Instruction
++#define INSN(NAME, op, funct3, funct7) \
++ void NAME(Register Rd, Register Rs1, Register Rs2) { \
++ unsigned insn = 0; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, funct3); \
++ patch((address)&insn, 31, 25, funct7); \
++ patch_reg((address)&insn, 7, Rd); \
++ patch_reg((address)&insn, 15, Rs1); \
++ patch_reg((address)&insn, 20, Rs2); \
++ emit(insn); \
++ }
++
++ INSN(_add, 0b0110011, 0b000, 0b0000000);
++ INSN(_sub, 0b0110011, 0b000, 0b0100000);
++ INSN(_andr, 0b0110011, 0b111, 0b0000000);
++ INSN(_orr, 0b0110011, 0b110, 0b0000000);
++ INSN(_xorr, 0b0110011, 0b100, 0b0000000);
++ INSN(sll, 0b0110011, 0b001, 0b0000000);
++ INSN(sra, 0b0110011, 0b101, 0b0100000);
++ INSN(srl, 0b0110011, 0b101, 0b0000000);
++ INSN(slt, 0b0110011, 0b010, 0b0000000);
++ INSN(sltu, 0b0110011, 0b011, 0b0000000);
++ INSN(_addw, 0b0111011, 0b000, 0b0000000);
++ INSN(_subw, 0b0111011, 0b000, 0b0100000);
++ INSN(sllw, 0b0111011, 0b001, 0b0000000);
++ INSN(sraw, 0b0111011, 0b101, 0b0100000);
++ INSN(srlw, 0b0111011, 0b101, 0b0000000);
++ INSN(mul, 0b0110011, 0b000, 0b0000001);
++ INSN(mulh, 0b0110011, 0b001, 0b0000001);
++ INSN(mulhsu,0b0110011, 0b010, 0b0000001);
++ INSN(mulhu, 0b0110011, 0b011, 0b0000001);
++ INSN(mulw, 0b0111011, 0b000, 0b0000001);
++ INSN(div, 0b0110011, 0b100, 0b0000001);
++ INSN(divu, 0b0110011, 0b101, 0b0000001);
++ INSN(divw, 0b0111011, 0b100, 0b0000001);
++ INSN(divuw, 0b0111011, 0b101, 0b0000001);
++ INSN(rem, 0b0110011, 0b110, 0b0000001);
++ INSN(remu, 0b0110011, 0b111, 0b0000001);
++ INSN(remw, 0b0111011, 0b110, 0b0000001);
++ INSN(remuw, 0b0111011, 0b111, 0b0000001);
++
++#undef INSN
++
++// Load/store register (all modes)
++#define INSN(NAME, op, funct3) \
++ void NAME(Register Rd, Register Rs, const int32_t offset) { \
++ guarantee(is_simm12(offset), "offset is invalid."); \
++ unsigned insn = 0; \
++ int32_t val = offset & 0xfff; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, funct3); \
++ patch_reg((address)&insn, 15, Rs); \
++ patch_reg((address)&insn, 7, Rd); \
++ patch((address)&insn, 31, 20, val); \
++ emit(insn); \
++ }
++
++ INSN(lb, 0b0000011, 0b000);
++ INSN(lbu, 0b0000011, 0b100);
++ INSN(lh, 0b0000011, 0b001);
++ INSN(lhu, 0b0000011, 0b101);
++ INSN(_lw, 0b0000011, 0b010);
++ INSN(lwu, 0b0000011, 0b110);
++ INSN(_ld, 0b0000011, 0b011);
++
++#undef INSN
++
++#define INSN(NAME, op, funct3) \
++ void NAME(FloatRegister Rd, Register Rs, const int32_t offset) { \
++ guarantee(is_simm12(offset), "offset is invalid."); \
++ unsigned insn = 0; \
++ uint32_t val = offset & 0xfff; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, funct3); \
++ patch_reg((address)&insn, 15, Rs); \
++ patch_reg((address)&insn, 7, Rd); \
++ patch((address)&insn, 31, 20, val); \
++ emit(insn); \
++ }
++
++ INSN(flw, 0b0000111, 0b010);
++ INSN(_fld, 0b0000111, 0b011);
++
++#undef INSN
++
++#define INSN(NAME, op, funct3) \
++ void NAME(Register Rs1, Register Rs2, const int64_t offset) { \
++ guarantee(is_simm13(offset) && ((offset % 2) == 0), "offset is invalid."); \
++ unsigned insn = 0; \
++ uint32_t val = offset & 0x1fff; \
++ uint32_t val11 = (val >> 11) & 0x1; \
++ uint32_t val12 = (val >> 12) & 0x1; \
++ uint32_t low = (val >> 1) & 0xf; \
++ uint32_t high = (val >> 5) & 0x3f; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, funct3); \
++ patch_reg((address)&insn, 15, Rs1); \
++ patch_reg((address)&insn, 20, Rs2); \
++ patch((address)&insn, 7, val11); \
++ patch((address)&insn, 11, 8, low); \
++ patch((address)&insn, 30, 25, high); \
++ patch((address)&insn, 31, val12); \
++ emit(insn); \
++ }
++
++ INSN(beq, 0b1100011, 0b000);
++ INSN(bne, 0b1100011, 0b001);
++ INSN(bge, 0b1100011, 0b101);
++ INSN(bgeu, 0b1100011, 0b111);
++ INSN(blt, 0b1100011, 0b100);
++ INSN(bltu, 0b1100011, 0b110);
++
++#undef INSN
++
++#define INSN(NAME, REGISTER, op, funct3) \
++ void NAME(REGISTER Rs1, Register Rs2, const int32_t offset) { \
++ guarantee(is_simm12(offset), "offset is invalid."); \
++ unsigned insn = 0; \
++ uint32_t val = offset & 0xfff; \
++ uint32_t low = val & 0x1f; \
++ uint32_t high = (val >> 5) & 0x7f; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, funct3); \
++ patch_reg((address)&insn, 15, Rs2); \
++ patch_reg((address)&insn, 20, Rs1); \
++ patch((address)&insn, 11, 7, low); \
++ patch((address)&insn, 31, 25, high); \
++ emit(insn); \
++ } \
++
++ INSN(sb, Register, 0b0100011, 0b000);
++ INSN(sh, Register, 0b0100011, 0b001);
++ INSN(_sw, Register, 0b0100011, 0b010);
++ INSN(_sd, Register, 0b0100011, 0b011);
++ INSN(fsw, FloatRegister, 0b0100111, 0b010);
++ INSN(_fsd, FloatRegister, 0b0100111, 0b011);
++
++#undef INSN
++
++#define INSN(NAME, op, funct3) \
++ void NAME(Register Rd, const uint32_t csr, Register Rs1) { \
++ guarantee(is_uimm12(csr), "csr is invalid"); \
++ unsigned insn = 0; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, funct3); \
++ patch_reg((address)&insn, 7, Rd); \
++ patch_reg((address)&insn, 15, Rs1); \
++ patch((address)&insn, 31, 20, csr); \
++ emit(insn); \
++ }
++
++ INSN(csrrw, 0b1110011, 0b001);
++ INSN(csrrs, 0b1110011, 0b010);
++ INSN(csrrc, 0b1110011, 0b011);
++
++#undef INSN
++
++#define INSN(NAME, op, funct3) \
++ void NAME(Register Rd, const uint32_t csr, const uint32_t uimm) { \
++ guarantee(is_uimm12(csr), "csr is invalid"); \
++ guarantee(is_uimm5(uimm), "uimm is invalid"); \
++ unsigned insn = 0; \
++ uint32_t val = uimm & 0x1f; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, funct3); \
++ patch_reg((address)&insn, 7, Rd); \
++ patch((address)&insn, 19, 15, val); \
++ patch((address)&insn, 31, 20, csr); \
++ emit(insn); \
++ }
++
++ INSN(csrrwi, 0b1110011, 0b101);
++ INSN(csrrsi, 0b1110011, 0b110);
++ INSN(csrrci, 0b1110011, 0b111);
++
++#undef INSN
++
++#define INSN(NAME, op) \
++ void NAME(Register Rd, const int32_t offset) { \
++ guarantee(is_simm21(offset) && ((offset % 2) == 0), "offset is invalid."); \
++ unsigned insn = 0; \
++ patch((address)&insn, 6, 0, op); \
++ patch_reg((address)&insn, 7, Rd); \
++ patch((address)&insn, 19, 12, (uint32_t)((offset >> 12) & 0xff)); \
++ patch((address)&insn, 20, (uint32_t)((offset >> 11) & 0x1)); \
++ patch((address)&insn, 30, 21, (uint32_t)((offset >> 1) & 0x3ff)); \
++ patch((address)&insn, 31, (uint32_t)((offset >> 20) & 0x1)); \
++ emit(insn); \
++ }
++
++ INSN(jal, 0b1101111);
++
++#undef INSN
++
++#define INSN(NAME, op, funct) \
++ void NAME(Register Rd, Register Rs, const int32_t offset) { \
++ guarantee(is_simm12(offset), "offset is invalid."); \
++ unsigned insn = 0; \
++ patch((address)&insn, 6, 0, op); \
++ patch_reg((address)&insn, 7, Rd); \
++ patch((address)&insn, 14, 12, funct); \
++ patch_reg((address)&insn, 15, Rs); \
++ int32_t val = offset & 0xfff; \
++ patch((address)&insn, 31, 20, val); \
++ emit(insn); \
++ }
++
++ INSN(_jalr, 0b1100111, 0b000);
++
++#undef INSN
++
++ enum barrier {
++ i = 0b1000, o = 0b0100, r = 0b0010, w = 0b0001,
++ ir = i | r, ow = o | w, iorw = i | o | r | w
++ };
++
++ void fence(const uint32_t predecessor, const uint32_t successor) {
++ unsigned insn = 0;
++ guarantee(predecessor < 16, "predecessor is invalid");
++ guarantee(successor < 16, "successor is invalid");
++ patch((address)&insn, 6, 0, 0b001111);
++ patch((address)&insn, 11, 7, 0b00000);
++ patch((address)&insn, 14, 12, 0b000);
++ patch((address)&insn, 19, 15, 0b00000);
++ patch((address)&insn, 23, 20, successor);
++ patch((address)&insn, 27, 24, predecessor);
++ patch((address)&insn, 31, 28, 0b0000);
++ emit(insn);
++ }
++
++#define INSN(NAME, op, funct3, funct7) \
++ void NAME() { \
++ unsigned insn = 0; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 11, 7, 0b00000); \
++ patch((address)&insn, 14, 12, funct3); \
++ patch((address)&insn, 19, 15, 0b00000); \
++ patch((address)&insn, 31, 20, funct7); \
++ emit(insn); \
++ }
++
++ INSN(ecall, 0b1110011, 0b000, 0b000000000000);
++ INSN(_ebreak, 0b1110011, 0b000, 0b000000000001);
++
++#undef INSN
++
++enum Aqrl {relaxed = 0b00, rl = 0b01, aq = 0b10, aqrl = 0b11};
++
++#define INSN(NAME, op, funct3, funct7) \
++ void NAME(Register Rd, Register Rs1, Register Rs2, Aqrl memory_order = aqrl) { \
++ unsigned insn = 0; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, funct3); \
++ patch_reg((address)&insn, 7, Rd); \
++ patch_reg((address)&insn, 15, Rs1); \
++ patch_reg((address)&insn, 20, Rs2); \
++ patch((address)&insn, 31, 27, funct7); \
++ patch((address)&insn, 26, 25, memory_order); \
++ emit(insn); \
++ }
++
++ INSN(amoswap_w, 0b0101111, 0b010, 0b00001);
++ INSN(amoadd_w, 0b0101111, 0b010, 0b00000);
++ INSN(amoxor_w, 0b0101111, 0b010, 0b00100);
++ INSN(amoand_w, 0b0101111, 0b010, 0b01100);
++ INSN(amoor_w, 0b0101111, 0b010, 0b01000);
++ INSN(amomin_w, 0b0101111, 0b010, 0b10000);
++ INSN(amomax_w, 0b0101111, 0b010, 0b10100);
++ INSN(amominu_w, 0b0101111, 0b010, 0b11000);
++ INSN(amomaxu_w, 0b0101111, 0b010, 0b11100);
++ INSN(amoswap_d, 0b0101111, 0b011, 0b00001);
++ INSN(amoadd_d, 0b0101111, 0b011, 0b00000);
++ INSN(amoxor_d, 0b0101111, 0b011, 0b00100);
++ INSN(amoand_d, 0b0101111, 0b011, 0b01100);
++ INSN(amoor_d, 0b0101111, 0b011, 0b01000);
++ INSN(amomin_d, 0b0101111, 0b011, 0b10000);
++ INSN(amomax_d , 0b0101111, 0b011, 0b10100);
++ INSN(amominu_d, 0b0101111, 0b011, 0b11000);
++ INSN(amomaxu_d, 0b0101111, 0b011, 0b11100);
++#undef INSN
++
++enum operand_size { int8, int16, int32, uint32, int64 };
++
++#define INSN(NAME, op, funct3, funct7) \
++ void NAME(Register Rd, Register Rs1, Aqrl memory_order = relaxed) { \
++ unsigned insn = 0; \
++ uint32_t val = memory_order & 0x3; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, funct3); \
++ patch_reg((address)&insn, 7, Rd); \
++ patch_reg((address)&insn, 15, Rs1); \
++ patch((address)&insn, 25, 20, 0b00000); \
++ patch((address)&insn, 31, 27, funct7); \
++ patch((address)&insn, 26, 25, val); \
++ emit(insn); \
++ }
++
++ INSN(lr_w, 0b0101111, 0b010, 0b00010);
++ INSN(lr_d, 0b0101111, 0b011, 0b00010);
++
++#undef INSN
++
++#define INSN(NAME, op, funct3, funct7) \
++ void NAME(Register Rd, Register Rs1, Register Rs2, Aqrl memory_order = relaxed) { \
++ unsigned insn = 0; \
++ uint32_t val = memory_order & 0x3; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, funct3); \
++ patch_reg((address)&insn, 7, Rd); \
++ patch_reg((address)&insn, 15, Rs2); \
++ patch_reg((address)&insn, 20, Rs1); \
++ patch((address)&insn, 31, 27, funct7); \
++ patch((address)&insn, 26, 25, val); \
++ emit(insn); \
++ }
++
++ INSN(sc_w, 0b0101111, 0b010, 0b00011);
++ INSN(sc_d, 0b0101111, 0b011, 0b00011);
++#undef INSN
++
++#define INSN(NAME, op, funct5, funct7) \
++ void NAME(FloatRegister Rd, FloatRegister Rs1, RoundingMode rm = rne) { \
++ unsigned insn = 0; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, rm); \
++ patch((address)&insn, 24, 20, funct5); \
++ patch((address)&insn, 31, 25, funct7); \
++ patch_reg((address)&insn, 7, Rd); \
++ patch_reg((address)&insn, 15, Rs1); \
++ emit(insn); \
++ }
++
++ INSN(fsqrt_s, 0b1010011, 0b00000, 0b0101100);
++ INSN(fsqrt_d, 0b1010011, 0b00000, 0b0101101);
++ INSN(fcvt_s_d, 0b1010011, 0b00001, 0b0100000);
++ INSN(fcvt_d_s, 0b1010011, 0b00000, 0b0100001);
++#undef INSN
++
++// Immediate Instruction
++#define INSN(NAME, op, funct3) \
++ void NAME(Register Rd, Register Rs1, int32_t imm) { \
++ guarantee(is_simm12(imm), "Immediate is out of validity"); \
++ unsigned insn = 0; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, funct3); \
++ patch((address)&insn, 31, 20, imm & 0x00000fff); \
++ patch_reg((address)&insn, 7, Rd); \
++ patch_reg((address)&insn, 15, Rs1); \
++ emit(insn); \
++ }
++
++ INSN(_addi, 0b0010011, 0b000);
++ INSN(slti, 0b0010011, 0b010);
++ INSN(_addiw, 0b0011011, 0b000);
++ INSN(_and_imm12, 0b0010011, 0b111);
++ INSN(ori, 0b0010011, 0b110);
++ INSN(xori, 0b0010011, 0b100);
++
++#undef INSN
++
++#define INSN(NAME, op, funct3) \
++ void NAME(Register Rd, Register Rs1, uint32_t imm) { \
++ guarantee(is_uimm12(imm), "Immediate is out of validity"); \
++ unsigned insn = 0; \
++ patch((address)&insn,6, 0, op); \
++ patch((address)&insn, 14, 12, funct3); \
++ patch((address)&insn, 31, 20, imm & 0x00000fff); \
++ patch_reg((address)&insn, 7, Rd); \
++ patch_reg((address)&insn, 15, Rs1); \
++ emit(insn); \
++ }
++
++ INSN(sltiu, 0b0010011, 0b011);
++
++#undef INSN
++
++// Shift Immediate Instruction
++#define INSN(NAME, op, funct3, funct6) \
++ void NAME(Register Rd, Register Rs1, unsigned shamt) { \
++ guarantee(shamt <= 0x3f, "Shamt is invalid"); \
++ unsigned insn = 0; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, funct3); \
++ patch((address)&insn, 25, 20, shamt); \
++ patch((address)&insn, 31, 26, funct6); \
++ patch_reg((address)&insn, 7, Rd); \
++ patch_reg((address)&insn, 15, Rs1); \
++ emit(insn); \
++ }
++
++ INSN(_slli, 0b0010011, 0b001, 0b000000);
++ INSN(_srai, 0b0010011, 0b101, 0b010000);
++ INSN(_srli, 0b0010011, 0b101, 0b000000);
++
++#undef INSN
++
++// Shift Word Immediate Instruction
++#define INSN(NAME, op, funct3, funct7) \
++ void NAME(Register Rd, Register Rs1, unsigned shamt) { \
++ guarantee(shamt <= 0x1f, "Shamt is invalid"); \
++ unsigned insn = 0; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, funct3); \
++ patch((address)&insn, 24, 20, shamt); \
++ patch((address)&insn, 31, 25, funct7); \
++ patch_reg((address)&insn, 7, Rd); \
++ patch_reg((address)&insn, 15, Rs1); \
++ emit(insn); \
++ }
++
++ INSN(slliw, 0b0011011, 0b001, 0b0000000);
++ INSN(sraiw, 0b0011011, 0b101, 0b0100000);
++ INSN(srliw, 0b0011011, 0b101, 0b0000000);
++
++#undef INSN
++
++// Upper Immediate Instruction
++#define INSN(NAME, op) \
++ void NAME(Register Rd, int32_t imm) { \
++ int32_t upperImm = imm >> 12; \
++ unsigned insn = 0; \
++ patch((address)&insn, 6, 0, op); \
++ patch_reg((address)&insn, 7, Rd); \
++ upperImm &= 0x000fffff; \
++ patch((address)&insn, 31, 12, upperImm); \
++ emit(insn); \
++ }
++
++ INSN(_lui, 0b0110111);
++ INSN(auipc, 0b0010111);
++
++#undef INSN
++
++// Float and Double Rigster Instruction
++#define INSN(NAME, op, funct2) \
++ void NAME(FloatRegister Rd, FloatRegister Rs1, FloatRegister Rs2, FloatRegister Rs3, RoundingMode rm = rne) { \
++ unsigned insn = 0; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, rm); \
++ patch((address)&insn, 26, 25, funct2); \
++ patch_reg((address)&insn, 7, Rd); \
++ patch_reg((address)&insn, 15, Rs1); \
++ patch_reg((address)&insn, 20, Rs2); \
++ patch_reg((address)&insn, 27, Rs3); \
++ emit(insn); \
++ }
++
++ INSN(fmadd_s, 0b1000011, 0b00);
++ INSN(fmsub_s, 0b1000111, 0b00);
++ INSN(fnmsub_s, 0b1001011, 0b00);
++ INSN(fnmadd_s, 0b1001111, 0b00);
++ INSN(fmadd_d, 0b1000011, 0b01);
++ INSN(fmsub_d, 0b1000111, 0b01);
++ INSN(fnmsub_d, 0b1001011, 0b01);
++ INSN(fnmadd_d, 0b1001111, 0b01);
++
++#undef INSN
++
++// Float and Double Rigster Instruction
++#define INSN(NAME, op, funct3, funct7) \
++ void NAME(FloatRegister Rd, FloatRegister Rs1, FloatRegister Rs2) { \
++ unsigned insn = 0; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, funct3); \
++ patch((address)&insn, 31, 25, funct7); \
++ patch_reg((address)&insn, 7, Rd); \
++ patch_reg((address)&insn, 15, Rs1); \
++ patch_reg((address)&insn, 20, Rs2); \
++ emit(insn); \
++ }
++
++ INSN(fsgnj_s, 0b1010011, 0b000, 0b0010000);
++ INSN(fsgnjn_s, 0b1010011, 0b001, 0b0010000);
++ INSN(fsgnjx_s, 0b1010011, 0b010, 0b0010000);
++ INSN(fmin_s, 0b1010011, 0b000, 0b0010100);
++ INSN(fmax_s, 0b1010011, 0b001, 0b0010100);
++ INSN(fsgnj_d, 0b1010011, 0b000, 0b0010001);
++ INSN(fsgnjn_d, 0b1010011, 0b001, 0b0010001);
++ INSN(fsgnjx_d, 0b1010011, 0b010, 0b0010001);
++ INSN(fmin_d, 0b1010011, 0b000, 0b0010101);
++ INSN(fmax_d, 0b1010011, 0b001, 0b0010101);
++
++#undef INSN
++
++// Float and Double Rigster Arith Instruction
++#define INSN(NAME, op, funct3, funct7) \
++ void NAME(Register Rd, FloatRegister Rs1, FloatRegister Rs2) { \
++ unsigned insn = 0; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, funct3); \
++ patch((address)&insn, 31, 25, funct7); \
++ patch_reg((address)&insn, 7, Rd); \
++ patch_reg((address)&insn, 15, Rs1); \
++ patch_reg((address)&insn, 20, Rs2); \
++ emit(insn); \
++ }
++
++ INSN(feq_s, 0b1010011, 0b010, 0b1010000);
++ INSN(flt_s, 0b1010011, 0b001, 0b1010000);
++ INSN(fle_s, 0b1010011, 0b000, 0b1010000);
++ INSN(feq_d, 0b1010011, 0b010, 0b1010001);
++ INSN(fle_d, 0b1010011, 0b000, 0b1010001);
++ INSN(flt_d, 0b1010011, 0b001, 0b1010001);
++#undef INSN
++
++// Float and Double Arith Instruction
++#define INSN(NAME, op, funct7) \
++ void NAME(FloatRegister Rd, FloatRegister Rs1, FloatRegister Rs2, RoundingMode rm = rne) { \
++ unsigned insn = 0; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, rm); \
++ patch((address)&insn, 31, 25, funct7); \
++ patch_reg((address)&insn, 7, Rd); \
++ patch_reg((address)&insn, 15, Rs1); \
++ patch_reg((address)&insn, 20, Rs2); \
++ emit(insn); \
++ }
++
++ INSN(fadd_s, 0b1010011, 0b0000000);
++ INSN(fsub_s, 0b1010011, 0b0000100);
++ INSN(fmul_s, 0b1010011, 0b0001000);
++ INSN(fdiv_s, 0b1010011, 0b0001100);
++ INSN(fadd_d, 0b1010011, 0b0000001);
++ INSN(fsub_d, 0b1010011, 0b0000101);
++ INSN(fmul_d, 0b1010011, 0b0001001);
++ INSN(fdiv_d, 0b1010011, 0b0001101);
++
++#undef INSN
++
++// Whole Float and Double Conversion Instruction
++#define INSN(NAME, op, funct5, funct7) \
++ void NAME(FloatRegister Rd, Register Rs1, RoundingMode rm = rne) { \
++ unsigned insn = 0; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, rm); \
++ patch((address)&insn, 24, 20, funct5); \
++ patch((address)&insn, 31, 25, funct7); \
++ patch_reg((address)&insn, 7, Rd); \
++ patch_reg((address)&insn, 15, Rs1); \
++ emit(insn); \
++ }
++
++ INSN(fcvt_s_w, 0b1010011, 0b00000, 0b1101000);
++ INSN(fcvt_s_wu, 0b1010011, 0b00001, 0b1101000);
++ INSN(fcvt_s_l, 0b1010011, 0b00010, 0b1101000);
++ INSN(fcvt_s_lu, 0b1010011, 0b00011, 0b1101000);
++ INSN(fcvt_d_w, 0b1010011, 0b00000, 0b1101001);
++ INSN(fcvt_d_wu, 0b1010011, 0b00001, 0b1101001);
++ INSN(fcvt_d_l, 0b1010011, 0b00010, 0b1101001);
++ INSN(fcvt_d_lu, 0b1010011, 0b00011, 0b1101001);
++
++#undef INSN
++
++// Float and Double Conversion Instruction
++#define INSN(NAME, op, funct5, funct7) \
++ void NAME(Register Rd, FloatRegister Rs1, RoundingMode rm = rtz) { \
++ unsigned insn = 0; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, rm); \
++ patch((address)&insn, 24, 20, funct5); \
++ patch((address)&insn, 31, 25, funct7); \
++ patch_reg((address)&insn, 7, Rd); \
++ patch_reg((address)&insn, 15, Rs1); \
++ emit(insn); \
++ }
++
++ INSN(fcvt_w_s, 0b1010011, 0b00000, 0b1100000);
++ INSN(fcvt_l_s, 0b1010011, 0b00010, 0b1100000);
++ INSN(fcvt_wu_s, 0b1010011, 0b00001, 0b1100000);
++ INSN(fcvt_lu_s, 0b1010011, 0b00011, 0b1100000);
++ INSN(fcvt_w_d, 0b1010011, 0b00000, 0b1100001);
++ INSN(fcvt_wu_d, 0b1010011, 0b00001, 0b1100001);
++ INSN(fcvt_l_d, 0b1010011, 0b00010, 0b1100001);
++ INSN(fcvt_lu_d, 0b1010011, 0b00011, 0b1100001);
++
++#undef INSN
++
++// Float and Double Move Instruction
++#define INSN(NAME, op, funct3, funct5, funct7) \
++ void NAME(FloatRegister Rd, Register Rs1) { \
++ unsigned insn = 0; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, funct3); \
++ patch((address)&insn, 20, funct5); \
++ patch((address)&insn, 31, 25, funct7); \
++ patch_reg((address)&insn, 7, Rd); \
++ patch_reg((address)&insn, 15, Rs1); \
++ emit(insn); \
++ }
++
++ INSN(fmv_w_x, 0b1010011, 0b000, 0b00000, 0b1111000);
++ INSN(fmv_d_x, 0b1010011, 0b000, 0b00000, 0b1111001);
++
++#undef INSN
++
++// Float and Double Conversion Instruction
++#define INSN(NAME, op, funct3, funct5, funct7) \
++ void NAME(Register Rd, FloatRegister Rs1) { \
++ unsigned insn = 0; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, funct3); \
++ patch((address)&insn, 20, funct5); \
++ patch((address)&insn, 31, 25, funct7); \
++ patch_reg((address)&insn, 7, Rd); \
++ patch_reg((address)&insn, 15, Rs1); \
++ emit(insn); \
++ }
++
++ INSN(fclass_s, 0b1010011, 0b001, 0b00000, 0b1110000);
++ INSN(fclass_d, 0b1010011, 0b001, 0b00000, 0b1110001);
++ INSN(fmv_x_w, 0b1010011, 0b000, 0b00000, 0b1110000);
++ INSN(fmv_x_d, 0b1010011, 0b000, 0b00000, 0b1110001);
++
++#undef INSN
++
++// ==========================
++// RISC-V Vector Extension
++// ==========================
++enum SEW {
++ e8,
++ e16,
++ e32,
++ e64,
++ RESERVED,
++};
++
++enum LMUL {
++ mf8 = 0b101,
++ mf4 = 0b110,
++ mf2 = 0b111,
++ m1 = 0b000,
++ m2 = 0b001,
++ m4 = 0b010,
++ m8 = 0b011,
++};
++
++enum VMA {
++ mu, // undisturbed
++ ma, // agnostic
++};
++
++enum VTA {
++ tu, // undisturbed
++ ta, // agnostic
++};
++
++static Assembler::SEW elembytes_to_sew(int ebytes) {
++ assert(ebytes > 0 && ebytes <= 8, "unsupported element size");
++ return (Assembler::SEW) exact_log2(ebytes);
++}
++
++static Assembler::SEW elemtype_to_sew(BasicType etype) {
++ return Assembler::elembytes_to_sew(type2aelembytes(etype));
++}
++
++#define patch_vtype(hsb, lsb, vlmul, vsew, vta, vma, vill) \
++ if (vill == 1) { \
++ guarantee((vlmul | vsew | vta | vma == 0), \
++ "the other bits in vtype shall be zero"); \
++ } \
++ patch((address)&insn, lsb + 2, lsb, vlmul); \
++ patch((address)&insn, lsb + 5, lsb + 3, vsew); \
++ patch((address)&insn, lsb + 6, vta); \
++ patch((address)&insn, lsb + 7, vma); \
++ patch((address)&insn, hsb - 1, lsb + 8, 0); \
++ patch((address)&insn, hsb, vill)
++
++#define INSN(NAME, op, funct3) \
++ void NAME(Register Rd, Register Rs1, SEW sew, LMUL lmul = m1, \
++ VMA vma = mu, VTA vta = tu, bool vill = false) { \
++ unsigned insn = 0; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, funct3); \
++ patch_vtype(30, 20, lmul, sew, vta, vma, vill); \
++ patch((address)&insn, 31, 0); \
++ patch_reg((address)&insn, 7, Rd); \
++ patch_reg((address)&insn, 15, Rs1); \
++ emit(insn); \
++ }
++
++ INSN(vsetvli, 0b1010111, 0b111);
++
++#undef INSN
++
++#define INSN(NAME, op, funct3) \
++ void NAME(Register Rd, uint32_t imm, SEW sew, LMUL lmul = m1, \
++ VMA vma = mu, VTA vta = tu, bool vill = false) { \
++ unsigned insn = 0; \
++ guarantee(is_uimm5(imm), "imm is invalid"); \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, funct3); \
++ patch((address)&insn, 19, 15, imm); \
++ patch_vtype(29, 20, lmul, sew, vta, vma, vill); \
++ patch((address)&insn, 31, 30, 0b11); \
++ patch_reg((address)&insn, 7, Rd); \
++ emit(insn); \
++ }
++
++ INSN(vsetivli, 0b1010111, 0b111);
++
++#undef INSN
++
++#undef patch_vtype
++
++#define INSN(NAME, op, funct3, funct7) \
++ void NAME(Register Rd, Register Rs1, Register Rs2) { \
++ unsigned insn = 0; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, funct3); \
++ patch((address)&insn, 31, 25, funct7); \
++ patch_reg((address)&insn, 7, Rd); \
++ patch_reg((address)&insn, 15, Rs1); \
++ patch_reg((address)&insn, 20, Rs2); \
++ emit(insn); \
++ }
++
++ // Vector Configuration Instruction
++ INSN(vsetvl, 0b1010111, 0b111, 0b1000000);
++
++#undef INSN
++
++enum VectorMask {
++ v0_t = 0b0,
++ unmasked = 0b1
++};
++
++#define patch_VArith(op, Reg, funct3, Reg_or_Imm5, Vs2, vm, funct6) \
++ unsigned insn = 0; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, funct3); \
++ patch((address)&insn, 19, 15, Reg_or_Imm5); \
++ patch((address)&insn, 25, vm); \
++ patch((address)&insn, 31, 26, funct6); \
++ patch_reg((address)&insn, 7, Reg); \
++ patch_reg((address)&insn, 20, Vs2); \
++ emit(insn)
++
++// r2_vm
++#define INSN(NAME, op, funct3, Vs1, funct6) \
++ void NAME(Register Rd, VectorRegister Vs2, VectorMask vm = unmasked) { \
++ patch_VArith(op, Rd, funct3, Vs1, Vs2, vm, funct6); \
++ }
++
++ // Vector Mask
++ INSN(vcpop_m, 0b1010111, 0b010, 0b10000, 0b010000);
++ INSN(vfirst_m, 0b1010111, 0b010, 0b10001, 0b010000);
++#undef INSN
++
++#define INSN(NAME, op, funct3, Vs1, funct6) \
++ void NAME(VectorRegister Vd, VectorRegister Vs2, VectorMask vm = unmasked) { \
++ patch_VArith(op, Vd, funct3, Vs1, Vs2, vm, funct6); \
++ }
++
++ // Vector Integer Extension
++ INSN(vzext_vf2, 0b1010111, 0b010, 0b00110, 0b010010);
++ INSN(vzext_vf4, 0b1010111, 0b010, 0b00100, 0b010010);
++ INSN(vzext_vf8, 0b1010111, 0b010, 0b00010, 0b010010);
++ INSN(vsext_vf2, 0b1010111, 0b010, 0b00111, 0b010010);
++ INSN(vsext_vf4, 0b1010111, 0b010, 0b00101, 0b010010);
++ INSN(vsext_vf8, 0b1010111, 0b010, 0b00011, 0b010010);
++
++ // Vector Mask
++ INSN(vmsbf_m, 0b1010111, 0b010, 0b00001, 0b010100);
++ INSN(vmsif_m, 0b1010111, 0b010, 0b00011, 0b010100);
++ INSN(vmsof_m, 0b1010111, 0b010, 0b00010, 0b010100);
++ INSN(viota_m, 0b1010111, 0b010, 0b10000, 0b010100);
++
++ // Vector Single-Width Floating-Point/Integer Type-Convert Instructions
++ INSN(vfcvt_xu_f_v, 0b1010111, 0b001, 0b00000, 0b010010);
++ INSN(vfcvt_x_f_v, 0b1010111, 0b001, 0b00001, 0b010010);
++ INSN(vfcvt_f_xu_v, 0b1010111, 0b001, 0b00010, 0b010010);
++ INSN(vfcvt_f_x_v, 0b1010111, 0b001, 0b00011, 0b010010);
++ INSN(vfcvt_rtz_xu_f_v, 0b1010111, 0b001, 0b00110, 0b010010);
++ INSN(vfcvt_rtz_x_f_v, 0b1010111, 0b001, 0b00111, 0b010010);
++
++ // Vector Floating-Point Instruction
++ INSN(vfsqrt_v, 0b1010111, 0b001, 0b00000, 0b010011);
++ INSN(vfclass_v, 0b1010111, 0b001, 0b10000, 0b010011);
++
++#undef INSN
++
++// r2rd
++#define INSN(NAME, op, funct3, simm5, vm, funct6) \
++ void NAME(VectorRegister Vd, VectorRegister Vs2) { \
++ patch_VArith(op, Vd, funct3, simm5, Vs2, vm, funct6); \
++ }
++
++ // Vector Whole Vector Register Move
++ INSN(vmv1r_v, 0b1010111, 0b011, 0b00000, 0b1, 0b100111);
++ INSN(vmv2r_v, 0b1010111, 0b011, 0b00001, 0b1, 0b100111);
++ INSN(vmv4r_v, 0b1010111, 0b011, 0b00011, 0b1, 0b100111);
++ INSN(vmv8r_v, 0b1010111, 0b011, 0b00111, 0b1, 0b100111);
++
++#undef INSN
++
++#define INSN(NAME, op, funct3, Vs1, vm, funct6) \
++ void NAME(FloatRegister Rd, VectorRegister Vs2) { \
++ patch_VArith(op, Rd, funct3, Vs1, Vs2, vm, funct6); \
++ }
++
++ // Vector Floating-Point Move Instruction
++ INSN(vfmv_f_s, 0b1010111, 0b001, 0b00000, 0b1, 0b010000);
++
++#undef INSN
++
++#define INSN(NAME, op, funct3, Vs1, vm, funct6) \
++ void NAME(Register Rd, VectorRegister Vs2) { \
++ patch_VArith(op, Rd, funct3, Vs1, Vs2, vm, funct6); \
++ }
++
++ // Vector Integer Scalar Move Instructions
++ INSN(vmv_x_s, 0b1010111, 0b010, 0b00000, 0b1, 0b010000);
++
++#undef INSN
++
++// r_vm
++#define INSN(NAME, op, funct3, funct6) \
++ void NAME(VectorRegister Vd, VectorRegister Vs2, uint32_t imm, VectorMask vm = unmasked) { \
++ guarantee(is_uimm5(imm), "imm is invalid"); \
++ patch_VArith(op, Vd, funct3, (uint32_t)(imm & 0x1f), Vs2, vm, funct6); \
++ }
++
++ // Vector Single-Width Bit Shift Instructions
++ INSN(vsra_vi, 0b1010111, 0b011, 0b101001);
++ INSN(vsrl_vi, 0b1010111, 0b011, 0b101000);
++ INSN(vsll_vi, 0b1010111, 0b011, 0b100101);
++
++#undef INSN
++
++#define INSN(NAME, op, funct3, funct6) \
++ void NAME(VectorRegister Vd, VectorRegister Vs1, VectorRegister Vs2, VectorMask vm = unmasked) { \
++ patch_VArith(op, Vd, funct3, Vs1->encoding_nocheck(), Vs2, vm, funct6); \
++ }
++
++ // Vector Single-Width Floating-Point Fused Multiply-Add Instructions
++ INSN(vfnmsub_vv, 0b1010111, 0b001, 0b101011);
++ INSN(vfmsub_vv, 0b1010111, 0b001, 0b101010);
++ INSN(vfnmadd_vv, 0b1010111, 0b001, 0b101001);
++ INSN(vfmadd_vv, 0b1010111, 0b001, 0b101000);
++ INSN(vfnmsac_vv, 0b1010111, 0b001, 0b101111);
++ INSN(vfmsac_vv, 0b1010111, 0b001, 0b101110);
++ INSN(vfmacc_vv, 0b1010111, 0b001, 0b101100);
++ INSN(vfnmacc_vv, 0b1010111, 0b001, 0b101101);
++
++ // Vector Single-Width Integer Multiply-Add Instructions
++ INSN(vnmsub_vv, 0b1010111, 0b010, 0b101011);
++ INSN(vmadd_vv, 0b1010111, 0b010, 0b101001);
++ INSN(vnmsac_vv, 0b1010111, 0b010, 0b101111);
++ INSN(vmacc_vv, 0b1010111, 0b010, 0b101101);
++
++#undef INSN
++
++#define INSN(NAME, op, funct3, funct6) \
++ void NAME(VectorRegister Vd, Register Rs1, VectorRegister Vs2, VectorMask vm = unmasked) { \
++ patch_VArith(op, Vd, funct3, Rs1->encoding_nocheck(), Vs2, vm, funct6); \
++ }
++
++ // Vector Single-Width Integer Multiply-Add Instructions
++ INSN(vnmsub_vx, 0b1010111, 0b110, 0b101011);
++ INSN(vmadd_vx, 0b1010111, 0b110, 0b101001);
++ INSN(vnmsac_vx, 0b1010111, 0b110, 0b101111);
++ INSN(vmacc_vx, 0b1010111, 0b110, 0b101101);
++
++#undef INSN
++
++#define INSN(NAME, op, funct3, funct6) \
++ void NAME(VectorRegister Vd, FloatRegister Rs1, VectorRegister Vs2, VectorMask vm = unmasked) { \
++ patch_VArith(op, Vd, funct3, Rs1->encoding_nocheck(), Vs2, vm, funct6); \
++ }
++
++ // Vector Single-Width Floating-Point Fused Multiply-Add Instructions
++ INSN(vfnmsub_vf, 0b1010111, 0b101, 0b101011);
++ INSN(vfmsub_vf, 0b1010111, 0b101, 0b101010);
++ INSN(vfnmadd_vf, 0b1010111, 0b101, 0b101001);
++ INSN(vfmadd_vf, 0b1010111, 0b101, 0b101000);
++ INSN(vfnmsac_vf, 0b1010111, 0b101, 0b101111);
++ INSN(vfmsac_vf, 0b1010111, 0b101, 0b101110);
++ INSN(vfmacc_vf, 0b1010111, 0b101, 0b101100);
++ INSN(vfnmacc_vf, 0b1010111, 0b101, 0b101101);
++
++#undef INSN
++
++#define INSN(NAME, op, funct3, funct6) \
++ void NAME(VectorRegister Vd, VectorRegister Vs2, VectorRegister Vs1, VectorMask vm = unmasked) { \
++ patch_VArith(op, Vd, funct3, Vs1->encoding_nocheck(), Vs2, vm, funct6); \
++ }
++
++ // Vector Single-Width Floating-Point Reduction Instructions
++ INSN(vfredusum_vs, 0b1010111, 0b001, 0b000001);
++ INSN(vfredosum_vs, 0b1010111, 0b001, 0b000011);
++ INSN(vfredmin_vs, 0b1010111, 0b001, 0b000101);
++ INSN(vfredmax_vs, 0b1010111, 0b001, 0b000111);
++
++ // Vector Single-Width Integer Reduction Instructions
++ INSN(vredsum_vs, 0b1010111, 0b010, 0b000000);
++ INSN(vredand_vs, 0b1010111, 0b010, 0b000001);
++ INSN(vredor_vs, 0b1010111, 0b010, 0b000010);
++ INSN(vredxor_vs, 0b1010111, 0b010, 0b000011);
++ INSN(vredminu_vs, 0b1010111, 0b010, 0b000100);
++ INSN(vredmin_vs, 0b1010111, 0b010, 0b000101);
++ INSN(vredmaxu_vs, 0b1010111, 0b010, 0b000110);
++ INSN(vredmax_vs, 0b1010111, 0b010, 0b000111);
++
++ // Vector Floating-Point Compare Instructions
++ INSN(vmfle_vv, 0b1010111, 0b001, 0b011001);
++ INSN(vmflt_vv, 0b1010111, 0b001, 0b011011);
++ INSN(vmfne_vv, 0b1010111, 0b001, 0b011100);
++ INSN(vmfeq_vv, 0b1010111, 0b001, 0b011000);
++
++ // Vector Floating-Point Sign-Injection Instructions
++ INSN(vfsgnjx_vv, 0b1010111, 0b001, 0b001010);
++ INSN(vfsgnjn_vv, 0b1010111, 0b001, 0b001001);
++ INSN(vfsgnj_vv, 0b1010111, 0b001, 0b001000);
++
++ // Vector Floating-Point MIN/MAX Instructions
++ INSN(vfmax_vv, 0b1010111, 0b001, 0b000110);
++ INSN(vfmin_vv, 0b1010111, 0b001, 0b000100);
++
++ // Vector Single-Width Floating-Point Multiply/Divide Instructions
++ INSN(vfdiv_vv, 0b1010111, 0b001, 0b100000);
++ INSN(vfmul_vv, 0b1010111, 0b001, 0b100100);
++
++ // Vector Single-Width Floating-Point Add/Subtract Instructions
++ INSN(vfsub_vv, 0b1010111, 0b001, 0b000010);
++ INSN(vfadd_vv, 0b1010111, 0b001, 0b000000);
++
++ // Vector Single-Width Fractional Multiply with Rounding and Saturation
++ INSN(vsmul_vv, 0b1010111, 0b000, 0b100111);
++
++ // Vector Integer Divide Instructions
++ INSN(vrem_vv, 0b1010111, 0b010, 0b100011);
++ INSN(vremu_vv, 0b1010111, 0b010, 0b100010);
++ INSN(vdiv_vv, 0b1010111, 0b010, 0b100001);
++ INSN(vdivu_vv, 0b1010111, 0b010, 0b100000);
++
++ // Vector Single-Width Integer Multiply Instructions
++ INSN(vmulhsu_vv, 0b1010111, 0b010, 0b100110);
++ INSN(vmulhu_vv, 0b1010111, 0b010, 0b100100);
++ INSN(vmulh_vv, 0b1010111, 0b010, 0b100111);
++ INSN(vmul_vv, 0b1010111, 0b010, 0b100101);
++
++ // Vector Integer Min/Max Instructions
++ INSN(vmax_vv, 0b1010111, 0b000, 0b000111);
++ INSN(vmaxu_vv, 0b1010111, 0b000, 0b000110);
++ INSN(vmin_vv, 0b1010111, 0b000, 0b000101);
++ INSN(vminu_vv, 0b1010111, 0b000, 0b000100);
++
++ // Vector Integer Comparison Instructions
++ INSN(vmsle_vv, 0b1010111, 0b000, 0b011101);
++ INSN(vmsleu_vv, 0b1010111, 0b000, 0b011100);
++ INSN(vmslt_vv, 0b1010111, 0b000, 0b011011);
++ INSN(vmsltu_vv, 0b1010111, 0b000, 0b011010);
++ INSN(vmsne_vv, 0b1010111, 0b000, 0b011001);
++ INSN(vmseq_vv, 0b1010111, 0b000, 0b011000);
++
++ // Vector Single-Width Bit Shift Instructions
++ INSN(vsra_vv, 0b1010111, 0b000, 0b101001);
++ INSN(vsrl_vv, 0b1010111, 0b000, 0b101000);
++ INSN(vsll_vv, 0b1010111, 0b000, 0b100101);
++
++ // Vector Bitwise Logical Instructions
++ INSN(vxor_vv, 0b1010111, 0b000, 0b001011);
++ INSN(vor_vv, 0b1010111, 0b000, 0b001010);
++ INSN(vand_vv, 0b1010111, 0b000, 0b001001);
++
++ // Vector Single-Width Integer Add and Subtract
++ INSN(vsub_vv, 0b1010111, 0b000, 0b000010);
++ INSN(vadd_vv, 0b1010111, 0b000, 0b000000);
++
++#undef INSN
++
++
++#define INSN(NAME, op, funct3, funct6) \
++ void NAME(VectorRegister Vd, VectorRegister Vs2, Register Rs1, VectorMask vm = unmasked) { \
++ patch_VArith(op, Vd, funct3, Rs1->encoding_nocheck(), Vs2, vm, funct6); \
++ }
++
++ // Vector Integer Divide Instructions
++ INSN(vrem_vx, 0b1010111, 0b110, 0b100011);
++ INSN(vremu_vx, 0b1010111, 0b110, 0b100010);
++ INSN(vdiv_vx, 0b1010111, 0b110, 0b100001);
++ INSN(vdivu_vx, 0b1010111, 0b110, 0b100000);
++
++ // Vector Single-Width Integer Multiply Instructions
++ INSN(vmulhsu_vx, 0b1010111, 0b110, 0b100110);
++ INSN(vmulhu_vx, 0b1010111, 0b110, 0b100100);
++ INSN(vmulh_vx, 0b1010111, 0b110, 0b100111);
++ INSN(vmul_vx, 0b1010111, 0b110, 0b100101);
++
++ // Vector Integer Min/Max Instructions
++ INSN(vmax_vx, 0b1010111, 0b100, 0b000111);
++ INSN(vmaxu_vx, 0b1010111, 0b100, 0b000110);
++ INSN(vmin_vx, 0b1010111, 0b100, 0b000101);
++ INSN(vminu_vx, 0b1010111, 0b100, 0b000100);
++
++ // Vector Integer Comparison Instructions
++ INSN(vmsgt_vx, 0b1010111, 0b100, 0b011111);
++ INSN(vmsgtu_vx, 0b1010111, 0b100, 0b011110);
++ INSN(vmsle_vx, 0b1010111, 0b100, 0b011101);
++ INSN(vmsleu_vx, 0b1010111, 0b100, 0b011100);
++ INSN(vmslt_vx, 0b1010111, 0b100, 0b011011);
++ INSN(vmsltu_vx, 0b1010111, 0b100, 0b011010);
++ INSN(vmsne_vx, 0b1010111, 0b100, 0b011001);
++ INSN(vmseq_vx, 0b1010111, 0b100, 0b011000);
++
++ // Vector Narrowing Integer Right Shift Instructions
++ INSN(vnsra_wx, 0b1010111, 0b100, 0b101101);
++ INSN(vnsrl_wx, 0b1010111, 0b100, 0b101100);
++
++ // Vector Single-Width Bit Shift Instructions
++ INSN(vsra_vx, 0b1010111, 0b100, 0b101001);
++ INSN(vsrl_vx, 0b1010111, 0b100, 0b101000);
++ INSN(vsll_vx, 0b1010111, 0b100, 0b100101);
++
++ // Vector Bitwise Logical Instructions
++ INSN(vxor_vx, 0b1010111, 0b100, 0b001011);
++ INSN(vor_vx, 0b1010111, 0b100, 0b001010);
++ INSN(vand_vx, 0b1010111, 0b100, 0b001001);
++
++ // Vector Single-Width Integer Add and Subtract
++ INSN(vsub_vx, 0b1010111, 0b100, 0b000010);
++ INSN(vadd_vx, 0b1010111, 0b100, 0b000000);
++ INSN(vrsub_vx, 0b1010111, 0b100, 0b000011);
++
++#undef INSN
++
++#define INSN(NAME, op, funct3, funct6) \
++ void NAME(VectorRegister Vd, VectorRegister Vs2, FloatRegister Rs1, VectorMask vm = unmasked) { \
++ patch_VArith(op, Vd, funct3, Rs1->encoding_nocheck(), Vs2, vm, funct6); \
++ }
++
++ // Vector Floating-Point Compare Instructions
++ INSN(vmfge_vf, 0b1010111, 0b101, 0b011111);
++ INSN(vmfgt_vf, 0b1010111, 0b101, 0b011101);
++ INSN(vmfle_vf, 0b1010111, 0b101, 0b011001);
++ INSN(vmflt_vf, 0b1010111, 0b101, 0b011011);
++ INSN(vmfne_vf, 0b1010111, 0b101, 0b011100);
++ INSN(vmfeq_vf, 0b1010111, 0b101, 0b011000);
++
++ // Vector Floating-Point Sign-Injection Instructions
++ INSN(vfsgnjx_vf, 0b1010111, 0b101, 0b001010);
++ INSN(vfsgnjn_vf, 0b1010111, 0b101, 0b001001);
++ INSN(vfsgnj_vf, 0b1010111, 0b101, 0b001000);
++
++ // Vector Floating-Point MIN/MAX Instructions
++ INSN(vfmax_vf, 0b1010111, 0b101, 0b000110);
++ INSN(vfmin_vf, 0b1010111, 0b101, 0b000100);
++
++ // Vector Single-Width Floating-Point Multiply/Divide Instructions
++ INSN(vfdiv_vf, 0b1010111, 0b101, 0b100000);
++ INSN(vfmul_vf, 0b1010111, 0b101, 0b100100);
++ INSN(vfrdiv_vf, 0b1010111, 0b101, 0b100001);
++
++ // Vector Single-Width Floating-Point Add/Subtract Instructions
++ INSN(vfsub_vf, 0b1010111, 0b101, 0b000010);
++ INSN(vfadd_vf, 0b1010111, 0b101, 0b000000);
++ INSN(vfrsub_vf, 0b1010111, 0b101, 0b100111);
++
++#undef INSN
++
++#define INSN(NAME, op, funct3, funct6) \
++ void NAME(VectorRegister Vd, VectorRegister Vs2, int32_t imm, VectorMask vm = unmasked) { \
++ guarantee(is_simm5(imm), "imm is invalid"); \
++ patch_VArith(op, Vd, funct3, (uint32_t)(imm & 0x1f), Vs2, vm, funct6); \
++ }
++
++ INSN(vmsgt_vi, 0b1010111, 0b011, 0b011111);
++ INSN(vmsgtu_vi, 0b1010111, 0b011, 0b011110);
++ INSN(vmsle_vi, 0b1010111, 0b011, 0b011101);
++ INSN(vmsleu_vi, 0b1010111, 0b011, 0b011100);
++ INSN(vmsne_vi, 0b1010111, 0b011, 0b011001);
++ INSN(vmseq_vi, 0b1010111, 0b011, 0b011000);
++ INSN(vxor_vi, 0b1010111, 0b011, 0b001011);
++ INSN(vor_vi, 0b1010111, 0b011, 0b001010);
++ INSN(vand_vi, 0b1010111, 0b011, 0b001001);
++ INSN(vadd_vi, 0b1010111, 0b011, 0b000000);
++ INSN(vrsub_vi, 0b1010111, 0b011, 0b000011);
++
++#undef INSN
++
++#define INSN(NAME, op, funct3, vm, funct6) \
++ void NAME(VectorRegister Vd, VectorRegister Vs2, VectorRegister Vs1) { \
++ patch_VArith(op, Vd, funct3, Vs1->encoding_nocheck(), Vs2, vm, funct6); \
++ }
++
++ // Vector Compress Instruction
++ INSN(vcompress_vm, 0b1010111, 0b010, 0b1, 0b010111);
++
++ // Vector Mask-Register Logical Instructions
++ INSN(vmxnor_mm, 0b1010111, 0b010, 0b1, 0b011111);
++ INSN(vmorn_mm, 0b1010111, 0b010, 0b1, 0b011100);
++ INSN(vmnor_mm, 0b1010111, 0b010, 0b1, 0b011110);
++ INSN(vmor_mm, 0b1010111, 0b010, 0b1, 0b011010);
++ INSN(vmxor_mm, 0b1010111, 0b010, 0b1, 0b011011);
++ INSN(vmandn_mm, 0b1010111, 0b010, 0b1, 0b011000);
++ INSN(vmnand_mm, 0b1010111, 0b010, 0b1, 0b011101);
++ INSN(vmand_mm, 0b1010111, 0b010, 0b1, 0b011001);
++
++#undef INSN
++
++#define INSN(NAME, op, funct3, Vs2, vm, funct6) \
++ void NAME(VectorRegister Vd, int32_t imm) { \
++ guarantee(is_simm5(imm), "imm is invalid"); \
++ patch_VArith(op, Vd, funct3, (uint32_t)(imm & 0x1f), Vs2, vm, funct6); \
++ }
++
++ // Vector Integer Move Instructions
++ INSN(vmv_v_i, 0b1010111, 0b011, v0, 0b1, 0b010111);
++
++#undef INSN
++
++#define INSN(NAME, op, funct3, Vs2, vm, funct6) \
++ void NAME(VectorRegister Vd, FloatRegister Rs1) { \
++ patch_VArith(op, Vd, funct3, Rs1->encoding_nocheck(), Vs2, vm, funct6); \
++ }
++
++ // Floating-Point Scalar Move Instructions
++ INSN(vfmv_s_f, 0b1010111, 0b101, v0, 0b1, 0b010000);
++ // Vector Floating-Point Move Instruction
++ INSN(vfmv_v_f, 0b1010111, 0b101, v0, 0b1, 0b010111);
++
++#undef INSN
++
++#define INSN(NAME, op, funct3, Vs2, vm, funct6) \
++ void NAME(VectorRegister Vd, VectorRegister Vs1) { \
++ patch_VArith(op, Vd, funct3, Vs1->encoding_nocheck(), Vs2, vm, funct6); \
++ }
++
++ // Vector Integer Move Instructions
++ INSN(vmv_v_v, 0b1010111, 0b000, v0, 0b1, 0b010111);
++
++#undef INSN
++
++#define INSN(NAME, op, funct3, Vs2, vm, funct6) \
++ void NAME(VectorRegister Vd, Register Rs1) { \
++ patch_VArith(op, Vd, funct3, Rs1->encoding_nocheck(), Vs2, vm, funct6); \
++ }
++
++ // Integer Scalar Move Instructions
++ INSN(vmv_s_x, 0b1010111, 0b110, v0, 0b1, 0b010000);
++
++ // Vector Integer Move Instructions
++ INSN(vmv_v_x, 0b1010111, 0b100, v0, 0b1, 0b010111);
++
++#undef INSN
++#undef patch_VArith
++
++#define INSN(NAME, op, funct13, funct6) \
++ void NAME(VectorRegister Vd, VectorMask vm = unmasked) { \
++ unsigned insn = 0; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 24, 12, funct13); \
++ patch((address)&insn, 25, vm); \
++ patch((address)&insn, 31, 26, funct6); \
++ patch_reg((address)&insn, 7, Vd); \
++ emit(insn); \
++ }
++
++ // Vector Element Index Instruction
++ INSN(vid_v, 0b1010111, 0b0000010001010, 0b010100);
++
++#undef INSN
++
++enum Nf {
++ g1 = 0b000,
++ g2 = 0b001,
++ g3 = 0b010,
++ g4 = 0b011,
++ g5 = 0b100,
++ g6 = 0b101,
++ g7 = 0b110,
++ g8 = 0b111
++};
++
++#define patch_VLdSt(op, VReg, width, Rs1, Reg_or_umop, vm, mop, mew, nf) \
++ unsigned insn = 0; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, width); \
++ patch((address)&insn, 24, 20, Reg_or_umop); \
++ patch((address)&insn, 25, vm); \
++ patch((address)&insn, 27, 26, mop); \
++ patch((address)&insn, 28, mew); \
++ patch((address)&insn, 31, 29, nf); \
++ patch_reg((address)&insn, 7, VReg); \
++ patch_reg((address)&insn, 15, Rs1); \
++ emit(insn)
++
++#define INSN(NAME, op, lumop, vm, mop, nf) \
++ void NAME(VectorRegister Vd, Register Rs1, uint32_t width = 0, bool mew = false) { \
++ guarantee(is_uimm3(width), "width is invalid"); \
++ patch_VLdSt(op, Vd, width, Rs1, lumop, vm, mop, mew, nf); \
++ }
++
++ // Vector Load/Store Instructions
++ INSN(vl1re8_v, 0b0000111, 0b01000, 0b1, 0b00, g1);
++
++#undef INSN
++
++#define INSN(NAME, op, width, sumop, vm, mop, mew, nf) \
++ void NAME(VectorRegister Vs3, Register Rs1) { \
++ patch_VLdSt(op, Vs3, width, Rs1, sumop, vm, mop, mew, nf); \
++ }
++
++ // Vector Load/Store Instructions
++ INSN(vs1r_v, 0b0100111, 0b000, 0b01000, 0b1, 0b00, 0b0, g1);
++
++#undef INSN
++
++// r2_nfvm
++#define INSN(NAME, op, width, umop, mop, mew) \
++ void NAME(VectorRegister Vd_or_Vs3, Register Rs1, Nf nf = g1) { \
++ patch_VLdSt(op, Vd_or_Vs3, width, Rs1, umop, 1, mop, mew, nf); \
++ }
++
++ // Vector Unit-Stride Instructions
++ INSN(vlm_v, 0b0000111, 0b000, 0b01011, 0b00, 0b0);
++ INSN(vsm_v, 0b0100111, 0b000, 0b01011, 0b00, 0b0);
++
++#undef INSN
++
++#define INSN(NAME, op, width, umop, mop, mew) \
++ void NAME(VectorRegister Vd_or_Vs3, Register Rs1, VectorMask vm = unmasked, Nf nf = g1) { \
++ patch_VLdSt(op, Vd_or_Vs3, width, Rs1, umop, vm, mop, mew, nf); \
++ }
++
++ // Vector Unit-Stride Instructions
++ INSN(vle8_v, 0b0000111, 0b000, 0b00000, 0b00, 0b0);
++ INSN(vle16_v, 0b0000111, 0b101, 0b00000, 0b00, 0b0);
++ INSN(vle32_v, 0b0000111, 0b110, 0b00000, 0b00, 0b0);
++ INSN(vle64_v, 0b0000111, 0b111, 0b00000, 0b00, 0b0);
++
++ // Vector unit-stride fault-only-first Instructions
++ INSN(vle8ff_v, 0b0000111, 0b000, 0b10000, 0b00, 0b0);
++ INSN(vle16ff_v, 0b0000111, 0b101, 0b10000, 0b00, 0b0);
++ INSN(vle32ff_v, 0b0000111, 0b110, 0b10000, 0b00, 0b0);
++ INSN(vle64ff_v, 0b0000111, 0b111, 0b10000, 0b00, 0b0);
++
++ INSN(vse8_v, 0b0100111, 0b000, 0b00000, 0b00, 0b0);
++ INSN(vse16_v, 0b0100111, 0b101, 0b00000, 0b00, 0b0);
++ INSN(vse32_v, 0b0100111, 0b110, 0b00000, 0b00, 0b0);
++ INSN(vse64_v, 0b0100111, 0b111, 0b00000, 0b00, 0b0);
++
++#undef INSN
++
++#define INSN(NAME, op, width, mop, mew) \
++ void NAME(VectorRegister Vd, Register Rs1, VectorRegister Vs2, VectorMask vm = unmasked, Nf nf = g1) { \
++ patch_VLdSt(op, Vd, width, Rs1, Vs2->encoding_nocheck(), vm, mop, mew, nf); \
++ }
++
++ // Vector unordered indexed load instructions
++ INSN(vluxei8_v, 0b0000111, 0b000, 0b01, 0b0);
++ INSN(vluxei16_v, 0b0000111, 0b101, 0b01, 0b0);
++ INSN(vluxei32_v, 0b0000111, 0b110, 0b01, 0b0);
++ INSN(vluxei64_v, 0b0000111, 0b111, 0b01, 0b0);
++
++ // Vector ordered indexed load instructions
++ INSN(vloxei8_v, 0b0000111, 0b000, 0b11, 0b0);
++ INSN(vloxei16_v, 0b0000111, 0b101, 0b11, 0b0);
++ INSN(vloxei32_v, 0b0000111, 0b110, 0b11, 0b0);
++ INSN(vloxei64_v, 0b0000111, 0b111, 0b11, 0b0);
++#undef INSN
++
++#define INSN(NAME, op, width, mop, mew) \
++ void NAME(VectorRegister Vd, Register Rs1, Register Rs2, VectorMask vm = unmasked, Nf nf = g1) { \
++ patch_VLdSt(op, Vd, width, Rs1, Rs2->encoding_nocheck(), vm, mop, mew, nf); \
++ }
++
++ // Vector Strided Instructions
++ INSN(vlse8_v, 0b0000111, 0b000, 0b10, 0b0);
++ INSN(vlse16_v, 0b0000111, 0b101, 0b10, 0b0);
++ INSN(vlse32_v, 0b0000111, 0b110, 0b10, 0b0);
++ INSN(vlse64_v, 0b0000111, 0b111, 0b10, 0b0);
++
++#undef INSN
++#undef patch_VLdSt
++
++// ====================================
++// RISC-V Bit-Manipulation Extension
++// Currently only support Zba, Zbb and Zbs bitmanip extensions.
++// ====================================
++#define INSN(NAME, op, funct3, funct7) \
++ void NAME(Register Rd, Register Rs1, Register Rs2) { \
++ unsigned insn = 0; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, funct3); \
++ patch((address)&insn, 31, 25, funct7); \
++ patch_reg((address)&insn, 7, Rd); \
++ patch_reg((address)&insn, 15, Rs1); \
++ patch_reg((address)&insn, 20, Rs2); \
++ emit(insn); \
++ }
++
++ INSN(add_uw, 0b0111011, 0b000, 0b0000100);
++ INSN(rol, 0b0110011, 0b001, 0b0110000);
++ INSN(rolw, 0b0111011, 0b001, 0b0110000);
++ INSN(ror, 0b0110011, 0b101, 0b0110000);
++ INSN(rorw, 0b0111011, 0b101, 0b0110000);
++ INSN(sh1add, 0b0110011, 0b010, 0b0010000);
++ INSN(sh2add, 0b0110011, 0b100, 0b0010000);
++ INSN(sh3add, 0b0110011, 0b110, 0b0010000);
++ INSN(sh1add_uw, 0b0111011, 0b010, 0b0010000);
++ INSN(sh2add_uw, 0b0111011, 0b100, 0b0010000);
++ INSN(sh3add_uw, 0b0111011, 0b110, 0b0010000);
++ INSN(andn, 0b0110011, 0b111, 0b0100000);
++ INSN(orn, 0b0110011, 0b110, 0b0100000);
++ INSN(xnor, 0b0110011, 0b100, 0b0100000);
++ INSN(max, 0b0110011, 0b110, 0b0000101);
++ INSN(maxu, 0b0110011, 0b111, 0b0000101);
++ INSN(min, 0b0110011, 0b100, 0b0000101);
++ INSN(minu, 0b0110011, 0b101, 0b0000101);
++
++#undef INSN
++
++#define INSN(NAME, op, funct3, funct12) \
++ void NAME(Register Rd, Register Rs1) { \
++ unsigned insn = 0; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, funct3); \
++ patch((address)&insn, 31, 20, funct12); \
++ patch_reg((address)&insn, 7, Rd); \
++ patch_reg((address)&insn, 15, Rs1); \
++ emit(insn); \
++ }
++
++ INSN(rev8, 0b0010011, 0b101, 0b011010111000);
++ INSN(sext_b, 0b0010011, 0b001, 0b011000000100);
++ INSN(sext_h, 0b0010011, 0b001, 0b011000000101);
++ INSN(zext_h, 0b0111011, 0b100, 0b000010000000);
++ INSN(clz, 0b0010011, 0b001, 0b011000000000);
++ INSN(clzw, 0b0011011, 0b001, 0b011000000000);
++ INSN(ctz, 0b0010011, 0b001, 0b011000000001);
++ INSN(ctzw, 0b0011011, 0b001, 0b011000000001);
++ INSN(cpop, 0b0010011, 0b001, 0b011000000010);
++ INSN(cpopw, 0b0011011, 0b001, 0b011000000010);
++ INSN(orc_b, 0b0010011, 0b101, 0b001010000111);
++
++#undef INSN
++
++#define INSN(NAME, op, funct3, funct6) \
++ void NAME(Register Rd, Register Rs1, unsigned shamt) {\
++ guarantee(shamt <= 0x3f, "Shamt is invalid"); \
++ unsigned insn = 0; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, funct3); \
++ patch((address)&insn, 25, 20, shamt); \
++ patch((address)&insn, 31, 26, funct6); \
++ patch_reg((address)&insn, 7, Rd); \
++ patch_reg((address)&insn, 15, Rs1); \
++ emit(insn); \
++ }
++
++ INSN(rori, 0b0010011, 0b101, 0b011000);
++ INSN(slli_uw, 0b0011011, 0b001, 0b000010);
++ INSN(bexti, 0b0010011, 0b101, 0b010010);
++
++#undef INSN
++
++#define INSN(NAME, op, funct3, funct7) \
++ void NAME(Register Rd, Register Rs1, unsigned shamt) {\
++ guarantee(shamt <= 0x1f, "Shamt is invalid"); \
++ unsigned insn = 0; \
++ patch((address)&insn, 6, 0, op); \
++ patch((address)&insn, 14, 12, funct3); \
++ patch((address)&insn, 24, 20, shamt); \
++ patch((address)&insn, 31, 25, funct7); \
++ patch_reg((address)&insn, 7, Rd); \
++ patch_reg((address)&insn, 15, Rs1); \
++ emit(insn); \
++ }
++
++ INSN(roriw, 0b0011011, 0b101, 0b0110000);
++
++#undef INSN
++
++// ========================================
++// RISC-V Compressed Instructions Extension
++// ========================================
++// Note:
++// 1. Assembler functions encoding 16-bit compressed instructions always begin with a 'c_'
++// prefix, such as 'c_add'. Correspondingly, assembler functions encoding normal 32-bit
++// instructions with begin with a '_' prefix, such as "_add". Most of time users have no
++// need to explicitly emit these compressed instructions. Instead, they still use unified
++// wrappers such as 'add' which do the compressing work through 'c_add' depending on the
++// the operands of the instruction and availability of the RVC hardware extension.
++//
++// 2. 'CompressibleRegion' and 'IncompressibleRegion' are introduced to mark assembler scopes
++// within which instructions are qualified or unqualified to be compressed into their 16-bit
++// versions. An example:
++//
++// CompressibleRegion cr(_masm);
++// __ add(...); // this instruction will be compressed into 'c.add' when possible
++// {
++// IncompressibleRegion ir(_masm);
++// __ add(...); // this instruction will not be compressed
++// {
++// CompressibleRegion cr(_masm);
++// __ add(...); // this instruction will be compressed into 'c.add' when possible
++// }
++// }
++//
++// 3. When printing JIT assembly code, using -XX:PrintAssemblyOptions=no-aliases could help
++// distinguish compressed 16-bit instructions from normal 32-bit ones.
++
++private:
++ bool _in_compressible_region;
++public:
++ bool in_compressible_region() const { return _in_compressible_region; }
++ void set_in_compressible_region(bool b) { _in_compressible_region = b; }
++public:
++
++ // an abstract compressible region
++ class AbstractCompressibleRegion : public StackObj {
++ protected:
++ Assembler *_masm;
++ bool _saved_in_compressible_region;
++ protected:
++ AbstractCompressibleRegion(Assembler *_masm)
++ : _masm(_masm)
++ , _saved_in_compressible_region(_masm->in_compressible_region()) {}
++ };
++ // a compressible region
++ class CompressibleRegion : public AbstractCompressibleRegion {
++ public:
++ CompressibleRegion(Assembler *_masm) : AbstractCompressibleRegion(_masm) {
++ _masm->set_in_compressible_region(true);
++ }
++ ~CompressibleRegion() {
++ _masm->set_in_compressible_region(_saved_in_compressible_region);
++ }
++ };
++ // an incompressible region
++ class IncompressibleRegion : public AbstractCompressibleRegion {
++ public:
++ IncompressibleRegion(Assembler *_masm) : AbstractCompressibleRegion(_masm) {
++ _masm->set_in_compressible_region(false);
++ }
++ ~IncompressibleRegion() {
++ _masm->set_in_compressible_region(_saved_in_compressible_region);
++ }
++ };
++
++public:
++ // Emit a relocation.
++ void relocate(RelocationHolder const& rspec, int format = 0) {
++ AbstractAssembler::relocate(rspec, format);
++ }
++ void relocate(relocInfo::relocType rtype, int format = 0) {
++ AbstractAssembler::relocate(rtype, format);
++ }
++ template <typename Callback>
++ void relocate(RelocationHolder const& rspec, Callback emit_insts, int format = 0) {
++ AbstractAssembler::relocate(rspec, format);
++ IncompressibleRegion ir(this); // relocations
++ emit_insts();
++ }
++ template <typename Callback>
++ void relocate(relocInfo::relocType rtype, Callback emit_insts, int format = 0) {
++ AbstractAssembler::relocate(rtype, format);
++ IncompressibleRegion ir(this); // relocations
++ emit_insts();
++ }
++
++ // patch a 16-bit instruction.
++ static void c_patch(address a, unsigned msb, unsigned lsb, uint16_t val) {
++ assert_cond(a != NULL);
++ assert_cond(msb >= lsb && msb <= 15);
++ unsigned nbits = msb - lsb + 1;
++ guarantee(val < (1U << nbits), "Field too big for insn");
++ uint16_t mask = (1U << nbits) - 1;
++ val <<= lsb;
++ mask <<= lsb;
++ uint16_t target = *(uint16_t *)a;
++ target &= ~mask;
++ target |= val;
++ *(uint16_t *)a = target;
++ }
++
++ static void c_patch(address a, unsigned bit, uint16_t val) {
++ c_patch(a, bit, bit, val);
++ }
++
++ // patch a 16-bit instruction with a general purpose register ranging [0, 31] (5 bits)
++ static void c_patch_reg(address a, unsigned lsb, Register reg) {
++ c_patch(a, lsb + 4, lsb, reg->encoding_nocheck());
++ }
++
++ // patch a 16-bit instruction with a general purpose register ranging [8, 15] (3 bits)
++ static void c_patch_compressed_reg(address a, unsigned lsb, Register reg) {
++ c_patch(a, lsb + 2, lsb, reg->compressed_encoding_nocheck());
++ }
++
++ // patch a 16-bit instruction with a float register ranging [0, 31] (5 bits)
++ static void c_patch_reg(address a, unsigned lsb, FloatRegister reg) {
++ c_patch(a, lsb + 4, lsb, reg->encoding_nocheck());
++ }
++
++ // patch a 16-bit instruction with a float register ranging [8, 15] (3 bits)
++ static void c_patch_compressed_reg(address a, unsigned lsb, FloatRegister reg) {
++ c_patch(a, lsb + 2, lsb, reg->compressed_encoding_nocheck());
++ }
++
++// -------------- RVC Instruction Definitions --------------
++
++ void c_nop() {
++ c_addi(x0, 0);
++ }
++
++#define INSN(NAME, funct3, op) \
++ void NAME(Register Rd_Rs1, int32_t imm) { \
++ assert_cond(is_simm6(imm)); \
++ uint16_t insn = 0; \
++ c_patch((address)&insn, 1, 0, op); \
++ c_patch((address)&insn, 6, 2, (imm & right_n_bits(5))); \
++ c_patch_reg((address)&insn, 7, Rd_Rs1); \
++ c_patch((address)&insn, 12, 12, (imm & nth_bit(5)) >> 5); \
++ c_patch((address)&insn, 15, 13, funct3); \
++ emit_int16(insn); \
++ }
++
++ INSN(c_addi, 0b000, 0b01);
++ INSN(c_addiw, 0b001, 0b01);
++
++#undef INSN
++
++#define INSN(NAME, funct3, op) \
++ void NAME(int32_t imm) { \
++ assert_cond(is_simm10(imm)); \
++ assert_cond((imm & 0b1111) == 0); \
++ assert_cond(imm != 0); \
++ uint16_t insn = 0; \
++ c_patch((address)&insn, 1, 0, op); \
++ c_patch((address)&insn, 2, 2, (imm & nth_bit(5)) >> 5); \
++ c_patch((address)&insn, 4, 3, (imm & right_n_bits(9)) >> 7); \
++ c_patch((address)&insn, 5, 5, (imm & nth_bit(6)) >> 6); \
++ c_patch((address)&insn, 6, 6, (imm & nth_bit(4)) >> 4); \
++ c_patch_reg((address)&insn, 7, sp); \
++ c_patch((address)&insn, 12, 12, (imm & nth_bit(9)) >> 9); \
++ c_patch((address)&insn, 15, 13, funct3); \
++ emit_int16(insn); \
++ }
++
++ INSN(c_addi16sp, 0b011, 0b01);
++
++#undef INSN
++
++#define INSN(NAME, funct3, op) \
++ void NAME(Register Rd, uint32_t uimm) { \
++ assert_cond(is_uimm10(uimm)); \
++ assert_cond((uimm & 0b11) == 0); \
++ assert_cond(uimm != 0); \
++ uint16_t insn = 0; \
++ c_patch((address)&insn, 1, 0, op); \
++ c_patch_compressed_reg((address)&insn, 2, Rd); \
++ c_patch((address)&insn, 5, 5, (uimm & nth_bit(3)) >> 3); \
++ c_patch((address)&insn, 6, 6, (uimm & nth_bit(2)) >> 2); \
++ c_patch((address)&insn, 10, 7, (uimm & right_n_bits(10)) >> 6); \
++ c_patch((address)&insn, 12, 11, (uimm & right_n_bits(6)) >> 4); \
++ c_patch((address)&insn, 15, 13, funct3); \
++ emit_int16(insn); \
++ }
++
++ INSN(c_addi4spn, 0b000, 0b00);
++
++#undef INSN
++
++#define INSN(NAME, funct3, op) \
++ void NAME(Register Rd_Rs1, uint32_t shamt) { \
++ assert_cond(is_uimm6(shamt)); \
++ assert_cond(shamt != 0); \
++ assert_cond(Rd_Rs1 != x0); \
++ uint16_t insn = 0; \
++ c_patch((address)&insn, 1, 0, op); \
++ c_patch((address)&insn, 6, 2, (shamt & right_n_bits(5))); \
++ c_patch_reg((address)&insn, 7, Rd_Rs1); \
++ c_patch((address)&insn, 12, 12, (shamt & nth_bit(5)) >> 5); \
++ c_patch((address)&insn, 15, 13, funct3); \
++ emit_int16(insn); \
++ }
++
++ INSN(c_slli, 0b000, 0b10);
++
++#undef INSN
++
++#define INSN(NAME, funct3, funct2, op) \
++ void NAME(Register Rd_Rs1, uint32_t shamt) { \
++ assert_cond(is_uimm6(shamt)); \
++ assert_cond(shamt != 0); \
++ uint16_t insn = 0; \
++ c_patch((address)&insn, 1, 0, op); \
++ c_patch((address)&insn, 6, 2, (shamt & right_n_bits(5))); \
++ c_patch_compressed_reg((address)&insn, 7, Rd_Rs1); \
++ c_patch((address)&insn, 11, 10, funct2); \
++ c_patch((address)&insn, 12, 12, (shamt & nth_bit(5)) >> 5); \
++ c_patch((address)&insn, 15, 13, funct3); \
++ emit_int16(insn); \
++ }
++
++ INSN(c_srli, 0b100, 0b00, 0b01);
++ INSN(c_srai, 0b100, 0b01, 0b01);
++
++#undef INSN
++
++#define INSN(NAME, funct3, funct2, op) \
++ void NAME(Register Rd_Rs1, int32_t imm) { \
++ assert_cond(is_simm6(imm)); \
++ uint16_t insn = 0; \
++ c_patch((address)&insn, 1, 0, op); \
++ c_patch((address)&insn, 6, 2, (imm & right_n_bits(5))); \
++ c_patch_compressed_reg((address)&insn, 7, Rd_Rs1); \
++ c_patch((address)&insn, 11, 10, funct2); \
++ c_patch((address)&insn, 12, 12, (imm & nth_bit(5)) >> 5); \
++ c_patch((address)&insn, 15, 13, funct3); \
++ emit_int16(insn); \
++ }
++
++ INSN(c_andi, 0b100, 0b10, 0b01);
++
++#undef INSN
++
++#define INSN(NAME, funct6, funct2, op) \
++ void NAME(Register Rd_Rs1, Register Rs2) { \
++ uint16_t insn = 0; \
++ c_patch((address)&insn, 1, 0, op); \
++ c_patch_compressed_reg((address)&insn, 2, Rs2); \
++ c_patch((address)&insn, 6, 5, funct2); \
++ c_patch_compressed_reg((address)&insn, 7, Rd_Rs1); \
++ c_patch((address)&insn, 15, 10, funct6); \
++ emit_int16(insn); \
++ }
++
++ INSN(c_sub, 0b100011, 0b00, 0b01);
++ INSN(c_xor, 0b100011, 0b01, 0b01);
++ INSN(c_or, 0b100011, 0b10, 0b01);
++ INSN(c_and, 0b100011, 0b11, 0b01);
++ INSN(c_subw, 0b100111, 0b00, 0b01);
++ INSN(c_addw, 0b100111, 0b01, 0b01);
++
++#undef INSN
++
++#define INSN(NAME, funct4, op) \
++ void NAME(Register Rd_Rs1, Register Rs2) { \
++ assert_cond(Rd_Rs1 != x0); \
++ uint16_t insn = 0; \
++ c_patch((address)&insn, 1, 0, op); \
++ c_patch_reg((address)&insn, 2, Rs2); \
++ c_patch_reg((address)&insn, 7, Rd_Rs1); \
++ c_patch((address)&insn, 15, 12, funct4); \
++ emit_int16(insn); \
++ }
++
++ INSN(c_mv, 0b1000, 0b10);
++ INSN(c_add, 0b1001, 0b10);
++
++#undef INSN
++
++#define INSN(NAME, funct4, op) \
++ void NAME(Register Rs1) { \
++ assert_cond(Rs1 != x0); \
++ uint16_t insn = 0; \
++ c_patch((address)&insn, 1, 0, op); \
++ c_patch_reg((address)&insn, 2, x0); \
++ c_patch_reg((address)&insn, 7, Rs1); \
++ c_patch((address)&insn, 15, 12, funct4); \
++ emit_int16(insn); \
++ }
++
++ INSN(c_jr, 0b1000, 0b10);
++ INSN(c_jalr, 0b1001, 0b10);
++
++#undef INSN
++
++ typedef void (Assembler::* j_c_insn)(address dest);
++ typedef void (Assembler::* compare_and_branch_c_insn)(Register Rs1, address dest);
++
++ void wrap_label(Label &L, j_c_insn insn) {
++ if (L.is_bound()) {
++ (this->*insn)(target(L));
++ } else {
++ L.add_patch_at(code(), locator());
++ (this->*insn)(pc());
++ }
++ }
++
++ void wrap_label(Label &L, Register r, compare_and_branch_c_insn insn) {
++ if (L.is_bound()) {
++ (this->*insn)(r, target(L));
++ } else {
++ L.add_patch_at(code(), locator());
++ (this->*insn)(r, pc());
++ }
++ }
++
++#define INSN(NAME, funct3, op) \
++ void NAME(int32_t offset) { \
++ assert(is_simm12(offset) && ((offset % 2) == 0), "invalid encoding"); \
++ uint16_t insn = 0; \
++ c_patch((address)&insn, 1, 0, op); \
++ c_patch((address)&insn, 2, 2, (offset & nth_bit(5)) >> 5); \
++ c_patch((address)&insn, 5, 3, (offset & right_n_bits(4)) >> 1); \
++ c_patch((address)&insn, 6, 6, (offset & nth_bit(7)) >> 7); \
++ c_patch((address)&insn, 7, 7, (offset & nth_bit(6)) >> 6); \
++ c_patch((address)&insn, 8, 8, (offset & nth_bit(10)) >> 10); \
++ c_patch((address)&insn, 10, 9, (offset & right_n_bits(10)) >> 8); \
++ c_patch((address)&insn, 11, 11, (offset & nth_bit(4)) >> 4); \
++ c_patch((address)&insn, 12, 12, (offset & nth_bit(11)) >> 11); \
++ c_patch((address)&insn, 15, 13, funct3); \
++ emit_int16(insn); \
++ } \
++ void NAME(address dest) { \
++ assert_cond(dest != NULL); \
++ int64_t distance = dest - pc(); \
++ assert(is_simm12(distance) && ((distance % 2) == 0), "invalid encoding"); \
++ c_j(distance); \
++ } \
++ void NAME(Label &L) { \
++ wrap_label(L, &Assembler::NAME); \
++ }
++
++ INSN(c_j, 0b101, 0b01);
++
++#undef INSN
++
++#define INSN(NAME, funct3, op) \
++ void NAME(Register Rs1, int32_t imm) { \
++ assert(is_simm9(imm) && ((imm % 2) == 0), "invalid encoding"); \
++ uint16_t insn = 0; \
++ c_patch((address)&insn, 1, 0, op); \
++ c_patch((address)&insn, 2, 2, (imm & nth_bit(5)) >> 5); \
++ c_patch((address)&insn, 4, 3, (imm & right_n_bits(3)) >> 1); \
++ c_patch((address)&insn, 6, 5, (imm & right_n_bits(8)) >> 6); \
++ c_patch_compressed_reg((address)&insn, 7, Rs1); \
++ c_patch((address)&insn, 11, 10, (imm & right_n_bits(5)) >> 3); \
++ c_patch((address)&insn, 12, 12, (imm & nth_bit(8)) >> 8); \
++ c_patch((address)&insn, 15, 13, funct3); \
++ emit_int16(insn); \
++ } \
++ void NAME(Register Rs1, address dest) { \
++ assert_cond(dest != NULL); \
++ int64_t distance = dest - pc(); \
++ assert(is_simm9(distance) && ((distance % 2) == 0), "invalid encoding"); \
++ NAME(Rs1, distance); \
++ } \
++ void NAME(Register Rs1, Label &L) { \
++ wrap_label(L, Rs1, &Assembler::NAME); \
++ }
++
++ INSN(c_beqz, 0b110, 0b01);
++ INSN(c_bnez, 0b111, 0b01);
++
++#undef INSN
++
++#define INSN(NAME, funct3, op) \
++ void NAME(Register Rd, int32_t imm) { \
++ assert_cond(is_simm18(imm)); \
++ assert_cond((imm & 0xfff) == 0); \
++ assert_cond(imm != 0); \
++ assert_cond(Rd != x0 && Rd != x2); \
++ uint16_t insn = 0; \
++ c_patch((address)&insn, 1, 0, op); \
++ c_patch((address)&insn, 6, 2, (imm & right_n_bits(17)) >> 12); \
++ c_patch_reg((address)&insn, 7, Rd); \
++ c_patch((address)&insn, 12, 12, (imm & nth_bit(17)) >> 17); \
++ c_patch((address)&insn, 15, 13, funct3); \
++ emit_int16(insn); \
++ }
++
++ INSN(c_lui, 0b011, 0b01);
++
++#undef INSN
++
++#define INSN(NAME, funct3, op) \
++ void NAME(Register Rd, int32_t imm) { \
++ assert_cond(is_simm6(imm)); \
++ assert_cond(Rd != x0); \
++ uint16_t insn = 0; \
++ c_patch((address)&insn, 1, 0, op); \
++ c_patch((address)&insn, 6, 2, (imm & right_n_bits(5))); \
++ c_patch_reg((address)&insn, 7, Rd); \
++ c_patch((address)&insn, 12, 12, (imm & right_n_bits(6)) >> 5); \
++ c_patch((address)&insn, 15, 13, funct3); \
++ emit_int16(insn); \
++ }
++
++ INSN(c_li, 0b010, 0b01);
++
++#undef INSN
++
++#define INSN(NAME, funct3, op) \
++ void NAME(Register Rd, uint32_t uimm) { \
++ assert_cond(is_uimm9(uimm)); \
++ assert_cond((uimm & 0b111) == 0); \
++ assert_cond(Rd != x0); \
++ uint16_t insn = 0; \
++ c_patch((address)&insn, 1, 0, op); \
++ c_patch((address)&insn, 4, 2, (uimm & right_n_bits(9)) >> 6); \
++ c_patch((address)&insn, 6, 5, (uimm & right_n_bits(5)) >> 3); \
++ c_patch_reg((address)&insn, 7, Rd); \
++ c_patch((address)&insn, 12, 12, (uimm & nth_bit(5)) >> 5); \
++ c_patch((address)&insn, 15, 13, funct3); \
++ emit_int16(insn); \
++ }
++
++ INSN(c_ldsp, 0b011, 0b10);
++
++#undef INSN
++
++#define INSN(NAME, funct3, op) \
++ void NAME(FloatRegister Rd, uint32_t uimm) { \
++ assert_cond(is_uimm9(uimm)); \
++ assert_cond((uimm & 0b111) == 0); \
++ uint16_t insn = 0; \
++ c_patch((address)&insn, 1, 0, op); \
++ c_patch((address)&insn, 4, 2, (uimm & right_n_bits(9)) >> 6); \
++ c_patch((address)&insn, 6, 5, (uimm & right_n_bits(5)) >> 3); \
++ c_patch_reg((address)&insn, 7, Rd); \
++ c_patch((address)&insn, 12, 12, (uimm & nth_bit(5)) >> 5); \
++ c_patch((address)&insn, 15, 13, funct3); \
++ emit_int16(insn); \
++ }
++
++ INSN(c_fldsp, 0b001, 0b10);
++
++#undef INSN
++
++#define INSN(NAME, funct3, op, REGISTER_TYPE) \
++ void NAME(REGISTER_TYPE Rd_Rs2, Register Rs1, uint32_t uimm) { \
++ assert_cond(is_uimm8(uimm)); \
++ assert_cond((uimm & 0b111) == 0); \
++ uint16_t insn = 0; \
++ c_patch((address)&insn, 1, 0, op); \
++ c_patch_compressed_reg((address)&insn, 2, Rd_Rs2); \
++ c_patch((address)&insn, 6, 5, (uimm & right_n_bits(8)) >> 6); \
++ c_patch_compressed_reg((address)&insn, 7, Rs1); \
++ c_patch((address)&insn, 12, 10, (uimm & right_n_bits(6)) >> 3); \
++ c_patch((address)&insn, 15, 13, funct3); \
++ emit_int16(insn); \
++ }
++
++ INSN(c_ld, 0b011, 0b00, Register);
++ INSN(c_sd, 0b111, 0b00, Register);
++ INSN(c_fld, 0b001, 0b00, FloatRegister);
++ INSN(c_fsd, 0b101, 0b00, FloatRegister);
++
++#undef INSN
++
++#define INSN(NAME, funct3, op, REGISTER_TYPE) \
++ void NAME(REGISTER_TYPE Rs2, uint32_t uimm) { \
++ assert_cond(is_uimm9(uimm)); \
++ assert_cond((uimm & 0b111) == 0); \
++ uint16_t insn = 0; \
++ c_patch((address)&insn, 1, 0, op); \
++ c_patch_reg((address)&insn, 2, Rs2); \
++ c_patch((address)&insn, 9, 7, (uimm & right_n_bits(9)) >> 6); \
++ c_patch((address)&insn, 12, 10, (uimm & right_n_bits(6)) >> 3); \
++ c_patch((address)&insn, 15, 13, funct3); \
++ emit_int16(insn); \
++ }
++
++ INSN(c_sdsp, 0b111, 0b10, Register);
++ INSN(c_fsdsp, 0b101, 0b10, FloatRegister);
++
++#undef INSN
++
++#define INSN(NAME, funct3, op) \
++ void NAME(Register Rs2, uint32_t uimm) { \
++ assert_cond(is_uimm8(uimm)); \
++ assert_cond((uimm & 0b11) == 0); \
++ uint16_t insn = 0; \
++ c_patch((address)&insn, 1, 0, op); \
++ c_patch_reg((address)&insn, 2, Rs2); \
++ c_patch((address)&insn, 8, 7, (uimm & right_n_bits(8)) >> 6); \
++ c_patch((address)&insn, 12, 9, (uimm & right_n_bits(6)) >> 2); \
++ c_patch((address)&insn, 15, 13, funct3); \
++ emit_int16(insn); \
++ }
++
++ INSN(c_swsp, 0b110, 0b10);
++
++#undef INSN
++
++#define INSN(NAME, funct3, op) \
++ void NAME(Register Rd, uint32_t uimm) { \
++ assert_cond(is_uimm8(uimm)); \
++ assert_cond((uimm & 0b11) == 0); \
++ assert_cond(Rd != x0); \
++ uint16_t insn = 0; \
++ c_patch((address)&insn, 1, 0, op); \
++ c_patch((address)&insn, 3, 2, (uimm & right_n_bits(8)) >> 6); \
++ c_patch((address)&insn, 6, 4, (uimm & right_n_bits(5)) >> 2); \
++ c_patch_reg((address)&insn, 7, Rd); \
++ c_patch((address)&insn, 12, 12, (uimm & nth_bit(5)) >> 5); \
++ c_patch((address)&insn, 15, 13, funct3); \
++ emit_int16(insn); \
++ }
++
++ INSN(c_lwsp, 0b010, 0b10);
++
++#undef INSN
++
++#define INSN(NAME, funct3, op) \
++ void NAME(Register Rd_Rs2, Register Rs1, uint32_t uimm) { \
++ assert_cond(is_uimm7(uimm)); \
++ assert_cond((uimm & 0b11) == 0); \
++ uint16_t insn = 0; \
++ c_patch((address)&insn, 1, 0, op); \
++ c_patch_compressed_reg((address)&insn, 2, Rd_Rs2); \
++ c_patch((address)&insn, 5, 5, (uimm & nth_bit(6)) >> 6); \
++ c_patch((address)&insn, 6, 6, (uimm & nth_bit(2)) >> 2); \
++ c_patch_compressed_reg((address)&insn, 7, Rs1); \
++ c_patch((address)&insn, 12, 10, (uimm & right_n_bits(6)) >> 3); \
++ c_patch((address)&insn, 15, 13, funct3); \
++ emit_int16(insn); \
++ }
++
++ INSN(c_lw, 0b010, 0b00);
++ INSN(c_sw, 0b110, 0b00);
++
++#undef INSN
++
++#define INSN(NAME, funct3, op) \
++ void NAME() { \
++ uint16_t insn = 0; \
++ c_patch((address)&insn, 1, 0, op); \
++ c_patch((address)&insn, 11, 2, 0x0); \
++ c_patch((address)&insn, 12, 12, 0b1); \
++ c_patch((address)&insn, 15, 13, funct3); \
++ emit_int16(insn); \
++ }
++
++ INSN(c_ebreak, 0b100, 0b10);
++
++#undef INSN
++
++// -------------- RVC Transformation Functions --------------
++
++// --------------------------
++// Register instructions
++// --------------------------
++#define INSN(NAME) \
++ void NAME(Register Rd, Register Rs1, Register Rs2) { \
++ /* add -> c.add */ \
++ if (do_compress()) { \
++ Register src = noreg; \
++ if (Rs1 != x0 && Rs2 != x0 && ((src = Rs1, Rs2 == Rd) || (src = Rs2, Rs1 == Rd))) { \
++ c_add(Rd, src); \
++ return; \
++ } \
++ } \
++ _add(Rd, Rs1, Rs2); \
++ }
++
++ INSN(add);
++
++#undef INSN
++
++// --------------------------
++#define INSN(NAME, C_NAME, NORMAL_NAME) \
++ void NAME(Register Rd, Register Rs1, Register Rs2) { \
++ /* sub/subw -> c.sub/c.subw */ \
++ if (do_compress() && \
++ (Rd == Rs1 && Rd->is_compressed_valid() && Rs2->is_compressed_valid())) { \
++ C_NAME(Rd, Rs2); \
++ return; \
++ } \
++ NORMAL_NAME(Rd, Rs1, Rs2); \
++ }
++
++ INSN(sub, c_sub, _sub);
++ INSN(subw, c_subw, _subw);
++
++#undef INSN
++
++// --------------------------
++#define INSN(NAME, C_NAME, NORMAL_NAME) \
++ void NAME(Register Rd, Register Rs1, Register Rs2) { \
++ /* and/or/xor/addw -> c.and/c.or/c.xor/c.addw */ \
++ if (do_compress()) { \
++ Register src = noreg; \
++ if (Rs1->is_compressed_valid() && Rs2->is_compressed_valid() && \
++ ((src = Rs1, Rs2 == Rd) || (src = Rs2, Rs1 == Rd))) { \
++ C_NAME(Rd, src); \
++ return; \
++ } \
++ } \
++ NORMAL_NAME(Rd, Rs1, Rs2); \
++ }
++
++ INSN(andr, c_and, _andr);
++ INSN(orr, c_or, _orr);
++ INSN(xorr, c_xor, _xorr);
++ INSN(addw, c_addw, _addw);
++
++#undef INSN
++
++private:
++// some helper functions
++#define FUNC(NAME, funct3, bits) \
++ bool NAME(Register rs1, Register rd_rs2, int32_t imm12, bool ld) { \
++ return rs1 == sp && \
++ is_uimm(imm12, bits) && \
++ (intx(imm12) & funct3) == 0x0 && \
++ (!ld || rd_rs2 != x0); \
++ } \
++
++ FUNC(is_c_ldsdsp, 0b111, 9);
++ FUNC(is_c_lwswsp, 0b011, 8);
++
++#undef FUNC
++
++#define FUNC(NAME, funct3, bits) \
++ bool NAME(Register rs1, int32_t imm12) { \
++ return rs1 == sp && \
++ is_uimm(imm12, bits) && \
++ (intx(imm12) & funct3) == 0x0; \
++ } \
++
++ FUNC(is_c_fldsdsp, 0b111, 9);
++
++#undef FUNC
++
++#define FUNC(NAME, REG_TYPE, funct3, bits) \
++ bool NAME(Register rs1, REG_TYPE rd_rs2, int32_t imm12) { \
++ return rs1->is_compressed_valid() && \
++ rd_rs2->is_compressed_valid() && \
++ is_uimm(imm12, bits) && \
++ (intx(imm12) & funct3) == 0x0; \
++ } \
++
++ FUNC(is_c_ldsd, Register, 0b111, 8);
++ FUNC(is_c_lwsw, Register, 0b011, 7);
++ FUNC(is_c_fldsd, FloatRegister, 0b111, 8);
++
++#undef FUNC
++
++public:
++ bool do_compress() const {
++ return UseRVC && in_compressible_region();
++ }
++
++// --------------------------
++// Load/store register
++// --------------------------
++#define INSN(NAME) \
++ void NAME(Register Rd, Register Rs, const int32_t offset) { \
++ /* lw -> c.lwsp/c.lw */ \
++ if (do_compress()) { \
++ if (is_c_lwswsp(Rs, Rd, offset, true)) { \
++ c_lwsp(Rd, offset); \
++ return; \
++ } else if (is_c_lwsw(Rs, Rd, offset)) { \
++ c_lw(Rd, Rs, offset); \
++ return; \
++ } \
++ } \
++ _lw(Rd, Rs, offset); \
++ }
++
++ INSN(lw);
++
++#undef INSN
++
++// --------------------------
++#define INSN(NAME) \
++ void NAME(Register Rd, Register Rs, const int32_t offset) { \
++ /* ld -> c.ldsp/c.ld */ \
++ if (do_compress()) { \
++ if (is_c_ldsdsp(Rs, Rd, offset, true)) { \
++ c_ldsp(Rd, offset); \
++ return; \
++ } else if (is_c_ldsd(Rs, Rd, offset)) { \
++ c_ld(Rd, Rs, offset); \
++ return; \
++ } \
++ } \
++ _ld(Rd, Rs, offset); \
++ }
++
++ INSN(ld);
++
++#undef INSN
++
++// --------------------------
++#define INSN(NAME) \
++ void NAME(FloatRegister Rd, Register Rs, const int32_t offset) { \
++ /* fld -> c.fldsp/c.fld */ \
++ if (do_compress()) { \
++ if (is_c_fldsdsp(Rs, offset)) { \
++ c_fldsp(Rd, offset); \
++ return; \
++ } else if (is_c_fldsd(Rs, Rd, offset)) { \
++ c_fld(Rd, Rs, offset); \
++ return; \
++ } \
++ } \
++ _fld(Rd, Rs, offset); \
++ }
++
++ INSN(fld);
++
++#undef INSN
++
++// --------------------------
++#define INSN(NAME) \
++ void NAME(Register Rd, Register Rs, const int32_t offset) { \
++ /* sd -> c.sdsp/c.sd */ \
++ if (do_compress()) { \
++ if (is_c_ldsdsp(Rs, Rd, offset, false)) { \
++ c_sdsp(Rd, offset); \
++ return; \
++ } else if (is_c_ldsd(Rs, Rd, offset)) { \
++ c_sd(Rd, Rs, offset); \
++ return; \
++ } \
++ } \
++ _sd(Rd, Rs, offset); \
++ }
++
++ INSN(sd);
++
++#undef INSN
++
++// --------------------------
++#define INSN(NAME) \
++ void NAME(Register Rd, Register Rs, const int32_t offset) { \
++ /* sw -> c.swsp/c.sw */ \
++ if (do_compress()) { \
++ if (is_c_lwswsp(Rs, Rd, offset, false)) { \
++ c_swsp(Rd, offset); \
++ return; \
++ } else if (is_c_lwsw(Rs, Rd, offset)) { \
++ c_sw(Rd, Rs, offset); \
++ return; \
++ } \
++ } \
++ _sw(Rd, Rs, offset); \
++ }
++
++ INSN(sw);
++
++#undef INSN
++
++// --------------------------
++#define INSN(NAME) \
++ void NAME(FloatRegister Rd, Register Rs, const int32_t offset) { \
++ /* fsd -> c.fsdsp/c.fsd */ \
++ if (do_compress()) { \
++ if (is_c_fldsdsp(Rs, offset)) { \
++ c_fsdsp(Rd, offset); \
++ return; \
++ } else if (is_c_fldsd(Rs, Rd, offset)) { \
++ c_fsd(Rd, Rs, offset); \
++ return; \
++ } \
++ } \
++ _fsd(Rd, Rs, offset); \
++ }
++
++ INSN(fsd);
++
++#undef INSN
++
++// --------------------------
++// Unconditional branch instructions
++// --------------------------
++#define INSN(NAME) \
++ void NAME(Register Rd, Register Rs, const int32_t offset) { \
++ /* jalr -> c.jr/c.jalr */ \
++ if (do_compress() && (offset == 0 && Rs != x0)) { \
++ if (Rd == x1) { \
++ c_jalr(Rs); \
++ return; \
++ } else if (Rd == x0) { \
++ c_jr(Rs); \
++ return; \
++ } \
++ } \
++ _jalr(Rd, Rs, offset); \
++ }
++
++ INSN(jalr);
++
++#undef INSN
++
++// --------------------------
++// Miscellaneous Instructions
++// --------------------------
++#define INSN(NAME) \
++ void NAME() { \
++ /* ebreak -> c.ebreak */ \
++ if (do_compress()) { \
++ c_ebreak(); \
++ return; \
++ } \
++ _ebreak(); \
++ }
++
++ INSN(ebreak);
++
++#undef INSN
++
++// --------------------------
++// Immediate Instructions
++// --------------------------
++#define INSN(NAME) \
++ void NAME(Register Rd, Register Rs1, int32_t imm) { \
++ /* addi -> c.addi/c.nop/c.mv/c.addi16sp/c.addi4spn */ \
++ if (do_compress()) { \
++ if (Rd == Rs1 && is_simm6(imm)) { \
++ c_addi(Rd, imm); \
++ return; \
++ } else if (imm == 0 && Rd != x0 && Rs1 != x0) { \
++ c_mv(Rd, Rs1); \
++ return; \
++ } else if (Rs1 == sp && imm != 0) { \
++ if (Rd == Rs1 && (imm & 0b1111) == 0x0 && is_simm10(imm)) { \
++ c_addi16sp(imm); \
++ return; \
++ } else if (Rd->is_compressed_valid() && (imm & 0b11) == 0x0 && is_uimm10(imm)) { \
++ c_addi4spn(Rd, imm); \
++ return; \
++ } \
++ } \
++ } \
++ _addi(Rd, Rs1, imm); \
++ }
++
++ INSN(addi);
++
++#undef INSN
++
++// --------------------------
++#define INSN(NAME) \
++ void NAME(Register Rd, Register Rs1, int32_t imm) { \
++ /* addiw -> c.addiw */ \
++ if (do_compress() && (Rd == Rs1 && Rd != x0 && is_simm6(imm))) { \
++ c_addiw(Rd, imm); \
++ return; \
++ } \
++ _addiw(Rd, Rs1, imm); \
++ }
++
++ INSN(addiw);
++
++#undef INSN
++
++// --------------------------
++#define INSN(NAME) \
++ void NAME(Register Rd, Register Rs1, int32_t imm) { \
++ /* and_imm12 -> c.andi */ \
++ if (do_compress() && \
++ (Rd == Rs1 && Rd->is_compressed_valid() && is_simm6(imm))) { \
++ c_andi(Rd, imm); \
++ return; \
++ } \
++ _and_imm12(Rd, Rs1, imm); \
++ }
++
++ INSN(and_imm12);
++
++#undef INSN
++
++// --------------------------
++// Shift Immediate Instructions
++// --------------------------
++#define INSN(NAME) \
++ void NAME(Register Rd, Register Rs1, unsigned shamt) { \
++ /* slli -> c.slli */ \
++ if (do_compress() && (Rd == Rs1 && Rd != x0 && shamt != 0)) { \
++ c_slli(Rd, shamt); \
++ return; \
++ } \
++ _slli(Rd, Rs1, shamt); \
++ }
++
++ INSN(slli);
++
++#undef INSN
++
++// --------------------------
++#define INSN(NAME, C_NAME, NORMAL_NAME) \
++ void NAME(Register Rd, Register Rs1, unsigned shamt) { \
++ /* srai/srli -> c.srai/c.srli */ \
++ if (do_compress() && (Rd == Rs1 && Rd->is_compressed_valid() && shamt != 0)) { \
++ C_NAME(Rd, shamt); \
++ return; \
++ } \
++ NORMAL_NAME(Rd, Rs1, shamt); \
++ }
++
++ INSN(srai, c_srai, _srai);
++ INSN(srli, c_srli, _srli);
++
++#undef INSN
++
++// --------------------------
++// Upper Immediate Instruction
++// --------------------------
++#define INSN(NAME) \
++ void NAME(Register Rd, int32_t imm) { \
++ /* lui -> c.lui */ \
++ if (do_compress() && (Rd != x0 && Rd != x2 && imm != 0 && is_simm18(imm))) { \
++ c_lui(Rd, imm); \
++ return; \
++ } \
++ _lui(Rd, imm); \
++ }
++
++ INSN(lui);
++
++#undef INSN
++
++// ---------------------------------------------------------------------------------------
++
++#define INSN(NAME, REGISTER) \
++ void NAME(Register Rs) { \
++ jalr(REGISTER, Rs, 0); \
++ }
++
++ INSN(jr, x0);
++ INSN(jalr, x1);
++
++#undef INSN
++
++ // Stack overflow checking
++ virtual void bang_stack_with_offset(int offset) { Unimplemented(); }
++
++ static bool is_simm5(int64_t x);
++ static bool is_simm6(int64_t x);
++ static bool is_simm12(int64_t x);
++ static bool is_simm13(int64_t x);
++ static bool is_simm18(int64_t x);
++ static bool is_simm21(int64_t x);
++
++ static bool is_uimm3(uint64_t x);
++ static bool is_uimm5(uint64_t x);
++ static bool is_uimm6(uint64_t x);
++ static bool is_uimm7(uint64_t x);
++ static bool is_uimm8(uint64_t x);
++ static bool is_uimm9(uint64_t x);
++ static bool is_uimm10(uint64_t x);
++
++ // The maximum range of a branch is fixed for the RISCV architecture.
++ static const unsigned long branch_range = 1 * M;
++
++ static bool reachable_from_branch_at(address branch, address target) {
++ return uabs(target - branch) < branch_range;
++ }
++
++ Assembler(CodeBuffer* code) : AbstractAssembler(code), _in_compressible_region(false) {}
++
++ virtual ~Assembler() {}
++};
++
++class BiasedLockingCounters;
++
++#endif // CPU_RISCV_ASSEMBLER_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/assembler_riscv.inline.hpp
+@@ -0,0 +1,49 @@
++/*
++ * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_ASSEMBLER_RISCV_INLINE_HPP
++#define CPU_RISCV_ASSEMBLER_RISCV_INLINE_HPP
++
++#include "asm/assembler.inline.hpp"
++#include "asm/codeBuffer.hpp"
++#include "code/codeCache.hpp"
++
++inline bool Assembler::is_simm5(int64_t x) { return is_simm(x, 5); }
++inline bool Assembler::is_simm6(int64_t x) { return is_simm(x, 6); }
++inline bool Assembler::is_simm12(int64_t x) { return is_simm(x, 12); }
++inline bool Assembler::is_simm13(int64_t x) { return is_simm(x, 13); }
++inline bool Assembler::is_simm18(int64_t x) { return is_simm(x, 18); }
++inline bool Assembler::is_simm21(int64_t x) { return is_simm(x, 21); }
++
++inline bool Assembler::is_uimm3(uint64_t x) { return is_uimm(x, 3); }
++inline bool Assembler::is_uimm5(uint64_t x) { return is_uimm(x, 5); }
++inline bool Assembler::is_uimm6(uint64_t x) { return is_uimm(x, 6); }
++inline bool Assembler::is_uimm7(uint64_t x) { return is_uimm(x, 7); }
++inline bool Assembler::is_uimm8(uint64_t x) { return is_uimm(x, 8); }
++inline bool Assembler::is_uimm9(uint64_t x) { return is_uimm(x, 9); }
++inline bool Assembler::is_uimm10(uint64_t x) { return is_uimm(x, 10); }
++
++#endif // CPU_RISCV_ASSEMBLER_RISCV_INLINE_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/bytes_riscv.hpp
+@@ -0,0 +1,169 @@
++/*
++ * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2012, 2016 SAP SE. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_BYTES_RISCV_HPP
++#define CPU_RISCV_BYTES_RISCV_HPP
++
++#include "memory/allStatic.hpp"
++
++class Bytes: AllStatic {
++ public:
++ // Efficient reading and writing of unaligned unsigned data in platform-specific byte ordering
++ // RISCV needs to check for alignment.
++
++ // Forward declarations of the compiler-dependent implementation
++ static inline u2 swap_u2(u2 x);
++ static inline u4 swap_u4(u4 x);
++ static inline u8 swap_u8(u8 x);
++
++ static inline u2 get_native_u2(address p) {
++ if ((intptr_t(p) & 1) == 0) {
++ return *(u2*)p;
++ } else {
++ return ((u2)(p[1]) << 8) |
++ ((u2)(p[0]));
++ }
++ }
++
++ static inline u4 get_native_u4(address p) {
++ switch (intptr_t(p) & 3) {
++ case 0:
++ return *(u4*)p;
++
++ case 2:
++ return ((u4)(((u2*)p)[1]) << 16) |
++ ((u4)(((u2*)p)[0]));
++
++ default:
++ return ((u4)(p[3]) << 24) |
++ ((u4)(p[2]) << 16) |
++ ((u4)(p[1]) << 8) |
++ ((u4)(p[0]));
++ }
++ }
++
++ static inline u8 get_native_u8(address p) {
++ switch (intptr_t(p) & 7) {
++ case 0:
++ return *(u8*)p;
++
++ case 4:
++ return ((u8)(((u4*)p)[1]) << 32) |
++ ((u8)(((u4*)p)[0]));
++
++ case 2:
++ case 6:
++ return ((u8)(((u2*)p)[3]) << 48) |
++ ((u8)(((u2*)p)[2]) << 32) |
++ ((u8)(((u2*)p)[1]) << 16) |
++ ((u8)(((u2*)p)[0]));
++
++ default:
++ return ((u8)(p[7]) << 56) |
++ ((u8)(p[6]) << 48) |
++ ((u8)(p[5]) << 40) |
++ ((u8)(p[4]) << 32) |
++ ((u8)(p[3]) << 24) |
++ ((u8)(p[2]) << 16) |
++ ((u8)(p[1]) << 8) |
++ ((u8)(p[0]));
++ }
++ }
++
++ static inline void put_native_u2(address p, u2 x) {
++ if ((intptr_t(p) & 1) == 0) {
++ *(u2*)p = x;
++ } else {
++ p[1] = x >> 8;
++ p[0] = x;
++ }
++ }
++
++ static inline void put_native_u4(address p, u4 x) {
++ switch (intptr_t(p) & 3) {
++ case 0:
++ *(u4*)p = x;
++ break;
++
++ case 2:
++ ((u2*)p)[1] = x >> 16;
++ ((u2*)p)[0] = x;
++ break;
++
++ default:
++ ((u1*)p)[3] = x >> 24;
++ ((u1*)p)[2] = x >> 16;
++ ((u1*)p)[1] = x >> 8;
++ ((u1*)p)[0] = x;
++ break;
++ }
++ }
++
++ static inline void put_native_u8(address p, u8 x) {
++ switch (intptr_t(p) & 7) {
++ case 0:
++ *(u8*)p = x;
++ break;
++
++ case 4:
++ ((u4*)p)[1] = x >> 32;
++ ((u4*)p)[0] = x;
++ break;
++
++ case 2:
++ case 6:
++ ((u2*)p)[3] = x >> 48;
++ ((u2*)p)[2] = x >> 32;
++ ((u2*)p)[1] = x >> 16;
++ ((u2*)p)[0] = x;
++ break;
++
++ default:
++ ((u1*)p)[7] = x >> 56;
++ ((u1*)p)[6] = x >> 48;
++ ((u1*)p)[5] = x >> 40;
++ ((u1*)p)[4] = x >> 32;
++ ((u1*)p)[3] = x >> 24;
++ ((u1*)p)[2] = x >> 16;
++ ((u1*)p)[1] = x >> 8;
++ ((u1*)p)[0] = x;
++ break;
++ }
++ }
++
++ // Efficient reading and writing of unaligned unsigned data in Java byte ordering (i.e. big-endian ordering)
++ static inline u2 get_Java_u2(address p) { return swap_u2(get_native_u2(p)); }
++ static inline u4 get_Java_u4(address p) { return swap_u4(get_native_u4(p)); }
++ static inline u8 get_Java_u8(address p) { return swap_u8(get_native_u8(p)); }
++
++ static inline void put_Java_u2(address p, u2 x) { put_native_u2(p, swap_u2(x)); }
++ static inline void put_Java_u4(address p, u4 x) { put_native_u4(p, swap_u4(x)); }
++ static inline void put_Java_u8(address p, u8 x) { put_native_u8(p, swap_u8(x)); }
++};
++
++#include OS_CPU_HEADER(bytes)
++
++#endif // CPU_RISCV_BYTES_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/c1_CodeStubs_riscv.cpp
+@@ -0,0 +1,357 @@
++/*
++ * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/macroAssembler.inline.hpp"
++#include "c1/c1_CodeStubs.hpp"
++#include "c1/c1_FrameMap.hpp"
++#include "c1/c1_LIRAssembler.hpp"
++#include "c1/c1_MacroAssembler.hpp"
++#include "c1/c1_Runtime1.hpp"
++#include "classfile/javaClasses.hpp"
++#include "nativeInst_riscv.hpp"
++#include "runtime/sharedRuntime.hpp"
++#include "vmreg_riscv.inline.hpp"
++
++
++#define __ ce->masm()->
++
++void C1SafepointPollStub::emit_code(LIR_Assembler* ce) {
++ __ bind(_entry);
++ InternalAddress safepoint_pc(__ pc() - __ offset() + safepoint_offset());
++ __ relocate(safepoint_pc.rspec(), [&] {
++ __ la(t0, safepoint_pc.target());
++ });
++ __ sd(t0, Address(xthread, JavaThread::saved_exception_pc_offset()));
++
++ assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
++ "polling page return stub not created yet");
++ address stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
++
++ __ far_jump(RuntimeAddress(stub));
++}
++
++void CounterOverflowStub::emit_code(LIR_Assembler* ce) {
++ __ bind(_entry);
++ Metadata *m = _method->as_constant_ptr()->as_metadata();
++ __ mov_metadata(t0, m);
++ ce->store_parameter(t0, 1);
++ ce->store_parameter(_bci, 0);
++ __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::counter_overflow_id)));
++ ce->add_call_info_here(_info);
++ ce->verify_oop_map(_info);
++ __ j(_continuation);
++}
++
++RangeCheckStub::RangeCheckStub(CodeEmitInfo* info, LIR_Opr index, LIR_Opr array)
++ : _index(index), _array(array), _throw_index_out_of_bounds_exception(false) {
++ assert(info != NULL, "must have info");
++ _info = new CodeEmitInfo(info);
++}
++
++RangeCheckStub::RangeCheckStub(CodeEmitInfo* info, LIR_Opr index)
++ : _index(index), _array(NULL), _throw_index_out_of_bounds_exception(true) {
++ assert(info != NULL, "must have info");
++ _info = new CodeEmitInfo(info);
++}
++
++void RangeCheckStub::emit_code(LIR_Assembler* ce) {
++ __ bind(_entry);
++ if (_info->deoptimize_on_exception()) {
++ address a = Runtime1::entry_for(Runtime1::predicate_failed_trap_id);
++ __ far_call(RuntimeAddress(a));
++ ce->add_call_info_here(_info);
++ ce->verify_oop_map(_info);
++ debug_only(__ should_not_reach_here());
++ return;
++ }
++
++ if (_index->is_cpu_register()) {
++ __ mv(t0, _index->as_register());
++ } else {
++ __ mv(t0, _index->as_jint());
++ }
++ Runtime1::StubID stub_id;
++ if (_throw_index_out_of_bounds_exception) {
++ stub_id = Runtime1::throw_index_exception_id;
++ } else {
++ assert(_array != NULL, "sanity");
++ __ mv(t1, _array->as_pointer_register());
++ stub_id = Runtime1::throw_range_check_failed_id;
++ }
++ RuntimeAddress target(Runtime1::entry_for(stub_id));
++ __ relocate(target.rspec(), [&] {
++ int32_t offset;
++ __ la_patchable(ra, target, offset);
++ __ jalr(ra, ra, offset);
++ });
++ ce->add_call_info_here(_info);
++ ce->verify_oop_map(_info);
++ debug_only(__ should_not_reach_here());
++}
++
++PredicateFailedStub::PredicateFailedStub(CodeEmitInfo* info) {
++ _info = new CodeEmitInfo(info);
++}
++
++void PredicateFailedStub::emit_code(LIR_Assembler* ce) {
++ __ bind(_entry);
++ address a = Runtime1::entry_for(Runtime1::predicate_failed_trap_id);
++ __ far_call(RuntimeAddress(a));
++ ce->add_call_info_here(_info);
++ ce->verify_oop_map(_info);
++ debug_only(__ should_not_reach_here());
++}
++
++void DivByZeroStub::emit_code(LIR_Assembler* ce) {
++ if (_offset != -1) {
++ ce->compilation()->implicit_exception_table()->append(_offset, __ offset());
++ }
++ __ bind(_entry);
++ __ far_call(Address(Runtime1::entry_for(Runtime1::throw_div0_exception_id), relocInfo::runtime_call_type));
++ ce->add_call_info_here(_info);
++ ce->verify_oop_map(_info);
++#ifdef ASSERT
++ __ should_not_reach_here();
++#endif
++}
++
++// Implementation of NewInstanceStub
++NewInstanceStub::NewInstanceStub(LIR_Opr klass_reg, LIR_Opr result, ciInstanceKlass* klass, CodeEmitInfo* info, Runtime1::StubID stub_id) {
++ _result = result;
++ _klass = klass;
++ _klass_reg = klass_reg;
++ _info = new CodeEmitInfo(info);
++ assert(stub_id == Runtime1::new_instance_id ||
++ stub_id == Runtime1::fast_new_instance_id ||
++ stub_id == Runtime1::fast_new_instance_init_check_id,
++ "need new_instance id");
++ _stub_id = stub_id;
++}
++
++void NewInstanceStub::emit_code(LIR_Assembler* ce) {
++ assert(__ rsp_offset() == 0, "frame size should be fixed");
++ __ bind(_entry);
++ __ mv(x13, _klass_reg->as_register());
++ __ far_call(RuntimeAddress(Runtime1::entry_for(_stub_id)));
++ ce->add_call_info_here(_info);
++ ce->verify_oop_map(_info);
++ assert(_result->as_register() == x10, "result must in x10");
++ __ j(_continuation);
++}
++
++// Implementation of NewTypeArrayStub
++NewTypeArrayStub::NewTypeArrayStub(LIR_Opr klass_reg, LIR_Opr length, LIR_Opr result, CodeEmitInfo* info) {
++ _klass_reg = klass_reg;
++ _length = length;
++ _result = result;
++ _info = new CodeEmitInfo(info);
++}
++
++void NewTypeArrayStub::emit_code(LIR_Assembler* ce) {
++ assert(__ rsp_offset() == 0, "frame size should be fixed");
++ __ bind(_entry);
++ assert(_length->as_register() == x9, "length must in x9");
++ assert(_klass_reg->as_register() == x13, "klass_reg must in x13");
++ __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::new_type_array_id)));
++ ce->add_call_info_here(_info);
++ ce->verify_oop_map(_info);
++ assert(_result->as_register() == x10, "result must in x10");
++ __ j(_continuation);
++}
++
++// Implementation of NewObjectArrayStub
++NewObjectArrayStub::NewObjectArrayStub(LIR_Opr klass_reg, LIR_Opr length, LIR_Opr result, CodeEmitInfo* info) {
++ _klass_reg = klass_reg;
++ _result = result;
++ _length = length;
++ _info = new CodeEmitInfo(info);
++}
++
++void NewObjectArrayStub::emit_code(LIR_Assembler* ce) {
++ assert(__ rsp_offset() == 0, "frame size should be fixed");
++ __ bind(_entry);
++ assert(_length->as_register() == x9, "length must in x9");
++ assert(_klass_reg->as_register() == x13, "klass_reg must in x13");
++ __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::new_object_array_id)));
++ ce->add_call_info_here(_info);
++ ce->verify_oop_map(_info);
++ assert(_result->as_register() == x10, "result must in x10");
++ __ j(_continuation);
++}
++
++// Implementation of MonitorAccessStubs
++MonitorEnterStub::MonitorEnterStub(LIR_Opr obj_reg, LIR_Opr lock_reg, CodeEmitInfo* info)
++: MonitorAccessStub(obj_reg, lock_reg) {
++ _info = new CodeEmitInfo(info);
++}
++
++void MonitorEnterStub::emit_code(LIR_Assembler* ce) {
++ assert(__ rsp_offset() == 0, "frame size should be fixed");
++ __ bind(_entry);
++ ce->store_parameter(_obj_reg->as_register(), 1);
++ ce->store_parameter(_lock_reg->as_register(), 0);
++ Runtime1::StubID enter_id;
++ if (ce->compilation()->has_fpu_code()) {
++ enter_id = Runtime1::monitorenter_id;
++ } else {
++ enter_id = Runtime1::monitorenter_nofpu_id;
++ }
++ __ far_call(RuntimeAddress(Runtime1::entry_for(enter_id)));
++ ce->add_call_info_here(_info);
++ ce->verify_oop_map(_info);
++ __ j(_continuation);
++}
++
++void MonitorExitStub::emit_code(LIR_Assembler* ce) {
++ __ bind(_entry);
++ if (_compute_lock) {
++ // lock_reg was destroyed by fast unlocking attempt => recompute it
++ ce->monitor_address(_monitor_ix, _lock_reg);
++ }
++ ce->store_parameter(_lock_reg->as_register(), 0);
++ // note: non-blocking leaf routine => no call info needed
++ Runtime1::StubID exit_id;
++ if (ce->compilation()->has_fpu_code()) {
++ exit_id = Runtime1::monitorexit_id;
++ } else {
++ exit_id = Runtime1::monitorexit_nofpu_id;
++ }
++ __ la(ra, _continuation);
++ __ far_jump(RuntimeAddress(Runtime1::entry_for(exit_id)));
++}
++
++// Implementation of patching:
++// - Copy the code at given offset to an inlined buffer (first the bytes, then the number of bytes)
++// - Replace original code with a call to the stub
++// At Runtime:
++// - call to stub, jump to runtime
++// - in runtime: preserve all registers (rspecially objects, i.e., source and destination object)
++// - in runtime: after initializing class, restore original code, reexecute instruction
++
++int PatchingStub::_patch_info_offset = -NativeGeneralJump::instruction_size;
++
++void PatchingStub::align_patch_site(MacroAssembler* masm) {}
++
++void PatchingStub::emit_code(LIR_Assembler* ce) {
++ assert(false, "RISCV should not use C1 runtime patching");
++}
++
++void DeoptimizeStub::emit_code(LIR_Assembler* ce) {
++ __ bind(_entry);
++ ce->store_parameter(_trap_request, 0);
++ __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::deoptimize_id)));
++ ce->add_call_info_here(_info);
++ DEBUG_ONLY(__ should_not_reach_here());
++}
++
++void ImplicitNullCheckStub::emit_code(LIR_Assembler* ce) {
++ address a = NULL;
++ if (_info->deoptimize_on_exception()) {
++ // Deoptimize, do not throw the exception, because it is probably wrong to do it here.
++ a = Runtime1::entry_for(Runtime1::predicate_failed_trap_id);
++ } else {
++ a = Runtime1::entry_for(Runtime1::throw_null_pointer_exception_id);
++ }
++
++ ce->compilation()->implicit_exception_table()->append(_offset, __ offset());
++ __ bind(_entry);
++ __ far_call(RuntimeAddress(a));
++ ce->add_call_info_here(_info);
++ ce->verify_oop_map(_info);
++ debug_only(__ should_not_reach_here());
++}
++
++void SimpleExceptionStub::emit_code(LIR_Assembler* ce) {
++ assert(__ rsp_offset() == 0, "frame size should be fixed");
++
++ __ bind(_entry);
++ // pass the object in a tmp register because all other registers
++ // must be preserved
++ if (_obj->is_cpu_register()) {
++ __ mv(t0, _obj->as_register());
++ }
++ __ far_call(RuntimeAddress(Runtime1::entry_for(_stub)), NULL, t1);
++ ce->add_call_info_here(_info);
++ debug_only(__ should_not_reach_here());
++}
++
++void ArrayCopyStub::emit_code(LIR_Assembler* ce) {
++ // ---------------slow case: call to native-----------------
++ __ bind(_entry);
++ // Figure out where the args should go
++ // This should really convert the IntrinsicID to the Method* and signature
++ // but I don't know how to do that.
++ const int args_num = 5;
++ VMRegPair args[args_num];
++ BasicType signature[args_num] = { T_OBJECT, T_INT, T_OBJECT, T_INT, T_INT };
++ SharedRuntime::java_calling_convention(signature, args, args_num);
++
++ // push parameters
++ Register r[args_num];
++ r[0] = src()->as_register();
++ r[1] = src_pos()->as_register();
++ r[2] = dst()->as_register();
++ r[3] = dst_pos()->as_register();
++ r[4] = length()->as_register();
++
++ // next registers will get stored on the stack
++ for (int j = 0; j < args_num; j++) {
++ VMReg r_1 = args[j].first();
++ if (r_1->is_stack()) {
++ int st_off = r_1->reg2stack() * wordSize;
++ __ sd(r[j], Address(sp, st_off));
++ } else {
++ assert(r[j] == args[j].first()->as_Register(), "Wrong register for arg");
++ }
++ }
++
++ ce->align_call(lir_static_call);
++
++ ce->emit_static_call_stub();
++ if (ce->compilation()->bailed_out()) {
++ return; // CodeCache is full
++ }
++ Address resolve(SharedRuntime::get_resolve_static_call_stub(),
++ relocInfo::static_call_type);
++ address call = __ trampoline_call(resolve);
++ if (call == NULL) {
++ ce->bailout("trampoline stub overflow");
++ return;
++ }
++ ce->add_call_info_here(info());
++
++#ifndef PRODUCT
++ if (PrintC1Statistics) {
++ __ la(t1, ExternalAddress((address)&Runtime1::_arraycopy_slowcase_cnt));
++ __ incrementw(Address(t1));
++ }
++#endif
++
++ __ j(_continuation);
++}
++
++#undef __
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/c1_Defs_riscv.hpp
+@@ -0,0 +1,84 @@
++/*
++ * Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_C1_DEFS_RISCV_HPP
++#define CPU_RISCV_C1_DEFS_RISCV_HPP
++
++// native word offsets from memory address (little endian)
++enum {
++ pd_lo_word_offset_in_bytes = 0,
++ pd_hi_word_offset_in_bytes = BytesPerWord
++};
++
++// explicit rounding operations are required to implement the strictFP mode
++enum {
++ pd_strict_fp_requires_explicit_rounding = false
++};
++
++// registers
++enum {
++ pd_nof_cpu_regs_frame_map = RegisterImpl::number_of_registers, // number of registers used during code emission
++ pd_nof_fpu_regs_frame_map = FloatRegisterImpl::number_of_registers, // number of float registers used during code emission
++
++ // caller saved
++ pd_nof_caller_save_cpu_regs_frame_map = 13, // number of registers killed by calls
++ pd_nof_caller_save_fpu_regs_frame_map = 32, // number of float registers killed by calls
++
++ pd_first_callee_saved_reg = pd_nof_caller_save_cpu_regs_frame_map,
++ pd_last_callee_saved_reg = 21,
++
++ pd_last_allocatable_cpu_reg = pd_nof_caller_save_cpu_regs_frame_map - 1,
++
++ pd_nof_cpu_regs_reg_alloc
++ = pd_nof_caller_save_cpu_regs_frame_map, // number of registers that are visible to register allocator
++ pd_nof_fpu_regs_reg_alloc = 32, // number of float registers that are visible to register allocator
++
++ pd_nof_cpu_regs_linearscan = 32, // number of registers visible to linear scan
++ pd_nof_fpu_regs_linearscan = pd_nof_fpu_regs_frame_map, // number of float registers visible to linear scan
++ pd_nof_xmm_regs_linearscan = 0, // don't have vector registers
++
++ pd_first_cpu_reg = 0,
++ pd_last_cpu_reg = pd_nof_cpu_regs_reg_alloc - 1,
++ pd_first_byte_reg = 0,
++ pd_last_byte_reg = pd_nof_cpu_regs_reg_alloc - 1,
++
++ pd_first_fpu_reg = pd_nof_cpu_regs_frame_map,
++ pd_last_fpu_reg = pd_first_fpu_reg + 31,
++
++ pd_first_callee_saved_fpu_reg_1 = 8 + pd_first_fpu_reg,
++ pd_last_callee_saved_fpu_reg_1 = 9 + pd_first_fpu_reg,
++ pd_first_callee_saved_fpu_reg_2 = 18 + pd_first_fpu_reg,
++ pd_last_callee_saved_fpu_reg_2 = 27 + pd_first_fpu_reg
++};
++
++
++// Encoding of float value in debug info. This is true on x86 where
++// floats are extended to doubles when stored in the stack, false for
++// RISCV where floats and doubles are stored in their native form.
++enum {
++ pd_float_saved_as_double = false
++};
++
++#endif // CPU_RISCV_C1_DEFS_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/c1_FpuStackSim_riscv.cpp
+@@ -0,0 +1,30 @@
++/*
++ * Copyright (c) 2005, 2017, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++//--------------------------------------------------------
++// FpuStackSim
++//--------------------------------------------------------
++
++// No FPU stack on RISCV
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/c1_FpuStackSim_riscv.hpp
+@@ -0,0 +1,32 @@
++/*
++ * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_C1_FPUSTACKSIM_RISCV_HPP
++#define CPU_RISCV_C1_FPUSTACKSIM_RISCV_HPP
++
++// No FPU stack on RISCV
++class FpuStackSim;
++
++#endif // CPU_RISCV_C1_FPUSTACKSIM_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/c1_FrameMap_riscv.cpp
+@@ -0,0 +1,388 @@
++/*
++ * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "c1/c1_FrameMap.hpp"
++#include "c1/c1_LIR.hpp"
++#include "runtime/sharedRuntime.hpp"
++#include "vmreg_riscv.inline.hpp"
++
++LIR_Opr FrameMap::map_to_opr(BasicType type, VMRegPair* reg, bool) {
++ LIR_Opr opr = LIR_OprFact::illegalOpr;
++ VMReg r_1 = reg->first();
++ VMReg r_2 = reg->second();
++ if (r_1->is_stack()) {
++ // Convert stack slot to an SP offset
++ // The calling convention does not count the SharedRuntime::out_preserve_stack_slots() value
++ // so we must add it in here.
++ int st_off = (r_1->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
++ opr = LIR_OprFact::address(new LIR_Address(sp_opr, st_off, type));
++ } else if (r_1->is_Register()) {
++ Register reg1 = r_1->as_Register();
++ if (r_2->is_Register() && (type == T_LONG || type == T_DOUBLE)) {
++ Register reg2 = r_2->as_Register();
++ assert(reg2 == reg1, "must be same register");
++ opr = as_long_opr(reg1);
++ } else if (is_reference_type(type)) {
++ opr = as_oop_opr(reg1);
++ } else if (type == T_METADATA) {
++ opr = as_metadata_opr(reg1);
++ } else if (type == T_ADDRESS) {
++ opr = as_address_opr(reg1);
++ } else {
++ opr = as_opr(reg1);
++ }
++ } else if (r_1->is_FloatRegister()) {
++ assert(type == T_DOUBLE || type == T_FLOAT, "wrong type");
++ int num = r_1->as_FloatRegister()->encoding();
++ if (type == T_FLOAT) {
++ opr = LIR_OprFact::single_fpu(num);
++ } else {
++ opr = LIR_OprFact::double_fpu(num);
++ }
++ } else {
++ ShouldNotReachHere();
++ }
++ return opr;
++}
++
++LIR_Opr FrameMap::zr_opr;
++LIR_Opr FrameMap::r1_opr;
++LIR_Opr FrameMap::r2_opr;
++LIR_Opr FrameMap::r3_opr;
++LIR_Opr FrameMap::r4_opr;
++LIR_Opr FrameMap::r5_opr;
++LIR_Opr FrameMap::r6_opr;
++LIR_Opr FrameMap::r7_opr;
++LIR_Opr FrameMap::r8_opr;
++LIR_Opr FrameMap::r9_opr;
++LIR_Opr FrameMap::r10_opr;
++LIR_Opr FrameMap::r11_opr;
++LIR_Opr FrameMap::r12_opr;
++LIR_Opr FrameMap::r13_opr;
++LIR_Opr FrameMap::r14_opr;
++LIR_Opr FrameMap::r15_opr;
++LIR_Opr FrameMap::r16_opr;
++LIR_Opr FrameMap::r17_opr;
++LIR_Opr FrameMap::r18_opr;
++LIR_Opr FrameMap::r19_opr;
++LIR_Opr FrameMap::r20_opr;
++LIR_Opr FrameMap::r21_opr;
++LIR_Opr FrameMap::r22_opr;
++LIR_Opr FrameMap::r23_opr;
++LIR_Opr FrameMap::r24_opr;
++LIR_Opr FrameMap::r25_opr;
++LIR_Opr FrameMap::r26_opr;
++LIR_Opr FrameMap::r27_opr;
++LIR_Opr FrameMap::r28_opr;
++LIR_Opr FrameMap::r29_opr;
++LIR_Opr FrameMap::r30_opr;
++LIR_Opr FrameMap::r31_opr;
++
++LIR_Opr FrameMap::fp_opr;
++LIR_Opr FrameMap::sp_opr;
++
++LIR_Opr FrameMap::receiver_opr;
++
++LIR_Opr FrameMap::zr_oop_opr;
++LIR_Opr FrameMap::r1_oop_opr;
++LIR_Opr FrameMap::r2_oop_opr;
++LIR_Opr FrameMap::r3_oop_opr;
++LIR_Opr FrameMap::r4_oop_opr;
++LIR_Opr FrameMap::r5_oop_opr;
++LIR_Opr FrameMap::r6_oop_opr;
++LIR_Opr FrameMap::r7_oop_opr;
++LIR_Opr FrameMap::r8_oop_opr;
++LIR_Opr FrameMap::r9_oop_opr;
++LIR_Opr FrameMap::r10_oop_opr;
++LIR_Opr FrameMap::r11_oop_opr;
++LIR_Opr FrameMap::r12_oop_opr;
++LIR_Opr FrameMap::r13_oop_opr;
++LIR_Opr FrameMap::r14_oop_opr;
++LIR_Opr FrameMap::r15_oop_opr;
++LIR_Opr FrameMap::r16_oop_opr;
++LIR_Opr FrameMap::r17_oop_opr;
++LIR_Opr FrameMap::r18_oop_opr;
++LIR_Opr FrameMap::r19_oop_opr;
++LIR_Opr FrameMap::r20_oop_opr;
++LIR_Opr FrameMap::r21_oop_opr;
++LIR_Opr FrameMap::r22_oop_opr;
++LIR_Opr FrameMap::r23_oop_opr;
++LIR_Opr FrameMap::r24_oop_opr;
++LIR_Opr FrameMap::r25_oop_opr;
++LIR_Opr FrameMap::r26_oop_opr;
++LIR_Opr FrameMap::r27_oop_opr;
++LIR_Opr FrameMap::r28_oop_opr;
++LIR_Opr FrameMap::r29_oop_opr;
++LIR_Opr FrameMap::r30_oop_opr;
++LIR_Opr FrameMap::r31_oop_opr;
++
++LIR_Opr FrameMap::t0_opr;
++LIR_Opr FrameMap::t1_opr;
++LIR_Opr FrameMap::t0_long_opr;
++LIR_Opr FrameMap::t1_long_opr;
++
++LIR_Opr FrameMap::r10_metadata_opr;
++LIR_Opr FrameMap::r11_metadata_opr;
++LIR_Opr FrameMap::r12_metadata_opr;
++LIR_Opr FrameMap::r13_metadata_opr;
++LIR_Opr FrameMap::r14_metadata_opr;
++LIR_Opr FrameMap::r15_metadata_opr;
++
++LIR_Opr FrameMap::long10_opr;
++LIR_Opr FrameMap::long11_opr;
++LIR_Opr FrameMap::fpu10_float_opr;
++LIR_Opr FrameMap::fpu10_double_opr;
++
++LIR_Opr FrameMap::_caller_save_cpu_regs[] = { 0, };
++LIR_Opr FrameMap::_caller_save_fpu_regs[] = { 0, };
++
++//--------------------------------------------------------
++// FrameMap
++//--------------------------------------------------------
++// |---f31--|
++// |---..---|
++// |---f28--|
++// |---f27--|<---pd_last_callee_saved_fpu_reg_2
++// |---..---|
++// |---f18--|<---pd_first_callee_saved_fpu_reg_2
++// |---f17--|
++// |---..---|
++// |---f10--|
++// |---f9---|<---pd_last_callee_saved_fpu_reg_1
++// |---f8---|<---pd_first_callee_saved_fpu_reg_1
++// |---f7---|
++// |---..---|
++// |---f0---|
++// |---x27--|
++// |---x23--|
++// |---x8---|
++// |---x4---|
++// |---x3---|
++// |---x2---|
++// |---x1---|
++// |---x0---|
++// |---x26--|<---pd_last_callee_saved_reg
++// |---..---|
++// |---x18--|
++// |---x9---|<---pd_first_callee_saved_reg
++// |---x31--|
++// |---..---|
++// |---x28--|
++// |---x17--|
++// |---..---|
++// |---x10--|
++// |---x7---|
++
++void FrameMap::initialize() {
++ assert(!_init_done, "once");
++
++ int i = 0;
++
++ // caller save register
++ map_register(i, x7); r7_opr = LIR_OprFact::single_cpu(i); i++;
++ map_register(i, x10); r10_opr = LIR_OprFact::single_cpu(i); i++;
++ map_register(i, x11); r11_opr = LIR_OprFact::single_cpu(i); i++;
++ map_register(i, x12); r12_opr = LIR_OprFact::single_cpu(i); i++;
++ map_register(i, x13); r13_opr = LIR_OprFact::single_cpu(i); i++;
++ map_register(i, x14); r14_opr = LIR_OprFact::single_cpu(i); i++;
++ map_register(i, x15); r15_opr = LIR_OprFact::single_cpu(i); i++;
++ map_register(i, x16); r16_opr = LIR_OprFact::single_cpu(i); i++;
++ map_register(i, x17); r17_opr = LIR_OprFact::single_cpu(i); i++;
++ map_register(i, x28); r28_opr = LIR_OprFact::single_cpu(i); i++;
++ map_register(i, x29); r29_opr = LIR_OprFact::single_cpu(i); i++;
++ map_register(i, x30); r30_opr = LIR_OprFact::single_cpu(i); i++;
++ map_register(i, x31); r31_opr = LIR_OprFact::single_cpu(i); i++;
++
++ // callee save register
++ map_register(i, x9); r9_opr = LIR_OprFact::single_cpu(i); i++;
++ map_register(i, x18); r18_opr = LIR_OprFact::single_cpu(i); i++;
++ map_register(i, x19); r19_opr = LIR_OprFact::single_cpu(i); i++;
++ map_register(i, x20); r20_opr = LIR_OprFact::single_cpu(i); i++;
++ map_register(i, x21); r21_opr = LIR_OprFact::single_cpu(i); i++;
++ map_register(i, x22); r22_opr = LIR_OprFact::single_cpu(i); i++;
++ map_register(i, x24); r24_opr = LIR_OprFact::single_cpu(i); i++;
++ map_register(i, x25); r25_opr = LIR_OprFact::single_cpu(i); i++;
++ map_register(i, x26); r26_opr = LIR_OprFact::single_cpu(i); i++;
++
++ // special register
++ map_register(i, x0); zr_opr = LIR_OprFact::single_cpu(i); i++; // zr
++ map_register(i, x1); r1_opr = LIR_OprFact::single_cpu(i); i++; // ra
++ map_register(i, x2); r2_opr = LIR_OprFact::single_cpu(i); i++; // sp
++ map_register(i, x3); r3_opr = LIR_OprFact::single_cpu(i); i++; // gp
++ map_register(i, x4); r4_opr = LIR_OprFact::single_cpu(i); i++; // thread
++ map_register(i, x8); r8_opr = LIR_OprFact::single_cpu(i); i++; // fp
++ map_register(i, x23); r23_opr = LIR_OprFact::single_cpu(i); i++; // java thread
++ map_register(i, x27); r27_opr = LIR_OprFact::single_cpu(i); i++; // heapbase
++
++ // tmp register
++ map_register(i, x5); r5_opr = LIR_OprFact::single_cpu(i); i++; // t0
++ map_register(i, x6); r6_opr = LIR_OprFact::single_cpu(i); i++; // t1
++
++ t0_opr = r5_opr;
++ t1_opr = r6_opr;
++ t0_long_opr = LIR_OprFact::double_cpu(r5_opr->cpu_regnr(), r5_opr->cpu_regnr());
++ t1_long_opr = LIR_OprFact::double_cpu(r6_opr->cpu_regnr(), r6_opr->cpu_regnr());
++
++ long10_opr = LIR_OprFact::double_cpu(r10_opr->cpu_regnr(), r10_opr->cpu_regnr());
++ long11_opr = LIR_OprFact::double_cpu(r11_opr->cpu_regnr(), r11_opr->cpu_regnr());
++
++ fpu10_float_opr = LIR_OprFact::single_fpu(10);
++ fpu10_double_opr = LIR_OprFact::double_fpu(10);
++
++ i = 0;
++ _caller_save_cpu_regs[i++] = r7_opr;
++ _caller_save_cpu_regs[i++] = r10_opr;
++ _caller_save_cpu_regs[i++] = r11_opr;
++ _caller_save_cpu_regs[i++] = r12_opr;
++ _caller_save_cpu_regs[i++] = r13_opr;
++ _caller_save_cpu_regs[i++] = r14_opr;
++ _caller_save_cpu_regs[i++] = r15_opr;
++ _caller_save_cpu_regs[i++] = r16_opr;
++ _caller_save_cpu_regs[i++] = r17_opr;
++ _caller_save_cpu_regs[i++] = r28_opr;
++ _caller_save_cpu_regs[i++] = r29_opr;
++ _caller_save_cpu_regs[i++] = r30_opr;
++ _caller_save_cpu_regs[i++] = r31_opr;
++
++ _init_done = true;
++
++ zr_oop_opr = as_oop_opr(x0);
++ r1_oop_opr = as_oop_opr(x1);
++ r2_oop_opr = as_oop_opr(x2);
++ r3_oop_opr = as_oop_opr(x3);
++ r4_oop_opr = as_oop_opr(x4);
++ r5_oop_opr = as_oop_opr(x5);
++ r6_oop_opr = as_oop_opr(x6);
++ r7_oop_opr = as_oop_opr(x7);
++ r8_oop_opr = as_oop_opr(x8);
++ r9_oop_opr = as_oop_opr(x9);
++ r10_oop_opr = as_oop_opr(x10);
++ r11_oop_opr = as_oop_opr(x11);
++ r12_oop_opr = as_oop_opr(x12);
++ r13_oop_opr = as_oop_opr(x13);
++ r14_oop_opr = as_oop_opr(x14);
++ r15_oop_opr = as_oop_opr(x15);
++ r16_oop_opr = as_oop_opr(x16);
++ r17_oop_opr = as_oop_opr(x17);
++ r18_oop_opr = as_oop_opr(x18);
++ r19_oop_opr = as_oop_opr(x19);
++ r20_oop_opr = as_oop_opr(x20);
++ r21_oop_opr = as_oop_opr(x21);
++ r22_oop_opr = as_oop_opr(x22);
++ r23_oop_opr = as_oop_opr(x23);
++ r24_oop_opr = as_oop_opr(x24);
++ r25_oop_opr = as_oop_opr(x25);
++ r26_oop_opr = as_oop_opr(x26);
++ r27_oop_opr = as_oop_opr(x27);
++ r28_oop_opr = as_oop_opr(x28);
++ r29_oop_opr = as_oop_opr(x29);
++ r30_oop_opr = as_oop_opr(x30);
++ r31_oop_opr = as_oop_opr(x31);
++
++ r10_metadata_opr = as_metadata_opr(x10);
++ r11_metadata_opr = as_metadata_opr(x11);
++ r12_metadata_opr = as_metadata_opr(x12);
++ r13_metadata_opr = as_metadata_opr(x13);
++ r14_metadata_opr = as_metadata_opr(x14);
++ r15_metadata_opr = as_metadata_opr(x15);
++
++ sp_opr = as_pointer_opr(sp);
++ fp_opr = as_pointer_opr(fp);
++
++ VMRegPair regs;
++ BasicType sig_bt = T_OBJECT;
++ SharedRuntime::java_calling_convention(&sig_bt, ®s, 1);
++ receiver_opr = as_oop_opr(regs.first()->as_Register());
++
++ for (i = 0; i < nof_caller_save_fpu_regs; i++) {
++ _caller_save_fpu_regs[i] = LIR_OprFact::single_fpu(i);
++ }
++}
++
++
++Address FrameMap::make_new_address(ByteSize sp_offset) const {
++ return Address(sp, in_bytes(sp_offset));
++}
++
++
++// ----------------mapping-----------------------
++// all mapping is based on fp addressing, except for simple leaf methods where we access
++// the locals sp based (and no frame is built)
++
++
++// Frame for simple leaf methods (quick entries)
++//
++// +----------+
++// | ret addr | <- TOS
++// +----------+
++// | args |
++// | ...... |
++
++// Frame for standard methods
++//
++// | .........| <- TOS
++// | locals |
++// +----------+
++// | old fp, |
++// +----------+
++// | ret addr |
++// +----------+
++// | args | <- FP
++// | .........|
++
++
++// For OopMaps, map a local variable or spill index to an VMRegImpl name.
++// This is the offset from sp() in the frame of the slot for the index,
++// skewed by VMRegImpl::stack0 to indicate a stack location (vs.a register.)
++//
++// framesize +
++// stack0 stack0 0 <- VMReg
++// | | <registers> |
++// ...........|..............|.............|
++// 0 1 2 3 x x 4 5 6 ... | <- local indices
++// ^ ^ sp() ( x x indicate link
++// | | and return addr)
++// arguments non-argument locals
++
++
++VMReg FrameMap::fpu_regname (int n) {
++ // Return the OptoReg name for the fpu stack slot "n"
++ // A spilled fpu stack slot comprises to two single-word OptoReg's.
++ return as_FloatRegister(n)->as_VMReg();
++}
++
++LIR_Opr FrameMap::stack_pointer() {
++ return FrameMap::sp_opr;
++}
++
++// JSR 292
++LIR_Opr FrameMap::method_handle_invoke_SP_save_opr() {
++ return LIR_OprFact::illegalOpr; // Not needed on riscv
++}
++
++bool FrameMap::validate_frame() {
++ return true;
++}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/c1_FrameMap_riscv.hpp
+@@ -0,0 +1,148 @@
++/*
++ * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_C1_FRAMEMAP_RISCV_HPP
++#define CPU_RISCV_C1_FRAMEMAP_RISCV_HPP
++
++// On RISCV the frame looks as follows:
++//
++// +-----------------------------+---------+----------------------------------------+----------------+-----------
++// | size_arguments-nof_reg_args | 2 words | size_locals-size_arguments+numreg_args | _size_monitors | spilling .
++// +-----------------------------+---------+----------------------------------------+----------------+-----------
++
++ public:
++ static const int pd_c_runtime_reserved_arg_size;
++
++ enum {
++ first_available_sp_in_frame = 0,
++ frame_pad_in_bytes = 16,
++ nof_reg_args = 8
++ };
++
++ public:
++ static LIR_Opr receiver_opr;
++
++ static LIR_Opr zr_opr;
++ static LIR_Opr r1_opr;
++ static LIR_Opr r2_opr;
++ static LIR_Opr r3_opr;
++ static LIR_Opr r4_opr;
++ static LIR_Opr r5_opr;
++ static LIR_Opr r6_opr;
++ static LIR_Opr r7_opr;
++ static LIR_Opr r8_opr;
++ static LIR_Opr r9_opr;
++ static LIR_Opr r10_opr;
++ static LIR_Opr r11_opr;
++ static LIR_Opr r12_opr;
++ static LIR_Opr r13_opr;
++ static LIR_Opr r14_opr;
++ static LIR_Opr r15_opr;
++ static LIR_Opr r16_opr;
++ static LIR_Opr r17_opr;
++ static LIR_Opr r18_opr;
++ static LIR_Opr r19_opr;
++ static LIR_Opr r20_opr;
++ static LIR_Opr r21_opr;
++ static LIR_Opr r22_opr;
++ static LIR_Opr r23_opr;
++ static LIR_Opr r24_opr;
++ static LIR_Opr r25_opr;
++ static LIR_Opr r26_opr;
++ static LIR_Opr r27_opr;
++ static LIR_Opr r28_opr;
++ static LIR_Opr r29_opr;
++ static LIR_Opr r30_opr;
++ static LIR_Opr r31_opr;
++ static LIR_Opr fp_opr;
++ static LIR_Opr sp_opr;
++
++ static LIR_Opr zr_oop_opr;
++ static LIR_Opr r1_oop_opr;
++ static LIR_Opr r2_oop_opr;
++ static LIR_Opr r3_oop_opr;
++ static LIR_Opr r4_oop_opr;
++ static LIR_Opr r5_oop_opr;
++ static LIR_Opr r6_oop_opr;
++ static LIR_Opr r7_oop_opr;
++ static LIR_Opr r8_oop_opr;
++ static LIR_Opr r9_oop_opr;
++ static LIR_Opr r10_oop_opr;
++ static LIR_Opr r11_oop_opr;
++ static LIR_Opr r12_oop_opr;
++ static LIR_Opr r13_oop_opr;
++ static LIR_Opr r14_oop_opr;
++ static LIR_Opr r15_oop_opr;
++ static LIR_Opr r16_oop_opr;
++ static LIR_Opr r17_oop_opr;
++ static LIR_Opr r18_oop_opr;
++ static LIR_Opr r19_oop_opr;
++ static LIR_Opr r20_oop_opr;
++ static LIR_Opr r21_oop_opr;
++ static LIR_Opr r22_oop_opr;
++ static LIR_Opr r23_oop_opr;
++ static LIR_Opr r24_oop_opr;
++ static LIR_Opr r25_oop_opr;
++ static LIR_Opr r26_oop_opr;
++ static LIR_Opr r27_oop_opr;
++ static LIR_Opr r28_oop_opr;
++ static LIR_Opr r29_oop_opr;
++ static LIR_Opr r30_oop_opr;
++ static LIR_Opr r31_oop_opr;
++
++ static LIR_Opr t0_opr;
++ static LIR_Opr t1_opr;
++ static LIR_Opr t0_long_opr;
++ static LIR_Opr t1_long_opr;
++
++ static LIR_Opr r10_metadata_opr;
++ static LIR_Opr r11_metadata_opr;
++ static LIR_Opr r12_metadata_opr;
++ static LIR_Opr r13_metadata_opr;
++ static LIR_Opr r14_metadata_opr;
++ static LIR_Opr r15_metadata_opr;
++
++ static LIR_Opr long10_opr;
++ static LIR_Opr long11_opr;
++ static LIR_Opr fpu10_float_opr;
++ static LIR_Opr fpu10_double_opr;
++
++ static LIR_Opr as_long_opr(Register r) {
++ return LIR_OprFact::double_cpu(cpu_reg2rnr(r), cpu_reg2rnr(r));
++ }
++ static LIR_Opr as_pointer_opr(Register r) {
++ return LIR_OprFact::double_cpu(cpu_reg2rnr(r), cpu_reg2rnr(r));
++ }
++
++ // VMReg name for spilled physical FPU stack slot n
++ static VMReg fpu_regname(int n);
++
++ static bool is_caller_save_register(LIR_Opr opr) { return true; }
++ static bool is_caller_save_register(Register r) { return true; }
++
++ static int nof_caller_save_cpu_regs() { return pd_nof_caller_save_cpu_regs_frame_map; }
++ static int last_cpu_reg() { return pd_last_cpu_reg; }
++
++#endif // CPU_RISCV_C1_FRAMEMAP_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/c1_LIRAssembler_arith_riscv.cpp
+@@ -0,0 +1,281 @@
++/*
++ * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/assembler.hpp"
++#include "c1/c1_LIRAssembler.hpp"
++#include "c1/c1_MacroAssembler.hpp"
++
++#ifndef PRODUCT
++#define COMMENT(x) do { __ block_comment(x); } while (0)
++#else
++#define COMMENT(x)
++#endif
++
++#define __ _masm->
++
++void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr illegal,
++ LIR_Opr result, CodeEmitInfo* info) {
++ // opcode check
++ assert((code == lir_idiv) || (code == lir_irem), "opcode must be idiv or irem");
++ bool is_irem = (code == lir_irem);
++ // opreand check
++ assert(left->is_single_cpu(), "left must be a register");
++ assert(right->is_single_cpu() || right->is_constant(), "right must be a register or constant");
++ assert(result->is_single_cpu(), "result must be a register");
++ Register lreg = left->as_register();
++ Register dreg = result->as_register();
++
++ // power-of-2 constant check and codegen
++ if (right->is_constant()) {
++ int c = right->as_constant_ptr()->as_jint();
++ assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant");
++ if (is_irem) {
++ if (c == 1) {
++ // move 0 to dreg if divisor is 1
++ __ mv(dreg, zr);
++ } else {
++ unsigned int shift = exact_log2(c);
++ __ sraiw(t0, lreg, 0x1f);
++ __ srliw(t0, t0, BitsPerInt - shift);
++ __ addw(t1, lreg, t0);
++ if (Assembler::is_simm12(c - 1)) {
++ __ andi(t1, t1, c - 1);
++ } else {
++ __ zero_extend(t1, t1, shift);
++ }
++ __ subw(dreg, t1, t0);
++ }
++ } else {
++ if (c == 1) {
++ // move lreg to dreg if divisor is 1
++ __ mv(dreg, lreg);
++ } else {
++ unsigned int shift = exact_log2(c);
++ __ sraiw(t0, lreg, 0x1f);
++ if (Assembler::is_simm12(c - 1)) {
++ __ andi(t0, t0, c - 1);
++ } else {
++ __ zero_extend(t0, t0, shift);
++ }
++ __ addw(dreg, t0, lreg);
++ __ sraiw(dreg, dreg, shift);
++ }
++ }
++ } else {
++ Register rreg = right->as_register();
++ __ corrected_idivl(dreg, lreg, rreg, is_irem);
++ }
++}
++
++void LIR_Assembler::arith_op_single_cpu_right_constant(LIR_Code code, LIR_Opr left, LIR_Opr right,
++ Register lreg, Register dreg) {
++ // cpu register - constant
++ jlong c;
++
++ switch (right->type()) {
++ case T_LONG:
++ c = right->as_constant_ptr()->as_jlong(); break;
++ case T_INT: // fall through
++ case T_ADDRESS:
++ c = right->as_constant_ptr()->as_jint(); break;
++ default:
++ ShouldNotReachHere();
++ c = 0; // unreachable
++ }
++
++ assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
++ if (c == 0 && dreg == lreg) {
++ COMMENT("effective nop elided");
++ return;
++ }
++ switch (left->type()) {
++ case T_INT:
++ switch (code) {
++ case lir_add: __ addw(dreg, lreg, c); break;
++ case lir_sub: __ subw(dreg, lreg, c); break;
++ default: ShouldNotReachHere();
++ }
++ break;
++ case T_OBJECT: // fall through
++ case T_ADDRESS:
++ switch (code) {
++ case lir_add: __ add(dreg, lreg, c); break;
++ case lir_sub: __ sub(dreg, lreg, c); break;
++ default: ShouldNotReachHere();
++ }
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++}
++
++void LIR_Assembler::arith_op_single_cpu(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
++ Register lreg = left->as_register();
++ Register dreg = as_reg(dest);
++
++ if (right->is_single_cpu()) {
++ // cpu register - cpu register
++ assert(left->type() == T_INT && right->type() == T_INT && dest->type() == T_INT, "should be");
++ Register rreg = right->as_register();
++ switch (code) {
++ case lir_add: __ addw(dest->as_register(), lreg, rreg); break;
++ case lir_sub: __ subw(dest->as_register(), lreg, rreg); break;
++ case lir_mul: __ mulw(dest->as_register(), lreg, rreg); break;
++ default: ShouldNotReachHere();
++ }
++ } else if (right->is_double_cpu()) {
++ Register rreg = right->as_register_lo();
++ // sigle_cpu + double_cpu; can happen with obj_long
++ assert(code == lir_add || code == lir_sub, "mismatched arithmetic op");
++ switch (code) {
++ case lir_add: __ add(dreg, lreg, rreg); break;
++ case lir_sub: __ sub(dreg, lreg, rreg); break;
++ default: ShouldNotReachHere();
++ }
++ } else if (right->is_constant()) {
++ arith_op_single_cpu_right_constant(code, left, right, lreg, dreg);
++ } else {
++ ShouldNotReachHere();
++ }
++}
++
++void LIR_Assembler::arith_op_double_cpu(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
++ Register lreg_lo = left->as_register_lo();
++
++ if (right->is_double_cpu()) {
++ // cpu register - cpu register
++ Register rreg_lo = right->as_register_lo();
++ switch (code) {
++ case lir_add: __ add(dest->as_register_lo(), lreg_lo, rreg_lo); break;
++ case lir_sub: __ sub(dest->as_register_lo(), lreg_lo, rreg_lo); break;
++ case lir_mul: __ mul(dest->as_register_lo(), lreg_lo, rreg_lo); break;
++ case lir_div: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, false); break;
++ case lir_rem: __ corrected_idivq(dest->as_register_lo(), lreg_lo, rreg_lo, true); break;
++ default:
++ ShouldNotReachHere();
++ }
++ } else if (right->is_constant()) {
++ jlong c = right->as_constant_ptr()->as_jlong();
++ Register dreg = as_reg(dest);
++ switch (code) {
++ case lir_add: // fall through
++ case lir_sub:
++ if (c == 0 && dreg == lreg_lo) {
++ COMMENT("effective nop elided");
++ return;
++ }
++ code == lir_add ? __ add(dreg, lreg_lo, c) : __ sub(dreg, lreg_lo, c);
++ break;
++ case lir_div:
++ assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant");
++ if (c == 1) {
++ // move lreg_lo to dreg if divisor is 1
++ __ mv(dreg, lreg_lo);
++ } else {
++ unsigned int shift = exact_log2_long(c);
++ // use t0 as intermediate result register
++ __ srai(t0, lreg_lo, 0x3f);
++ if (Assembler::is_simm12(c - 1)) {
++ __ andi(t0, t0, c - 1);
++ } else {
++ __ zero_extend(t0, t0, shift);
++ }
++ __ add(dreg, t0, lreg_lo);
++ __ srai(dreg, dreg, shift);
++ }
++ break;
++ case lir_rem:
++ assert(c > 0 && is_power_of_2(c), "divisor must be power-of-2 constant");
++ if (c == 1) {
++ // move 0 to dreg if divisor is 1
++ __ mv(dreg, zr);
++ } else {
++ unsigned int shift = exact_log2_long(c);
++ __ srai(t0, lreg_lo, 0x3f);
++ __ srli(t0, t0, BitsPerLong - shift);
++ __ add(t1, lreg_lo, t0);
++ if (Assembler::is_simm12(c - 1)) {
++ __ andi(t1, t1, c - 1);
++ } else {
++ __ zero_extend(t1, t1, shift);
++ }
++ __ sub(dreg, t1, t0);
++ }
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++ } else {
++ ShouldNotReachHere();
++ }
++}
++
++void LIR_Assembler::arith_op_single_fpu(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
++ assert(right->is_single_fpu(), "right hand side of float arithmetics needs to be float register");
++ switch (code) {
++ case lir_add: __ fadd_s(dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
++ case lir_sub: __ fsub_s(dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
++ case lir_mul: __ fmul_s(dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
++ case lir_div: __ fdiv_s(dest->as_float_reg(), left->as_float_reg(), right->as_float_reg()); break;
++ default:
++ ShouldNotReachHere();
++ }
++}
++
++void LIR_Assembler::arith_op_double_fpu(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest) {
++ if (right->is_double_fpu()) {
++ // fpu register - fpu register
++ switch (code) {
++ case lir_add: __ fadd_d(dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
++ case lir_sub: __ fsub_d(dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
++ case lir_mul: __ fmul_d(dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
++ case lir_div: __ fdiv_d(dest->as_double_reg(), left->as_double_reg(), right->as_double_reg()); break;
++ default:
++ ShouldNotReachHere();
++ }
++ } else {
++ ShouldNotReachHere();
++ }
++}
++
++void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest,
++ CodeEmitInfo* info, bool pop_fpu_stack) {
++ assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
++
++ if (left->is_single_cpu()) {
++ arith_op_single_cpu(code, left, right, dest);
++ } else if (left->is_double_cpu()) {
++ arith_op_double_cpu(code, left, right, dest);
++ } else if (left->is_single_fpu()) {
++ arith_op_single_fpu(code, left, right, dest);
++ } else if (left->is_double_fpu()) {
++ arith_op_double_fpu(code, left, right, dest);
++ } else {
++ ShouldNotReachHere();
++ }
++}
++
++#undef __
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/c1_LIRAssembler_arith_riscv.hpp
+@@ -0,0 +1,37 @@
++/*
++ * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_C1_LIRASSEMBLER_ARITH_RISCV_HPP
++#define CPU_RISCV_C1_LIRASSEMBLER_ARITH_RISCV_HPP
++
++ // arith_op sub functions
++ void arith_op_single_cpu(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest);
++ void arith_op_double_cpu(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest);
++ void arith_op_single_fpu(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest);
++ void arith_op_double_fpu(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest);
++ void arith_op_single_cpu_right_constant(LIR_Code code, LIR_Opr left, LIR_Opr right, Register lreg, Register dreg);
++ void arithmetic_idiv(LIR_Op3* op, bool is_irem);
++
++#endif // CPU_RISCV_C1_LIRASSEMBLER_ARITH_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/c1_LIRAssembler_arraycopy_riscv.cpp
+@@ -0,0 +1,387 @@
++/*
++ * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/assembler.hpp"
++#include "c1/c1_LIRAssembler.hpp"
++#include "c1/c1_MacroAssembler.hpp"
++#include "ci/ciArrayKlass.hpp"
++#include "oops/objArrayKlass.hpp"
++#include "runtime/stubRoutines.hpp"
++
++#define __ _masm->
++
++
++void LIR_Assembler::generic_arraycopy(Register src, Register src_pos, Register length,
++ Register dst, Register dst_pos, CodeStub *stub) {
++ assert(src == x11 && src_pos == x12, "mismatch in calling convention");
++ // Save the arguments in case the generic arraycopy fails and we
++ // have to fall back to the JNI stub
++ arraycopy_store_args(src, src_pos, length, dst, dst_pos);
++
++ address copyfunc_addr = StubRoutines::generic_arraycopy();
++ assert(copyfunc_addr != NULL, "generic arraycopy stub required");
++
++ // The arguments are in java calling convention so we shift them
++ // to C convention
++ assert_different_registers(c_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4);
++ __ mv(c_rarg0, j_rarg0);
++ assert_different_registers(c_rarg1, j_rarg2, j_rarg3, j_rarg4);
++ __ mv(c_rarg1, j_rarg1);
++ assert_different_registers(c_rarg2, j_rarg3, j_rarg4);
++ __ mv(c_rarg2, j_rarg2);
++ assert_different_registers(c_rarg3, j_rarg4);
++ __ mv(c_rarg3, j_rarg3);
++ __ mv(c_rarg4, j_rarg4);
++#ifndef PRODUCT
++ if (PrintC1Statistics) {
++ __ incrementw(ExternalAddress((address)&Runtime1::_generic_arraycopystub_cnt));
++ }
++#endif
++ __ far_call(RuntimeAddress(copyfunc_addr));
++ __ beqz(x10, *stub->continuation());
++ // Reload values from the stack so they are where the stub
++ // expects them.
++ arraycopy_load_args(src, src_pos, length, dst, dst_pos);
++
++ // x10 is -1^K where K == partial copied count
++ __ xori(t0, x10, -1);
++ // adjust length down and src/end pos up by partial copied count
++ __ subw(length, length, t0);
++ __ addw(src_pos, src_pos, t0);
++ __ addw(dst_pos, dst_pos, t0);
++ __ j(*stub->entry());
++
++ __ bind(*stub->continuation());
++}
++
++void LIR_Assembler::arraycopy_simple_check(Register src, Register src_pos, Register length,
++ Register dst, Register dst_pos, Register tmp,
++ CodeStub *stub, int flags) {
++ // test for NULL
++ if (flags & LIR_OpArrayCopy::src_null_check) {
++ __ beqz(src, *stub->entry(), /* is_far */ true);
++ }
++ if (flags & LIR_OpArrayCopy::dst_null_check) {
++ __ beqz(dst, *stub->entry(), /* is_far */ true);
++ }
++
++ // If the compiler was not able to prove that exact type of the source or the destination
++ // of the arraycopy is an array type, check at runtime if the source or the destination is
++ // an instance type.
++ if (flags & LIR_OpArrayCopy::type_check) {
++ assert(Klass::_lh_neutral_value == 0, "or replace bgez instructions");
++ if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::dst_objarray)) {
++ __ load_klass(tmp, dst);
++ __ lw(t0, Address(tmp, in_bytes(Klass::layout_helper_offset())));
++ __ bgez(t0, *stub->entry(), /* is_far */ true);
++ }
++
++ if (!(flags & LIR_OpArrayCopy::LIR_OpArrayCopy::src_objarray)) {
++ __ load_klass(tmp, src);
++ __ lw(t0, Address(tmp, in_bytes(Klass::layout_helper_offset())));
++ __ bgez(t0, *stub->entry(), /* is_far */ true);
++ }
++ }
++
++ // check if negative
++ if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
++ __ bltz(src_pos, *stub->entry(), /* is_far */ true);
++ }
++ if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
++ __ bltz(dst_pos, *stub->entry(), /* is_far */ true);
++ }
++ if (flags & LIR_OpArrayCopy::length_positive_check) {
++ __ bltz(length, *stub->entry(), /* is_far */ true);
++ }
++
++ if (flags & LIR_OpArrayCopy::src_range_check) {
++ __ addw(tmp, src_pos, length);
++ __ lwu(t0, Address(src, arrayOopDesc::length_offset_in_bytes()));
++ __ bgtu(tmp, t0, *stub->entry(), /* is_far */ true);
++ }
++ if (flags & LIR_OpArrayCopy::dst_range_check) {
++ __ addw(tmp, dst_pos, length);
++ __ lwu(t0, Address(dst, arrayOopDesc::length_offset_in_bytes()));
++ __ bgtu(tmp, t0, *stub->entry(), /* is_far */ true);
++ }
++}
++
++void LIR_Assembler::arraycopy_checkcast(Register src, Register src_pos, Register length,
++ Register dst, Register dst_pos, Register tmp,
++ CodeStub *stub, BasicType basic_type,
++ address copyfunc_addr, int flags) {
++ // src is not a sub class of dst so we have to do a
++ // per-element check.
++ int mask = LIR_OpArrayCopy::src_objarray | LIR_OpArrayCopy::dst_objarray;
++ if ((flags & mask) != mask) {
++ // Check that at least both of them object arrays.
++ assert(flags & mask, "one of the two should be known to be an object array");
++
++ if (!(flags & LIR_OpArrayCopy::src_objarray)) {
++ __ load_klass(tmp, src);
++ } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
++ __ load_klass(tmp, dst);
++ }
++ int lh_offset = in_bytes(Klass::layout_helper_offset());
++ Address klass_lh_addr(tmp, lh_offset);
++ jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
++ __ lw(t0, klass_lh_addr);
++ __ mv(t1, objArray_lh);
++ __ bne(t0, t1, *stub->entry(), /* is_far */ true);
++ }
++
++ // Spill because stubs can use any register they like and it's
++ // easier to restore just those that we care about.
++ arraycopy_store_args(src, src_pos, length, dst, dst_pos);
++ arraycopy_checkcast_prepare_params(src, src_pos, length, dst, dst_pos, basic_type);
++ __ far_call(RuntimeAddress(copyfunc_addr));
++
++#ifndef PRODUCT
++ if (PrintC1Statistics) {
++ Label failed;
++ __ bnez(x10, failed);
++ __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_cnt));
++ __ bind(failed);
++ }
++#endif
++
++ __ beqz(x10, *stub->continuation());
++
++#ifndef PRODUCT
++ if (PrintC1Statistics) {
++ __ incrementw(ExternalAddress((address)&Runtime1::_arraycopy_checkcast_attempt_cnt));
++ }
++#endif
++ assert_different_registers(dst, dst_pos, length, src_pos, src, x10, t0);
++
++ // Restore previously spilled arguments
++ arraycopy_load_args(src, src_pos, length, dst, dst_pos);
++
++ // return value is -1^K where K is partial copied count
++ __ xori(t0, x10, -1);
++ // adjust length down and src/end pos up by partial copied count
++ __ subw(length, length, t0);
++ __ addw(src_pos, src_pos, t0);
++ __ addw(dst_pos, dst_pos, t0);
++}
++
++void LIR_Assembler::arraycopy_type_check(Register src, Register src_pos, Register length,
++ Register dst, Register dst_pos, Register tmp,
++ CodeStub *stub, BasicType basic_type, int flags) {
++ // We don't know the array types are compatible
++ if (basic_type != T_OBJECT) {
++ // Simple test for basic type arrays
++ if (UseCompressedClassPointers) {
++ __ lwu(tmp, Address(src, oopDesc::klass_offset_in_bytes()));
++ __ lwu(t0, Address(dst, oopDesc::klass_offset_in_bytes()));
++ } else {
++ __ ld(tmp, Address(src, oopDesc::klass_offset_in_bytes()));
++ __ ld(t0, Address(dst, oopDesc::klass_offset_in_bytes()));
++ }
++ __ bne(tmp, t0, *stub->entry(), /* is_far */ true);
++ } else {
++ // For object arrays, if src is a sub class of dst then we can
++ // safely do the copy.
++ Label cont, slow;
++
++#define PUSH(r1, r2) \
++ __ addi(sp, sp, -2 * wordSize); \
++ __ sd(r1, Address(sp, 1 * wordSize)); \
++ __ sd(r2, Address(sp, 0));
++
++#define POP(r1, r2) \
++ __ ld(r1, Address(sp, 1 * wordSize)); \
++ __ ld(r2, Address(sp, 0)); \
++ __ addi(sp, sp, 2 * wordSize);
++
++ PUSH(src, dst);
++ __ load_klass(src, src);
++ __ load_klass(dst, dst);
++ __ check_klass_subtype_fast_path(src, dst, tmp, &cont, &slow, NULL);
++
++ PUSH(src, dst);
++ __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
++ POP(src, dst);
++ __ bnez(dst, cont);
++
++ __ bind(slow);
++ POP(src, dst);
++
++ address copyfunc_addr = StubRoutines::checkcast_arraycopy();
++ if (copyfunc_addr != NULL) { // use stub if available
++ arraycopy_checkcast(src, src_pos, length, dst, dst_pos, tmp, stub, basic_type, copyfunc_addr, flags);
++ }
++
++ __ j(*stub->entry());
++ __ bind(cont);
++ POP(src, dst);
++ }
++}
++
++void LIR_Assembler::arraycopy_assert(Register src, Register dst, Register tmp, ciArrayKlass *default_type, int flags) {
++ assert(default_type != NULL, "NULL default_type!");
++ BasicType basic_type = default_type->element_type()->basic_type();
++
++ if (basic_type == T_ARRAY) { basic_type = T_OBJECT; }
++ if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
++ // Sanity check the known type with the incoming class. For the
++ // primitive case the types must match exactly with src.klass and
++ // dst.klass each exactly matching the default type. For the
++ // object array case, if no type check is needed then either the
++ // dst type is exactly the expected type and the src type is a
++ // subtype which we can't check or src is the same array as dst
++ // but not necessarily exactly of type default_type.
++ Label known_ok, halt;
++ __ mov_metadata(tmp, default_type->constant_encoding());
++ if (UseCompressedClassPointers) {
++ __ encode_klass_not_null(tmp);
++ }
++
++ if (basic_type != T_OBJECT) {
++ if (UseCompressedClassPointers) {
++ __ lwu(t0, Address(dst, oopDesc::klass_offset_in_bytes()));
++ } else {
++ __ ld(t0, Address(dst, oopDesc::klass_offset_in_bytes()));
++ }
++ __ bne(tmp, t0, halt);
++ if (UseCompressedClassPointers) {
++ __ lwu(t0, Address(src, oopDesc::klass_offset_in_bytes()));
++ } else {
++ __ ld(t0, Address(src, oopDesc::klass_offset_in_bytes()));
++ }
++ __ beq(tmp, t0, known_ok);
++ } else {
++ if (UseCompressedClassPointers) {
++ __ lwu(t0, Address(dst, oopDesc::klass_offset_in_bytes()));
++ } else {
++ __ ld(t0, Address(dst, oopDesc::klass_offset_in_bytes()));
++ }
++ __ beq(tmp, t0, known_ok);
++ __ beq(src, dst, known_ok);
++ }
++ __ bind(halt);
++ __ stop("incorrect type information in arraycopy");
++ __ bind(known_ok);
++ }
++}
++
++void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
++ ciArrayKlass *default_type = op->expected_type();
++ Register src = op->src()->as_register();
++ Register dst = op->dst()->as_register();
++ Register src_pos = op->src_pos()->as_register();
++ Register dst_pos = op->dst_pos()->as_register();
++ Register length = op->length()->as_register();
++ Register tmp = op->tmp()->as_register();
++
++ CodeStub* stub = op->stub();
++ int flags = op->flags();
++ BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
++ if (is_reference_type(basic_type)) { basic_type = T_OBJECT; }
++
++ // if we don't know anything, just go through the generic arraycopy
++ if (default_type == NULL) {
++ generic_arraycopy(src, src_pos, length, dst, dst_pos, stub);
++ return;
++ }
++
++ assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(),
++ "must be true at this point");
++
++ arraycopy_simple_check(src, src_pos, length, dst, dst_pos, tmp, stub, flags);
++
++ if (flags & LIR_OpArrayCopy::type_check) {
++ arraycopy_type_check(src, src_pos, length, dst, dst_pos, tmp, stub, basic_type, flags);
++ }
++
++#ifdef ASSERT
++ arraycopy_assert(src, dst, tmp, default_type, flags);
++#endif
++
++#ifndef PRODUCT
++ if (PrintC1Statistics) {
++ __ incrementw(ExternalAddress(Runtime1::arraycopy_count_address(basic_type)));
++ }
++#endif
++ arraycopy_prepare_params(src, src_pos, length, dst, dst_pos, basic_type);
++
++ bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
++ bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
++ const char *name = NULL;
++ address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
++
++ CodeBlob *cb = CodeCache::find_blob(entry);
++ if (cb != NULL) {
++ __ far_call(RuntimeAddress(entry));
++ } else {
++ const int args_num = 3;
++ __ call_VM_leaf(entry, args_num);
++ }
++
++ __ bind(*stub->continuation());
++}
++
++
++void LIR_Assembler::arraycopy_prepare_params(Register src, Register src_pos, Register length,
++ Register dst, Register dst_pos, BasicType basic_type) {
++ int scale = array_element_size(basic_type);
++ __ shadd(c_rarg0, src_pos, src, t0, scale);
++ __ add(c_rarg0, c_rarg0, arrayOopDesc::base_offset_in_bytes(basic_type));
++ assert_different_registers(c_rarg0, dst, dst_pos, length);
++ __ shadd(c_rarg1, dst_pos, dst, t0, scale);
++ __ add(c_rarg1, c_rarg1, arrayOopDesc::base_offset_in_bytes(basic_type));
++ assert_different_registers(c_rarg1, dst, length);
++ __ mv(c_rarg2, length);
++ assert_different_registers(c_rarg2, dst);
++}
++
++void LIR_Assembler::arraycopy_checkcast_prepare_params(Register src, Register src_pos, Register length,
++ Register dst, Register dst_pos, BasicType basic_type) {
++ arraycopy_prepare_params(src, src_pos, length, dst, dst_pos, basic_type);
++ __ load_klass(c_rarg4, dst);
++ __ ld(c_rarg4, Address(c_rarg4, ObjArrayKlass::element_klass_offset()));
++ __ lwu(c_rarg3, Address(c_rarg4, Klass::super_check_offset_offset()));
++}
++
++void LIR_Assembler::arraycopy_store_args(Register src, Register src_pos, Register length,
++ Register dst, Register dst_pos) {
++ __ sd(dst_pos, Address(sp, 0)); // 0: dst_pos sp offset
++ __ sd(dst, Address(sp, 1 * BytesPerWord)); // 1: dst sp offset
++ __ sd(length, Address(sp, 2 * BytesPerWord)); // 2: length sp offset
++ __ sd(src_pos, Address(sp, 3 * BytesPerWord)); // 3: src_pos sp offset
++ __ sd(src, Address(sp, 4 * BytesPerWord)); // 4: src sp offset
++}
++
++void LIR_Assembler::arraycopy_load_args(Register src, Register src_pos, Register length,
++ Register dst, Register dst_pos) {
++ __ ld(dst_pos, Address(sp, 0)); // 0: dst_pos sp offset
++ __ ld(dst, Address(sp, 1 * BytesPerWord)); // 1: dst sp offset
++ __ ld(length, Address(sp, 2 * BytesPerWord)); // 2: length sp offset
++ __ ld(src_pos, Address(sp, 3 * BytesPerWord)); // 3: src_pos sp offset
++ __ ld(src, Address(sp, 4 * BytesPerWord)); // 4: src sp offset
++}
++
++#undef __
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/c1_LIRAssembler_arraycopy_riscv.hpp
+@@ -0,0 +1,52 @@
++/*
++ * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_C1_LIRASSEMBLER_ARRAYCOPY_RISCV_HPP
++#define CPU_RISCV_C1_LIRASSEMBLER_ARRAYCOPY_RISCV_HPP
++
++ // arraycopy sub functions
++ void generic_arraycopy(Register src, Register src_pos, Register length,
++ Register dst, Register dst_pos, CodeStub *stub);
++ void arraycopy_simple_check(Register src, Register src_pos, Register length,
++ Register dst, Register dst_pos, Register tmp,
++ CodeStub *stub, int flags);
++ void arraycopy_checkcast(Register src, Register src_pos, Register length,
++ Register dst, Register dst_pos, Register tmp,
++ CodeStub *stub, BasicType basic_type,
++ address copyfunc_addr, int flags);
++ void arraycopy_type_check(Register src, Register src_pos, Register length,
++ Register dst, Register dst_pos, Register tmp,
++ CodeStub *stub, BasicType basic_type, int flags);
++ void arraycopy_assert(Register src, Register dst, Register tmp, ciArrayKlass *default_type, int flags);
++ void arraycopy_prepare_params(Register src, Register src_pos, Register length,
++ Register dst, Register dst_pos, BasicType basic_type);
++ void arraycopy_checkcast_prepare_params(Register src, Register src_pos, Register length,
++ Register dst, Register dst_pos, BasicType basic_type);
++ void arraycopy_store_args(Register src, Register src_pos, Register length,
++ Register dst, Register dst_pos);
++ void arraycopy_load_args(Register src, Register src_pos, Register length,
++ Register dst, Register dst_pos);
++
++#endif // CPU_RISCV_C1_LIRASSEMBLER_ARRAYCOPY_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/c1_LIRAssembler_riscv.cpp
+@@ -0,0 +1,2254 @@
++/*
++ * Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/assembler.hpp"
++#include "asm/macroAssembler.inline.hpp"
++#include "c1/c1_CodeStubs.hpp"
++#include "c1/c1_Compilation.hpp"
++#include "c1/c1_LIRAssembler.hpp"
++#include "c1/c1_MacroAssembler.hpp"
++#include "c1/c1_Runtime1.hpp"
++#include "c1/c1_ValueStack.hpp"
++#include "ci/ciArrayKlass.hpp"
++#include "ci/ciInstance.hpp"
++#include "code/compiledIC.hpp"
++#include "gc/shared/collectedHeap.hpp"
++#include "nativeInst_riscv.hpp"
++#include "oops/objArrayKlass.hpp"
++#include "runtime/frame.inline.hpp"
++#include "runtime/sharedRuntime.hpp"
++#include "utilities/powerOfTwo.hpp"
++#include "vmreg_riscv.inline.hpp"
++
++#ifndef PRODUCT
++#define COMMENT(x) do { __ block_comment(x); } while (0)
++#else
++#define COMMENT(x)
++#endif
++
++NEEDS_CLEANUP // remove this definitions ?
++const Register IC_Klass = t1; // where the IC klass is cached
++const Register SYNC_header = x10; // synchronization header
++const Register SHIFT_count = x10; // where count for shift operations must be
++
++#define __ _masm->
++
++static void select_different_registers(Register preserve,
++ Register extra,
++ Register &tmp1,
++ Register &tmp2) {
++ if (tmp1 == preserve) {
++ assert_different_registers(tmp1, tmp2, extra);
++ tmp1 = extra;
++ } else if (tmp2 == preserve) {
++ assert_different_registers(tmp1, tmp2, extra);
++ tmp2 = extra;
++ }
++ assert_different_registers(preserve, tmp1, tmp2);
++}
++
++static void select_different_registers(Register preserve,
++ Register extra,
++ Register &tmp1,
++ Register &tmp2,
++ Register &tmp3) {
++ if (tmp1 == preserve) {
++ assert_different_registers(tmp1, tmp2, tmp3, extra);
++ tmp1 = extra;
++ } else if (tmp2 == preserve) {
++ assert_different_registers(tmp1, tmp2, tmp3, extra);
++ tmp2 = extra;
++ } else if (tmp3 == preserve) {
++ assert_different_registers(tmp1, tmp2, tmp3, extra);
++ tmp3 = extra;
++ }
++ assert_different_registers(preserve, tmp1, tmp2, tmp3);
++}
++
++bool LIR_Assembler::is_small_constant(LIR_Opr opr) { Unimplemented(); return false; }
++
++void LIR_Assembler::clinit_barrier(ciMethod* method) {
++ assert(VM_Version::supports_fast_class_init_checks(), "sanity");
++ assert(!method->holder()->is_not_initialized(), "initialization should have been started");
++
++ Label L_skip_barrier;
++
++ __ mov_metadata(t1, method->holder()->constant_encoding());
++ __ clinit_barrier(t1, t0, &L_skip_barrier /* L_fast_path */);
++ __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
++ __ bind(L_skip_barrier);
++}
++
++LIR_Opr LIR_Assembler::receiverOpr() {
++ return FrameMap::receiver_opr;
++}
++
++LIR_Opr LIR_Assembler::osrBufferPointer() {
++ return FrameMap::as_pointer_opr(receiverOpr()->as_register());
++}
++
++void LIR_Assembler::breakpoint() { Unimplemented(); }
++
++void LIR_Assembler::push(LIR_Opr opr) { Unimplemented(); }
++
++void LIR_Assembler::pop(LIR_Opr opr) { Unimplemented(); }
++
++static jlong as_long(LIR_Opr data) {
++ jlong result;
++ switch (data->type()) {
++ case T_INT:
++ result = (data->as_jint());
++ break;
++ case T_LONG:
++ result = (data->as_jlong());
++ break;
++ default:
++ ShouldNotReachHere();
++ result = 0; // unreachable
++ }
++ return result;
++}
++
++Address LIR_Assembler::as_Address(LIR_Address* addr, Register tmp) {
++ if (addr->base()->is_illegal()) {
++ assert(addr->index()->is_illegal(), "must be illegal too");
++ __ movptr(tmp, addr->disp());
++ return Address(tmp, 0);
++ }
++
++ Register base = addr->base()->as_pointer_register();
++ LIR_Opr index_opr = addr->index();
++
++ if (index_opr->is_illegal()) {
++ return Address(base, addr->disp());
++ }
++
++ int scale = addr->scale();
++ if (index_opr->is_cpu_register()) {
++ Register index;
++ if (index_opr->is_single_cpu()) {
++ index = index_opr->as_register();
++ } else {
++ index = index_opr->as_register_lo();
++ }
++ if (scale != 0) {
++ __ shadd(tmp, index, base, tmp, scale);
++ } else {
++ __ add(tmp, base, index);
++ }
++ return Address(tmp, addr->disp());
++ } else if (index_opr->is_constant()) {
++ intptr_t addr_offset = (((intptr_t)index_opr->as_constant_ptr()->as_jint()) << scale) + addr->disp();
++ return Address(base, addr_offset);
++ }
++
++ Unimplemented();
++ return Address();
++}
++
++Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
++ ShouldNotReachHere();
++ return Address();
++}
++
++Address LIR_Assembler::as_Address(LIR_Address* addr) {
++ return as_Address(addr, t0);
++}
++
++Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
++ return as_Address(addr);
++}
++
++// Ensure a valid Address (base + offset) to a stack-slot. If stack access is
++// not encodable as a base + (immediate) offset, generate an explicit address
++// calculation to hold the address in t0.
++Address LIR_Assembler::stack_slot_address(int index, uint size, int adjust) {
++ precond(size == 4 || size == 8);
++ Address addr = frame_map()->address_for_slot(index, adjust);
++ precond(addr.getMode() == Address::base_plus_offset);
++ precond(addr.base() == sp);
++ precond(addr.offset() > 0);
++ uint mask = size - 1;
++ assert((addr.offset() & mask) == 0, "scaled offsets only");
++
++ return addr;
++}
++
++void LIR_Assembler::osr_entry() {
++ offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
++ BlockBegin* osr_entry = compilation()->hir()->osr_entry();
++ guarantee(osr_entry != NULL, "NULL osr_entry!");
++ ValueStack* entry_state = osr_entry->state();
++ int number_of_locks = entry_state->locks_size();
++
++ // we jump here if osr happens with the interpreter
++ // state set up to continue at the beginning of the
++ // loop that triggered osr - in particular, we have
++ // the following registers setup:
++ //
++ // x12: osr buffer
++ //
++
++ //build frame
++ ciMethod* m = compilation()->method();
++ __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
++
++ // OSR buffer is
++ //
++ // locals[nlocals-1..0]
++ // monitors[0..number_of_locks]
++ //
++ // locals is a direct copy of the interpreter frame so in the osr buffer
++ // so first slot in the local array is the last local from the interpreter
++ // and last slot is local[0] (receiver) from the interpreter
++ //
++ // Similarly with locks. The first lock slot in the osr buffer is the nth lock
++ // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
++ // in the interpreter frame (the method lock if a sync method)
++
++ // Initialize monitors in the compiled activation.
++ // x12: pointer to osr buffer
++ // All other registers are dead at this point and the locals will be
++ // copied into place by code emitted in the IR.
++
++ Register OSR_buf = osrBufferPointer()->as_pointer_register();
++ {
++ assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
++ int monitor_offset = BytesPerWord * method()->max_locals() +
++ (2 * BytesPerWord) * (number_of_locks - 1);
++ // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
++ // the OSR buffer using 2 word entries: first the lock and then
++ // the oop.
++ for (int i = 0; i < number_of_locks; i++) {
++ int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
++#ifdef ASSERT
++ // verify the interpreter's monitor has a non-null object
++ {
++ Label L;
++ __ ld(t0, Address(OSR_buf, slot_offset + 1 * BytesPerWord));
++ __ bnez(t0, L);
++ __ stop("locked object is NULL");
++ __ bind(L);
++ }
++#endif // ASSERT
++ __ ld(x9, Address(OSR_buf, slot_offset + 0));
++ __ sd(x9, frame_map()->address_for_monitor_lock(i));
++ __ ld(x9, Address(OSR_buf, slot_offset + 1 * BytesPerWord));
++ __ sd(x9, frame_map()->address_for_monitor_object(i));
++ }
++ }
++}
++
++// inline cache check; done before the frame is built.
++int LIR_Assembler::check_icache() {
++ Register receiver = FrameMap::receiver_opr->as_register();
++ Register ic_klass = IC_Klass;
++ int start_offset = __ offset();
++ Label dont;
++ __ inline_cache_check(receiver, ic_klass, dont);
++
++ // if icache check fails, then jump to runtime routine
++ // Note: RECEIVER must still contain the receiver!
++ __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
++
++ // We align the verified entry point unless the method body
++ // (including its inline cache check) will fit in a single 64-byte
++ // icache line.
++ if (!method()->is_accessor() || __ offset() - start_offset > 4 * 4) {
++ // force alignment after the cache check.
++ __ align(CodeEntryAlignment);
++ }
++
++ __ bind(dont);
++ return start_offset;
++}
++
++void LIR_Assembler::jobject2reg(jobject o, Register reg) {
++ if (o == NULL) {
++ __ mv(reg, zr);
++ } else {
++ __ movoop(reg, o, /* immediate */ true);
++ }
++}
++
++void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
++ deoptimize_trap(info);
++}
++
++// This specifies the rsp decrement needed to build the frame
++int LIR_Assembler::initial_frame_size_in_bytes() const {
++ // if rounding, must let FrameMap know!
++
++ return in_bytes(frame_map()->framesize_in_bytes());
++}
++
++int LIR_Assembler::emit_exception_handler() {
++ // if the last instruction is a call (typically to do a throw which
++ // is coming at the end after block reordering) the return address
++ // must still point into the code area in order to avoid assertion
++ // failures when searching for the corresponding bci ==> add a nop
++ // (was bug 5/14/1999 -gri)
++ __ nop();
++
++ // generate code for exception handler
++ address handler_base = __ start_a_stub(exception_handler_size());
++ if (handler_base == NULL) {
++ // not enough space left for the handler
++ bailout("exception handler overflow");
++ return -1;
++ }
++
++ int offset = code_offset();
++
++ // the exception oop and pc are in x10, and x13
++ // no other registers need to be preserved, so invalidate them
++ __ invalidate_registers(false, true, true, false, true, true);
++
++ // check that there is really an exception
++ __ verify_not_null_oop(x10);
++
++ // search an exception handler (x10: exception oop, x13: throwing pc)
++ __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::handle_exception_from_callee_id)));
++ __ should_not_reach_here();
++ guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
++ __ end_a_stub();
++
++ return offset;
++}
++
++// Emit the code to remove the frame from the stack in the exception
++// unwind path.
++int LIR_Assembler::emit_unwind_handler() {
++#ifndef PRODUCT
++ if (CommentedAssembly) {
++ _masm->block_comment("Unwind handler");
++ }
++#endif // PRODUCT
++
++ int offset = code_offset();
++
++ // Fetch the exception from TLS and clear out exception related thread state
++ __ ld(x10, Address(xthread, JavaThread::exception_oop_offset()));
++ __ sd(zr, Address(xthread, JavaThread::exception_oop_offset()));
++ __ sd(zr, Address(xthread, JavaThread::exception_pc_offset()));
++
++ __ bind(_unwind_handler_entry);
++ __ verify_not_null_oop(x10);
++ if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
++ __ mv(x9, x10); // Perserve the exception
++ }
++
++ // Preform needed unlocking
++ MonitorExitStub* stub = NULL;
++ if (method()->is_synchronized()) {
++ monitor_address(0, FrameMap::r10_opr);
++ stub = new MonitorExitStub(FrameMap::r10_opr, true, 0);
++ __ unlock_object(x15, x14, x10, *stub->entry());
++ __ bind(*stub->continuation());
++ }
++
++ if (compilation()->env()->dtrace_method_probes()) {
++ __ mv(c_rarg0, xthread);
++ __ mov_metadata(c_rarg1, method()->constant_encoding());
++ __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), c_rarg0, c_rarg1);
++ }
++
++ if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
++ __ mv(x10, x9); // Restore the exception
++ }
++
++ // remove the activation and dispatch to the unwind handler
++ __ block_comment("remove_frame and dispatch to the unwind handler");
++ __ remove_frame(initial_frame_size_in_bytes());
++ __ far_jump(RuntimeAddress(Runtime1::entry_for(Runtime1::unwind_exception_id)));
++
++ // Emit the slow path assembly
++ if (stub != NULL) {
++ stub->emit_code(this);
++ }
++
++ return offset;
++}
++
++int LIR_Assembler::emit_deopt_handler() {
++ // if the last instruciton is a call (typically to do a throw which
++ // is coming at the end after block reordering) the return address
++ // must still point into the code area in order to avoid assertion
++ // failures when searching for the corresponding bck => add a nop
++ // (was bug 5/14/1999 - gri)
++ __ nop();
++
++ // generate code for exception handler
++ address handler_base = __ start_a_stub(deopt_handler_size());
++ if (handler_base == NULL) {
++ // not enough space left for the handler
++ bailout("deopt handler overflow");
++ return -1;
++ }
++
++ int offset = code_offset();
++
++ __ auipc(ra, 0);
++ __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
++ guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
++ __ end_a_stub();
++
++ return offset;
++}
++
++void LIR_Assembler::return_op(LIR_Opr result, C1SafepointPollStub* code_stub) {
++ assert(result->is_illegal() || !result->is_single_cpu() || result->as_register() == x10, "word returns are in x10");
++
++ // Pop the stack before the safepoint code
++ __ remove_frame(initial_frame_size_in_bytes());
++
++ if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
++ __ reserved_stack_check();
++ }
++
++ code_stub->set_safepoint_offset(__ offset());
++ __ relocate(relocInfo::poll_return_type);
++ __ safepoint_poll(*code_stub->entry(), true /* at_return */, false /* acquire */, true /* in_nmethod */);
++ __ ret();
++}
++
++int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
++ guarantee(info != NULL, "Shouldn't be NULL");
++ __ get_polling_page(t0, relocInfo::poll_type);
++ add_debug_info_for_branch(info); // This isn't just debug info:
++ // it's the oop map
++ __ read_polling_page(t0, 0, relocInfo::poll_type);
++ return __ offset();
++}
++
++void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
++ __ mv(to_reg, from_reg);
++}
++
++void LIR_Assembler::swap_reg(Register a, Register b) { Unimplemented(); }
++
++void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
++ assert(src->is_constant(), "should not call otherwise");
++ assert(dest->is_register(), "should not call otherwise");
++ LIR_Const* c = src->as_constant_ptr();
++ address const_addr = NULL;
++
++ switch (c->type()) {
++ case T_INT:
++ assert(patch_code == lir_patch_none, "no patching handled here");
++ __ mv(dest->as_register(), c->as_jint());
++ break;
++
++ case T_ADDRESS:
++ assert(patch_code == lir_patch_none, "no patching handled here");
++ __ mv(dest->as_register(), c->as_jint());
++ break;
++
++ case T_LONG:
++ assert(patch_code == lir_patch_none, "no patching handled here");
++ __ mv(dest->as_register_lo(), (intptr_t)c->as_jlong());
++ break;
++
++ case T_OBJECT:
++ case T_ARRAY:
++ if (patch_code == lir_patch_none) {
++ jobject2reg(c->as_jobject(), dest->as_register());
++ } else {
++ jobject2reg_with_patching(dest->as_register(), info);
++ }
++ break;
++
++ case T_METADATA:
++ if (patch_code != lir_patch_none) {
++ klass2reg_with_patching(dest->as_register(), info);
++ } else {
++ __ mov_metadata(dest->as_register(), c->as_metadata());
++ }
++ break;
++
++ case T_FLOAT:
++ const_addr = float_constant(c->as_jfloat());
++ assert(const_addr != NULL, "must create float constant in the constant table");
++ __ flw(dest->as_float_reg(), InternalAddress(const_addr));
++ break;
++
++ case T_DOUBLE:
++ const_addr = double_constant(c->as_jdouble());
++ assert(const_addr != NULL, "must create double constant in the constant table");
++ __ fld(dest->as_double_reg(), InternalAddress(const_addr));
++ break;
++
++ default:
++ ShouldNotReachHere();
++ }
++}
++
++void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
++ assert(src->is_constant(), "should not call otherwise");
++ assert(dest->is_stack(), "should not call otherwise");
++ LIR_Const* c = src->as_constant_ptr();
++ switch (c->type()) {
++ case T_OBJECT:
++ if (c->as_jobject() == NULL) {
++ __ sd(zr, frame_map()->address_for_slot(dest->single_stack_ix()));
++ } else {
++ const2reg(src, FrameMap::t1_opr, lir_patch_none, NULL);
++ reg2stack(FrameMap::t1_opr, dest, c->type(), false);
++ }
++ break;
++ case T_ADDRESS: // fall through
++ const2reg(src, FrameMap::t1_opr, lir_patch_none, NULL);
++ reg2stack(FrameMap::t1_opr, dest, c->type(), false);
++ case T_INT: // fall through
++ case T_FLOAT:
++ if (c->as_jint_bits() == 0) {
++ __ sw(zr, frame_map()->address_for_slot(dest->single_stack_ix()));
++ } else {
++ __ mv(t1, c->as_jint_bits());
++ __ sw(t1, frame_map()->address_for_slot(dest->single_stack_ix()));
++ }
++ break;
++ case T_LONG: // fall through
++ case T_DOUBLE:
++ if (c->as_jlong_bits() == 0) {
++ __ sd(zr, frame_map()->address_for_slot(dest->double_stack_ix(),
++ lo_word_offset_in_bytes));
++ } else {
++ __ mv(t1, (intptr_t)c->as_jlong_bits());
++ __ sd(t1, frame_map()->address_for_slot(dest->double_stack_ix(),
++ lo_word_offset_in_bytes));
++ }
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++}
++
++void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
++ assert(src->is_constant(), "should not call otherwise");
++ assert(dest->is_address(), "should not call otherwise");
++ LIR_Const* c = src->as_constant_ptr();
++ LIR_Address* to_addr = dest->as_address_ptr();
++ void (MacroAssembler::* insn)(Register Rt, const Address &adr, Register temp);
++ switch (type) {
++ case T_ADDRESS:
++ assert(c->as_jint() == 0, "should be");
++ insn = &MacroAssembler::sd; break;
++ case T_LONG:
++ assert(c->as_jlong() == 0, "should be");
++ insn = &MacroAssembler::sd; break;
++ case T_DOUBLE:
++ assert(c->as_jdouble() == 0.0, "should be");
++ insn = &MacroAssembler::sd; break;
++ case T_INT:
++ assert(c->as_jint() == 0, "should be");
++ insn = &MacroAssembler::sw; break;
++ case T_FLOAT:
++ assert(c->as_jfloat() == 0.0f, "should be");
++ insn = &MacroAssembler::sw; break;
++ case T_OBJECT: // fall through
++ case T_ARRAY:
++ assert(c->as_jobject() == 0, "should be");
++ if (UseCompressedOops && !wide) {
++ insn = &MacroAssembler::sw;
++ } else {
++ insn = &MacroAssembler::sd;
++ }
++ break;
++ case T_CHAR: // fall through
++ case T_SHORT:
++ assert(c->as_jint() == 0, "should be");
++ insn = &MacroAssembler::sh;
++ break;
++ case T_BOOLEAN: // fall through
++ case T_BYTE:
++ assert(c->as_jint() == 0, "should be");
++ insn = &MacroAssembler::sb; break;
++ default:
++ ShouldNotReachHere();
++ insn = &MacroAssembler::sd; // unreachable
++ }
++ if (info != NULL) {
++ add_debug_info_for_null_check_here(info);
++ }
++ (_masm->*insn)(zr, as_Address(to_addr), t0);
++}
++
++void LIR_Assembler::reg2reg(LIR_Opr src, LIR_Opr dest) {
++ assert(src->is_register(), "should not call otherwise");
++ assert(dest->is_register(), "should not call otherwise");
++
++ // move between cpu-registers
++ if (dest->is_single_cpu()) {
++ if (src->type() == T_LONG) {
++ // Can do LONG -> OBJECT
++ move_regs(src->as_register_lo(), dest->as_register());
++ return;
++ }
++ assert(src->is_single_cpu(), "must match");
++ if (src->type() == T_OBJECT) {
++ __ verify_oop(src->as_register());
++ }
++ move_regs(src->as_register(), dest->as_register());
++ } else if (dest->is_double_cpu()) {
++ if (is_reference_type(src->type())) {
++ __ verify_oop(src->as_register());
++ move_regs(src->as_register(), dest->as_register_lo());
++ return;
++ }
++ assert(src->is_double_cpu(), "must match");
++ Register f_lo = src->as_register_lo();
++ Register f_hi = src->as_register_hi();
++ Register t_lo = dest->as_register_lo();
++ Register t_hi = dest->as_register_hi();
++ assert(f_hi == f_lo, "must be same");
++ assert(t_hi == t_lo, "must be same");
++ move_regs(f_lo, t_lo);
++ } else if (dest->is_single_fpu()) {
++ assert(src->is_single_fpu(), "expect single fpu");
++ __ fmv_s(dest->as_float_reg(), src->as_float_reg());
++ } else if (dest->is_double_fpu()) {
++ assert(src->is_double_fpu(), "expect double fpu");
++ __ fmv_d(dest->as_double_reg(), src->as_double_reg());
++ } else {
++ ShouldNotReachHere();
++ }
++}
++
++void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
++ precond(src->is_register() && dest->is_stack());
++
++ uint const c_sz32 = sizeof(uint32_t);
++ uint const c_sz64 = sizeof(uint64_t);
++
++ assert(src->is_register(), "should not call otherwise");
++ assert(dest->is_stack(), "should not call otherwise");
++ if (src->is_single_cpu()) {
++ int index = dest->single_stack_ix();
++ if (is_reference_type(type)) {
++ __ sd(src->as_register(), stack_slot_address(index, c_sz64));
++ __ verify_oop(src->as_register());
++ } else if (type == T_METADATA || type == T_DOUBLE || type == T_ADDRESS) {
++ __ sd(src->as_register(), stack_slot_address(index, c_sz64));
++ } else {
++ __ sw(src->as_register(), stack_slot_address(index, c_sz32));
++ }
++ } else if (src->is_double_cpu()) {
++ int index = dest->double_stack_ix();
++ Address dest_addr_LO = stack_slot_address(index, c_sz64, lo_word_offset_in_bytes);
++ __ sd(src->as_register_lo(), dest_addr_LO);
++ } else if (src->is_single_fpu()) {
++ int index = dest->single_stack_ix();
++ __ fsw(src->as_float_reg(), stack_slot_address(index, c_sz32));
++ } else if (src->is_double_fpu()) {
++ int index = dest->double_stack_ix();
++ __ fsd(src->as_double_reg(), stack_slot_address(index, c_sz64));
++ } else {
++ ShouldNotReachHere();
++ }
++}
++
++void LIR_Assembler::reg2mem(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack, bool wide, bool /* unaligned */) {
++ LIR_Address* to_addr = dest->as_address_ptr();
++ // t0 was used as tmp reg in as_Address, so we use t1 as compressed_src
++ Register compressed_src = t1;
++
++ if (patch_code != lir_patch_none) {
++ deoptimize_trap(info);
++ return;
++ }
++
++ if (is_reference_type(type)) {
++ __ verify_oop(src->as_register());
++
++ if (UseCompressedOops && !wide) {
++ __ encode_heap_oop(compressed_src, src->as_register());
++ } else {
++ compressed_src = src->as_register();
++ }
++ }
++
++ int null_check_here = code_offset();
++
++ switch (type) {
++ case T_FLOAT:
++ __ fsw(src->as_float_reg(), as_Address(to_addr));
++ break;
++
++ case T_DOUBLE:
++ __ fsd(src->as_double_reg(), as_Address(to_addr));
++ break;
++
++ case T_ARRAY: // fall through
++ case T_OBJECT:
++ if (UseCompressedOops && !wide) {
++ __ sw(compressed_src, as_Address(to_addr));
++ } else {
++ __ sd(compressed_src, as_Address(to_addr));
++ }
++ break;
++ case T_METADATA:
++ // We get here to store a method pointer to the stack to pass to
++ // a dtrace runtime call. This can't work on 64 bit with
++ // compressed klass ptrs: T_METADATA can be compressed klass
++ // ptr or a 64 bit method pointer.
++ ShouldNotReachHere();
++ __ sd(src->as_register(), as_Address(to_addr));
++ break;
++ case T_ADDRESS:
++ __ sd(src->as_register(), as_Address(to_addr));
++ break;
++ case T_INT:
++ __ sw(src->as_register(), as_Address(to_addr));
++ break;
++ case T_LONG:
++ __ sd(src->as_register_lo(), as_Address(to_addr));
++ break;
++ case T_BYTE: // fall through
++ case T_BOOLEAN:
++ __ sb(src->as_register(), as_Address(to_addr));
++ break;
++ case T_CHAR: // fall through
++ case T_SHORT:
++ __ sh(src->as_register(), as_Address(to_addr));
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++
++ if (info != NULL) {
++ add_debug_info_for_null_check(null_check_here, info);
++ }
++}
++
++void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
++ precond(src->is_stack() && dest->is_register());
++
++ uint const c_sz32 = sizeof(uint32_t);
++ uint const c_sz64 = sizeof(uint64_t);
++
++ if (dest->is_single_cpu()) {
++ int index = src->single_stack_ix();
++ if (type == T_INT) {
++ __ lw(dest->as_register(), stack_slot_address(index, c_sz32));
++ } else if (is_reference_type(type)) {
++ __ ld(dest->as_register(), stack_slot_address(index, c_sz64));
++ __ verify_oop(dest->as_register());
++ } else if (type == T_METADATA || type == T_ADDRESS) {
++ __ ld(dest->as_register(), stack_slot_address(index, c_sz64));
++ } else {
++ __ lwu(dest->as_register(), stack_slot_address(index, c_sz32));
++ }
++ } else if (dest->is_double_cpu()) {
++ int index = src->double_stack_ix();
++ Address src_addr_LO = stack_slot_address(index, c_sz64, lo_word_offset_in_bytes);
++ __ ld(dest->as_register_lo(), src_addr_LO);
++ } else if (dest->is_single_fpu()) {
++ int index = src->single_stack_ix();
++ __ flw(dest->as_float_reg(), stack_slot_address(index, c_sz32));
++ } else if (dest->is_double_fpu()) {
++ int index = src->double_stack_ix();
++ __ fld(dest->as_double_reg(), stack_slot_address(index, c_sz64));
++ } else {
++ ShouldNotReachHere();
++ }
++}
++
++void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo* info) {
++ deoptimize_trap(info);
++}
++
++void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
++ LIR_Opr temp;
++ if (type == T_LONG || type == T_DOUBLE) {
++ temp = FrameMap::t1_long_opr;
++ } else {
++ temp = FrameMap::t1_opr;
++ }
++
++ stack2reg(src, temp, src->type());
++ reg2stack(temp, dest, dest->type(), false);
++}
++
++void LIR_Assembler::mem2reg(LIR_Opr src, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code, CodeEmitInfo* info, bool wide, bool /* unaligned */) {
++ assert(src->is_address(), "should not call otherwise");
++ assert(dest->is_register(), "should not call otherwise");
++
++ LIR_Address* addr = src->as_address_ptr();
++ LIR_Address* from_addr = src->as_address_ptr();
++
++ if (addr->base()->type() == T_OBJECT) {
++ __ verify_oop(addr->base()->as_pointer_register());
++ }
++
++ if (patch_code != lir_patch_none) {
++ deoptimize_trap(info);
++ return;
++ }
++
++ if (info != NULL) {
++ add_debug_info_for_null_check_here(info);
++ }
++
++ int null_check_here = code_offset();
++ switch (type) {
++ case T_FLOAT:
++ __ flw(dest->as_float_reg(), as_Address(from_addr));
++ break;
++ case T_DOUBLE:
++ __ fld(dest->as_double_reg(), as_Address(from_addr));
++ break;
++ case T_ARRAY: // fall through
++ case T_OBJECT:
++ if (UseCompressedOops && !wide) {
++ __ lwu(dest->as_register(), as_Address(from_addr));
++ } else {
++ __ ld(dest->as_register(), as_Address(from_addr));
++ }
++ break;
++ case T_METADATA:
++ // We get here to store a method pointer to the stack to pass to
++ // a dtrace runtime call. This can't work on 64 bit with
++ // compressed klass ptrs: T_METADATA can be a compressed klass
++ // ptr or a 64 bit method pointer.
++ ShouldNotReachHere();
++ __ ld(dest->as_register(), as_Address(from_addr));
++ break;
++ case T_ADDRESS:
++ if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
++ __ lwu(dest->as_register(), as_Address(from_addr));
++ } else {
++ __ ld(dest->as_register(), as_Address(from_addr));
++ }
++ break;
++ case T_INT:
++ __ lw(dest->as_register(), as_Address(from_addr));
++ break;
++ case T_LONG:
++ __ ld(dest->as_register_lo(), as_Address_lo(from_addr));
++ break;
++ case T_BYTE:
++ __ lb(dest->as_register(), as_Address(from_addr));
++ break;
++ case T_BOOLEAN:
++ __ lbu(dest->as_register(), as_Address(from_addr));
++ break;
++ case T_CHAR:
++ __ lhu(dest->as_register(), as_Address(from_addr));
++ break;
++ case T_SHORT:
++ __ lh(dest->as_register(), as_Address(from_addr));
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++
++ if (is_reference_type(type)) {
++ if (UseCompressedOops && !wide) {
++ __ decode_heap_oop(dest->as_register());
++ }
++
++ if (!UseZGC) {
++ // Load barrier has not yet been applied, so ZGC can't verify the oop here
++ __ verify_oop(dest->as_register());
++ }
++ } else if (type == T_ADDRESS && addr->disp() == oopDesc::klass_offset_in_bytes()) {
++ if (UseCompressedClassPointers) {
++ __ decode_klass_not_null(dest->as_register());
++ }
++ }
++}
++
++void LIR_Assembler::emit_op3(LIR_Op3* op) {
++ switch (op->code()) {
++ case lir_idiv: // fall through
++ case lir_irem:
++ arithmetic_idiv(op->code(),
++ op->in_opr1(),
++ op->in_opr2(),
++ op->in_opr3(),
++ op->result_opr(),
++ op->info());
++ break;
++ case lir_fmad:
++ __ fmadd_d(op->result_opr()->as_double_reg(),
++ op->in_opr1()->as_double_reg(),
++ op->in_opr2()->as_double_reg(),
++ op->in_opr3()->as_double_reg());
++ break;
++ case lir_fmaf:
++ __ fmadd_s(op->result_opr()->as_float_reg(),
++ op->in_opr1()->as_float_reg(),
++ op->in_opr2()->as_float_reg(),
++ op->in_opr3()->as_float_reg());
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++}
++
++void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type,
++ LIR_Opr cmp_opr1, LIR_Opr cmp_opr2) {
++ Label label;
++
++ emit_branch(condition, cmp_opr1, cmp_opr2, label, /* is_far */ false,
++ /* is_unordered */ (condition == lir_cond_greaterEqual || condition == lir_cond_greater) ? false : true);
++
++ Label done;
++ move_op(opr2, result, type, lir_patch_none, NULL,
++ false, // pop_fpu_stack
++ false, // wide
++ false); // unaligned
++ __ j(done);
++ __ bind(label);
++ move_op(opr1, result, type, lir_patch_none, NULL,
++ false, // pop_fpu_stack
++ false, // wide
++ false); // unaligned
++ __ bind(done);
++}
++
++void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
++ LIR_Condition condition = op->cond();
++ if (condition == lir_cond_always) {
++ if (op->info() != NULL) {
++ add_debug_info_for_branch(op->info());
++ }
++ } else {
++ assert(op->in_opr1() != LIR_OprFact::illegalOpr && op->in_opr2() != LIR_OprFact::illegalOpr, "conditional branches must have legal operands");
++ }
++ bool is_unordered = (op->ublock() == op->block());
++ emit_branch(condition, op->in_opr1(), op->in_opr2(), *op->label(), /* is_far */ true, is_unordered);
++}
++
++void LIR_Assembler::emit_branch(LIR_Condition cmp_flag, LIR_Opr cmp1, LIR_Opr cmp2, Label& label,
++ bool is_far, bool is_unordered) {
++
++ if (cmp_flag == lir_cond_always) {
++ __ j(label);
++ return;
++ }
++
++ if (cmp1->is_cpu_register()) {
++ Register reg1 = as_reg(cmp1);
++ if (cmp2->is_cpu_register()) {
++ Register reg2 = as_reg(cmp2);
++ __ c1_cmp_branch(cmp_flag, reg1, reg2, label, cmp1->type(), is_far);
++ } else if (cmp2->is_constant()) {
++ const2reg_helper(cmp2);
++ __ c1_cmp_branch(cmp_flag, reg1, t0, label, cmp2->type(), is_far);
++ } else {
++ ShouldNotReachHere();
++ }
++ } else if (cmp1->is_single_fpu()) {
++ assert(cmp2->is_single_fpu(), "expect single float register");
++ __ c1_float_cmp_branch(cmp_flag, cmp1->as_float_reg(), cmp2->as_float_reg(), label, is_far, is_unordered);
++ } else if (cmp1->is_double_fpu()) {
++ assert(cmp2->is_double_fpu(), "expect double float register");
++ __ c1_float_cmp_branch(cmp_flag | C1_MacroAssembler::c1_double_branch_mask,
++ cmp1->as_double_reg(), cmp2->as_double_reg(), label, is_far, is_unordered);
++ } else {
++ ShouldNotReachHere();
++ }
++}
++
++void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
++ LIR_Opr src = op->in_opr();
++ LIR_Opr dest = op->result_opr();
++
++ switch (op->bytecode()) {
++ case Bytecodes::_i2f:
++ __ fcvt_s_w(dest->as_float_reg(), src->as_register()); break;
++ case Bytecodes::_i2d:
++ __ fcvt_d_w(dest->as_double_reg(), src->as_register()); break;
++ case Bytecodes::_l2d:
++ __ fcvt_d_l(dest->as_double_reg(), src->as_register_lo()); break;
++ case Bytecodes::_l2f:
++ __ fcvt_s_l(dest->as_float_reg(), src->as_register_lo()); break;
++ case Bytecodes::_f2d:
++ __ fcvt_d_s(dest->as_double_reg(), src->as_float_reg()); break;
++ case Bytecodes::_d2f:
++ __ fcvt_s_d(dest->as_float_reg(), src->as_double_reg()); break;
++ case Bytecodes::_i2c:
++ __ zero_extend(dest->as_register(), src->as_register(), 16); break;
++ case Bytecodes::_i2l:
++ __ sign_extend(dest->as_register_lo(), src->as_register(), 32); break;
++ case Bytecodes::_i2s:
++ __ sign_extend(dest->as_register(), src->as_register(), 16); break;
++ case Bytecodes::_i2b:
++ __ sign_extend(dest->as_register(), src->as_register(), 8); break;
++ case Bytecodes::_l2i:
++ __ sign_extend(dest->as_register(), src->as_register_lo(), 32); break;
++ case Bytecodes::_d2l:
++ __ fcvt_l_d_safe(dest->as_register_lo(), src->as_double_reg()); break;
++ case Bytecodes::_f2i:
++ __ fcvt_w_s_safe(dest->as_register(), src->as_float_reg()); break;
++ case Bytecodes::_f2l:
++ __ fcvt_l_s_safe(dest->as_register_lo(), src->as_float_reg()); break;
++ case Bytecodes::_d2i:
++ __ fcvt_w_d_safe(dest->as_register(), src->as_double_reg()); break;
++ default:
++ ShouldNotReachHere();
++ }
++}
++
++void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
++ if (op->init_check()) {
++ __ lbu(t0, Address(op->klass()->as_register(),
++ InstanceKlass::init_state_offset()));
++ __ mv(t1, (u1)InstanceKlass::fully_initialized);
++ add_debug_info_for_null_check_here(op->stub()->info());
++ __ bne(t0, t1, *op->stub()->entry(), /* is_far */ true);
++ }
++
++ __ allocate_object(op->obj()->as_register(),
++ op->tmp1()->as_register(),
++ op->tmp2()->as_register(),
++ op->header_size(),
++ op->object_size(),
++ op->klass()->as_register(),
++ *op->stub()->entry());
++
++ __ bind(*op->stub()->continuation());
++}
++
++void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
++ Register len = op->len()->as_register();
++
++ if (UseSlowPath ||
++ (!UseFastNewObjectArray && is_reference_type(op->type())) ||
++ (!UseFastNewTypeArray && !is_reference_type(op->type()))) {
++ __ j(*op->stub()->entry());
++ } else {
++ Register tmp1 = op->tmp1()->as_register();
++ Register tmp2 = op->tmp2()->as_register();
++ Register tmp3 = op->tmp3()->as_register();
++ if (len == tmp1) {
++ tmp1 = tmp3;
++ } else if (len == tmp2) {
++ tmp2 = tmp3;
++ } else if (len == tmp3) {
++ // everything is ok
++ } else {
++ __ mv(tmp3, len);
++ }
++ __ allocate_array(op->obj()->as_register(),
++ len,
++ tmp1,
++ tmp2,
++ arrayOopDesc::header_size(op->type()),
++ array_element_size(op->type()),
++ op->klass()->as_register(),
++ *op->stub()->entry());
++ }
++ __ bind(*op->stub()->continuation());
++}
++
++void LIR_Assembler::type_profile_helper(Register mdo, ciMethodData *md, ciProfileData *data,
++ Register recv, Label* update_done) {
++ for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
++ Label next_test;
++ // See if the receiver is receiver[n].
++ __ ld(t1, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i))));
++ __ bne(recv, t1, next_test);
++ Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
++ __ increment(data_addr, DataLayout::counter_increment);
++ __ j(*update_done);
++ __ bind(next_test);
++ }
++
++ // Didn't find receiver; find next empty slot and fill it in
++ for (uint i = 0; i < ReceiverTypeData::row_limit(); i++) {
++ Label next_test;
++ Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
++ __ ld(t1, recv_addr);
++ __ bnez(t1, next_test);
++ __ sd(recv, recv_addr);
++ __ mv(t1, DataLayout::counter_increment);
++ __ sd(t1, Address(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i))));
++ __ j(*update_done);
++ __ bind(next_test);
++ }
++}
++
++void LIR_Assembler::data_check(LIR_OpTypeCheck *op, ciMethodData **md, ciProfileData **data) {
++ ciMethod* method = op->profiled_method();
++ assert(method != NULL, "Should have method");
++ int bci = op->profiled_bci();
++ *md = method->method_data_or_null();
++ guarantee(*md != NULL, "Sanity");
++ *data = ((*md)->bci_to_data(bci));
++ assert(*data != NULL, "need data for type check");
++ assert((*data)->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
++}
++
++void LIR_Assembler::typecheck_helper_slowcheck(ciKlass *k, Register obj, Register Rtmp1,
++ Register k_RInfo, Register klass_RInfo,
++ Label *failure_target, Label *success_target) {
++ // get object class
++ // not a safepoint as obj null check happens earlier
++ __ load_klass(klass_RInfo, obj);
++ if (k->is_loaded()) {
++ // See if we get an immediate positive hit
++ __ ld(t0, Address(klass_RInfo, int64_t(k->super_check_offset())));
++ if ((juint)in_bytes(Klass::secondary_super_cache_offset()) != k->super_check_offset()) {
++ __ bne(k_RInfo, t0, *failure_target, /* is_far */ true);
++ // successful cast, fall through to profile or jump
++ } else {
++ // See if we get an immediate positive hit
++ __ beq(k_RInfo, t0, *success_target);
++ // check for self
++ __ beq(klass_RInfo, k_RInfo, *success_target);
++
++ __ addi(sp, sp, -2 * wordSize); // 2: store k_RInfo and klass_RInfo
++ __ sd(k_RInfo, Address(sp, 0)); // sub klass
++ __ sd(klass_RInfo, Address(sp, wordSize)); // super klass
++ __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
++ // load result to k_RInfo
++ __ ld(k_RInfo, Address(sp, 0));
++ __ addi(sp, sp, 2 * wordSize); // 2: pop out k_RInfo and klass_RInfo
++ // result is a boolean
++ __ beqz(k_RInfo, *failure_target, /* is_far */ true);
++ // successful cast, fall through to profile or jump
++ }
++ } else {
++ // perform the fast part of the checking logic
++ __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
++ // call out-of-line instance of __ check_klass_subtytpe_slow_path(...)
++ __ addi(sp, sp, -2 * wordSize); // 2: store k_RInfo and klass_RInfo
++ __ sd(klass_RInfo, Address(sp, wordSize)); // sub klass
++ __ sd(k_RInfo, Address(sp, 0)); // super klass
++ __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
++ // load result to k_RInfo
++ __ ld(k_RInfo, Address(sp, 0));
++ __ addi(sp, sp, 2 * wordSize); // 2: pop out k_RInfo and klass_RInfo
++ // result is a boolean
++ __ beqz(k_RInfo, *failure_target, /* is_far */ true);
++ // successful cast, fall thriugh to profile or jump
++ }
++}
++
++void LIR_Assembler::profile_object(ciMethodData* md, ciProfileData* data, Register obj,
++ Register klass_RInfo, Label* obj_is_null) {
++ Label not_null;
++ __ bnez(obj, not_null);
++ // Object is null, update MDO and exit
++ Register mdo = klass_RInfo;
++ __ mov_metadata(mdo, md->constant_encoding());
++ Address data_addr = __ form_address(t1, mdo, md->byte_offset_of_slot(data, DataLayout::flags_offset()));
++ __ lbu(t0, data_addr);
++ __ ori(t0, t0, BitData::null_seen_byte_constant());
++ __ sb(t0, data_addr);
++ __ j(*obj_is_null);
++ __ bind(not_null);
++}
++
++void LIR_Assembler::typecheck_loaded(LIR_OpTypeCheck *op, ciKlass* k, Register k_RInfo) {
++ if (!k->is_loaded()) {
++ klass2reg_with_patching(k_RInfo, op->info_for_patch());
++ } else {
++ __ mov_metadata(k_RInfo, k->constant_encoding());
++ }
++}
++
++void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
++ Register obj = op->object()->as_register();
++ Register k_RInfo = op->tmp1()->as_register();
++ Register klass_RInfo = op->tmp2()->as_register();
++ Register dst = op->result_opr()->as_register();
++ ciKlass* k = op->klass();
++ Register Rtmp1 = noreg;
++
++ // check if it needs to be profiled
++ ciMethodData* md = NULL;
++ ciProfileData* data = NULL;
++
++ const bool should_profile = op->should_profile();
++ if (should_profile) {
++ data_check(op, &md, &data);
++ }
++ Label profile_cast_success, profile_cast_failure;
++ Label *success_target = should_profile ? &profile_cast_success : success;
++ Label *failure_target = should_profile ? &profile_cast_failure : failure;
++
++ if (obj == k_RInfo) {
++ k_RInfo = dst;
++ } else if (obj == klass_RInfo) {
++ klass_RInfo = dst;
++ }
++ if (k->is_loaded() && !UseCompressedClassPointers) {
++ select_different_registers(obj, dst, k_RInfo, klass_RInfo);
++ } else {
++ Rtmp1 = op->tmp3()->as_register();
++ select_different_registers(obj, dst, k_RInfo, klass_RInfo, Rtmp1);
++ }
++
++ assert_different_registers(obj, k_RInfo, klass_RInfo);
++
++ if (should_profile) {
++ profile_object(md, data, obj, klass_RInfo, obj_is_null);
++ } else {
++ __ beqz(obj, *obj_is_null);
++ }
++
++ typecheck_loaded(op, k, k_RInfo);
++ __ verify_oop(obj);
++
++ if (op->fast_check()) {
++ // get object class
++ // not a safepoint as obj null check happens earlier
++ __ load_klass(t0, obj, t1);
++ __ bne(t0, k_RInfo, *failure_target, /* is_far */ true);
++ // successful cast, fall through to profile or jump
++ } else {
++ typecheck_helper_slowcheck(k, obj, Rtmp1, k_RInfo, klass_RInfo, failure_target, success_target);
++ }
++ if (should_profile) {
++ type_profile(obj, md, klass_RInfo, k_RInfo, data, success, failure, profile_cast_success, profile_cast_failure);
++ }
++ __ j(*success);
++}
++
++void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
++ const bool should_profile = op->should_profile();
++
++ LIR_Code code = op->code();
++ if (code == lir_store_check) {
++ typecheck_lir_store(op, should_profile);
++ } else if (code == lir_checkcast) {
++ Register obj = op->object()->as_register();
++ Register dst = op->result_opr()->as_register();
++ Label success;
++ emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
++ __ bind(success);
++ if (dst != obj) {
++ __ mv(dst, obj);
++ }
++ } else if (code == lir_instanceof) {
++ Register obj = op->object()->as_register();
++ Register dst = op->result_opr()->as_register();
++ Label success, failure, done;
++ emit_typecheck_helper(op, &success, &failure, &failure);
++ __ bind(failure);
++ __ mv(dst, zr);
++ __ j(done);
++ __ bind(success);
++ __ mv(dst, 1);
++ __ bind(done);
++ } else {
++ ShouldNotReachHere();
++ }
++}
++
++void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
++ assert(VM_Version::supports_cx8(), "wrong machine");
++ Register addr;
++ if (op->addr()->is_register()) {
++ addr = as_reg(op->addr());
++ } else {
++ assert(op->addr()->is_address(), "what else?");
++ LIR_Address* addr_ptr = op->addr()->as_address_ptr();
++ assert(addr_ptr->disp() == 0, "need 0 disp");
++ assert(addr_ptr->index() == LIR_OprDesc::illegalOpr(), "need 0 index");
++ addr = as_reg(addr_ptr->base());
++ }
++ Register newval = as_reg(op->new_value());
++ Register cmpval = as_reg(op->cmp_value());
++
++ if (op->code() == lir_cas_obj) {
++ if (UseCompressedOops) {
++ Register tmp1 = op->tmp1()->as_register();
++ assert(op->tmp1()->is_valid(), "must be");
++ __ encode_heap_oop(tmp1, cmpval);
++ cmpval = tmp1;
++ __ encode_heap_oop(t1, newval);
++ newval = t1;
++ caswu(addr, newval, cmpval);
++ } else {
++ casl(addr, newval, cmpval);
++ }
++ } else if (op->code() == lir_cas_int) {
++ casw(addr, newval, cmpval);
++ } else {
++ casl(addr, newval, cmpval);
++ }
++}
++
++void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr unused, LIR_Opr dest, LIR_Op* op) {
++ switch (code) {
++ case lir_abs: __ fabs_d(dest->as_double_reg(), value->as_double_reg()); break;
++ case lir_sqrt: __ fsqrt_d(dest->as_double_reg(), value->as_double_reg()); break;
++ default: ShouldNotReachHere();
++ }
++}
++
++void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
++ assert(left->is_single_cpu() || left->is_double_cpu(), "expect single or double register");
++ Register Rleft = left->is_single_cpu() ? left->as_register() : left->as_register_lo();
++ if (dst->is_single_cpu()) {
++ Register Rdst = dst->as_register();
++ if (right->is_constant()) {
++ int right_const = right->as_jint();
++ if (Assembler::is_simm12(right_const)) {
++ logic_op_imm(Rdst, Rleft, right_const, code);
++ __ sign_extend(Rdst, Rdst, 32);
++ } else {
++ __ mv(t0, right_const);
++ logic_op_reg32(Rdst, Rleft, t0, code);
++ }
++ } else {
++ Register Rright = right->is_single_cpu() ? right->as_register() : right->as_register_lo();
++ logic_op_reg32(Rdst, Rleft, Rright, code);
++ }
++ } else {
++ Register Rdst = dst->as_register_lo();
++ if (right->is_constant()) {
++ long right_const = right->as_jlong();
++ if (Assembler::is_simm12(right_const)) {
++ logic_op_imm(Rdst, Rleft, right_const, code);
++ } else {
++ __ mv(t0, right_const);
++ logic_op_reg(Rdst, Rleft, t0, code);
++ }
++ } else {
++ Register Rright = right->is_single_cpu() ? right->as_register() : right->as_register_lo();
++ logic_op_reg(Rdst, Rleft, Rright, code);
++ }
++ }
++}
++
++void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr src, LIR_Opr result, LIR_Op2* op) {
++ ShouldNotCallThis();
++}
++
++void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
++ if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
++ bool is_unordered_less = (code == lir_ucmp_fd2i);
++ if (left->is_single_fpu()) {
++ __ float_cmp(true, is_unordered_less ? -1 : 1,
++ left->as_float_reg(), right->as_float_reg(), dst->as_register());
++ } else if (left->is_double_fpu()) {
++ __ float_cmp(false, is_unordered_less ? -1 : 1,
++ left->as_double_reg(), right->as_double_reg(), dst->as_register());
++ } else {
++ ShouldNotReachHere();
++ }
++ } else if (code == lir_cmp_l2i) {
++ __ cmp_l2i(dst->as_register(), left->as_register_lo(), right->as_register_lo());
++ } else {
++ ShouldNotReachHere();
++ }
++}
++
++void LIR_Assembler::align_call(LIR_Code code) {
++ // With RVC a call instruction may get 2-byte aligned.
++ // The address of the call instruction needs to be 4-byte aligned to
++ // ensure that it does not span a cache line so that it can be patched.
++ __ align(NativeInstruction::instruction_size);
++}
++
++void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
++ address call = __ trampoline_call(Address(op->addr(), rtype));
++ if (call == NULL) {
++ bailout("trampoline stub overflow");
++ return;
++ }
++ add_call_info(code_offset(), op->info());
++}
++
++void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
++ address call = __ ic_call(op->addr());
++ if (call == NULL) {
++ bailout("trampoline stub overflow");
++ return;
++ }
++ add_call_info(code_offset(), op->info());
++}
++
++void LIR_Assembler::emit_static_call_stub() {
++ address call_pc = __ pc();
++ MacroAssembler::assert_alignment(call_pc);
++ address stub = __ start_a_stub(call_stub_size());
++ if (stub == NULL) {
++ bailout("static call stub overflow");
++ return;
++ }
++
++ int start = __ offset();
++
++ __ relocate(static_stub_Relocation::spec(call_pc));
++ __ emit_static_call_stub();
++
++ assert(__ offset() - start + CompiledStaticCall::to_trampoline_stub_size()
++ <= call_stub_size(), "stub too big");
++ __ end_a_stub();
++}
++
++void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
++ assert(exceptionOop->as_register() == x10, "must match");
++ assert(exceptionPC->as_register() == x13, "must match");
++
++ // exception object is not added to oop map by LinearScan
++ // (LinearScan assumes that no oops are in fixed registers)
++ info->add_register_oop(exceptionOop);
++ Runtime1::StubID unwind_id;
++
++ // get current pc information
++ // pc is only needed if the method has an exception handler, the unwind code does not need it.
++ if (compilation()->debug_info_recorder()->last_pc_offset() == __ offset()) {
++ // As no instructions have been generated yet for this LIR node it's
++ // possible that an oop map already exists for the current offset.
++ // In that case insert an dummy NOP here to ensure all oop map PCs
++ // are unique. See JDK-8237483.
++ __ nop();
++ }
++ int pc_for_athrow_offset = __ offset();
++ InternalAddress pc_for_athrow(__ pc());
++ __ relocate(pc_for_athrow.rspec(), [&] {
++ int32_t offset;
++ __ la_patchable(exceptionPC->as_register(), pc_for_athrow, offset);
++ __ addi(exceptionPC->as_register(), exceptionPC->as_register(), offset);
++ });
++ add_call_info(pc_for_athrow_offset, info); // for exception handler
++
++ __ verify_not_null_oop(x10);
++ // search an exception handler (x10: exception oop, x13: throwing pc)
++ if (compilation()->has_fpu_code()) {
++ unwind_id = Runtime1::handle_exception_id;
++ } else {
++ unwind_id = Runtime1::handle_exception_nofpu_id;
++ }
++ __ far_call(RuntimeAddress(Runtime1::entry_for(unwind_id)));
++ __ nop();
++}
++
++void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
++ assert(exceptionOop->as_register() == x10, "must match");
++ __ j(_unwind_handler_entry);
++}
++
++void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
++ Register left_reg = left->is_single_cpu() ? left->as_register() : left->as_register_lo();
++ Register dest_reg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo();
++ Register count_reg = count->as_register();
++ if (dest->is_single_cpu()) {
++ assert (dest->type() == T_INT, "unexpected result type");
++ assert (left->type() == T_INT, "unexpected left type");
++ __ andi(t0, count_reg, 31); // should not shift more than 31 bits
++ switch (code) {
++ case lir_shl: __ sllw(dest_reg, left_reg, t0); break;
++ case lir_shr: __ sraw(dest_reg, left_reg, t0); break;
++ case lir_ushr: __ srlw(dest_reg, left_reg, t0); break;
++ default: ShouldNotReachHere();
++ }
++ } else if (dest->is_double_cpu()) {
++ __ andi(t0, count_reg, 63); // should not shift more than 63 bits
++ switch (code) {
++ case lir_shl: __ sll(dest_reg, left_reg, t0); break;
++ case lir_shr: __ sra(dest_reg, left_reg, t0); break;
++ case lir_ushr: __ srl(dest_reg, left_reg, t0); break;
++ default: ShouldNotReachHere();
++ }
++ } else {
++ ShouldNotReachHere();
++ }
++}
++
++void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
++ Register left_reg = left->is_single_cpu() ? left->as_register() : left->as_register_lo();
++ Register dest_reg = dest->is_single_cpu() ? dest->as_register() : dest->as_register_lo();
++ if (dest->is_single_cpu()) {
++ assert (dest->type() == T_INT, "unexpected result type");
++ assert (left->type() == T_INT, "unexpected left type");
++ count &= 0x1f;
++ if (count != 0) {
++ switch (code) {
++ case lir_shl: __ slliw(dest_reg, left_reg, count); break;
++ case lir_shr: __ sraiw(dest_reg, left_reg, count); break;
++ case lir_ushr: __ srliw(dest_reg, left_reg, count); break;
++ default: ShouldNotReachHere();
++ }
++ } else {
++ move_regs(left_reg, dest_reg);
++ }
++ } else if (dest->is_double_cpu()) {
++ count &= 0x3f;
++ if (count != 0) {
++ switch (code) {
++ case lir_shl: __ slli(dest_reg, left_reg, count); break;
++ case lir_shr: __ srai(dest_reg, left_reg, count); break;
++ case lir_ushr: __ srli(dest_reg, left_reg, count); break;
++ default: ShouldNotReachHere();
++ }
++ } else {
++ move_regs(left->as_register_lo(), dest->as_register_lo());
++ }
++ } else {
++ ShouldNotReachHere();
++ }
++}
++
++void LIR_Assembler::emit_lock(LIR_OpLock* op) {
++ Register obj = op->obj_opr()->as_register(); // may not be an oop
++ Register hdr = op->hdr_opr()->as_register();
++ Register lock = op->lock_opr()->as_register();
++ if (!UseFastLocking) {
++ __ j(*op->stub()->entry());
++ } else if (op->code() == lir_lock) {
++ Register tmp = noreg;
++ if (UseBiasedLocking) {
++ tmp = op->scratch_opr()->as_register();
++ }
++ assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
++ // add debug info for NullPointerException only if one is possible
++ int null_check_offset = __ lock_object(hdr, obj, lock, tmp, *op->stub()->entry());
++ if (op->info() != NULL) {
++ add_debug_info_for_null_check(null_check_offset, op->info());
++ }
++ } else if (op->code() == lir_unlock) {
++ assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
++ __ unlock_object(hdr, obj, lock, *op->stub()->entry());
++ } else {
++ Unimplemented();
++ }
++ __ bind(*op->stub()->continuation());
++}
++
++void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
++ ciMethod* method = op->profiled_method();
++ int bci = op->profiled_bci();
++
++ // Update counter for all call types
++ ciMethodData* md = method->method_data_or_null();
++ guarantee(md != NULL, "Sanity");
++ ciProfileData* data = md->bci_to_data(bci);
++ assert(data != NULL && data->is_CounterData(), "need CounterData for calls");
++ assert(op->mdo()->is_single_cpu(), "mdo must be allocated");
++ Register mdo = op->mdo()->as_register();
++ __ mov_metadata(mdo, md->constant_encoding());
++ Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
++ // Perform additional virtual call profiling for invokevirtual and
++ // invokeinterface bytecodes
++ if (op->should_profile_receiver_type()) {
++ assert(op->recv()->is_single_cpu(), "recv must be allocated");
++ Register recv = op->recv()->as_register();
++ assert_different_registers(mdo, recv);
++ assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
++ ciKlass* known_klass = op->known_holder();
++ if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
++ // We know the type that will be seen at this call site; we can
++ // statically update the MethodData* rather than needing to do
++ // dynamic tests on the receiver type
++ // NOTE: we should probably put a lock around this search to
++ // avoid collisions by concurrent compilations
++ ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
++ uint i;
++ for (i = 0; i < VirtualCallData::row_limit(); i++) {
++ ciKlass* receiver = vc_data->receiver(i);
++ if (known_klass->equals(receiver)) {
++ Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
++ __ increment(data_addr, DataLayout::counter_increment);
++ return;
++ }
++ }
++
++ // Receiver type not found in profile data; select an empty slot
++ // Note that this is less efficient than it should be because it
++ // always does a write to the receiver part of the
++ // VirtualCallData rather than just the first time
++ for (i = 0; i < VirtualCallData::row_limit(); i++) {
++ ciKlass* receiver = vc_data->receiver(i);
++ if (receiver == NULL) {
++ Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
++ __ mov_metadata(t1, known_klass->constant_encoding());
++ __ sd(t1, recv_addr);
++ Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
++ __ increment(data_addr, DataLayout::counter_increment);
++ return;
++ }
++ }
++ } else {
++ __ load_klass(recv, recv);
++ Label update_done;
++ type_profile_helper(mdo, md, data, recv, &update_done);
++ // Receiver did not match any saved receiver and there is no empty row for it.
++ // Increment total counter to indicate polymorphic case.
++ __ increment(counter_addr, DataLayout::counter_increment);
++
++ __ bind(update_done);
++ }
++ } else {
++ // Static call
++ __ increment(counter_addr, DataLayout::counter_increment);
++ }
++}
++
++void LIR_Assembler::emit_delay(LIR_OpDelay*) { Unimplemented(); }
++
++void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst) {
++ __ la(dst->as_register(), frame_map()->address_for_monitor_lock(monitor_no));
++}
++
++void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) { Unimplemented(); }
++
++void LIR_Assembler::check_conflict(ciKlass* exact_klass, intptr_t current_klass,
++ Register tmp, Label &next, Label &none,
++ Address mdo_addr) {
++ if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
++ if (exact_klass != NULL) {
++ __ mov_metadata(tmp, exact_klass->constant_encoding());
++ } else {
++ __ load_klass(tmp, tmp);
++ }
++
++ __ ld(t1, mdo_addr);
++ __ xorr(tmp, tmp, t1);
++ __ andi(t0, tmp, TypeEntries::type_klass_mask);
++ // klass seen before, nothing to do. The unknown bit may have been
++ // set already but no need to check.
++ __ beqz(t0, next);
++
++ // already unknown. Nothing to do anymore.
++ __ test_bit(t0, tmp, exact_log2(TypeEntries::type_unknown));
++ __ bnez(t0, next);
++
++ if (TypeEntries::is_type_none(current_klass)) {
++ __ beqz(t1, none);
++ __ mv(t0, (u1)TypeEntries::null_seen);
++ __ beq(t0, t1, none);
++ // There is a chance that the checks above (re-reading profiling
++ // data from memory) fail if another thread has just set the
++ // profiling to this obj's klass
++ __ membar(MacroAssembler::LoadLoad);
++ __ ld(t1, mdo_addr);
++ __ xorr(tmp, tmp, t1);
++ __ andi(t0, tmp, TypeEntries::type_klass_mask);
++ __ beqz(t0, next);
++ }
++ } else {
++ assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
++ ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
++
++ __ ld(tmp, mdo_addr);
++ // already unknown. Nothing to do anymore.
++ __ test_bit(t0, tmp, exact_log2(TypeEntries::type_unknown));
++ __ bnez(t0, next);
++ }
++
++ // different than before. Cannot keep accurate profile.
++ __ ld(t1, mdo_addr);
++ __ ori(t1, t1, TypeEntries::type_unknown);
++ __ sd(t1, mdo_addr);
++
++ if (TypeEntries::is_type_none(current_klass)) {
++ __ j(next);
++
++ __ bind(none);
++ // first time here. Set profile type.
++ __ sd(tmp, mdo_addr);
++ }
++}
++
++void LIR_Assembler::check_no_conflict(ciKlass* exact_klass, intptr_t current_klass, Register tmp,
++ Address mdo_addr, Label &next) {
++ // There's a single possible klass at this profile point
++ assert(exact_klass != NULL, "should be");
++ if (TypeEntries::is_type_none(current_klass)) {
++ __ mov_metadata(tmp, exact_klass->constant_encoding());
++ __ ld(t1, mdo_addr);
++ __ xorr(tmp, tmp, t1);
++ __ andi(t0, tmp, TypeEntries::type_klass_mask);
++ __ beqz(t0, next);
++#ifdef ASSERT
++ {
++ Label ok;
++ __ ld(t0, mdo_addr);
++ __ beqz(t0, ok);
++ __ mv(t1, (u1)TypeEntries::null_seen);
++ __ beq(t0, t1, ok);
++ // may have been set by another thread
++ __ membar(MacroAssembler::LoadLoad);
++ __ mov_metadata(t0, exact_klass->constant_encoding());
++ __ ld(t1, mdo_addr);
++ __ xorr(t1, t0, t1);
++ __ andi(t1, t1, TypeEntries::type_mask);
++ __ beqz(t1, ok);
++
++ __ stop("unexpected profiling mismatch");
++ __ bind(ok);
++ }
++#endif
++ // first time here. Set profile type.
++ __ sd(tmp, mdo_addr);
++ } else {
++ assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
++ ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
++
++ __ ld(tmp, mdo_addr);
++ // already unknown. Nothing to do anymore.
++ __ test_bit(t0, tmp, exact_log2(TypeEntries::type_unknown));
++ __ bnez(t0, next);
++
++ __ ori(tmp, tmp, TypeEntries::type_unknown);
++ __ sd(tmp, mdo_addr);
++ }
++}
++
++void LIR_Assembler::check_null(Register tmp, Label &update, intptr_t current_klass,
++ Address mdo_addr, bool do_update, Label &next) {
++ __ bnez(tmp, update);
++ if (!TypeEntries::was_null_seen(current_klass)) {
++ __ ld(t1, mdo_addr);
++ __ ori(t1, t1, TypeEntries::null_seen);
++ __ sd(t1, mdo_addr);
++ }
++ if (do_update) {
++ __ j(next);
++ }
++}
++
++void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
++ COMMENT("emit_profile_type {");
++ Register obj = op->obj()->as_register();
++ Register tmp = op->tmp()->as_pointer_register();
++ Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
++ ciKlass* exact_klass = op->exact_klass();
++ intptr_t current_klass = op->current_klass();
++ bool not_null = op->not_null();
++ bool no_conflict = op->no_conflict();
++
++ Label update, next, none;
++
++ bool do_null = !not_null;
++ bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
++ bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
++
++ assert(do_null || do_update, "why are we here?");
++ assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
++ assert_different_registers(tmp, t0, t1, mdo_addr.base());
++
++ __ verify_oop(obj);
++
++ if (tmp != obj) {
++ __ mv(tmp, obj);
++ }
++ if (do_null) {
++ check_null(tmp, update, current_klass, mdo_addr, do_update, next);
++#ifdef ASSERT
++ } else {
++ __ bnez(tmp, update);
++ __ stop("unexpected null obj");
++#endif
++ }
++
++ __ bind(update);
++
++ if (do_update) {
++#ifdef ASSERT
++ if (exact_klass != NULL) {
++ check_exact_klass(tmp, exact_klass);
++ }
++#endif
++ if (!no_conflict) {
++ check_conflict(exact_klass, current_klass, tmp, next, none, mdo_addr);
++ } else {
++ check_no_conflict(exact_klass, current_klass, tmp, mdo_addr, next);
++ }
++
++ __ bind(next);
++ }
++ COMMENT("} emit_profile_type");
++}
++
++void LIR_Assembler::align_backward_branch_target() { }
++
++void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
++ // tmp must be unused
++ assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
++
++ if (left->is_single_cpu()) {
++ assert(dest->is_single_cpu(), "expect single result reg");
++ __ negw(dest->as_register(), left->as_register());
++ } else if (left->is_double_cpu()) {
++ assert(dest->is_double_cpu(), "expect double result reg");
++ __ neg(dest->as_register_lo(), left->as_register_lo());
++ } else if (left->is_single_fpu()) {
++ assert(dest->is_single_fpu(), "expect single float result reg");
++ __ fneg_s(dest->as_float_reg(), left->as_float_reg());
++ } else {
++ assert(left->is_double_fpu(), "expect double float operand reg");
++ assert(dest->is_double_fpu(), "expect double float result reg");
++ __ fneg_d(dest->as_double_reg(), left->as_double_reg());
++ }
++}
++
++
++void LIR_Assembler::leal(LIR_Opr addr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
++ if (patch_code != lir_patch_none) {
++ deoptimize_trap(info);
++ return;
++ }
++
++ LIR_Address* adr = addr->as_address_ptr();
++ Register dst = dest->as_register_lo();
++
++ assert_different_registers(dst, t0);
++ if (adr->base()->is_valid() && dst == adr->base()->as_pointer_register() && (!adr->index()->is_cpu_register())) {
++ int scale = adr->scale();
++ intptr_t offset = adr->disp();
++ LIR_Opr index_op = adr->index();
++ if (index_op->is_constant()) {
++ offset += ((intptr_t)index_op->as_constant_ptr()->as_jint()) << scale;
++ }
++
++ if (!Assembler::is_simm12(offset)) {
++ __ la(t0, as_Address(adr));
++ __ mv(dst, t0);
++ return;
++ }
++ }
++
++ __ la(dst, as_Address(adr));
++}
++
++
++void LIR_Assembler::rt_call(LIR_Opr result, address dest, const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
++ assert(!tmp->is_valid(), "don't need temporary");
++
++ CodeBlob *cb = CodeCache::find_blob(dest);
++ if (cb != NULL) {
++ __ far_call(RuntimeAddress(dest));
++ } else {
++ RuntimeAddress target(dest);
++ __ relocate(target.rspec(), [&] {
++ int32_t offset;
++ __ la_patchable(t0, target, offset);
++ __ jalr(x1, t0, offset);
++ });
++ }
++
++ if (info != NULL) {
++ add_call_info_here(info);
++ }
++}
++
++void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
++ if (dest->is_address() || src->is_address()) {
++ move_op(src, dest, type, lir_patch_none, info, /* pop_fpu_stack */ false, /* wide */ false, /* unaligned */ false);
++ } else {
++ ShouldNotReachHere();
++ }
++}
++
++#ifdef ASSERT
++// emit run-time assertion
++void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
++ assert(op->code() == lir_assert, "must be");
++
++ Label ok;
++ if (op->in_opr1()->is_valid()) {
++ assert(op->in_opr2()->is_valid(), "both operands must be valid");
++ bool is_unordered = false;
++ LIR_Condition cond = op->condition();
++ emit_branch(cond, op->in_opr1(), op->in_opr2(), ok, /* is_far */ false,
++ /* is_unordered */(cond == lir_cond_greaterEqual || cond == lir_cond_greater) ? false : true);
++ } else {
++ assert(op->in_opr2()->is_illegal(), "both operands must be illegal");
++ assert(op->condition() == lir_cond_always, "no other conditions allowed");
++ }
++
++ if (op->halt()) {
++ const char* str = __ code_string(op->msg());
++ __ stop(str);
++ } else {
++ breakpoint();
++ }
++ __ bind(ok);
++}
++#endif
++
++#ifndef PRODUCT
++#define COMMENT(x) do { __ block_comment(x); } while (0)
++#else
++#define COMMENT(x)
++#endif
++
++void LIR_Assembler::membar() {
++ COMMENT("membar");
++ __ membar(MacroAssembler::AnyAny);
++}
++
++void LIR_Assembler::membar_acquire() {
++ __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
++}
++
++void LIR_Assembler::membar_release() {
++ __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore);
++}
++
++void LIR_Assembler::membar_loadload() {
++ __ membar(MacroAssembler::LoadLoad);
++}
++
++void LIR_Assembler::membar_storestore() {
++ __ membar(MacroAssembler::StoreStore);
++}
++
++void LIR_Assembler::membar_loadstore() { __ membar(MacroAssembler::LoadStore); }
++
++void LIR_Assembler::membar_storeload() { __ membar(MacroAssembler::StoreLoad); }
++
++void LIR_Assembler::on_spin_wait() {
++ Unimplemented();
++}
++
++void LIR_Assembler::get_thread(LIR_Opr result_reg) {
++ __ mv(result_reg->as_register(), xthread);
++}
++
++void LIR_Assembler::peephole(LIR_List *lir) {}
++
++void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp_op) {
++ Address addr = as_Address(src->as_address_ptr());
++ BasicType type = src->type();
++ bool is_oop = is_reference_type(type);
++
++ get_op(type);
++
++ switch (code) {
++ case lir_xadd:
++ {
++ RegisterOrConstant inc;
++ Register tmp = as_reg(tmp_op);
++ Register dst = as_reg(dest);
++ if (data->is_constant()) {
++ inc = RegisterOrConstant(as_long(data));
++ assert_different_registers(dst, addr.base(), tmp);
++ assert_different_registers(tmp, t0);
++ } else {
++ inc = RegisterOrConstant(as_reg(data));
++ assert_different_registers(inc.as_register(), dst, addr.base(), tmp);
++ }
++ __ la(tmp, addr);
++ (_masm->*add)(dst, inc, tmp);
++ break;
++ }
++ case lir_xchg:
++ {
++ Register tmp = tmp_op->as_register();
++ Register obj = as_reg(data);
++ Register dst = as_reg(dest);
++ if (is_oop && UseCompressedOops) {
++ __ encode_heap_oop(t0, obj);
++ obj = t0;
++ }
++ assert_different_registers(obj, addr.base(), tmp, dst);
++ __ la(tmp, addr);
++ (_masm->*xchg)(dst, obj, tmp);
++ if (is_oop && UseCompressedOops) {
++ __ decode_heap_oop(dst);
++ }
++ }
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++ __ membar(MacroAssembler::AnyAny);
++}
++
++int LIR_Assembler::array_element_size(BasicType type) const {
++ int elem_size = type2aelembytes(type);
++ return exact_log2(elem_size);
++}
++
++// helper functions which checks for overflow and sets bailout if it
++// occurs. Always returns a valid embeddable pointer but in the
++// bailout case the pointer won't be to unique storage.
++address LIR_Assembler::float_constant(float f) {
++ address const_addr = __ float_constant(f);
++ if (const_addr == NULL) {
++ bailout("const section overflow");
++ return __ code()->consts()->start();
++ } else {
++ return const_addr;
++ }
++}
++
++address LIR_Assembler::double_constant(double d) {
++ address const_addr = __ double_constant(d);
++ if (const_addr == NULL) {
++ bailout("const section overflow");
++ return __ code()->consts()->start();
++ } else {
++ return const_addr;
++ }
++}
++
++address LIR_Assembler::int_constant(jlong n) {
++ address const_addr = __ long_constant(n);
++ if (const_addr == NULL) {
++ bailout("const section overflow");
++ return __ code()->consts()->start();
++ } else {
++ return const_addr;
++ }
++}
++
++void LIR_Assembler::casw(Register addr, Register newval, Register cmpval) {
++ __ cmpxchg(addr, cmpval, newval, Assembler::int32, Assembler::aq /* acquire */,
++ Assembler::rl /* release */, t0, true /* result as bool */);
++ __ seqz(t0, t0); // cmpxchg not equal, set t0 to 1
++ __ membar(MacroAssembler::AnyAny);
++}
++
++void LIR_Assembler::caswu(Register addr, Register newval, Register cmpval) {
++ __ cmpxchg(addr, cmpval, newval, Assembler::uint32, Assembler::aq /* acquire */,
++ Assembler::rl /* release */, t0, true /* result as bool */);
++ __ seqz(t0, t0); // cmpxchg not equal, set t0 to 1
++ __ membar(MacroAssembler::AnyAny);
++}
++
++void LIR_Assembler::casl(Register addr, Register newval, Register cmpval) {
++ __ cmpxchg(addr, cmpval, newval, Assembler::int64, Assembler::aq /* acquire */,
++ Assembler::rl /* release */, t0, true /* result as bool */);
++ __ seqz(t0, t0); // cmpxchg not equal, set t0 to 1
++ __ membar(MacroAssembler::AnyAny);
++}
++
++void LIR_Assembler::deoptimize_trap(CodeEmitInfo *info) {
++ address target = NULL;
++
++ switch (patching_id(info)) {
++ case PatchingStub::access_field_id:
++ target = Runtime1::entry_for(Runtime1::access_field_patching_id);
++ break;
++ case PatchingStub::load_klass_id:
++ target = Runtime1::entry_for(Runtime1::load_klass_patching_id);
++ break;
++ case PatchingStub::load_mirror_id:
++ target = Runtime1::entry_for(Runtime1::load_mirror_patching_id);
++ break;
++ case PatchingStub::load_appendix_id:
++ target = Runtime1::entry_for(Runtime1::load_appendix_patching_id);
++ break;
++ default: ShouldNotReachHere();
++ }
++
++ __ far_call(RuntimeAddress(target));
++ add_call_info_here(info);
++}
++
++void LIR_Assembler::check_exact_klass(Register tmp, ciKlass* exact_klass) {
++ Label ok;
++ __ load_klass(tmp, tmp);
++ __ mov_metadata(t0, exact_klass->constant_encoding());
++ __ beq(tmp, t0, ok);
++ __ stop("exact klass and actual klass differ");
++ __ bind(ok);
++}
++
++void LIR_Assembler::get_op(BasicType type) {
++ switch (type) {
++ case T_INT:
++ xchg = &MacroAssembler::atomic_xchgalw;
++ add = &MacroAssembler::atomic_addalw;
++ break;
++ case T_LONG:
++ xchg = &MacroAssembler::atomic_xchgal;
++ add = &MacroAssembler::atomic_addal;
++ break;
++ case T_OBJECT:
++ case T_ARRAY:
++ if (UseCompressedOops) {
++ xchg = &MacroAssembler::atomic_xchgalwu;
++ add = &MacroAssembler::atomic_addalw;
++ } else {
++ xchg = &MacroAssembler::atomic_xchgal;
++ add = &MacroAssembler::atomic_addal;
++ }
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++}
++
++// emit_opTypeCheck sub functions
++void LIR_Assembler::typecheck_lir_store(LIR_OpTypeCheck* op, bool should_profile) {
++ Register value = op->object()->as_register();
++ Register array = op->array()->as_register();
++ Register k_RInfo = op->tmp1()->as_register();
++ Register klass_RInfo = op->tmp2()->as_register();
++ Register Rtmp1 = op->tmp3()->as_register();
++
++ CodeStub* stub = op->stub();
++
++ // check if it needs to be profiled
++ ciMethodData* md = NULL;
++ ciProfileData* data = NULL;
++
++ if (should_profile) {
++ data_check(op, &md, &data);
++ }
++ Label profile_cast_success, profile_cast_failure, done;
++ Label *success_target = should_profile ? &profile_cast_success : &done;
++ Label *failure_target = should_profile ? &profile_cast_failure : stub->entry();
++
++ if (should_profile) {
++ profile_object(md, data, value, klass_RInfo, &done);
++ } else {
++ __ beqz(value, done);
++ }
++
++ add_debug_info_for_null_check_here(op->info_for_exception());
++ __ load_klass(k_RInfo, array);
++ __ load_klass(klass_RInfo, value);
++
++ lir_store_slowcheck(k_RInfo, klass_RInfo, Rtmp1, success_target, failure_target);
++
++ // fall through to the success case
++ if (should_profile) {
++ Register mdo = klass_RInfo;
++ Register recv = k_RInfo;
++ __ bind(profile_cast_success);
++ __ mov_metadata(mdo, md->constant_encoding());
++ __ load_klass(recv, value);
++ type_profile_helper(mdo, md, data, recv, &done);
++ __ j(done);
++
++ __ bind(profile_cast_failure);
++ __ mov_metadata(mdo, md->constant_encoding());
++ Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
++ __ ld(t1, counter_addr);
++ __ addi(t1, t1, -DataLayout::counter_increment);
++ __ sd(t1, counter_addr);
++ __ j(*stub->entry());
++ }
++
++ __ bind(done);
++}
++
++void LIR_Assembler::type_profile(Register obj, ciMethodData* md, Register klass_RInfo, Register k_RInfo,
++ ciProfileData* data, Label* success, Label* failure,
++ Label& profile_cast_success, Label& profile_cast_failure) {
++ Register mdo = klass_RInfo;
++ Register recv = k_RInfo;
++ __ bind(profile_cast_success);
++ __ mov_metadata(mdo, md->constant_encoding());
++ __ load_klass(recv, obj);
++ Label update_done;
++ type_profile_helper(mdo, md, data, recv, success);
++ __ j(*success);
++
++ __ bind(profile_cast_failure);
++ __ mov_metadata(mdo, md->constant_encoding());
++ Address counter_addr = __ form_address(t1, mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
++ __ ld(t0, counter_addr);
++ __ addi(t0, t0, -DataLayout::counter_increment);
++ __ sd(t0, counter_addr);
++ __ j(*failure);
++}
++
++void LIR_Assembler::lir_store_slowcheck(Register k_RInfo, Register klass_RInfo, Register Rtmp1,
++ Label* success_target, Label* failure_target) {
++ // get instance klass (it's already uncompressed)
++ __ ld(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
++ // perform the fast part of the checking logic
++ __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
++ // call out-of-line instance of __ check_klass_subtype_slow_path(...)
++ __ addi(sp, sp, -2 * wordSize); // 2: store k_RInfo and klass_RInfo
++ __ sd(klass_RInfo, Address(sp, wordSize)); // sub klass
++ __ sd(k_RInfo, Address(sp, 0)); // super klass
++ __ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::slow_subtype_check_id)));
++ // load result to k_RInfo
++ __ ld(k_RInfo, Address(sp, 0));
++ __ addi(sp, sp, 2 * wordSize); // 2: pop out k_RInfo and klass_RInfo
++ // result is a boolean
++ __ beqz(k_RInfo, *failure_target, /* is_far */ true);
++}
++
++void LIR_Assembler::const2reg_helper(LIR_Opr src) {
++ switch (src->as_constant_ptr()->type()) {
++ case T_INT:
++ case T_ADDRESS:
++ case T_OBJECT:
++ case T_ARRAY:
++ case T_METADATA:
++ const2reg(src, FrameMap::t0_opr, lir_patch_none, NULL);
++ break;
++ case T_LONG:
++ const2reg(src, FrameMap::t0_long_opr, lir_patch_none, NULL);
++ break;
++ case T_FLOAT:
++ case T_DOUBLE:
++ default:
++ ShouldNotReachHere();
++ }
++}
++
++void LIR_Assembler::logic_op_reg32(Register dst, Register left, Register right, LIR_Code code) {
++ switch (code) {
++ case lir_logic_and: __ andrw(dst, left, right); break;
++ case lir_logic_or: __ orrw (dst, left, right); break;
++ case lir_logic_xor: __ xorrw(dst, left, right); break;
++ default: ShouldNotReachHere();
++ }
++}
++
++void LIR_Assembler::logic_op_reg(Register dst, Register left, Register right, LIR_Code code) {
++ switch (code) {
++ case lir_logic_and: __ andr(dst, left, right); break;
++ case lir_logic_or: __ orr (dst, left, right); break;
++ case lir_logic_xor: __ xorr(dst, left, right); break;
++ default: ShouldNotReachHere();
++ }
++}
++
++void LIR_Assembler::logic_op_imm(Register dst, Register left, int right, LIR_Code code) {
++ switch (code) {
++ case lir_logic_and: __ andi(dst, left, right); break;
++ case lir_logic_or: __ ori (dst, left, right); break;
++ case lir_logic_xor: __ xori(dst, left, right); break;
++ default: ShouldNotReachHere();
++ }
++}
++
++void LIR_Assembler::store_parameter(Register r, int offset_from_rsp_in_words) {
++ assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
++ int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
++ assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
++ __ sd(r, Address(sp, offset_from_rsp_in_bytes));
++}
++
++void LIR_Assembler::store_parameter(jint c, int offset_from_rsp_in_words) {
++ assert(offset_from_rsp_in_words >= 0, "invalid offset from rsp");
++ int offset_from_rsp_in_bytes = offset_from_rsp_in_words * BytesPerWord;
++ assert(offset_from_rsp_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
++ __ mv(t0, c);
++ __ sd(t0, Address(sp, offset_from_rsp_in_bytes));
++}
++
++#undef __
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/c1_LIRAssembler_riscv.hpp
+@@ -0,0 +1,130 @@
++/*
++ * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_C1_LIRASSEMBLER_RISCV_HPP
++#define CPU_RISCV_C1_LIRASSEMBLER_RISCV_HPP
++
++// ArrayCopyStub needs access to bailout
++friend class ArrayCopyStub;
++
++private:
++
++#include "c1_LIRAssembler_arith_riscv.hpp"
++#include "c1_LIRAssembler_arraycopy_riscv.hpp"
++
++ int array_element_size(BasicType type) const;
++
++ static Register as_reg(LIR_Opr op) {
++ return op->is_double_cpu() ? op->as_register_lo() : op->as_register();
++ }
++
++ Address as_Address(LIR_Address* addr, Register tmp);
++
++ // helper functions which checks for overflow and sets bailout if it
++ // occurs. Always returns a valid embeddable pointer but in the
++ // bailout case the pointer won't be to unique storage.
++ address float_constant(float f);
++ address double_constant(double d);
++ address int_constant(jlong n);
++
++ // Ensure we have a valid Address (base + offset) to a stack-slot.
++ Address stack_slot_address(int index, uint shift, int adjust = 0);
++
++ // Record the type of the receiver in ReceiverTypeData
++ void type_profile_helper(Register mdo,
++ ciMethodData *md, ciProfileData *data,
++ Register recv, Label* update_done);
++
++ void casw(Register addr, Register newval, Register cmpval);
++ void caswu(Register addr, Register newval, Register cmpval);
++ void casl(Register addr, Register newval, Register cmpval);
++
++ void poll_for_safepoint(relocInfo::relocType rtype, CodeEmitInfo* info = NULL);
++
++ void deoptimize_trap(CodeEmitInfo *info);
++
++ enum {
++ // See emit_static_call_stub for detail
++ // CompiledStaticCall::to_interp_stub_size() (14) + CompiledStaticCall::to_trampoline_stub_size() (1 + 3 + address)
++ _call_stub_size = 14 * NativeInstruction::instruction_size +
++ (NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size),
++ // See emit_exception_handler for detail
++ // verify_not_null_oop + far_call + should_not_reach_here + invalidate_registers(DEBUG_ONLY)
++ _exception_handler_size = DEBUG_ONLY(584) NOT_DEBUG(548), // or smaller
++ // See emit_deopt_handler for detail
++ // auipc (1) + far_jump (6 or 2)
++ _deopt_handler_size = 1 * NativeInstruction::instruction_size +
++ 6 * NativeInstruction::instruction_size // or smaller
++ };
++
++ void check_conflict(ciKlass* exact_klass, intptr_t current_klass, Register tmp,
++ Label &next, Label &none, Address mdo_addr);
++ void check_no_conflict(ciKlass* exact_klass, intptr_t current_klass, Register tmp, Address mdo_addr, Label &next);
++
++ void check_exact_klass(Register tmp, ciKlass* exact_klass);
++
++ void check_null(Register tmp, Label &update, intptr_t current_klass, Address mdo_addr, bool do_update, Label &next);
++
++ void (MacroAssembler::*add)(Register prev, RegisterOrConstant incr, Register addr);
++ void (MacroAssembler::*xchg)(Register prev, Register newv, Register addr);
++
++ void get_op(BasicType type);
++
++ // emit_typecheck_helper sub functions
++ void data_check(LIR_OpTypeCheck *op, ciMethodData **md, ciProfileData **data);
++ void typecheck_helper_slowcheck(ciKlass* k, Register obj, Register Rtmp1,
++ Register k_RInfo, Register klass_RInfo,
++ Label* failure_target, Label* success_target);
++ void profile_object(ciMethodData* md, ciProfileData* data, Register obj,
++ Register klass_RInfo, Label* obj_is_null);
++ void typecheck_loaded(LIR_OpTypeCheck* op, ciKlass* k, Register k_RInfo);
++
++ // emit_opTypeCheck sub functions
++ void typecheck_lir_store(LIR_OpTypeCheck* op, bool should_profile);
++
++ void type_profile(Register obj, ciMethodData* md, Register klass_RInfo, Register k_RInfo,
++ ciProfileData* data, Label* success, Label* failure,
++ Label& profile_cast_success, Label& profile_cast_failure);
++
++ void lir_store_slowcheck(Register k_RInfo, Register klass_RInfo, Register Rtmp1,
++ Label* success_target, Label* failure_target);
++
++ void const2reg_helper(LIR_Opr src);
++
++ void emit_branch(LIR_Condition cmp_flag, LIR_Opr cmp1, LIR_Opr cmp2, Label& label, bool is_far, bool is_unordered);
++
++ void logic_op_reg32(Register dst, Register left, Register right, LIR_Code code);
++ void logic_op_reg(Register dst, Register left, Register right, LIR_Code code);
++ void logic_op_imm(Register dst, Register left, int right, LIR_Code code);
++
++public:
++
++ void emit_cmove(LIR_Op4* op);
++
++ void store_parameter(Register r, int offset_from_rsp_in_words);
++ void store_parameter(jint c, int offset_from_rsp_in_words);
++
++#endif // CPU_RISCV_C1_LIRASSEMBLER_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/c1_LIRGenerator_riscv.cpp
+@@ -0,0 +1,1086 @@
++/*
++ * Copyright (c) 2005, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/macroAssembler.inline.hpp"
++#include "c1/c1_Compilation.hpp"
++#include "c1/c1_FrameMap.hpp"
++#include "c1/c1_Instruction.hpp"
++#include "c1/c1_LIRAssembler.hpp"
++#include "c1/c1_LIRGenerator.hpp"
++#include "c1/c1_Runtime1.hpp"
++#include "c1/c1_ValueStack.hpp"
++#include "ci/ciArray.hpp"
++#include "ci/ciObjArrayKlass.hpp"
++#include "ci/ciTypeArrayKlass.hpp"
++#include "runtime/sharedRuntime.hpp"
++#include "runtime/stubRoutines.hpp"
++#include "utilities/powerOfTwo.hpp"
++#include "vmreg_riscv.inline.hpp"
++
++#ifdef ASSERT
++#define __ gen()->lir(__FILE__, __LINE__)->
++#else
++#define __ gen()->lir()->
++#endif
++
++// Item will be loaded into a byte register; Intel only
++void LIRItem::load_byte_item() {
++ load_item();
++}
++
++
++void LIRItem::load_nonconstant() {
++ LIR_Opr r = value()->operand();
++ if (r->is_constant()) {
++ _result = r;
++ } else {
++ load_item();
++ }
++}
++
++//--------------------------------------------------------------
++// LIRGenerator
++//--------------------------------------------------------------
++
++
++LIR_Opr LIRGenerator::exceptionOopOpr() { return FrameMap::r10_oop_opr; }
++LIR_Opr LIRGenerator::exceptionPcOpr() { return FrameMap::r13_opr; }
++LIR_Opr LIRGenerator::divInOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; }
++LIR_Opr LIRGenerator::divOutOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; }
++LIR_Opr LIRGenerator::remOutOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; }
++LIR_Opr LIRGenerator::shiftCountOpr() { Unimplemented(); return LIR_OprFact::illegalOpr; }
++LIR_Opr LIRGenerator::syncLockOpr() { return new_register(T_INT); }
++LIR_Opr LIRGenerator::syncTempOpr() { return FrameMap::r10_opr; }
++LIR_Opr LIRGenerator::getThreadTemp() { return LIR_OprFact::illegalOpr; }
++
++
++LIR_Opr LIRGenerator::result_register_for(ValueType* type, bool callee) {
++ LIR_Opr opr;
++ switch (type->tag()) {
++ case intTag: opr = FrameMap::r10_opr; break;
++ case objectTag: opr = FrameMap::r10_oop_opr; break;
++ case longTag: opr = FrameMap::long10_opr; break;
++ case floatTag: opr = FrameMap::fpu10_float_opr; break;
++ case doubleTag: opr = FrameMap::fpu10_double_opr; break;
++
++ case addressTag: // fall through
++ default:
++ ShouldNotReachHere();
++ return LIR_OprFact::illegalOpr;
++ }
++
++ assert(opr->type_field() == as_OprType(as_BasicType(type)), "type mismatch");
++ return opr;
++}
++
++
++LIR_Opr LIRGenerator::rlock_byte(BasicType type) {
++ LIR_Opr reg = new_register(T_INT);
++ set_vreg_flag(reg, LIRGenerator::byte_reg);
++ return reg;
++}
++
++//--------- loading items into registers --------------------------------
++
++
++bool LIRGenerator::can_store_as_constant(Value v, BasicType type) const {
++ if (v->type()->as_IntConstant() != NULL) {
++ return v->type()->as_IntConstant()->value() == 0;
++ } else if (v->type()->as_LongConstant() != NULL) {
++ return v->type()->as_LongConstant()->value() == 0;
++ } else if (v->type()->as_ObjectConstant() != NULL) {
++ return v->type()->as_ObjectConstant()->value()->is_null_object();
++ } else if (v->type()->as_FloatConstant() != NULL) {
++ return jint_cast(v->type()->as_FloatConstant()->value()) == 0.0f;
++ } else if (v->type()->as_DoubleConstant() != NULL) {
++ return jlong_cast(v->type()->as_DoubleConstant()->value()) == 0.0;
++ }
++ return false;
++}
++
++bool LIRGenerator::can_inline_as_constant(Value v) const {
++ if (v->type()->as_IntConstant() != NULL) {
++ int value = v->type()->as_IntConstant()->value();
++ // "-value" must be defined for value may be used for sub
++ return Assembler::is_simm12(value) && Assembler::is_simm12(- value);
++ } else if (v->type()->as_ObjectConstant() != NULL) {
++ return v->type()->as_ObjectConstant()->value()->is_null_object();
++ } else if (v->type()->as_LongConstant() != NULL) {
++ long value = v->type()->as_LongConstant()->value();
++ // "-value" must be defined for value may be used for sub
++ return Assembler::is_simm12(value) && Assembler::is_simm12(- value);
++ } else if (v->type()->as_FloatConstant() != NULL) {
++ return v->type()->as_FloatConstant()->value() == 0.0f;
++ } else if (v->type()->as_DoubleConstant() != NULL) {
++ return v->type()->as_DoubleConstant()->value() == 0.0;
++ }
++ return false;
++}
++
++bool LIRGenerator::can_inline_as_constant(LIR_Const* c) const {
++ if (c->as_constant() != NULL) {
++ long constant = 0;
++ switch (c->type()) {
++ case T_INT: constant = c->as_jint(); break;
++ case T_LONG: constant = c->as_jlong(); break;
++ default: return false;
++ }
++ // "-constant" must be defined for c may be used for sub
++ return Assembler::is_simm12(constant) && Assembler::is_simm12(- constant);
++ }
++ return false;
++}
++
++LIR_Opr LIRGenerator::safepoint_poll_register() {
++ return LIR_OprFact::illegalOpr;
++}
++
++LIR_Address* LIRGenerator::generate_address(LIR_Opr base, LIR_Opr index,
++ int shift, int disp, BasicType type) {
++ assert(base->is_register(), "must be");
++
++ if (index->is_constant()) {
++ LIR_Const *constant = index->as_constant_ptr();
++ jlong c;
++ if (constant->type() == T_INT) {
++ c = (jlong(index->as_jint()) << shift) + disp;
++ } else {
++ assert(constant->type() == T_LONG, "should be");
++ c = (index->as_jlong() << shift) + disp;
++ }
++ if ((jlong)((jint)c) == c) {
++ return new LIR_Address(base, (jint)c, type);
++ } else {
++ LIR_Opr tmp = new_register(T_LONG);
++ __ move(index, tmp);
++ return new LIR_Address(base, tmp, type);
++ }
++ }
++
++ return new LIR_Address(base, index, (LIR_Address::Scale)shift, disp, type);
++}
++
++LIR_Address* LIRGenerator::emit_array_address(LIR_Opr array_opr, LIR_Opr index_opr,
++ BasicType type) {
++ int offset_in_bytes = arrayOopDesc::base_offset_in_bytes(type);
++ int elem_size = type2aelembytes(type);
++ int shift = exact_log2(elem_size);
++ return generate_address(array_opr, index_opr, shift, offset_in_bytes, type);
++}
++
++LIR_Opr LIRGenerator::load_immediate(int x, BasicType type) {
++ LIR_Opr r;
++ switch (type) {
++ case T_LONG:
++ r = LIR_OprFact::longConst(x);
++ break;
++ case T_INT:
++ r = LIR_OprFact::intConst(x);
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++ return r;
++}
++
++void LIRGenerator::increment_counter(address counter, BasicType type, int step) {
++ LIR_Opr pointer = new_pointer_register();
++ __ move(LIR_OprFact::intptrConst(counter), pointer);
++ LIR_Address* addr = new LIR_Address(pointer, type);
++ increment_counter(addr, step);
++}
++
++void LIRGenerator::increment_counter(LIR_Address* addr, int step) {
++ LIR_Opr reg = new_register(addr->type());
++ __ load(addr, reg);
++ __ add(reg, load_immediate(step, addr->type()), reg);
++ __ store(reg, addr);
++}
++
++void LIRGenerator::cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info) {
++ LIR_Opr reg = new_register(T_INT);
++ __ load(generate_address(base, disp, T_INT), reg, info);
++ __ cmp(condition, reg, LIR_OprFact::intConst(c));
++}
++
++void LIRGenerator::cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Opr base, int disp, BasicType type, CodeEmitInfo* info) {
++ LIR_Opr reg1 = new_register(T_INT);
++ __ load(generate_address(base, disp, type), reg1, info);
++ __ cmp(condition, reg, reg1);
++}
++
++bool LIRGenerator::strength_reduce_multiply(LIR_Opr left, jint c, LIR_Opr result, LIR_Opr tmp) {
++ if (tmp->is_valid() && c > 0 && c < max_jint) {
++ if (is_power_of_2(c - 1)) {
++ __ shift_left(left, exact_log2(c - 1), tmp);
++ __ add(tmp, left, result);
++ return true;
++ } else if (is_power_of_2(c + 1)) {
++ __ shift_left(left, exact_log2(c + 1), tmp);
++ __ sub(tmp, left, result);
++ return true;
++ }
++ }
++ return false;
++}
++
++void LIRGenerator::store_stack_parameter (LIR_Opr item, ByteSize offset_from_sp) {
++ BasicType type = item->type();
++ __ store(item, new LIR_Address(FrameMap::sp_opr, in_bytes(offset_from_sp), type));
++}
++
++void LIRGenerator::array_store_check(LIR_Opr value, LIR_Opr array, CodeEmitInfo* store_check_info,
++ ciMethod* profiled_method, int profiled_bci) {
++ LIR_Opr tmp1 = new_register(objectType);
++ LIR_Opr tmp2 = new_register(objectType);
++ LIR_Opr tmp3 = new_register(objectType);
++ __ store_check(value, array, tmp1, tmp2, tmp3, store_check_info, profiled_method, profiled_bci);
++}
++
++//----------------------------------------------------------------------
++// visitor functions
++//----------------------------------------------------------------------
++
++void LIRGenerator::do_MonitorEnter(MonitorEnter* x) {
++ assert(x->is_pinned(), "");
++ LIRItem obj(x->obj(), this);
++ obj.load_item();
++
++ set_no_result(x);
++
++ // "lock" stores the address of the monitor stack slot, so this is not an oop
++ LIR_Opr lock = new_register(T_INT);
++ // Need a tmp register for biased locking
++ LIR_Opr tmp = LIR_OprFact::illegalOpr;
++ if (UseBiasedLocking) {
++ tmp = new_register(T_INT);
++ }
++
++ CodeEmitInfo* info_for_exception = NULL;
++ if (x->needs_null_check()) {
++ info_for_exception = state_for(x);
++ }
++ // this CodeEmitInfo must not have the xhandlers because here the
++ // object is already locked (xhandlers expect object to be unlocked)
++ CodeEmitInfo* info = state_for(x, x->state(), true);
++ monitor_enter(obj.result(), lock, syncTempOpr(), tmp,
++ x->monitor_no(), info_for_exception, info);
++}
++
++void LIRGenerator::do_MonitorExit(MonitorExit* x) {
++ assert(x->is_pinned(), "");
++
++ LIRItem obj(x->obj(), this);
++ obj.dont_load_item();
++
++ LIR_Opr lock = new_register(T_INT);
++ LIR_Opr obj_temp = new_register(T_INT);
++ set_no_result(x);
++ monitor_exit(obj_temp, lock, syncTempOpr(), LIR_OprFact::illegalOpr, x->monitor_no());
++}
++
++// neg
++void LIRGenerator::do_NegateOp(NegateOp* x) {
++ LIRItem from(x->x(), this);
++ from.load_item();
++ LIR_Opr result = rlock_result(x);
++ __ negate(from.result(), result);
++}
++
++// for _fadd, _fmul, _fsub, _fdiv, _frem
++// _dadd, _dmul, _dsub, _ddiv, _drem
++void LIRGenerator::do_ArithmeticOp_FPU(ArithmeticOp* x) {
++ LIRItem left(x->x(), this);
++ LIRItem right(x->y(), this);
++
++ if (x->op() == Bytecodes::_frem || x->op() == Bytecodes::_drem) {
++
++ // float remainder is implemented as a direct call into the runtime
++ BasicTypeList signature(2);
++ if (x->op() == Bytecodes::_frem) {
++ signature.append(T_FLOAT);
++ signature.append(T_FLOAT);
++ } else {
++ signature.append(T_DOUBLE);
++ signature.append(T_DOUBLE);
++ }
++ CallingConvention* cc = frame_map()->c_calling_convention(&signature);
++
++ const LIR_Opr result_reg = result_register_for(x->type());
++
++ left.load_item();
++ __ move(left.result(), cc->at(0));
++ right.load_item_force(cc->at(1));
++
++ address entry;
++ if (x->op() == Bytecodes::_frem) {
++ entry = CAST_FROM_FN_PTR(address, SharedRuntime::frem);
++ } else {
++ entry = CAST_FROM_FN_PTR(address, SharedRuntime::drem);
++ }
++
++ LIR_Opr result = rlock_result(x);
++ __ call_runtime_leaf(entry, getThreadTemp(), result_reg, cc->args());
++ __ move(result_reg, result);
++
++ return;
++ }
++
++ if (!left.is_register()) {
++ left.load_item();
++ }
++ // Always load right hand side.
++ right.load_item();
++
++ LIR_Opr reg = rlock(x);
++ arithmetic_op_fpu(x->op(), reg, left.result(), right.result());
++
++ set_result(x, round_item(reg));
++}
++
++// for _ladd, _lmul, _lsub, _ldiv, _lrem
++void LIRGenerator::do_ArithmeticOp_Long(ArithmeticOp* x) {
++
++ // missing test if instr is commutative and if we should swap
++ LIRItem left(x->x(), this);
++ LIRItem right(x->y(), this);
++
++ if (x->op() == Bytecodes::_ldiv || x->op() == Bytecodes::_lrem) {
++
++ left.load_item();
++
++ bool need_zero_check = true;
++ if (right.is_constant()) {
++ jlong c = right.get_jlong_constant();
++ // no need to do div-by-zero check if the divisor is a non-zero constant
++ if (c != 0) { need_zero_check = false; }
++ // do not load right if the divisor is a power-of-2 constant
++ if (c > 0 && is_power_of_2(c)) {
++ right.dont_load_item();
++ } else {
++ right.load_item();
++ }
++ } else {
++ right.load_item();
++ }
++ if (need_zero_check) {
++ CodeEmitInfo* info = state_for(x);
++ __ cmp(lir_cond_equal, right.result(), LIR_OprFact::longConst(0));
++ __ branch(lir_cond_equal, new DivByZeroStub(info));
++ }
++
++ rlock_result(x);
++ switch (x->op()) {
++ case Bytecodes::_lrem:
++ __ rem(left.result(), right.result(), x->operand());
++ break;
++ case Bytecodes::_ldiv:
++ __ div(left.result(), right.result(), x->operand());
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++ } else {
++ assert(x->op() == Bytecodes::_lmul || x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub,
++ "expect lmul, ladd or lsub");
++ // add, sub, mul
++ left.load_item();
++ if (!right.is_register()) {
++ if (x->op() == Bytecodes::_lmul ||
++ !right.is_constant() ||
++ (x->op() == Bytecodes::_ladd &&
++ !Assembler::is_simm12(right.get_jlong_constant())) ||
++ (x->op() == Bytecodes::_lsub &&
++ !Assembler::is_simm12(-right.get_jlong_constant()))) {
++ right.load_item();
++ } else { // add, sub
++ assert(x->op() == Bytecodes::_ladd || x->op() == Bytecodes::_lsub, "expected ladd or lsub");
++ // don't load constants to save register
++ right.load_nonconstant();
++ }
++ }
++ rlock_result(x);
++ arithmetic_op_long(x->op(), x->operand(), left.result(), right.result(), NULL);
++ }
++}
++
++// for: _iadd, _imul, _isub, _idiv, _irem
++void LIRGenerator::do_ArithmeticOp_Int(ArithmeticOp* x) {
++
++ // Test if instr is commutative and if we should swap
++ LIRItem left(x->x(), this);
++ LIRItem right(x->y(), this);
++ LIRItem* left_arg = &left;
++ LIRItem* right_arg = &right;
++ if (x->is_commutative() && left.is_stack() && right.is_register()) {
++ // swap them if left is real stack (or cached) and right is real register(not cached)
++ left_arg = &right;
++ right_arg = &left;
++ }
++ left_arg->load_item();
++ // do not need to load right, as we can handle stack and constants
++ if (x->op() == Bytecodes::_idiv || x->op() == Bytecodes::_irem) {
++
++ rlock_result(x);
++
++ bool need_zero_check = true;
++ if (right.is_constant()) {
++ jint c = right.get_jint_constant();
++ // no need to do div-by-zero check if the divisor is a non-zero constant
++ if (c != 0) { need_zero_check = false; }
++ // do not load right if the divisor is a power-of-2 constant
++ if (c > 0 && is_power_of_2(c)) {
++ right_arg->dont_load_item();
++ } else {
++ right_arg->load_item();
++ }
++ } else {
++ right_arg->load_item();
++ }
++ if (need_zero_check) {
++ CodeEmitInfo* info = state_for(x);
++ __ cmp(lir_cond_equal, right_arg->result(), LIR_OprFact::longConst(0));
++ __ branch(lir_cond_equal, new DivByZeroStub(info));
++ }
++
++ LIR_Opr ill = LIR_OprFact::illegalOpr;
++ if (x->op() == Bytecodes::_irem) {
++ __ irem(left_arg->result(), right_arg->result(), x->operand(), ill, NULL);
++ } else if (x->op() == Bytecodes::_idiv) {
++ __ idiv(left_arg->result(), right_arg->result(), x->operand(), ill, NULL);
++ }
++
++ } else if (x->op() == Bytecodes::_iadd || x->op() == Bytecodes::_isub) {
++ if (right.is_constant() &&
++ ((x->op() == Bytecodes::_iadd && !Assembler::is_simm12(right.get_jint_constant())) ||
++ (x->op() == Bytecodes::_isub && !Assembler::is_simm12(-right.get_jint_constant())))) {
++ right.load_nonconstant();
++ } else {
++ right.load_item();
++ }
++ rlock_result(x);
++ arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), LIR_OprFact::illegalOpr);
++ } else {
++ assert (x->op() == Bytecodes::_imul, "expect imul");
++ if (right.is_constant()) {
++ jint c = right.get_jint_constant();
++ if (c > 0 && c < max_jint && (is_power_of_2(c) || is_power_of_2(c - 1) || is_power_of_2(c + 1))) {
++ right_arg->dont_load_item();
++ } else {
++ // Cannot use constant op.
++ right_arg->load_item();
++ }
++ } else {
++ right.load_item();
++ }
++ rlock_result(x);
++ arithmetic_op_int(x->op(), x->operand(), left_arg->result(), right_arg->result(), new_register(T_INT));
++ }
++}
++
++void LIRGenerator::do_ArithmeticOp(ArithmeticOp* x) {
++ // when an operand with use count 1 is the left operand, then it is
++ // likely that no move for 2-operand-LIR-form is necessary
++ if (x->is_commutative() && x->y()->as_Constant() == NULL && x->x()->use_count() > x->y()->use_count()) {
++ x->swap_operands();
++ }
++
++ ValueTag tag = x->type()->tag();
++ assert(x->x()->type()->tag() == tag && x->y()->type()->tag() == tag, "wrong parameters");
++ switch (tag) {
++ case floatTag:
++ case doubleTag: do_ArithmeticOp_FPU(x); return;
++ case longTag: do_ArithmeticOp_Long(x); return;
++ case intTag: do_ArithmeticOp_Int(x); return;
++ default: ShouldNotReachHere(); return;
++ }
++}
++
++// _ishl, _lshl, _ishr, _lshr, _iushr, _lushr
++void LIRGenerator::do_ShiftOp(ShiftOp* x) {
++ LIRItem value(x->x(), this);
++ LIRItem count(x->y(), this);
++
++ value.load_item();
++ if (count.is_constant()) {
++ assert(count.type()->as_IntConstant() != NULL || count.type()->as_LongConstant() != NULL , "should be");
++ count.dont_load_item();
++ } else {
++ count.load_item();
++ }
++
++ LIR_Opr res = rlock_result(x);
++ shift_op(x->op(), res, value.result(), count.result(), LIR_OprFact::illegalOpr);
++}
++
++
++// _iand, _land, _ior, _lor, _ixor, _lxor
++void LIRGenerator::do_LogicOp(LogicOp* x) {
++
++ LIRItem left(x->x(), this);
++ LIRItem right(x->y(), this);
++
++ left.load_item();
++ rlock_result(x);
++ ValueTag tag = right.type()->tag();
++ if (right.is_constant() &&
++ ((tag == longTag && Assembler::is_simm12(right.get_jlong_constant())) ||
++ (tag == intTag && Assembler::is_simm12(right.get_jint_constant())))) {
++ right.dont_load_item();
++ } else {
++ right.load_item();
++ }
++
++ switch (x->op()) {
++ case Bytecodes::_iand: // fall through
++ case Bytecodes::_land:
++ __ logical_and(left.result(), right.result(), x->operand()); break;
++ case Bytecodes::_ior: // fall through
++ case Bytecodes::_lor:
++ __ logical_or(left.result(), right.result(), x->operand()); break;
++ case Bytecodes::_ixor: // fall through
++ case Bytecodes::_lxor:
++ __ logical_xor(left.result(), right.result(), x->operand()); break;
++ default: Unimplemented();
++ }
++}
++
++// _lcmp, _fcmpl, _fcmpg, _dcmpl, _dcmpg
++void LIRGenerator::do_CompareOp(CompareOp* x) {
++ LIRItem left(x->x(), this);
++ LIRItem right(x->y(), this);
++ ValueTag tag = x->x()->type()->tag();
++ if (tag == longTag) {
++ left.set_destroys_register();
++ }
++ left.load_item();
++ right.load_item();
++ LIR_Opr reg = rlock_result(x);
++
++ if (x->x()->type()->is_float_kind()) {
++ Bytecodes::Code code = x->op();
++ __ fcmp2int(left.result(), right.result(), reg, (code == Bytecodes::_fcmpl || code == Bytecodes::_dcmpl));
++ } else if (x->x()->type()->tag() == longTag) {
++ __ lcmp2int(left.result(), right.result(), reg);
++ } else {
++ Unimplemented();
++ }
++}
++
++LIR_Opr LIRGenerator::atomic_cmpxchg(BasicType type, LIR_Opr addr, LIRItem& cmp_value, LIRItem& new_value) {
++ LIR_Opr ill = LIR_OprFact::illegalOpr; // for convenience
++ new_value.load_item();
++ cmp_value.load_item();
++ LIR_Opr result = new_register(T_INT);
++ if (is_reference_type(type)) {
++ __ cas_obj(addr, cmp_value.result(), new_value.result(), new_register(T_INT), new_register(T_INT), result);
++ } else if (type == T_INT) {
++ __ cas_int(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
++ } else if (type == T_LONG) {
++ __ cas_long(addr->as_address_ptr()->base(), cmp_value.result(), new_value.result(), ill, ill);
++ } else {
++ ShouldNotReachHere();
++ }
++ __ logical_xor(FrameMap::r5_opr, LIR_OprFact::intConst(1), result);
++ return result;
++}
++
++LIR_Opr LIRGenerator::atomic_xchg(BasicType type, LIR_Opr addr, LIRItem& value) {
++ bool is_oop = is_reference_type(type);
++ LIR_Opr result = new_register(type);
++ value.load_item();
++ assert(type == T_INT || is_oop LP64_ONLY( || type == T_LONG ), "unexpected type");
++ LIR_Opr tmp = new_register(T_INT);
++ __ xchg(addr, value.result(), result, tmp);
++ return result;
++}
++
++LIR_Opr LIRGenerator::atomic_add(BasicType type, LIR_Opr addr, LIRItem& value) {
++ LIR_Opr result = new_register(type);
++ value.load_item();
++ assert(type == T_INT LP64_ONLY( || type == T_LONG ), "unexpected type");
++ LIR_Opr tmp = new_register(T_INT);
++ __ xadd(addr, value.result(), result, tmp);
++ return result;
++}
++
++void LIRGenerator::do_MathIntrinsic(Intrinsic* x) {
++ assert(x->number_of_arguments() == 1 || (x->number_of_arguments() == 2 && x->id() == vmIntrinsics::_dpow),
++ "wrong type");
++
++ switch (x->id()) {
++ case vmIntrinsics::_dexp: // fall through
++ case vmIntrinsics::_dlog: // fall through
++ case vmIntrinsics::_dpow: // fall through
++ case vmIntrinsics::_dcos: // fall through
++ case vmIntrinsics::_dsin: // fall through
++ case vmIntrinsics::_dtan: // fall through
++ case vmIntrinsics::_dlog10:
++ do_LibmIntrinsic(x);
++ break;
++ case vmIntrinsics::_dabs: // fall through
++ case vmIntrinsics::_dsqrt: {
++ assert(x->number_of_arguments() == 1, "wrong type");
++ LIRItem value(x->argument_at(0), this);
++ value.load_item();
++ LIR_Opr dst = rlock_result(x);
++
++ switch (x->id()) {
++ case vmIntrinsics::_dsqrt: {
++ __ sqrt(value.result(), dst, LIR_OprFact::illegalOpr);
++ break;
++ }
++ case vmIntrinsics::_dabs: {
++ __ abs(value.result(), dst, LIR_OprFact::illegalOpr);
++ break;
++ }
++ default:
++ ShouldNotReachHere();
++ }
++ break;
++ }
++ default:
++ ShouldNotReachHere();
++ }
++}
++
++void LIRGenerator::do_LibmIntrinsic(Intrinsic* x) {
++ LIRItem value(x->argument_at(0), this);
++ value.set_destroys_register();
++
++ LIR_Opr calc_result = rlock_result(x);
++ LIR_Opr result_reg = result_register_for(x->type());
++
++ CallingConvention* cc = NULL;
++
++ if (x->id() == vmIntrinsics::_dpow) {
++ LIRItem value1(x->argument_at(1), this);
++
++ value1.set_destroys_register();
++
++ BasicTypeList signature(2);
++ signature.append(T_DOUBLE);
++ signature.append(T_DOUBLE);
++ cc = frame_map()->c_calling_convention(&signature);
++ value.load_item_force(cc->at(0));
++ value1.load_item_force(cc->at(1));
++ } else {
++ BasicTypeList signature(1);
++ signature.append(T_DOUBLE);
++ cc = frame_map()->c_calling_convention(&signature);
++ value.load_item_force(cc->at(0));
++ }
++
++ switch (x->id()) {
++ case vmIntrinsics::_dexp:
++ if (StubRoutines::dexp() != NULL) { __ call_runtime_leaf(StubRoutines::dexp(), getThreadTemp(), result_reg, cc->args()); }
++ else { __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dexp), getThreadTemp(), result_reg, cc->args()); }
++ break;
++ case vmIntrinsics::_dlog:
++ if (StubRoutines::dlog() != NULL) { __ call_runtime_leaf(StubRoutines::dlog(), getThreadTemp(), result_reg, cc->args()); }
++ else { __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog), getThreadTemp(), result_reg, cc->args()); }
++ break;
++ case vmIntrinsics::_dlog10:
++ if (StubRoutines::dlog10() != NULL) { __ call_runtime_leaf(StubRoutines::dlog10(), getThreadTemp(), result_reg, cc->args()); }
++ else { __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dlog10), getThreadTemp(), result_reg, cc->args()); }
++ break;
++ case vmIntrinsics::_dsin:
++ if (StubRoutines::dsin() != NULL) { __ call_runtime_leaf(StubRoutines::dsin(), getThreadTemp(), result_reg, cc->args()); }
++ else { __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dsin), getThreadTemp(), result_reg, cc->args()); }
++ break;
++ case vmIntrinsics::_dcos:
++ if (StubRoutines::dcos() != NULL) { __ call_runtime_leaf(StubRoutines::dcos(), getThreadTemp(), result_reg, cc->args()); }
++ else { __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dcos), getThreadTemp(), result_reg, cc->args()); }
++ break;
++ case vmIntrinsics::_dtan:
++ if (StubRoutines::dtan() != NULL) { __ call_runtime_leaf(StubRoutines::dtan(), getThreadTemp(), result_reg, cc->args()); }
++ else { __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtan), getThreadTemp(), result_reg, cc->args()); }
++ break;
++ case vmIntrinsics::_dpow:
++ if (StubRoutines::dpow() != NULL) { __ call_runtime_leaf(StubRoutines::dpow(), getThreadTemp(), result_reg, cc->args()); }
++ else { __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dpow), getThreadTemp(), result_reg, cc->args()); }
++ break;
++ default: ShouldNotReachHere();
++ }
++ __ move(result_reg, calc_result);
++}
++
++
++void LIRGenerator::do_ArrayCopy(Intrinsic* x) {
++ assert(x->number_of_arguments() == 5, "wrong type");
++
++ // Make all state_for calls early since they can emit code
++ CodeEmitInfo* info = state_for(x, x->state());
++
++ LIRItem src(x->argument_at(0), this);
++ LIRItem src_pos(x->argument_at(1), this);
++ LIRItem dst(x->argument_at(2), this);
++ LIRItem dst_pos(x->argument_at(3), this);
++ LIRItem length(x->argument_at(4), this);
++
++ // operands for arraycopy must use fixed registers, otherwise
++ // LinearScan will fail allocation (because arraycopy always needs a
++ // call)
++
++ // The java calling convention will give us enough registers
++ // so that on the stub side the args will be perfect already.
++ // On the other slow/special case side we call C and the arg
++ // positions are not similar enough to pick one as the best.
++ // Also because the java calling convention is a "shifted" version
++ // of the C convention we can process the java args trivially into C
++ // args without worry of overwriting during the xfer
++
++ src.load_item_force (FrameMap::as_oop_opr(j_rarg0));
++ src_pos.load_item_force (FrameMap::as_opr(j_rarg1));
++ dst.load_item_force (FrameMap::as_oop_opr(j_rarg2));
++ dst_pos.load_item_force (FrameMap::as_opr(j_rarg3));
++ length.load_item_force (FrameMap::as_opr(j_rarg4));
++
++ LIR_Opr tmp = FrameMap::as_opr(j_rarg5);
++
++ set_no_result(x);
++
++ int flags;
++ ciArrayKlass* expected_type = NULL;
++ arraycopy_helper(x, &flags, &expected_type);
++
++ __ arraycopy(src.result(), src_pos.result(), dst.result(), dst_pos.result(), length.result(), tmp,
++ expected_type, flags, info); // does add_safepoint
++}
++
++void LIRGenerator::do_update_CRC32(Intrinsic* x) {
++ ShouldNotReachHere();
++}
++
++void LIRGenerator::do_update_CRC32C(Intrinsic* x) {
++ ShouldNotReachHere();
++}
++
++void LIRGenerator::do_FmaIntrinsic(Intrinsic* x) {
++ assert(x->number_of_arguments() == 3, "wrong type");
++ assert(UseFMA, "Needs FMA instructions support.");
++ LIRItem value(x->argument_at(0), this);
++ LIRItem value1(x->argument_at(1), this);
++ LIRItem value2(x->argument_at(2), this);
++
++ value.load_item();
++ value1.load_item();
++ value2.load_item();
++
++ LIR_Opr calc_input = value.result();
++ LIR_Opr calc_input1 = value1.result();
++ LIR_Opr calc_input2 = value2.result();
++ LIR_Opr calc_result = rlock_result(x);
++
++ switch (x->id()) {
++ case vmIntrinsics::_fmaD: __ fmad(calc_input, calc_input1, calc_input2, calc_result); break;
++ case vmIntrinsics::_fmaF: __ fmaf(calc_input, calc_input1, calc_input2, calc_result); break;
++ default: ShouldNotReachHere();
++ }
++}
++
++void LIRGenerator::do_vectorizedMismatch(Intrinsic* x) {
++ fatal("vectorizedMismatch intrinsic is not implemented on this platform");
++}
++
++// _i2l, _i2f, _i2d, _l2i, _l2f, _l2d, _f2i, _f2l, _f2d, _d2i, _d2l, _d2f
++// _i2b, _i2c, _i2s
++void LIRGenerator::do_Convert(Convert* x) {
++ LIRItem value(x->value(), this);
++ value.load_item();
++ LIR_Opr input = value.result();
++ LIR_Opr result = rlock(x);
++
++ // arguments of lir_convert
++ LIR_Opr conv_input = input;
++ LIR_Opr conv_result = result;
++
++ __ convert(x->op(), conv_input, conv_result);
++
++ assert(result->is_virtual(), "result must be virtual register");
++ set_result(x, result);
++}
++
++void LIRGenerator::do_NewInstance(NewInstance* x) {
++#ifndef PRODUCT
++ if (PrintNotLoaded && !x->klass()->is_loaded()) {
++ tty->print_cr(" ###class not loaded at new bci %d", x->printable_bci());
++ }
++#endif
++ CodeEmitInfo* info = state_for(x, x->state());
++ LIR_Opr reg = result_register_for(x->type());
++ new_instance(reg, x->klass(), x->is_unresolved(),
++ FrameMap::r12_oop_opr,
++ FrameMap::r15_oop_opr,
++ FrameMap::r14_oop_opr,
++ LIR_OprFact::illegalOpr,
++ FrameMap::r13_metadata_opr,
++ info);
++ LIR_Opr result = rlock_result(x);
++ __ move(reg, result);
++}
++
++void LIRGenerator::do_NewTypeArray(NewTypeArray* x) {
++ CodeEmitInfo* info = state_for(x, x->state());
++
++ LIRItem length(x->length(), this);
++ length.load_item_force(FrameMap::r9_opr);
++
++ LIR_Opr reg = result_register_for(x->type());
++ LIR_Opr tmp1 = FrameMap::r12_oop_opr;
++ LIR_Opr tmp2 = FrameMap::r14_oop_opr;
++ LIR_Opr tmp3 = FrameMap::r15_oop_opr;
++ LIR_Opr tmp4 = reg;
++ LIR_Opr klass_reg = FrameMap::r13_metadata_opr;
++ LIR_Opr len = length.result();
++ BasicType elem_type = x->elt_type();
++
++ __ metadata2reg(ciTypeArrayKlass::make(elem_type)->constant_encoding(), klass_reg);
++
++ CodeStub* slow_path = new NewTypeArrayStub(klass_reg, len, reg, info);
++ __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, elem_type, klass_reg, slow_path);
++
++ LIR_Opr result = rlock_result(x);
++ __ move(reg, result);
++}
++
++void LIRGenerator::do_NewObjectArray(NewObjectArray* x) {
++ LIRItem length(x->length(), this);
++ // in case of patching (i.e., object class is not yet loaded), we need to reexecute the instruction
++ // and therefore provide the state before the parameters have been consumed
++ CodeEmitInfo* patching_info = NULL;
++ if (!x->klass()->is_loaded() || PatchALot) {
++ patching_info = state_for(x, x->state_before());
++ }
++
++ CodeEmitInfo* info = state_for(x, x->state());
++
++ LIR_Opr reg = result_register_for(x->type());
++ LIR_Opr tmp1 = FrameMap::r12_oop_opr;
++ LIR_Opr tmp2 = FrameMap::r14_oop_opr;
++ LIR_Opr tmp3 = FrameMap::r15_oop_opr;
++ LIR_Opr tmp4 = reg;
++ LIR_Opr klass_reg = FrameMap::r13_metadata_opr;
++
++ length.load_item_force(FrameMap::r9_opr);
++ LIR_Opr len = length.result();
++
++ CodeStub* slow_path = new NewObjectArrayStub(klass_reg, len, reg, info);
++ ciKlass* obj = (ciKlass*) ciObjArrayKlass::make(x->klass());
++ if (obj == ciEnv::unloaded_ciobjarrayklass()) {
++ BAILOUT("encountered unloaded_ciobjarrayklass due to out of memory error");
++ }
++ klass2reg_with_patching(klass_reg, obj, patching_info);
++ __ allocate_array(reg, len, tmp1, tmp2, tmp3, tmp4, T_OBJECT, klass_reg, slow_path);
++
++ LIR_Opr result = rlock_result(x);
++ __ move(reg, result);
++}
++
++
++void LIRGenerator::do_NewMultiArray(NewMultiArray* x) {
++ Values* dims = x->dims();
++ int i = dims->length();
++ LIRItemList* items = new LIRItemList(i, i, NULL);
++ while (i-- > 0) {
++ LIRItem* size = new LIRItem(dims->at(i), this);
++ items->at_put(i, size);
++ }
++
++ // Evaluate state_for early since it may emit code.
++ CodeEmitInfo* patching_info = NULL;
++ if (!x->klass()->is_loaded() || PatchALot) {
++ patching_info = state_for(x, x->state_before());
++
++ // Cannot re-use same xhandlers for multiple CodeEmitInfos, so
++ // clone all handlers (NOTE: Usually this is handled transparently
++ // by the CodeEmitInfo cloning logic in CodeStub constructors but
++ // is done explicitly here because a stub isn't being used).
++ x->set_exception_handlers(new XHandlers(x->exception_handlers()));
++ }
++ CodeEmitInfo* info = state_for(x, x->state());
++
++ i = dims->length();
++ while (i-- > 0) {
++ LIRItem* size = items->at(i);
++ size->load_item();
++
++ store_stack_parameter(size->result(), in_ByteSize(i * BytesPerInt));
++ }
++
++ LIR_Opr klass_reg = FrameMap::r10_metadata_opr;
++ klass2reg_with_patching(klass_reg, x->klass(), patching_info);
++
++ LIR_Opr rank = FrameMap::r9_opr;
++ __ move(LIR_OprFact::intConst(x->rank()), rank);
++ LIR_Opr varargs = FrameMap::r12_opr;
++ __ move(FrameMap::sp_opr, varargs);
++ LIR_OprList* args = new LIR_OprList(3);
++ args->append(klass_reg);
++ args->append(rank);
++ args->append(varargs);
++ LIR_Opr reg = result_register_for(x->type());
++ __ call_runtime(Runtime1::entry_for(Runtime1::new_multi_array_id),
++ LIR_OprFact::illegalOpr,
++ reg, args, info);
++
++ LIR_Opr result = rlock_result(x);
++ __ move(reg, result);
++}
++
++void LIRGenerator::do_BlockBegin(BlockBegin* x) {
++ // nothing to do for now
++}
++
++void LIRGenerator::do_CheckCast(CheckCast* x) {
++ LIRItem obj(x->obj(), this);
++
++ CodeEmitInfo* patching_info = NULL;
++ if (!x->klass()->is_loaded() ||
++ (PatchALot && !x->is_incompatible_class_change_check() && !x->is_invokespecial_receiver_check())) {
++ // must do this before locking the destination register as an oop register,
++ // and before the obj is loaded (the latter is for deoptimization)
++ patching_info = state_for(x, x->state_before());
++ }
++ obj.load_item();
++
++ // info for exceptions
++ CodeEmitInfo* info_for_exception =
++ (x->needs_exception_state() ? state_for(x) :
++ state_for(x, x->state_before(), true /*ignore_xhandler*/ ));
++
++ CodeStub* stub = NULL;
++ if (x->is_incompatible_class_change_check()) {
++ assert(patching_info == NULL, "can't patch this");
++ stub = new SimpleExceptionStub(Runtime1::throw_incompatible_class_change_error_id, LIR_OprFact::illegalOpr,
++ info_for_exception);
++ } else if (x->is_invokespecial_receiver_check()) {
++ assert(patching_info == NULL, "can't patch this");
++ stub = new DeoptimizeStub(info_for_exception,
++ Deoptimization::Reason_class_check,
++ Deoptimization::Action_none);
++ } else {
++ stub = new SimpleExceptionStub(Runtime1::throw_class_cast_exception_id, obj.result(), info_for_exception);
++ }
++ LIR_Opr reg = rlock_result(x);
++ LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
++ if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
++ tmp3 = new_register(objectType);
++ }
++ __ checkcast(reg, obj.result(), x->klass(),
++ new_register(objectType), new_register(objectType), tmp3,
++ x->direct_compare(), info_for_exception, patching_info, stub,
++ x->profiled_method(), x->profiled_bci());
++}
++
++void LIRGenerator::do_InstanceOf(InstanceOf* x) {
++ LIRItem obj(x->obj(), this);
++
++ // result and test object may not be in same register
++ LIR_Opr reg = rlock_result(x);
++ CodeEmitInfo* patching_info = NULL;
++ if ((!x->klass()->is_loaded() || PatchALot)) {
++ // must do this before locking the destination register as an oop register
++ patching_info = state_for(x, x->state_before());
++ }
++ obj.load_item();
++ LIR_Opr tmp3 = LIR_OprFact::illegalOpr;
++ if (!x->klass()->is_loaded() || UseCompressedClassPointers) {
++ tmp3 = new_register(objectType);
++ }
++ __ instanceof(reg, obj.result(), x->klass(),
++ new_register(objectType), new_register(objectType), tmp3,
++ x->direct_compare(), patching_info, x->profiled_method(), x->profiled_bci());
++}
++
++void LIRGenerator::do_If(If* x) {
++ // If should have two successors
++ assert(x->number_of_sux() == 2, "inconsistency");
++ ValueTag tag = x->x()->type()->tag();
++ bool is_safepoint = x->is_safepoint();
++
++ If::Condition cond = x->cond();
++
++ LIRItem xitem(x->x(), this);
++ LIRItem yitem(x->y(), this);
++ LIRItem* xin = &xitem;
++ LIRItem* yin = &yitem;
++
++ if (tag == longTag) {
++ // for longs, only conditions "eql", "neq", "lss", "geq" are valid;
++ // mirror for other conditions
++ if (cond == If::gtr || cond == If::leq) {
++ cond = Instruction::mirror(cond);
++ xin = &yitem;
++ yin = &xitem;
++ }
++ xin->set_destroys_register();
++ }
++ xin->load_item();
++ yin->load_item();
++
++ set_no_result(x);
++
++ LIR_Opr left = xin->result();
++ LIR_Opr right = yin->result();
++
++ // add safepoint before generating condition code so it can be recomputed
++ if (x->is_safepoint()) {
++ // increment backedge counter if needed
++ increment_backedge_counter_conditionally(lir_cond(cond), left, right, state_for(x, x->state_before()),
++ x->tsux()->bci(), x->fsux()->bci(), x->profiled_bci());
++ __ safepoint(LIR_OprFact::illegalOpr, state_for(x, x->state_before()));
++ }
++
++ // Generate branch profiling. Profiling code doesn't kill flags.
++ __ cmp(lir_cond(cond), left, right);
++ profile_branch(x, cond);
++ move_to_phi(x->state());
++ if (x->x()->type()->is_float_kind()) {
++ __ branch(lir_cond(cond), x->tsux(), x->usux());
++ } else {
++ __ branch(lir_cond(cond), x->tsux());
++ }
++ assert(x->default_sux() == x->fsux(), "wrong destination above");
++ __ jump(x->default_sux());
++}
++
++LIR_Opr LIRGenerator::getThreadPointer() {
++ return FrameMap::as_pointer_opr(xthread);
++}
++
++void LIRGenerator::trace_block_entry(BlockBegin* block) { Unimplemented(); }
++
++void LIRGenerator::volatile_field_store(LIR_Opr value, LIR_Address* address,
++ CodeEmitInfo* info) {
++ __ volatile_store_mem_reg(value, address, info);
++}
++
++void LIRGenerator::volatile_field_load(LIR_Address* address, LIR_Opr result,
++ CodeEmitInfo* info) {
++ __ volatile_load_mem_reg(address, result, info);
++}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/c1_LIR_riscv.cpp
+@@ -0,0 +1,55 @@
++/*
++ * Copyright (c) 2016, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/register.hpp"
++#include "c1/c1_LIR.hpp"
++
++FloatRegister LIR_OprDesc::as_float_reg() const {
++ return as_FloatRegister(fpu_regnr());
++}
++
++FloatRegister LIR_OprDesc::as_double_reg() const {
++ return as_FloatRegister(fpu_regnrLo());
++}
++
++// Reg2 unused.
++LIR_Opr LIR_OprFact::double_fpu(int reg1, int reg2) {
++ assert(as_FloatRegister(reg2) == fnoreg, "Not used on this platform");
++ return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
++ (reg1 << LIR_OprDesc::reg2_shift) |
++ LIR_OprDesc::double_type |
++ LIR_OprDesc::fpu_register |
++ LIR_OprDesc::double_size);
++}
++
++#ifndef PRODUCT
++void LIR_Address::verify() const {
++ assert(base()->is_cpu_register(), "wrong base operand");
++ assert(index()->is_illegal() || index()->is_double_cpu() || index()->is_single_cpu(), "wrong index operand");
++ assert(base()->type() == T_ADDRESS || base()->type() == T_OBJECT || base()->type() == T_LONG ||
++ base()->type() == T_METADATA, "wrong type for addresses");
++}
++#endif // PRODUCT
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/c1_LinearScan_riscv.cpp
+@@ -0,0 +1,33 @@
++/*
++ * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "c1/c1_Instruction.hpp"
++#include "c1/c1_LinearScan.hpp"
++#include "utilities/bitMap.inline.hpp"
++
++void LinearScan::allocate_fpu_stack() {
++ // No FPU stack on RISCV
++}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/c1_LinearScan_riscv.hpp
+@@ -0,0 +1,83 @@
++/*
++ * Copyright (c) 2005, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_C1_LINEARSCAN_RISCV_HPP
++#define CPU_RISCV_C1_LINEARSCAN_RISCV_HPP
++
++inline bool LinearScan::is_processed_reg_num(int reg_num)
++{
++ return reg_num <= FrameMap::last_cpu_reg() || reg_num >= pd_nof_cpu_regs_frame_map;
++}
++
++inline int LinearScan::num_physical_regs(BasicType type) {
++ return 1;
++}
++
++inline bool LinearScan::requires_adjacent_regs(BasicType type) {
++ return false;
++}
++
++inline bool LinearScan::is_caller_save(int assigned_reg) {
++ assert(assigned_reg >= 0 && assigned_reg < nof_regs, "should call this only for registers");
++ if (assigned_reg < pd_first_callee_saved_reg) {
++ return true;
++ }
++ if (assigned_reg > pd_last_callee_saved_reg && assigned_reg < pd_first_callee_saved_fpu_reg_1) {
++ return true;
++ }
++ if (assigned_reg > pd_last_callee_saved_fpu_reg_1 && assigned_reg < pd_first_callee_saved_fpu_reg_2) {
++ return true;
++ }
++ if (assigned_reg > pd_last_callee_saved_fpu_reg_2 && assigned_reg < pd_last_fpu_reg) {
++ return true;
++ }
++ return false;
++}
++
++inline void LinearScan::pd_add_temps(LIR_Op* op) {
++ // No special case behaviours yet
++}
++
++
++// Implementation of LinearScanWalker
++
++inline bool LinearScanWalker::pd_init_regs_for_alloc(Interval* cur)
++{
++ if (allocator()->gen()->is_vreg_flag_set(cur->reg_num(), LIRGenerator::callee_saved)) {
++ assert(cur->type() != T_FLOAT && cur->type() != T_DOUBLE, "cpu regs only");
++ _first_reg = pd_first_callee_saved_reg;
++ _last_reg = pd_last_callee_saved_reg;
++ return true;
++ } else if (cur->type() == T_INT || cur->type() == T_LONG || cur->type() == T_OBJECT ||
++ cur->type() == T_ADDRESS || cur->type() == T_METADATA) {
++ _first_reg = pd_first_cpu_reg;
++ _last_reg = pd_last_allocatable_cpu_reg;
++ return true;
++ }
++ return false;
++}
++
++#endif // CPU_RISCV_C1_LINEARSCAN_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/c1_MacroAssembler_riscv.cpp
+@@ -0,0 +1,451 @@
++/*
++ * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "c1/c1_LIR.hpp"
++#include "c1/c1_MacroAssembler.hpp"
++#include "c1/c1_Runtime1.hpp"
++#include "classfile/systemDictionary.hpp"
++#include "gc/shared/barrierSetAssembler.hpp"
++#include "gc/shared/collectedHeap.hpp"
++#include "interpreter/interpreter.hpp"
++#include "oops/arrayOop.hpp"
++#include "oops/markWord.hpp"
++#include "runtime/basicLock.hpp"
++#include "runtime/os.hpp"
++#include "runtime/sharedRuntime.hpp"
++#include "runtime/stubRoutines.hpp"
++
++void C1_MacroAssembler::float_cmp(bool is_float, int unordered_result,
++ FloatRegister freg0, FloatRegister freg1,
++ Register result) {
++ if (is_float) {
++ float_compare(result, freg0, freg1, unordered_result);
++ } else {
++ double_compare(result, freg0, freg1, unordered_result);
++ }
++}
++
++int C1_MacroAssembler::lock_object(Register hdr, Register obj, Register disp_hdr, Register tmp, Label& slow_case) {
++ const int aligned_mask = BytesPerWord - 1;
++ const int hdr_offset = oopDesc::mark_offset_in_bytes();
++ assert(hdr != obj && hdr != disp_hdr && obj != disp_hdr, "registers must be different");
++ Label done;
++ int null_check_offset = -1;
++
++ verify_oop(obj);
++
++ // save object being locked into the BasicObjectLock
++ sd(obj, Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes()));
++
++ null_check_offset = offset();
++
++ if (DiagnoseSyncOnValueBasedClasses != 0) {
++ load_klass(hdr, obj);
++ lwu(hdr, Address(hdr, Klass::access_flags_offset()));
++ test_bit(t0, hdr, exact_log2(JVM_ACC_IS_VALUE_BASED_CLASS));
++ bnez(t0, slow_case, true /* is_far */);
++ }
++
++ if (UseBiasedLocking) {
++ assert(tmp != noreg, "should have tmp register at this point");
++ biased_locking_enter(disp_hdr, obj, hdr, tmp, false, done, &slow_case);
++ }
++
++ // Load object header
++ ld(hdr, Address(obj, hdr_offset));
++ // and mark it as unlocked
++ ori(hdr, hdr, markWord::unlocked_value);
++ // save unlocked object header into the displaced header location on the stack
++ sd(hdr, Address(disp_hdr, 0));
++ // test if object header is still the same (i.e. unlocked), and if so, store the
++ // displaced header address in the object header - if it is not the same, get the
++ // object header instead
++ la(t1, Address(obj, hdr_offset));
++ cmpxchgptr(hdr, disp_hdr, t1, t0, done, /*fallthough*/NULL);
++ // if the object header was the same, we're done
++ // if the object header was not the same, it is now in the hdr register
++ // => test if it is a stack pointer into the same stack (recursive locking), i.e.:
++ //
++ // 1) (hdr & aligned_mask) == 0
++ // 2) sp <= hdr
++ // 3) hdr <= sp + page_size
++ //
++ // these 3 tests can be done by evaluating the following expression:
++ //
++ // (hdr -sp) & (aligned_mask - page_size)
++ //
++ // assuming both the stack pointer and page_size have their least
++ // significant 2 bits cleared and page_size is a power of 2
++ sub(hdr, hdr, sp);
++ mv(t0, aligned_mask - os::vm_page_size());
++ andr(hdr, hdr, t0);
++ // for recursive locking, the result is zero => save it in the displaced header
++ // location (NULL in the displaced hdr location indicates recursive locking)
++ sd(hdr, Address(disp_hdr, 0));
++ // otherwise we don't care about the result and handle locking via runtime call
++ bnez(hdr, slow_case, /* is_far */ true);
++ bind(done);
++ return null_check_offset;
++}
++
++void C1_MacroAssembler::unlock_object(Register hdr, Register obj, Register disp_hdr, Label& slow_case) {
++ const int aligned_mask = BytesPerWord - 1;
++ const int hdr_offset = oopDesc::mark_offset_in_bytes();
++ assert(hdr != obj && hdr != disp_hdr && obj != disp_hdr, "registers must be different");
++ Label done;
++
++ if (UseBiasedLocking) {
++ // load object
++ ld(obj, Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes()));
++ biased_locking_exit(obj, hdr, done);
++ }
++
++ // load displaced header
++ ld(hdr, Address(disp_hdr, 0));
++ // if the loaded hdr is NULL we had recursive locking
++ // if we had recursive locking, we are done
++ beqz(hdr, done);
++ if (!UseBiasedLocking) {
++ // load object
++ ld(obj, Address(disp_hdr, BasicObjectLock::obj_offset_in_bytes()));
++ }
++ verify_oop(obj);
++ // test if object header is pointing to the displaced header, and if so, restore
++ // the displaced header in the object - if the object header is not pointing to
++ // the displaced header, get the object header instead
++ // if the object header was not pointing to the displaced header,
++ // we do unlocking via runtime call
++ if (hdr_offset) {
++ la(t0, Address(obj, hdr_offset));
++ cmpxchgptr(disp_hdr, hdr, t0, t1, done, &slow_case);
++ } else {
++ cmpxchgptr(disp_hdr, hdr, obj, t1, done, &slow_case);
++ }
++ bind(done);
++}
++
++// Defines obj, preserves var_size_in_bytes
++void C1_MacroAssembler::try_allocate(Register obj, Register var_size_in_bytes, int con_size_in_bytes, Register tmp1, Register tmp2, Label& slow_case) {
++ if (UseTLAB) {
++ tlab_allocate(obj, var_size_in_bytes, con_size_in_bytes, tmp1, tmp2, slow_case, /* is_far */ true);
++ } else {
++ eden_allocate(obj, var_size_in_bytes, con_size_in_bytes, tmp1, slow_case, /* is_far */ true);
++ }
++}
++
++void C1_MacroAssembler::initialize_header(Register obj, Register klass, Register len, Register tmp1, Register tmp2) {
++ assert_different_registers(obj, klass, len);
++ if (UseBiasedLocking & !len->is_valid()) {
++ assert_different_registers(obj, klass, len, tmp1, tmp2);
++ ld(tmp1, Address(klass, Klass::prototype_header_offset()));
++ } else {
++ // This assumes that all prototype bits fitr in an int32_t
++ mv(tmp1, (int32_t)(intptr_t)markWord::prototype().value());
++ }
++ sd(tmp1, Address(obj, oopDesc::mark_offset_in_bytes()));
++
++ if (UseCompressedClassPointers) { // Take care not to kill klass
++ encode_klass_not_null(tmp1, klass, tmp2);
++ sw(tmp1, Address(obj, oopDesc::klass_offset_in_bytes()));
++ } else {
++ sd(klass, Address(obj, oopDesc::klass_offset_in_bytes()));
++ }
++
++ if (len->is_valid()) {
++ sw(len, Address(obj, arrayOopDesc::length_offset_in_bytes()));
++ } else if (UseCompressedClassPointers) {
++ store_klass_gap(obj, zr);
++ }
++}
++
++// preserves obj, destroys len_in_bytes
++void C1_MacroAssembler::initialize_body(Register obj, Register len_in_bytes, int hdr_size_in_bytes, Register tmp) {
++ assert(hdr_size_in_bytes >= 0, "header size must be positive or 0");
++ Label done;
++
++ // len_in_bytes is positive and ptr sized
++ sub(len_in_bytes, len_in_bytes, hdr_size_in_bytes);
++ beqz(len_in_bytes, done);
++
++ // Preserve obj
++ if (hdr_size_in_bytes) {
++ add(obj, obj, hdr_size_in_bytes);
++ }
++ zero_memory(obj, len_in_bytes, tmp);
++ if (hdr_size_in_bytes) {
++ sub(obj, obj, hdr_size_in_bytes);
++ }
++
++ bind(done);
++}
++
++void C1_MacroAssembler::allocate_object(Register obj, Register tmp1, Register tmp2, int header_size, int object_size, Register klass, Label& slow_case) {
++ assert_different_registers(obj, tmp1, tmp2);
++ assert(header_size >= 0 && object_size >= header_size, "illegal sizes");
++
++ try_allocate(obj, noreg, object_size * BytesPerWord, tmp1, tmp2, slow_case);
++
++ initialize_object(obj, klass, noreg, object_size * HeapWordSize, tmp1, tmp2, UseTLAB);
++}
++
++void C1_MacroAssembler::initialize_object(Register obj, Register klass, Register var_size_in_bytes, int con_size_in_bytes, Register tmp1, Register tmp2, bool is_tlab_allocated) {
++ assert((con_size_in_bytes & MinObjAlignmentInBytesMask) == 0,
++ "con_size_in_bytes is not multiple of alignment");
++ const int hdr_size_in_bytes = instanceOopDesc::header_size() * HeapWordSize;
++
++ initialize_header(obj, klass, noreg, tmp1, tmp2);
++
++ if (!(UseTLAB && ZeroTLAB && is_tlab_allocated)) {
++ // clear rest of allocated space
++ const Register index = tmp2;
++ // 16: multipler for threshold
++ const int threshold = 16 * BytesPerWord; // approximate break even point for code size (see comments below)
++ if (var_size_in_bytes != noreg) {
++ mv(index, var_size_in_bytes);
++ initialize_body(obj, index, hdr_size_in_bytes, tmp1);
++ } else if (con_size_in_bytes <= threshold) {
++ // use explicit null stores
++ int i = hdr_size_in_bytes;
++ if (i < con_size_in_bytes && (con_size_in_bytes % (2 * BytesPerWord))) { // 2: multipler for BytesPerWord
++ sd(zr, Address(obj, i));
++ i += BytesPerWord;
++ }
++ for (; i < con_size_in_bytes; i += BytesPerWord) {
++ sd(zr, Address(obj, i));
++ }
++ } else if (con_size_in_bytes > hdr_size_in_bytes) {
++ block_comment("zero memory");
++ // use loop to null out the fields
++ int words = (con_size_in_bytes - hdr_size_in_bytes) / BytesPerWord;
++ mv(index, words / 8); // 8: byte size
++
++ const int unroll = 8; // Number of sd(zr) instructions we'll unroll
++ int remainder = words % unroll;
++ la(t0, Address(obj, hdr_size_in_bytes + remainder * BytesPerWord));
++
++ Label entry_point, loop;
++ j(entry_point);
++
++ bind(loop);
++ sub(index, index, 1);
++ for (int i = -unroll; i < 0; i++) {
++ if (-i == remainder) {
++ bind(entry_point);
++ }
++ sd(zr, Address(t0, i * wordSize));
++ }
++ if (remainder == 0) {
++ bind(entry_point);
++ }
++ add(t0, t0, unroll * wordSize);
++ bnez(index, loop);
++ }
++ }
++
++ membar(MacroAssembler::StoreStore);
++
++ if (CURRENT_ENV->dtrace_alloc_probes()) {
++ assert(obj == x10, "must be");
++ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)));
++ }
++
++ verify_oop(obj);
++}
++
++void C1_MacroAssembler::allocate_array(Register obj, Register len, Register tmp1, Register tmp2, int header_size, int f, Register klass, Label& slow_case) {
++ assert_different_registers(obj, len, tmp1, tmp2, klass);
++
++ // determine alignment mask
++ assert(!(BytesPerWord & 1), "must be multiple of 2 for masking code to work");
++
++ // check for negative or excessive length
++ mv(t0, (int32_t)max_array_allocation_length);
++ bgeu(len, t0, slow_case, /* is_far */ true);
++
++ const Register arr_size = tmp2; // okay to be the same
++ // align object end
++ mv(arr_size, (int32_t)header_size * BytesPerWord + MinObjAlignmentInBytesMask);
++ shadd(arr_size, len, arr_size, t0, f);
++ andi(arr_size, arr_size, ~(uint)MinObjAlignmentInBytesMask);
++
++ try_allocate(obj, arr_size, 0, tmp1, tmp2, slow_case);
++
++ initialize_header(obj, klass, len, tmp1, tmp2);
++
++ // clear rest of allocated space
++ const Register len_zero = len;
++ initialize_body(obj, arr_size, header_size * BytesPerWord, len_zero);
++
++ membar(MacroAssembler::StoreStore);
++
++ if (CURRENT_ENV->dtrace_alloc_probes()) {
++ assert(obj == x10, "must be");
++ far_call(RuntimeAddress(Runtime1::entry_for(Runtime1::dtrace_object_alloc_id)));
++ }
++
++ verify_oop(obj);
++}
++
++void C1_MacroAssembler::inline_cache_check(Register receiver, Register iCache, Label &L) {
++ verify_oop(receiver);
++ // explicit NULL check not needed since load from [klass_offset] causes a trap
++ // check against inline cache
++ assert(!MacroAssembler::needs_explicit_null_check(oopDesc::klass_offset_in_bytes()), "must add explicit null check");
++ assert_different_registers(receiver, iCache, t0, t2);
++ cmp_klass(receiver, iCache, t0, t2 /* call-clobbered t2 as a tmp */, L);
++}
++
++void C1_MacroAssembler::build_frame(int framesize, int bang_size_in_bytes) {
++ assert(bang_size_in_bytes >= framesize, "stack bang size incorrect");
++ // Make sure there is enough stack space for this method's activation.
++ // Note that we do this before creating a frame.
++ generate_stack_overflow_check(bang_size_in_bytes);
++ MacroAssembler::build_frame(framesize);
++
++ // Insert nmethod entry barrier into frame.
++ BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
++ bs->nmethod_entry_barrier(this);
++}
++
++void C1_MacroAssembler::remove_frame(int framesize) {
++ MacroAssembler::remove_frame(framesize);
++}
++
++
++void C1_MacroAssembler::verified_entry(bool breakAtEntry) {
++ // If we have to make this method not-entrant we'll overwrite its
++ // first instruction with a jump. For this action to be legal we
++ // must ensure that this first instruction is a J, JAL or NOP.
++ // Make it a NOP.
++ IncompressibleRegion ir(this); // keep the nop as 4 bytes for patching.
++ assert_alignment(pc());
++ nop(); // 4 bytes
++}
++
++void C1_MacroAssembler::load_parameter(int offset_in_words, Register reg) {
++ // fp + -2: link
++ // + -1: return address
++ // + 0: argument with offset 0
++ // + 1: argument with offset 1
++ // + 2: ...
++ ld(reg, Address(fp, offset_in_words * BytesPerWord));
++}
++
++#ifndef PRODUCT
++
++void C1_MacroAssembler::verify_stack_oop(int stack_offset) {
++ if (!VerifyOops) {
++ return;
++ }
++ verify_oop_addr(Address(sp, stack_offset), "oop");
++}
++
++void C1_MacroAssembler::verify_not_null_oop(Register r) {
++ if (!VerifyOops) return;
++ Label not_null;
++ bnez(r, not_null);
++ stop("non-null oop required");
++ bind(not_null);
++ verify_oop(r);
++}
++
++void C1_MacroAssembler::invalidate_registers(bool inv_x10, bool inv_x9, bool inv_x12, bool inv_x13, bool inv_x14, bool inv_x15) {
++#ifdef ASSERT
++ static int nn;
++ if (inv_x10) { mv(x10, 0xDEAD); }
++ if (inv_x9) { mv(x9, 0xDEAD); }
++ if (inv_x12) { mv(x12, nn++); }
++ if (inv_x13) { mv(x13, 0xDEAD); }
++ if (inv_x14) { mv(x14, 0xDEAD); }
++ if (inv_x15) { mv(x15, 0xDEAD); }
++#endif // ASSERT
++}
++#endif // ifndef PRODUCT
++
++typedef void (C1_MacroAssembler::*c1_cond_branch_insn)(Register op1, Register op2, Label& label, bool is_far);
++typedef void (C1_MacroAssembler::*c1_float_cond_branch_insn)(FloatRegister op1, FloatRegister op2,
++ Label& label, bool is_far, bool is_unordered);
++
++static c1_cond_branch_insn c1_cond_branch[] =
++{
++ /* SHORT branches */
++ (c1_cond_branch_insn)&MacroAssembler::beq,
++ (c1_cond_branch_insn)&MacroAssembler::bne,
++ (c1_cond_branch_insn)&MacroAssembler::blt,
++ (c1_cond_branch_insn)&MacroAssembler::ble,
++ (c1_cond_branch_insn)&MacroAssembler::bge,
++ (c1_cond_branch_insn)&MacroAssembler::bgt,
++ (c1_cond_branch_insn)&MacroAssembler::bleu, // lir_cond_belowEqual
++ (c1_cond_branch_insn)&MacroAssembler::bgeu // lir_cond_aboveEqual
++};
++
++static c1_float_cond_branch_insn c1_float_cond_branch[] =
++{
++ /* FLOAT branches */
++ (c1_float_cond_branch_insn)&MacroAssembler::float_beq,
++ (c1_float_cond_branch_insn)&MacroAssembler::float_bne,
++ (c1_float_cond_branch_insn)&MacroAssembler::float_blt,
++ (c1_float_cond_branch_insn)&MacroAssembler::float_ble,
++ (c1_float_cond_branch_insn)&MacroAssembler::float_bge,
++ (c1_float_cond_branch_insn)&MacroAssembler::float_bgt,
++ NULL, // lir_cond_belowEqual
++ NULL, // lir_cond_aboveEqual
++
++ /* DOUBLE branches */
++ (c1_float_cond_branch_insn)&MacroAssembler::double_beq,
++ (c1_float_cond_branch_insn)&MacroAssembler::double_bne,
++ (c1_float_cond_branch_insn)&MacroAssembler::double_blt,
++ (c1_float_cond_branch_insn)&MacroAssembler::double_ble,
++ (c1_float_cond_branch_insn)&MacroAssembler::double_bge,
++ (c1_float_cond_branch_insn)&MacroAssembler::double_bgt,
++ NULL, // lir_cond_belowEqual
++ NULL // lir_cond_aboveEqual
++};
++
++void C1_MacroAssembler::c1_cmp_branch(int cmpFlag, Register op1, Register op2, Label& label,
++ BasicType type, bool is_far) {
++ if (type == T_OBJECT || type == T_ARRAY) {
++ assert(cmpFlag == lir_cond_equal || cmpFlag == lir_cond_notEqual, "Should be equal or notEqual");
++ if (cmpFlag == lir_cond_equal) {
++ beq(op1, op2, label, is_far);
++ } else {
++ bne(op1, op2, label, is_far);
++ }
++ } else {
++ assert(cmpFlag >= 0 && cmpFlag < (int)(sizeof(c1_cond_branch) / sizeof(c1_cond_branch[0])),
++ "invalid c1 conditional branch index");
++ (this->*c1_cond_branch[cmpFlag])(op1, op2, label, is_far);
++ }
++}
++
++void C1_MacroAssembler::c1_float_cmp_branch(int cmpFlag, FloatRegister op1, FloatRegister op2, Label& label,
++ bool is_far, bool is_unordered) {
++ assert(cmpFlag >= 0 &&
++ cmpFlag < (int)(sizeof(c1_float_cond_branch) / sizeof(c1_float_cond_branch[0])),
++ "invalid c1 float conditional branch index");
++ (this->*c1_float_cond_branch[cmpFlag])(op1, op2, label, is_far, is_unordered);
++}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/c1_MacroAssembler_riscv.hpp
+@@ -0,0 +1,121 @@
++/*
++ * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_C1_MACROASSEMBLER_RISCV_HPP
++#define CPU_RISCV_C1_MACROASSEMBLER_RISCV_HPP
++
++using MacroAssembler::build_frame;
++using MacroAssembler::null_check;
++
++// C1_MacroAssembler contains high-level macros for C1
++
++ private:
++ int _rsp_offset; // track rsp changes
++ // initialization
++ void pd_init() { _rsp_offset = 0; }
++
++
++ public:
++ void try_allocate(
++ Register obj, // result: pointer to object after successful allocation
++ Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
++ int con_size_in_bytes, // object size in bytes if known at compile time
++ Register tmp1, // temp register
++ Register tmp2, // temp register
++ Label& slow_case // continuation point if fast allocation fails
++ );
++
++ void initialize_header(Register obj, Register klass, Register len, Register tmp1, Register tmp2);
++ void initialize_body(Register obj, Register len_in_bytes, int hdr_size_in_bytes, Register tmp);
++
++ void float_cmp(bool is_float, int unordered_result,
++ FloatRegister f0, FloatRegister f1,
++ Register result);
++
++ // locking
++ // hdr : must be x10, contents destroyed
++ // obj : must point to the object to lock, contents preserved
++ // disp_hdr: must point to the displaced header location, contents preserved
++ // tmp : temporary register, contents destroyed
++ // returns code offset at which to add null check debug information
++ int lock_object (Register swap, Register obj, Register disp_hdr, Register tmp, Label& slow_case);
++
++ // unlocking
++ // hdr : contents destroyed
++ // obj : must point to the object to lock, contents preserved
++ // disp_hdr: must be x10 & must point to the displaced header location, contents destroyed
++ void unlock_object(Register swap, Register obj, Register lock, Label& slow_case);
++
++ void initialize_object(
++ Register obj, // result: pointer to object after successful allocation
++ Register klass, // object klass
++ Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
++ int con_size_in_bytes, // object size in bytes if known at compile time
++ Register tmp1, // temp register
++ Register tmp2, // temp register
++ bool is_tlab_allocated // the object was allocated in a TLAB; relevant for the implementation of ZeroTLAB
++ );
++
++ // allocation of fixed-size objects
++ // (can also be used to allocate fixed-size arrays, by setting
++ // hdr_size correctly and storing the array length afterwards)
++ // obj : will contain pointer to allocated object
++ // t1, t2 : temp registers - contents destroyed
++ // header_size: size of object header in words
++ // object_size: total size of object in words
++ // slow_case : exit to slow case implementation if fast allocation fails
++ void allocate_object(Register obj, Register tmp1, Register tmp2, int header_size, int object_size, Register klass, Label& slow_case);
++
++ enum {
++ max_array_allocation_length = 0x00FFFFFF
++ };
++
++ // allocation of arrays
++ // obj : will contain pointer to allocated object
++ // len : array length in number of elements
++ // t : temp register - contents destroyed
++ // header_size: size of object header in words
++ // f : element scale factor
++ // slow_case : exit to slow case implementation if fast allocation fails
++ void allocate_array(Register obj, Register len, Register tmp1, Register tmp2, int header_size, int f, Register klass, Label& slow_case);
++
++ int rsp_offset() const { return _rsp_offset; }
++
++ void invalidate_registers(bool inv_r0, bool inv_r19, bool inv_r2, bool inv_r3, bool inv_r4, bool inv_r5) PRODUCT_RETURN;
++
++ // This platform only uses signal-based null checks. The Label is not needed.
++ void null_check(Register r, Label *Lnull = NULL) { MacroAssembler::null_check(r); }
++
++ void load_parameter(int offset_in_words, Register reg);
++
++ void inline_cache_check(Register receiver, Register iCache, Label &L);
++
++ static const int c1_double_branch_mask = 1 << 3; // depend on c1_float_cond_branch
++ void c1_cmp_branch(int cmpFlag, Register op1, Register op2, Label& label, BasicType type, bool is_far);
++ void c1_float_cmp_branch(int cmpFlag, FloatRegister op1, FloatRegister op2, Label& label,
++ bool is_far, bool is_unordered = false);
++
++#endif // CPU_RISCV_C1_MACROASSEMBLER_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/c1_Runtime1_riscv.cpp
+@@ -0,0 +1,1179 @@
++/*
++ * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/assembler.hpp"
++#include "c1/c1_CodeStubs.hpp"
++#include "c1/c1_Defs.hpp"
++#include "c1/c1_MacroAssembler.hpp"
++#include "c1/c1_Runtime1.hpp"
++#include "compiler/disassembler.hpp"
++#include "compiler/oopMap.hpp"
++#include "gc/shared/cardTable.hpp"
++#include "gc/shared/cardTableBarrierSet.hpp"
++#include "gc/shared/collectedHeap.hpp"
++#include "interpreter/interpreter.hpp"
++#include "memory/universe.hpp"
++#include "nativeInst_riscv.hpp"
++#include "oops/compiledICHolder.hpp"
++#include "oops/oop.inline.hpp"
++#include "prims/jvmtiExport.hpp"
++#include "register_riscv.hpp"
++#include "runtime/sharedRuntime.hpp"
++#include "runtime/signature.hpp"
++#include "runtime/stubRoutines.hpp"
++#include "runtime/vframe.hpp"
++#include "runtime/vframeArray.hpp"
++#include "utilities/powerOfTwo.hpp"
++#include "vmreg_riscv.inline.hpp"
++
++
++// Implementation of StubAssembler
++
++int StubAssembler::call_RT(Register oop_result, Register metadata_result, address entry, int args_size) {
++ // setup registers
++ assert(!(oop_result->is_valid() || metadata_result->is_valid()) || oop_result != metadata_result,
++ "registers must be different");
++ assert(oop_result != xthread && metadata_result != xthread, "registers must be different");
++ assert(args_size >= 0, "illegal args_size");
++ bool align_stack = false;
++
++ mv(c_rarg0, xthread);
++ set_num_rt_args(0); // Nothing on stack
++
++ Label retaddr;
++ set_last_Java_frame(sp, fp, retaddr, t0);
++
++ // do the call
++ RuntimeAddress target(entry);
++ relocate(target.rspec(), [&] {
++ int32_t offset;
++ la_patchable(t0, target, offset);
++ jalr(x1, t0, offset);
++ });
++ bind(retaddr);
++ int call_offset = offset();
++ // verify callee-saved register
++#ifdef ASSERT
++ push_reg(x10, sp);
++ { Label L;
++ get_thread(x10);
++ beq(xthread, x10, L);
++ stop("StubAssembler::call_RT: xthread not callee saved?");
++ bind(L);
++ }
++ pop_reg(x10, sp);
++#endif
++ reset_last_Java_frame(true);
++
++ // check for pending exceptions
++ { Label L;
++ // check for pending exceptions (java_thread is set upon return)
++ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset())));
++ beqz(t0, L);
++ // exception pending => remove activation and forward to exception handler
++ // make sure that the vm_results are cleared
++ if (oop_result->is_valid()) {
++ sd(zr, Address(xthread, JavaThread::vm_result_offset()));
++ }
++ if (metadata_result->is_valid()) {
++ sd(zr, Address(xthread, JavaThread::vm_result_2_offset()));
++ }
++ if (frame_size() == no_frame_size) {
++ leave();
++ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
++ } else if (_stub_id == Runtime1::forward_exception_id) {
++ should_not_reach_here();
++ } else {
++ far_jump(RuntimeAddress(Runtime1::entry_for(Runtime1::forward_exception_id)));
++ }
++ bind(L);
++ }
++ // get oop results if there are any and reset the values in the thread
++ if (oop_result->is_valid()) {
++ get_vm_result(oop_result, xthread);
++ }
++ if (metadata_result->is_valid()) {
++ get_vm_result_2(metadata_result, xthread);
++ }
++ return call_offset;
++}
++
++int StubAssembler::call_RT(Register oop_result, Register metadata_result, address entry, Register arg1) {
++ mv(c_rarg1, arg1);
++ return call_RT(oop_result, metadata_result, entry, 1);
++}
++
++int StubAssembler::call_RT(Register oop_result, Register metadata_result, address entry, Register arg1, Register arg2) {
++ const int arg_num = 2;
++ if (c_rarg1 == arg2) {
++ if (c_rarg2 == arg1) {
++ xorr(arg1, arg1, arg2);
++ xorr(arg2, arg1, arg2);
++ xorr(arg1, arg1, arg2);
++ } else {
++ mv(c_rarg2, arg2);
++ mv(c_rarg1, arg1);
++ }
++ } else {
++ mv(c_rarg1, arg1);
++ mv(c_rarg2, arg2);
++ }
++ return call_RT(oop_result, metadata_result, entry, arg_num);
++}
++
++int StubAssembler::call_RT(Register oop_result, Register metadata_result, address entry, Register arg1, Register arg2, Register arg3) {
++ const int arg_num = 3;
++ // if there is any conflict use the stack
++ if (arg1 == c_rarg2 || arg1 == c_rarg3 ||
++ arg2 == c_rarg1 || arg2 == c_rarg3 ||
++ arg3 == c_rarg1 || arg3 == c_rarg2) {
++ const int arg1_sp_offset = 0;
++ const int arg2_sp_offset = 1;
++ const int arg3_sp_offset = 2;
++ addi(sp, sp, -(arg_num + 1) * wordSize);
++ sd(arg1, Address(sp, arg1_sp_offset * wordSize));
++ sd(arg2, Address(sp, arg2_sp_offset * wordSize));
++ sd(arg3, Address(sp, arg3_sp_offset * wordSize));
++
++ ld(c_rarg1, Address(sp, arg1_sp_offset * wordSize));
++ ld(c_rarg2, Address(sp, arg2_sp_offset * wordSize));
++ ld(c_rarg3, Address(sp, arg3_sp_offset * wordSize));
++ addi(sp, sp, (arg_num + 1) * wordSize);
++ } else {
++ mv(c_rarg1, arg1);
++ mv(c_rarg2, arg2);
++ mv(c_rarg3, arg3);
++ }
++ return call_RT(oop_result, metadata_result, entry, arg_num);
++}
++
++enum return_state_t {
++ does_not_return, requires_return
++};
++
++// Implementation of StubFrame
++
++class StubFrame: public StackObj {
++ private:
++ StubAssembler* _sasm;
++ bool _return_state;
++
++ public:
++ StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments, return_state_t return_state=requires_return);
++ void load_argument(int offset_in_words, Register reg);
++
++ ~StubFrame();
++};;
++
++void StubAssembler::prologue(const char* name, bool must_gc_arguments) {
++ set_info(name, must_gc_arguments);
++ enter();
++}
++
++void StubAssembler::epilogue() {
++ leave();
++ ret();
++}
++
++#define __ _sasm->
++
++StubFrame::StubFrame(StubAssembler* sasm, const char* name, bool must_gc_arguments, return_state_t return_state) {
++ _sasm = sasm;
++ _return_state = return_state;
++ __ prologue(name, must_gc_arguments);
++}
++
++// load parameters that were stored with LIR_Assembler::store_parameter
++// Note: offsets for store_parameter and load_argument must match
++void StubFrame::load_argument(int offset_in_words, Register reg) {
++ __ load_parameter(offset_in_words, reg);
++}
++
++
++StubFrame::~StubFrame() {
++ if (_return_state == requires_return) {
++ __ epilogue();
++ } else {
++ __ should_not_reach_here();
++ }
++ _sasm = NULL;
++}
++
++#undef __
++
++
++// Implementation of Runtime1
++
++#define __ sasm->
++
++const int float_regs_as_doubles_size_in_slots = pd_nof_fpu_regs_frame_map * 2;
++
++// Stack layout for saving/restoring all the registers needed during a runtime
++// call (this includes deoptimization)
++// Note: note that users of this frame may well have arguments to some runtime
++// while these values are on the stack. These positions neglect those arguments
++// but the code in save_live_registers will take the argument count into
++// account.
++//
++
++enum reg_save_layout {
++ reg_save_frame_size = 32 /* float */ + 30 /* integer excluding x3, x4 */
++};
++
++// Save off registers which might be killed by calls into the runtime.
++// Tries to smart of about FPU registers. In particular we separate
++// saving and describing the FPU registers for deoptimization since we
++// have to save the FPU registers twice if we describe them. The
++// deopt blob is the only thing which needs to describe FPU registers.
++// In all other cases it should be sufficient to simply save their
++// current value.
++
++static int cpu_reg_save_offsets[FrameMap::nof_cpu_regs];
++static int fpu_reg_save_offsets[FrameMap::nof_fpu_regs];
++
++static OopMap* generate_oop_map(StubAssembler* sasm, bool save_fpu_registers) {
++ int frame_size_in_bytes = reg_save_frame_size * BytesPerWord;
++ sasm->set_frame_size(frame_size_in_bytes / BytesPerWord);
++ int frame_size_in_slots = frame_size_in_bytes / sizeof(jint);
++ OopMap* oop_map = new OopMap(frame_size_in_slots, 0);
++ assert_cond(oop_map != NULL);
++
++ // caller save registers only, see FrameMap::initialize
++ // in c1_FrameMap_riscv.cpp for detail.
++ const static Register caller_save_cpu_regs[FrameMap::max_nof_caller_save_cpu_regs] = {
++ x7, x10, x11, x12, x13, x14, x15, x16, x17, x28, x29, x30, x31
++ };
++
++ for (int i = 0; i < FrameMap::max_nof_caller_save_cpu_regs; i++) {
++ Register r = caller_save_cpu_regs[i];
++ int sp_offset = cpu_reg_save_offsets[r->encoding()];
++ oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset),
++ r->as_VMReg());
++ }
++
++ // fpu_regs
++ if (save_fpu_registers) {
++ for (int i = 0; i < FrameMap::nof_fpu_regs; i++) {
++ FloatRegister r = as_FloatRegister(i);
++ int sp_offset = fpu_reg_save_offsets[i];
++ oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset),
++ r->as_VMReg());
++ }
++ }
++ return oop_map;
++}
++
++static OopMap* save_live_registers(StubAssembler* sasm,
++ bool save_fpu_registers = true) {
++ __ block_comment("save_live_registers");
++
++ // if the number of pushed regs is odd, one slot will be reserved for alignment
++ __ push_reg(RegSet::range(x5, x31), sp); // integer registers except ra(x1) & sp(x2) & gp(x3) & tp(x4)
++
++ if (save_fpu_registers) {
++ // float registers
++ __ addi(sp, sp, -(FrameMap::nof_fpu_regs * wordSize));
++ for (int i = 0; i < FrameMap::nof_fpu_regs; i++) {
++ __ fsd(as_FloatRegister(i), Address(sp, i * wordSize));
++ }
++ } else {
++ // we define reg_save_layout = 62 as the fixed frame size,
++ // we should also sub 32 * wordSize to sp when save_fpu_registers == false
++ __ addi(sp, sp, -32 * wordSize);
++ }
++
++ return generate_oop_map(sasm, save_fpu_registers);
++}
++
++static void restore_live_registers(StubAssembler* sasm, bool restore_fpu_registers = true) {
++ if (restore_fpu_registers) {
++ for (int i = 0; i < FrameMap::nof_fpu_regs; i++) {
++ __ fld(as_FloatRegister(i), Address(sp, i * wordSize));
++ }
++ __ addi(sp, sp, FrameMap::nof_fpu_regs * wordSize);
++ } else {
++ // we define reg_save_layout = 64 as the fixed frame size,
++ // we should also add 32 * wordSize to sp when save_fpu_registers == false
++ __ addi(sp, sp, 32 * wordSize);
++ }
++
++ // if the number of popped regs is odd, the reserved slot for alignment will be removed
++ __ pop_reg(RegSet::range(x5, x31), sp); // integer registers except ra(x1) & sp(x2) & gp(x3) & tp(x4)
++}
++
++static void restore_live_registers_except_r10(StubAssembler* sasm, bool restore_fpu_registers = true) {
++ if (restore_fpu_registers) {
++ for (int i = 0; i < FrameMap::nof_fpu_regs; i++) {
++ __ fld(as_FloatRegister(i), Address(sp, i * wordSize));
++ }
++ __ addi(sp, sp, FrameMap::nof_fpu_regs * wordSize);
++ } else {
++ // we define reg_save_layout = 64 as the fixed frame size,
++ // we should also add 32 * wordSize to sp when save_fpu_registers == false
++ __ addi(sp, sp, 32 * wordSize);
++ }
++
++ // pop integer registers except ra(x1) & sp(x2) & gp(x3) & tp(x4) & x10
++ // there is one reserved slot for alignment on the stack in save_live_registers().
++ __ pop_reg(RegSet::range(x5, x9), sp); // pop x5 ~ x9 with the reserved slot for alignment
++ __ pop_reg(RegSet::range(x11, x31), sp); // pop x11 ~ x31; x10 will be automatically skipped here
++}
++
++void Runtime1::initialize_pd() {
++ int i = 0;
++ int sp_offset = 0;
++ const int step = 2; // SP offsets are in halfwords
++
++ // all float registers are saved explicitly
++ for (i = 0; i < FrameMap::nof_fpu_regs; i++) {
++ fpu_reg_save_offsets[i] = sp_offset;
++ sp_offset += step;
++ }
++
++ // a slot reserved for stack 16-byte alignment, see MacroAssembler::push_reg
++ sp_offset += step;
++ // we save x5 ~ x31, except x0 ~ x4: loop starts from x5
++ for (i = 5; i < FrameMap::nof_cpu_regs; i++) {
++ cpu_reg_save_offsets[i] = sp_offset;
++ sp_offset += step;
++ }
++}
++
++// target: the entry point of the method that creates and posts the exception oop
++// has_argument: true if the exception needs arguments (passed in t0 and t1)
++
++OopMapSet* Runtime1::generate_exception_throw(StubAssembler* sasm, address target, bool has_argument) {
++ // make a frame and preserve the caller's caller-save registers
++ OopMap* oop_map = save_live_registers(sasm);
++ assert_cond(oop_map != NULL);
++ int call_offset = 0;
++ if (!has_argument) {
++ call_offset = __ call_RT(noreg, noreg, target);
++ } else {
++ __ mv(c_rarg1, t0);
++ __ mv(c_rarg2, t1);
++ call_offset = __ call_RT(noreg, noreg, target);
++ }
++ OopMapSet* oop_maps = new OopMapSet();
++ assert_cond(oop_maps != NULL);
++ oop_maps->add_gc_map(call_offset, oop_map);
++
++ return oop_maps;
++}
++
++OopMapSet* Runtime1::generate_handle_exception(StubID id, StubAssembler *sasm) {
++ __ block_comment("generate_handle_exception");
++
++ // incoming parameters
++ const Register exception_oop = x10;
++ const Register exception_pc = x13;
++
++ OopMapSet* oop_maps = new OopMapSet();
++ assert_cond(oop_maps != NULL);
++ OopMap* oop_map = NULL;
++
++ switch (id) {
++ case forward_exception_id:
++ // We're handling an exception in the context of a compiled frame.
++ // The registers have been saved in the standard places. Perform
++ // an exception lookup in the caller and dispatch to the handler
++ // if found. Otherwise unwind and dispatch to the callers
++ // exception handler.
++ oop_map = generate_oop_map(sasm, 1 /* thread */);
++
++ // load and clear pending exception oop into x10
++ __ ld(exception_oop, Address(xthread, Thread::pending_exception_offset()));
++ __ sd(zr, Address(xthread, Thread::pending_exception_offset()));
++
++ // load issuing PC (the return address for this stub) into x13
++ __ ld(exception_pc, Address(fp, frame::return_addr_offset * BytesPerWord));
++
++ // make sure that the vm_results are cleared (may be unnecessary)
++ __ sd(zr, Address(xthread, JavaThread::vm_result_offset()));
++ __ sd(zr, Address(xthread, JavaThread::vm_result_2_offset()));
++ break;
++ case handle_exception_nofpu_id:
++ case handle_exception_id:
++ // At this point all registers MAY be live.
++ oop_map = save_live_registers(sasm, id != handle_exception_nofpu_id);
++ break;
++ case handle_exception_from_callee_id: {
++ // At this point all registers except exception oop (x10) and
++ // exception pc (ra) are dead.
++ const int frame_size = 2 /* fp, return address */;
++ oop_map = new OopMap(frame_size * VMRegImpl::slots_per_word, 0);
++ sasm->set_frame_size(frame_size);
++ break;
++ }
++ default: ShouldNotReachHere();
++ }
++
++ // verify that only x10 and x13 are valid at this time
++ __ invalidate_registers(false, true, true, false, true, true);
++ // verify that x10 contains a valid exception
++ __ verify_not_null_oop(exception_oop);
++
++#ifdef ASSERT
++ // check that fields in JavaThread for exception oop and issuing pc are
++ // empty before writing to them
++ Label oop_empty;
++ __ ld(t0, Address(xthread, JavaThread::exception_oop_offset()));
++ __ beqz(t0, oop_empty);
++ __ stop("exception oop already set");
++ __ bind(oop_empty);
++
++ Label pc_empty;
++ __ ld(t0, Address(xthread, JavaThread::exception_pc_offset()));
++ __ beqz(t0, pc_empty);
++ __ stop("exception pc already set");
++ __ bind(pc_empty);
++#endif
++
++ // save exception oop and issuing pc into JavaThread
++ // (exception handler will load it from here)
++ __ sd(exception_oop, Address(xthread, JavaThread::exception_oop_offset()));
++ __ sd(exception_pc, Address(xthread, JavaThread::exception_pc_offset()));
++
++ // patch throwing pc into return address (has bci & oop map)
++ __ sd(exception_pc, Address(fp, frame::return_addr_offset * BytesPerWord));
++
++ // compute the exception handler.
++ // the exception oop and the throwing pc are read from the fields in JavaThread
++ int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, exception_handler_for_pc));
++ guarantee(oop_map != NULL, "NULL oop_map!");
++ oop_maps->add_gc_map(call_offset, oop_map);
++
++ // x10: handler address
++ // will be the deopt blob if nmethod was deoptimized while we looked up
++ // handler regardless of whether handler existed in the nmethod.
++
++ // only x10 is valid at this time, all other registers have been destroyed by the runtime call
++ __ invalidate_registers(false, true, true, true, true, true);
++
++ // patch the return address, this stub will directly return to the exception handler
++ __ sd(x10, Address(fp, frame::return_addr_offset * BytesPerWord));
++
++ switch (id) {
++ case forward_exception_id:
++ case handle_exception_nofpu_id:
++ case handle_exception_id:
++ // Restore the registers that were saved at the beginning.
++ restore_live_registers(sasm, id != handle_exception_nofpu_id);
++ break;
++ case handle_exception_from_callee_id:
++ break;
++ default: ShouldNotReachHere();
++ }
++
++ return oop_maps;
++}
++
++
++void Runtime1::generate_unwind_exception(StubAssembler *sasm) {
++ // incoming parameters
++ const Register exception_oop = x10;
++ // other registers used in this stub
++ const Register handler_addr = x11;
++
++ // verify that only x10, is valid at this time
++ __ invalidate_registers(false, true, true, true, true, true);
++
++#ifdef ASSERT
++ // check that fields in JavaThread for exception oop and issuing pc are empty
++ Label oop_empty;
++ __ ld(t0, Address(xthread, JavaThread::exception_oop_offset()));
++ __ beqz(t0, oop_empty);
++ __ stop("exception oop must be empty");
++ __ bind(oop_empty);
++
++ Label pc_empty;
++ __ ld(t0, Address(xthread, JavaThread::exception_pc_offset()));
++ __ beqz(t0, pc_empty);
++ __ stop("exception pc must be empty");
++ __ bind(pc_empty);
++#endif
++
++ // Save our return address because
++ // exception_handler_for_return_address will destroy it. We also
++ // save exception_oop
++ __ addi(sp, sp, -2 * wordSize);
++ __ sd(exception_oop, Address(sp, wordSize));
++ __ sd(ra, Address(sp));
++
++ // search the exception handler address of the caller (using the return address)
++ __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), xthread, ra);
++ // x10: exception handler address of the caller
++
++ // Only x10 is valid at this time; all other registers have been
++ // destroyed by the call.
++ __ invalidate_registers(false, true, true, true, false, true);
++
++ // move result of call into correct register
++ __ mv(handler_addr, x10);
++
++ // get throwing pc (= return address).
++ // ra has been destroyed by the call
++ __ ld(ra, Address(sp));
++ __ ld(exception_oop, Address(sp, wordSize));
++ __ addi(sp, sp, 2 * wordSize);
++ __ mv(x13, ra);
++
++ __ verify_not_null_oop(exception_oop);
++
++ // continue at exception handler (return address removed)
++ // note: do *not* remove arguments when unwinding the
++ // activation since the caller assumes having
++ // all arguments on the stack when entering the
++ // runtime to determine the exception handler
++ // (GC happens at call site with arguments!)
++ // x10: exception oop
++ // x13: throwing pc
++ // x11: exception handler
++ __ jr(handler_addr);
++}
++
++OopMapSet* Runtime1::generate_patching(StubAssembler* sasm, address target) {
++ // use the maximum number of runtime-arguments here because it is difficult to
++ // distinguish each RT-Call.
++ // Note: This number affects also the RT-Call in generate_handle_exception because
++ // the oop-map is shared for all calls.
++ DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
++ assert(deopt_blob != NULL, "deoptimization blob must have been created");
++
++ OopMap* oop_map = save_live_registers(sasm);
++ assert_cond(oop_map != NULL);
++
++ __ mv(c_rarg0, xthread);
++ Label retaddr;
++ __ set_last_Java_frame(sp, fp, retaddr, t0);
++ // do the call
++ RuntimeAddress addr(target);
++ __ relocate(addr.rspec(), [&] {
++ int32_t offset;
++ __ la_patchable(t0, addr, offset);
++ __ jalr(x1, t0, offset);
++ });
++ __ bind(retaddr);
++ OopMapSet* oop_maps = new OopMapSet();
++ assert_cond(oop_maps != NULL);
++ oop_maps->add_gc_map(__ offset(), oop_map);
++ // verify callee-saved register
++#ifdef ASSERT
++ { Label L;
++ __ get_thread(t0);
++ __ beq(xthread, t0, L);
++ __ stop("StubAssembler::call_RT: xthread not callee saved?");
++ __ bind(L);
++ }
++#endif
++ __ reset_last_Java_frame(true);
++
++#ifdef ASSERT
++ // Check that fields in JavaThread for exception oop and issuing pc are empty
++ Label oop_empty;
++ __ ld(t0, Address(xthread, Thread::pending_exception_offset()));
++ __ beqz(t0, oop_empty);
++ __ stop("exception oop must be empty");
++ __ bind(oop_empty);
++
++ Label pc_empty;
++ __ ld(t0, Address(xthread, JavaThread::exception_pc_offset()));
++ __ beqz(t0, pc_empty);
++ __ stop("exception pc must be empty");
++ __ bind(pc_empty);
++#endif
++
++ // Runtime will return true if the nmethod has been deoptimized, this is the
++ // expected scenario and anything else is an error. Note that we maintain a
++ // check on the result purely as a defensive measure.
++ Label no_deopt;
++ __ beqz(x10, no_deopt); // Have we deoptimized?
++
++ // Perform a re-execute. The proper return address is already on the stack,
++ // we just need to restore registers, pop all of our frames but the return
++ // address and jump to the deopt blob.
++
++ restore_live_registers(sasm);
++ __ leave();
++ __ far_jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
++
++ __ bind(no_deopt);
++ __ stop("deopt not performed");
++
++ return oop_maps;
++}
++
++OopMapSet* Runtime1::generate_code_for(StubID id, StubAssembler* sasm) {
++ // for better readability
++ const bool dont_gc_arguments = false;
++
++ // default value; overwritten for some optimized stubs that are called from methods that do not use the fpu
++ bool save_fpu_registers = true;
++
++ // stub code & info for the different stubs
++ OopMapSet* oop_maps = NULL;
++ switch (id) {
++ {
++ case forward_exception_id:
++ {
++ oop_maps = generate_handle_exception(id, sasm);
++ __ leave();
++ __ ret();
++ }
++ break;
++
++ case throw_div0_exception_id:
++ {
++ StubFrame f(sasm, "throw_div0_exception", dont_gc_arguments, does_not_return);
++ oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_div0_exception), false);
++ }
++ break;
++
++ case throw_null_pointer_exception_id:
++ { StubFrame f(sasm, "throw_null_pointer_exception", dont_gc_arguments, does_not_return);
++ oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_null_pointer_exception), false);
++ }
++ break;
++
++ case new_instance_id:
++ case fast_new_instance_id:
++ case fast_new_instance_init_check_id:
++ {
++ Register klass = x13; // Incoming
++ Register obj = x10; // Result
++
++ if (id == new_instance_id) {
++ __ set_info("new_instance", dont_gc_arguments);
++ } else if (id == fast_new_instance_id) {
++ __ set_info("fast new_instance", dont_gc_arguments);
++ } else {
++ assert(id == fast_new_instance_init_check_id, "bad StubID");
++ __ set_info("fast new_instance init check", dont_gc_arguments);
++ }
++
++ // If TLAB is disabled, see if there is support for inlining contiguous
++ // allocations.
++ // Otherwise, just go to the slow path.
++ if ((id == fast_new_instance_id || id == fast_new_instance_init_check_id) &&
++ !UseTLAB && Universe::heap()->supports_inline_contig_alloc()) {
++ Label slow_path;
++ Register obj_size = x12;
++ Register tmp1 = x9;
++ Register tmp2 = x14;
++ assert_different_registers(klass, obj, obj_size, tmp1, tmp2);
++
++ const int sp_offset = 2;
++ const int x9_offset = 1;
++ const int zr_offset = 0;
++ __ addi(sp, sp, -(sp_offset * wordSize));
++ __ sd(x9, Address(sp, x9_offset * wordSize));
++ __ sd(zr, Address(sp, zr_offset * wordSize));
++
++ if (id == fast_new_instance_init_check_id) {
++ // make sure the klass is initialized
++ __ lbu(t0, Address(klass, InstanceKlass::init_state_offset()));
++ __ mv(t1, InstanceKlass::fully_initialized);
++ __ bne(t0, t1, slow_path);
++ }
++
++#ifdef ASSERT
++ // assert object can be fast path allocated
++ {
++ Label ok, not_ok;
++ __ lw(obj_size, Address(klass, Klass::layout_helper_offset()));
++ // make sure it's an instance. For instances, layout helper is a positive number.
++ // For arrays, layout helper is a negative number
++ __ blez(obj_size, not_ok);
++ __ andi(t0, obj_size, Klass::_lh_instance_slow_path_bit);
++ __ beqz(t0, ok);
++ __ bind(not_ok);
++ __ stop("assert(can be fast path allocated)");
++ __ should_not_reach_here();
++ __ bind(ok);
++ }
++#endif // ASSERT
++
++ // get the instance size
++ __ lwu(obj_size, Address(klass, Klass::layout_helper_offset()));
++
++ __ eden_allocate(obj, obj_size, 0, tmp1, slow_path);
++
++ __ initialize_object(obj, klass, obj_size, 0, tmp1, tmp2, /* is_tlab_allocated */ false);
++ __ verify_oop(obj);
++ __ ld(x9, Address(sp, x9_offset * wordSize));
++ __ ld(zr, Address(sp, zr_offset * wordSize));
++ __ addi(sp, sp, sp_offset * wordSize);
++ __ ret();
++
++ __ bind(slow_path);
++ __ ld(x9, Address(sp, x9_offset * wordSize));
++ __ ld(zr, Address(sp, zr_offset * wordSize));
++ __ addi(sp, sp, sp_offset * wordSize);
++ }
++
++ __ enter();
++ OopMap* map = save_live_registers(sasm);
++ assert_cond(map != NULL);
++ int call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_instance), klass);
++ oop_maps = new OopMapSet();
++ assert_cond(oop_maps != NULL);
++ oop_maps->add_gc_map(call_offset, map);
++ restore_live_registers_except_r10(sasm);
++ __ verify_oop(obj);
++ __ leave();
++ __ ret();
++
++ // x10: new instance
++ }
++
++ break;
++
++ case counter_overflow_id:
++ {
++ Register bci = x10;
++ Register method = x11;
++ __ enter();
++ OopMap* map = save_live_registers(sasm);
++ assert_cond(map != NULL);
++
++ const int bci_off = 0;
++ const int method_off = 1;
++ // Retrieve bci
++ __ lw(bci, Address(fp, bci_off * BytesPerWord));
++ // And a pointer to the Method*
++ __ ld(method, Address(fp, method_off * BytesPerWord));
++ int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, counter_overflow), bci, method);
++ oop_maps = new OopMapSet();
++ assert_cond(oop_maps != NULL);
++ oop_maps->add_gc_map(call_offset, map);
++ restore_live_registers(sasm);
++ __ leave();
++ __ ret();
++ }
++ break;
++
++ case new_type_array_id:
++ case new_object_array_id:
++ {
++ Register length = x9; // Incoming
++ Register klass = x13; // Incoming
++ Register obj = x10; // Result
++
++ if (id == new_type_array_id) {
++ __ set_info("new_type_array", dont_gc_arguments);
++ } else {
++ __ set_info("new_object_array", dont_gc_arguments);
++ }
++
++#ifdef ASSERT
++ // assert object type is really an array of the proper kind
++ {
++ Label ok;
++ Register tmp = obj;
++ __ lwu(tmp, Address(klass, Klass::layout_helper_offset()));
++ __ sraiw(tmp, tmp, Klass::_lh_array_tag_shift);
++ int tag = ((id == new_type_array_id) ? Klass::_lh_array_tag_type_value : Klass::_lh_array_tag_obj_value);
++ __ mv(t0, tag);
++ __ beq(t0, tmp, ok);
++ __ stop("assert(is an array klass)");
++ __ should_not_reach_here();
++ __ bind(ok);
++ }
++#endif // ASSERT
++
++ // If TLAB is disabled, see if there is support for inlining contiguous
++ // allocations.
++ // Otherwise, just go to the slow path.
++ if (!UseTLAB && Universe::heap()->supports_inline_contig_alloc()) {
++ Register arr_size = x14;
++ Register tmp1 = x12;
++ Register tmp2 = x15;
++ Label slow_path;
++ assert_different_registers(length, klass, obj, arr_size, tmp1, tmp2);
++
++ // check that array length is small enough for fast path.
++ __ mv(t0, C1_MacroAssembler::max_array_allocation_length);
++ __ bgtu(length, t0, slow_path);
++
++ // get the allocation size: round_up(hdr + length << (layout_helper & 0x1F))
++ __ lwu(tmp1, Address(klass, Klass::layout_helper_offset()));
++ __ andi(t0, tmp1, 0x1f);
++ __ sll(arr_size, length, t0);
++ int lh_header_size_width = exact_log2(Klass::_lh_header_size_mask + 1);
++ int lh_header_size_msb = Klass::_lh_header_size_shift + lh_header_size_width;
++ __ slli(tmp1, tmp1, XLEN - lh_header_size_msb);
++ __ srli(tmp1, tmp1, XLEN - lh_header_size_width);
++ __ add(arr_size, arr_size, tmp1);
++ __ addi(arr_size, arr_size, MinObjAlignmentInBytesMask); // align up
++ __ andi(arr_size, arr_size, ~(uint)MinObjAlignmentInBytesMask);
++
++ __ eden_allocate(obj, arr_size, 0, tmp1, slow_path); // preserves arr_size
++
++ __ initialize_header(obj, klass, length, tmp1, tmp2);
++ __ lbu(tmp1, Address(klass,
++ in_bytes(Klass::layout_helper_offset()) +
++ (Klass::_lh_header_size_shift / BitsPerByte)));
++ assert(Klass::_lh_header_size_shift % BitsPerByte == 0, "bytewise");
++ assert(Klass::_lh_header_size_mask <= 0xFF, "bytewise");
++ __ andi(tmp1, tmp1, Klass::_lh_header_size_mask);
++ __ sub(arr_size, arr_size, tmp1); // body length
++ __ add(tmp1, tmp1, obj); // body start
++ __ initialize_body(tmp1, arr_size, 0, tmp2);
++ __ membar(MacroAssembler::StoreStore);
++ __ verify_oop(obj);
++
++ __ ret();
++
++ __ bind(slow_path);
++ }
++
++ __ enter();
++ OopMap* map = save_live_registers(sasm);
++ assert_cond(map != NULL);
++ int call_offset = 0;
++ if (id == new_type_array_id) {
++ call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_type_array), klass, length);
++ } else {
++ call_offset = __ call_RT(obj, noreg, CAST_FROM_FN_PTR(address, new_object_array), klass, length);
++ }
++
++ oop_maps = new OopMapSet();
++ assert_cond(oop_maps != NULL);
++ oop_maps->add_gc_map(call_offset, map);
++ restore_live_registers_except_r10(sasm);
++
++ __ verify_oop(obj);
++ __ leave();
++ __ ret();
++
++ // x10: new array
++ }
++ break;
++
++ case new_multi_array_id:
++ {
++ StubFrame f(sasm, "new_multi_array", dont_gc_arguments);
++ // x10: klass
++ // x9: rank
++ // x12: address of 1st dimension
++ OopMap* map = save_live_registers(sasm);
++ assert_cond(map != NULL);
++ __ mv(c_rarg1, x10);
++ __ mv(c_rarg3, x12);
++ __ mv(c_rarg2, x9);
++ int call_offset = __ call_RT(x10, noreg, CAST_FROM_FN_PTR(address, new_multi_array), x11, x12, x13);
++
++ oop_maps = new OopMapSet();
++ assert_cond(oop_maps != NULL);
++ oop_maps->add_gc_map(call_offset, map);
++ restore_live_registers_except_r10(sasm);
++
++ // x10: new multi array
++ __ verify_oop(x10);
++ }
++ break;
++
++ case register_finalizer_id:
++ {
++ __ set_info("register_finalizer", dont_gc_arguments);
++
++ // This is called via call_runtime so the arguments
++ // will be place in C abi locations
++ __ verify_oop(c_rarg0);
++
++ // load the klass and check the has finalizer flag
++ Label register_finalizer;
++ Register t = x15;
++ __ load_klass(t, x10);
++ __ lwu(t, Address(t, Klass::access_flags_offset()));
++ __ test_bit(t0, t, exact_log2(JVM_ACC_HAS_FINALIZER));
++ __ bnez(t0, register_finalizer);
++ __ ret();
++
++ __ bind(register_finalizer);
++ __ enter();
++ OopMap* oop_map = save_live_registers(sasm);
++ assert_cond(oop_map != NULL);
++ int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, SharedRuntime::register_finalizer), x10);
++ oop_maps = new OopMapSet();
++ assert_cond(oop_maps != NULL);
++ oop_maps->add_gc_map(call_offset, oop_map);
++
++ // Now restore all the live registers
++ restore_live_registers(sasm);
++
++ __ leave();
++ __ ret();
++ }
++ break;
++
++ case throw_class_cast_exception_id:
++ {
++ StubFrame f(sasm, "throw_class_cast_exception", dont_gc_arguments, does_not_return);
++ oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_class_cast_exception), true);
++ }
++ break;
++
++ case throw_incompatible_class_change_error_id:
++ {
++ StubFrame f(sasm, "throw_incompatible_class_cast_exception", dont_gc_arguments, does_not_return);
++ oop_maps = generate_exception_throw(sasm,
++ CAST_FROM_FN_PTR(address, throw_incompatible_class_change_error), false);
++ }
++ break;
++
++ case slow_subtype_check_id:
++ {
++ // Typical calling sequence:
++ // push klass_RInfo (object klass or other subclass)
++ // push sup_k_RInfo (array element klass or other superclass)
++ // jump to slow_subtype_check
++ // Note that the subclass is pushed first, and is therefore deepest.
++ enum layout {
++ x10_off, x10_off_hi,
++ x12_off, x12_off_hi,
++ x14_off, x14_off_hi,
++ x15_off, x15_off_hi,
++ sup_k_off, sup_k_off_hi,
++ klass_off, klass_off_hi,
++ framesize,
++ result_off = sup_k_off
++ };
++
++ __ set_info("slow_subtype_check", dont_gc_arguments);
++ __ push_reg(RegSet::of(x10, x12, x14, x15), sp);
++
++ __ ld(x14, Address(sp, (klass_off) * VMRegImpl::stack_slot_size)); // sub klass
++ __ ld(x10, Address(sp, (sup_k_off) * VMRegImpl::stack_slot_size)); // super klass
++
++ Label miss;
++ __ check_klass_subtype_slow_path(x14, x10, x12, x15, NULL, &miss);
++
++ // fallthrough on success:
++ __ mv(t0, 1);
++ __ sd(t0, Address(sp, (result_off) * VMRegImpl::stack_slot_size)); // result
++ __ pop_reg(RegSet::of(x10, x12, x14, x15), sp);
++ __ ret();
++
++ __ bind(miss);
++ __ sd(zr, Address(sp, (result_off) * VMRegImpl::stack_slot_size)); // result
++ __ pop_reg(RegSet::of(x10, x12, x14, x15), sp);
++ __ ret();
++ }
++ break;
++
++ case monitorenter_nofpu_id:
++ save_fpu_registers = false;
++ // fall through
++ case monitorenter_id:
++ {
++ StubFrame f(sasm, "monitorenter", dont_gc_arguments);
++ OopMap* map = save_live_registers(sasm, save_fpu_registers);
++ assert_cond(map != NULL);
++
++ // Called with store_parameter and not C abi
++ f.load_argument(1, x10); // x10: object
++ f.load_argument(0, x11); // x11: lock address
++
++ int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorenter), x10, x11);
++
++ oop_maps = new OopMapSet();
++ assert_cond(oop_maps != NULL);
++ oop_maps->add_gc_map(call_offset, map);
++ restore_live_registers(sasm, save_fpu_registers);
++ }
++ break;
++
++ case monitorexit_nofpu_id:
++ save_fpu_registers = false;
++ // fall through
++ case monitorexit_id:
++ {
++ StubFrame f(sasm, "monitorexit", dont_gc_arguments);
++ OopMap* map = save_live_registers(sasm, save_fpu_registers);
++ assert_cond(map != NULL);
++
++ // Called with store_parameter and not C abi
++ f.load_argument(0, x10); // x10: lock address
++
++ // note: really a leaf routine but must setup last java sp
++ // => use call_RT for now (speed can be improved by
++ // doing last java sp setup manually)
++ int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, monitorexit), x10);
++
++ oop_maps = new OopMapSet();
++ assert_cond(oop_maps != NULL);
++ oop_maps->add_gc_map(call_offset, map);
++ restore_live_registers(sasm, save_fpu_registers);
++ }
++ break;
++
++ case deoptimize_id:
++ {
++ StubFrame f(sasm, "deoptimize", dont_gc_arguments, does_not_return);
++ OopMap* oop_map = save_live_registers(sasm);
++ assert_cond(oop_map != NULL);
++ f.load_argument(0, c_rarg1);
++ int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, deoptimize), c_rarg1);
++
++ oop_maps = new OopMapSet();
++ assert_cond(oop_maps != NULL);
++ oop_maps->add_gc_map(call_offset, oop_map);
++ restore_live_registers(sasm);
++ DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
++ assert(deopt_blob != NULL, "deoptimization blob must have been created");
++ __ leave();
++ __ far_jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
++ }
++ break;
++
++ case throw_range_check_failed_id:
++ {
++ StubFrame f(sasm, "range_check_failed", dont_gc_arguments, does_not_return);
++ oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_range_check_exception), true);
++ }
++ break;
++
++ case unwind_exception_id:
++ {
++ __ set_info("unwind_exception", dont_gc_arguments);
++ // note: no stubframe since we are about to leave the current
++ // activation and we are calling a leaf VM function only.
++ generate_unwind_exception(sasm);
++ }
++ break;
++
++ case access_field_patching_id:
++ {
++ StubFrame f(sasm, "access_field_patching", dont_gc_arguments, does_not_return);
++ // we should set up register map
++ oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, access_field_patching));
++ }
++ break;
++
++ case load_klass_patching_id:
++ {
++ StubFrame f(sasm, "load_klass_patching", dont_gc_arguments, does_not_return);
++ // we should set up register map
++ oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_klass_patching));
++ }
++ break;
++
++ case load_mirror_patching_id:
++ {
++ StubFrame f(sasm, "load_mirror_patching", dont_gc_arguments, does_not_return);
++ // we should set up register map
++ oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_mirror_patching));
++ }
++ break;
++
++ case load_appendix_patching_id:
++ {
++ StubFrame f(sasm, "load_appendix_patching", dont_gc_arguments, does_not_return);
++ // we should set up register map
++ oop_maps = generate_patching(sasm, CAST_FROM_FN_PTR(address, move_appendix_patching));
++ }
++ break;
++
++ case handle_exception_nofpu_id:
++ case handle_exception_id:
++ {
++ StubFrame f(sasm, "handle_exception", dont_gc_arguments);
++ oop_maps = generate_handle_exception(id, sasm);
++ }
++ break;
++
++ case handle_exception_from_callee_id:
++ {
++ StubFrame f(sasm, "handle_exception_from_callee", dont_gc_arguments);
++ oop_maps = generate_handle_exception(id, sasm);
++ }
++ break;
++
++ case throw_index_exception_id:
++ {
++ StubFrame f(sasm, "index_range_check_failed", dont_gc_arguments, does_not_return);
++ oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_index_exception), true);
++ }
++ break;
++
++ case throw_array_store_exception_id:
++ {
++ StubFrame f(sasm, "throw_array_store_exception", dont_gc_arguments, does_not_return);
++ // tos + 0: link
++ // + 1: return address
++ oop_maps = generate_exception_throw(sasm, CAST_FROM_FN_PTR(address, throw_array_store_exception), true);
++ }
++ break;
++
++ case predicate_failed_trap_id:
++ {
++ StubFrame f(sasm, "predicate_failed_trap", dont_gc_arguments, does_not_return);
++
++ OopMap* map = save_live_registers(sasm);
++ assert_cond(map != NULL);
++
++ int call_offset = __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, predicate_failed_trap));
++ oop_maps = new OopMapSet();
++ assert_cond(oop_maps != NULL);
++ oop_maps->add_gc_map(call_offset, map);
++ restore_live_registers(sasm);
++ __ leave();
++ DeoptimizationBlob* deopt_blob = SharedRuntime::deopt_blob();
++ assert(deopt_blob != NULL, "deoptimization blob must have been created");
++
++ __ far_jump(RuntimeAddress(deopt_blob->unpack_with_reexecution()));
++ }
++ break;
++
++ case dtrace_object_alloc_id:
++ { // c_rarg0: object
++ StubFrame f(sasm, "dtrace_object_alloc", dont_gc_arguments);
++ save_live_registers(sasm);
++
++ __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), c_rarg0);
++
++ restore_live_registers(sasm);
++ }
++ break;
++
++ default:
++ {
++ StubFrame f(sasm, "unimplemented entry", dont_gc_arguments, does_not_return);
++ __ mv(x10, (int)id);
++ __ call_RT(noreg, noreg, CAST_FROM_FN_PTR(address, unimplemented_entry), x10);
++ __ should_not_reach_here();
++ }
++ break;
++ }
++ }
++ return oop_maps;
++}
++
++#undef __
++
++const char *Runtime1::pd_name_for_address(address entry) { Unimplemented(); return 0; }
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/c1_globals_riscv.hpp
+@@ -0,0 +1,65 @@
++/*
++ * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_C1_GLOBALS_RISCV_HPP
++#define CPU_RISCV_C1_GLOBALS_RISCV_HPP
++
++#include "utilities/globalDefinitions.hpp"
++#include "utilities/macros.hpp"
++
++// Sets the default values for platform dependent flags used by the client compiler.
++// (see c1_globals.hpp)
++
++#ifndef COMPILER2
++define_pd_global(bool, BackgroundCompilation, true );
++define_pd_global(bool, InlineIntrinsics, true );
++define_pd_global(bool, PreferInterpreterNativeStubs, false);
++define_pd_global(bool, ProfileTraps, false);
++define_pd_global(bool, UseOnStackReplacement, true );
++define_pd_global(bool, TieredCompilation, false);
++define_pd_global(intx, CompileThreshold, 1500 );
++
++define_pd_global(intx, OnStackReplacePercentage, 933 );
++define_pd_global(intx, NewSizeThreadIncrease, 4*K );
++define_pd_global(intx, InitialCodeCacheSize, 160*K);
++define_pd_global(intx, ReservedCodeCacheSize, 32*M );
++define_pd_global(intx, NonProfiledCodeHeapSize, 13*M );
++define_pd_global(intx, ProfiledCodeHeapSize, 14*M );
++define_pd_global(intx, NonNMethodCodeHeapSize, 5*M );
++define_pd_global(bool, ProfileInterpreter, false);
++define_pd_global(intx, CodeCacheExpansionSize, 32*K );
++define_pd_global(uintx, CodeCacheMinBlockLength, 1);
++define_pd_global(uintx, CodeCacheMinimumUseSpace, 400*K);
++define_pd_global(bool, NeverActAsServerClassMachine, true );
++define_pd_global(uint64_t, MaxRAM, 1ULL*G);
++define_pd_global(bool, CICompileOSR, true );
++#endif // !COMPILER2
++define_pd_global(bool, UseTypeProfile, false);
++
++define_pd_global(bool, OptimizeSinglePrecision, true );
++define_pd_global(bool, CSEArrayLength, false);
++define_pd_global(bool, TwoOperandLIRForm, false);
++
++#endif // CPU_RISCV_C1_GLOBALS_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/c2_MacroAssembler_riscv.cpp
+@@ -0,0 +1,1644 @@
++/*
++ * Copyright (c) 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/assembler.hpp"
++#include "asm/assembler.inline.hpp"
++#include "opto/c2_MacroAssembler.hpp"
++#include "opto/intrinsicnode.hpp"
++#include "opto/subnode.hpp"
++#include "runtime/stubRoutines.hpp"
++
++#ifdef PRODUCT
++#define BLOCK_COMMENT(str) /* nothing */
++#define STOP(error) stop(error)
++#else
++#define BLOCK_COMMENT(str) block_comment(str)
++#define STOP(error) block_comment(error); stop(error)
++#endif
++
++#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
++
++// short string
++// StringUTF16.indexOfChar
++// StringLatin1.indexOfChar
++void C2_MacroAssembler::string_indexof_char_short(Register str1, Register cnt1,
++ Register ch, Register result,
++ bool isL)
++{
++ Register ch1 = t0;
++ Register index = t1;
++
++ BLOCK_COMMENT("string_indexof_char_short {");
++
++ Label LOOP, LOOP1, LOOP4, LOOP8;
++ Label MATCH, MATCH1, MATCH2, MATCH3,
++ MATCH4, MATCH5, MATCH6, MATCH7, NOMATCH;
++
++ mv(result, -1);
++ mv(index, zr);
++
++ bind(LOOP);
++ addi(t0, index, 8);
++ ble(t0, cnt1, LOOP8);
++ addi(t0, index, 4);
++ ble(t0, cnt1, LOOP4);
++ j(LOOP1);
++
++ bind(LOOP8);
++ isL ? lbu(ch1, Address(str1, 0)) : lhu(ch1, Address(str1, 0));
++ beq(ch, ch1, MATCH);
++ isL ? lbu(ch1, Address(str1, 1)) : lhu(ch1, Address(str1, 2));
++ beq(ch, ch1, MATCH1);
++ isL ? lbu(ch1, Address(str1, 2)) : lhu(ch1, Address(str1, 4));
++ beq(ch, ch1, MATCH2);
++ isL ? lbu(ch1, Address(str1, 3)) : lhu(ch1, Address(str1, 6));
++ beq(ch, ch1, MATCH3);
++ isL ? lbu(ch1, Address(str1, 4)) : lhu(ch1, Address(str1, 8));
++ beq(ch, ch1, MATCH4);
++ isL ? lbu(ch1, Address(str1, 5)) : lhu(ch1, Address(str1, 10));
++ beq(ch, ch1, MATCH5);
++ isL ? lbu(ch1, Address(str1, 6)) : lhu(ch1, Address(str1, 12));
++ beq(ch, ch1, MATCH6);
++ isL ? lbu(ch1, Address(str1, 7)) : lhu(ch1, Address(str1, 14));
++ beq(ch, ch1, MATCH7);
++ addi(index, index, 8);
++ addi(str1, str1, isL ? 8 : 16);
++ blt(index, cnt1, LOOP);
++ j(NOMATCH);
++
++ bind(LOOP4);
++ isL ? lbu(ch1, Address(str1, 0)) : lhu(ch1, Address(str1, 0));
++ beq(ch, ch1, MATCH);
++ isL ? lbu(ch1, Address(str1, 1)) : lhu(ch1, Address(str1, 2));
++ beq(ch, ch1, MATCH1);
++ isL ? lbu(ch1, Address(str1, 2)) : lhu(ch1, Address(str1, 4));
++ beq(ch, ch1, MATCH2);
++ isL ? lbu(ch1, Address(str1, 3)) : lhu(ch1, Address(str1, 6));
++ beq(ch, ch1, MATCH3);
++ addi(index, index, 4);
++ addi(str1, str1, isL ? 4 : 8);
++ bge(index, cnt1, NOMATCH);
++
++ bind(LOOP1);
++ isL ? lbu(ch1, Address(str1)) : lhu(ch1, Address(str1));
++ beq(ch, ch1, MATCH);
++ addi(index, index, 1);
++ addi(str1, str1, isL ? 1 : 2);
++ blt(index, cnt1, LOOP1);
++ j(NOMATCH);
++
++ bind(MATCH1);
++ addi(index, index, 1);
++ j(MATCH);
++
++ bind(MATCH2);
++ addi(index, index, 2);
++ j(MATCH);
++
++ bind(MATCH3);
++ addi(index, index, 3);
++ j(MATCH);
++
++ bind(MATCH4);
++ addi(index, index, 4);
++ j(MATCH);
++
++ bind(MATCH5);
++ addi(index, index, 5);
++ j(MATCH);
++
++ bind(MATCH6);
++ addi(index, index, 6);
++ j(MATCH);
++
++ bind(MATCH7);
++ addi(index, index, 7);
++
++ bind(MATCH);
++ mv(result, index);
++ bind(NOMATCH);
++ BLOCK_COMMENT("} string_indexof_char_short");
++}
++
++// StringUTF16.indexOfChar
++// StringLatin1.indexOfChar
++void C2_MacroAssembler::string_indexof_char(Register str1, Register cnt1,
++ Register ch, Register result,
++ Register tmp1, Register tmp2,
++ Register tmp3, Register tmp4,
++ bool isL)
++{
++ Label CH1_LOOP, HIT, NOMATCH, DONE, DO_LONG;
++ Register ch1 = t0;
++ Register orig_cnt = t1;
++ Register mask1 = tmp3;
++ Register mask2 = tmp2;
++ Register match_mask = tmp1;
++ Register trailing_char = tmp4;
++ Register unaligned_elems = tmp4;
++
++ BLOCK_COMMENT("string_indexof_char {");
++ beqz(cnt1, NOMATCH);
++
++ addi(t0, cnt1, isL ? -32 : -16);
++ bgtz(t0, DO_LONG);
++ string_indexof_char_short(str1, cnt1, ch, result, isL);
++ j(DONE);
++
++ bind(DO_LONG);
++ mv(orig_cnt, cnt1);
++ if (AvoidUnalignedAccesses) {
++ Label ALIGNED;
++ andi(unaligned_elems, str1, 0x7);
++ beqz(unaligned_elems, ALIGNED);
++ sub(unaligned_elems, unaligned_elems, 8);
++ neg(unaligned_elems, unaligned_elems);
++ if (!isL) {
++ srli(unaligned_elems, unaligned_elems, 1);
++ }
++ // do unaligned part per element
++ string_indexof_char_short(str1, unaligned_elems, ch, result, isL);
++ bgez(result, DONE);
++ mv(orig_cnt, cnt1);
++ sub(cnt1, cnt1, unaligned_elems);
++ bind(ALIGNED);
++ }
++
++ // duplicate ch
++ if (isL) {
++ slli(ch1, ch, 8);
++ orr(ch, ch1, ch);
++ }
++ slli(ch1, ch, 16);
++ orr(ch, ch1, ch);
++ slli(ch1, ch, 32);
++ orr(ch, ch1, ch);
++
++ if (!isL) {
++ slli(cnt1, cnt1, 1);
++ }
++
++ uint64_t mask0101 = UCONST64(0x0101010101010101);
++ uint64_t mask0001 = UCONST64(0x0001000100010001);
++ mv(mask1, isL ? mask0101 : mask0001);
++ uint64_t mask7f7f = UCONST64(0x7f7f7f7f7f7f7f7f);
++ uint64_t mask7fff = UCONST64(0x7fff7fff7fff7fff);
++ mv(mask2, isL ? mask7f7f : mask7fff);
++
++ bind(CH1_LOOP);
++ ld(ch1, Address(str1));
++ addi(str1, str1, 8);
++ addi(cnt1, cnt1, -8);
++ compute_match_mask(ch1, ch, match_mask, mask1, mask2);
++ bnez(match_mask, HIT);
++ bgtz(cnt1, CH1_LOOP);
++ j(NOMATCH);
++
++ bind(HIT);
++ ctzc_bit(trailing_char, match_mask, isL, ch1, result);
++ srli(trailing_char, trailing_char, 3);
++ addi(cnt1, cnt1, 8);
++ ble(cnt1, trailing_char, NOMATCH);
++ // match case
++ if (!isL) {
++ srli(cnt1, cnt1, 1);
++ srli(trailing_char, trailing_char, 1);
++ }
++
++ sub(result, orig_cnt, cnt1);
++ add(result, result, trailing_char);
++ j(DONE);
++
++ bind(NOMATCH);
++ mv(result, -1);
++
++ bind(DONE);
++ BLOCK_COMMENT("} string_indexof_char");
++}
++
++typedef void (MacroAssembler::* load_chr_insn)(Register rd, const Address &adr, Register temp);
++
++// Search for needle in haystack and return index or -1
++// x10: result
++// x11: haystack
++// x12: haystack_len
++// x13: needle
++// x14: needle_len
++void C2_MacroAssembler::string_indexof(Register haystack, Register needle,
++ Register haystack_len, Register needle_len,
++ Register tmp1, Register tmp2,
++ Register tmp3, Register tmp4,
++ Register tmp5, Register tmp6,
++ Register result, int ae)
++{
++ assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
++
++ Label LINEARSEARCH, LINEARSTUB, DONE, NOMATCH;
++
++ Register ch1 = t0;
++ Register ch2 = t1;
++ Register nlen_tmp = tmp1; // needle len tmp
++ Register hlen_tmp = tmp2; // haystack len tmp
++ Register result_tmp = tmp4;
++
++ bool isLL = ae == StrIntrinsicNode::LL;
++
++ bool needle_isL = ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL;
++ bool haystack_isL = ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::LU;
++ int needle_chr_shift = needle_isL ? 0 : 1;
++ int haystack_chr_shift = haystack_isL ? 0 : 1;
++ int needle_chr_size = needle_isL ? 1 : 2;
++ int haystack_chr_size = haystack_isL ? 1 : 2;
++ load_chr_insn needle_load_1chr = needle_isL ? (load_chr_insn)&MacroAssembler::lbu :
++ (load_chr_insn)&MacroAssembler::lhu;
++ load_chr_insn haystack_load_1chr = haystack_isL ? (load_chr_insn)&MacroAssembler::lbu :
++ (load_chr_insn)&MacroAssembler::lhu;
++
++ BLOCK_COMMENT("string_indexof {");
++
++ // Note, inline_string_indexOf() generates checks:
++ // if (pattern.count > src.count) return -1;
++ // if (pattern.count == 0) return 0;
++
++ // We have two strings, a source string in haystack, haystack_len and a pattern string
++ // in needle, needle_len. Find the first occurence of pattern in source or return -1.
++
++ // For larger pattern and source we use a simplified Boyer Moore algorithm.
++ // With a small pattern and source we use linear scan.
++
++ // needle_len >=8 && needle_len < 256 && needle_len < haystack_len/4, use bmh algorithm.
++ sub(result_tmp, haystack_len, needle_len);
++ // needle_len < 8, use linear scan
++ sub(t0, needle_len, 8);
++ bltz(t0, LINEARSEARCH);
++ // needle_len >= 256, use linear scan
++ sub(t0, needle_len, 256);
++ bgez(t0, LINEARSTUB);
++ // needle_len >= haystack_len/4, use linear scan
++ srli(t0, haystack_len, 2);
++ bge(needle_len, t0, LINEARSTUB);
++
++ // Boyer-Moore-Horspool introduction:
++ // The Boyer Moore alogorithm is based on the description here:-
++ //
++ // http://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm
++ //
++ // This describes and algorithm with 2 shift rules. The 'Bad Character' rule
++ // and the 'Good Suffix' rule.
++ //
++ // These rules are essentially heuristics for how far we can shift the
++ // pattern along the search string.
++ //
++ // The implementation here uses the 'Bad Character' rule only because of the
++ // complexity of initialisation for the 'Good Suffix' rule.
++ //
++ // This is also known as the Boyer-Moore-Horspool algorithm:
++ //
++ // http://en.wikipedia.org/wiki/Boyer-Moore-Horspool_algorithm
++ //
++ // #define ASIZE 256
++ //
++ // int bm(unsigned char *pattern, int m, unsigned char *src, int n) {
++ // int i, j;
++ // unsigned c;
++ // unsigned char bc[ASIZE];
++ //
++ // /* Preprocessing */
++ // for (i = 0; i < ASIZE; ++i)
++ // bc[i] = m;
++ // for (i = 0; i < m - 1; ) {
++ // c = pattern[i];
++ // ++i;
++ // // c < 256 for Latin1 string, so, no need for branch
++ // #ifdef PATTERN_STRING_IS_LATIN1
++ // bc[c] = m - i;
++ // #else
++ // if (c < ASIZE) bc[c] = m - i;
++ // #endif
++ // }
++ //
++ // /* Searching */
++ // j = 0;
++ // while (j <= n - m) {
++ // c = src[i+j];
++ // if (pattern[m-1] == c)
++ // int k;
++ // for (k = m - 2; k >= 0 && pattern[k] == src[k + j]; --k);
++ // if (k < 0) return j;
++ // // c < 256 for Latin1 string, so, no need for branch
++ // #ifdef SOURCE_STRING_IS_LATIN1_AND_PATTERN_STRING_IS_LATIN1
++ // // LL case: (c< 256) always true. Remove branch
++ // j += bc[pattern[j+m-1]];
++ // #endif
++ // #ifdef SOURCE_STRING_IS_UTF_AND_PATTERN_STRING_IS_UTF
++ // // UU case: need if (c<ASIZE) check. Skip 1 character if not.
++ // if (c < ASIZE)
++ // j += bc[pattern[j+m-1]];
++ // else
++ // j += 1
++ // #endif
++ // #ifdef SOURCE_IS_UTF_AND_PATTERN_IS_LATIN1
++ // // UL case: need if (c<ASIZE) check. Skip <pattern length> if not.
++ // if (c < ASIZE)
++ // j += bc[pattern[j+m-1]];
++ // else
++ // j += m
++ // #endif
++ // }
++ // return -1;
++ // }
++
++ // temp register:t0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, result
++ Label BCLOOP, BCSKIP, BMLOOPSTR2, BMLOOPSTR1, BMSKIP, BMADV, BMMATCH,
++ BMLOOPSTR1_LASTCMP, BMLOOPSTR1_CMP, BMLOOPSTR1_AFTER_LOAD, BM_INIT_LOOP;
++
++ Register haystack_end = haystack_len;
++ Register skipch = tmp2;
++
++ // pattern length is >=8, so, we can read at least 1 register for cases when
++ // UTF->Latin1 conversion is not needed(8 LL or 4UU) and half register for
++ // UL case. We'll re-read last character in inner pre-loop code to have
++ // single outer pre-loop load
++ const int firstStep = isLL ? 7 : 3;
++
++ const int ASIZE = 256;
++ const int STORE_BYTES = 8; // 8 bytes stored per instruction(sd)
++
++ sub(sp, sp, ASIZE);
++
++ // init BC offset table with default value: needle_len
++ slli(t0, needle_len, 8);
++ orr(t0, t0, needle_len); // [63...16][needle_len][needle_len]
++ slli(tmp1, t0, 16);
++ orr(t0, tmp1, t0); // [63...32][needle_len][needle_len][needle_len][needle_len]
++ slli(tmp1, t0, 32);
++ orr(tmp5, tmp1, t0); // tmp5: 8 elements [needle_len]
++
++ mv(ch1, sp); // ch1 is t0
++ mv(tmp6, ASIZE / STORE_BYTES); // loop iterations
++
++ bind(BM_INIT_LOOP);
++ // for (i = 0; i < ASIZE; ++i)
++ // bc[i] = m;
++ for (int i = 0; i < 4; i++) {
++ sd(tmp5, Address(ch1, i * wordSize));
++ }
++ add(ch1, ch1, 32);
++ sub(tmp6, tmp6, 4);
++ bgtz(tmp6, BM_INIT_LOOP);
++
++ sub(nlen_tmp, needle_len, 1); // m - 1, index of the last element in pattern
++ Register orig_haystack = tmp5;
++ mv(orig_haystack, haystack);
++ // result_tmp = tmp4
++ shadd(haystack_end, result_tmp, haystack, haystack_end, haystack_chr_shift);
++ sub(ch2, needle_len, 1); // bc offset init value, ch2 is t1
++ mv(tmp3, needle);
++
++ // for (i = 0; i < m - 1; ) {
++ // c = pattern[i];
++ // ++i;
++ // // c < 256 for Latin1 string, so, no need for branch
++ // #ifdef PATTERN_STRING_IS_LATIN1
++ // bc[c] = m - i;
++ // #else
++ // if (c < ASIZE) bc[c] = m - i;
++ // #endif
++ // }
++ bind(BCLOOP);
++ (this->*needle_load_1chr)(ch1, Address(tmp3), noreg);
++ add(tmp3, tmp3, needle_chr_size);
++ if (!needle_isL) {
++ // ae == StrIntrinsicNode::UU
++ mv(tmp6, ASIZE);
++ bgeu(ch1, tmp6, BCSKIP);
++ }
++ add(tmp4, sp, ch1);
++ sb(ch2, Address(tmp4)); // store skip offset to BC offset table
++
++ bind(BCSKIP);
++ sub(ch2, ch2, 1); // for next pattern element, skip distance -1
++ bgtz(ch2, BCLOOP);
++
++ // tmp6: pattern end, address after needle
++ shadd(tmp6, needle_len, needle, tmp6, needle_chr_shift);
++ if (needle_isL == haystack_isL) {
++ // load last 8 bytes (8LL/4UU symbols)
++ ld(tmp6, Address(tmp6, -wordSize));
++ } else {
++ // UL: from UTF-16(source) search Latin1(pattern)
++ lwu(tmp6, Address(tmp6, -wordSize / 2)); // load last 4 bytes(4 symbols)
++ // convert Latin1 to UTF. eg: 0x0000abcd -> 0x0a0b0c0d
++ // We'll have to wait until load completed, but it's still faster than per-character loads+checks
++ srli(tmp3, tmp6, BitsPerByte * (wordSize / 2 - needle_chr_size)); // pattern[m-1], eg:0x0000000a
++ slli(ch2, tmp6, XLEN - 24);
++ srli(ch2, ch2, XLEN - 8); // pattern[m-2], 0x0000000b
++ slli(ch1, tmp6, XLEN - 16);
++ srli(ch1, ch1, XLEN - 8); // pattern[m-3], 0x0000000c
++ andi(tmp6, tmp6, 0xff); // pattern[m-4], 0x0000000d
++ slli(ch2, ch2, 16);
++ orr(ch2, ch2, ch1); // 0x00000b0c
++ slli(result, tmp3, 48); // use result as temp register
++ orr(tmp6, tmp6, result); // 0x0a00000d
++ slli(result, ch2, 16);
++ orr(tmp6, tmp6, result); // UTF-16:0x0a0b0c0d
++ }
++
++ // i = m - 1;
++ // skipch = j + i;
++ // if (skipch == pattern[m - 1]
++ // for (k = m - 2; k >= 0 && pattern[k] == src[k + j]; --k);
++ // else
++ // move j with bad char offset table
++ bind(BMLOOPSTR2);
++ // compare pattern to source string backward
++ shadd(result, nlen_tmp, haystack, result, haystack_chr_shift);
++ (this->*haystack_load_1chr)(skipch, Address(result), noreg);
++ sub(nlen_tmp, nlen_tmp, firstStep); // nlen_tmp is positive here, because needle_len >= 8
++ if (needle_isL == haystack_isL) {
++ // re-init tmp3. It's for free because it's executed in parallel with
++ // load above. Alternative is to initialize it before loop, but it'll
++ // affect performance on in-order systems with 2 or more ld/st pipelines
++ srli(tmp3, tmp6, BitsPerByte * (wordSize - needle_chr_size)); // UU/LL: pattern[m-1]
++ }
++ if (!isLL) { // UU/UL case
++ slli(ch2, nlen_tmp, 1); // offsets in bytes
++ }
++ bne(tmp3, skipch, BMSKIP); // if not equal, skipch is bad char
++ add(result, haystack, isLL ? nlen_tmp : ch2);
++ ld(ch2, Address(result)); // load 8 bytes from source string
++ mv(ch1, tmp6);
++ if (isLL) {
++ j(BMLOOPSTR1_AFTER_LOAD);
++ } else {
++ sub(nlen_tmp, nlen_tmp, 1); // no need to branch for UU/UL case. cnt1 >= 8
++ j(BMLOOPSTR1_CMP);
++ }
++
++ bind(BMLOOPSTR1);
++ shadd(ch1, nlen_tmp, needle, ch1, needle_chr_shift);
++ (this->*needle_load_1chr)(ch1, Address(ch1), noreg);
++ shadd(ch2, nlen_tmp, haystack, ch2, haystack_chr_shift);
++ (this->*haystack_load_1chr)(ch2, Address(ch2), noreg);
++
++ bind(BMLOOPSTR1_AFTER_LOAD);
++ sub(nlen_tmp, nlen_tmp, 1);
++ bltz(nlen_tmp, BMLOOPSTR1_LASTCMP);
++
++ bind(BMLOOPSTR1_CMP);
++ beq(ch1, ch2, BMLOOPSTR1);
++
++ bind(BMSKIP);
++ if (!isLL) {
++ // if we've met UTF symbol while searching Latin1 pattern, then we can
++ // skip needle_len symbols
++ if (needle_isL != haystack_isL) {
++ mv(result_tmp, needle_len);
++ } else {
++ mv(result_tmp, 1);
++ }
++ mv(t0, ASIZE);
++ bgeu(skipch, t0, BMADV);
++ }
++ add(result_tmp, sp, skipch);
++ lbu(result_tmp, Address(result_tmp)); // load skip offset
++
++ bind(BMADV);
++ sub(nlen_tmp, needle_len, 1);
++ // move haystack after bad char skip offset
++ shadd(haystack, result_tmp, haystack, result, haystack_chr_shift);
++ ble(haystack, haystack_end, BMLOOPSTR2);
++ add(sp, sp, ASIZE);
++ j(NOMATCH);
++
++ bind(BMLOOPSTR1_LASTCMP);
++ bne(ch1, ch2, BMSKIP);
++
++ bind(BMMATCH);
++ sub(result, haystack, orig_haystack);
++ if (!haystack_isL) {
++ srli(result, result, 1);
++ }
++ add(sp, sp, ASIZE);
++ j(DONE);
++
++ bind(LINEARSTUB);
++ sub(t0, needle_len, 16); // small patterns still should be handled by simple algorithm
++ bltz(t0, LINEARSEARCH);
++ mv(result, zr);
++ RuntimeAddress stub = NULL;
++ if (isLL) {
++ stub = RuntimeAddress(StubRoutines::riscv::string_indexof_linear_ll());
++ assert(stub.target() != NULL, "string_indexof_linear_ll stub has not been generated");
++ } else if (needle_isL) {
++ stub = RuntimeAddress(StubRoutines::riscv::string_indexof_linear_ul());
++ assert(stub.target() != NULL, "string_indexof_linear_ul stub has not been generated");
++ } else {
++ stub = RuntimeAddress(StubRoutines::riscv::string_indexof_linear_uu());
++ assert(stub.target() != NULL, "string_indexof_linear_uu stub has not been generated");
++ }
++ trampoline_call(stub);
++ j(DONE);
++
++ bind(NOMATCH);
++ mv(result, -1);
++ j(DONE);
++
++ bind(LINEARSEARCH);
++ string_indexof_linearscan(haystack, needle, haystack_len, needle_len, tmp1, tmp2, tmp3, tmp4, -1, result, ae);
++
++ bind(DONE);
++ BLOCK_COMMENT("} string_indexof");
++}
++
++// string_indexof
++// result: x10
++// src: x11
++// src_count: x12
++// pattern: x13
++// pattern_count: x14 or 1/2/3/4
++void C2_MacroAssembler::string_indexof_linearscan(Register haystack, Register needle,
++ Register haystack_len, Register needle_len,
++ Register tmp1, Register tmp2,
++ Register tmp3, Register tmp4,
++ int needle_con_cnt, Register result, int ae)
++{
++ // Note:
++ // needle_con_cnt > 0 means needle_len register is invalid, needle length is constant
++ // for UU/LL: needle_con_cnt[1, 4], UL: needle_con_cnt = 1
++ assert(needle_con_cnt <= 4, "Invalid needle constant count");
++ assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
++
++ Register ch1 = t0;
++ Register ch2 = t1;
++ Register hlen_neg = haystack_len, nlen_neg = needle_len;
++ Register nlen_tmp = tmp1, hlen_tmp = tmp2, result_tmp = tmp4;
++
++ bool isLL = ae == StrIntrinsicNode::LL;
++
++ bool needle_isL = ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL;
++ bool haystack_isL = ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::LU;
++ int needle_chr_shift = needle_isL ? 0 : 1;
++ int haystack_chr_shift = haystack_isL ? 0 : 1;
++ int needle_chr_size = needle_isL ? 1 : 2;
++ int haystack_chr_size = haystack_isL ? 1 : 2;
++
++ load_chr_insn needle_load_1chr = needle_isL ? (load_chr_insn)&MacroAssembler::lbu :
++ (load_chr_insn)&MacroAssembler::lhu;
++ load_chr_insn haystack_load_1chr = haystack_isL ? (load_chr_insn)&MacroAssembler::lbu :
++ (load_chr_insn)&MacroAssembler::lhu;
++ load_chr_insn load_2chr = isLL ? (load_chr_insn)&MacroAssembler::lhu : (load_chr_insn)&MacroAssembler::lwu;
++ load_chr_insn load_4chr = isLL ? (load_chr_insn)&MacroAssembler::lwu : (load_chr_insn)&MacroAssembler::ld;
++
++ Label DO1, DO2, DO3, MATCH, NOMATCH, DONE;
++
++ Register first = tmp3;
++
++ if (needle_con_cnt == -1) {
++ Label DOSHORT, FIRST_LOOP, STR2_NEXT, STR1_LOOP, STR1_NEXT;
++
++ sub(t0, needle_len, needle_isL == haystack_isL ? 4 : 2);
++ bltz(t0, DOSHORT);
++
++ (this->*needle_load_1chr)(first, Address(needle), noreg);
++ slli(t0, needle_len, needle_chr_shift);
++ add(needle, needle, t0);
++ neg(nlen_neg, t0);
++ slli(t0, result_tmp, haystack_chr_shift);
++ add(haystack, haystack, t0);
++ neg(hlen_neg, t0);
++
++ bind(FIRST_LOOP);
++ add(t0, haystack, hlen_neg);
++ (this->*haystack_load_1chr)(ch2, Address(t0), noreg);
++ beq(first, ch2, STR1_LOOP);
++
++ bind(STR2_NEXT);
++ add(hlen_neg, hlen_neg, haystack_chr_size);
++ blez(hlen_neg, FIRST_LOOP);
++ j(NOMATCH);
++
++ bind(STR1_LOOP);
++ add(nlen_tmp, nlen_neg, needle_chr_size);
++ add(hlen_tmp, hlen_neg, haystack_chr_size);
++ bgez(nlen_tmp, MATCH);
++
++ bind(STR1_NEXT);
++ add(ch1, needle, nlen_tmp);
++ (this->*needle_load_1chr)(ch1, Address(ch1), noreg);
++ add(ch2, haystack, hlen_tmp);
++ (this->*haystack_load_1chr)(ch2, Address(ch2), noreg);
++ bne(ch1, ch2, STR2_NEXT);
++ add(nlen_tmp, nlen_tmp, needle_chr_size);
++ add(hlen_tmp, hlen_tmp, haystack_chr_size);
++ bltz(nlen_tmp, STR1_NEXT);
++ j(MATCH);
++
++ bind(DOSHORT);
++ if (needle_isL == haystack_isL) {
++ sub(t0, needle_len, 2);
++ bltz(t0, DO1);
++ bgtz(t0, DO3);
++ }
++ }
++
++ if (needle_con_cnt == 4) {
++ Label CH1_LOOP;
++ (this->*load_4chr)(ch1, Address(needle), noreg);
++ sub(result_tmp, haystack_len, 4);
++ slli(tmp3, result_tmp, haystack_chr_shift); // result as tmp
++ add(haystack, haystack, tmp3);
++ neg(hlen_neg, tmp3);
++
++ bind(CH1_LOOP);
++ add(ch2, haystack, hlen_neg);
++ (this->*load_4chr)(ch2, Address(ch2), noreg);
++ beq(ch1, ch2, MATCH);
++ add(hlen_neg, hlen_neg, haystack_chr_size);
++ blez(hlen_neg, CH1_LOOP);
++ j(NOMATCH);
++ }
++
++ if ((needle_con_cnt == -1 && needle_isL == haystack_isL) || needle_con_cnt == 2) {
++ Label CH1_LOOP;
++ BLOCK_COMMENT("string_indexof DO2 {");
++ bind(DO2);
++ (this->*load_2chr)(ch1, Address(needle), noreg);
++ if (needle_con_cnt == 2) {
++ sub(result_tmp, haystack_len, 2);
++ }
++ slli(tmp3, result_tmp, haystack_chr_shift);
++ add(haystack, haystack, tmp3);
++ neg(hlen_neg, tmp3);
++
++ bind(CH1_LOOP);
++ add(tmp3, haystack, hlen_neg);
++ (this->*load_2chr)(ch2, Address(tmp3), noreg);
++ beq(ch1, ch2, MATCH);
++ add(hlen_neg, hlen_neg, haystack_chr_size);
++ blez(hlen_neg, CH1_LOOP);
++ j(NOMATCH);
++ BLOCK_COMMENT("} string_indexof DO2");
++ }
++
++ if ((needle_con_cnt == -1 && needle_isL == haystack_isL) || needle_con_cnt == 3) {
++ Label FIRST_LOOP, STR2_NEXT, STR1_LOOP;
++ BLOCK_COMMENT("string_indexof DO3 {");
++
++ bind(DO3);
++ (this->*load_2chr)(first, Address(needle), noreg);
++ (this->*needle_load_1chr)(ch1, Address(needle, 2 * needle_chr_size), noreg);
++ if (needle_con_cnt == 3) {
++ sub(result_tmp, haystack_len, 3);
++ }
++ slli(hlen_tmp, result_tmp, haystack_chr_shift);
++ add(haystack, haystack, hlen_tmp);
++ neg(hlen_neg, hlen_tmp);
++
++ bind(FIRST_LOOP);
++ add(ch2, haystack, hlen_neg);
++ (this->*load_2chr)(ch2, Address(ch2), noreg);
++ beq(first, ch2, STR1_LOOP);
++
++ bind(STR2_NEXT);
++ add(hlen_neg, hlen_neg, haystack_chr_size);
++ blez(hlen_neg, FIRST_LOOP);
++ j(NOMATCH);
++
++ bind(STR1_LOOP);
++ add(hlen_tmp, hlen_neg, 2 * haystack_chr_size);
++ add(ch2, haystack, hlen_tmp);
++ (this->*haystack_load_1chr)(ch2, Address(ch2), noreg);
++ bne(ch1, ch2, STR2_NEXT);
++ j(MATCH);
++ BLOCK_COMMENT("} string_indexof DO3");
++ }
++
++ if (needle_con_cnt == -1 || needle_con_cnt == 1) {
++ Label DO1_LOOP;
++
++ BLOCK_COMMENT("string_indexof DO1 {");
++ bind(DO1);
++ (this->*needle_load_1chr)(ch1, Address(needle), noreg);
++ sub(result_tmp, haystack_len, 1);
++ mv(tmp3, result_tmp);
++ if (haystack_chr_shift) {
++ slli(tmp3, result_tmp, haystack_chr_shift);
++ }
++ add(haystack, haystack, tmp3);
++ neg(hlen_neg, tmp3);
++
++ bind(DO1_LOOP);
++ add(tmp3, haystack, hlen_neg);
++ (this->*haystack_load_1chr)(ch2, Address(tmp3), noreg);
++ beq(ch1, ch2, MATCH);
++ add(hlen_neg, hlen_neg, haystack_chr_size);
++ blez(hlen_neg, DO1_LOOP);
++ BLOCK_COMMENT("} string_indexof DO1");
++ }
++
++ bind(NOMATCH);
++ mv(result, -1);
++ j(DONE);
++
++ bind(MATCH);
++ srai(t0, hlen_neg, haystack_chr_shift);
++ add(result, result_tmp, t0);
++
++ bind(DONE);
++}
++
++// Compare strings.
++void C2_MacroAssembler::string_compare(Register str1, Register str2,
++ Register cnt1, Register cnt2, Register result, Register tmp1, Register tmp2,
++ Register tmp3, int ae)
++{
++ Label DONE, SHORT_LOOP, SHORT_STRING, SHORT_LAST, TAIL, STUB,
++ DIFFERENCE, NEXT_WORD, SHORT_LOOP_TAIL, SHORT_LAST2, SHORT_LAST_INIT,
++ SHORT_LOOP_START, TAIL_CHECK, L;
++
++ const int STUB_THRESHOLD = 64 + 8;
++ bool isLL = ae == StrIntrinsicNode::LL;
++ bool isLU = ae == StrIntrinsicNode::LU;
++ bool isUL = ae == StrIntrinsicNode::UL;
++
++ bool str1_isL = isLL || isLU;
++ bool str2_isL = isLL || isUL;
++
++ // for L strings, 1 byte for 1 character
++ // for U strings, 2 bytes for 1 character
++ int str1_chr_size = str1_isL ? 1 : 2;
++ int str2_chr_size = str2_isL ? 1 : 2;
++ int minCharsInWord = isLL ? wordSize : wordSize / 2;
++
++ load_chr_insn str1_load_chr = str1_isL ? (load_chr_insn)&MacroAssembler::lbu : (load_chr_insn)&MacroAssembler::lhu;
++ load_chr_insn str2_load_chr = str2_isL ? (load_chr_insn)&MacroAssembler::lbu : (load_chr_insn)&MacroAssembler::lhu;
++
++ BLOCK_COMMENT("string_compare {");
++
++ // Bizzarely, the counts are passed in bytes, regardless of whether they
++ // are L or U strings, however the result is always in characters.
++ if (!str1_isL) {
++ sraiw(cnt1, cnt1, 1);
++ }
++ if (!str2_isL) {
++ sraiw(cnt2, cnt2, 1);
++ }
++
++ // Compute the minimum of the string lengths and save the difference in result.
++ sub(result, cnt1, cnt2);
++ bgt(cnt1, cnt2, L);
++ mv(cnt2, cnt1);
++ bind(L);
++
++ // A very short string
++ mv(t0, minCharsInWord);
++ ble(cnt2, t0, SHORT_STRING);
++
++ // Compare longwords
++ // load first parts of strings and finish initialization while loading
++ {
++ if (str1_isL == str2_isL) { // LL or UU
++ // load 8 bytes once to compare
++ ld(tmp1, Address(str1));
++ beq(str1, str2, DONE);
++ ld(tmp2, Address(str2));
++ mv(t0, STUB_THRESHOLD);
++ bge(cnt2, t0, STUB);
++ sub(cnt2, cnt2, minCharsInWord);
++ beqz(cnt2, TAIL_CHECK);
++ // convert cnt2 from characters to bytes
++ if (!str1_isL) {
++ slli(cnt2, cnt2, 1);
++ }
++ add(str2, str2, cnt2);
++ add(str1, str1, cnt2);
++ sub(cnt2, zr, cnt2);
++ } else if (isLU) { // LU case
++ lwu(tmp1, Address(str1));
++ ld(tmp2, Address(str2));
++ mv(t0, STUB_THRESHOLD);
++ bge(cnt2, t0, STUB);
++ addi(cnt2, cnt2, -4);
++ add(str1, str1, cnt2);
++ sub(cnt1, zr, cnt2);
++ slli(cnt2, cnt2, 1);
++ add(str2, str2, cnt2);
++ inflate_lo32(tmp3, tmp1);
++ mv(tmp1, tmp3);
++ sub(cnt2, zr, cnt2);
++ addi(cnt1, cnt1, 4);
++ } else { // UL case
++ ld(tmp1, Address(str1));
++ lwu(tmp2, Address(str2));
++ mv(t0, STUB_THRESHOLD);
++ bge(cnt2, t0, STUB);
++ addi(cnt2, cnt2, -4);
++ slli(t0, cnt2, 1);
++ sub(cnt1, zr, t0);
++ add(str1, str1, t0);
++ add(str2, str2, cnt2);
++ inflate_lo32(tmp3, tmp2);
++ mv(tmp2, tmp3);
++ sub(cnt2, zr, cnt2);
++ addi(cnt1, cnt1, 8);
++ }
++ addi(cnt2, cnt2, isUL ? 4 : 8);
++ bgez(cnt2, TAIL);
++ xorr(tmp3, tmp1, tmp2);
++ bnez(tmp3, DIFFERENCE);
++
++ // main loop
++ bind(NEXT_WORD);
++ if (str1_isL == str2_isL) { // LL or UU
++ add(t0, str1, cnt2);
++ ld(tmp1, Address(t0));
++ add(t0, str2, cnt2);
++ ld(tmp2, Address(t0));
++ addi(cnt2, cnt2, 8);
++ } else if (isLU) { // LU case
++ add(t0, str1, cnt1);
++ lwu(tmp1, Address(t0));
++ add(t0, str2, cnt2);
++ ld(tmp2, Address(t0));
++ addi(cnt1, cnt1, 4);
++ inflate_lo32(tmp3, tmp1);
++ mv(tmp1, tmp3);
++ addi(cnt2, cnt2, 8);
++ } else { // UL case
++ add(t0, str2, cnt2);
++ lwu(tmp2, Address(t0));
++ add(t0, str1, cnt1);
++ ld(tmp1, Address(t0));
++ inflate_lo32(tmp3, tmp2);
++ mv(tmp2, tmp3);
++ addi(cnt1, cnt1, 8);
++ addi(cnt2, cnt2, 4);
++ }
++ bgez(cnt2, TAIL);
++
++ xorr(tmp3, tmp1, tmp2);
++ beqz(tmp3, NEXT_WORD);
++ j(DIFFERENCE);
++ bind(TAIL);
++ xorr(tmp3, tmp1, tmp2);
++ bnez(tmp3, DIFFERENCE);
++ // Last longword. In the case where length == 4 we compare the
++ // same longword twice, but that's still faster than another
++ // conditional branch.
++ if (str1_isL == str2_isL) { // LL or UU
++ ld(tmp1, Address(str1));
++ ld(tmp2, Address(str2));
++ } else if (isLU) { // LU case
++ lwu(tmp1, Address(str1));
++ ld(tmp2, Address(str2));
++ inflate_lo32(tmp3, tmp1);
++ mv(tmp1, tmp3);
++ } else { // UL case
++ lwu(tmp2, Address(str2));
++ ld(tmp1, Address(str1));
++ inflate_lo32(tmp3, tmp2);
++ mv(tmp2, tmp3);
++ }
++ bind(TAIL_CHECK);
++ xorr(tmp3, tmp1, tmp2);
++ beqz(tmp3, DONE);
++
++ // Find the first different characters in the longwords and
++ // compute their difference.
++ bind(DIFFERENCE);
++ ctzc_bit(result, tmp3, isLL); // count zero from lsb to msb
++ srl(tmp1, tmp1, result);
++ srl(tmp2, tmp2, result);
++ if (isLL) {
++ andi(tmp1, tmp1, 0xFF);
++ andi(tmp2, tmp2, 0xFF);
++ } else {
++ andi(tmp1, tmp1, 0xFFFF);
++ andi(tmp2, tmp2, 0xFFFF);
++ }
++ sub(result, tmp1, tmp2);
++ j(DONE);
++ }
++
++ bind(STUB);
++ RuntimeAddress stub = NULL;
++ switch (ae) {
++ case StrIntrinsicNode::LL:
++ stub = RuntimeAddress(StubRoutines::riscv::compare_long_string_LL());
++ break;
++ case StrIntrinsicNode::UU:
++ stub = RuntimeAddress(StubRoutines::riscv::compare_long_string_UU());
++ break;
++ case StrIntrinsicNode::LU:
++ stub = RuntimeAddress(StubRoutines::riscv::compare_long_string_LU());
++ break;
++ case StrIntrinsicNode::UL:
++ stub = RuntimeAddress(StubRoutines::riscv::compare_long_string_UL());
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++ assert(stub.target() != NULL, "compare_long_string stub has not been generated");
++ trampoline_call(stub);
++ j(DONE);
++
++ bind(SHORT_STRING);
++ // Is the minimum length zero?
++ beqz(cnt2, DONE);
++ // arrange code to do most branches while loading and loading next characters
++ // while comparing previous
++ (this->*str1_load_chr)(tmp1, Address(str1), t0);
++ addi(str1, str1, str1_chr_size);
++ addi(cnt2, cnt2, -1);
++ beqz(cnt2, SHORT_LAST_INIT);
++ (this->*str2_load_chr)(cnt1, Address(str2), t0);
++ addi(str2, str2, str2_chr_size);
++ j(SHORT_LOOP_START);
++ bind(SHORT_LOOP);
++ addi(cnt2, cnt2, -1);
++ beqz(cnt2, SHORT_LAST);
++ bind(SHORT_LOOP_START);
++ (this->*str1_load_chr)(tmp2, Address(str1), t0);
++ addi(str1, str1, str1_chr_size);
++ (this->*str2_load_chr)(t0, Address(str2), t0);
++ addi(str2, str2, str2_chr_size);
++ bne(tmp1, cnt1, SHORT_LOOP_TAIL);
++ addi(cnt2, cnt2, -1);
++ beqz(cnt2, SHORT_LAST2);
++ (this->*str1_load_chr)(tmp1, Address(str1), t0);
++ addi(str1, str1, str1_chr_size);
++ (this->*str2_load_chr)(cnt1, Address(str2), t0);
++ addi(str2, str2, str2_chr_size);
++ beq(tmp2, t0, SHORT_LOOP);
++ sub(result, tmp2, t0);
++ j(DONE);
++ bind(SHORT_LOOP_TAIL);
++ sub(result, tmp1, cnt1);
++ j(DONE);
++ bind(SHORT_LAST2);
++ beq(tmp2, t0, DONE);
++ sub(result, tmp2, t0);
++
++ j(DONE);
++ bind(SHORT_LAST_INIT);
++ (this->*str2_load_chr)(cnt1, Address(str2), t0);
++ addi(str2, str2, str2_chr_size);
++ bind(SHORT_LAST);
++ beq(tmp1, cnt1, DONE);
++ sub(result, tmp1, cnt1);
++
++ bind(DONE);
++
++ BLOCK_COMMENT("} string_compare");
++}
++
++void C2_MacroAssembler::arrays_equals(Register a1, Register a2, Register tmp3,
++ Register tmp4, Register tmp5, Register tmp6, Register result,
++ Register cnt1, int elem_size) {
++ Label DONE, SAME, NEXT_DWORD, SHORT, TAIL, TAIL2, IS_TMP5_ZR;
++ Register tmp1 = t0;
++ Register tmp2 = t1;
++ Register cnt2 = tmp2; // cnt2 only used in array length compare
++ Register elem_per_word = tmp6;
++ int log_elem_size = exact_log2(elem_size);
++ int length_offset = arrayOopDesc::length_offset_in_bytes();
++ int base_offset = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE);
++
++ assert(elem_size == 1 || elem_size == 2, "must be char or byte");
++ assert_different_registers(a1, a2, result, cnt1, t0, t1, tmp3, tmp4, tmp5, tmp6);
++ mv(elem_per_word, wordSize / elem_size);
++
++ BLOCK_COMMENT("arrays_equals {");
++
++ // if (a1 == a2), return true
++ beq(a1, a2, SAME);
++
++ mv(result, false);
++ beqz(a1, DONE);
++ beqz(a2, DONE);
++ lwu(cnt1, Address(a1, length_offset));
++ lwu(cnt2, Address(a2, length_offset));
++ bne(cnt2, cnt1, DONE);
++ beqz(cnt1, SAME);
++
++ slli(tmp5, cnt1, 3 + log_elem_size);
++ sub(tmp5, zr, tmp5);
++ add(a1, a1, base_offset);
++ add(a2, a2, base_offset);
++ ld(tmp3, Address(a1, 0));
++ ld(tmp4, Address(a2, 0));
++ ble(cnt1, elem_per_word, SHORT); // short or same
++
++ // Main 16 byte comparison loop with 2 exits
++ bind(NEXT_DWORD); {
++ ld(tmp1, Address(a1, wordSize));
++ ld(tmp2, Address(a2, wordSize));
++ sub(cnt1, cnt1, 2 * wordSize / elem_size);
++ blez(cnt1, TAIL);
++ bne(tmp3, tmp4, DONE);
++ ld(tmp3, Address(a1, 2 * wordSize));
++ ld(tmp4, Address(a2, 2 * wordSize));
++ add(a1, a1, 2 * wordSize);
++ add(a2, a2, 2 * wordSize);
++ ble(cnt1, elem_per_word, TAIL2);
++ } beq(tmp1, tmp2, NEXT_DWORD);
++ j(DONE);
++
++ bind(TAIL);
++ xorr(tmp4, tmp3, tmp4);
++ xorr(tmp2, tmp1, tmp2);
++ sll(tmp2, tmp2, tmp5);
++ orr(tmp5, tmp4, tmp2);
++ j(IS_TMP5_ZR);
++
++ bind(TAIL2);
++ bne(tmp1, tmp2, DONE);
++
++ bind(SHORT);
++ xorr(tmp4, tmp3, tmp4);
++ sll(tmp5, tmp4, tmp5);
++
++ bind(IS_TMP5_ZR);
++ bnez(tmp5, DONE);
++
++ bind(SAME);
++ mv(result, true);
++ // That's it.
++ bind(DONE);
++
++ BLOCK_COMMENT("} array_equals");
++}
++
++// Compare Strings
++
++// For Strings we're passed the address of the first characters in a1
++// and a2 and the length in cnt1.
++// elem_size is the element size in bytes: either 1 or 2.
++// There are two implementations. For arrays >= 8 bytes, all
++// comparisons (including the final one, which may overlap) are
++// performed 8 bytes at a time. For strings < 8 bytes, we compare a
++// halfword, then a short, and then a byte.
++
++void C2_MacroAssembler::string_equals(Register a1, Register a2,
++ Register result, Register cnt1, int elem_size)
++{
++ Label SAME, DONE, SHORT, NEXT_WORD;
++ Register tmp1 = t0;
++ Register tmp2 = t1;
++
++ assert(elem_size == 1 || elem_size == 2, "must be 2 or 1 byte");
++ assert_different_registers(a1, a2, result, cnt1, t0, t1);
++
++ BLOCK_COMMENT("string_equals {");
++
++ mv(result, false);
++
++ // Check for short strings, i.e. smaller than wordSize.
++ sub(cnt1, cnt1, wordSize);
++ bltz(cnt1, SHORT);
++
++ // Main 8 byte comparison loop.
++ bind(NEXT_WORD); {
++ ld(tmp1, Address(a1, 0));
++ add(a1, a1, wordSize);
++ ld(tmp2, Address(a2, 0));
++ add(a2, a2, wordSize);
++ sub(cnt1, cnt1, wordSize);
++ bne(tmp1, tmp2, DONE);
++ } bgtz(cnt1, NEXT_WORD);
++
++ // Last longword. In the case where length == 4 we compare the
++ // same longword twice, but that's still faster than another
++ // conditional branch.
++ // cnt1 could be 0, -1, -2, -3, -4 for chars; -4 only happens when
++ // length == 4.
++ add(tmp1, a1, cnt1);
++ ld(tmp1, Address(tmp1, 0));
++ add(tmp2, a2, cnt1);
++ ld(tmp2, Address(tmp2, 0));
++ bne(tmp1, tmp2, DONE);
++ j(SAME);
++
++ bind(SHORT);
++ Label TAIL03, TAIL01;
++
++ // 0-7 bytes left.
++ test_bit(t0, cnt1, 2);
++ beqz(t0, TAIL03);
++ {
++ lwu(tmp1, Address(a1, 0));
++ add(a1, a1, 4);
++ lwu(tmp2, Address(a2, 0));
++ add(a2, a2, 4);
++ bne(tmp1, tmp2, DONE);
++ }
++
++ bind(TAIL03);
++ // 0-3 bytes left.
++ test_bit(t0, cnt1, 1);
++ beqz(t0, TAIL01);
++ {
++ lhu(tmp1, Address(a1, 0));
++ add(a1, a1, 2);
++ lhu(tmp2, Address(a2, 0));
++ add(a2, a2, 2);
++ bne(tmp1, tmp2, DONE);
++ }
++
++ bind(TAIL01);
++ if (elem_size == 1) { // Only needed when comparing 1-byte elements
++ // 0-1 bytes left.
++ test_bit(t0, cnt1, 0);
++ beqz(t0, SAME);
++ {
++ lbu(tmp1, Address(a1, 0));
++ lbu(tmp2, Address(a2, 0));
++ bne(tmp1, tmp2, DONE);
++ }
++ }
++
++ // Arrays are equal.
++ bind(SAME);
++ mv(result, true);
++
++ // That's it.
++ bind(DONE);
++ BLOCK_COMMENT("} string_equals");
++}
++
++typedef void (Assembler::*conditional_branch_insn)(Register op1, Register op2, Label& label, bool is_far);
++typedef void (MacroAssembler::*float_conditional_branch_insn)(FloatRegister op1, FloatRegister op2, Label& label,
++ bool is_far, bool is_unordered);
++
++static conditional_branch_insn conditional_branches[] =
++{
++ /* SHORT branches */
++ (conditional_branch_insn)&MacroAssembler::beq,
++ (conditional_branch_insn)&MacroAssembler::bgt,
++ NULL, // BoolTest::overflow
++ (conditional_branch_insn)&MacroAssembler::blt,
++ (conditional_branch_insn)&MacroAssembler::bne,
++ (conditional_branch_insn)&MacroAssembler::ble,
++ NULL, // BoolTest::no_overflow
++ (conditional_branch_insn)&MacroAssembler::bge,
++
++ /* UNSIGNED branches */
++ (conditional_branch_insn)&MacroAssembler::beq,
++ (conditional_branch_insn)&MacroAssembler::bgtu,
++ NULL,
++ (conditional_branch_insn)&MacroAssembler::bltu,
++ (conditional_branch_insn)&MacroAssembler::bne,
++ (conditional_branch_insn)&MacroAssembler::bleu,
++ NULL,
++ (conditional_branch_insn)&MacroAssembler::bgeu
++};
++
++static float_conditional_branch_insn float_conditional_branches[] =
++{
++ /* FLOAT SHORT branches */
++ (float_conditional_branch_insn)&MacroAssembler::float_beq,
++ (float_conditional_branch_insn)&MacroAssembler::float_bgt,
++ NULL, // BoolTest::overflow
++ (float_conditional_branch_insn)&MacroAssembler::float_blt,
++ (float_conditional_branch_insn)&MacroAssembler::float_bne,
++ (float_conditional_branch_insn)&MacroAssembler::float_ble,
++ NULL, // BoolTest::no_overflow
++ (float_conditional_branch_insn)&MacroAssembler::float_bge,
++
++ /* DOUBLE SHORT branches */
++ (float_conditional_branch_insn)&MacroAssembler::double_beq,
++ (float_conditional_branch_insn)&MacroAssembler::double_bgt,
++ NULL,
++ (float_conditional_branch_insn)&MacroAssembler::double_blt,
++ (float_conditional_branch_insn)&MacroAssembler::double_bne,
++ (float_conditional_branch_insn)&MacroAssembler::double_ble,
++ NULL,
++ (float_conditional_branch_insn)&MacroAssembler::double_bge
++};
++
++void C2_MacroAssembler::cmp_branch(int cmpFlag, Register op1, Register op2, Label& label, bool is_far) {
++ assert(cmpFlag >= 0 && cmpFlag < (int)(sizeof(conditional_branches) / sizeof(conditional_branches[0])),
++ "invalid conditional branch index");
++ (this->*conditional_branches[cmpFlag])(op1, op2, label, is_far);
++}
++
++// This is a function should only be used by C2. Flip the unordered when unordered-greater, C2 would use
++// unordered-lesser instead of unordered-greater. Finally, commute the result bits at function do_one_bytecode().
++void C2_MacroAssembler::float_cmp_branch(int cmpFlag, FloatRegister op1, FloatRegister op2, Label& label, bool is_far) {
++ assert(cmpFlag >= 0 && cmpFlag < (int)(sizeof(float_conditional_branches) / sizeof(float_conditional_branches[0])),
++ "invalid float conditional branch index");
++ int booltest_flag = cmpFlag & ~(C2_MacroAssembler::double_branch_mask);
++ (this->*float_conditional_branches[cmpFlag])(op1, op2, label, is_far,
++ (booltest_flag == (BoolTest::ge) || booltest_flag == (BoolTest::gt)) ? false : true);
++}
++
++void C2_MacroAssembler::enc_cmpUEqNeLeGt_imm0_branch(int cmpFlag, Register op1, Label& L, bool is_far) {
++ switch (cmpFlag) {
++ case BoolTest::eq:
++ case BoolTest::le:
++ beqz(op1, L, is_far);
++ break;
++ case BoolTest::ne:
++ case BoolTest::gt:
++ bnez(op1, L, is_far);
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++}
++
++void C2_MacroAssembler::enc_cmpEqNe_imm0_branch(int cmpFlag, Register op1, Label& L, bool is_far) {
++ switch (cmpFlag) {
++ case BoolTest::eq:
++ beqz(op1, L, is_far);
++ break;
++ case BoolTest::ne:
++ bnez(op1, L, is_far);
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++}
++
++void C2_MacroAssembler::enc_cmove(int cmpFlag, Register op1, Register op2, Register dst, Register src) {
++ Label L;
++ cmp_branch(cmpFlag ^ (1 << neg_cond_bits), op1, op2, L);
++ mv(dst, src);
++ bind(L);
++}
++
++// Set dst to NaN if any NaN input.
++void C2_MacroAssembler::minmax_FD(FloatRegister dst, FloatRegister src1, FloatRegister src2,
++ bool is_double, bool is_min) {
++ assert_different_registers(dst, src1, src2);
++
++ Label Done, Compare;
++
++ is_double ? fclass_d(t0, src1)
++ : fclass_s(t0, src1);
++ is_double ? fclass_d(t1, src2)
++ : fclass_s(t1, src2);
++ orr(t0, t0, t1);
++ andi(t0, t0, 0b1100000000); //if src1 or src2 is quiet or signaling NaN then return NaN
++ beqz(t0, Compare);
++ is_double ? fadd_d(dst, src1, src2)
++ : fadd_s(dst, src1, src2);
++ j(Done);
++
++ bind(Compare);
++ if (is_double) {
++ is_min ? fmin_d(dst, src1, src2)
++ : fmax_d(dst, src1, src2);
++ } else {
++ is_min ? fmin_s(dst, src1, src2)
++ : fmax_s(dst, src1, src2);
++ }
++
++ bind(Done);
++}
++
++void C2_MacroAssembler::element_compare(Register a1, Register a2, Register result, Register cnt, Register tmp1, Register tmp2,
++ VectorRegister vr1, VectorRegister vr2, VectorRegister vrs, bool islatin, Label &DONE) {
++ Label loop;
++ Assembler::SEW sew = islatin ? Assembler::e8 : Assembler::e16;
++
++ bind(loop);
++ vsetvli(tmp1, cnt, sew, Assembler::m2);
++ vlex_v(vr1, a1, sew);
++ vlex_v(vr2, a2, sew);
++ vmsne_vv(vrs, vr1, vr2);
++ vfirst_m(tmp2, vrs);
++ bgez(tmp2, DONE);
++ sub(cnt, cnt, tmp1);
++ if (!islatin) {
++ slli(tmp1, tmp1, 1); // get byte counts
++ }
++ add(a1, a1, tmp1);
++ add(a2, a2, tmp1);
++ bnez(cnt, loop);
++
++ mv(result, true);
++}
++
++void C2_MacroAssembler::string_equals_v(Register a1, Register a2, Register result, Register cnt, int elem_size) {
++ Label DONE;
++ Register tmp1 = t0;
++ Register tmp2 = t1;
++
++ BLOCK_COMMENT("string_equals_v {");
++
++ mv(result, false);
++
++ if (elem_size == 2) {
++ srli(cnt, cnt, 1);
++ }
++
++ element_compare(a1, a2, result, cnt, tmp1, tmp2, v0, v2, v0, elem_size == 1, DONE);
++
++ bind(DONE);
++ BLOCK_COMMENT("} string_equals_v");
++}
++
++// used by C2 ClearArray patterns.
++// base: Address of a buffer to be zeroed
++// cnt: Count in HeapWords
++//
++// base, cnt, v0, v1 and t0 are clobbered.
++void C2_MacroAssembler::clear_array_v(Register base, Register cnt) {
++ Label loop;
++
++ // making zero words
++ vsetvli(t0, cnt, Assembler::e64, Assembler::m4);
++ vxor_vv(v0, v0, v0);
++
++ bind(loop);
++ vsetvli(t0, cnt, Assembler::e64, Assembler::m4);
++ vse64_v(v0, base);
++ sub(cnt, cnt, t0);
++ shadd(base, t0, base, t0, 3);
++ bnez(cnt, loop);
++}
++
++void C2_MacroAssembler::arrays_equals_v(Register a1, Register a2, Register result,
++ Register cnt1, int elem_size) {
++ Label DONE;
++ Register tmp1 = t0;
++ Register tmp2 = t1;
++ Register cnt2 = tmp2;
++ int length_offset = arrayOopDesc::length_offset_in_bytes();
++ int base_offset = arrayOopDesc::base_offset_in_bytes(elem_size == 2 ? T_CHAR : T_BYTE);
++
++ BLOCK_COMMENT("arrays_equals_v {");
++
++ // if (a1 == a2), return true
++ mv(result, true);
++ beq(a1, a2, DONE);
++
++ mv(result, false);
++ // if a1 == null or a2 == null, return false
++ beqz(a1, DONE);
++ beqz(a2, DONE);
++ // if (a1.length != a2.length), return false
++ lwu(cnt1, Address(a1, length_offset));
++ lwu(cnt2, Address(a2, length_offset));
++ bne(cnt1, cnt2, DONE);
++
++ la(a1, Address(a1, base_offset));
++ la(a2, Address(a2, base_offset));
++
++ element_compare(a1, a2, result, cnt1, tmp1, tmp2, v0, v2, v0, elem_size == 1, DONE);
++
++ bind(DONE);
++
++ BLOCK_COMMENT("} arrays_equals_v");
++}
++
++void C2_MacroAssembler::string_compare_v(Register str1, Register str2, Register cnt1, Register cnt2,
++ Register result, Register tmp1, Register tmp2, int encForm) {
++ Label DIFFERENCE, DONE, L, loop;
++ bool encLL = encForm == StrIntrinsicNode::LL;
++ bool encLU = encForm == StrIntrinsicNode::LU;
++ bool encUL = encForm == StrIntrinsicNode::UL;
++
++ bool str1_isL = encLL || encLU;
++ bool str2_isL = encLL || encUL;
++
++ int minCharsInWord = encLL ? wordSize : wordSize / 2;
++
++ BLOCK_COMMENT("string_compare {");
++
++ // for Lating strings, 1 byte for 1 character
++ // for UTF16 strings, 2 bytes for 1 character
++ if (!str1_isL)
++ sraiw(cnt1, cnt1, 1);
++ if (!str2_isL)
++ sraiw(cnt2, cnt2, 1);
++
++ // if str1 == str2, return the difference
++ // save the minimum of the string lengths in cnt2.
++ sub(result, cnt1, cnt2);
++ bgt(cnt1, cnt2, L);
++ mv(cnt2, cnt1);
++ bind(L);
++
++ if (str1_isL == str2_isL) { // LL or UU
++ element_compare(str1, str2, zr, cnt2, tmp1, tmp2, v2, v4, v1, encLL, DIFFERENCE);
++ j(DONE);
++ } else { // LU or UL
++ Register strL = encLU ? str1 : str2;
++ Register strU = encLU ? str2 : str1;
++ VectorRegister vstr1 = encLU ? v4 : v0;
++ VectorRegister vstr2 = encLU ? v0 : v4;
++
++ bind(loop);
++ vsetvli(tmp1, cnt2, Assembler::e8, Assembler::m2);
++ vle8_v(vstr1, strL);
++ vsetvli(tmp1, cnt2, Assembler::e16, Assembler::m4);
++ vzext_vf2(vstr2, vstr1);
++ vle16_v(vstr1, strU);
++ vmsne_vv(v0, vstr2, vstr1);
++ vfirst_m(tmp2, v0);
++ bgez(tmp2, DIFFERENCE);
++ sub(cnt2, cnt2, tmp1);
++ add(strL, strL, tmp1);
++ shadd(strU, tmp1, strU, tmp1, 1);
++ bnez(cnt2, loop);
++ j(DONE);
++ }
++ bind(DIFFERENCE);
++ slli(tmp1, tmp2, 1);
++ add(str1, str1, str1_isL ? tmp2 : tmp1);
++ add(str2, str2, str2_isL ? tmp2 : tmp1);
++ str1_isL ? lbu(tmp1, Address(str1, 0)) : lhu(tmp1, Address(str1, 0));
++ str2_isL ? lbu(tmp2, Address(str2, 0)) : lhu(tmp2, Address(str2, 0));
++ sub(result, tmp1, tmp2);
++
++ bind(DONE);
++}
++
++void C2_MacroAssembler::byte_array_inflate_v(Register src, Register dst, Register len, Register tmp) {
++ Label loop;
++ assert_different_registers(src, dst, len, tmp, t0);
++
++ BLOCK_COMMENT("byte_array_inflate_v {");
++ bind(loop);
++ vsetvli(tmp, len, Assembler::e8, Assembler::m2);
++ vle8_v(v2, src);
++ vsetvli(t0, len, Assembler::e16, Assembler::m4);
++ vzext_vf2(v0, v2);
++ vse16_v(v0, dst);
++ sub(len, len, tmp);
++ add(src, src, tmp);
++ shadd(dst, tmp, dst, tmp, 1);
++ bnez(len, loop);
++ BLOCK_COMMENT("} byte_array_inflate_v");
++}
++
++// Compress char[] array to byte[].
++// result: the array length if every element in array can be encoded; 0, otherwise.
++void C2_MacroAssembler::char_array_compress_v(Register src, Register dst, Register len, Register result, Register tmp) {
++ Label done;
++ encode_iso_array_v(src, dst, len, result, tmp);
++ beqz(len, done);
++ mv(result, zr);
++ bind(done);
++}
++
++// result: the number of elements had been encoded.
++void C2_MacroAssembler::encode_iso_array_v(Register src, Register dst, Register len, Register result, Register tmp) {
++ Label loop, DIFFERENCE, DONE;
++
++ BLOCK_COMMENT("encode_iso_array_v {");
++ mv(result, 0);
++
++ bind(loop);
++ mv(tmp, 0xff);
++ vsetvli(t0, len, Assembler::e16, Assembler::m2);
++ vle16_v(v2, src);
++ // if element > 0xff, stop
++ vmsgtu_vx(v1, v2, tmp);
++ vfirst_m(tmp, v1);
++ vmsbf_m(v0, v1);
++ // compress char to byte
++ vsetvli(t0, len, Assembler::e8);
++ vncvt_x_x_w(v1, v2, Assembler::v0_t);
++ vse8_v(v1, dst, Assembler::v0_t);
++
++ bgez(tmp, DIFFERENCE);
++ add(result, result, t0);
++ add(dst, dst, t0);
++ sub(len, len, t0);
++ shadd(src, t0, src, t0, 1);
++ bnez(len, loop);
++ j(DONE);
++
++ bind(DIFFERENCE);
++ add(result, result, tmp);
++
++ bind(DONE);
++ BLOCK_COMMENT("} encode_iso_array_v");
++}
++
++void C2_MacroAssembler::has_negatives_v(Register ary, Register len,
++ Register result, Register tmp) {
++ Label LOOP, DONE;
++
++ BLOCK_COMMENT("has_negatives_v {");
++ assert_different_registers(ary, len, result, tmp);
++
++ mv(result, true);
++
++ bind(LOOP);
++ vsetvli(t0, len, Assembler::e8, Assembler::m4);
++ vle8_v(v0, ary);
++ vmslt_vx(v0, v0, zr);
++ vfirst_m(tmp, v0);
++ bgez(tmp, DONE);
++
++ sub(len, len, t0);
++ add(ary, ary, t0);
++ bnez(len, LOOP);
++ mv(result, false);
++
++ bind(DONE);
++ BLOCK_COMMENT("} has_negatives_v");
++}
++
++void C2_MacroAssembler::string_indexof_char_v(Register str1, Register cnt1,
++ Register ch, Register result,
++ Register tmp1, Register tmp2,
++ bool isL) {
++ mv(result, zr);
++
++ Label loop, MATCH, DONE;
++ Assembler::SEW sew = isL ? Assembler::e8 : Assembler::e16;
++ bind(loop);
++ vsetvli(tmp1, cnt1, sew, Assembler::m4);
++ vlex_v(v0, str1, sew);
++ vmseq_vx(v0, v0, ch);
++ vfirst_m(tmp2, v0);
++ bgez(tmp2, MATCH); // if equal, return index
++
++ add(result, result, tmp1);
++ sub(cnt1, cnt1, tmp1);
++ if (!isL) slli(tmp1, tmp1, 1);
++ add(str1, str1, tmp1);
++ bnez(cnt1, loop);
++
++ mv(result, -1);
++ j(DONE);
++
++ bind(MATCH);
++ add(result, result, tmp2);
++
++ bind(DONE);
++}
++
++// Set dst to NaN if any NaN input.
++void C2_MacroAssembler::minmax_FD_v(VectorRegister dst, VectorRegister src1, VectorRegister src2,
++ bool is_double, bool is_min) {
++ assert_different_registers(dst, src1, src2);
++
++ vsetvli(t0, x0, is_double ? Assembler::e64 : Assembler::e32);
++
++ is_min ? vfmin_vv(dst, src1, src2)
++ : vfmax_vv(dst, src1, src2);
++
++ vmfne_vv(v0, src1, src1);
++ vfadd_vv(dst, src1, src1, Assembler::v0_t);
++ vmfne_vv(v0, src2, src2);
++ vfadd_vv(dst, src2, src2, Assembler::v0_t);
++}
++
++// Set dst to NaN if any NaN input.
++void C2_MacroAssembler::reduce_minmax_FD_v(FloatRegister dst,
++ FloatRegister src1, VectorRegister src2,
++ VectorRegister tmp1, VectorRegister tmp2,
++ bool is_double, bool is_min) {
++ assert_different_registers(src2, tmp1, tmp2);
++
++ Label L_done, L_NaN;
++ vsetvli(t0, x0, is_double ? Assembler::e64 : Assembler::e32);
++ vfmv_s_f(tmp2, src1);
++
++ is_min ? vfredmin_vs(tmp1, src2, tmp2)
++ : vfredmax_vs(tmp1, src2, tmp2);
++
++ fsflags(zr);
++ // Checking NaNs
++ vmflt_vf(tmp2, src2, src1);
++ frflags(t0);
++ bnez(t0, L_NaN);
++ j(L_done);
++
++ bind(L_NaN);
++ vfmv_s_f(tmp2, src1);
++ vfredusum_vs(tmp1, src2, tmp2);
++
++ bind(L_done);
++ vfmv_f_s(dst, tmp1);
++}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/c2_MacroAssembler_riscv.hpp
+@@ -0,0 +1,193 @@
++/*
++ * Copyright (c) 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_C2_MACROASSEMBLER_RISCV_HPP
++#define CPU_RISCV_C2_MACROASSEMBLER_RISCV_HPP
++
++// C2_MacroAssembler contains high-level macros for C2
++
++ private:
++ void element_compare(Register r1, Register r2,
++ Register result, Register cnt,
++ Register tmp1, Register tmp2,
++ VectorRegister vr1, VectorRegister vr2,
++ VectorRegister vrs,
++ bool is_latin, Label& DONE);
++ public:
++
++ void string_compare(Register str1, Register str2,
++ Register cnt1, Register cnt2, Register result,
++ Register tmp1, Register tmp2, Register tmp3,
++ int ae);
++
++ void string_indexof_char_short(Register str1, Register cnt1,
++ Register ch, Register result,
++ bool isL);
++
++ void string_indexof_char(Register str1, Register cnt1,
++ Register ch, Register result,
++ Register tmp1, Register tmp2,
++ Register tmp3, Register tmp4,
++ bool isL);
++
++ void string_indexof(Register str1, Register str2,
++ Register cnt1, Register cnt2,
++ Register tmp1, Register tmp2,
++ Register tmp3, Register tmp4,
++ Register tmp5, Register tmp6,
++ Register result, int ae);
++
++ void string_indexof_linearscan(Register haystack, Register needle,
++ Register haystack_len, Register needle_len,
++ Register tmp1, Register tmp2,
++ Register tmp3, Register tmp4,
++ int needle_con_cnt, Register result, int ae);
++
++ void arrays_equals(Register r1, Register r2,
++ Register tmp3, Register tmp4,
++ Register tmp5, Register tmp6,
++ Register result, Register cnt1,
++ int elem_size);
++
++ void string_equals(Register r1, Register r2,
++ Register result, Register cnt1,
++ int elem_size);
++
++ // refer to conditional_branches and float_conditional_branches
++ static const int bool_test_bits = 3;
++ static const int neg_cond_bits = 2;
++ static const int unsigned_branch_mask = 1 << bool_test_bits;
++ static const int double_branch_mask = 1 << bool_test_bits;
++
++ // cmp
++ void cmp_branch(int cmpFlag,
++ Register op1, Register op2,
++ Label& label, bool is_far = false);
++
++ void float_cmp_branch(int cmpFlag,
++ FloatRegister op1, FloatRegister op2,
++ Label& label, bool is_far = false);
++
++ void enc_cmpUEqNeLeGt_imm0_branch(int cmpFlag, Register op,
++ Label& L, bool is_far = false);
++
++ void enc_cmpEqNe_imm0_branch(int cmpFlag, Register op,
++ Label& L, bool is_far = false);
++
++ void enc_cmove(int cmpFlag,
++ Register op1, Register op2,
++ Register dst, Register src);
++
++ void spill(Register r, bool is64, int offset) {
++ is64 ? sd(r, Address(sp, offset))
++ : sw(r, Address(sp, offset));
++ }
++
++ void spill(FloatRegister f, bool is64, int offset) {
++ is64 ? fsd(f, Address(sp, offset))
++ : fsw(f, Address(sp, offset));
++ }
++
++ void spill(VectorRegister v, int offset) {
++ add(t0, sp, offset);
++ vs1r_v(v, t0);
++ }
++
++ void unspill(Register r, bool is64, int offset) {
++ is64 ? ld(r, Address(sp, offset))
++ : lw(r, Address(sp, offset));
++ }
++
++ void unspillu(Register r, bool is64, int offset) {
++ is64 ? ld(r, Address(sp, offset))
++ : lwu(r, Address(sp, offset));
++ }
++
++ void unspill(FloatRegister f, bool is64, int offset) {
++ is64 ? fld(f, Address(sp, offset))
++ : flw(f, Address(sp, offset));
++ }
++
++ void unspill(VectorRegister v, int offset) {
++ add(t0, sp, offset);
++ vl1re8_v(v, t0);
++ }
++
++ void spill_copy_vector_stack_to_stack(int src_offset, int dst_offset, int vec_reg_size_in_bytes) {
++ assert(vec_reg_size_in_bytes % 16 == 0, "unexpected vector reg size");
++ unspill(v0, src_offset);
++ spill(v0, dst_offset);
++ }
++
++ void minmax_FD(FloatRegister dst,
++ FloatRegister src1, FloatRegister src2,
++ bool is_double, bool is_min);
++
++ // intrinsic methods implemented by rvv instructions
++ void string_equals_v(Register r1, Register r2,
++ Register result, Register cnt1,
++ int elem_size);
++
++ void arrays_equals_v(Register r1, Register r2,
++ Register result, Register cnt1,
++ int elem_size);
++
++ void string_compare_v(Register str1, Register str2,
++ Register cnt1, Register cnt2,
++ Register result,
++ Register tmp1, Register tmp2,
++ int encForm);
++
++ void clear_array_v(Register base, Register cnt);
++
++ void byte_array_inflate_v(Register src, Register dst,
++ Register len, Register tmp);
++
++ void char_array_compress_v(Register src, Register dst,
++ Register len, Register result,
++ Register tmp);
++
++ void encode_iso_array_v(Register src, Register dst,
++ Register len, Register result,
++ Register tmp);
++
++ void has_negatives_v(Register ary, Register len,
++ Register result, Register tmp);
++
++ void string_indexof_char_v(Register str1, Register cnt1,
++ Register ch, Register result,
++ Register tmp1, Register tmp2,
++ bool isL);
++
++ void minmax_FD_v(VectorRegister dst,
++ VectorRegister src1, VectorRegister src2,
++ bool is_double, bool is_min);
++
++ void reduce_minmax_FD_v(FloatRegister dst,
++ FloatRegister src1, VectorRegister src2,
++ VectorRegister tmp1, VectorRegister tmp2,
++ bool is_double, bool is_min);
++
++#endif // CPU_RISCV_C2_MACROASSEMBLER_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/c2_globals_riscv.hpp
+@@ -0,0 +1,85 @@
++/*
++ * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_C2_GLOBALS_RISCV_HPP
++#define CPU_RISCV_C2_GLOBALS_RISCV_HPP
++
++#include "utilities/globalDefinitions.hpp"
++#include "utilities/macros.hpp"
++
++// Sets the default values for platform dependent flags used by the server compiler.
++// (see c2_globals.hpp). Alpha-sorted.
++
++define_pd_global(bool, BackgroundCompilation, true);
++define_pd_global(bool, CICompileOSR, true);
++define_pd_global(bool, InlineIntrinsics, true);
++define_pd_global(bool, PreferInterpreterNativeStubs, false);
++define_pd_global(bool, ProfileTraps, true);
++define_pd_global(bool, UseOnStackReplacement, true);
++define_pd_global(bool, ProfileInterpreter, true);
++define_pd_global(bool, TieredCompilation, COMPILER1_PRESENT(true) NOT_COMPILER1(false));
++define_pd_global(intx, CompileThreshold, 10000);
++
++define_pd_global(intx, OnStackReplacePercentage, 140);
++define_pd_global(intx, ConditionalMoveLimit, 0);
++define_pd_global(intx, FLOATPRESSURE, 32);
++define_pd_global(intx, FreqInlineSize, 325);
++define_pd_global(intx, MinJumpTableSize, 10);
++define_pd_global(intx, INTPRESSURE, 24);
++define_pd_global(intx, InteriorEntryAlignment, 16);
++define_pd_global(intx, NewSizeThreadIncrease, ScaleForWordSize(4*K));
++define_pd_global(intx, LoopUnrollLimit, 60);
++define_pd_global(intx, LoopPercentProfileLimit, 10);
++// InitialCodeCacheSize derived from specjbb2000 run.
++define_pd_global(intx, InitialCodeCacheSize, 2496*K); // Integral multiple of CodeCacheExpansionSize
++define_pd_global(intx, CodeCacheExpansionSize, 64*K);
++
++// Ergonomics related flags
++define_pd_global(uint64_t,MaxRAM, 128ULL*G);
++define_pd_global(intx, RegisterCostAreaRatio, 16000);
++
++// Peephole and CISC spilling both break the graph, and so makes the
++// scheduler sick.
++define_pd_global(bool, OptoPeephole, false);
++define_pd_global(bool, UseCISCSpill, false);
++define_pd_global(bool, OptoScheduling, true);
++define_pd_global(bool, OptoBundling, false);
++define_pd_global(bool, OptoRegScheduling, false);
++define_pd_global(bool, SuperWordLoopUnrollAnalysis, true);
++define_pd_global(bool, IdealizeClearArrayNode, true);
++
++define_pd_global(intx, ReservedCodeCacheSize, 48*M);
++define_pd_global(intx, NonProfiledCodeHeapSize, 21*M);
++define_pd_global(intx, ProfiledCodeHeapSize, 22*M);
++define_pd_global(intx, NonNMethodCodeHeapSize, 5*M );
++define_pd_global(uintx, CodeCacheMinBlockLength, 6);
++define_pd_global(uintx, CodeCacheMinimumUseSpace, 400*K);
++
++// Ergonomics related flags
++define_pd_global(bool, NeverActAsServerClassMachine, false);
++
++define_pd_global(bool, TrapBasedRangeChecks, false); // Not needed.
++
++#endif // CPU_RISCV_C2_GLOBALS_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/c2_init_riscv.cpp
+@@ -0,0 +1,38 @@
++/*
++ * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, 2019, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "opto/compile.hpp"
++#include "opto/node.hpp"
++
++// processor dependent initialization for riscv
++
++extern void reg_mask_init();
++
++void Compile::pd_compiler2_init() {
++ guarantee(CodeEntryAlignment >= InteriorEntryAlignment, "" );
++ reg_mask_init();
++}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/c2_safepointPollStubTable_riscv.cpp
+@@ -0,0 +1,48 @@
++/*
++ * Copyright (c) 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/macroAssembler.hpp"
++#include "opto/compile.hpp"
++#include "opto/node.hpp"
++#include "opto/output.hpp"
++#include "runtime/sharedRuntime.hpp"
++
++#define __ masm.
++void C2SafepointPollStubTable::emit_stub_impl(MacroAssembler& masm, C2SafepointPollStub* entry) const {
++ assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
++ "polling page return stub not created yet");
++ address stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
++ RuntimeAddress callback_addr(stub);
++
++ __ bind(entry->_stub_label);
++ InternalAddress safepoint_pc(__ pc() - __ offset() + entry->_safepoint_offset);
++ __ relocate(safepoint_pc.rspec(), [&] {
++ __ la(t0, safepoint_pc.target());
++ });
++ __ sd(t0, Address(xthread, JavaThread::saved_exception_pc_offset()));
++ __ far_jump(callback_addr);
++}
++#undef __
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/codeBuffer_riscv.hpp
+@@ -0,0 +1,36 @@
++/*
++ * Copyright (c) 2002, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_CODEBUFFER_RISCV_HPP
++#define CPU_RISCV_CODEBUFFER_RISCV_HPP
++
++private:
++ void pd_initialize() {}
++
++public:
++ void flush_bundle(bool start_new_bundle) {}
++
++#endif // CPU_RISCV_CODEBUFFER_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/compiledIC_riscv.cpp
+@@ -0,0 +1,149 @@
++/*
++ * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, 2018, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/macroAssembler.inline.hpp"
++#include "code/compiledIC.hpp"
++#include "code/icBuffer.hpp"
++#include "code/nmethod.hpp"
++#include "memory/resourceArea.hpp"
++#include "runtime/mutexLocker.hpp"
++#include "runtime/safepoint.hpp"
++
++// ----------------------------------------------------------------------------
++
++#define __ _masm.
++address CompiledStaticCall::emit_to_interp_stub(CodeBuffer &cbuf, address mark) {
++ precond(cbuf.stubs()->start() != badAddress);
++ precond(cbuf.stubs()->end() != badAddress);
++ // Stub is fixed up when the corresponding call is converted from
++ // calling compiled code to calling interpreted code.
++ // mv xmethod, 0
++ // jalr -4 # to self
++
++ if (mark == NULL) {
++ mark = cbuf.insts_mark(); // Get mark within main instrs section.
++ }
++
++ // Note that the code buffer's insts_mark is always relative to insts.
++ // That's why we must use the macroassembler to generate a stub.
++ MacroAssembler _masm(&cbuf);
++
++ address base = __ start_a_stub(to_interp_stub_size());
++ int offset = __ offset();
++ if (base == NULL) {
++ return NULL; // CodeBuffer::expand failed
++ }
++ // static stub relocation stores the instruction address of the call
++ __ relocate(static_stub_Relocation::spec(mark));
++
++ __ emit_static_call_stub();
++
++ assert((__ offset() - offset) <= (int)to_interp_stub_size(), "stub too big");
++ __ end_a_stub();
++ return base;
++}
++#undef __
++
++int CompiledStaticCall::to_interp_stub_size() {
++ // (lui, addi, slli, addi, slli, addi) + (lui, addi, slli, addi, slli) + jalr
++ return 12 * NativeInstruction::instruction_size;
++}
++
++int CompiledStaticCall::to_trampoline_stub_size() {
++ // Somewhat pessimistically, we count 4 instructions here (although
++ // there are only 3) because we sometimes emit an alignment nop.
++ // Trampoline stubs are always word aligned.
++ return NativeInstruction::instruction_size + NativeCallTrampolineStub::instruction_size;
++}
++
++// Relocation entries for call stub, compiled java to interpreter.
++int CompiledStaticCall::reloc_to_interp_stub() {
++ return 4; // 3 in emit_to_interp_stub + 1 in emit_call
++}
++
++void CompiledDirectStaticCall::set_to_interpreted(const methodHandle& callee, address entry) {
++ address stub = find_stub();
++ guarantee(stub != NULL, "stub not found");
++
++ if (TraceICs) {
++ ResourceMark rm;
++ tty->print_cr("CompiledDirectStaticCall@" INTPTR_FORMAT ": set_to_interpreted %s",
++ p2i(instruction_address()),
++ callee->name_and_sig_as_C_string());
++ }
++
++ // Creation also verifies the object.
++ NativeMovConstReg* method_holder
++ = nativeMovConstReg_at(stub);
++#ifdef ASSERT
++ NativeGeneralJump* jump = nativeGeneralJump_at(method_holder->next_instruction_address());
++
++ verify_mt_safe(callee, entry, method_holder, jump);
++#endif
++ // Update stub.
++ method_holder->set_data((intptr_t)callee());
++ NativeGeneralJump::insert_unconditional(method_holder->next_instruction_address(), entry);
++ ICache::invalidate_range(stub, to_interp_stub_size());
++ // Update jump to call.
++ set_destination_mt_safe(stub);
++}
++
++void CompiledDirectStaticCall::set_stub_to_clean(static_stub_Relocation* static_stub) {
++ // Reset stub.
++ address stub = static_stub->addr();
++ assert(stub != NULL, "stub not found");
++ assert(CompiledICLocker::is_safe(stub), "mt unsafe call");
++ // Creation also verifies the object.
++ NativeMovConstReg* method_holder
++ = nativeMovConstReg_at(stub);
++ method_holder->set_data(0);
++ NativeJump* jump = nativeJump_at(method_holder->next_instruction_address());
++ jump->set_jump_destination((address)-1);
++}
++
++//-----------------------------------------------------------------------------
++// Non-product mode code
++#ifndef PRODUCT
++
++void CompiledDirectStaticCall::verify() {
++ // Verify call.
++ _call->verify();
++ _call->verify_alignment();
++
++ // Verify stub.
++ address stub = find_stub();
++ assert(stub != NULL, "no stub found for static call");
++ // Creation also verifies the object.
++ NativeMovConstReg* method_holder
++ = nativeMovConstReg_at(stub);
++ NativeJump* jump = nativeJump_at(method_holder->next_instruction_address());
++
++ // Verify state.
++ assert(is_clean() || is_call_to_compiled() || is_call_to_interpreted(), "sanity check");
++}
++
++#endif // !PRODUCT
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/copy_riscv.hpp
+@@ -0,0 +1,143 @@
++/*
++ * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_COPY_RISCV_HPP
++#define CPU_RISCV_COPY_RISCV_HPP
++
++#include OS_CPU_HEADER(copy)
++
++static void pd_fill_to_words(HeapWord* tohw, size_t count, juint value) {
++ julong* to = (julong*) tohw;
++ julong v = ((julong) value << 32) | value;
++ while (count-- > 0) {
++ *to++ = v;
++ }
++}
++
++static void pd_fill_to_aligned_words(HeapWord* tohw, size_t count, juint value) {
++ pd_fill_to_words(tohw, count, value);
++}
++
++static void pd_fill_to_bytes(void* to, size_t count, jubyte value) {
++ (void)memset(to, value, count);
++}
++
++static void pd_zero_to_words(HeapWord* tohw, size_t count) {
++ pd_fill_to_words(tohw, count, 0);
++}
++
++static void pd_zero_to_bytes(void* to, size_t count) {
++ (void)memset(to, 0, count);
++}
++
++static void pd_conjoint_words(const HeapWord* from, HeapWord* to, size_t count) {
++ (void)memmove(to, from, count * HeapWordSize);
++}
++
++static inline void pd_disjoint_words_helper(const HeapWord* from, HeapWord* to, size_t count, bool is_atomic) {
++ switch (count) {
++ case 8: to[7] = from[7]; // fall through
++ case 7: to[6] = from[6]; // fall through
++ case 6: to[5] = from[5]; // fall through
++ case 5: to[4] = from[4]; // fall through
++ case 4: to[3] = from[3]; // fall through
++ case 3: to[2] = from[2]; // fall through
++ case 2: to[1] = from[1]; // fall through
++ case 1: to[0] = from[0]; // fall through
++ case 0: break;
++ default:
++ if (is_atomic) {
++ while (count-- > 0) { *to++ = *from++; }
++ } else {
++ memcpy(to, from, count * HeapWordSize);
++ }
++ }
++}
++
++static void pd_disjoint_words(const HeapWord* from, HeapWord* to, size_t count) {
++ pd_disjoint_words_helper(from, to, count, false);
++}
++
++static void pd_disjoint_words_atomic(const HeapWord* from, HeapWord* to, size_t count) {
++ pd_disjoint_words_helper(from, to, count, true);
++}
++
++static void pd_aligned_conjoint_words(const HeapWord* from, HeapWord* to, size_t count) {
++ pd_conjoint_words(from, to, count);
++}
++
++static void pd_aligned_disjoint_words(const HeapWord* from, HeapWord* to, size_t count) {
++ pd_disjoint_words(from, to, count);
++}
++
++static void pd_conjoint_bytes(const void* from, void* to, size_t count) {
++ (void)memmove(to, from, count);
++}
++
++static void pd_conjoint_bytes_atomic(const void* from, void* to, size_t count) {
++ pd_conjoint_bytes(from, to, count);
++}
++
++static void pd_conjoint_jshorts_atomic(const jshort* from, jshort* to, size_t count) {
++ _Copy_conjoint_jshorts_atomic(from, to, count);
++}
++
++static void pd_conjoint_jints_atomic(const jint* from, jint* to, size_t count) {
++ _Copy_conjoint_jints_atomic(from, to, count);
++}
++
++static void pd_conjoint_jlongs_atomic(const jlong* from, jlong* to, size_t count) {
++ _Copy_conjoint_jlongs_atomic(from, to, count);
++}
++
++static void pd_conjoint_oops_atomic(const oop* from, oop* to, size_t count) {
++ assert(BytesPerLong == BytesPerOop, "jlongs and oops must be the same size.");
++ _Copy_conjoint_jlongs_atomic((const jlong*)from, (jlong*)to, count);
++}
++
++static void pd_arrayof_conjoint_bytes(const HeapWord* from, HeapWord* to, size_t count) {
++ _Copy_arrayof_conjoint_bytes(from, to, count);
++}
++
++static void pd_arrayof_conjoint_jshorts(const HeapWord* from, HeapWord* to, size_t count) {
++ _Copy_arrayof_conjoint_jshorts(from, to, count);
++}
++
++static void pd_arrayof_conjoint_jints(const HeapWord* from, HeapWord* to, size_t count) {
++ _Copy_arrayof_conjoint_jints(from, to, count);
++}
++
++static void pd_arrayof_conjoint_jlongs(const HeapWord* from, HeapWord* to, size_t count) {
++ _Copy_arrayof_conjoint_jlongs(from, to, count);
++}
++
++static void pd_arrayof_conjoint_oops(const HeapWord* from, HeapWord* to, size_t count) {
++ assert(!UseCompressedOops, "foo!");
++ assert(BytesPerLong == BytesPerOop, "jlongs and oops must be the same size");
++ _Copy_arrayof_conjoint_jlongs(from, to, count);
++}
++
++#endif // CPU_RISCV_COPY_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/disassembler_riscv.hpp
+@@ -0,0 +1,50 @@
++/*
++ * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_DISASSEMBLER_RISCV_HPP
++#define CPU_RISCV_DISASSEMBLER_RISCV_HPP
++
++static int pd_instruction_alignment() {
++ return 1;
++}
++
++static const char* pd_cpu_opts() {
++ return "";
++}
++
++// special-case instruction decoding.
++// There may be cases where the binutils disassembler doesn't do
++// the perfect job. In those cases, decode_instruction0 may kick in
++// and do it right.
++// If nothing had to be done, just return "here", otherwise return "here + instr_len(here)"
++static address decode_instruction0(address here, outputStream* st, address virtual_begin = NULL) {
++ return here;
++}
++
++// platform-specific instruction annotations (like value of loaded constants)
++static void annotate(address pc, outputStream* st) {}
++
++#endif // CPU_RISCV_DISASSEMBLER_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/foreign_globals_riscv.cpp
+@@ -0,0 +1,44 @@
++/*
++ * Copyright (c) 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "prims/foreign_globals.hpp"
++#include "utilities/debug.hpp"
++
++// Stubbed out, implement later
++const ABIDescriptor ForeignGlobals::parse_abi_descriptor_impl(jobject jabi) const {
++ Unimplemented();
++ return {};
++}
++
++const BufferLayout ForeignGlobals::parse_buffer_layout_impl(jobject jlayout) const {
++ Unimplemented();
++ return {};
++}
++
++const CallRegs ForeignGlobals::parse_call_regs_impl(jobject jconv) const {
++ ShouldNotCallThis();
++ return {};
++}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/foreign_globals_riscv.hpp
+@@ -0,0 +1,32 @@
++/*
++ * Copyright (c) 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_FOREIGN_GLOBALS_RISCV_HPP
++#define CPU_RISCV_FOREIGN_GLOBALS_RISCV_HPP
++
++class ABIDescriptor {};
++class BufferLayout {};
++
++#endif // CPU_RISCV_FOREIGN_GLOBALS_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/frame_riscv.cpp
+@@ -0,0 +1,688 @@
++/*
++ * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "compiler/oopMap.hpp"
++#include "interpreter/interpreter.hpp"
++#include "memory/resourceArea.hpp"
++#include "memory/universe.hpp"
++#include "oops/markWord.hpp"
++#include "oops/method.hpp"
++#include "oops/oop.inline.hpp"
++#include "prims/methodHandles.hpp"
++#include "runtime/frame.inline.hpp"
++#include "runtime/handles.inline.hpp"
++#include "runtime/javaCalls.hpp"
++#include "runtime/monitorChunk.hpp"
++#include "runtime/os.inline.hpp"
++#include "runtime/signature.hpp"
++#include "runtime/stackWatermarkSet.hpp"
++#include "runtime/stubCodeGenerator.hpp"
++#include "runtime/stubRoutines.hpp"
++#include "vmreg_riscv.inline.hpp"
++#ifdef COMPILER1
++#include "c1/c1_Runtime1.hpp"
++#include "runtime/vframeArray.hpp"
++#endif
++
++#ifdef ASSERT
++void RegisterMap::check_location_valid() {
++}
++#endif
++
++
++// Profiling/safepoint support
++
++bool frame::safe_for_sender(JavaThread *thread) {
++ address addr_sp = (address)_sp;
++ address addr_fp = (address)_fp;
++ address unextended_sp = (address)_unextended_sp;
++
++ // consider stack guards when trying to determine "safe" stack pointers
++ // sp must be within the usable part of the stack (not in guards)
++ if (!thread->is_in_usable_stack(addr_sp)) {
++ return false;
++ }
++
++ // When we are running interpreted code the machine stack pointer, SP, is
++ // set low enough so that the Java expression stack can grow and shrink
++ // without ever exceeding the machine stack bounds. So, ESP >= SP.
++
++ // When we call out of an interpreted method, SP is incremented so that
++ // the space between SP and ESP is removed. The SP saved in the callee's
++ // frame is the SP *before* this increment. So, when we walk a stack of
++ // interpreter frames the sender's SP saved in a frame might be less than
++ // the SP at the point of call.
++
++ // So unextended sp must be within the stack but we need not to check
++ // that unextended sp >= sp
++
++ if (!thread->is_in_full_stack_checked(unextended_sp)) {
++ return false;
++ }
++
++ // an fp must be within the stack and above (but not equal) sp
++ // second evaluation on fp+ is added to handle situation where fp is -1
++ bool fp_safe = thread->is_in_stack_range_excl(addr_fp, addr_sp) &&
++ thread->is_in_full_stack_checked(addr_fp + (return_addr_offset * sizeof(void*)));
++
++ // We know sp/unextended_sp are safe only fp is questionable here
++
++ // If the current frame is known to the code cache then we can attempt to
++ // to construct the sender and do some validation of it. This goes a long way
++ // toward eliminating issues when we get in frame construction code
++
++ if (_cb != NULL) {
++
++ // First check if frame is complete and tester is reliable
++ // Unfortunately we can only check frame complete for runtime stubs and nmethod
++ // other generic buffer blobs are more problematic so we just assume they are
++ // ok. adapter blobs never have a frame complete and are never ok.
++
++ if (!_cb->is_frame_complete_at(_pc)) {
++ if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) {
++ return false;
++ }
++ }
++
++ // Could just be some random pointer within the codeBlob
++ if (!_cb->code_contains(_pc)) {
++ return false;
++ }
++
++ // Entry frame checks
++ if (is_entry_frame()) {
++ // an entry frame must have a valid fp.
++ return fp_safe && is_entry_frame_valid(thread);
++ }
++
++ intptr_t* sender_sp = NULL;
++ intptr_t* sender_unextended_sp = NULL;
++ address sender_pc = NULL;
++ intptr_t* saved_fp = NULL;
++
++ if (is_interpreted_frame()) {
++ // fp must be safe
++ if (!fp_safe) {
++ return false;
++ }
++
++ sender_pc = (address)this->fp()[return_addr_offset];
++ // for interpreted frames, the value below is the sender "raw" sp,
++ // which can be different from the sender unextended sp (the sp seen
++ // by the sender) because of current frame local variables
++ sender_sp = (intptr_t*) addr_at(sender_sp_offset);
++ sender_unextended_sp = (intptr_t*) this->fp()[interpreter_frame_sender_sp_offset];
++ saved_fp = (intptr_t*) this->fp()[link_offset];
++ } else {
++ // must be some sort of compiled/runtime frame
++ // fp does not have to be safe (although it could be check for c1?)
++
++ // check for a valid frame_size, otherwise we are unlikely to get a valid sender_pc
++ if (_cb->frame_size() <= 0) {
++ return false;
++ }
++
++ sender_sp = _unextended_sp + _cb->frame_size();
++ // Is sender_sp safe?
++ if (!thread->is_in_full_stack_checked((address)sender_sp)) {
++ return false;
++ }
++
++ sender_unextended_sp = sender_sp;
++ sender_pc = (address) *(sender_sp - 1);
++ saved_fp = (intptr_t*) *(sender_sp - 2);
++ }
++
++
++ // If the potential sender is the interpreter then we can do some more checking
++ if (Interpreter::contains(sender_pc)) {
++
++ // fp is always saved in a recognizable place in any code we generate. However
++ // only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved fp
++ // is really a frame pointer.
++ if (!thread->is_in_stack_range_excl((address)saved_fp, (address)sender_sp)) {
++ return false;
++ }
++
++ // construct the potential sender
++ frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc);
++
++ return sender.is_interpreted_frame_valid(thread);
++ }
++
++ // We must always be able to find a recognizable pc
++ CodeBlob* sender_blob = CodeCache::find_blob_unsafe(sender_pc);
++ if (sender_pc == NULL || sender_blob == NULL) {
++ return false;
++ }
++
++ // Could be a zombie method
++ if (sender_blob->is_zombie() || sender_blob->is_unloaded()) {
++ return false;
++ }
++
++ // Could just be some random pointer within the codeBlob
++ if (!sender_blob->code_contains(sender_pc)) {
++ return false;
++ }
++
++ // We should never be able to see an adapter if the current frame is something from code cache
++ if (sender_blob->is_adapter_blob()) {
++ return false;
++ }
++
++ // Could be the call_stub
++ if (StubRoutines::returns_to_call_stub(sender_pc)) {
++ if (!thread->is_in_stack_range_excl((address)saved_fp, (address)sender_sp)) {
++ return false;
++ }
++
++ // construct the potential sender
++ frame sender(sender_sp, sender_unextended_sp, saved_fp, sender_pc);
++
++ // Validate the JavaCallWrapper an entry frame must have
++ address jcw = (address)sender.entry_frame_call_wrapper();
++
++ bool jcw_safe = (jcw < thread->stack_base()) && (jcw > (address)sender.fp());
++
++ return jcw_safe;
++ }
++
++ CompiledMethod* nm = sender_blob->as_compiled_method_or_null();
++ if (nm != NULL) {
++ if (nm->is_deopt_mh_entry(sender_pc) || nm->is_deopt_entry(sender_pc) ||
++ nm->method()->is_method_handle_intrinsic()) {
++ return false;
++ }
++ }
++
++ // If the frame size is 0 something (or less) is bad because every nmethod has a non-zero frame size
++ // because the return address counts against the callee's frame.
++ if (sender_blob->frame_size() <= 0) {
++ assert(!sender_blob->is_compiled(), "should count return address at least");
++ return false;
++ }
++
++ // We should never be able to see anything here except an nmethod. If something in the
++ // code cache (current frame) is called by an entity within the code cache that entity
++ // should not be anything but the call stub (already covered), the interpreter (already covered)
++ // or an nmethod.
++ if (!sender_blob->is_compiled()) {
++ return false;
++ }
++
++ // Could put some more validation for the potential non-interpreted sender
++ // frame we'd create by calling sender if I could think of any. Wait for next crash in forte...
++
++ // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb
++
++ // We've validated the potential sender that would be created
++ return true;
++ }
++
++ // Must be native-compiled frame. Since sender will try and use fp to find
++ // linkages it must be safe
++ if (!fp_safe) {
++ return false;
++ }
++
++ // Will the pc we fetch be non-zero (which we'll find at the oldest frame)
++ if ((address)this->fp()[return_addr_offset] == NULL) { return false; }
++
++ return true;
++}
++
++void frame::patch_pc(Thread* thread, address pc) {
++ assert(_cb == CodeCache::find_blob(pc), "unexpected pc");
++ address* pc_addr = &(((address*) sp())[-1]);
++ if (TracePcPatching) {
++ tty->print_cr("patch_pc at address " INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "]",
++ p2i(pc_addr), p2i(*pc_addr), p2i(pc));
++ }
++ // Either the return address is the original one or we are going to
++ // patch in the same address that's already there.
++ assert(_pc == *pc_addr || pc == *pc_addr, "must be");
++ *pc_addr = pc;
++ address original_pc = CompiledMethod::get_deopt_original_pc(this);
++ if (original_pc != NULL) {
++ assert(original_pc == _pc, "expected original PC to be stored before patching");
++ _deopt_state = is_deoptimized;
++ // leave _pc as is
++ } else {
++ _deopt_state = not_deoptimized;
++ _pc = pc;
++ }
++}
++
++bool frame::is_interpreted_frame() const {
++ return Interpreter::contains(pc());
++}
++
++int frame::frame_size(RegisterMap* map) const {
++ frame sender = this->sender(map);
++ return sender.sp() - sp();
++}
++
++intptr_t* frame::entry_frame_argument_at(int offset) const {
++ // convert offset to index to deal with tsi
++ int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
++ // Entry frame's arguments are always in relation to unextended_sp()
++ return &unextended_sp()[index];
++}
++
++// sender_sp
++intptr_t* frame::interpreter_frame_sender_sp() const {
++ assert(is_interpreted_frame(), "interpreted frame expected");
++ return (intptr_t*) at(interpreter_frame_sender_sp_offset);
++}
++
++void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) {
++ assert(is_interpreted_frame(), "interpreted frame expected");
++ ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp);
++}
++
++
++// monitor elements
++
++BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
++ return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset);
++}
++
++BasicObjectLock* frame::interpreter_frame_monitor_end() const {
++ BasicObjectLock* result = (BasicObjectLock*) *addr_at(interpreter_frame_monitor_block_top_offset);
++ // make sure the pointer points inside the frame
++ assert(sp() <= (intptr_t*) result, "monitor end should be above the stack pointer");
++ assert((intptr_t*) result < fp(), "monitor end should be strictly below the frame pointer");
++ return result;
++}
++
++void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) {
++ *((BasicObjectLock**)addr_at(interpreter_frame_monitor_block_top_offset)) = value;
++}
++
++// Used by template based interpreter deoptimization
++void frame::interpreter_frame_set_last_sp(intptr_t* last_sp) {
++ *((intptr_t**)addr_at(interpreter_frame_last_sp_offset)) = last_sp;
++}
++
++frame frame::sender_for_entry_frame(RegisterMap* map) const {
++ assert(map != NULL, "map must be set");
++ // Java frame called from C; skip all C frames and return top C
++ // frame of that chunk as the sender
++ JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor();
++ assert(!entry_frame_is_first(), "next Java fp must be non zero");
++ assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack");
++ // Since we are walking the stack now this nested anchor is obviously walkable
++ // even if it wasn't when it was stacked.
++ jfa->make_walkable();
++ map->clear();
++ assert(map->include_argument_oops(), "should be set by clear");
++ vmassert(jfa->last_Java_pc() != NULL, "not walkable");
++ frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc());
++ return fr;
++}
++
++OptimizedEntryBlob::FrameData* OptimizedEntryBlob::frame_data_for_frame(const frame& frame) const {
++ ShouldNotCallThis();
++ return nullptr;
++}
++
++bool frame::optimized_entry_frame_is_first() const {
++ ShouldNotCallThis();
++ return false;
++}
++
++frame frame::sender_for_optimized_entry_frame(RegisterMap* map) const {
++ ShouldNotCallThis();
++ return {};
++}
++
++//------------------------------------------------------------------------------
++// frame::verify_deopt_original_pc
++//
++// Verifies the calculated original PC of a deoptimization PC for the
++// given unextended SP.
++#ifdef ASSERT
++void frame::verify_deopt_original_pc(CompiledMethod* nm, intptr_t* unextended_sp) {
++ frame fr;
++
++ // This is ugly but it's better than to change {get,set}_original_pc
++ // to take an SP value as argument. And it's only a debugging
++ // method anyway.
++ fr._unextended_sp = unextended_sp;
++
++ assert_cond(nm != NULL);
++ address original_pc = nm->get_original_pc(&fr);
++ assert(nm->insts_contains_inclusive(original_pc),
++ "original PC must be in the main code section of the the compiled method (or must be immediately following it)");
++}
++#endif
++
++//------------------------------------------------------------------------------
++// frame::adjust_unextended_sp
++void frame::adjust_unextended_sp() {
++ // On riscv, sites calling method handle intrinsics and lambda forms are treated
++ // as any other call site. Therefore, no special action is needed when we are
++ // returning to any of these call sites.
++
++ if (_cb != NULL) {
++ CompiledMethod* sender_cm = _cb->as_compiled_method_or_null();
++ if (sender_cm != NULL) {
++ // If the sender PC is a deoptimization point, get the original PC.
++ if (sender_cm->is_deopt_entry(_pc) ||
++ sender_cm->is_deopt_mh_entry(_pc)) {
++ DEBUG_ONLY(verify_deopt_original_pc(sender_cm, _unextended_sp));
++ }
++ }
++ }
++}
++
++//------------------------------------------------------------------------------
++// frame::update_map_with_saved_link
++void frame::update_map_with_saved_link(RegisterMap* map, intptr_t** link_addr) {
++ // The interpreter and compiler(s) always save fp in a known
++ // location on entry. We must record where that location is
++ // so that if fp was live on callout from c2 we can find
++ // the saved copy no matter what it called.
++
++ // Since the interpreter always saves fp if we record where it is then
++ // we don't have to always save fp on entry and exit to c2 compiled
++ // code, on entry will be enough.
++ assert(map != NULL, "map must be set");
++ map->set_location(::fp->as_VMReg(), (address) link_addr);
++ // this is weird "H" ought to be at a higher address however the
++ // oopMaps seems to have the "H" regs at the same address and the
++ // vanilla register.
++ map->set_location(::fp->as_VMReg()->next(), (address) link_addr);
++}
++
++
++//------------------------------------------------------------------------------
++// frame::sender_for_interpreter_frame
++frame frame::sender_for_interpreter_frame(RegisterMap* map) const {
++ // SP is the raw SP from the sender after adapter or interpreter
++ // extension.
++ intptr_t* sender_sp = this->sender_sp();
++
++ // This is the sp before any possible extension (adapter/locals).
++ intptr_t* unextended_sp = interpreter_frame_sender_sp();
++
++#ifdef COMPILER2
++ assert(map != NULL, "map must be set");
++ if (map->update_map()) {
++ update_map_with_saved_link(map, (intptr_t**) addr_at(link_offset));
++ }
++#endif // COMPILER2
++
++ return frame(sender_sp, unextended_sp, link(), sender_pc());
++}
++
++
++//------------------------------------------------------------------------------
++// frame::sender_for_compiled_frame
++frame frame::sender_for_compiled_frame(RegisterMap* map) const {
++ // we cannot rely upon the last fp having been saved to the thread
++ // in C2 code but it will have been pushed onto the stack. so we
++ // have to find it relative to the unextended sp
++
++ assert(_cb->frame_size() >= 0, "must have non-zero frame size");
++ intptr_t* l_sender_sp = unextended_sp() + _cb->frame_size();
++ intptr_t* unextended_sp = l_sender_sp;
++
++ // the return_address is always the word on the stack
++ address sender_pc = (address) *(l_sender_sp + frame::return_addr_offset);
++
++ intptr_t** saved_fp_addr = (intptr_t**) (l_sender_sp + frame::link_offset);
++
++ assert(map != NULL, "map must be set");
++ if (map->update_map()) {
++ // Tell GC to use argument oopmaps for some runtime stubs that need it.
++ // For C1, the runtime stub might not have oop maps, so set this flag
++ // outside of update_register_map.
++ map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread()));
++ if (_cb->oop_maps() != NULL) {
++ OopMapSet::update_register_map(this, map);
++ }
++
++ // Since the prolog does the save and restore of FP there is no
++ // oopmap for it so we must fill in its location as if there was
++ // an oopmap entry since if our caller was compiled code there
++ // could be live jvm state in it.
++ update_map_with_saved_link(map, saved_fp_addr);
++ }
++
++ return frame(l_sender_sp, unextended_sp, *saved_fp_addr, sender_pc);
++}
++
++//------------------------------------------------------------------------------
++// frame::sender_raw
++frame frame::sender_raw(RegisterMap* map) const {
++ // Default is we done have to follow them. The sender_for_xxx will
++ // update it accordingly
++ assert(map != NULL, "map must be set");
++ map->set_include_argument_oops(false);
++
++ if (is_entry_frame()) {
++ return sender_for_entry_frame(map);
++ }
++ if (is_interpreted_frame()) {
++ return sender_for_interpreter_frame(map);
++ }
++ assert(_cb == CodeCache::find_blob(pc()),"Must be the same");
++
++ // This test looks odd: why is it not is_compiled_frame() ? That's
++ // because stubs also have OOP maps.
++ if (_cb != NULL) {
++ return sender_for_compiled_frame(map);
++ }
++
++ // Must be native-compiled frame, i.e. the marshaling code for native
++ // methods that exists in the core system.
++ return frame(sender_sp(), link(), sender_pc());
++}
++
++frame frame::sender(RegisterMap* map) const {
++ frame result = sender_raw(map);
++
++ if (map->process_frames()) {
++ StackWatermarkSet::on_iteration(map->thread(), result);
++ }
++
++ return result;
++}
++
++bool frame::is_interpreted_frame_valid(JavaThread* thread) const {
++ assert(is_interpreted_frame(), "Not an interpreted frame");
++ // These are reasonable sanity checks
++ if (fp() == NULL || (intptr_t(fp()) & (wordSize-1)) != 0) {
++ return false;
++ }
++ if (sp() == NULL || (intptr_t(sp()) & (wordSize-1)) != 0) {
++ return false;
++ }
++ if (fp() + interpreter_frame_initial_sp_offset < sp()) {
++ return false;
++ }
++ // These are hacks to keep us out of trouble.
++ // The problem with these is that they mask other problems
++ if (fp() <= sp()) { // this attempts to deal with unsigned comparison above
++ return false;
++ }
++
++ // do some validation of frame elements
++
++ // first the method
++ Method* m = *interpreter_frame_method_addr();
++ // validate the method we'd find in this potential sender
++ if (!Method::is_valid_method(m)) {
++ return false;
++ }
++
++ // stack frames shouldn't be much larger than max_stack elements
++ // this test requires the use of unextended_sp which is the sp as seen by
++ // the current frame, and not sp which is the "raw" pc which could point
++ // further because of local variables of the callee method inserted after
++ // method arguments
++ if (fp() - unextended_sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) {
++ return false;
++ }
++
++ // validate bci/bcx
++ address bcp = interpreter_frame_bcp();
++ if (m->validate_bci_from_bcp(bcp) < 0) {
++ return false;
++ }
++
++ // validate constantPoolCache*
++ ConstantPoolCache* cp = *interpreter_frame_cache_addr();
++ if (MetaspaceObj::is_valid(cp) == false) {
++ return false;
++ }
++
++ // validate locals
++ address locals = (address) *interpreter_frame_locals_addr();
++ if (locals > thread->stack_base() || locals < (address) fp()) {
++ return false;
++ }
++
++ // We'd have to be pretty unlucky to be mislead at this point
++ return true;
++}
++
++BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) {
++ assert(is_interpreted_frame(), "interpreted frame expected");
++ Method* method = interpreter_frame_method();
++ BasicType type = method->result_type();
++
++ intptr_t* tos_addr = NULL;
++ if (method->is_native()) {
++ tos_addr = (intptr_t*)sp();
++ if (type == T_FLOAT || type == T_DOUBLE) {
++ // This is because we do a push(ltos) after push(dtos) in generate_native_entry.
++ tos_addr += 2 * Interpreter::stackElementWords;
++ }
++ } else {
++ tos_addr = (intptr_t*)interpreter_frame_tos_address();
++ }
++
++ switch (type) {
++ case T_OBJECT :
++ case T_ARRAY : {
++ oop obj;
++ if (method->is_native()) {
++ obj = cast_to_oop(at(interpreter_frame_oop_temp_offset));
++ } else {
++ oop* obj_p = (oop*)tos_addr;
++ obj = (obj_p == NULL) ? (oop)NULL : *obj_p;
++ }
++ assert(Universe::is_in_heap_or_null(obj), "sanity check");
++ *oop_result = obj;
++ break;
++ }
++ case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break;
++ case T_BYTE : value_result->b = *(jbyte*)tos_addr; break;
++ case T_CHAR : value_result->c = *(jchar*)tos_addr; break;
++ case T_SHORT : value_result->s = *(jshort*)tos_addr; break;
++ case T_INT : value_result->i = *(jint*)tos_addr; break;
++ case T_LONG : value_result->j = *(jlong*)tos_addr; break;
++ case T_FLOAT : {
++ value_result->f = *(jfloat*)tos_addr;
++ break;
++ }
++ case T_DOUBLE : value_result->d = *(jdouble*)tos_addr; break;
++ case T_VOID : /* Nothing to do */ break;
++ default : ShouldNotReachHere();
++ }
++
++ return type;
++}
++
++
++intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
++ int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
++ return &interpreter_frame_tos_address()[index];
++}
++
++#ifndef PRODUCT
++
++#define DESCRIBE_FP_OFFSET(name) \
++ values.describe(frame_no, fp() + frame::name##_offset, #name)
++
++void frame::describe_pd(FrameValues& values, int frame_no) {
++ if (is_interpreted_frame()) {
++ DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp);
++ DESCRIBE_FP_OFFSET(interpreter_frame_last_sp);
++ DESCRIBE_FP_OFFSET(interpreter_frame_method);
++ DESCRIBE_FP_OFFSET(interpreter_frame_mdp);
++ DESCRIBE_FP_OFFSET(interpreter_frame_mirror);
++ DESCRIBE_FP_OFFSET(interpreter_frame_cache);
++ DESCRIBE_FP_OFFSET(interpreter_frame_locals);
++ DESCRIBE_FP_OFFSET(interpreter_frame_bcp);
++ DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp);
++ }
++}
++#endif
++
++intptr_t *frame::initial_deoptimization_info() {
++ // Not used on riscv, but we must return something.
++ return NULL;
++}
++
++intptr_t* frame::real_fp() const {
++ if (_cb != NULL) {
++ // use the frame size if valid
++ int size = _cb->frame_size();
++ if (size > 0) {
++ return unextended_sp() + size;
++ }
++ }
++ // else rely on fp()
++ assert(!is_compiled_frame(), "unknown compiled frame size");
++ return fp();
++}
++
++#undef DESCRIBE_FP_OFFSET
++
++#ifndef PRODUCT
++// This is a generic constructor which is only used by pns() in debug.cpp.
++frame::frame(void* ptr_sp, void* ptr_fp, void* pc) {
++ init((intptr_t*)ptr_sp, (intptr_t*)ptr_fp, (address)pc);
++}
++
++void frame::pd_ps() {}
++#endif
++
++void JavaFrameAnchor::make_walkable() {
++ // last frame set?
++ if (last_Java_sp() == NULL) { return; }
++ // already walkable?
++ if (walkable()) { return; }
++ vmassert(last_Java_sp() != NULL, "not called from Java code?");
++ vmassert(last_Java_pc() == NULL, "already walkable");
++ _last_Java_pc = (address)_last_Java_sp[-1];
++ vmassert(walkable(), "something went wrong");
++}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/frame_riscv.hpp
+@@ -0,0 +1,204 @@
++/*
++ * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_FRAME_RISCV_HPP
++#define CPU_RISCV_FRAME_RISCV_HPP
++
++#include "runtime/synchronizer.hpp"
++
++// A frame represents a physical stack frame (an activation). Frames can be
++// C or Java frames, and the Java frames can be interpreted or compiled.
++// In contrast, vframes represent source-level activations, so that one physical frame
++// can correspond to multiple source level frames because of inlining.
++// A frame is comprised of {pc, fp, sp}
++// ------------------------------ Asm interpreter ----------------------------------------
++// Layout of asm interpreter frame:
++// [expression stack ] * <- sp
++
++// [monitors[0] ] \
++// ... | monitor block size = k
++// [monitors[k-1] ] /
++// [frame initial esp ] ( == &monitors[0], initially here) initial_sp_offset
++// [byte code index/pointr] = bcx() bcx_offset
++
++// [pointer to locals ] = locals() locals_offset
++// [constant pool cache ] = cache() cache_offset
++
++// [klass of method ] = mirror() mirror_offset
++// [padding ]
++
++// [methodData ] = mdp() mdx_offset
++// [Method ] = method() method_offset
++
++// [last esp ] = last_sp() last_sp_offset
++// [old stack pointer ] (sender_sp) sender_sp_offset
++
++// [old frame pointer ]
++// [return pc ]
++
++// [last sp ] <- fp = link()
++// [oop temp ] (only for native calls)
++
++// [padding ] (to preserve machine SP alignment)
++// [locals and parameters ]
++// <- sender sp
++// ------------------------------ Asm interpreter ----------------------------------------
++
++// ------------------------------ C Frame ------------------------------------------------
++// Stack: gcc with -fno-omit-frame-pointer
++// .
++// .
++// +-> .
++// | +-----------------+ |
++// | | return address | |
++// | | previous fp ------+
++// | | saved registers |
++// | | local variables |
++// | | ... | <-+
++// | +-----------------+ |
++// | | return address | |
++// +------ previous fp | |
++// | saved registers | |
++// | local variables | |
++// +-> | ... | |
++// | +-----------------+ |
++// | | return address | |
++// | | previous fp ------+
++// | | saved registers |
++// | | local variables |
++// | | ... | <-+
++// | +-----------------+ |
++// | | return address | |
++// +------ previous fp | |
++// | saved registers | |
++// | local variables | |
++// $fp --> | ... | |
++// +-----------------+ |
++// | return address | |
++// | previous fp ------+
++// | saved registers |
++// $sp --> | local variables |
++// +-----------------+
++// ------------------------------ C Frame ------------------------------------------------
++
++ public:
++ enum {
++ pc_return_offset = 0,
++
++ // All frames
++ link_offset = -2,
++ return_addr_offset = -1,
++ sender_sp_offset = 0,
++
++ // Interpreter frames
++ interpreter_frame_oop_temp_offset = 1, // for native calls only
++
++ interpreter_frame_sender_sp_offset = -3,
++ // outgoing sp before a call to an invoked method
++ interpreter_frame_last_sp_offset = interpreter_frame_sender_sp_offset - 1,
++ interpreter_frame_method_offset = interpreter_frame_last_sp_offset - 1,
++ interpreter_frame_mdp_offset = interpreter_frame_method_offset - 1,
++ interpreter_frame_padding_offset = interpreter_frame_mdp_offset - 1,
++ interpreter_frame_mirror_offset = interpreter_frame_padding_offset - 1,
++ interpreter_frame_cache_offset = interpreter_frame_mirror_offset - 1,
++ interpreter_frame_locals_offset = interpreter_frame_cache_offset - 1,
++ interpreter_frame_bcp_offset = interpreter_frame_locals_offset - 1,
++ interpreter_frame_initial_sp_offset = interpreter_frame_bcp_offset - 1,
++
++ interpreter_frame_monitor_block_top_offset = interpreter_frame_initial_sp_offset,
++ interpreter_frame_monitor_block_bottom_offset = interpreter_frame_initial_sp_offset,
++
++ // Entry frames
++ // n.b. these values are determined by the layout defined in
++ // stubGenerator for the Java call stub
++ entry_frame_after_call_words = 34,
++ entry_frame_call_wrapper_offset = -10,
++
++ // we don't need a save area
++ arg_reg_save_area_bytes = 0
++ };
++
++ intptr_t ptr_at(int offset) const {
++ return *ptr_at_addr(offset);
++ }
++
++ void ptr_at_put(int offset, intptr_t value) {
++ *ptr_at_addr(offset) = value;
++ }
++
++ private:
++ // an additional field beyond _sp and _pc:
++ intptr_t* _fp; // frame pointer
++ // The interpreter and adapters will extend the frame of the caller.
++ // Since oopMaps are based on the sp of the caller before extension
++ // we need to know that value. However in order to compute the address
++ // of the return address we need the real "raw" sp. Since sparc already
++ // uses sp() to mean "raw" sp and unextended_sp() to mean the caller's
++ // original sp we use that convention.
++
++ intptr_t* _unextended_sp;
++ void adjust_unextended_sp();
++
++ intptr_t* ptr_at_addr(int offset) const {
++ return (intptr_t*) addr_at(offset);
++ }
++
++#ifdef ASSERT
++ // Used in frame::sender_for_{interpreter,compiled}_frame
++ static void verify_deopt_original_pc( CompiledMethod* nm, intptr_t* unextended_sp);
++#endif
++
++ public:
++ // Constructors
++
++ frame(intptr_t* ptr_sp, intptr_t* ptr_fp, address pc);
++
++ frame(intptr_t* ptr_sp, intptr_t* unextended_sp, intptr_t* ptr_fp, address pc);
++
++ frame(intptr_t* ptr_sp, intptr_t* ptr_fp);
++
++ void init(intptr_t* ptr_sp, intptr_t* ptr_fp, address pc);
++
++ // accessors for the instance variables
++ // Note: not necessarily the real 'frame pointer' (see real_fp)
++ intptr_t* fp() const { return _fp; }
++
++ inline address* sender_pc_addr() const;
++
++ // expression stack tos if we are nested in a java call
++ intptr_t* interpreter_frame_last_sp() const;
++
++ // helper to update a map with callee-saved RBP
++ static void update_map_with_saved_link(RegisterMap* map, intptr_t** link_addr);
++
++ // deoptimization support
++ void interpreter_frame_set_last_sp(intptr_t* last_sp);
++
++ static jint interpreter_frame_expression_stack_direction() { return -1; }
++
++ // returns the sending frame, without applying any barriers
++ frame sender_raw(RegisterMap* map) const;
++
++#endif // CPU_RISCV_FRAME_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/frame_riscv.inline.hpp
+@@ -0,0 +1,246 @@
++/*
++ * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_FRAME_RISCV_INLINE_HPP
++#define CPU_RISCV_FRAME_RISCV_INLINE_HPP
++
++#include "code/codeCache.hpp"
++#include "code/vmreg.inline.hpp"
++
++// Inline functions for RISCV frames:
++
++// Constructors:
++
++inline frame::frame() {
++ _pc = NULL;
++ _sp = NULL;
++ _unextended_sp = NULL;
++ _fp = NULL;
++ _cb = NULL;
++ _deopt_state = unknown;
++}
++
++static int spin;
++
++inline void frame::init(intptr_t* ptr_sp, intptr_t* ptr_fp, address pc) {
++ intptr_t a = intptr_t(ptr_sp);
++ intptr_t b = intptr_t(ptr_fp);
++ _sp = ptr_sp;
++ _unextended_sp = ptr_sp;
++ _fp = ptr_fp;
++ _pc = pc;
++ assert(pc != NULL, "no pc?");
++ _cb = CodeCache::find_blob(pc);
++ adjust_unextended_sp();
++
++ address original_pc = CompiledMethod::get_deopt_original_pc(this);
++ if (original_pc != NULL) {
++ _pc = original_pc;
++ _deopt_state = is_deoptimized;
++ } else {
++ _deopt_state = not_deoptimized;
++ }
++}
++
++inline frame::frame(intptr_t* ptr_sp, intptr_t* ptr_fp, address pc) {
++ init(ptr_sp, ptr_fp, pc);
++}
++
++inline frame::frame(intptr_t* ptr_sp, intptr_t* unextended_sp, intptr_t* ptr_fp, address pc) {
++ intptr_t a = intptr_t(ptr_sp);
++ intptr_t b = intptr_t(ptr_fp);
++ _sp = ptr_sp;
++ _unextended_sp = unextended_sp;
++ _fp = ptr_fp;
++ _pc = pc;
++ assert(pc != NULL, "no pc?");
++ _cb = CodeCache::find_blob(pc);
++ adjust_unextended_sp();
++
++ address original_pc = CompiledMethod::get_deopt_original_pc(this);
++ if (original_pc != NULL) {
++ _pc = original_pc;
++ assert(_cb->as_compiled_method()->insts_contains_inclusive(_pc),
++ "original PC must be in the main code section of the the compiled method (or must be immediately following it)");
++ _deopt_state = is_deoptimized;
++ } else {
++ _deopt_state = not_deoptimized;
++ }
++}
++
++inline frame::frame(intptr_t* ptr_sp, intptr_t* ptr_fp) {
++ intptr_t a = intptr_t(ptr_sp);
++ intptr_t b = intptr_t(ptr_fp);
++ _sp = ptr_sp;
++ _unextended_sp = ptr_sp;
++ _fp = ptr_fp;
++ _pc = (address)(ptr_sp[-1]);
++
++ // Here's a sticky one. This constructor can be called via AsyncGetCallTrace
++ // when last_Java_sp is non-null but the pc fetched is junk. If we are truly
++ // unlucky the junk value could be to a zombied method and we'll die on the
++ // find_blob call. This is also why we can have no asserts on the validity
++ // of the pc we find here. AsyncGetCallTrace -> pd_get_top_frame_for_signal_handler
++ // -> pd_last_frame should use a specialized version of pd_last_frame which could
++ // call a specilaized frame constructor instead of this one.
++ // Then we could use the assert below. However this assert is of somewhat dubious
++ // value.
++
++ _cb = CodeCache::find_blob(_pc);
++ adjust_unextended_sp();
++
++ address original_pc = CompiledMethod::get_deopt_original_pc(this);
++ if (original_pc != NULL) {
++ _pc = original_pc;
++ _deopt_state = is_deoptimized;
++ } else {
++ _deopt_state = not_deoptimized;
++ }
++}
++
++// Accessors
++
++inline bool frame::equal(frame other) const {
++ bool ret = sp() == other.sp() &&
++ unextended_sp() == other.unextended_sp() &&
++ fp() == other.fp() &&
++ pc() == other.pc();
++ assert(!ret || ret && cb() == other.cb() && _deopt_state == other._deopt_state, "inconsistent construction");
++ return ret;
++}
++
++// Return unique id for this frame. The id must have a value where we can distinguish
++// identity and younger/older relationship. NULL represents an invalid (incomparable)
++// frame.
++inline intptr_t* frame::id(void) const { return unextended_sp(); }
++
++// Return true if the frame is older (less recent activation) than the frame represented by id
++inline bool frame::is_older(intptr_t* id) const { assert(this->id() != NULL && id != NULL, "NULL frame id");
++ return this->id() > id ; }
++
++inline intptr_t* frame::link() const { return (intptr_t*) *(intptr_t **)addr_at(link_offset); }
++
++inline intptr_t* frame::link_or_null() const {
++ intptr_t** ptr = (intptr_t **)addr_at(link_offset);
++ return os::is_readable_pointer(ptr) ? *ptr : NULL;
++}
++
++inline intptr_t* frame::unextended_sp() const { return _unextended_sp; }
++
++// Return address
++inline address* frame::sender_pc_addr() const { return (address*) addr_at(return_addr_offset); }
++inline address frame::sender_pc() const { return *sender_pc_addr(); }
++inline intptr_t* frame::sender_sp() const { return addr_at(sender_sp_offset); }
++
++inline intptr_t** frame::interpreter_frame_locals_addr() const {
++ return (intptr_t**)addr_at(interpreter_frame_locals_offset);
++}
++
++inline intptr_t* frame::interpreter_frame_last_sp() const {
++ return *(intptr_t**)addr_at(interpreter_frame_last_sp_offset);
++}
++
++inline intptr_t* frame::interpreter_frame_bcp_addr() const {
++ return (intptr_t*)addr_at(interpreter_frame_bcp_offset);
++}
++
++inline intptr_t* frame::interpreter_frame_mdp_addr() const {
++ return (intptr_t*)addr_at(interpreter_frame_mdp_offset);
++}
++
++
++// Constant pool cache
++
++inline ConstantPoolCache** frame::interpreter_frame_cache_addr() const {
++ return (ConstantPoolCache**)addr_at(interpreter_frame_cache_offset);
++}
++
++// Method
++
++inline Method** frame::interpreter_frame_method_addr() const {
++ return (Method**)addr_at(interpreter_frame_method_offset);
++}
++
++// Mirror
++
++inline oop* frame::interpreter_frame_mirror_addr() const {
++ return (oop*)addr_at(interpreter_frame_mirror_offset);
++}
++
++// top of expression stack
++inline intptr_t* frame::interpreter_frame_tos_address() const {
++ intptr_t* last_sp = interpreter_frame_last_sp();
++ if (last_sp == NULL) {
++ return sp();
++ } else {
++ // sp() may have been extended or shrunk by an adapter. At least
++ // check that we don't fall behind the legal region.
++ // For top deoptimized frame last_sp == interpreter_frame_monitor_end.
++ assert(last_sp <= (intptr_t*) interpreter_frame_monitor_end(), "bad tos");
++ return last_sp;
++ }
++}
++
++inline oop* frame::interpreter_frame_temp_oop_addr() const {
++ return (oop *)(fp() + interpreter_frame_oop_temp_offset);
++}
++
++inline int frame::interpreter_frame_monitor_size() {
++ return BasicObjectLock::size();
++}
++
++
++// expression stack
++// (the max_stack arguments are used by the GC; see class FrameClosure)
++
++inline intptr_t* frame::interpreter_frame_expression_stack() const {
++ intptr_t* monitor_end = (intptr_t*) interpreter_frame_monitor_end();
++ return monitor_end-1;
++}
++
++
++// Entry frames
++
++inline JavaCallWrapper** frame::entry_frame_call_wrapper_addr() const {
++ return (JavaCallWrapper**)addr_at(entry_frame_call_wrapper_offset);
++}
++
++
++// Compiled frames
++
++inline oop frame::saved_oop_result(RegisterMap* map) const {
++ oop* result_adr = (oop *)map->location(x10->as_VMReg());
++ guarantee(result_adr != NULL, "bad register save location");
++ return (*result_adr);
++}
++
++inline void frame::set_saved_oop_result(RegisterMap* map, oop obj) {
++ oop* result_adr = (oop *)map->location(x10->as_VMReg());
++ guarantee(result_adr != NULL, "bad register save location");
++ *result_adr = obj;
++}
++
++#endif // CPU_RISCV_FRAME_RISCV_INLINE_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/gc/g1/g1BarrierSetAssembler_riscv.cpp
+@@ -0,0 +1,478 @@
++/*
++ * Copyright (c) 2018, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/macroAssembler.inline.hpp"
++#include "gc/g1/g1BarrierSet.hpp"
++#include "gc/g1/g1BarrierSetAssembler.hpp"
++#include "gc/g1/g1BarrierSetRuntime.hpp"
++#include "gc/g1/g1CardTable.hpp"
++#include "gc/g1/g1ThreadLocalData.hpp"
++#include "gc/g1/heapRegion.hpp"
++#include "gc/shared/collectedHeap.hpp"
++#include "interpreter/interp_masm.hpp"
++#include "runtime/sharedRuntime.hpp"
++#include "runtime/thread.hpp"
++#ifdef COMPILER1
++#include "c1/c1_LIRAssembler.hpp"
++#include "c1/c1_MacroAssembler.hpp"
++#include "gc/g1/c1/g1BarrierSetC1.hpp"
++#endif
++
++#define __ masm->
++
++void G1BarrierSetAssembler::gen_write_ref_array_pre_barrier(MacroAssembler* masm, DecoratorSet decorators,
++ Register addr, Register count, RegSet saved_regs) {
++ bool dest_uninitialized = (decorators & IS_DEST_UNINITIALIZED) != 0;
++ if (!dest_uninitialized) {
++ Label done;
++ Address in_progress(xthread, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()));
++
++ // Is marking active?
++ if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
++ __ lwu(t0, in_progress);
++ } else {
++ assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
++ __ lbu(t0, in_progress);
++ }
++ __ beqz(t0, done);
++
++ __ push_reg(saved_regs, sp);
++ if (count == c_rarg0) {
++ if (addr == c_rarg1) {
++ // exactly backwards!!
++ __ mv(t0, c_rarg0);
++ __ mv(c_rarg0, c_rarg1);
++ __ mv(c_rarg1, t0);
++ } else {
++ __ mv(c_rarg1, count);
++ __ mv(c_rarg0, addr);
++ }
++ } else {
++ __ mv(c_rarg0, addr);
++ __ mv(c_rarg1, count);
++ }
++ if (UseCompressedOops) {
++ __ call_VM_leaf(CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_array_pre_narrow_oop_entry), 2);
++ } else {
++ __ call_VM_leaf(CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_array_pre_oop_entry), 2);
++ }
++ __ pop_reg(saved_regs, sp);
++
++ __ bind(done);
++ }
++}
++
++void G1BarrierSetAssembler::gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators,
++ Register start, Register count, Register tmp, RegSet saved_regs) {
++ __ push_reg(saved_regs, sp);
++ assert_different_registers(start, count, tmp);
++ assert_different_registers(c_rarg0, count);
++ __ mv(c_rarg0, start);
++ __ mv(c_rarg1, count);
++ __ call_VM_leaf(CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_array_post_entry), 2);
++ __ pop_reg(saved_regs, sp);
++}
++
++void G1BarrierSetAssembler::g1_write_barrier_pre(MacroAssembler* masm,
++ Register obj,
++ Register pre_val,
++ Register thread,
++ Register tmp,
++ bool tosca_live,
++ bool expand_call) {
++ // If expand_call is true then we expand the call_VM_leaf macro
++ // directly to skip generating the check by
++ // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
++
++ assert(thread == xthread, "must be");
++
++ Label done;
++ Label runtime;
++
++ assert_different_registers(obj, pre_val, tmp, t0);
++ assert(pre_val != noreg && tmp != noreg, "expecting a register");
++
++ Address in_progress(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()));
++ Address index(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset()));
++ Address buffer(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset()));
++
++ // Is marking active?
++ if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) { // 4-byte width
++ __ lwu(tmp, in_progress);
++ } else {
++ assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
++ __ lbu(tmp, in_progress);
++ }
++ __ beqz(tmp, done);
++
++ // Do we need to load the previous value?
++ if (obj != noreg) {
++ __ load_heap_oop(pre_val, Address(obj, 0), noreg, noreg, AS_RAW);
++ }
++
++ // Is the previous value null?
++ __ beqz(pre_val, done);
++
++ // Can we store original value in the thread's buffer?
++ // Is index == 0?
++ // (The index field is typed as size_t.)
++
++ __ ld(tmp, index); // tmp := *index_adr
++ __ beqz(tmp, runtime); // tmp == 0?
++ // If yes, goto runtime
++
++ __ sub(tmp, tmp, wordSize); // tmp := tmp - wordSize
++ __ sd(tmp, index); // *index_adr := tmp
++ __ ld(t0, buffer);
++ __ add(tmp, tmp, t0); // tmp := tmp + *buffer_adr
++
++ // Record the previous value
++ __ sd(pre_val, Address(tmp, 0));
++ __ j(done);
++
++ __ bind(runtime);
++ // save the live input values
++ RegSet saved = RegSet::of(pre_val);
++ if (tosca_live) { saved += RegSet::of(x10); }
++ if (obj != noreg) { saved += RegSet::of(obj); }
++
++ __ push_reg(saved, sp);
++
++ if (expand_call) {
++ assert(pre_val != c_rarg1, "smashed arg");
++ __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_field_pre_entry), pre_val, thread);
++ } else {
++ __ call_VM_leaf(CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_field_pre_entry), pre_val, thread);
++ }
++
++ __ pop_reg(saved, sp);
++
++ __ bind(done);
++
++}
++
++void G1BarrierSetAssembler::g1_write_barrier_post(MacroAssembler* masm,
++ Register store_addr,
++ Register new_val,
++ Register thread,
++ Register tmp,
++ Register tmp2) {
++ assert(thread == xthread, "must be");
++ assert_different_registers(store_addr, new_val, thread, tmp, tmp2,
++ t0);
++ assert(store_addr != noreg && new_val != noreg && tmp != noreg &&
++ tmp2 != noreg, "expecting a register");
++
++ Address queue_index(thread, in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset()));
++ Address buffer(thread, in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset()));
++
++ BarrierSet* bs = BarrierSet::barrier_set();
++ CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(bs);
++ CardTable* ct = ctbs->card_table();
++
++ Label done;
++ Label runtime;
++
++ // Does store cross heap regions?
++
++ __ xorr(tmp, store_addr, new_val);
++ __ srli(tmp, tmp, HeapRegion::LogOfHRGrainBytes);
++ __ beqz(tmp, done);
++
++ // crosses regions, storing NULL?
++
++ __ beqz(new_val, done);
++
++ // storing region crossing non-NULL, is card already dirty?
++
++ ExternalAddress cardtable((address) ct->byte_map_base());
++ const Register card_addr = tmp;
++
++ __ srli(card_addr, store_addr, CardTable::card_shift);
++
++ // get the address of the card
++ __ load_byte_map_base(tmp2);
++ __ add(card_addr, card_addr, tmp2);
++ __ lbu(tmp2, Address(card_addr));
++ __ mv(t0, (int)G1CardTable::g1_young_card_val());
++ __ beq(tmp2, t0, done);
++
++ assert((int)CardTable::dirty_card_val() == 0, "must be 0");
++
++ __ membar(MacroAssembler::StoreLoad);
++
++ __ lbu(tmp2, Address(card_addr));
++ __ beqz(tmp2, done);
++
++ // storing a region crossing, non-NULL oop, card is clean.
++ // dirty card and log.
++
++ __ sb(zr, Address(card_addr));
++
++ __ ld(t0, queue_index);
++ __ beqz(t0, runtime);
++ __ sub(t0, t0, wordSize);
++ __ sd(t0, queue_index);
++
++ __ ld(tmp2, buffer);
++ __ add(t0, tmp2, t0);
++ __ sd(card_addr, Address(t0, 0));
++ __ j(done);
++
++ __ bind(runtime);
++ // save the live input values
++ RegSet saved = RegSet::of(store_addr);
++ __ push_reg(saved, sp);
++ __ call_VM_leaf(CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_field_post_entry), card_addr, thread);
++ __ pop_reg(saved, sp);
++
++ __ bind(done);
++}
++
++void G1BarrierSetAssembler::load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
++ Register dst, Address src, Register tmp1, Register tmp_thread) {
++ bool on_oop = is_reference_type(type);
++ bool on_weak = (decorators & ON_WEAK_OOP_REF) != 0;
++ bool on_phantom = (decorators & ON_PHANTOM_OOP_REF) != 0;
++ bool on_reference = on_weak || on_phantom;
++ ModRefBarrierSetAssembler::load_at(masm, decorators, type, dst, src, tmp1, tmp_thread);
++ if (on_oop && on_reference) {
++ // RA is live. It must be saved around calls.
++ __ enter(); // barrier may call runtime
++ // Generate the G1 pre-barrier code to log the value of
++ // the referent field in an SATB buffer.
++ g1_write_barrier_pre(masm /* masm */,
++ noreg /* obj */,
++ dst /* pre_val */,
++ xthread /* thread */,
++ tmp1 /* tmp */,
++ true /* tosca_live */,
++ true /* expand_call */);
++ __ leave();
++ }
++}
++
++void G1BarrierSetAssembler::oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
++ Address dst, Register val, Register tmp1, Register tmp2) {
++ // flatten object address if needed
++ if (dst.offset() == 0) {
++ if (dst.base() != x13) {
++ __ mv(x13, dst.base());
++ }
++ } else {
++ __ la(x13, dst);
++ }
++
++ g1_write_barrier_pre(masm,
++ x13 /* obj */,
++ tmp2 /* pre_val */,
++ xthread /* thread */,
++ tmp1 /* tmp */,
++ val != noreg /* tosca_live */,
++ false /* expand_call */);
++
++ if (val == noreg) {
++ BarrierSetAssembler::store_at(masm, decorators, type, Address(x13, 0), noreg, noreg, noreg);
++ } else {
++ // G1 barrier needs uncompressed oop for region cross check.
++ Register new_val = val;
++ if (UseCompressedOops) {
++ new_val = t1;
++ __ mv(new_val, val);
++ }
++ BarrierSetAssembler::store_at(masm, decorators, type, Address(x13, 0), val, noreg, noreg);
++ g1_write_barrier_post(masm,
++ x13 /* store_adr */,
++ new_val /* new_val */,
++ xthread /* thread */,
++ tmp1 /* tmp */,
++ tmp2 /* tmp2 */);
++ }
++}
++
++#ifdef COMPILER1
++
++#undef __
++#define __ ce->masm()->
++
++void G1BarrierSetAssembler::gen_pre_barrier_stub(LIR_Assembler* ce, G1PreBarrierStub* stub) {
++ G1BarrierSetC1* bs = (G1BarrierSetC1*)BarrierSet::barrier_set()->barrier_set_c1();
++
++ // At this point we know that marking is in progress.
++ // If do_load() is true then we have to emit the
++ // load of the previous value; otherwise it has already
++ // been loaded into _pre_val.
++ __ bind(*stub->entry());
++
++ assert(stub->pre_val()->is_register(), "Precondition.");
++
++ Register pre_val_reg = stub->pre_val()->as_register();
++
++ if (stub->do_load()) {
++ ce->mem2reg(stub->addr(), stub->pre_val(), T_OBJECT, stub->patch_code(), stub->info(), false /* wide */, false /* unaligned */);
++ }
++ __ beqz(pre_val_reg, *stub->continuation(), /* is_far */ true);
++ ce->store_parameter(stub->pre_val()->as_register(), 0);
++ __ far_call(RuntimeAddress(bs->pre_barrier_c1_runtime_code_blob()->code_begin()));
++ __ j(*stub->continuation());
++}
++
++void G1BarrierSetAssembler::gen_post_barrier_stub(LIR_Assembler* ce, G1PostBarrierStub* stub) {
++ G1BarrierSetC1* bs = (G1BarrierSetC1*)BarrierSet::barrier_set()->barrier_set_c1();
++ __ bind(*stub->entry());
++ assert(stub->addr()->is_register(), "Precondition");
++ assert(stub->new_val()->is_register(), "Precondition");
++ Register new_val_reg = stub->new_val()->as_register();
++ __ beqz(new_val_reg, *stub->continuation(), /* is_far */ true);
++ ce->store_parameter(stub->addr()->as_pointer_register(), 0);
++ __ far_call(RuntimeAddress(bs->post_barrier_c1_runtime_code_blob()->code_begin()));
++ __ j(*stub->continuation());
++}
++
++#undef __
++
++#define __ sasm->
++
++void G1BarrierSetAssembler::generate_c1_pre_barrier_runtime_stub(StubAssembler* sasm) {
++ __ prologue("g1_pre_barrier", false);
++
++ BarrierSet* bs = BarrierSet::barrier_set();
++
++ // arg0 : previous value of memory
++ const Register pre_val = x10;
++ const Register thread = xthread;
++ const Register tmp = t0;
++
++ Address in_progress(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset()));
++ Address queue_index(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_index_offset()));
++ Address buffer(thread, in_bytes(G1ThreadLocalData::satb_mark_queue_buffer_offset()));
++
++ Label done;
++ Label runtime;
++
++ // Is marking still active?
++ if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) { // 4-byte width
++ __ lwu(tmp, in_progress);
++ } else {
++ assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
++ __ lbu(tmp, in_progress);
++ }
++ __ beqz(tmp, done);
++
++ // Can we store original value in the thread's buffer?
++ __ ld(tmp, queue_index);
++ __ beqz(tmp, runtime);
++
++ __ sub(tmp, tmp, wordSize);
++ __ sd(tmp, queue_index);
++ __ ld(t1, buffer);
++ __ add(tmp, tmp, t1);
++ __ load_parameter(0, t1);
++ __ sd(t1, Address(tmp, 0));
++ __ j(done);
++
++ __ bind(runtime);
++ __ push_call_clobbered_registers();
++ __ load_parameter(0, pre_val);
++ __ call_VM_leaf(CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_field_pre_entry), pre_val, thread);
++ __ pop_call_clobbered_registers();
++ __ bind(done);
++
++ __ epilogue();
++}
++
++void G1BarrierSetAssembler::generate_c1_post_barrier_runtime_stub(StubAssembler* sasm) {
++ __ prologue("g1_post_barrier", false);
++
++ // arg0 : store_address
++ Address store_addr(fp, 2 * BytesPerWord); // 2 BytesPerWord from fp
++
++ BarrierSet* bs = BarrierSet::barrier_set();
++ CardTableBarrierSet* ctbs = barrier_set_cast<CardTableBarrierSet>(bs);
++ CardTable* ct = ctbs->card_table();
++
++ Label done;
++ Label runtime;
++
++ // At this point we know new_value is non-NULL and the new_value crosses regions.
++ // Must check to see if card is already dirty
++ const Register thread = xthread;
++
++ Address queue_index(thread, in_bytes(G1ThreadLocalData::dirty_card_queue_index_offset()));
++ Address buffer(thread, in_bytes(G1ThreadLocalData::dirty_card_queue_buffer_offset()));
++
++ const Register card_offset = t1;
++ // RA is free here, so we can use it to hold the byte_map_base.
++ const Register byte_map_base = ra;
++
++ assert_different_registers(card_offset, byte_map_base, t0);
++
++ __ load_parameter(0, card_offset);
++ __ srli(card_offset, card_offset, CardTable::card_shift);
++ __ load_byte_map_base(byte_map_base);
++
++ // Convert card offset into an address in card_addr
++ Register card_addr = card_offset;
++ __ add(card_addr, byte_map_base, card_addr);
++
++ __ lbu(t0, Address(card_addr, 0));
++ __ sub(t0, t0, (int)G1CardTable::g1_young_card_val());
++ __ beqz(t0, done);
++
++ assert((int)CardTable::dirty_card_val() == 0, "must be 0");
++
++ __ membar(MacroAssembler::StoreLoad);
++ __ lbu(t0, Address(card_addr, 0));
++ __ beqz(t0, done);
++
++ // storing region crossing non-NULL, card is clean.
++ // dirty card and log.
++ __ sb(zr, Address(card_addr, 0));
++
++ __ ld(t0, queue_index);
++ __ beqz(t0, runtime);
++ __ sub(t0, t0, wordSize);
++ __ sd(t0, queue_index);
++
++ // Reuse RA to hold buffer_addr
++ const Register buffer_addr = ra;
++
++ __ ld(buffer_addr, buffer);
++ __ add(t0, buffer_addr, t0);
++ __ sd(card_addr, Address(t0, 0));
++ __ j(done);
++
++ __ bind(runtime);
++ __ push_call_clobbered_registers();
++ __ call_VM_leaf(CAST_FROM_FN_PTR(address, G1BarrierSetRuntime::write_ref_field_post_entry), card_addr, thread);
++ __ pop_call_clobbered_registers();
++ __ bind(done);
++ __ epilogue();
++}
++
++#undef __
++
++#endif // COMPILER1
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/gc/g1/g1BarrierSetAssembler_riscv.hpp
+@@ -0,0 +1,78 @@
++/*
++ * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_GC_G1_G1BARRIERSETASSEMBLER_RISCV_HPP
++#define CPU_RISCV_GC_G1_G1BARRIERSETASSEMBLER_RISCV_HPP
++
++#include "asm/macroAssembler.hpp"
++#include "gc/shared/modRefBarrierSetAssembler.hpp"
++#include "utilities/macros.hpp"
++
++#ifdef COMPILER1
++class LIR_Assembler;
++#endif
++class StubAssembler;
++class G1PreBarrierStub;
++class G1PostBarrierStub;
++
++class G1BarrierSetAssembler: public ModRefBarrierSetAssembler {
++protected:
++ void gen_write_ref_array_pre_barrier(MacroAssembler* masm, DecoratorSet decorators,
++ Register addr, Register count, RegSet saved_regs);
++ void gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators,
++ Register start, Register count, Register tmp, RegSet saved_regs);
++
++ void g1_write_barrier_pre(MacroAssembler* masm,
++ Register obj,
++ Register pre_val,
++ Register thread,
++ Register tmp,
++ bool tosca_live,
++ bool expand_call);
++
++ void g1_write_barrier_post(MacroAssembler* masm,
++ Register store_addr,
++ Register new_val,
++ Register thread,
++ Register tmp,
++ Register tmp2);
++
++ virtual void oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
++ Address dst, Register val, Register tmp1, Register tmp2);
++
++public:
++#ifdef COMPILER1
++ void gen_pre_barrier_stub(LIR_Assembler* ce, G1PreBarrierStub* stub);
++ void gen_post_barrier_stub(LIR_Assembler* ce, G1PostBarrierStub* stub);
++
++ void generate_c1_pre_barrier_runtime_stub(StubAssembler* sasm);
++ void generate_c1_post_barrier_runtime_stub(StubAssembler* sasm);
++#endif
++
++ void load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
++ Register dst, Address src, Register tmp1, Register tmp_thread);
++};
++
++#endif // CPU_RISCV_GC_G1_G1BARRIERSETASSEMBLER_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/gc/g1/g1Globals_riscv.hpp
+@@ -0,0 +1,31 @@
++/*
++ * Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_GC_G1_G1GLOBALS_RISCV_HPP
++#define CPU_RISCV_GC_G1_G1GLOBALS_RISCV_HPP
++
++const size_t G1MergeHeapRootsPrefetchCacheSize = 16;
++
++#endif // CPU_RISCV_GC_G1_G1GLOBALS_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/gc/shared/barrierSetAssembler_riscv.cpp
+@@ -0,0 +1,298 @@
++/*
++ * Copyright (c) 2018, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "classfile/classLoaderData.hpp"
++#include "gc/shared/barrierSet.hpp"
++#include "gc/shared/barrierSetAssembler.hpp"
++#include "gc/shared/barrierSetNMethod.hpp"
++#include "gc/shared/collectedHeap.hpp"
++#include "interpreter/interp_masm.hpp"
++#include "memory/universe.hpp"
++#include "runtime/jniHandles.hpp"
++#include "runtime/sharedRuntime.hpp"
++#include "runtime/stubRoutines.hpp"
++#include "runtime/thread.hpp"
++
++#define __ masm->
++
++void BarrierSetAssembler::load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
++ Register dst, Address src, Register tmp1, Register tmp_thread) {
++ // RA is live. It must be saved around calls.
++
++ bool in_heap = (decorators & IN_HEAP) != 0;
++ bool in_native = (decorators & IN_NATIVE) != 0;
++ bool is_not_null = (decorators & IS_NOT_NULL) != 0;
++ switch (type) {
++ case T_OBJECT: // fall through
++ case T_ARRAY: {
++ if (in_heap) {
++ if (UseCompressedOops) {
++ __ lwu(dst, src);
++ if (is_not_null) {
++ __ decode_heap_oop_not_null(dst);
++ } else {
++ __ decode_heap_oop(dst);
++ }
++ } else {
++ __ ld(dst, src);
++ }
++ } else {
++ assert(in_native, "why else?");
++ __ ld(dst, src);
++ }
++ break;
++ }
++ case T_BOOLEAN: __ load_unsigned_byte (dst, src); break;
++ case T_BYTE: __ load_signed_byte (dst, src); break;
++ case T_CHAR: __ load_unsigned_short(dst, src); break;
++ case T_SHORT: __ load_signed_short (dst, src); break;
++ case T_INT: __ lw (dst, src); break;
++ case T_LONG: __ ld (dst, src); break;
++ case T_ADDRESS: __ ld (dst, src); break;
++ case T_FLOAT: __ flw (f10, src); break;
++ case T_DOUBLE: __ fld (f10, src); break;
++ default: Unimplemented();
++ }
++}
++
++void BarrierSetAssembler::store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
++ Address dst, Register val, Register tmp1, Register tmp2) {
++ bool in_heap = (decorators & IN_HEAP) != 0;
++ bool in_native = (decorators & IN_NATIVE) != 0;
++ switch (type) {
++ case T_OBJECT: // fall through
++ case T_ARRAY: {
++ val = val == noreg ? zr : val;
++ if (in_heap) {
++ if (UseCompressedOops) {
++ assert(!dst.uses(val), "not enough registers");
++ if (val != zr) {
++ __ encode_heap_oop(val);
++ }
++ __ sw(val, dst);
++ } else {
++ __ sd(val, dst);
++ }
++ } else {
++ assert(in_native, "why else?");
++ __ sd(val, dst);
++ }
++ break;
++ }
++ case T_BOOLEAN:
++ __ andi(val, val, 0x1); // boolean is true if LSB is 1
++ __ sb(val, dst);
++ break;
++ case T_BYTE: __ sb(val, dst); break;
++ case T_CHAR: __ sh(val, dst); break;
++ case T_SHORT: __ sh(val, dst); break;
++ case T_INT: __ sw(val, dst); break;
++ case T_LONG: __ sd(val, dst); break;
++ case T_ADDRESS: __ sd(val, dst); break;
++ case T_FLOAT: __ fsw(f10, dst); break;
++ case T_DOUBLE: __ fsd(f10, dst); break;
++ default: Unimplemented();
++ }
++
++}
++
++void BarrierSetAssembler::try_resolve_jobject_in_native(MacroAssembler* masm, Register jni_env,
++ Register obj, Register tmp, Label& slowpath) {
++ // If mask changes we need to ensure that the inverse is still encodable as an immediate
++ STATIC_ASSERT(JNIHandles::weak_tag_mask == 1);
++ __ andi(obj, obj, ~JNIHandles::weak_tag_mask);
++ __ ld(obj, Address(obj, 0)); // *obj
++}
++
++// Defines obj, preserves var_size_in_bytes, okay for tmp2 == var_size_in_bytes.
++void BarrierSetAssembler::tlab_allocate(MacroAssembler* masm, Register obj,
++ Register var_size_in_bytes,
++ int con_size_in_bytes,
++ Register tmp1,
++ Register tmp2,
++ Label& slow_case,
++ bool is_far) {
++ assert_different_registers(obj, tmp2);
++ assert_different_registers(obj, var_size_in_bytes);
++ Register end = tmp2;
++
++ __ ld(obj, Address(xthread, JavaThread::tlab_top_offset()));
++ if (var_size_in_bytes == noreg) {
++ __ la(end, Address(obj, con_size_in_bytes));
++ } else {
++ __ add(end, obj, var_size_in_bytes);
++ }
++ __ ld(t0, Address(xthread, JavaThread::tlab_end_offset()));
++ __ bgtu(end, t0, slow_case, is_far);
++
++ // update the tlab top pointer
++ __ sd(end, Address(xthread, JavaThread::tlab_top_offset()));
++
++ // recover var_size_in_bytes if necessary
++ if (var_size_in_bytes == end) {
++ __ sub(var_size_in_bytes, var_size_in_bytes, obj);
++ }
++}
++
++// Defines obj, preserves var_size_in_bytes
++void BarrierSetAssembler::eden_allocate(MacroAssembler* masm, Register obj,
++ Register var_size_in_bytes,
++ int con_size_in_bytes,
++ Register tmp1,
++ Label& slow_case,
++ bool is_far) {
++ assert_cond(masm != NULL);
++ assert_different_registers(obj, var_size_in_bytes, tmp1);
++ if (!Universe::heap()->supports_inline_contig_alloc()) {
++ __ j(slow_case);
++ } else {
++ Register end = tmp1;
++ Label retry;
++ __ bind(retry);
++
++ // Get the current end of the heap
++ ExternalAddress address_end((address) Universe::heap()->end_addr());
++ {
++ int32_t offset;
++ __ la_patchable(t1, address_end, offset);
++ __ ld(t1, Address(t1, offset));
++ }
++
++ // Get the current top of the heap
++ ExternalAddress address_top((address) Universe::heap()->top_addr());
++ {
++ int32_t offset;
++ __ la_patchable(t0, address_top, offset);
++ __ addi(t0, t0, offset);
++ __ lr_d(obj, t0, Assembler::aqrl);
++ }
++
++ // Adjust it my the size of our new object
++ if (var_size_in_bytes == noreg) {
++ __ la(end, Address(obj, con_size_in_bytes));
++ } else {
++ __ add(end, obj, var_size_in_bytes);
++ }
++
++ // if end < obj then we wrapped around high memory
++ __ bltu(end, obj, slow_case, is_far);
++
++ __ bgtu(end, t1, slow_case, is_far);
++
++ // If heap_top hasn't been changed by some other thread, update it.
++ __ sc_d(t1, end, t0, Assembler::rl);
++ __ bnez(t1, retry);
++
++ incr_allocated_bytes(masm, var_size_in_bytes, con_size_in_bytes, tmp1);
++ }
++}
++
++void BarrierSetAssembler::incr_allocated_bytes(MacroAssembler* masm,
++ Register var_size_in_bytes,
++ int con_size_in_bytes,
++ Register tmp1) {
++ assert(tmp1->is_valid(), "need temp reg");
++
++ __ ld(tmp1, Address(xthread, in_bytes(JavaThread::allocated_bytes_offset())));
++ if (var_size_in_bytes->is_valid()) {
++ __ add(tmp1, tmp1, var_size_in_bytes);
++ } else {
++ __ add(tmp1, tmp1, con_size_in_bytes);
++ }
++ __ sd(tmp1, Address(xthread, in_bytes(JavaThread::allocated_bytes_offset())));
++}
++
++void BarrierSetAssembler::nmethod_entry_barrier(MacroAssembler* masm) {
++ BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod();
++
++ if (bs_nm == NULL) {
++ return;
++ }
++
++ Assembler::IncompressibleRegion ir(masm); // Fixed length: see entry_barrier_offset()
++
++ // RISCV atomic operations require that the memory address be naturally aligned.
++ __ align(4);
++
++ Label skip, guard;
++ Address thread_disarmed_addr(xthread, in_bytes(bs_nm->thread_disarmed_offset()));
++
++ __ lwu(t0, guard);
++
++ // Subsequent loads of oops must occur after load of guard value.
++ // BarrierSetNMethod::disarm sets guard with release semantics.
++ __ membar(MacroAssembler::LoadLoad);
++ __ lwu(t1, thread_disarmed_addr);
++ __ beq(t0, t1, skip);
++
++ int32_t offset = 0;
++ __ movptr(t0, StubRoutines::riscv::method_entry_barrier(), offset);
++ __ jalr(ra, t0, offset);
++ __ j(skip);
++
++ __ bind(guard);
++
++ MacroAssembler::assert_alignment(__ pc());
++ __ emit_int32(0); // nmethod guard value. Skipped over in common case.
++
++ __ bind(skip);
++}
++
++void BarrierSetAssembler::c2i_entry_barrier(MacroAssembler* masm) {
++ BarrierSetNMethod* bs = BarrierSet::barrier_set()->barrier_set_nmethod();
++ if (bs == NULL) {
++ return;
++ }
++
++ Label bad_call;
++ __ beqz(xmethod, bad_call);
++
++ // Pointer chase to the method holder to find out if the method is concurrently unloading.
++ Label method_live;
++ __ load_method_holder_cld(t0, xmethod);
++
++ // Is it a strong CLD?
++ __ lwu(t1, Address(t0, ClassLoaderData::keep_alive_offset()));
++ __ bnez(t1, method_live);
++
++ // Is it a weak but alive CLD?
++ __ push_reg(RegSet::of(x28, x29), sp);
++
++ __ ld(x28, Address(t0, ClassLoaderData::holder_offset()));
++
++ // Uses x28 & x29, so we must pass new temporaries.
++ __ resolve_weak_handle(x28, x29);
++ __ mv(t0, x28);
++
++ __ pop_reg(RegSet::of(x28, x29), sp);
++
++ __ bnez(t0, method_live);
++
++ __ bind(bad_call);
++
++ __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
++ __ bind(method_live);
++}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/gc/shared/barrierSetAssembler_riscv.hpp
+@@ -0,0 +1,79 @@
++/*
++ * Copyright (c) 2018, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_GC_SHARED_BARRIERSETASSEMBLER_RISCV_HPP
++#define CPU_RISCV_GC_SHARED_BARRIERSETASSEMBLER_RISCV_HPP
++
++#include "asm/macroAssembler.hpp"
++#include "gc/shared/barrierSet.hpp"
++#include "gc/shared/barrierSetNMethod.hpp"
++#include "memory/allocation.hpp"
++#include "oops/access.hpp"
++
++class BarrierSetAssembler: public CHeapObj<mtGC> {
++private:
++ void incr_allocated_bytes(MacroAssembler* masm,
++ Register var_size_in_bytes, int con_size_in_bytes,
++ Register t1 = noreg);
++
++public:
++ virtual void arraycopy_prologue(MacroAssembler* masm, DecoratorSet decorators, bool is_oop,
++ Register src, Register dst, Register count, RegSet saved_regs) {}
++ virtual void arraycopy_epilogue(MacroAssembler* masm, DecoratorSet decorators, bool is_oop,
++ Register start, Register end, Register tmp, RegSet saved_regs) {}
++ virtual void load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
++ Register dst, Address src, Register tmp1, Register tmp_thread);
++ virtual void store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
++ Address dst, Register val, Register tmp1, Register tmp2);
++
++ virtual void try_resolve_jobject_in_native(MacroAssembler* masm, Register jni_env,
++ Register obj, Register tmp, Label& slowpath);
++
++ virtual void tlab_allocate(MacroAssembler* masm,
++ Register obj, // result: pointer to object after successful allocation
++ Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
++ int con_size_in_bytes, // object size in bytes if known at compile time
++ Register tmp1, // temp register
++ Register tmp2, // temp register
++ Label& slow_case, // continuation point if fast allocation fails
++ bool is_far = false
++ );
++
++ void eden_allocate(MacroAssembler* masm,
++ Register obj, // result: pointer to object after successful allocation
++ Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
++ int con_size_in_bytes, // object size in bytes if known at compile time
++ Register tmp1, // temp register
++ Label& slow_case, // continuation point if fast allocation fails
++ bool is_far = false
++ );
++ virtual void barrier_stubs_init() {}
++
++ virtual void nmethod_entry_barrier(MacroAssembler* masm);
++ virtual void c2i_entry_barrier(MacroAssembler* masm);
++ virtual ~BarrierSetAssembler() {}
++};
++
++#endif // CPU_RISCV_GC_SHARED_BARRIERSETASSEMBLER_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/gc/shared/barrierSetNMethod_riscv.cpp
+@@ -0,0 +1,171 @@
++/*
++ * Copyright (c) 2018, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "code/codeCache.hpp"
++#include "code/nativeInst.hpp"
++#include "gc/shared/barrierSetNMethod.hpp"
++#include "logging/log.hpp"
++#include "memory/resourceArea.hpp"
++#include "runtime/sharedRuntime.hpp"
++#include "runtime/registerMap.hpp"
++#include "runtime/thread.hpp"
++#include "utilities/align.hpp"
++#include "utilities/debug.hpp"
++
++class NativeNMethodBarrier: public NativeInstruction {
++ address instruction_address() const { return addr_at(0); }
++
++ int *guard_addr() {
++ /* auipc + lwu + fence + lwu + beq + lui + addi + slli + addi + slli + jalr + j */
++ return reinterpret_cast<int*>(instruction_address() + 12 * 4);
++ }
++
++public:
++ int get_value() {
++ return Atomic::load_acquire(guard_addr());
++ }
++
++ void set_value(int value) {
++ Atomic::release_store(guard_addr(), value);
++ }
++
++ void verify() const;
++};
++
++// Store the instruction bitmask, bits and name for checking the barrier.
++struct CheckInsn {
++ uint32_t mask;
++ uint32_t bits;
++ const char *name;
++};
++
++static const struct CheckInsn barrierInsn[] = {
++ { 0x00000fff, 0x00000297, "auipc t0, 0 "},
++ { 0x000fffff, 0x0002e283, "lwu t0, 48(t0) "},
++ { 0xffffffff, 0x0aa0000f, "fence ir, ir "},
++ { 0x000fffff, 0x000be303, "lwu t1, 112(xthread)"},
++ { 0x01fff07f, 0x00628063, "beq t0, t1, skip "},
++ { 0x00000fff, 0x000002b7, "lui t0, imm0 "},
++ { 0x000fffff, 0x00028293, "addi t0, t0, imm1 "},
++ { 0xffffffff, 0x00b29293, "slli t0, t0, 11 "},
++ { 0x000fffff, 0x00028293, "addi t0, t0, imm2 "},
++ { 0xffffffff, 0x00629293, "slli t0, t0, 6 "},
++ { 0x000fffff, 0x000280e7, "jalr ra, imm3(t0) "},
++ { 0x00000fff, 0x0000006f, "j skip "}
++ /* guard: */
++ /* 32bit nmethod guard value */
++ /* skip: */
++};
++
++// The encodings must match the instructions emitted by
++// BarrierSetAssembler::nmethod_entry_barrier. The matching ignores the specific
++// register numbers and immediate values in the encoding.
++void NativeNMethodBarrier::verify() const {
++ intptr_t addr = (intptr_t) instruction_address();
++ for(unsigned int i = 0; i < sizeof(barrierInsn)/sizeof(struct CheckInsn); i++ ) {
++ uint32_t inst = *((uint32_t*) addr);
++ if ((inst & barrierInsn[i].mask) != barrierInsn[i].bits) {
++ tty->print_cr("Addr: " INTPTR_FORMAT " Code: 0x%x", addr, inst);
++ fatal("not an %s instruction.", barrierInsn[i].name);
++ }
++ addr += 4;
++ }
++}
++
++
++/* We're called from an nmethod when we need to deoptimize it. We do
++ this by throwing away the nmethod's frame and jumping to the
++ ic_miss stub. This looks like there has been an IC miss at the
++ entry of the nmethod, so we resolve the call, which will fall back
++ to the interpreter if the nmethod has been unloaded. */
++void BarrierSetNMethod::deoptimize(nmethod* nm, address* return_address_ptr) {
++
++ typedef struct {
++ intptr_t *sp; intptr_t *fp; address ra; address pc;
++ } frame_pointers_t;
++
++ frame_pointers_t *new_frame = (frame_pointers_t *)(return_address_ptr - 5);
++
++ JavaThread *thread = JavaThread::current();
++ RegisterMap reg_map(thread, false);
++ frame frame = thread->last_frame();
++
++ assert(frame.is_compiled_frame() || frame.is_native_frame(), "must be");
++ assert(frame.cb() == nm, "must be");
++ frame = frame.sender(®_map);
++
++ LogTarget(Trace, nmethod, barrier) out;
++ if (out.is_enabled()) {
++ ResourceMark mark;
++ log_trace(nmethod, barrier)("deoptimize(nmethod: %s(%p), return_addr: %p, osr: %d, thread: %p(%s), making rsp: %p) -> %p",
++ nm->method()->name_and_sig_as_C_string(),
++ nm, *(address *) return_address_ptr, nm->is_osr_method(), thread,
++ thread->name(), frame.sp(), nm->verified_entry_point());
++ }
++
++ new_frame->sp = frame.sp();
++ new_frame->fp = frame.fp();
++ new_frame->ra = frame.pc();
++ new_frame->pc = SharedRuntime::get_handle_wrong_method_stub();
++}
++
++// This is the offset of the entry barrier from where the frame is completed.
++// If any code changes between the end of the verified entry where the entry
++// barrier resides, and the completion of the frame, then
++// NativeNMethodCmpBarrier::verify() will immediately complain when it does
++// not find the expected native instruction at this offset, which needs updating.
++// Note that this offset is invariant of PreserveFramePointer.
++
++// see BarrierSetAssembler::nmethod_entry_barrier
++// auipc + lwu + fence + lwu + beq + movptr(5 instructions) + jalr + j + int32
++static const int entry_barrier_offset = -4 * 13;
++
++static NativeNMethodBarrier* native_nmethod_barrier(nmethod* nm) {
++ address barrier_address = nm->code_begin() + nm->frame_complete_offset() + entry_barrier_offset;
++ NativeNMethodBarrier* barrier = reinterpret_cast<NativeNMethodBarrier*>(barrier_address);
++ debug_only(barrier->verify());
++ return barrier;
++}
++
++void BarrierSetNMethod::disarm(nmethod* nm) {
++ if (!supports_entry_barrier(nm)) {
++ return;
++ }
++
++ // Disarms the nmethod guard emitted by BarrierSetAssembler::nmethod_entry_barrier.
++ NativeNMethodBarrier* barrier = native_nmethod_barrier(nm);
++
++ barrier->set_value(disarmed_value());
++}
++
++bool BarrierSetNMethod::is_armed(nmethod* nm) {
++ if (!supports_entry_barrier(nm)) {
++ return false;
++ }
++
++ NativeNMethodBarrier* barrier = native_nmethod_barrier(nm);
++ return barrier->get_value() != disarmed_value();
++}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/gc/shared/cardTableBarrierSetAssembler_riscv.cpp
+@@ -0,0 +1,107 @@
++/*
++ * Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/macroAssembler.inline.hpp"
++#include "gc/shared/barrierSet.hpp"
++#include "gc/shared/cardTable.hpp"
++#include "gc/shared/cardTableBarrierSet.hpp"
++#include "gc/shared/cardTableBarrierSetAssembler.hpp"
++#include "gc/shared/gc_globals.hpp"
++#include "interpreter/interp_masm.hpp"
++
++#define __ masm->
++
++
++void CardTableBarrierSetAssembler::store_check(MacroAssembler* masm, Register obj, Register tmp) {
++ assert_different_registers(obj, tmp);
++ BarrierSet* bs = BarrierSet::barrier_set();
++ assert(bs->kind() == BarrierSet::CardTableBarrierSet, "Wrong barrier set kind");
++
++ __ srli(obj, obj, CardTable::card_shift);
++
++ assert(CardTable::dirty_card_val() == 0, "must be");
++
++ __ load_byte_map_base(tmp);
++ __ add(tmp, obj, tmp);
++
++ if (UseCondCardMark) {
++ Label L_already_dirty;
++ __ lbu(t1, Address(tmp));
++ __ beqz(t1, L_already_dirty);
++ __ sb(zr, Address(tmp));
++ __ bind(L_already_dirty);
++ } else {
++ __ sb(zr, Address(tmp));
++ }
++}
++
++void CardTableBarrierSetAssembler::gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators,
++ Register start, Register count, Register tmp, RegSet saved_regs) {
++ assert_different_registers(start, tmp);
++ assert_different_registers(count, tmp);
++
++ Label L_loop, L_done;
++ const Register end = count;
++
++ __ beqz(count, L_done); // zero count - nothing to do
++ // end = start + count << LogBytesPerHeapOop
++ __ shadd(end, count, start, count, LogBytesPerHeapOop);
++ __ sub(end, end, BytesPerHeapOop); // last element address to make inclusive
++
++ __ srli(start, start, CardTable::card_shift);
++ __ srli(end, end, CardTable::card_shift);
++ __ sub(count, end, start); // number of bytes to copy
++
++ __ load_byte_map_base(tmp);
++ __ add(start, start, tmp);
++
++ __ bind(L_loop);
++ __ add(tmp, start, count);
++ __ sb(zr, Address(tmp));
++ __ sub(count, count, 1);
++ __ bgez(count, L_loop);
++ __ bind(L_done);
++}
++
++void CardTableBarrierSetAssembler::oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
++ Address dst, Register val, Register tmp1, Register tmp2) {
++ bool in_heap = (decorators & IN_HEAP) != 0;
++ bool is_array = (decorators & IS_ARRAY) != 0;
++ bool on_anonymous = (decorators & ON_UNKNOWN_OOP_REF) != 0;
++ bool precise = is_array || on_anonymous;
++
++ bool needs_post_barrier = val != noreg && in_heap;
++ BarrierSetAssembler::store_at(masm, decorators, type, dst, val, noreg, noreg);
++ if (needs_post_barrier) {
++ // flatten object address if needed
++ if (!precise || dst.offset() == 0) {
++ store_check(masm, dst.base(), x13);
++ } else {
++ __ la(x13, dst);
++ store_check(masm, x13, t0);
++ }
++ }
++}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/gc/shared/cardTableBarrierSetAssembler_riscv.hpp
+@@ -0,0 +1,42 @@
++/*
++ * Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_GC_SHARED_CARDTABLEBARRIERSETASSEMBLER_RISCV_HPP
++#define CPU_RISCV_GC_SHARED_CARDTABLEBARRIERSETASSEMBLER_RISCV_HPP
++
++#include "asm/macroAssembler.hpp"
++#include "gc/shared/modRefBarrierSetAssembler.hpp"
++
++class CardTableBarrierSetAssembler: public ModRefBarrierSetAssembler {
++protected:
++ void store_check(MacroAssembler* masm, Register obj, Register tmp);
++
++ virtual void gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators,
++ Register start, Register count, Register tmp, RegSet saved_regs);
++ virtual void oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
++ Address dst, Register val, Register tmp1, Register tmp2);
++};
++
++#endif // #ifndef CPU_RISCV_GC_SHARED_CARDTABLEBARRIERSETASSEMBLER_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/gc/shared/modRefBarrierSetAssembler_riscv.cpp
+@@ -0,0 +1,54 @@
++/*
++ * Copyright (c) 2018, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/macroAssembler.inline.hpp"
++#include "gc/shared/modRefBarrierSetAssembler.hpp"
++
++#define __ masm->
++
++void ModRefBarrierSetAssembler::arraycopy_prologue(MacroAssembler* masm, DecoratorSet decorators, bool is_oop,
++ Register src, Register dst, Register count, RegSet saved_regs) {
++ if (is_oop) {
++ gen_write_ref_array_pre_barrier(masm, decorators, dst, count, saved_regs);
++ }
++}
++
++void ModRefBarrierSetAssembler::arraycopy_epilogue(MacroAssembler* masm, DecoratorSet decorators, bool is_oop,
++ Register start, Register count, Register tmp,
++ RegSet saved_regs) {
++ if (is_oop) {
++ gen_write_ref_array_post_barrier(masm, decorators, start, count, tmp, saved_regs);
++ }
++}
++
++void ModRefBarrierSetAssembler::store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
++ Address dst, Register val, Register tmp1, Register tmp2) {
++ if (is_reference_type(type)) {
++ oop_store_at(masm, decorators, type, dst, val, tmp1, tmp2);
++ } else {
++ BarrierSetAssembler::store_at(masm, decorators, type, dst, val, tmp1, tmp2);
++ }
++}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/gc/shared/modRefBarrierSetAssembler_riscv.hpp
+@@ -0,0 +1,55 @@
++/*
++ * Copyright (c) 2018, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_GC_SHARED_MODREFBARRIERSETASSEMBLER_RISCV_HPP
++#define CPU_RISCV_GC_SHARED_MODREFBARRIERSETASSEMBLER_RISCV_HPP
++
++#include "asm/macroAssembler.hpp"
++#include "gc/shared/barrierSetAssembler.hpp"
++
++// The ModRefBarrierSetAssembler filters away accesses on BasicTypes other
++// than T_OBJECT/T_ARRAY (oops). The oop accesses call one of the protected
++// accesses, which are overridden in the concrete BarrierSetAssembler.
++
++class ModRefBarrierSetAssembler: public BarrierSetAssembler {
++protected:
++ virtual void gen_write_ref_array_pre_barrier(MacroAssembler* masm, DecoratorSet decorators,
++ Register addr, Register count, RegSet saved_regs) {}
++ virtual void gen_write_ref_array_post_barrier(MacroAssembler* masm, DecoratorSet decorators,
++ Register start, Register count, Register tmp, RegSet saved_regs) {}
++
++ virtual void oop_store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
++ Address dst, Register val, Register tmp1, Register tmp2) = 0;
++
++public:
++ virtual void arraycopy_prologue(MacroAssembler* masm, DecoratorSet decorators, bool is_oop,
++ Register src, Register dst, Register count, RegSet saved_regs);
++ virtual void arraycopy_epilogue(MacroAssembler* masm, DecoratorSet decorators, bool is_oop,
++ Register start, Register count, Register tmp, RegSet saved_regs);
++ virtual void store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
++ Address dst, Register val, Register tmp1, Register tmp2);
++};
++
++#endif // CPU_RISCV_GC_SHARED_MODREFBARRIERSETASSEMBLER_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/gc/shenandoah/c1/shenandoahBarrierSetC1_riscv.cpp
+@@ -0,0 +1,117 @@
++/*
++ * Copyright (c) 2018, 2019, Red Hat, Inc. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "c1/c1_LIRAssembler.hpp"
++#include "c1/c1_MacroAssembler.hpp"
++#include "gc/shared/gc_globals.hpp"
++#include "gc/shenandoah/shenandoahBarrierSet.hpp"
++#include "gc/shenandoah/shenandoahBarrierSetAssembler.hpp"
++#include "gc/shenandoah/c1/shenandoahBarrierSetC1.hpp"
++
++#define __ masm->masm()->
++
++void LIR_OpShenandoahCompareAndSwap::emit_code(LIR_Assembler* masm) {
++ Register addr = _addr->as_register_lo();
++ Register newval = _new_value->as_register();
++ Register cmpval = _cmp_value->as_register();
++ Register tmp1 = _tmp1->as_register();
++ Register tmp2 = _tmp2->as_register();
++ Register result = result_opr()->as_register();
++
++ ShenandoahBarrierSet::assembler()->iu_barrier(masm->masm(), newval, t1);
++
++ if (UseCompressedOops) {
++ __ encode_heap_oop(tmp1, cmpval);
++ cmpval = tmp1;
++ __ encode_heap_oop(tmp2, newval);
++ newval = tmp2;
++ }
++
++ ShenandoahBarrierSet::assembler()->cmpxchg_oop(masm->masm(), addr, cmpval, newval, /* acquire */ Assembler::aq,
++ /* release */ Assembler::rl, /* is_cae */ false, result);
++}
++
++#undef __
++
++#ifdef ASSERT
++#define __ gen->lir(__FILE__, __LINE__)->
++#else
++#define __ gen->lir()->
++#endif
++
++LIR_Opr ShenandoahBarrierSetC1::atomic_cmpxchg_at_resolved(LIRAccess& access, LIRItem& cmp_value, LIRItem& new_value) {
++ BasicType bt = access.type();
++ if (access.is_oop()) {
++ LIRGenerator *gen = access.gen();
++ if (ShenandoahSATBBarrier) {
++ pre_barrier(gen, access.access_emit_info(), access.decorators(), access.resolved_addr(),
++ LIR_OprFact::illegalOpr /* pre_val */);
++ }
++ if (ShenandoahCASBarrier) {
++ cmp_value.load_item();
++ new_value.load_item();
++
++ LIR_Opr tmp1 = gen->new_register(T_OBJECT);
++ LIR_Opr tmp2 = gen->new_register(T_OBJECT);
++ LIR_Opr addr = access.resolved_addr()->as_address_ptr()->base();
++ LIR_Opr result = gen->new_register(T_INT);
++
++ __ append(new LIR_OpShenandoahCompareAndSwap(addr, cmp_value.result(), new_value.result(), tmp1, tmp2, result));
++ return result;
++ }
++ }
++ return BarrierSetC1::atomic_cmpxchg_at_resolved(access, cmp_value, new_value);
++}
++
++LIR_Opr ShenandoahBarrierSetC1::atomic_xchg_at_resolved(LIRAccess& access, LIRItem& value) {
++ LIRGenerator* gen = access.gen();
++ BasicType type = access.type();
++
++ LIR_Opr result = gen->new_register(type);
++ value.load_item();
++ LIR_Opr value_opr = value.result();
++
++ if (access.is_oop()) {
++ value_opr = iu_barrier(access.gen(), value_opr, access.access_emit_info(), access.decorators());
++ }
++
++ assert(type == T_INT || is_reference_type(type) LP64_ONLY( || type == T_LONG ), "unexpected type");
++ LIR_Opr tmp = gen->new_register(T_INT);
++ __ xchg(access.resolved_addr(), value_opr, result, tmp);
++
++ if (access.is_oop()) {
++ result = load_reference_barrier(access.gen(), result, LIR_OprFact::addressConst(0), access.decorators());
++ LIR_Opr tmp_opr = gen->new_register(type);
++ __ move(result, tmp_opr);
++ result = tmp_opr;
++ if (ShenandoahSATBBarrier) {
++ pre_barrier(access.gen(), access.access_emit_info(), access.decorators(), LIR_OprFact::illegalOpr,
++ result /* pre_val */);
++ }
++ }
++
++ return result;
++}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/gc/shenandoah/shenandoahBarrierSetAssembler_riscv.cpp
+@@ -0,0 +1,714 @@
++/*
++ * Copyright (c) 2018, 2020, Red Hat, Inc. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "gc/shenandoah/shenandoahBarrierSet.hpp"
++#include "gc/shenandoah/shenandoahBarrierSetAssembler.hpp"
++#include "gc/shenandoah/shenandoahForwarding.hpp"
++#include "gc/shenandoah/shenandoahHeap.inline.hpp"
++#include "gc/shenandoah/shenandoahHeapRegion.hpp"
++#include "gc/shenandoah/shenandoahRuntime.hpp"
++#include "gc/shenandoah/shenandoahThreadLocalData.hpp"
++#include "gc/shenandoah/heuristics/shenandoahHeuristics.hpp"
++#include "interpreter/interpreter.hpp"
++#include "interpreter/interp_masm.hpp"
++#include "runtime/sharedRuntime.hpp"
++#include "runtime/thread.hpp"
++#ifdef COMPILER1
++#include "c1/c1_LIRAssembler.hpp"
++#include "c1/c1_MacroAssembler.hpp"
++#include "gc/shenandoah/c1/shenandoahBarrierSetC1.hpp"
++#endif
++
++#define __ masm->
++
++void ShenandoahBarrierSetAssembler::arraycopy_prologue(MacroAssembler* masm, DecoratorSet decorators, bool is_oop,
++ Register src, Register dst, Register count, RegSet saved_regs) {
++ if (is_oop) {
++ bool dest_uninitialized = (decorators & IS_DEST_UNINITIALIZED) != 0;
++ if ((ShenandoahSATBBarrier && !dest_uninitialized) || ShenandoahIUBarrier || ShenandoahLoadRefBarrier) {
++
++ Label done;
++
++ // Avoid calling runtime if count == 0
++ __ beqz(count, done);
++
++ // Is GC active?
++ Address gc_state(xthread, in_bytes(ShenandoahThreadLocalData::gc_state_offset()));
++ assert_different_registers(src, dst, count, t0);
++
++ __ lbu(t0, gc_state);
++ if (ShenandoahSATBBarrier && dest_uninitialized) {
++ __ test_bit(t0, t0, ShenandoahHeap::HAS_FORWARDED_BITPOS);
++ __ beqz(t0, done);
++ } else {
++ __ andi(t0, t0, ShenandoahHeap::HAS_FORWARDED | ShenandoahHeap::MARKING);
++ __ beqz(t0, done);
++ }
++
++ __ push_reg(saved_regs, sp);
++ if (UseCompressedOops) {
++ __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::arraycopy_barrier_narrow_oop_entry),
++ src, dst, count);
++ } else {
++ __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::arraycopy_barrier_oop_entry), src, dst, count);
++ }
++ __ pop_reg(saved_regs, sp);
++ __ bind(done);
++ }
++ }
++}
++
++void ShenandoahBarrierSetAssembler::shenandoah_write_barrier_pre(MacroAssembler* masm,
++ Register obj,
++ Register pre_val,
++ Register thread,
++ Register tmp,
++ bool tosca_live,
++ bool expand_call) {
++ if (ShenandoahSATBBarrier) {
++ satb_write_barrier_pre(masm, obj, pre_val, thread, tmp, tosca_live, expand_call);
++ }
++}
++
++void ShenandoahBarrierSetAssembler::satb_write_barrier_pre(MacroAssembler* masm,
++ Register obj,
++ Register pre_val,
++ Register thread,
++ Register tmp,
++ bool tosca_live,
++ bool expand_call) {
++ // If expand_call is true then we expand the call_VM_leaf macro
++ // directly to skip generating the check by
++ // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
++ assert(thread == xthread, "must be");
++
++ Label done;
++ Label runtime;
++
++ assert_different_registers(obj, pre_val, tmp, t0);
++ assert(pre_val != noreg && tmp != noreg, "expecting a register");
++
++ Address in_progress(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_active_offset()));
++ Address index(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset()));
++ Address buffer(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset()));
++
++ // Is marking active?
++ if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
++ __ lwu(tmp, in_progress);
++ } else {
++ assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
++ __ lbu(tmp, in_progress);
++ }
++ __ beqz(tmp, done);
++
++ // Do we need to load the previous value?
++ if (obj != noreg) {
++ __ load_heap_oop(pre_val, Address(obj, 0), noreg, noreg, AS_RAW);
++ }
++
++ // Is the previous value null?
++ __ beqz(pre_val, done);
++
++ // Can we store original value in the thread's buffer?
++ // Is index == 0?
++ // (The index field is typed as size_t.)
++ __ ld(tmp, index); // tmp := *index_adr
++ __ beqz(tmp, runtime); // tmp == 0? If yes, goto runtime
++
++ __ sub(tmp, tmp, wordSize); // tmp := tmp - wordSize
++ __ sd(tmp, index); // *index_adr := tmp
++ __ ld(t0, buffer);
++ __ add(tmp, tmp, t0); // tmp := tmp + *buffer_adr
++
++ // Record the previous value
++ __ sd(pre_val, Address(tmp, 0));
++ __ j(done);
++
++ __ bind(runtime);
++ // save the live input values
++ RegSet saved = RegSet::of(pre_val);
++ if (tosca_live) saved += RegSet::of(x10);
++ if (obj != noreg) saved += RegSet::of(obj);
++
++ __ push_reg(saved, sp);
++
++ // Calling the runtime using the regular call_VM_leaf mechanism generates
++ // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
++ // that checks that the *(rfp+frame::interpreter_frame_last_sp) == NULL.
++ //
++ // If we care generating the pre-barrier without a frame (e.g. in the
++ // intrinsified Reference.get() routine) then ebp might be pointing to
++ // the caller frame and so this check will most likely fail at runtime.
++ //
++ // Expanding the call directly bypasses the generation of the check.
++ // So when we do not have have a full interpreter frame on the stack
++ // expand_call should be passed true.
++ if (expand_call) {
++ assert(pre_val != c_rarg1, "smashed arg");
++ __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), pre_val, thread);
++ } else {
++ __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), pre_val, thread);
++ }
++
++ __ pop_reg(saved, sp);
++
++ __ bind(done);
++}
++
++void ShenandoahBarrierSetAssembler::resolve_forward_pointer(MacroAssembler* masm, Register dst, Register tmp) {
++ assert(ShenandoahLoadRefBarrier || ShenandoahCASBarrier, "Should be enabled");
++
++ Label is_null;
++ __ beqz(dst, is_null);
++ resolve_forward_pointer_not_null(masm, dst, tmp);
++ __ bind(is_null);
++}
++
++// IMPORTANT: This must preserve all registers, even t0 and t1, except those explicitely
++// passed in.
++void ShenandoahBarrierSetAssembler::resolve_forward_pointer_not_null(MacroAssembler* masm, Register dst, Register tmp) {
++ assert(ShenandoahLoadRefBarrier || ShenandoahCASBarrier, "Should be enabled");
++ // The below loads the mark word, checks if the lowest two bits are
++ // set, and if so, clear the lowest two bits and copy the result
++ // to dst. Otherwise it leaves dst alone.
++ // Implementing this is surprisingly awkward. I do it here by:
++ // - Inverting the mark word
++ // - Test lowest two bits == 0
++ // - If so, set the lowest two bits
++ // - Invert the result back, and copy to dst
++ RegSet saved_regs = RegSet::of(t2);
++ bool borrow_reg = (tmp == noreg);
++ if (borrow_reg) {
++ // No free registers available. Make one useful.
++ tmp = t0;
++ if (tmp == dst) {
++ tmp = t1;
++ }
++ saved_regs += RegSet::of(tmp);
++ }
++
++ assert_different_registers(tmp, dst, t2);
++ __ push_reg(saved_regs, sp);
++
++ Label done;
++ __ ld(tmp, Address(dst, oopDesc::mark_offset_in_bytes()));
++ __ xori(tmp, tmp, -1); // eon with 0 is equivalent to XOR with -1
++ __ andi(t2, tmp, markWord::lock_mask_in_place);
++ __ bnez(t2, done);
++ __ ori(tmp, tmp, markWord::marked_value);
++ __ xori(dst, tmp, -1); // eon with 0 is equivalent to XOR with -1
++ __ bind(done);
++
++ __ pop_reg(saved_regs, sp);
++}
++
++void ShenandoahBarrierSetAssembler::load_reference_barrier(MacroAssembler* masm,
++ Register dst,
++ Address load_addr,
++ DecoratorSet decorators) {
++ assert(ShenandoahLoadRefBarrier, "Should be enabled");
++ assert(dst != t1 && load_addr.base() != t1, "need t1");
++ assert_different_registers(load_addr.base(), t0, t1);
++
++ bool is_strong = ShenandoahBarrierSet::is_strong_access(decorators);
++ bool is_weak = ShenandoahBarrierSet::is_weak_access(decorators);
++ bool is_phantom = ShenandoahBarrierSet::is_phantom_access(decorators);
++ bool is_native = ShenandoahBarrierSet::is_native_access(decorators);
++ bool is_narrow = UseCompressedOops && !is_native;
++
++ Label heap_stable, not_cset;
++ __ enter();
++ Address gc_state(xthread, in_bytes(ShenandoahThreadLocalData::gc_state_offset()));
++ __ lbu(t1, gc_state);
++
++ // Check for heap stability
++ if (is_strong) {
++ __ test_bit(t1, t1, ShenandoahHeap::HAS_FORWARDED_BITPOS);
++ __ beqz(t1, heap_stable);
++ } else {
++ Label lrb;
++ __ test_bit(t0, t1, ShenandoahHeap::WEAK_ROOTS_BITPOS);
++ __ bnez(t0, lrb);
++ __ test_bit(t0, t1, ShenandoahHeap::HAS_FORWARDED_BITPOS);
++ __ beqz(t0, heap_stable);
++ __ bind(lrb);
++ }
++
++ // use x11 for load address
++ Register result_dst = dst;
++ if (dst == x11) {
++ __ mv(t1, dst);
++ dst = t1;
++ }
++
++ // Save x10 and x11, unless it is an output register
++ RegSet saved_regs = RegSet::of(x10, x11) - result_dst;
++ __ push_reg(saved_regs, sp);
++ __ la(x11, load_addr);
++ __ mv(x10, dst);
++
++ // Test for in-cset
++ if (is_strong) {
++ __ mv(t1, ShenandoahHeap::in_cset_fast_test_addr());
++ __ srli(t0, x10, ShenandoahHeapRegion::region_size_bytes_shift_jint());
++ __ add(t1, t1, t0);
++ __ lbu(t1, Address(t1));
++ __ test_bit(t0, t1, 0);
++ __ beqz(t0, not_cset);
++ }
++
++ __ push_call_clobbered_registers();
++ address target = NULL;
++ if (is_strong) {
++ if (is_narrow) {
++ target = CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong_narrow);
++ } else {
++ target = CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong);
++ }
++ } else if (is_weak) {
++ if (is_narrow) {
++ target = CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak_narrow);
++ } else {
++ target = CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak);
++ }
++ } else {
++ assert(is_phantom, "only remaining strength");
++ assert(!is_narrow, "phantom access cannot be narrow");
++ target = CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak);
++ }
++ __ call(target);
++ __ mv(t0, x10);
++ __ pop_call_clobbered_registers();
++ __ mv(x10, t0);
++ __ bind(not_cset);
++ __ mv(result_dst, x10);
++ __ pop_reg(saved_regs, sp);
++
++ __ bind(heap_stable);
++ __ leave();
++}
++
++void ShenandoahBarrierSetAssembler::iu_barrier(MacroAssembler* masm, Register dst, Register tmp) {
++ if (ShenandoahIUBarrier) {
++ __ push_call_clobbered_registers();
++
++ satb_write_barrier_pre(masm, noreg, dst, xthread, tmp, true, false);
++
++ __ pop_call_clobbered_registers();
++ }
++}
++
++//
++// Arguments:
++//
++// Inputs:
++// src: oop location to load from, might be clobbered
++//
++// Output:
++// dst: oop loaded from src location
++//
++// Kill:
++// x30 (tmp reg)
++//
++// Alias:
++// dst: x30 (might use x30 as temporary output register to avoid clobbering src)
++//
++void ShenandoahBarrierSetAssembler::load_at(MacroAssembler* masm,
++ DecoratorSet decorators,
++ BasicType type,
++ Register dst,
++ Address src,
++ Register tmp1,
++ Register tmp_thread) {
++ // 1: non-reference load, no additional barrier is needed
++ if (!is_reference_type(type)) {
++ BarrierSetAssembler::load_at(masm, decorators, type, dst, src, tmp1, tmp_thread);
++ return;
++ }
++
++ // 2: load a reference from src location and apply LRB if needed
++ if (ShenandoahBarrierSet::need_load_reference_barrier(decorators, type)) {
++ Register result_dst = dst;
++
++ // Preserve src location for LRB
++ RegSet saved_regs;
++ if (dst == src.base()) {
++ dst = (src.base() == x28) ? x29 : x28;
++ saved_regs = RegSet::of(dst);
++ __ push_reg(saved_regs, sp);
++ }
++ assert_different_registers(dst, src.base());
++
++ BarrierSetAssembler::load_at(masm, decorators, type, dst, src, tmp1, tmp_thread);
++
++ load_reference_barrier(masm, dst, src, decorators);
++
++ if (dst != result_dst) {
++ __ mv(result_dst, dst);
++ dst = result_dst;
++ }
++
++ if (saved_regs.bits() != 0) {
++ __ pop_reg(saved_regs, sp);
++ }
++ } else {
++ BarrierSetAssembler::load_at(masm, decorators, type, dst, src, tmp1, tmp_thread);
++ }
++
++ // 3: apply keep-alive barrier if needed
++ if (ShenandoahBarrierSet::need_keep_alive_barrier(decorators, type)) {
++ __ enter();
++ __ push_call_clobbered_registers();
++ satb_write_barrier_pre(masm /* masm */,
++ noreg /* obj */,
++ dst /* pre_val */,
++ xthread /* thread */,
++ tmp1 /* tmp */,
++ true /* tosca_live */,
++ true /* expand_call */);
++ __ pop_call_clobbered_registers();
++ __ leave();
++ }
++}
++
++void ShenandoahBarrierSetAssembler::store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
++ Address dst, Register val, Register tmp1, Register tmp2) {
++ bool on_oop = is_reference_type(type);
++ if (!on_oop) {
++ BarrierSetAssembler::store_at(masm, decorators, type, dst, val, tmp1, tmp2);
++ return;
++ }
++
++ // flatten object address if needed
++ if (dst.offset() == 0) {
++ if (dst.base() != x13) {
++ __ mv(x13, dst.base());
++ }
++ } else {
++ __ la(x13, dst);
++ }
++
++ shenandoah_write_barrier_pre(masm,
++ x13 /* obj */,
++ tmp2 /* pre_val */,
++ xthread /* thread */,
++ tmp1 /* tmp */,
++ val != noreg /* tosca_live */,
++ false /* expand_call */);
++
++ if (val == noreg) {
++ BarrierSetAssembler::store_at(masm, decorators, type, Address(x13, 0), noreg, noreg, noreg);
++ } else {
++ iu_barrier(masm, val, tmp1);
++ // G1 barrier needs uncompressed oop for region cross check.
++ Register new_val = val;
++ if (UseCompressedOops) {
++ new_val = t1;
++ __ mv(new_val, val);
++ }
++ BarrierSetAssembler::store_at(masm, decorators, type, Address(x13, 0), val, noreg, noreg);
++ }
++}
++
++void ShenandoahBarrierSetAssembler::try_resolve_jobject_in_native(MacroAssembler* masm, Register jni_env,
++ Register obj, Register tmp, Label& slowpath) {
++ Label done;
++ // Resolve jobject
++ BarrierSetAssembler::try_resolve_jobject_in_native(masm, jni_env, obj, tmp, slowpath);
++
++ // Check for null.
++ __ beqz(obj, done);
++
++ assert(obj != t1, "need t1");
++ Address gc_state(jni_env, ShenandoahThreadLocalData::gc_state_offset() - JavaThread::jni_environment_offset());
++ __ lbu(t1, gc_state);
++
++ // Check for heap in evacuation phase
++ __ test_bit(t0, t1, ShenandoahHeap::EVACUATION_BITPOS);
++ __ bnez(t0, slowpath);
++
++ __ bind(done);
++}
++
++// Special Shenandoah CAS implementation that handles false negatives due
++// to concurrent evacuation. The service is more complex than a
++// traditional CAS operation because the CAS operation is intended to
++// succeed if the reference at addr exactly matches expected or if the
++// reference at addr holds a pointer to a from-space object that has
++// been relocated to the location named by expected. There are two
++// races that must be addressed:
++// a) A parallel thread may mutate the contents of addr so that it points
++// to a different object. In this case, the CAS operation should fail.
++// b) A parallel thread may heal the contents of addr, replacing a
++// from-space pointer held in addr with the to-space pointer
++// representing the new location of the object.
++// Upon entry to cmpxchg_oop, it is assured that new_val equals NULL
++// or it refers to an object that is not being evacuated out of
++// from-space, or it refers to the to-space version of an object that
++// is being evacuated out of from-space.
++//
++// By default the value held in the result register following execution
++// of the generated code sequence is 0 to indicate failure of CAS,
++// non-zero to indicate success. If is_cae, the result is the value most
++// recently fetched from addr rather than a boolean success indicator.
++//
++// Clobbers t0, t1
++void ShenandoahBarrierSetAssembler::cmpxchg_oop(MacroAssembler* masm,
++ Register addr,
++ Register expected,
++ Register new_val,
++ Assembler::Aqrl acquire,
++ Assembler::Aqrl release,
++ bool is_cae,
++ Register result) {
++ bool is_narrow = UseCompressedOops;
++ Assembler::operand_size size = is_narrow ? Assembler::uint32 : Assembler::int64;
++
++ assert_different_registers(addr, expected, t0, t1);
++ assert_different_registers(addr, new_val, t0, t1);
++
++ Label retry, success, fail, done;
++
++ __ bind(retry);
++
++ // Step1: Try to CAS.
++ __ cmpxchg(addr, expected, new_val, size, acquire, release, /* result */ t1);
++
++ // If success, then we are done.
++ __ beq(expected, t1, success);
++
++ // Step2: CAS failed, check the forwared pointer.
++ __ mv(t0, t1);
++
++ if (is_narrow) {
++ __ decode_heap_oop(t0, t0);
++ }
++ resolve_forward_pointer(masm, t0);
++
++ __ encode_heap_oop(t0, t0);
++
++ // Report failure when the forwarded oop was not expected.
++ __ bne(t0, expected, fail);
++
++ // Step 3: CAS again using the forwarded oop.
++ __ cmpxchg(addr, t1, new_val, size, acquire, release, /* result */ t0);
++
++ // Retry when failed.
++ __ bne(t0, t1, retry);
++
++ __ bind(success);
++ if (is_cae) {
++ __ mv(result, expected);
++ } else {
++ __ mv(result, 1);
++ }
++ __ j(done);
++
++ __ bind(fail);
++ if (is_cae) {
++ __ mv(result, t0);
++ } else {
++ __ mv(result, zr);
++ }
++
++ __ bind(done);
++}
++
++#undef __
++
++#ifdef COMPILER1
++
++#define __ ce->masm()->
++
++void ShenandoahBarrierSetAssembler::gen_pre_barrier_stub(LIR_Assembler* ce, ShenandoahPreBarrierStub* stub) {
++ ShenandoahBarrierSetC1* bs = (ShenandoahBarrierSetC1*)BarrierSet::barrier_set()->barrier_set_c1();
++ // At this point we know that marking is in progress.
++ // If do_load() is true then we have to emit the
++ // load of the previous value; otherwise it has already
++ // been loaded into _pre_val.
++ __ bind(*stub->entry());
++
++ assert(stub->pre_val()->is_register(), "Precondition.");
++
++ Register pre_val_reg = stub->pre_val()->as_register();
++
++ if (stub->do_load()) {
++ ce->mem2reg(stub->addr(), stub->pre_val(), T_OBJECT, stub->patch_code(), stub->info(), false /* wide */, false /* unaligned */);
++ }
++ __ beqz(pre_val_reg, *stub->continuation(), /* is_far */ true);
++ ce->store_parameter(stub->pre_val()->as_register(), 0);
++ __ far_call(RuntimeAddress(bs->pre_barrier_c1_runtime_code_blob()->code_begin()));
++ __ j(*stub->continuation());
++}
++
++void ShenandoahBarrierSetAssembler::gen_load_reference_barrier_stub(LIR_Assembler* ce,
++ ShenandoahLoadReferenceBarrierStub* stub) {
++ ShenandoahBarrierSetC1* bs = (ShenandoahBarrierSetC1*)BarrierSet::barrier_set()->barrier_set_c1();
++ __ bind(*stub->entry());
++
++ DecoratorSet decorators = stub->decorators();
++ bool is_strong = ShenandoahBarrierSet::is_strong_access(decorators);
++ bool is_weak = ShenandoahBarrierSet::is_weak_access(decorators);
++ bool is_phantom = ShenandoahBarrierSet::is_phantom_access(decorators);
++ bool is_native = ShenandoahBarrierSet::is_native_access(decorators);
++
++ Register obj = stub->obj()->as_register();
++ Register res = stub->result()->as_register();
++ Register addr = stub->addr()->as_pointer_register();
++ Register tmp1 = stub->tmp1()->as_register();
++ Register tmp2 = stub->tmp2()->as_register();
++
++ assert(res == x10, "result must arrive in x10");
++ assert_different_registers(tmp1, tmp2, t0);
++
++ if (res != obj) {
++ __ mv(res, obj);
++ }
++
++ if (is_strong) {
++ // Check for object in cset.
++ __ mv(tmp2, ShenandoahHeap::in_cset_fast_test_addr());
++ __ srli(tmp1, res, ShenandoahHeapRegion::region_size_bytes_shift_jint());
++ __ add(tmp2, tmp2, tmp1);
++ __ lbu(tmp2, Address(tmp2));
++ __ beqz(tmp2, *stub->continuation(), true /* is_far */);
++ }
++
++ ce->store_parameter(res, 0);
++ ce->store_parameter(addr, 1);
++
++ if (is_strong) {
++ if (is_native) {
++ __ far_call(RuntimeAddress(bs->load_reference_barrier_strong_native_rt_code_blob()->code_begin()));
++ } else {
++ __ far_call(RuntimeAddress(bs->load_reference_barrier_strong_rt_code_blob()->code_begin()));
++ }
++ } else if (is_weak) {
++ __ far_call(RuntimeAddress(bs->load_reference_barrier_weak_rt_code_blob()->code_begin()));
++ } else {
++ assert(is_phantom, "only remaining strength");
++ __ far_call(RuntimeAddress(bs->load_reference_barrier_phantom_rt_code_blob()->code_begin()));
++ }
++
++ __ j(*stub->continuation());
++}
++
++#undef __
++
++#define __ sasm->
++
++void ShenandoahBarrierSetAssembler::generate_c1_pre_barrier_runtime_stub(StubAssembler* sasm) {
++ __ prologue("shenandoah_pre_barrier", false);
++
++ // arg0 : previous value of memory
++
++ BarrierSet* bs = BarrierSet::barrier_set();
++
++ const Register pre_val = x10;
++ const Register thread = xthread;
++ const Register tmp = t0;
++
++ Address queue_index(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_index_offset()));
++ Address buffer(thread, in_bytes(ShenandoahThreadLocalData::satb_mark_queue_buffer_offset()));
++
++ Label done;
++ Label runtime;
++
++ // Is marking still active?
++ Address gc_state(thread, in_bytes(ShenandoahThreadLocalData::gc_state_offset()));
++ __ lb(tmp, gc_state);
++ __ test_bit(tmp, tmp, ShenandoahHeap::MARKING_BITPOS);
++ __ beqz(tmp, done);
++
++ // Can we store original value in the thread's buffer?
++ __ ld(tmp, queue_index);
++ __ beqz(tmp, runtime);
++
++ __ sub(tmp, tmp, wordSize);
++ __ sd(tmp, queue_index);
++ __ ld(t1, buffer);
++ __ add(tmp, tmp, t1);
++ __ load_parameter(0, t1);
++ __ sd(t1, Address(tmp, 0));
++ __ j(done);
++
++ __ bind(runtime);
++ __ push_call_clobbered_registers();
++ __ load_parameter(0, pre_val);
++ __ call_VM_leaf(CAST_FROM_FN_PTR(address, ShenandoahRuntime::write_ref_field_pre_entry), pre_val, thread);
++ __ pop_call_clobbered_registers();
++ __ bind(done);
++
++ __ epilogue();
++}
++
++void ShenandoahBarrierSetAssembler::generate_c1_load_reference_barrier_runtime_stub(StubAssembler* sasm,
++ DecoratorSet decorators) {
++ __ prologue("shenandoah_load_reference_barrier", false);
++ // arg0 : object to be resolved
++
++ __ push_call_clobbered_registers();
++ __ load_parameter(0, x10);
++ __ load_parameter(1, x11);
++
++ bool is_strong = ShenandoahBarrierSet::is_strong_access(decorators);
++ bool is_weak = ShenandoahBarrierSet::is_weak_access(decorators);
++ bool is_phantom = ShenandoahBarrierSet::is_phantom_access(decorators);
++ bool is_native = ShenandoahBarrierSet::is_native_access(decorators);
++ address target = NULL;
++ if (is_strong) {
++ if (is_native) {
++ target = CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong);
++ } else {
++ if (UseCompressedOops) {
++ target = CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong_narrow);
++ } else {
++ target = CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_strong);
++ }
++ }
++ } else if (is_weak) {
++ assert(!is_native, "weak must not be called off-heap");
++ if (UseCompressedOops) {
++ target = CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak_narrow);
++ } else {
++ target = CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_weak);
++ }
++ } else {
++ assert(is_phantom, "only remaining strength");
++ assert(is_native, "phantom must only be called off-heap");
++ target = CAST_FROM_FN_PTR(address, ShenandoahRuntime::load_reference_barrier_phantom);
++ }
++ __ call(target);
++ __ mv(t0, x10);
++ __ pop_call_clobbered_registers();
++ __ mv(x10, t0);
++
++ __ epilogue();
++}
++
++#undef __
++
++#endif // COMPILER1
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/gc/shenandoah/shenandoahBarrierSetAssembler_riscv.hpp
+@@ -0,0 +1,88 @@
++/*
++ * Copyright (c) 2018, 2019, Red Hat, Inc. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_GC_SHENANDOAH_SHENANDOAHBARRIERSETASSEMBLER_RISCV_HPP
++#define CPU_RISCV_GC_SHENANDOAH_SHENANDOAHBARRIERSETASSEMBLER_RISCV_HPP
++
++#include "asm/macroAssembler.hpp"
++#include "gc/shared/barrierSetAssembler.hpp"
++#include "gc/shenandoah/shenandoahBarrierSet.hpp"
++#ifdef COMPILER1
++class LIR_Assembler;
++class ShenandoahPreBarrierStub;
++class ShenandoahLoadReferenceBarrierStub;
++class StubAssembler;
++#endif
++class StubCodeGenerator;
++
++class ShenandoahBarrierSetAssembler: public BarrierSetAssembler {
++private:
++
++ void satb_write_barrier_pre(MacroAssembler* masm,
++ Register obj,
++ Register pre_val,
++ Register thread,
++ Register tmp,
++ bool tosca_live,
++ bool expand_call);
++ void shenandoah_write_barrier_pre(MacroAssembler* masm,
++ Register obj,
++ Register pre_val,
++ Register thread,
++ Register tmp,
++ bool tosca_live,
++ bool expand_call);
++
++ void resolve_forward_pointer(MacroAssembler* masm, Register dst, Register tmp = noreg);
++ void resolve_forward_pointer_not_null(MacroAssembler* masm, Register dst, Register tmp = noreg);
++ void load_reference_barrier(MacroAssembler* masm, Register dst, Address load_addr, DecoratorSet decorators);
++
++public:
++
++ void iu_barrier(MacroAssembler* masm, Register dst, Register tmp);
++
++#ifdef COMPILER1
++ void gen_pre_barrier_stub(LIR_Assembler* ce, ShenandoahPreBarrierStub* stub);
++ void gen_load_reference_barrier_stub(LIR_Assembler* ce, ShenandoahLoadReferenceBarrierStub* stub);
++ void generate_c1_pre_barrier_runtime_stub(StubAssembler* sasm);
++ void generate_c1_load_reference_barrier_runtime_stub(StubAssembler* sasm, DecoratorSet decorators);
++#endif
++
++ virtual void arraycopy_prologue(MacroAssembler* masm, DecoratorSet decorators, bool is_oop,
++ Register src, Register dst, Register count, RegSet saved_regs);
++
++ virtual void load_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
++ Register dst, Address src, Register tmp1, Register tmp_thread);
++ virtual void store_at(MacroAssembler* masm, DecoratorSet decorators, BasicType type,
++ Address dst, Register val, Register tmp1, Register tmp2);
++
++ virtual void try_resolve_jobject_in_native(MacroAssembler* masm, Register jni_env,
++ Register obj, Register tmp, Label& slowpath);
++
++ void cmpxchg_oop(MacroAssembler* masm, Register addr, Register expected, Register new_val,
++ Assembler::Aqrl acquire, Assembler::Aqrl release, bool is_cae, Register result);
++};
++
++#endif // CPU_RISCV_GC_SHENANDOAH_SHENANDOAHBARRIERSETASSEMBLER_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/gc/shenandoah/shenandoah_riscv64.ad
+@@ -0,0 +1,285 @@
++//
++// Copyright (c) 2018, Red Hat, Inc. All rights reserved.
++// Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++//
++// This code is free software; you can redistribute it and/or modify it
++// under the terms of the GNU General Public License version 2 only, as
++// published by the Free Software Foundation.
++//
++// This code is distributed in the hope that it will be useful, but WITHOUT
++// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++// version 2 for more details (a copy is included in the LICENSE file that
++// accompanied this code).
++//
++// You should have received a copy of the GNU General Public License version
++// 2 along with this work; if not, write to the Free Software Foundation,
++// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++//
++// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++// or visit www.oracle.com if you need additional information or have any
++// questions.
++//
++//
++
++source_hpp %{
++#include "gc/shenandoah/shenandoahBarrierSet.hpp"
++#include "gc/shenandoah/shenandoahBarrierSetAssembler.hpp"
++%}
++
++instruct compareAndSwapP_shenandoah(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval, iRegPNoSp tmp, rFlagsReg cr) %{
++ match(Set res (ShenandoahCompareAndSwapP mem (Binary oldval newval)));
++ ins_cost(10 * DEFAULT_COST);
++
++ effect(TEMP tmp, KILL cr);
++
++ format %{
++ "cmpxchg_shenandoah $mem, $oldval, $newval\t# (ptr) if $mem == $oldval then $mem <-- $newval with temp $tmp, #@compareAndSwapP_shenandoah"
++ %}
++
++ ins_encode %{
++ Register tmp = $tmp$$Register;
++ __ mv(tmp, $oldval$$Register); // Must not clobber oldval.
++ ShenandoahBarrierSet::assembler()->cmpxchg_oop(&_masm, $mem$$Register, tmp, $newval$$Register,
++ Assembler::relaxed /* acquire */, Assembler::rl /* release */,
++ false /* is_cae */, $res$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct compareAndSwapN_shenandoah(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval, iRegNNoSp tmp, rFlagsReg cr) %{
++ match(Set res (ShenandoahCompareAndSwapN mem (Binary oldval newval)));
++ ins_cost(10 * DEFAULT_COST);
++
++ effect(TEMP tmp, KILL cr);
++
++ format %{
++ "cmpxchgw_shenandoah $mem, $oldval, $newval\t# (ptr) if $mem == $oldval then $mem <-- $newval with temp $tmp, #@compareAndSwapN_shenandoah"
++ %}
++
++ ins_encode %{
++ Register tmp = $tmp$$Register;
++ __ mv(tmp, $oldval$$Register); // Must not clobber oldval.
++ ShenandoahBarrierSet::assembler()->cmpxchg_oop(&_masm, $mem$$Register, tmp, $newval$$Register,
++ Assembler::relaxed /* acquire */, Assembler::rl /* release */,
++ false /* is_cae */, $res$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct compareAndSwapPAcq_shenandoah(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval, iRegPNoSp tmp, rFlagsReg cr) %{
++ predicate(needs_acquiring_load_reserved(n));
++ match(Set res (ShenandoahCompareAndSwapP mem (Binary oldval newval)));
++ ins_cost(10 * DEFAULT_COST);
++
++ effect(TEMP tmp, KILL cr);
++
++ format %{
++ "cmpxchg_acq_shenandoah_oop $mem, $oldval, $newval\t# (ptr) if $mem == $oldval then $mem <-- $newval with temp $tmp, #@compareAndSwapPAcq_shenandoah"
++ %}
++
++ ins_encode %{
++ Register tmp = $tmp$$Register;
++ __ mv(tmp, $oldval$$Register); // Must not clobber oldval.
++ ShenandoahBarrierSet::assembler()->cmpxchg_oop(&_masm, $mem$$Register, tmp, $newval$$Register,
++ Assembler::aq /* acquire */, Assembler::rl /* release */,
++ false /* is_cae */, $res$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct compareAndSwapNAcq_shenandoah(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval, iRegNNoSp tmp, rFlagsReg cr) %{
++ predicate(needs_acquiring_load_reserved(n));
++ match(Set res (ShenandoahCompareAndSwapN mem (Binary oldval newval)));
++ ins_cost(10 * DEFAULT_COST);
++
++ effect(TEMP tmp, KILL cr);
++
++ format %{
++ "cmpxchgw_acq_shenandoah_narrow_oop $mem, $oldval, $newval\t# (ptr) if $mem == $oldval then $mem <-- $newval with temp $tmp, #@compareAndSwapNAcq_shenandoah"
++ %}
++
++ ins_encode %{
++ Register tmp = $tmp$$Register;
++ __ mv(tmp, $oldval$$Register); // Must not clobber oldval.
++ ShenandoahBarrierSet::assembler()->cmpxchg_oop(&_masm, $mem$$Register, tmp, $newval$$Register,
++ Assembler::aq /* acquire */, Assembler::rl /* release */,
++ false /* is_cae */, $res$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct compareAndExchangeN_shenandoah(iRegNNoSp res, indirect mem, iRegN oldval, iRegN newval, iRegNNoSp tmp, rFlagsReg cr) %{
++ match(Set res (ShenandoahCompareAndExchangeN mem (Binary oldval newval)));
++ ins_cost(10 * DEFAULT_COST);
++ effect(TEMP_DEF res, TEMP tmp, KILL cr);
++
++ format %{
++ "cmpxchgw_shenandoah $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeN_shenandoah"
++ %}
++
++ ins_encode %{
++ Register tmp = $tmp$$Register;
++ __ mv(tmp, $oldval$$Register); // Must not clobber oldval.
++ ShenandoahBarrierSet::assembler()->cmpxchg_oop(&_masm, $mem$$Register, tmp, $newval$$Register,
++ Assembler::relaxed /* acquire */, Assembler::rl /* release */,
++ true /* is_cae */, $res$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct compareAndExchangeP_shenandoah(iRegPNoSp res, indirect mem, iRegP oldval, iRegP newval, iRegPNoSp tmp, rFlagsReg cr) %{
++ match(Set res (ShenandoahCompareAndExchangeP mem (Binary oldval newval)));
++ ins_cost(10 * DEFAULT_COST);
++
++ effect(TEMP_DEF res, TEMP tmp, KILL cr);
++ format %{
++ "cmpxchg_shenandoah $mem, $oldval, $newval\t# (ptr) if $mem == $oldval then $mem <-- $newval with temp $tmp, #@compareAndExchangeP_shenandoah"
++ %}
++
++ ins_encode %{
++ Register tmp = $tmp$$Register;
++ __ mv(tmp, $oldval$$Register); // Must not clobber oldval.
++ ShenandoahBarrierSet::assembler()->cmpxchg_oop(&_masm, $mem$$Register, tmp, $newval$$Register,
++ Assembler::relaxed /* acquire */, Assembler::rl /* release */,
++ true /* is_cae */, $res$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct weakCompareAndSwapN_shenandoah(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval, iRegNNoSp tmp, rFlagsReg cr) %{
++ match(Set res (ShenandoahWeakCompareAndSwapN mem (Binary oldval newval)));
++ ins_cost(10 * DEFAULT_COST);
++
++ effect(TEMP tmp, KILL cr);
++ format %{
++ "cmpxchgw_shenandoah $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval, #@weakCompareAndSwapN_shenandoah"
++ "mv $res, EQ\t# $res <-- (EQ ? 1 : 0)"
++ %}
++
++ ins_encode %{
++ Register tmp = $tmp$$Register;
++ __ mv(tmp, $oldval$$Register); // Must not clobber oldval.
++ // Weak is not current supported by ShenandoahBarrierSet::cmpxchg_oop
++ ShenandoahBarrierSet::assembler()->cmpxchg_oop(&_masm, $mem$$Register, tmp, $newval$$Register,
++ Assembler::relaxed /* acquire */, Assembler::rl /* release */,
++ false /* is_cae */, $res$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct compareAndExchangeNAcq_shenandoah(iRegNNoSp res, indirect mem, iRegN oldval, iRegN newval, iRegNNoSp tmp, rFlagsReg cr) %{
++ predicate(needs_acquiring_load_reserved(n));
++ match(Set res (ShenandoahCompareAndExchangeN mem (Binary oldval newval)));
++ ins_cost(10 * DEFAULT_COST);
++
++ effect(TEMP_DEF res, TEMP tmp, KILL cr);
++ format %{
++ "cmpxchgw_acq_shenandoah $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeNAcq_shenandoah"
++ %}
++
++ ins_encode %{
++ Register tmp = $tmp$$Register;
++ __ mv(tmp, $oldval$$Register);
++ ShenandoahBarrierSet::assembler()->cmpxchg_oop(&_masm, $mem$$Register, tmp, $newval$$Register,
++ Assembler::aq /* acquire */, Assembler::rl /* release */,
++ true /* is_cae */, $res$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct compareAndExchangePAcq_shenandoah(iRegPNoSp res, indirect mem, iRegP oldval, iRegP newval, iRegPNoSp tmp, rFlagsReg cr) %{
++ predicate(needs_acquiring_load_reserved(n));
++ match(Set res (ShenandoahCompareAndExchangeP mem (Binary oldval newval)));
++ ins_cost(10 * DEFAULT_COST);
++
++ effect(TEMP_DEF res, TEMP tmp, KILL cr);
++ format %{
++ "cmpxchg_acq_shenandoah $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangePAcq_shenandoah"
++ %}
++
++ ins_encode %{
++ Register tmp = $tmp$$Register;
++ __ mv(tmp, $oldval$$Register);
++ ShenandoahBarrierSet::assembler()->cmpxchg_oop(&_masm, $mem$$Register, tmp, $newval$$Register,
++ Assembler::aq /* acquire */, Assembler::rl /* release */,
++ true /* is_cae */, $res$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct weakCompareAndSwapP_shenandoah(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval, iRegPNoSp tmp, rFlagsReg cr) %{
++ match(Set res (ShenandoahWeakCompareAndSwapP mem (Binary oldval newval)));
++ ins_cost(10 * DEFAULT_COST);
++
++ effect(TEMP tmp, KILL cr);
++ format %{
++ "cmpxchg_shenandoah $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval, #@weakCompareAndSwapP_shenandoah"
++ %}
++
++ ins_encode %{
++ Register tmp = $tmp$$Register;
++ __ mv(tmp, $oldval$$Register); // Must not clobber oldval.
++ ShenandoahBarrierSet::assembler()->cmpxchg_oop(&_masm, $mem$$Register, tmp, $newval$$Register,
++ Assembler::relaxed /* acquire */, Assembler::rl /* release */,
++ false /* is_cae */, $res$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct weakCompareAndSwapNAcq_shenandoah(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval, iRegNNoSp tmp, rFlagsReg cr) %{
++ predicate(needs_acquiring_load_reserved(n));
++ match(Set res (ShenandoahWeakCompareAndSwapN mem (Binary oldval newval)));
++ ins_cost(10 * DEFAULT_COST);
++
++ effect(TEMP tmp, KILL cr);
++ format %{
++ "cmpxchgw_acq_shenandoah $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval, #@weakCompareAndSwapNAcq_shenandoah"
++ "mv $res, EQ\t# $res <-- (EQ ? 1 : 0)"
++ %}
++
++ ins_encode %{
++ Register tmp = $tmp$$Register;
++ __ mv(tmp, $oldval$$Register); // Must not clobber oldval.
++ // Weak is not current supported by ShenandoahBarrierSet::cmpxchg_oop
++ ShenandoahBarrierSet::assembler()->cmpxchg_oop(&_masm, $mem$$Register, tmp, $newval$$Register,
++ Assembler::aq /* acquire */, Assembler::rl /* release */,
++ false /* is_cae */, $res$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct weakCompareAndSwapPAcq_shenandoah(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval, iRegPNoSp tmp, rFlagsReg cr) %{
++ predicate(needs_acquiring_load_reserved(n));
++ match(Set res (ShenandoahWeakCompareAndSwapP mem (Binary oldval newval)));
++ ins_cost(10 * DEFAULT_COST);
++
++ effect(TEMP tmp, KILL cr);
++ format %{
++ "cmpxchg_acq_shenandoah $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval, #@weakCompareAndSwapPAcq_shenandoah"
++ "mv $res, EQ\t# $res <-- (EQ ? 1 : 0)"
++ %}
++
++ ins_encode %{
++ Register tmp = $tmp$$Register;
++ __ mv(tmp, $oldval$$Register); // Must not clobber oldval.
++ // Weak is not current supported by ShenandoahBarrierSet::cmpxchg_oop
++ ShenandoahBarrierSet::assembler()->cmpxchg_oop(&_masm, $mem$$Register, tmp, $newval$$Register,
++ Assembler::aq /* acquire */, Assembler::rl /* release */,
++ false /* is_cae */, $res$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/gc/z/zBarrierSetAssembler_riscv.cpp
+@@ -0,0 +1,445 @@
++/*
++ * Copyright (c) 2019, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/macroAssembler.inline.hpp"
++#include "code/codeBlob.hpp"
++#include "code/vmreg.inline.hpp"
++#include "gc/z/zBarrier.inline.hpp"
++#include "gc/z/zBarrierSet.hpp"
++#include "gc/z/zBarrierSetAssembler.hpp"
++#include "gc/z/zBarrierSetRuntime.hpp"
++#include "gc/z/zThreadLocalData.hpp"
++#include "memory/resourceArea.hpp"
++#include "runtime/sharedRuntime.hpp"
++#include "utilities/macros.hpp"
++#ifdef COMPILER1
++#include "c1/c1_LIRAssembler.hpp"
++#include "c1/c1_MacroAssembler.hpp"
++#include "gc/z/c1/zBarrierSetC1.hpp"
++#endif // COMPILER1
++#ifdef COMPILER2
++#include "gc/z/c2/zBarrierSetC2.hpp"
++#endif // COMPILER2
++
++#ifdef PRODUCT
++#define BLOCK_COMMENT(str) /* nothing */
++#else
++#define BLOCK_COMMENT(str) __ block_comment(str)
++#endif
++
++#undef __
++#define __ masm->
++
++void ZBarrierSetAssembler::load_at(MacroAssembler* masm,
++ DecoratorSet decorators,
++ BasicType type,
++ Register dst,
++ Address src,
++ Register tmp1,
++ Register tmp_thread) {
++ if (!ZBarrierSet::barrier_needed(decorators, type)) {
++ // Barrier not needed
++ BarrierSetAssembler::load_at(masm, decorators, type, dst, src, tmp1, tmp_thread);
++ return;
++ }
++
++ assert_different_registers(t1, src.base());
++ assert_different_registers(t0, t1, dst);
++
++ Label done;
++
++ // Load bad mask into temp register.
++ __ la(t0, src);
++ __ ld(t1, address_bad_mask_from_thread(xthread));
++ __ ld(dst, Address(t0));
++
++ // Test reference against bad mask. If mask bad, then we need to fix it up.
++ __ andr(t1, dst, t1);
++ __ beqz(t1, done);
++
++ __ enter();
++
++ __ push_call_clobbered_registers_except(RegSet::of(dst));
++
++ if (c_rarg0 != dst) {
++ __ mv(c_rarg0, dst);
++ }
++
++ __ mv(c_rarg1, t0);
++
++ __ call_VM_leaf(ZBarrierSetRuntime::load_barrier_on_oop_field_preloaded_addr(decorators), 2);
++
++ // Make sure dst has the return value.
++ if (dst != x10) {
++ __ mv(dst, x10);
++ }
++
++ __ pop_call_clobbered_registers_except(RegSet::of(dst));
++ __ leave();
++
++ __ bind(done);
++}
++
++#ifdef ASSERT
++
++void ZBarrierSetAssembler::store_at(MacroAssembler* masm,
++ DecoratorSet decorators,
++ BasicType type,
++ Address dst,
++ Register val,
++ Register tmp1,
++ Register tmp2) {
++ // Verify value
++ if (is_reference_type(type)) {
++ // Note that src could be noreg, which means we
++ // are storing null and can skip verification.
++ if (val != noreg) {
++ Label done;
++
++ // tmp1 and tmp2 are often set to noreg.
++ RegSet savedRegs = RegSet::of(t0);
++ __ push_reg(savedRegs, sp);
++
++ __ ld(t0, address_bad_mask_from_thread(xthread));
++ __ andr(t0, val, t0);
++ __ beqz(t0, done);
++ __ stop("Verify oop store failed");
++ __ should_not_reach_here();
++ __ bind(done);
++ __ pop_reg(savedRegs, sp);
++ }
++ }
++
++ // Store value
++ BarrierSetAssembler::store_at(masm, decorators, type, dst, val, tmp1, tmp2);
++}
++
++#endif // ASSERT
++
++void ZBarrierSetAssembler::arraycopy_prologue(MacroAssembler* masm,
++ DecoratorSet decorators,
++ bool is_oop,
++ Register src,
++ Register dst,
++ Register count,
++ RegSet saved_regs) {
++ if (!is_oop) {
++ // Barrier not needed
++ return;
++ }
++
++ BLOCK_COMMENT("ZBarrierSetAssembler::arraycopy_prologue {");
++
++ assert_different_registers(src, count, t0);
++
++ __ push_reg(saved_regs, sp);
++
++ if (count == c_rarg0 && src == c_rarg1) {
++ // exactly backwards!!
++ __ xorr(c_rarg0, c_rarg0, c_rarg1);
++ __ xorr(c_rarg1, c_rarg0, c_rarg1);
++ __ xorr(c_rarg0, c_rarg0, c_rarg1);
++ } else {
++ __ mv(c_rarg0, src);
++ __ mv(c_rarg1, count);
++ }
++
++ __ call_VM_leaf(ZBarrierSetRuntime::load_barrier_on_oop_array_addr(), 2);
++
++ __ pop_reg(saved_regs, sp);
++
++ BLOCK_COMMENT("} ZBarrierSetAssembler::arraycopy_prologue");
++}
++
++void ZBarrierSetAssembler::try_resolve_jobject_in_native(MacroAssembler* masm,
++ Register jni_env,
++ Register robj,
++ Register tmp,
++ Label& slowpath) {
++ BLOCK_COMMENT("ZBarrierSetAssembler::try_resolve_jobject_in_native {");
++
++ assert_different_registers(jni_env, robj, tmp);
++
++ // Resolve jobject
++ BarrierSetAssembler::try_resolve_jobject_in_native(masm, jni_env, robj, tmp, slowpath);
++
++ // Compute the offset of address bad mask from the field of jni_environment
++ long int bad_mask_relative_offset = (long int) (in_bytes(ZThreadLocalData::address_bad_mask_offset()) -
++ in_bytes(JavaThread::jni_environment_offset()));
++
++ // Load the address bad mask
++ __ ld(tmp, Address(jni_env, bad_mask_relative_offset));
++
++ // Check address bad mask
++ __ andr(tmp, robj, tmp);
++ __ bnez(tmp, slowpath);
++
++ BLOCK_COMMENT("} ZBarrierSetAssembler::try_resolve_jobject_in_native");
++}
++
++#ifdef COMPILER2
++
++OptoReg::Name ZBarrierSetAssembler::refine_register(const Node* node, OptoReg::Name opto_reg) {
++ if (!OptoReg::is_reg(opto_reg)) {
++ return OptoReg::Bad;
++ }
++
++ const VMReg vm_reg = OptoReg::as_VMReg(opto_reg);
++ if (vm_reg->is_FloatRegister()) {
++ return opto_reg & ~1;
++ }
++
++ return opto_reg;
++}
++
++#undef __
++#define __ _masm->
++
++class ZSaveLiveRegisters {
++private:
++ MacroAssembler* const _masm;
++ RegSet _gp_regs;
++ FloatRegSet _fp_regs;
++ VectorRegSet _vp_regs;
++
++public:
++ void initialize(ZLoadBarrierStubC2* stub) {
++ // Record registers that needs to be saved/restored
++ RegMaskIterator rmi(stub->live());
++ while (rmi.has_next()) {
++ const OptoReg::Name opto_reg = rmi.next();
++ if (OptoReg::is_reg(opto_reg)) {
++ const VMReg vm_reg = OptoReg::as_VMReg(opto_reg);
++ if (vm_reg->is_Register()) {
++ _gp_regs += RegSet::of(vm_reg->as_Register());
++ } else if (vm_reg->is_FloatRegister()) {
++ _fp_regs += FloatRegSet::of(vm_reg->as_FloatRegister());
++ } else if (vm_reg->is_VectorRegister()) {
++ const VMReg vm_reg_base = OptoReg::as_VMReg(opto_reg & ~(VectorRegisterImpl::max_slots_per_register - 1));
++ _vp_regs += VectorRegSet::of(vm_reg_base->as_VectorRegister());
++ } else {
++ fatal("Unknown register type");
++ }
++ }
++ }
++
++ // Remove C-ABI SOE registers, tmp regs and _ref register that will be updated
++ _gp_regs -= RegSet::range(x18, x27) + RegSet::of(x2) + RegSet::of(x8, x9) + RegSet::of(x5, stub->ref());
++ }
++
++ ZSaveLiveRegisters(MacroAssembler* masm, ZLoadBarrierStubC2* stub) :
++ _masm(masm),
++ _gp_regs(),
++ _fp_regs(),
++ _vp_regs() {
++ // Figure out what registers to save/restore
++ initialize(stub);
++
++ // Save registers
++ __ push_reg(_gp_regs, sp);
++ __ push_fp(_fp_regs, sp);
++ __ push_v(_vp_regs, sp);
++ }
++
++ ~ZSaveLiveRegisters() {
++ // Restore registers
++ __ pop_v(_vp_regs, sp);
++ __ pop_fp(_fp_regs, sp);
++ __ pop_reg(_gp_regs, sp);
++ }
++};
++
++class ZSetupArguments {
++private:
++ MacroAssembler* const _masm;
++ const Register _ref;
++ const Address _ref_addr;
++
++public:
++ ZSetupArguments(MacroAssembler* masm, ZLoadBarrierStubC2* stub) :
++ _masm(masm),
++ _ref(stub->ref()),
++ _ref_addr(stub->ref_addr()) {
++
++ // Setup arguments
++ if (_ref_addr.base() == noreg) {
++ // No self healing
++ if (_ref != c_rarg0) {
++ __ mv(c_rarg0, _ref);
++ }
++ __ mv(c_rarg1, zr);
++ } else {
++ // Self healing
++ if (_ref == c_rarg0) {
++ // _ref is already at correct place
++ __ la(c_rarg1, _ref_addr);
++ } else if (_ref != c_rarg1) {
++ // _ref is in wrong place, but not in c_rarg1, so fix it first
++ __ la(c_rarg1, _ref_addr);
++ __ mv(c_rarg0, _ref);
++ } else if (_ref_addr.base() != c_rarg0) {
++ assert(_ref == c_rarg1, "Mov ref first, vacating c_rarg0");
++ __ mv(c_rarg0, _ref);
++ __ la(c_rarg1, _ref_addr);
++ } else {
++ assert(_ref == c_rarg1, "Need to vacate c_rarg1 and _ref_addr is using c_rarg0");
++ if (_ref_addr.base() == c_rarg0) {
++ __ mv(t1, c_rarg1);
++ __ la(c_rarg1, _ref_addr);
++ __ mv(c_rarg0, t1);
++ } else {
++ ShouldNotReachHere();
++ }
++ }
++ }
++ }
++
++ ~ZSetupArguments() {
++ // Transfer result
++ if (_ref != x10) {
++ __ mv(_ref, x10);
++ }
++ }
++};
++
++#undef __
++#define __ masm->
++
++void ZBarrierSetAssembler::generate_c2_load_barrier_stub(MacroAssembler* masm, ZLoadBarrierStubC2* stub) const {
++ BLOCK_COMMENT("ZLoadBarrierStubC2");
++
++ // Stub entry
++ __ bind(*stub->entry());
++
++ {
++ ZSaveLiveRegisters save_live_registers(masm, stub);
++ ZSetupArguments setup_arguments(masm, stub);
++
++ Address target(stub->slow_path());
++ __ relocate(target.rspec(), [&] {
++ int32_t offset;
++ __ la_patchable(t0, target, offset);
++ __ jalr(x1, t0, offset);
++ });
++ }
++
++ // Stub exit
++ __ j(*stub->continuation());
++}
++
++#undef __
++
++#endif // COMPILER2
++
++#ifdef COMPILER1
++#undef __
++#define __ ce->masm()->
++
++void ZBarrierSetAssembler::generate_c1_load_barrier_test(LIR_Assembler* ce,
++ LIR_Opr ref) const {
++ assert_different_registers(xthread, ref->as_register(), t1);
++ __ ld(t1, address_bad_mask_from_thread(xthread));
++ __ andr(t1, t1, ref->as_register());
++}
++
++void ZBarrierSetAssembler::generate_c1_load_barrier_stub(LIR_Assembler* ce,
++ ZLoadBarrierStubC1* stub) const {
++ // Stub entry
++ __ bind(*stub->entry());
++
++ Register ref = stub->ref()->as_register();
++ Register ref_addr = noreg;
++ Register tmp = noreg;
++
++ if (stub->tmp()->is_valid()) {
++ // Load address into tmp register
++ ce->leal(stub->ref_addr(), stub->tmp());
++ ref_addr = tmp = stub->tmp()->as_pointer_register();
++ } else {
++ // Address already in register
++ ref_addr = stub->ref_addr()->as_address_ptr()->base()->as_pointer_register();
++ }
++
++ assert_different_registers(ref, ref_addr, noreg);
++
++ // Save x10 unless it is the result or tmp register
++ // Set up SP to accomodate parameters and maybe x10.
++ if (ref != x10 && tmp != x10) {
++ __ sub(sp, sp, 32);
++ __ sd(x10, Address(sp, 16));
++ } else {
++ __ sub(sp, sp, 16);
++ }
++
++ // Setup arguments and call runtime stub
++ ce->store_parameter(ref_addr, 1);
++ ce->store_parameter(ref, 0);
++
++ __ far_call(stub->runtime_stub());
++
++ // Verify result
++ __ verify_oop(x10, "Bad oop");
++
++
++ // Move result into place
++ if (ref != x10) {
++ __ mv(ref, x10);
++ }
++
++ // Restore x10 unless it is the result or tmp register
++ if (ref != x10 && tmp != x10) {
++ __ ld(x10, Address(sp, 16));
++ __ add(sp, sp, 32);
++ } else {
++ __ add(sp, sp, 16);
++ }
++
++ // Stub exit
++ __ j(*stub->continuation());
++}
++
++#undef __
++#define __ sasm->
++
++void ZBarrierSetAssembler::generate_c1_load_barrier_runtime_stub(StubAssembler* sasm,
++ DecoratorSet decorators) const {
++ __ prologue("zgc_load_barrier stub", false);
++
++ __ push_call_clobbered_registers_except(RegSet::of(x10));
++
++ // Setup arguments
++ __ load_parameter(0, c_rarg0);
++ __ load_parameter(1, c_rarg1);
++
++ __ call_VM_leaf(ZBarrierSetRuntime::load_barrier_on_oop_field_preloaded_addr(decorators), 2);
++
++ __ pop_call_clobbered_registers_except(RegSet::of(x10));
++
++ __ epilogue();
++}
++
++#undef __
++#endif // COMPILER1
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/gc/z/zBarrierSetAssembler_riscv.hpp
+@@ -0,0 +1,102 @@
++/*
++ * Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_GC_Z_ZBARRIERSETASSEMBLER_RISCV_HPP
++#define CPU_RISCV_GC_Z_ZBARRIERSETASSEMBLER_RISCV_HPP
++
++#include "code/vmreg.hpp"
++#include "oops/accessDecorators.hpp"
++#ifdef COMPILER2
++#include "opto/optoreg.hpp"
++#endif // COMPILER2
++
++#ifdef COMPILER1
++class LIR_Assembler;
++class LIR_OprDesc;
++typedef LIR_OprDesc* LIR_Opr;
++class StubAssembler;
++class ZLoadBarrierStubC1;
++#endif // COMPILER1
++
++#ifdef COMPILER2
++class Node;
++class ZLoadBarrierStubC2;
++#endif // COMPILER2
++
++class ZBarrierSetAssembler : public ZBarrierSetAssemblerBase {
++public:
++ virtual void load_at(MacroAssembler* masm,
++ DecoratorSet decorators,
++ BasicType type,
++ Register dst,
++ Address src,
++ Register tmp1,
++ Register tmp_thread);
++
++#ifdef ASSERT
++ virtual void store_at(MacroAssembler* masm,
++ DecoratorSet decorators,
++ BasicType type,
++ Address dst,
++ Register val,
++ Register tmp1,
++ Register tmp2);
++#endif // ASSERT
++
++ virtual void arraycopy_prologue(MacroAssembler* masm,
++ DecoratorSet decorators,
++ bool is_oop,
++ Register src,
++ Register dst,
++ Register count,
++ RegSet saved_regs);
++
++ virtual void try_resolve_jobject_in_native(MacroAssembler* masm,
++ Register jni_env,
++ Register robj,
++ Register tmp,
++ Label& slowpath);
++
++#ifdef COMPILER1
++ void generate_c1_load_barrier_test(LIR_Assembler* ce,
++ LIR_Opr ref) const;
++
++ void generate_c1_load_barrier_stub(LIR_Assembler* ce,
++ ZLoadBarrierStubC1* stub) const;
++
++ void generate_c1_load_barrier_runtime_stub(StubAssembler* sasm,
++ DecoratorSet decorators) const;
++#endif // COMPILER1
++
++#ifdef COMPILER2
++ OptoReg::Name refine_register(const Node* node,
++ OptoReg::Name opto_reg);
++
++ void generate_c2_load_barrier_stub(MacroAssembler* masm,
++ ZLoadBarrierStubC2* stub) const;
++#endif // COMPILER2
++};
++
++#endif // CPU_RISCV_GC_Z_ZBARRIERSETASSEMBLER_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/gc/z/zGlobals_riscv.cpp
+@@ -0,0 +1,212 @@
++/*
++ * Copyright (c) 2017, 2021, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "gc/shared/gcLogPrecious.hpp"
++#include "gc/shared/gc_globals.hpp"
++#include "gc/z/zGlobals.hpp"
++#include "runtime/globals.hpp"
++#include "runtime/os.hpp"
++#include "utilities/globalDefinitions.hpp"
++#include "utilities/powerOfTwo.hpp"
++
++#ifdef LINUX
++#include <sys/mman.h>
++#endif // LINUX
++
++//
++// The heap can have three different layouts, depending on the max heap size.
++//
++// Address Space & Pointer Layout 1
++// --------------------------------
++//
++// +--------------------------------+ 0x00007FFFFFFFFFFF (127TB)
++// . .
++// . .
++// . .
++// +--------------------------------+ 0x0000014000000000 (20TB)
++// | Remapped View |
++// +--------------------------------+ 0x0000010000000000 (16TB)
++// . .
++// +--------------------------------+ 0x00000c0000000000 (12TB)
++// | Marked1 View |
++// +--------------------------------+ 0x0000080000000000 (8TB)
++// | Marked0 View |
++// +--------------------------------+ 0x0000040000000000 (4TB)
++// . .
++// +--------------------------------+ 0x0000000000000000
++//
++// 6 4 4 4 4
++// 3 6 5 2 1 0
++// +--------------------+----+-----------------------------------------------+
++// |00000000 00000000 00|1111|11 11111111 11111111 11111111 11111111 11111111|
++// +--------------------+----+-----------------------------------------------+
++// | | |
++// | | * 41-0 Object Offset (42-bits, 4TB address space)
++// | |
++// | * 45-42 Metadata Bits (4-bits) 0001 = Marked0 (Address view 4-8TB)
++// | 0010 = Marked1 (Address view 8-12TB)
++// | 0100 = Remapped (Address view 16-20TB)
++// | 1000 = Finalizable (Address view N/A)
++// |
++// * 63-46 Fixed (18-bits, always zero)
++//
++//
++// Address Space & Pointer Layout 2
++// --------------------------------
++//
++// +--------------------------------+ 0x00007FFFFFFFFFFF (127TB)
++// . .
++// . .
++// . .
++// +--------------------------------+ 0x0000280000000000 (40TB)
++// | Remapped View |
++// +--------------------------------+ 0x0000200000000000 (32TB)
++// . .
++// +--------------------------------+ 0x0000180000000000 (24TB)
++// | Marked1 View |
++// +--------------------------------+ 0x0000100000000000 (16TB)
++// | Marked0 View |
++// +--------------------------------+ 0x0000080000000000 (8TB)
++// . .
++// +--------------------------------+ 0x0000000000000000
++//
++// 6 4 4 4 4
++// 3 7 6 3 2 0
++// +------------------+-----+------------------------------------------------+
++// |00000000 00000000 0|1111|111 11111111 11111111 11111111 11111111 11111111|
++// +-------------------+----+------------------------------------------------+
++// | | |
++// | | * 42-0 Object Offset (43-bits, 8TB address space)
++// | |
++// | * 46-43 Metadata Bits (4-bits) 0001 = Marked0 (Address view 8-16TB)
++// | 0010 = Marked1 (Address view 16-24TB)
++// | 0100 = Remapped (Address view 32-40TB)
++// | 1000 = Finalizable (Address view N/A)
++// |
++// * 63-47 Fixed (17-bits, always zero)
++//
++//
++// Address Space & Pointer Layout 3
++// --------------------------------
++//
++// +--------------------------------+ 0x00007FFFFFFFFFFF (127TB)
++// . .
++// . .
++// . .
++// +--------------------------------+ 0x0000500000000000 (80TB)
++// | Remapped View |
++// +--------------------------------+ 0x0000400000000000 (64TB)
++// . .
++// +--------------------------------+ 0x0000300000000000 (48TB)
++// | Marked1 View |
++// +--------------------------------+ 0x0000200000000000 (32TB)
++// | Marked0 View |
++// +--------------------------------+ 0x0000100000000000 (16TB)
++// . .
++// +--------------------------------+ 0x0000000000000000
++//
++// 6 4 4 4 4
++// 3 8 7 4 3 0
++// +------------------+----+-------------------------------------------------+
++// |00000000 00000000 |1111|1111 11111111 11111111 11111111 11111111 11111111|
++// +------------------+----+-------------------------------------------------+
++// | | |
++// | | * 43-0 Object Offset (44-bits, 16TB address space)
++// | |
++// | * 47-44 Metadata Bits (4-bits) 0001 = Marked0 (Address view 16-32TB)
++// | 0010 = Marked1 (Address view 32-48TB)
++// | 0100 = Remapped (Address view 64-80TB)
++// | 1000 = Finalizable (Address view N/A)
++// |
++// * 63-48 Fixed (16-bits, always zero)
++//
++
++// Default value if probing is not implemented for a certain platform: 128TB
++static const size_t DEFAULT_MAX_ADDRESS_BIT = 47;
++// Minimum value returned, if probing fails: 64GB
++static const size_t MINIMUM_MAX_ADDRESS_BIT = 36;
++
++static size_t probe_valid_max_address_bit() {
++#ifdef LINUX
++ size_t max_address_bit = 0;
++ const size_t page_size = os::vm_page_size();
++ for (size_t i = DEFAULT_MAX_ADDRESS_BIT; i > MINIMUM_MAX_ADDRESS_BIT; --i) {
++ const uintptr_t base_addr = ((uintptr_t) 1U) << i;
++ if (msync((void*)base_addr, page_size, MS_ASYNC) == 0) {
++ // msync suceeded, the address is valid, and maybe even already mapped.
++ max_address_bit = i;
++ break;
++ }
++ if (errno != ENOMEM) {
++ // Some error occured. This should never happen, but msync
++ // has some undefined behavior, hence ignore this bit.
++#ifdef ASSERT
++ fatal("Received '%s' while probing the address space for the highest valid bit", os::errno_name(errno));
++#else // ASSERT
++ log_warning_p(gc)("Received '%s' while probing the address space for the highest valid bit", os::errno_name(errno));
++#endif // ASSERT
++ continue;
++ }
++ // Since msync failed with ENOMEM, the page might not be mapped.
++ // Try to map it, to see if the address is valid.
++ void* const result_addr = mmap((void*) base_addr, page_size, PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE, -1, 0);
++ if (result_addr != MAP_FAILED) {
++ munmap(result_addr, page_size);
++ }
++ if ((uintptr_t) result_addr == base_addr) {
++ // address is valid
++ max_address_bit = i;
++ break;
++ }
++ }
++ if (max_address_bit == 0) {
++ // probing failed, allocate a very high page and take that bit as the maximum
++ const uintptr_t high_addr = ((uintptr_t) 1U) << DEFAULT_MAX_ADDRESS_BIT;
++ void* const result_addr = mmap((void*) high_addr, page_size, PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE, -1, 0);
++ if (result_addr != MAP_FAILED) {
++ max_address_bit = BitsPerSize_t - count_leading_zeros((size_t) result_addr) - 1;
++ munmap(result_addr, page_size);
++ }
++ }
++ log_info_p(gc, init)("Probing address space for the highest valid bit: " SIZE_FORMAT, max_address_bit);
++ return MAX2(max_address_bit, MINIMUM_MAX_ADDRESS_BIT);
++#else // LINUX
++ return DEFAULT_MAX_ADDRESS_BIT;
++#endif // LINUX
++}
++
++size_t ZPlatformAddressOffsetBits() {
++ const static size_t valid_max_address_offset_bits = probe_valid_max_address_bit() + 1;
++ const size_t max_address_offset_bits = valid_max_address_offset_bits - 3;
++ const size_t min_address_offset_bits = max_address_offset_bits - 2;
++ const size_t address_offset = round_up_power_of_2(MaxHeapSize * ZVirtualToPhysicalRatio);
++ const size_t address_offset_bits = log2i_exact(address_offset);
++ return clamp(address_offset_bits, min_address_offset_bits, max_address_offset_bits);
++}
++
++size_t ZPlatformAddressMetadataShift() {
++ return ZPlatformAddressOffsetBits();
++}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/gc/z/zGlobals_riscv.hpp
+@@ -0,0 +1,36 @@
++/*
++ * Copyright (c) 2015, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_GC_Z_ZGLOBALS_RISCV_HPP
++#define CPU_RISCV_GC_Z_ZGLOBALS_RISCV_HPP
++
++const size_t ZPlatformGranuleSizeShift = 21; // 2MB
++const size_t ZPlatformHeapViews = 3;
++const size_t ZPlatformCacheLineSize = 64;
++
++size_t ZPlatformAddressOffsetBits();
++size_t ZPlatformAddressMetadataShift();
++
++#endif // CPU_RISCV_GC_Z_ZGLOBALS_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/gc/z/z_riscv64.ad
+@@ -0,0 +1,233 @@
++//
++// Copyright (c) 2019, 2021, Oracle and/or its affiliates. All rights reserved.
++// Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++//
++// This code is free software; you can redistribute it and/or modify it
++// under the terms of the GNU General Public License version 2 only, as
++// published by the Free Software Foundation.
++//
++// This code is distributed in the hope that it will be useful, but WITHOUT
++// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++// version 2 for more details (a copy is included in the LICENSE file that
++// accompanied this code).
++//
++// You should have received a copy of the GNU General Public License version
++// 2 along with this work; if not, write to the Free Software Foundation,
++// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++//
++// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++// or visit www.oracle.com if you need additional information or have any
++// questions.
++//
++
++source_hpp %{
++
++#include "gc/shared/gc_globals.hpp"
++#include "gc/z/c2/zBarrierSetC2.hpp"
++#include "gc/z/zThreadLocalData.hpp"
++
++%}
++
++source %{
++
++static void z_load_barrier(MacroAssembler& _masm, const MachNode* node, Address ref_addr, Register ref, Register tmp, int barrier_data) {
++ if (barrier_data == ZLoadBarrierElided) {
++ return;
++ }
++ ZLoadBarrierStubC2* const stub = ZLoadBarrierStubC2::create(node, ref_addr, ref, tmp, barrier_data);
++ __ ld(tmp, Address(xthread, ZThreadLocalData::address_bad_mask_offset()));
++ __ andr(tmp, tmp, ref);
++ __ bnez(tmp, *stub->entry(), true /* far */);
++ __ bind(*stub->continuation());
++}
++
++static void z_load_barrier_slow_path(MacroAssembler& _masm, const MachNode* node, Address ref_addr, Register ref, Register tmp) {
++ ZLoadBarrierStubC2* const stub = ZLoadBarrierStubC2::create(node, ref_addr, ref, tmp, ZLoadBarrierStrong);
++ __ j(*stub->entry());
++ __ bind(*stub->continuation());
++}
++
++%}
++
++// Load Pointer
++instruct zLoadP(iRegPNoSp dst, memory mem)
++%{
++ match(Set dst (LoadP mem));
++ predicate(UseZGC && (n->as_Load()->barrier_data() != 0));
++ effect(TEMP dst);
++
++ ins_cost(4 * DEFAULT_COST);
++
++ format %{ "ld $dst, $mem, #@zLoadP" %}
++
++ ins_encode %{
++ const Address ref_addr (as_Register($mem$$base), $mem$$disp);
++ __ ld($dst$$Register, ref_addr);
++ z_load_barrier(_masm, this, ref_addr, $dst$$Register, t0 /* tmp */, barrier_data());
++ %}
++
++ ins_pipe(iload_reg_mem);
++%}
++
++instruct zCompareAndSwapP(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{
++ match(Set res (CompareAndSwapP mem (Binary oldval newval)));
++ match(Set res (WeakCompareAndSwapP mem (Binary oldval newval)));
++ predicate(UseZGC && !needs_acquiring_load_reserved(n) && n->as_LoadStore()->barrier_data() == ZLoadBarrierStrong);
++ effect(KILL cr, TEMP_DEF res);
++
++ ins_cost(2 * VOLATILE_REF_COST);
++
++ format %{ "cmpxchg $mem, $oldval, $newval, #@zCompareAndSwapP\n\t"
++ "mv $res, $res == $oldval" %}
++
++ ins_encode %{
++ Label failed;
++ guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
++ __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, Assembler::int64,
++ Assembler::relaxed /* acquire */, Assembler::rl /* release */, $res$$Register,
++ true /* result_as_bool */);
++ __ beqz($res$$Register, failed);
++ __ mv(t0, $oldval$$Register);
++ __ bind(failed);
++ if (barrier_data() != ZLoadBarrierElided) {
++ Label good;
++ __ ld(t1, Address(xthread, ZThreadLocalData::address_bad_mask_offset()), t1 /* tmp */);
++ __ andr(t1, t1, t0);
++ __ beqz(t1, good);
++ z_load_barrier_slow_path(_masm, this, Address($mem$$Register), t0 /* ref */, t1 /* tmp */);
++ __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, Assembler::int64,
++ Assembler::relaxed /* acquire */, Assembler::rl /* release */, $res$$Register,
++ true /* result_as_bool */);
++ __ bind(good);
++ }
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct zCompareAndSwapPAcq(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval, rFlagsReg cr) %{
++ match(Set res (CompareAndSwapP mem (Binary oldval newval)));
++ match(Set res (WeakCompareAndSwapP mem (Binary oldval newval)));
++ predicate(UseZGC && needs_acquiring_load_reserved(n) && (n->as_LoadStore()->barrier_data() == ZLoadBarrierStrong));
++ effect(KILL cr, TEMP_DEF res);
++
++ ins_cost(2 * VOLATILE_REF_COST);
++
++ format %{ "cmpxchg $mem, $oldval, $newval, #@zCompareAndSwapPAcq\n\t"
++ "mv $res, $res == $oldval" %}
++
++ ins_encode %{
++ Label failed;
++ guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
++ __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, Assembler::int64,
++ Assembler::aq /* acquire */, Assembler::rl /* release */, $res$$Register,
++ true /* result_as_bool */);
++ __ beqz($res$$Register, failed);
++ __ mv(t0, $oldval$$Register);
++ __ bind(failed);
++ if (barrier_data() != ZLoadBarrierElided) {
++ Label good;
++ __ ld(t1, Address(xthread, ZThreadLocalData::address_bad_mask_offset()), t1 /* tmp */);
++ __ andr(t1, t1, t0);
++ __ beqz(t1, good);
++ z_load_barrier_slow_path(_masm, this, Address($mem$$Register), t0 /* ref */, t1 /* tmp */);
++ __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, Assembler::int64,
++ Assembler::aq /* acquire */, Assembler::rl /* release */, $res$$Register,
++ true /* result_as_bool */);
++ __ bind(good);
++ }
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct zCompareAndExchangeP(iRegPNoSp res, indirect mem, iRegP oldval, iRegP newval) %{
++ match(Set res (CompareAndExchangeP mem (Binary oldval newval)));
++ predicate(UseZGC && !needs_acquiring_load_reserved(n) && n->as_LoadStore()->barrier_data() == ZLoadBarrierStrong);
++ effect(TEMP_DEF res);
++
++ ins_cost(2 * VOLATILE_REF_COST);
++
++ format %{ "cmpxchg $res = $mem, $oldval, $newval, #@zCompareAndExchangeP" %}
++
++ ins_encode %{
++ guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
++ __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, Assembler::int64,
++ Assembler::relaxed /* acquire */, Assembler::rl /* release */, $res$$Register);
++ if (barrier_data() != ZLoadBarrierElided) {
++ Label good;
++ __ ld(t0, Address(xthread, ZThreadLocalData::address_bad_mask_offset()));
++ __ andr(t0, t0, $res$$Register);
++ __ beqz(t0, good);
++ z_load_barrier_slow_path(_masm, this, Address($mem$$Register), $res$$Register /* ref */, t0 /* tmp */);
++ __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, Assembler::int64,
++ Assembler::relaxed /* acquire */, Assembler::rl /* release */, $res$$Register);
++ __ bind(good);
++ }
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct zCompareAndExchangePAcq(iRegPNoSp res, indirect mem, iRegP oldval, iRegP newval) %{
++ match(Set res (CompareAndExchangeP mem (Binary oldval newval)));
++ predicate(UseZGC && needs_acquiring_load_reserved(n) && n->as_LoadStore()->barrier_data() == ZLoadBarrierStrong);
++ effect(TEMP_DEF res);
++
++ ins_cost(2 * VOLATILE_REF_COST);
++
++ format %{ "cmpxchg $res = $mem, $oldval, $newval, #@zCompareAndExchangePAcq" %}
++
++ ins_encode %{
++ guarantee($mem$$index == -1 && $mem$$disp == 0, "impossible encoding");
++ __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, Assembler::int64,
++ Assembler::aq /* acquire */, Assembler::rl /* release */, $res$$Register);
++ if (barrier_data() != ZLoadBarrierElided) {
++ Label good;
++ __ ld(t0, Address(xthread, ZThreadLocalData::address_bad_mask_offset()));
++ __ andr(t0, t0, $res$$Register);
++ __ beqz(t0, good);
++ z_load_barrier_slow_path(_masm, this, Address($mem$$Register), $res$$Register /* ref */, t0 /* tmp */);
++ __ cmpxchg($mem$$Register, $oldval$$Register, $newval$$Register, Assembler::int64,
++ Assembler::aq /* acquire */, Assembler::rl /* release */, $res$$Register);
++ __ bind(good);
++ }
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct zGetAndSetP(indirect mem, iRegP newv, iRegPNoSp prev, rFlagsReg cr) %{
++ match(Set prev (GetAndSetP mem newv));
++ predicate(UseZGC && !needs_acquiring_load_reserved(n) && n->as_LoadStore()->barrier_data() != 0);
++ effect(TEMP_DEF prev, KILL cr);
++
++ ins_cost(2 * VOLATILE_REF_COST);
++
++ format %{ "atomic_xchg $prev, $newv, [$mem], #@zGetAndSetP" %}
++
++ ins_encode %{
++ __ atomic_xchg($prev$$Register, $newv$$Register, as_Register($mem$$base));
++ z_load_barrier(_masm, this, Address(noreg, 0), $prev$$Register, t0 /* tmp */, barrier_data());
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++instruct zGetAndSetPAcq(indirect mem, iRegP newv, iRegPNoSp prev, rFlagsReg cr) %{
++ match(Set prev (GetAndSetP mem newv));
++ predicate(UseZGC && needs_acquiring_load_reserved(n) && (n->as_LoadStore()->barrier_data() != 0));
++ effect(TEMP_DEF prev, KILL cr);
++
++ ins_cost(VOLATILE_REF_COST);
++
++ format %{ "atomic_xchg_acq $prev, $newv, [$mem], #@zGetAndSetPAcq" %}
++
++ ins_encode %{
++ __ atomic_xchgal($prev$$Register, $newv$$Register, as_Register($mem$$base));
++ z_load_barrier(_masm, this, Address(noreg, 0), $prev$$Register, t0 /* tmp */, barrier_data());
++ %}
++ ins_pipe(pipe_serial);
++%}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/globalDefinitions_riscv.hpp
+@@ -0,0 +1,52 @@
++/*
++ * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_GLOBALDEFINITIONS_RISCV_HPP
++#define CPU_RISCV_GLOBALDEFINITIONS_RISCV_HPP
++
++const int StackAlignmentInBytes = 16;
++
++// Indicates whether the C calling conventions require that
++// 32-bit integer argument values are extended to 64 bits.
++const bool CCallingConventionRequiresIntsAsLongs = false;
++
++// RISCV has adopted a multicopy atomic model closely following
++// that of ARMv8.
++#define CPU_MULTI_COPY_ATOMIC
++
++// To be safe, we deoptimize when we come across an access that needs
++// patching. This is similar to what is done on aarch64.
++#define DEOPTIMIZE_WHEN_PATCHING
++
++#define SUPPORTS_NATIVE_CX8
++
++#define SUPPORT_RESERVED_STACK_AREA
++
++#define COMPRESSED_CLASS_POINTERS_DEPENDS_ON_COMPRESSED_OOPS false
++
++#define USE_POINTERS_TO_REGISTER_IMPL_ARRAY
++
++#endif // CPU_RISCV_GLOBALDEFINITIONS_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/globals_riscv.hpp
+@@ -0,0 +1,101 @@
++/*
++ * Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_GLOBALS_RISCV_HPP
++#define CPU_RISCV_GLOBALS_RISCV_HPP
++
++#include "utilities/globalDefinitions.hpp"
++#include "utilities/macros.hpp"
++
++// Sets the default values for platform dependent flags used by the runtime system.
++// (see globals.hpp)
++
++define_pd_global(bool, ImplicitNullChecks, true); // Generate code for implicit null checks
++define_pd_global(bool, TrapBasedNullChecks, false);
++define_pd_global(bool, UncommonNullCast, true); // Uncommon-trap NULLs past to check cast
++
++define_pd_global(uintx, CodeCacheSegmentSize, 64 COMPILER1_AND_COMPILER2_PRESENT(+64)); // Tiered compilation has large code-entry alignment.
++define_pd_global(intx, CodeEntryAlignment, 64);
++define_pd_global(intx, OptoLoopAlignment, 16);
++define_pd_global(intx, InlineFrequencyCount, 100);
++
++#define DEFAULT_STACK_YELLOW_PAGES (2)
++#define DEFAULT_STACK_RED_PAGES (1)
++// Java_java_net_SocketOutputStream_socketWrite0() uses a 64k buffer on the
++// stack if compiled for unix and LP64. To pass stack overflow tests we need
++// 20 shadow pages.
++#define DEFAULT_STACK_SHADOW_PAGES (20 DEBUG_ONLY(+5))
++#define DEFAULT_STACK_RESERVED_PAGES (1)
++
++#define MIN_STACK_YELLOW_PAGES DEFAULT_STACK_YELLOW_PAGES
++#define MIN_STACK_RED_PAGES DEFAULT_STACK_RED_PAGES
++#define MIN_STACK_SHADOW_PAGES DEFAULT_STACK_SHADOW_PAGES
++#define MIN_STACK_RESERVED_PAGES (0)
++
++define_pd_global(intx, StackYellowPages, DEFAULT_STACK_YELLOW_PAGES);
++define_pd_global(intx, StackRedPages, DEFAULT_STACK_RED_PAGES);
++define_pd_global(intx, StackShadowPages, DEFAULT_STACK_SHADOW_PAGES);
++define_pd_global(intx, StackReservedPages, DEFAULT_STACK_RESERVED_PAGES);
++
++define_pd_global(bool, RewriteBytecodes, true);
++define_pd_global(bool, RewriteFrequentPairs, true);
++
++define_pd_global(bool, PreserveFramePointer, false);
++
++define_pd_global(uintx, TypeProfileLevel, 111);
++
++define_pd_global(bool, CompactStrings, true);
++
++// Clear short arrays bigger than one word in an arch-specific way
++define_pd_global(intx, InitArrayShortSize, BytesPerLong);
++
++define_pd_global(intx, InlineSmallCode, 1000);
++
++#define ARCH_FLAGS(develop, \
++ product, \
++ notproduct, \
++ range, \
++ constraint) \
++ \
++ product(bool, NearCpool, true, \
++ "constant pool is close to instructions") \
++ product(intx, BlockZeroingLowLimit, 256, \
++ "Minimum size in bytes when block zeroing will be used") \
++ range(1, max_jint) \
++ product(bool, TraceTraps, false, "Trace all traps the signal handler") \
++ /* For now we're going to be safe and add the I/O bits to userspace fences. */ \
++ product(bool, UseConservativeFence, true, \
++ "Extend i for r and o for w in the pred/succ flags of fence") \
++ product(bool, AvoidUnalignedAccesses, true, \
++ "Avoid generating unaligned memory accesses") \
++ product(bool, UseRVC, true, "Use RVC instructions") \
++ product(bool, UseRVV, false, EXPERIMENTAL, "Use RVV instructions") \
++ product(bool, UseZba, false, EXPERIMENTAL, "Use Zba instructions") \
++ product(bool, UseZbb, false, EXPERIMENTAL, "Use Zbb instructions") \
++ product(bool, UseZbs, false, EXPERIMENTAL, "Use Zbs instructions") \
++ product(bool, UseRVVForBigIntegerShiftIntrinsics, true, \
++ "Use RVV instructions for left/right shift of BigInteger")
++
++#endif // CPU_RISCV_GLOBALS_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/icBuffer_riscv.cpp
+@@ -0,0 +1,79 @@
++/*
++ * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/macroAssembler.hpp"
++#include "asm/macroAssembler.inline.hpp"
++#include "code/icBuffer.hpp"
++#include "gc/shared/collectedHeap.inline.hpp"
++#include "interpreter/bytecodes.hpp"
++#include "memory/resourceArea.hpp"
++#include "nativeInst_riscv.hpp"
++#include "oops/oop.inline.hpp"
++
++int InlineCacheBuffer::ic_stub_code_size() {
++ // 6: auipc + ld + auipc + jalr + address(2 * instruction_size)
++ // 5: auipc + ld + j + address(2 * instruction_size)
++ return (MacroAssembler::far_branches() ? 6 : 5) * NativeInstruction::instruction_size;
++}
++
++#define __ masm->
++
++void InlineCacheBuffer::assemble_ic_buffer_code(address code_begin, void* cached_value, address entry_point) {
++ assert_cond(code_begin != NULL && entry_point != NULL);
++ ResourceMark rm;
++ CodeBuffer code(code_begin, ic_stub_code_size());
++ MacroAssembler* masm = new MacroAssembler(&code);
++ // Note: even though the code contains an embedded value, we do not need reloc info
++ // because
++ // (1) the value is old (i.e., doesn't matter for scavenges)
++ // (2) these ICStubs are removed *before* a GC happens, so the roots disappear
++
++ address start = __ pc();
++ Label l;
++ __ ld(t1, l);
++ __ far_jump(ExternalAddress(entry_point));
++ __ align(wordSize);
++ __ bind(l);
++ __ emit_int64((intptr_t)cached_value);
++ // Only need to invalidate the 1st two instructions - not the whole ic stub
++ ICache::invalidate_range(code_begin, InlineCacheBuffer::ic_stub_code_size());
++ assert(__ pc() - start == ic_stub_code_size(), "must be");
++}
++
++address InlineCacheBuffer::ic_buffer_entry_point(address code_begin) {
++ NativeMovConstReg* move = nativeMovConstReg_at(code_begin); // creation also verifies the object
++ NativeJump* jump = nativeJump_at(move->next_instruction_address());
++ return jump->jump_destination();
++}
++
++
++void* InlineCacheBuffer::ic_buffer_cached_value(address code_begin) {
++ // The word containing the cached value is at the end of this IC buffer
++ uintptr_t *p = (uintptr_t *)(code_begin + ic_stub_code_size() - wordSize);
++ void* o = (void*)*p;
++ return o;
++}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/icache_riscv.cpp
+@@ -0,0 +1,59 @@
++/*
++ * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/macroAssembler.hpp"
++#include "runtime/icache.hpp"
++
++#define __ _masm->
++
++static int icache_flush(address addr, int lines, int magic) {
++ // To make a store to instruction memory visible to all RISC-V harts,
++ // the writing hart has to execute a data FENCE before requesting that
++ // all remote RISC-V harts execute a FENCE.I.
++ //
++ // No sush assurance is defined at the interface level of the builtin
++ // method, and so we should make sure it works.
++ __asm__ volatile("fence rw, rw" : : : "memory");
++
++ __builtin___clear_cache(addr, addr + (lines << ICache::log2_line_size));
++ return magic;
++}
++
++void ICacheStubGenerator::generate_icache_flush(ICache::flush_icache_stub_t* flush_icache_stub) {
++ address start = (address)icache_flush;
++ *flush_icache_stub = (ICache::flush_icache_stub_t)start;
++
++ // ICache::invalidate_range() contains explicit condition that the first
++ // call is invoked on the generated icache flush stub code range.
++ ICache::invalidate_range(start, 0);
++
++ {
++ StubCodeMark mark(this, "ICache", "fake_stub_for_inlined_icache_flush");
++ __ ret();
++ }
++}
++
++#undef __
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/icache_riscv.hpp
+@@ -0,0 +1,42 @@
++/*
++ * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_ICACHE_RISCV_HPP
++#define CPU_RISCV_ICACHE_RISCV_HPP
++
++// Interface for updating the instruction cache. Whenever the VM
++// modifies code, part of the processor instruction cache potentially
++// has to be flushed.
++
++class ICache : public AbstractICache {
++public:
++ enum {
++ stub_size = 16, // Size of the icache flush stub in bytes
++ line_size = BytesPerWord, // conservative
++ log2_line_size = LogBytesPerWord // log2(line_size)
++ };
++};
++
++#endif // CPU_RISCV_ICACHE_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/interp_masm_riscv.cpp
+@@ -0,0 +1,1950 @@
++/*
++ * Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/macroAssembler.inline.hpp"
++#include "gc/shared/barrierSet.hpp"
++#include "gc/shared/barrierSetAssembler.hpp"
++#include "interp_masm_riscv.hpp"
++#include "interpreter/interpreter.hpp"
++#include "interpreter/interpreterRuntime.hpp"
++#include "logging/log.hpp"
++#include "oops/arrayOop.hpp"
++#include "oops/markWord.hpp"
++#include "oops/method.hpp"
++#include "oops/methodData.hpp"
++#include "prims/jvmtiExport.hpp"
++#include "prims/jvmtiThreadState.hpp"
++#include "runtime/basicLock.hpp"
++#include "runtime/frame.inline.hpp"
++#include "runtime/safepointMechanism.hpp"
++#include "runtime/sharedRuntime.hpp"
++#include "runtime/thread.inline.hpp"
++#include "utilities/powerOfTwo.hpp"
++
++void InterpreterMacroAssembler::narrow(Register result) {
++ // Get method->_constMethod->_result_type
++ ld(t0, Address(fp, frame::interpreter_frame_method_offset * wordSize));
++ ld(t0, Address(t0, Method::const_offset()));
++ lbu(t0, Address(t0, ConstMethod::result_type_offset()));
++
++ Label done, notBool, notByte, notChar;
++
++ // common case first
++ mv(t1, T_INT);
++ beq(t0, t1, done);
++
++ // mask integer result to narrower return type.
++ mv(t1, T_BOOLEAN);
++ bne(t0, t1, notBool);
++
++ andi(result, result, 0x1);
++ j(done);
++
++ bind(notBool);
++ mv(t1, T_BYTE);
++ bne(t0, t1, notByte);
++ sign_extend(result, result, 8);
++ j(done);
++
++ bind(notByte);
++ mv(t1, T_CHAR);
++ bne(t0, t1, notChar);
++ zero_extend(result, result, 16);
++ j(done);
++
++ bind(notChar);
++ sign_extend(result, result, 16);
++
++ bind(done);
++ sign_extend(result, result, 32);
++}
++
++void InterpreterMacroAssembler::jump_to_entry(address entry) {
++ assert(entry != NULL, "Entry must have been generated by now");
++ j(entry);
++}
++
++void InterpreterMacroAssembler::check_and_handle_popframe(Register java_thread) {
++ if (JvmtiExport::can_pop_frame()) {
++ Label L;
++ // Initiate popframe handling only if it is not already being
++ // processed. If the flag has the popframe_processing bit set,
++ // it means that this code is called *during* popframe handling - we
++ // don't want to reenter.
++ // This method is only called just after the call into the vm in
++ // call_VM_base, so the arg registers are available.
++ lwu(t1, Address(xthread, JavaThread::popframe_condition_offset()));
++ test_bit(t0, t1, exact_log2(JavaThread::popframe_pending_bit));
++ beqz(t0, L);
++ test_bit(t0, t1, exact_log2(JavaThread::popframe_processing_bit));
++ bnez(t0, L);
++ // Call Interpreter::remove_activation_preserving_args_entry() to get the
++ // address of the same-named entrypoint in the generated interpreter code.
++ call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_preserving_args_entry));
++ jr(x10);
++ bind(L);
++ }
++}
++
++
++void InterpreterMacroAssembler::load_earlyret_value(TosState state) {
++ ld(x12, Address(xthread, JavaThread::jvmti_thread_state_offset()));
++ const Address tos_addr(x12, JvmtiThreadState::earlyret_tos_offset());
++ const Address oop_addr(x12, JvmtiThreadState::earlyret_oop_offset());
++ const Address val_addr(x12, JvmtiThreadState::earlyret_value_offset());
++ switch (state) {
++ case atos:
++ ld(x10, oop_addr);
++ sd(zr, oop_addr);
++ verify_oop(x10);
++ break;
++ case ltos:
++ ld(x10, val_addr);
++ break;
++ case btos: // fall through
++ case ztos: // fall through
++ case ctos: // fall through
++ case stos: // fall through
++ case itos:
++ lwu(x10, val_addr);
++ break;
++ case ftos:
++ flw(f10, val_addr);
++ break;
++ case dtos:
++ fld(f10, val_addr);
++ break;
++ case vtos:
++ /* nothing to do */
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++ // Clean up tos value in the thread object
++ mv(t0, (int)ilgl);
++ sw(t0, tos_addr);
++ sw(zr, val_addr);
++}
++
++
++void InterpreterMacroAssembler::check_and_handle_earlyret(Register java_thread) {
++ if (JvmtiExport::can_force_early_return()) {
++ Label L;
++ ld(t0, Address(xthread, JavaThread::jvmti_thread_state_offset()));
++ beqz(t0, L); // if [thread->jvmti_thread_state() == NULL] then exit
++
++ // Initiate earlyret handling only if it is not already being processed.
++ // If the flag has the earlyret_processing bit set, it means that this code
++ // is called *during* earlyret handling - we don't want to reenter.
++ lwu(t0, Address(t0, JvmtiThreadState::earlyret_state_offset()));
++ mv(t1, JvmtiThreadState::earlyret_pending);
++ bne(t0, t1, L);
++
++ // Call Interpreter::remove_activation_early_entry() to get the address of the
++ // same-named entrypoint in the generated interpreter code.
++ ld(t0, Address(xthread, JavaThread::jvmti_thread_state_offset()));
++ lwu(t0, Address(t0, JvmtiThreadState::earlyret_tos_offset()));
++ call_VM_leaf(CAST_FROM_FN_PTR(address, Interpreter::remove_activation_early_entry), t0);
++ jr(x10);
++ bind(L);
++ }
++}
++
++void InterpreterMacroAssembler::get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset) {
++ assert(bcp_offset >= 0, "bcp is still pointing to start of bytecode");
++ lhu(reg, Address(xbcp, bcp_offset));
++ revb_h(reg, reg);
++}
++
++void InterpreterMacroAssembler::get_dispatch() {
++ ExternalAddress target((address)Interpreter::dispatch_table());
++ relocate(target.rspec(), [&] {
++ int32_t offset;
++ la_patchable(xdispatch, target, offset);
++ addi(xdispatch, xdispatch, offset);
++ });
++}
++
++void InterpreterMacroAssembler::get_cache_index_at_bcp(Register index,
++ int bcp_offset,
++ size_t index_size) {
++ assert(bcp_offset > 0, "bcp is still pointing to start of bytecode");
++ if (index_size == sizeof(u2)) {
++ load_unsigned_short(index, Address(xbcp, bcp_offset));
++ } else if (index_size == sizeof(u4)) {
++ lwu(index, Address(xbcp, bcp_offset));
++ // Check if the secondary index definition is still ~x, otherwise
++ // we have to change the following assembler code to calculate the
++ // plain index.
++ assert(ConstantPool::decode_invokedynamic_index(~123) == 123, "else change next line");
++ xori(index, index, -1);
++ sign_extend(index, index, 32);
++ } else if (index_size == sizeof(u1)) {
++ load_unsigned_byte(index, Address(xbcp, bcp_offset));
++ } else {
++ ShouldNotReachHere();
++ }
++}
++
++// Return
++// Rindex: index into constant pool
++// Rcache: address of cache entry - ConstantPoolCache::base_offset()
++//
++// A caller must add ConstantPoolCache::base_offset() to Rcache to get
++// the true address of the cache entry.
++//
++void InterpreterMacroAssembler::get_cache_and_index_at_bcp(Register cache,
++ Register index,
++ int bcp_offset,
++ size_t index_size) {
++ assert_different_registers(cache, index);
++ assert_different_registers(cache, xcpool);
++ get_cache_index_at_bcp(index, bcp_offset, index_size);
++ assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
++ // Convert from field index to ConstantPoolCacheEntry
++ // riscv already has the cache in xcpool so there is no need to
++ // install it in cache. Instead we pre-add the indexed offset to
++ // xcpool and return it in cache. All clients of this method need to
++ // be modified accordingly.
++ shadd(cache, index, xcpool, cache, 5);
++}
++
++
++void InterpreterMacroAssembler::get_cache_and_index_and_bytecode_at_bcp(Register cache,
++ Register index,
++ Register bytecode,
++ int byte_no,
++ int bcp_offset,
++ size_t index_size) {
++ get_cache_and_index_at_bcp(cache, index, bcp_offset, index_size);
++ // We use a 32-bit load here since the layout of 64-bit words on
++ // little-endian machines allow us that.
++ // n.b. unlike x86 cache already includes the index offset
++ la(bytecode, Address(cache,
++ ConstantPoolCache::base_offset() +
++ ConstantPoolCacheEntry::indices_offset()));
++ membar(MacroAssembler::AnyAny);
++ lwu(bytecode, bytecode);
++ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
++ const int shift_count = (1 + byte_no) * BitsPerByte;
++ slli(bytecode, bytecode, XLEN - (shift_count + BitsPerByte));
++ srli(bytecode, bytecode, XLEN - BitsPerByte);
++}
++
++void InterpreterMacroAssembler::get_cache_entry_pointer_at_bcp(Register cache,
++ Register tmp,
++ int bcp_offset,
++ size_t index_size) {
++ assert_different_registers(cache, tmp);
++ get_cache_index_at_bcp(tmp, bcp_offset, index_size);
++ assert(sizeof(ConstantPoolCacheEntry) == 4 * wordSize, "adjust code below");
++ // Convert from field index to ConstantPoolCacheEntry index
++ // and from word offset to byte offset
++ assert(exact_log2(in_bytes(ConstantPoolCacheEntry::size_in_bytes())) == 2 + LogBytesPerWord,
++ "else change next line");
++ ld(cache, Address(fp, frame::interpreter_frame_cache_offset * wordSize));
++ // skip past the header
++ add(cache, cache, in_bytes(ConstantPoolCache::base_offset()));
++ // construct pointer to cache entry
++ shadd(cache, tmp, cache, tmp, 2 + LogBytesPerWord);
++}
++
++// Load object from cpool->resolved_references(index)
++void InterpreterMacroAssembler::load_resolved_reference_at_index(
++ Register result, Register index, Register tmp) {
++ assert_different_registers(result, index);
++
++ get_constant_pool(result);
++ // Load pointer for resolved_references[] objArray
++ ld(result, Address(result, ConstantPool::cache_offset_in_bytes()));
++ ld(result, Address(result, ConstantPoolCache::resolved_references_offset_in_bytes()));
++ resolve_oop_handle(result, tmp);
++ // Add in the index
++ addi(index, index, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
++ shadd(result, index, result, index, LogBytesPerHeapOop);
++ load_heap_oop(result, Address(result, 0));
++}
++
++void InterpreterMacroAssembler::load_resolved_klass_at_offset(
++ Register cpool, Register index, Register klass, Register temp) {
++ shadd(temp, index, cpool, temp, LogBytesPerWord);
++ lhu(temp, Address(temp, sizeof(ConstantPool))); // temp = resolved_klass_index
++ ld(klass, Address(cpool, ConstantPool::resolved_klasses_offset_in_bytes())); // klass = cpool->_resolved_klasses
++ shadd(klass, temp, klass, temp, LogBytesPerWord);
++ ld(klass, Address(klass, Array<Klass*>::base_offset_in_bytes()));
++}
++
++void InterpreterMacroAssembler::load_resolved_method_at_index(int byte_no,
++ Register method,
++ Register cache) {
++ const int method_offset = in_bytes(
++ ConstantPoolCache::base_offset() +
++ ((byte_no == TemplateTable::f2_byte)
++ ? ConstantPoolCacheEntry::f2_offset()
++ : ConstantPoolCacheEntry::f1_offset()));
++
++ ld(method, Address(cache, method_offset)); // get f1 Method*
++}
++
++// Generate a subtype check: branch to ok_is_subtype if sub_klass is a
++// subtype of super_klass.
++//
++// Args:
++// x10: superklass
++// Rsub_klass: subklass
++//
++// Kills:
++// x12, x15
++void InterpreterMacroAssembler::gen_subtype_check(Register Rsub_klass,
++ Label& ok_is_subtype) {
++ assert(Rsub_klass != x10, "x10 holds superklass");
++ assert(Rsub_klass != x12, "x12 holds 2ndary super array length");
++ assert(Rsub_klass != x15, "x15 holds 2ndary super array scan ptr");
++
++ // Profile the not-null value's klass.
++ profile_typecheck(x12, Rsub_klass, x15); // blows x12, reloads x15
++
++ // Do the check.
++ check_klass_subtype(Rsub_klass, x10, x12, ok_is_subtype); // blows x12
++
++ // Profile the failure of the check.
++ profile_typecheck_failed(x12); // blows x12
++}
++
++// Java Expression Stack
++
++void InterpreterMacroAssembler::pop_ptr(Register r) {
++ ld(r, Address(esp, 0));
++ addi(esp, esp, wordSize);
++}
++
++void InterpreterMacroAssembler::pop_i(Register r) {
++ lw(r, Address(esp, 0)); // lw do signed extended
++ addi(esp, esp, wordSize);
++}
++
++void InterpreterMacroAssembler::pop_l(Register r) {
++ ld(r, Address(esp, 0));
++ addi(esp, esp, 2 * Interpreter::stackElementSize);
++}
++
++void InterpreterMacroAssembler::push_ptr(Register r) {
++ addi(esp, esp, -wordSize);
++ sd(r, Address(esp, 0));
++}
++
++void InterpreterMacroAssembler::push_i(Register r) {
++ addi(esp, esp, -wordSize);
++ sign_extend(r, r, 32);
++ sd(r, Address(esp, 0));
++}
++
++void InterpreterMacroAssembler::push_l(Register r) {
++ addi(esp, esp, -2 * wordSize);
++ sd(zr, Address(esp, wordSize));
++ sd(r, Address(esp));
++}
++
++void InterpreterMacroAssembler::pop_f(FloatRegister r) {
++ flw(r, Address(esp, 0));
++ addi(esp, esp, wordSize);
++}
++
++void InterpreterMacroAssembler::pop_d(FloatRegister r) {
++ fld(r, Address(esp, 0));
++ addi(esp, esp, 2 * Interpreter::stackElementSize);
++}
++
++void InterpreterMacroAssembler::push_f(FloatRegister r) {
++ addi(esp, esp, -wordSize);
++ fsw(r, Address(esp, 0));
++}
++
++void InterpreterMacroAssembler::push_d(FloatRegister r) {
++ addi(esp, esp, -2 * wordSize);
++ fsd(r, Address(esp, 0));
++}
++
++void InterpreterMacroAssembler::pop(TosState state) {
++ switch (state) {
++ case atos:
++ pop_ptr();
++ verify_oop(x10);
++ break;
++ case btos: // fall through
++ case ztos: // fall through
++ case ctos: // fall through
++ case stos: // fall through
++ case itos:
++ pop_i();
++ break;
++ case ltos:
++ pop_l();
++ break;
++ case ftos:
++ pop_f();
++ break;
++ case dtos:
++ pop_d();
++ break;
++ case vtos:
++ /* nothing to do */
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++}
++
++void InterpreterMacroAssembler::push(TosState state) {
++ switch (state) {
++ case atos:
++ verify_oop(x10);
++ push_ptr();
++ break;
++ case btos: // fall through
++ case ztos: // fall through
++ case ctos: // fall through
++ case stos: // fall through
++ case itos:
++ push_i();
++ break;
++ case ltos:
++ push_l();
++ break;
++ case ftos:
++ push_f();
++ break;
++ case dtos:
++ push_d();
++ break;
++ case vtos:
++ /* nothing to do */
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++}
++
++// Helpers for swap and dup
++void InterpreterMacroAssembler::load_ptr(int n, Register val) {
++ ld(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
++}
++
++void InterpreterMacroAssembler::store_ptr(int n, Register val) {
++ sd(val, Address(esp, Interpreter::expr_offset_in_bytes(n)));
++}
++
++void InterpreterMacroAssembler::load_float(Address src) {
++ flw(f10, src);
++}
++
++void InterpreterMacroAssembler::load_double(Address src) {
++ fld(f10, src);
++}
++
++void InterpreterMacroAssembler::prepare_to_jump_from_interpreted() {
++ // set sender sp
++ mv(x30, sp);
++ // record last_sp
++ sd(esp, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize));
++}
++
++// Jump to from_interpreted entry of a call unless single stepping is possible
++// in this thread in which case we must call the i2i entry
++void InterpreterMacroAssembler::jump_from_interpreted(Register method) {
++ prepare_to_jump_from_interpreted();
++ if (JvmtiExport::can_post_interpreter_events()) {
++ Label run_compiled_code;
++ // JVMTI events, such as single-stepping, are implemented partly by avoiding running
++ // compiled code in threads for which the event is enabled. Check here for
++ // interp_only_mode if these events CAN be enabled.
++ lwu(t0, Address(xthread, JavaThread::interp_only_mode_offset()));
++ beqz(t0, run_compiled_code);
++ ld(t0, Address(method, Method::interpreter_entry_offset()));
++ jr(t0);
++ bind(run_compiled_code);
++ }
++
++ ld(t0, Address(method, Method::from_interpreted_offset()));
++ jr(t0);
++}
++
++// The following two routines provide a hook so that an implementation
++// can schedule the dispatch in two parts. amd64 does not do this.
++void InterpreterMacroAssembler::dispatch_prolog(TosState state, int step) {
++}
++
++void InterpreterMacroAssembler::dispatch_epilog(TosState state, int step) {
++ dispatch_next(state, step);
++}
++
++void InterpreterMacroAssembler::dispatch_base(TosState state,
++ address* table,
++ bool verifyoop,
++ bool generate_poll,
++ Register Rs) {
++ // Pay attention to the argument Rs, which is acquiesce in t0.
++ if (VerifyActivationFrameSize) {
++ Unimplemented();
++ }
++ if (verifyoop && state == atos) {
++ verify_oop(x10);
++ }
++
++ Label safepoint;
++ address* const safepoint_table = Interpreter::safept_table(state);
++ bool needs_thread_local_poll = generate_poll && table != safepoint_table;
++
++ if (needs_thread_local_poll) {
++ NOT_PRODUCT(block_comment("Thread-local Safepoint poll"));
++ ld(t1, Address(xthread, JavaThread::polling_word_offset()));
++ test_bit(t1, t1, exact_log2(SafepointMechanism::poll_bit()));
++ bnez(t1, safepoint);
++ }
++ if (table == Interpreter::dispatch_table(state)) {
++ mv(t1, Interpreter::distance_from_dispatch_table(state));
++ add(t1, Rs, t1);
++ shadd(t1, t1, xdispatch, t1, 3);
++ } else {
++ mv(t1, (address)table);
++ shadd(t1, Rs, t1, Rs, 3);
++ }
++ ld(t1, Address(t1));
++ jr(t1);
++
++ if (needs_thread_local_poll) {
++ bind(safepoint);
++ la(t1, ExternalAddress((address)safepoint_table));
++ shadd(t1, Rs, t1, Rs, 3);
++ ld(t1, Address(t1));
++ jr(t1);
++ }
++}
++
++void InterpreterMacroAssembler::dispatch_only(TosState state, bool generate_poll, Register Rs) {
++ dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll, Rs);
++}
++
++void InterpreterMacroAssembler::dispatch_only_normal(TosState state, Register Rs) {
++ dispatch_base(state, Interpreter::normal_table(state), Rs);
++}
++
++void InterpreterMacroAssembler::dispatch_only_noverify(TosState state, Register Rs) {
++ dispatch_base(state, Interpreter::normal_table(state), false, Rs);
++}
++
++void InterpreterMacroAssembler::dispatch_next(TosState state, int step, bool generate_poll) {
++ // load next bytecode
++ load_unsigned_byte(t0, Address(xbcp, step));
++ add(xbcp, xbcp, step);
++ dispatch_base(state, Interpreter::dispatch_table(state), true, generate_poll);
++}
++
++void InterpreterMacroAssembler::dispatch_via(TosState state, address* table) {
++ // load current bytecode
++ lbu(t0, Address(xbcp, 0));
++ dispatch_base(state, table);
++}
++
++// remove activation
++//
++// Apply stack watermark barrier.
++// Unlock the receiver if this is a synchronized method.
++// Unlock any Java monitors from syncronized blocks.
++// Remove the activation from the stack.
++//
++// If there are locked Java monitors
++// If throw_monitor_exception
++// throws IllegalMonitorStateException
++// Else if install_monitor_exception
++// installs IllegalMonitorStateException
++// Else
++// no error processing
++void InterpreterMacroAssembler::remove_activation(
++ TosState state,
++ bool throw_monitor_exception,
++ bool install_monitor_exception,
++ bool notify_jvmdi) {
++ // Note: Registers x13 may be in use for the
++ // result check if synchronized method
++ Label unlocked, unlock, no_unlock;
++
++ // The below poll is for the stack watermark barrier. It allows fixing up frames lazily,
++ // that would normally not be safe to use. Such bad returns into unsafe territory of
++ // the stack, will call InterpreterRuntime::at_unwind.
++ Label slow_path;
++ Label fast_path;
++ safepoint_poll(slow_path, true /* at_return */, false /* acquire */, false /* in_nmethod */);
++ j(fast_path);
++
++ bind(slow_path);
++ push(state);
++ set_last_Java_frame(esp, fp, (address)pc(), t0);
++ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::at_unwind), xthread);
++ reset_last_Java_frame(true);
++ pop(state);
++
++ bind(fast_path);
++
++ // get the value of _do_not_unlock_if_synchronized into x13
++ const Address do_not_unlock_if_synchronized(xthread,
++ in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
++ lbu(x13, do_not_unlock_if_synchronized);
++ sb(zr, do_not_unlock_if_synchronized); // reset the flag
++
++ // get method access flags
++ ld(x11, Address(fp, frame::interpreter_frame_method_offset * wordSize));
++ ld(x12, Address(x11, Method::access_flags_offset()));
++ test_bit(t0, x12, exact_log2(JVM_ACC_SYNCHRONIZED));
++ beqz(t0, unlocked);
++
++ // Don't unlock anything if the _do_not_unlock_if_synchronized flag
++ // is set.
++ bnez(x13, no_unlock);
++
++ // unlock monitor
++ push(state); // save result
++
++ // BasicObjectLock will be first in list, since this is a
++ // synchronized method. However, need to check that the object has
++ // not been unlocked by an explicit monitorexit bytecode.
++ const Address monitor(fp, frame::interpreter_frame_initial_sp_offset *
++ wordSize - (int) sizeof(BasicObjectLock));
++ // We use c_rarg1 so that if we go slow path it will be the correct
++ // register for unlock_object to pass to VM directly
++ la(c_rarg1, monitor); // address of first monitor
++
++ ld(x10, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
++ bnez(x10, unlock);
++
++ pop(state);
++ if (throw_monitor_exception) {
++ // Entry already unlocked, need to throw exception
++ call_VM(noreg, CAST_FROM_FN_PTR(address,
++ InterpreterRuntime::throw_illegal_monitor_state_exception));
++ should_not_reach_here();
++ } else {
++ // Monitor already unlocked during a stack unroll. If requested,
++ // install an illegal_monitor_state_exception. Continue with
++ // stack unrolling.
++ if (install_monitor_exception) {
++ call_VM(noreg, CAST_FROM_FN_PTR(address,
++ InterpreterRuntime::new_illegal_monitor_state_exception));
++ }
++ j(unlocked);
++ }
++
++ bind(unlock);
++ unlock_object(c_rarg1);
++ pop(state);
++
++ // Check that for block-structured locking (i.e., that all locked
++ // objects has been unlocked)
++ bind(unlocked);
++
++ // x10: Might contain return value
++
++ // Check that all monitors are unlocked
++ {
++ Label loop, exception, entry, restart;
++ const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
++ const Address monitor_block_top(
++ fp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
++ const Address monitor_block_bot(
++ fp, frame::interpreter_frame_initial_sp_offset * wordSize);
++
++ bind(restart);
++ // We use c_rarg1 so that if we go slow path it will be the correct
++ // register for unlock_object to pass to VM directly
++ ld(c_rarg1, monitor_block_top); // points to current entry, starting
++ // with top-most entry
++ la(x9, monitor_block_bot); // points to word before bottom of
++ // monitor block
++
++ j(entry);
++
++ // Entry already locked, need to throw exception
++ bind(exception);
++
++ if (throw_monitor_exception) {
++ // Throw exception
++ MacroAssembler::call_VM(noreg,
++ CAST_FROM_FN_PTR(address, InterpreterRuntime::
++ throw_illegal_monitor_state_exception));
++
++ should_not_reach_here();
++ } else {
++ // Stack unrolling. Unlock object and install illegal_monitor_exception.
++ // Unlock does not block, so don't have to worry about the frame.
++ // We don't have to preserve c_rarg1 since we are going to throw an exception.
++
++ push(state);
++ unlock_object(c_rarg1);
++ pop(state);
++
++ if (install_monitor_exception) {
++ call_VM(noreg, CAST_FROM_FN_PTR(address,
++ InterpreterRuntime::
++ new_illegal_monitor_state_exception));
++ }
++
++ j(restart);
++ }
++
++ bind(loop);
++ // check if current entry is used
++ add(t0, c_rarg1, BasicObjectLock::obj_offset_in_bytes());
++ ld(t0, Address(t0, 0));
++ bnez(t0, exception);
++
++ add(c_rarg1, c_rarg1, entry_size); // otherwise advance to next entry
++ bind(entry);
++ bne(c_rarg1, x9, loop); // check if bottom reached if not at bottom then check this entry
++ }
++
++ bind(no_unlock);
++
++ // jvmti support
++ if (notify_jvmdi) {
++ notify_method_exit(state, NotifyJVMTI); // preserve TOSCA
++
++ } else {
++ notify_method_exit(state, SkipNotifyJVMTI); // preserve TOSCA
++ }
++
++ // remove activation
++ // get sender esp
++ ld(t1,
++ Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize));
++ if (StackReservedPages > 0) {
++ // testing if reserved zone needs to be re-enabled
++ Label no_reserved_zone_enabling;
++
++ ld(t0, Address(xthread, JavaThread::reserved_stack_activation_offset()));
++ ble(t1, t0, no_reserved_zone_enabling);
++
++ call_VM_leaf(
++ CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), xthread);
++ call_VM(noreg, CAST_FROM_FN_PTR(address,
++ InterpreterRuntime::throw_delayed_StackOverflowError));
++ should_not_reach_here();
++
++ bind(no_reserved_zone_enabling);
++ }
++
++ // restore sender esp
++ mv(esp, t1);
++
++ // remove frame anchor
++ leave();
++ // If we're returning to interpreted code we will shortly be
++ // adjusting SP to allow some space for ESP. If we're returning to
++ // compiled code the saved sender SP was saved in sender_sp, so this
++ // restores it.
++ andi(sp, esp, -16);
++}
++
++// Lock object
++//
++// Args:
++// c_rarg1: BasicObjectLock to be used for locking
++//
++// Kills:
++// x10
++// c_rarg0, c_rarg1, c_rarg2, c_rarg3, .. (param regs)
++// t0, t1 (temp regs)
++void InterpreterMacroAssembler::lock_object(Register lock_reg)
++{
++ assert(lock_reg == c_rarg1, "The argument is only for looks. It must be c_rarg1");
++ if (UseHeavyMonitors) {
++ call_VM(noreg,
++ CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
++ lock_reg);
++ } else {
++ Label done;
++
++ const Register swap_reg = x10;
++ const Register tmp = c_rarg2;
++ const Register obj_reg = c_rarg3; // Will contain the oop
++
++ const int obj_offset = BasicObjectLock::obj_offset_in_bytes();
++ const int lock_offset = BasicObjectLock::lock_offset_in_bytes ();
++ const int mark_offset = lock_offset +
++ BasicLock::displaced_header_offset_in_bytes();
++
++ Label slow_case;
++
++ // Load object pointer into obj_reg c_rarg3
++ ld(obj_reg, Address(lock_reg, obj_offset));
++
++ if (DiagnoseSyncOnValueBasedClasses != 0) {
++ load_klass(tmp, obj_reg);
++ lwu(tmp, Address(tmp, Klass::access_flags_offset()));
++ test_bit(tmp, tmp, exact_log2(JVM_ACC_IS_VALUE_BASED_CLASS));
++ bnez(tmp, slow_case);
++ }
++
++ if (UseBiasedLocking) {
++ biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp, false, done, &slow_case);
++ }
++
++ // Load (object->mark() | 1) into swap_reg
++ ld(t0, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
++ ori(swap_reg, t0, 1);
++
++ // Save (object->mark() | 1) into BasicLock's displaced header
++ sd(swap_reg, Address(lock_reg, mark_offset));
++
++ assert(lock_offset == 0,
++ "displached header must be first word in BasicObjectLock");
++
++ cmpxchg_obj_header(swap_reg, lock_reg, obj_reg, t0, done, /*fallthrough*/NULL);
++
++ // Test if the oopMark is an obvious stack pointer, i.e.,
++ // 1) (mark & 7) == 0, and
++ // 2) sp <= mark < mark + os::pagesize()
++ //
++ // These 3 tests can be done by evaluating the following
++ // expression: ((mark - sp) & (7 - os::vm_page_size())),
++ // assuming both stack pointer and pagesize have their
++ // least significant 3 bits clear.
++ // NOTE: the oopMark is in swap_reg x10 as the result of cmpxchg
++ sub(swap_reg, swap_reg, sp);
++ mv(t0, (int64_t)(7 - os::vm_page_size()));
++ andr(swap_reg, swap_reg, t0);
++
++ // Save the test result, for recursive case, the result is zero
++ sd(swap_reg, Address(lock_reg, mark_offset));
++ beqz(swap_reg, done);
++
++ bind(slow_case);
++
++ // Call the runtime routine for slow case
++ call_VM(noreg,
++ CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorenter),
++ lock_reg);
++
++ bind(done);
++ }
++}
++
++
++// Unlocks an object. Used in monitorexit bytecode and
++// remove_activation. Throws an IllegalMonitorException if object is
++// not locked by current thread.
++//
++// Args:
++// c_rarg1: BasicObjectLock for lock
++//
++// Kills:
++// x10
++// c_rarg0, c_rarg1, c_rarg2, c_rarg3, ... (param regs)
++// t0, t1 (temp regs)
++void InterpreterMacroAssembler::unlock_object(Register lock_reg)
++{
++ assert(lock_reg == c_rarg1, "The argument is only for looks. It must be rarg1");
++
++ if (UseHeavyMonitors) {
++ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
++ } else {
++ Label done;
++
++ const Register swap_reg = x10;
++ const Register header_reg = c_rarg2; // Will contain the old oopMark
++ const Register obj_reg = c_rarg3; // Will contain the oop
++
++ save_bcp(); // Save in case of exception
++
++ // Convert from BasicObjectLock structure to object and BasicLock
++ // structure Store the BasicLock address into x10
++ la(swap_reg, Address(lock_reg, BasicObjectLock::lock_offset_in_bytes()));
++
++ // Load oop into obj_reg(c_rarg3)
++ ld(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
++
++ // Free entry
++ sd(zr, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes()));
++
++ if (UseBiasedLocking) {
++ biased_locking_exit(obj_reg, header_reg, done);
++ }
++
++ // Load the old header from BasicLock structure
++ ld(header_reg, Address(swap_reg,
++ BasicLock::displaced_header_offset_in_bytes()));
++
++ // Test for recursion
++ beqz(header_reg, done);
++
++ // Atomic swap back the old header
++ cmpxchg_obj_header(swap_reg, header_reg, obj_reg, t0, done, /*fallthrough*/NULL);
++
++ // Call the runtime routine for slow case.
++ sd(obj_reg, Address(lock_reg, BasicObjectLock::obj_offset_in_bytes())); // restore obj
++ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::monitorexit), lock_reg);
++
++ bind(done);
++
++ restore_bcp();
++ }
++}
++
++
++void InterpreterMacroAssembler::test_method_data_pointer(Register mdp,
++ Label& zero_continue) {
++ assert(ProfileInterpreter, "must be profiling interpreter");
++ ld(mdp, Address(fp, frame::interpreter_frame_mdp_offset * wordSize));
++ beqz(mdp, zero_continue);
++}
++
++// Set the method data pointer for the current bcp.
++void InterpreterMacroAssembler::set_method_data_pointer_for_bcp() {
++ assert(ProfileInterpreter, "must be profiling interpreter");
++ Label set_mdp;
++ push_reg(RegSet::of(x10, x11), sp); // save x10, x11
++
++ // Test MDO to avoid the call if it is NULL.
++ ld(x10, Address(xmethod, in_bytes(Method::method_data_offset())));
++ beqz(x10, set_mdp);
++ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::bcp_to_di), xmethod, xbcp);
++ // x10: mdi
++ // mdo is guaranteed to be non-zero here, we checked for it before the call.
++ ld(x11, Address(xmethod, in_bytes(Method::method_data_offset())));
++ la(x11, Address(x11, in_bytes(MethodData::data_offset())));
++ add(x10, x11, x10);
++ sd(x10, Address(fp, frame::interpreter_frame_mdp_offset * wordSize));
++ bind(set_mdp);
++ pop_reg(RegSet::of(x10, x11), sp);
++}
++
++void InterpreterMacroAssembler::verify_method_data_pointer() {
++ assert(ProfileInterpreter, "must be profiling interpreter");
++#ifdef ASSERT
++ Label verify_continue;
++ add(sp, sp, -4 * wordSize);
++ sd(x10, Address(sp, 0));
++ sd(x11, Address(sp, wordSize));
++ sd(x12, Address(sp, 2 * wordSize));
++ sd(x13, Address(sp, 3 * wordSize));
++ test_method_data_pointer(x13, verify_continue); // If mdp is zero, continue
++ get_method(x11);
++
++ // If the mdp is valid, it will point to a DataLayout header which is
++ // consistent with the bcp. The converse is highly probable also.
++ lh(x12, Address(x13, in_bytes(DataLayout::bci_offset())));
++ ld(t0, Address(x11, Method::const_offset()));
++ add(x12, x12, t0);
++ la(x12, Address(x12, ConstMethod::codes_offset()));
++ beq(x12, xbcp, verify_continue);
++ // x10: method
++ // xbcp: bcp // xbcp == 22
++ // x13: mdp
++ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::verify_mdp),
++ x11, xbcp, x13);
++ bind(verify_continue);
++ ld(x10, Address(sp, 0));
++ ld(x11, Address(sp, wordSize));
++ ld(x12, Address(sp, 2 * wordSize));
++ ld(x13, Address(sp, 3 * wordSize));
++ add(sp, sp, 4 * wordSize);
++#endif // ASSERT
++}
++
++
++void InterpreterMacroAssembler::set_mdp_data_at(Register mdp_in,
++ int constant,
++ Register value) {
++ assert(ProfileInterpreter, "must be profiling interpreter");
++ Address data(mdp_in, constant);
++ sd(value, data);
++}
++
++
++void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
++ int constant,
++ bool decrement) {
++ increment_mdp_data_at(mdp_in, noreg, constant, decrement);
++}
++
++void InterpreterMacroAssembler::increment_mdp_data_at(Register mdp_in,
++ Register reg,
++ int constant,
++ bool decrement) {
++ assert(ProfileInterpreter, "must be profiling interpreter");
++ // %%% this does 64bit counters at best it is wasting space
++ // at worst it is a rare bug when counters overflow
++
++ assert_different_registers(t1, t0, mdp_in, reg);
++
++ Address addr1(mdp_in, constant);
++ Address addr2(t1, 0);
++ Address &addr = addr1;
++ if (reg != noreg) {
++ la(t1, addr1);
++ add(t1, t1, reg);
++ addr = addr2;
++ }
++
++ if (decrement) {
++ ld(t0, addr);
++ addi(t0, t0, -DataLayout::counter_increment);
++ Label L;
++ bltz(t0, L); // skip store if counter underflow
++ sd(t0, addr);
++ bind(L);
++ } else {
++ assert(DataLayout::counter_increment == 1,
++ "flow-free idiom only works with 1");
++ ld(t0, addr);
++ addi(t0, t0, DataLayout::counter_increment);
++ Label L;
++ blez(t0, L); // skip store if counter overflow
++ sd(t0, addr);
++ bind(L);
++ }
++}
++
++void InterpreterMacroAssembler::set_mdp_flag_at(Register mdp_in,
++ int flag_byte_constant) {
++ assert(ProfileInterpreter, "must be profiling interpreter");
++ int flags_offset = in_bytes(DataLayout::flags_offset());
++ // Set the flag
++ lbu(t1, Address(mdp_in, flags_offset));
++ ori(t1, t1, flag_byte_constant);
++ sb(t1, Address(mdp_in, flags_offset));
++}
++
++
++void InterpreterMacroAssembler::test_mdp_data_at(Register mdp_in,
++ int offset,
++ Register value,
++ Register test_value_out,
++ Label& not_equal_continue) {
++ assert(ProfileInterpreter, "must be profiling interpreter");
++ if (test_value_out == noreg) {
++ ld(t1, Address(mdp_in, offset));
++ bne(value, t1, not_equal_continue);
++ } else {
++ // Put the test value into a register, so caller can use it:
++ ld(test_value_out, Address(mdp_in, offset));
++ bne(value, test_value_out, not_equal_continue);
++ }
++}
++
++
++void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
++ int offset_of_disp) {
++ assert(ProfileInterpreter, "must be profiling interpreter");
++ ld(t1, Address(mdp_in, offset_of_disp));
++ add(mdp_in, mdp_in, t1);
++ sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize));
++}
++
++void InterpreterMacroAssembler::update_mdp_by_offset(Register mdp_in,
++ Register reg,
++ int offset_of_disp) {
++ assert(ProfileInterpreter, "must be profiling interpreter");
++ add(t1, mdp_in, reg);
++ ld(t1, Address(t1, offset_of_disp));
++ add(mdp_in, mdp_in, t1);
++ sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize));
++}
++
++
++void InterpreterMacroAssembler::update_mdp_by_constant(Register mdp_in,
++ int constant) {
++ assert(ProfileInterpreter, "must be profiling interpreter");
++ addi(mdp_in, mdp_in, (unsigned)constant);
++ sd(mdp_in, Address(fp, frame::interpreter_frame_mdp_offset * wordSize));
++}
++
++
++void InterpreterMacroAssembler::update_mdp_for_ret(Register return_bci) {
++ assert(ProfileInterpreter, "must be profiling interpreter");
++
++ // save/restore across call_VM
++ addi(sp, sp, -2 * wordSize);
++ sd(zr, Address(sp, 0));
++ sd(return_bci, Address(sp, wordSize));
++ call_VM(noreg,
++ CAST_FROM_FN_PTR(address, InterpreterRuntime::update_mdp_for_ret),
++ return_bci);
++ ld(zr, Address(sp, 0));
++ ld(return_bci, Address(sp, wordSize));
++ addi(sp, sp, 2 * wordSize);
++}
++
++void InterpreterMacroAssembler::profile_taken_branch(Register mdp,
++ Register bumped_count) {
++ if (ProfileInterpreter) {
++ Label profile_continue;
++
++ // If no method data exists, go to profile_continue.
++ // Otherwise, assign to mdp
++ test_method_data_pointer(mdp, profile_continue);
++
++ // We are taking a branch. Increment the taken count.
++ Address data(mdp, in_bytes(JumpData::taken_offset()));
++ ld(bumped_count, data);
++ assert(DataLayout::counter_increment == 1,
++ "flow-free idiom only works with 1");
++ addi(bumped_count, bumped_count, DataLayout::counter_increment);
++ Label L;
++ // eg: bumped_count=0x7fff ffff ffff ffff + 1 < 0. so we use <= 0;
++ blez(bumped_count, L); // skip store if counter overflow,
++ sd(bumped_count, data);
++ bind(L);
++ // The method data pointer needs to be updated to reflect the new target.
++ update_mdp_by_offset(mdp, in_bytes(JumpData::displacement_offset()));
++ bind(profile_continue);
++ }
++}
++
++void InterpreterMacroAssembler::profile_not_taken_branch(Register mdp) {
++ if (ProfileInterpreter) {
++ Label profile_continue;
++
++ // If no method data exists, go to profile_continue.
++ test_method_data_pointer(mdp, profile_continue);
++
++ // We are taking a branch. Increment the not taken count.
++ increment_mdp_data_at(mdp, in_bytes(BranchData::not_taken_offset()));
++
++ // The method data pointer needs to be updated to correspond to
++ // the next bytecode
++ update_mdp_by_constant(mdp, in_bytes(BranchData::branch_data_size()));
++ bind(profile_continue);
++ }
++}
++
++void InterpreterMacroAssembler::profile_call(Register mdp) {
++ if (ProfileInterpreter) {
++ Label profile_continue;
++
++ // If no method data exists, go to profile_continue.
++ test_method_data_pointer(mdp, profile_continue);
++
++ // We are making a call. Increment the count.
++ increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
++
++ // The method data pointer needs to be updated to reflect the new target.
++ update_mdp_by_constant(mdp, in_bytes(CounterData::counter_data_size()));
++ bind(profile_continue);
++ }
++}
++
++void InterpreterMacroAssembler::profile_final_call(Register mdp) {
++ if (ProfileInterpreter) {
++ Label profile_continue;
++
++ // If no method data exists, go to profile_continue.
++ test_method_data_pointer(mdp, profile_continue);
++
++ // We are making a call. Increment the count.
++ increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
++
++ // The method data pointer needs to be updated to reflect the new target.
++ update_mdp_by_constant(mdp,
++ in_bytes(VirtualCallData::
++ virtual_call_data_size()));
++ bind(profile_continue);
++ }
++}
++
++
++void InterpreterMacroAssembler::profile_virtual_call(Register receiver,
++ Register mdp,
++ Register reg2,
++ bool receiver_can_be_null) {
++ if (ProfileInterpreter) {
++ Label profile_continue;
++
++ // If no method data exists, go to profile_continue.
++ test_method_data_pointer(mdp, profile_continue);
++
++ Label skip_receiver_profile;
++ if (receiver_can_be_null) {
++ Label not_null;
++ // We are making a call. Increment the count for null receiver.
++ increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
++ j(skip_receiver_profile);
++ bind(not_null);
++ }
++
++ // Record the receiver type.
++ record_klass_in_profile(receiver, mdp, reg2, true);
++ bind(skip_receiver_profile);
++
++ // The method data pointer needs to be updated to reflect the new target.
++
++ update_mdp_by_constant(mdp,
++ in_bytes(VirtualCallData::
++ virtual_call_data_size()));
++ bind(profile_continue);
++ }
++}
++
++// This routine creates a state machine for updating the multi-row
++// type profile at a virtual call site (or other type-sensitive bytecode).
++// The machine visits each row (of receiver/count) until the receiver type
++// is found, or until it runs out of rows. At the same time, it remembers
++// the location of the first empty row. (An empty row records null for its
++// receiver, and can be allocated for a newly-observed receiver type.)
++// Because there are two degrees of freedom in the state, a simple linear
++// search will not work; it must be a decision tree. Hence this helper
++// function is recursive, to generate the required tree structured code.
++// It's the interpreter, so we are trading off code space for speed.
++// See below for example code.
++void InterpreterMacroAssembler::record_klass_in_profile_helper(
++ Register receiver, Register mdp,
++ Register reg2,
++ Label& done, bool is_virtual_call) {
++ if (TypeProfileWidth == 0) {
++ if (is_virtual_call) {
++ increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
++ }
++
++ } else {
++ int non_profiled_offset = -1;
++ if (is_virtual_call) {
++ non_profiled_offset = in_bytes(CounterData::count_offset());
++ }
++
++ record_item_in_profile_helper(receiver, mdp, reg2, 0, done, TypeProfileWidth,
++ &VirtualCallData::receiver_offset, &VirtualCallData::receiver_count_offset, non_profiled_offset);
++ }
++}
++
++void InterpreterMacroAssembler::record_item_in_profile_helper(
++ Register item, Register mdp, Register reg2, int start_row, Label& done, int total_rows,
++ OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn, int non_profiled_offset) {
++ int last_row = total_rows - 1;
++ assert(start_row <= last_row, "must be work left to do");
++ // Test this row for both the item and for null.
++ // Take any of three different outcomes:
++ // 1. found item => increment count and goto done
++ // 2. found null => keep looking for case 1, maybe allocate this cell
++ // 3. found something else => keep looking for cases 1 and 2
++ // Case 3 is handled by a recursive call.
++ for (int row = start_row; row <= last_row; row++) {
++ Label next_test;
++ bool test_for_null_also = (row == start_row);
++
++ // See if the item is item[n].
++ int item_offset = in_bytes(item_offset_fn(row));
++ test_mdp_data_at(mdp, item_offset, item,
++ (test_for_null_also ? reg2 : noreg),
++ next_test);
++ // (Reg2 now contains the item from the CallData.)
++
++ // The item is item[n]. Increment count[n].
++ int count_offset = in_bytes(item_count_offset_fn(row));
++ increment_mdp_data_at(mdp, count_offset);
++ j(done);
++ bind(next_test);
++
++ if (test_for_null_also) {
++ Label found_null;
++ // Failed the equality check on item[n]... Test for null.
++ if (start_row == last_row) {
++ // The only thing left to do is handle the null case.
++ if (non_profiled_offset >= 0) {
++ beqz(reg2, found_null);
++ // Item did not match any saved item and there is no empty row for it.
++ // Increment total counter to indicate polymorphic case.
++ increment_mdp_data_at(mdp, non_profiled_offset);
++ j(done);
++ bind(found_null);
++ } else {
++ bnez(reg2, done);
++ }
++ break;
++ }
++ // Since null is rare, make it be the branch-taken case.
++ beqz(reg2, found_null);
++
++ // Put all the "Case 3" tests here.
++ record_item_in_profile_helper(item, mdp, reg2, start_row + 1, done, total_rows,
++ item_offset_fn, item_count_offset_fn, non_profiled_offset);
++
++ // Found a null. Keep searching for a matching item,
++ // but remember that this is an empty (unused) slot.
++ bind(found_null);
++ }
++ }
++
++ // In the fall-through case, we found no matching item, but we
++ // observed the item[start_row] is NULL.
++ // Fill in the item field and increment the count.
++ int item_offset = in_bytes(item_offset_fn(start_row));
++ set_mdp_data_at(mdp, item_offset, item);
++ int count_offset = in_bytes(item_count_offset_fn(start_row));
++ mv(reg2, DataLayout::counter_increment);
++ set_mdp_data_at(mdp, count_offset, reg2);
++ if (start_row > 0) {
++ j(done);
++ }
++}
++
++// Example state machine code for three profile rows:
++// # main copy of decision tree, rooted at row[1]
++// if (row[0].rec == rec) then [
++// row[0].incr()
++// goto done
++// ]
++// if (row[0].rec != NULL) then [
++// # inner copy of decision tree, rooted at row[1]
++// if (row[1].rec == rec) then [
++// row[1].incr()
++// goto done
++// ]
++// if (row[1].rec != NULL) then [
++// # degenerate decision tree, rooted at row[2]
++// if (row[2].rec == rec) then [
++// row[2].incr()
++// goto done
++// ]
++// if (row[2].rec != NULL) then [
++// count.incr()
++// goto done
++// ] # overflow
++// row[2].init(rec)
++// goto done
++// ] else [
++// # remember row[1] is empty
++// if (row[2].rec == rec) then [
++// row[2].incr()
++// goto done
++// ]
++// row[1].init(rec)
++// goto done
++// ]
++// else [
++// # remember row[0] is empty
++// if (row[1].rec == rec) then [
++// row[1].incr()
++// goto done
++// ]
++// if (row[2].rec == rec) then [
++// row[2].incr()
++// goto done
++// ]
++// row[0].init(rec)
++// goto done
++// ]
++// done:
++
++void InterpreterMacroAssembler::record_klass_in_profile(Register receiver,
++ Register mdp, Register reg2,
++ bool is_virtual_call) {
++ assert(ProfileInterpreter, "must be profiling");
++ Label done;
++
++ record_klass_in_profile_helper(receiver, mdp, reg2, done, is_virtual_call);
++
++ bind(done);
++}
++
++void InterpreterMacroAssembler::profile_ret(Register return_bci, Register mdp) {
++ if (ProfileInterpreter) {
++ Label profile_continue;
++
++ // If no method data exists, go to profile_continue.
++ test_method_data_pointer(mdp, profile_continue);
++
++ // Update the total ret count.
++ increment_mdp_data_at(mdp, in_bytes(CounterData::count_offset()));
++
++ for (uint row = 0; row < RetData::row_limit(); row++) {
++ Label next_test;
++
++ // See if return_bci is equal to bci[n]:
++ test_mdp_data_at(mdp,
++ in_bytes(RetData::bci_offset(row)),
++ return_bci, noreg,
++ next_test);
++
++ // return_bci is equal to bci[n]. Increment the count.
++ increment_mdp_data_at(mdp, in_bytes(RetData::bci_count_offset(row)));
++
++ // The method data pointer needs to be updated to reflect the new target.
++ update_mdp_by_offset(mdp,
++ in_bytes(RetData::bci_displacement_offset(row)));
++ j(profile_continue);
++ bind(next_test);
++ }
++
++ update_mdp_for_ret(return_bci);
++
++ bind(profile_continue);
++ }
++}
++
++void InterpreterMacroAssembler::profile_null_seen(Register mdp) {
++ if (ProfileInterpreter) {
++ Label profile_continue;
++
++ // If no method data exists, go to profile_continue.
++ test_method_data_pointer(mdp, profile_continue);
++
++ set_mdp_flag_at(mdp, BitData::null_seen_byte_constant());
++
++ // The method data pointer needs to be updated.
++ int mdp_delta = in_bytes(BitData::bit_data_size());
++ if (TypeProfileCasts) {
++ mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
++ }
++ update_mdp_by_constant(mdp, mdp_delta);
++
++ bind(profile_continue);
++ }
++}
++
++void InterpreterMacroAssembler::profile_typecheck_failed(Register mdp) {
++ if (ProfileInterpreter && TypeProfileCasts) {
++ Label profile_continue;
++
++ // If no method data exists, go to profile_continue.
++ test_method_data_pointer(mdp, profile_continue);
++
++ int count_offset = in_bytes(CounterData::count_offset());
++ // Back up the address, since we have already bumped the mdp.
++ count_offset -= in_bytes(VirtualCallData::virtual_call_data_size());
++
++ // *Decrement* the counter. We expect to see zero or small negatives.
++ increment_mdp_data_at(mdp, count_offset, true);
++
++ bind (profile_continue);
++ }
++}
++
++void InterpreterMacroAssembler::profile_typecheck(Register mdp, Register klass, Register reg2) {
++ if (ProfileInterpreter) {
++ Label profile_continue;
++
++ // If no method data exists, go to profile_continue.
++ test_method_data_pointer(mdp, profile_continue);
++
++ // The method data pointer needs to be updated.
++ int mdp_delta = in_bytes(BitData::bit_data_size());
++ if (TypeProfileCasts) {
++ mdp_delta = in_bytes(VirtualCallData::virtual_call_data_size());
++
++ // Record the object type.
++ record_klass_in_profile(klass, mdp, reg2, false);
++ }
++ update_mdp_by_constant(mdp, mdp_delta);
++
++ bind(profile_continue);
++ }
++}
++
++void InterpreterMacroAssembler::profile_switch_default(Register mdp) {
++ if (ProfileInterpreter) {
++ Label profile_continue;
++
++ // If no method data exists, go to profile_continue.
++ test_method_data_pointer(mdp, profile_continue);
++
++ // Update the default case count
++ increment_mdp_data_at(mdp,
++ in_bytes(MultiBranchData::default_count_offset()));
++
++ // The method data pointer needs to be updated.
++ update_mdp_by_offset(mdp,
++ in_bytes(MultiBranchData::
++ default_displacement_offset()));
++
++ bind(profile_continue);
++ }
++}
++
++void InterpreterMacroAssembler::profile_switch_case(Register index,
++ Register mdp,
++ Register reg2) {
++ if (ProfileInterpreter) {
++ Label profile_continue;
++
++ // If no method data exists, go to profile_continue.
++ test_method_data_pointer(mdp, profile_continue);
++
++ // Build the base (index * per_case_size_in_bytes()) +
++ // case_array_offset_in_bytes()
++ mv(reg2, in_bytes(MultiBranchData::per_case_size()));
++ mv(t0, in_bytes(MultiBranchData::case_array_offset()));
++ Assembler::mul(index, index, reg2);
++ Assembler::add(index, index, t0);
++
++ // Update the case count
++ increment_mdp_data_at(mdp,
++ index,
++ in_bytes(MultiBranchData::relative_count_offset()));
++
++ // The method data pointer need to be updated.
++ update_mdp_by_offset(mdp,
++ index,
++ in_bytes(MultiBranchData::
++ relative_displacement_offset()));
++
++ bind(profile_continue);
++ }
++}
++
++void InterpreterMacroAssembler::verify_FPU(int stack_depth, TosState state) { ; }
++
++void InterpreterMacroAssembler::notify_method_entry() {
++ // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
++ // track stack depth. If it is possible to enter interp_only_mode we add
++ // the code to check if the event should be sent.
++ if (JvmtiExport::can_post_interpreter_events()) {
++ Label L;
++ lwu(x13, Address(xthread, JavaThread::interp_only_mode_offset()));
++ beqz(x13, L);
++ call_VM(noreg, CAST_FROM_FN_PTR(address,
++ InterpreterRuntime::post_method_entry));
++ bind(L);
++ }
++
++ {
++ SkipIfEqual skip(this, &DTraceMethodProbes, false);
++ get_method(c_rarg1);
++ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
++ xthread, c_rarg1);
++ }
++
++ // RedefineClasses() tracing support for obsolete method entry
++ if (log_is_enabled(Trace, redefine, class, obsolete)) {
++ get_method(c_rarg1);
++ call_VM_leaf(
++ CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
++ xthread, c_rarg1);
++ }
++}
++
++
++void InterpreterMacroAssembler::notify_method_exit(
++ TosState state, NotifyMethodExitMode mode) {
++ // Whenever JVMTI is interp_only_mode, method entry/exit events are sent to
++ // track stack depth. If it is possible to enter interp_only_mode we add
++ // the code to check if the event should be sent.
++ if (mode == NotifyJVMTI && JvmtiExport::can_post_interpreter_events()) {
++ Label L;
++ // Note: frame::interpreter_frame_result has a dependency on how the
++ // method result is saved across the call to post_method_exit. If this
++ // is changed then the interpreter_frame_result implementation will
++ // need to be updated too.
++
++ // template interpreter will leave the result on the top of the stack.
++ push(state);
++ lwu(x13, Address(xthread, JavaThread::interp_only_mode_offset()));
++ beqz(x13, L);
++ call_VM(noreg,
++ CAST_FROM_FN_PTR(address, InterpreterRuntime::post_method_exit));
++ bind(L);
++ pop(state);
++ }
++
++ {
++ SkipIfEqual skip(this, &DTraceMethodProbes, false);
++ push(state);
++ get_method(c_rarg1);
++ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
++ xthread, c_rarg1);
++ pop(state);
++ }
++}
++
++
++// Jump if ((*counter_addr += increment) & mask) satisfies the condition.
++void InterpreterMacroAssembler::increment_mask_and_jump(Address counter_addr,
++ int increment, Address mask,
++ Register tmp1, Register tmp2,
++ bool preloaded, Label* where) {
++ Label done;
++ if (!preloaded) {
++ lwu(tmp1, counter_addr);
++ }
++ add(tmp1, tmp1, increment);
++ sw(tmp1, counter_addr);
++ lwu(tmp2, mask);
++ andr(tmp1, tmp1, tmp2);
++ bnez(tmp1, done);
++ j(*where); // offset is too large so we have to use j instead of beqz here
++ bind(done);
++}
++
++void InterpreterMacroAssembler::call_VM_leaf_base(address entry_point,
++ int number_of_arguments) {
++ // interpreter specific
++ //
++ // Note: No need to save/restore rbcp & rlocals pointer since these
++ // are callee saved registers and no blocking/ GC can happen
++ // in leaf calls.
++#ifdef ASSERT
++ {
++ Label L;
++ ld(t0, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize));
++ beqz(t0, L);
++ stop("InterpreterMacroAssembler::call_VM_leaf_base:"
++ " last_sp != NULL");
++ bind(L);
++ }
++#endif /* ASSERT */
++ // super call
++ MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
++}
++
++void InterpreterMacroAssembler::call_VM_base(Register oop_result,
++ Register java_thread,
++ Register last_java_sp,
++ address entry_point,
++ int number_of_arguments,
++ bool check_exceptions) {
++ // interpreter specific
++ //
++ // Note: Could avoid restoring locals ptr (callee saved) - however doesn't
++ // really make a difference for these runtime calls, since they are
++ // slow anyway. Btw., bcp must be saved/restored since it may change
++ // due to GC.
++ save_bcp();
++#ifdef ASSERT
++ {
++ Label L;
++ ld(t0, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize));
++ beqz(t0, L);
++ stop("InterpreterMacroAssembler::call_VM_base:"
++ " last_sp != NULL");
++ bind(L);
++ }
++#endif /* ASSERT */
++ // super call
++ MacroAssembler::call_VM_base(oop_result, noreg, last_java_sp,
++ entry_point, number_of_arguments,
++ check_exceptions);
++// interpreter specific
++ restore_bcp();
++ restore_locals();
++}
++
++void InterpreterMacroAssembler::profile_obj_type(Register obj, const Address& mdo_addr, Register tmp) {
++ assert_different_registers(obj, tmp, t0, mdo_addr.base());
++ Label update, next, none;
++
++ verify_oop(obj);
++
++ bnez(obj, update);
++ orptr(mdo_addr, TypeEntries::null_seen, t0, tmp);
++ j(next);
++
++ bind(update);
++ load_klass(obj, obj);
++
++ ld(t0, mdo_addr);
++ xorr(obj, obj, t0);
++ andi(t0, obj, TypeEntries::type_klass_mask);
++ beqz(t0, next); // klass seen before, nothing to
++ // do. The unknown bit may have been
++ // set already but no need to check.
++
++ test_bit(t0, obj, exact_log2(TypeEntries::type_unknown));
++ bnez(t0, next);
++ // already unknown. Nothing to do anymore.
++
++ ld(t0, mdo_addr);
++ beqz(t0, none);
++ mv(tmp, (u1)TypeEntries::null_seen);
++ beq(t0, tmp, none);
++ // There is a chance that the checks above (re-reading profiling
++ // data from memory) fail if another thread has just set the
++ // profiling to this obj's klass
++ ld(t0, mdo_addr);
++ xorr(obj, obj, t0);
++ andi(t0, obj, TypeEntries::type_klass_mask);
++ beqz(t0, next);
++
++ // different than before. Cannot keep accurate profile.
++ orptr(mdo_addr, TypeEntries::type_unknown, t0, tmp);
++ j(next);
++
++ bind(none);
++ // first time here. Set profile type.
++ sd(obj, mdo_addr);
++
++ bind(next);
++}
++
++void InterpreterMacroAssembler::profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual) {
++ if (!ProfileInterpreter) {
++ return;
++ }
++
++ if (MethodData::profile_arguments() || MethodData::profile_return()) {
++ Label profile_continue;
++
++ test_method_data_pointer(mdp, profile_continue);
++
++ int off_to_start = is_virtual ? in_bytes(VirtualCallData::virtual_call_data_size()) : in_bytes(CounterData::counter_data_size());
++
++ lbu(t0, Address(mdp, in_bytes(DataLayout::tag_offset()) - off_to_start));
++ if (is_virtual) {
++ mv(tmp, (u1)DataLayout::virtual_call_type_data_tag);
++ bne(t0, tmp, profile_continue);
++ } else {
++ mv(tmp, (u1)DataLayout::call_type_data_tag);
++ bne(t0, tmp, profile_continue);
++ }
++
++ // calculate slot step
++ static int stack_slot_offset0 = in_bytes(TypeEntriesAtCall::stack_slot_offset(0));
++ static int slot_step = in_bytes(TypeEntriesAtCall::stack_slot_offset(1)) - stack_slot_offset0;
++
++ // calculate type step
++ static int argument_type_offset0 = in_bytes(TypeEntriesAtCall::argument_type_offset(0));
++ static int type_step = in_bytes(TypeEntriesAtCall::argument_type_offset(1)) - argument_type_offset0;
++
++ if (MethodData::profile_arguments()) {
++ Label done, loop, loopEnd, profileArgument, profileReturnType;
++ RegSet pushed_registers;
++ pushed_registers += x15;
++ pushed_registers += x16;
++ pushed_registers += x17;
++ Register mdo_addr = x15;
++ Register index = x16;
++ Register off_to_args = x17;
++ push_reg(pushed_registers, sp);
++
++ mv(off_to_args, in_bytes(TypeEntriesAtCall::args_data_offset()));
++ mv(t0, TypeProfileArgsLimit);
++ beqz(t0, loopEnd);
++
++ mv(index, zr); // index < TypeProfileArgsLimit
++ bind(loop);
++ bgtz(index, profileReturnType);
++ mv(t0, (int)MethodData::profile_return());
++ beqz(t0, profileArgument); // (index > 0 || MethodData::profile_return()) == false
++ bind(profileReturnType);
++ // If return value type is profiled we may have no argument to profile
++ ld(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
++ mv(t1, - TypeStackSlotEntries::per_arg_count());
++ mul(t1, index, t1);
++ add(tmp, tmp, t1);
++ mv(t1, TypeStackSlotEntries::per_arg_count());
++ add(t0, mdp, off_to_args);
++ blt(tmp, t1, done);
++
++ bind(profileArgument);
++
++ ld(tmp, Address(callee, Method::const_offset()));
++ load_unsigned_short(tmp, Address(tmp, ConstMethod::size_of_parameters_offset()));
++ // stack offset o (zero based) from the start of the argument
++ // list, for n arguments translates into offset n - o - 1 from
++ // the end of the argument list
++ mv(t0, stack_slot_offset0);
++ mv(t1, slot_step);
++ mul(t1, index, t1);
++ add(t0, t0, t1);
++ add(t0, mdp, t0);
++ ld(t0, Address(t0));
++ sub(tmp, tmp, t0);
++ addi(tmp, tmp, -1);
++ Address arg_addr = argument_address(tmp);
++ ld(tmp, arg_addr);
++
++ mv(t0, argument_type_offset0);
++ mv(t1, type_step);
++ mul(t1, index, t1);
++ add(t0, t0, t1);
++ add(mdo_addr, mdp, t0);
++ Address mdo_arg_addr(mdo_addr, 0);
++ profile_obj_type(tmp, mdo_arg_addr, t1);
++
++ int to_add = in_bytes(TypeStackSlotEntries::per_arg_size());
++ addi(off_to_args, off_to_args, to_add);
++
++ // increment index by 1
++ addi(index, index, 1);
++ mv(t1, TypeProfileArgsLimit);
++ blt(index, t1, loop);
++ bind(loopEnd);
++
++ if (MethodData::profile_return()) {
++ ld(tmp, Address(mdp, in_bytes(TypeEntriesAtCall::cell_count_offset())));
++ addi(tmp, tmp, -TypeProfileArgsLimit*TypeStackSlotEntries::per_arg_count());
++ }
++
++ add(t0, mdp, off_to_args);
++ bind(done);
++ mv(mdp, t0);
++
++ // unspill the clobbered registers
++ pop_reg(pushed_registers, sp);
++
++ if (MethodData::profile_return()) {
++ // We're right after the type profile for the last
++ // argument. tmp is the number of cells left in the
++ // CallTypeData/VirtualCallTypeData to reach its end. Non null
++ // if there's a return to profile.
++ assert(ReturnTypeEntry::static_cell_count() < TypeStackSlotEntries::per_arg_count(), "can't move past ret type");
++ shadd(mdp, tmp, mdp, tmp, exact_log2(DataLayout::cell_size));
++ }
++ sd(mdp, Address(fp, frame::interpreter_frame_mdp_offset * wordSize));
++ } else {
++ assert(MethodData::profile_return(), "either profile call args or call ret");
++ update_mdp_by_constant(mdp, in_bytes(TypeEntriesAtCall::return_only_size()));
++ }
++
++ // mdp points right after the end of the
++ // CallTypeData/VirtualCallTypeData, right after the cells for the
++ // return value type if there's one
++
++ bind(profile_continue);
++ }
++}
++
++void InterpreterMacroAssembler::profile_return_type(Register mdp, Register ret, Register tmp) {
++ assert_different_registers(mdp, ret, tmp, xbcp, t0, t1);
++ if (ProfileInterpreter && MethodData::profile_return()) {
++ Label profile_continue, done;
++
++ test_method_data_pointer(mdp, profile_continue);
++
++ if (MethodData::profile_return_jsr292_only()) {
++ assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
++
++ // If we don't profile all invoke bytecodes we must make sure
++ // it's a bytecode we indeed profile. We can't go back to the
++ // begining of the ProfileData we intend to update to check its
++ // type because we're right after it and we don't known its
++ // length
++ Label do_profile;
++ lbu(t0, Address(xbcp, 0));
++ mv(tmp, (u1)Bytecodes::_invokedynamic);
++ beq(t0, tmp, do_profile);
++ mv(tmp, (u1)Bytecodes::_invokehandle);
++ beq(t0, tmp, do_profile);
++ get_method(tmp);
++ lhu(t0, Address(tmp, Method::intrinsic_id_offset_in_bytes()));
++ mv(t1, static_cast<int>(vmIntrinsics::_compiledLambdaForm));
++ bne(t0, t1, profile_continue);
++ bind(do_profile);
++ }
++
++ Address mdo_ret_addr(mdp, -in_bytes(ReturnTypeEntry::size()));
++ mv(tmp, ret);
++ profile_obj_type(tmp, mdo_ret_addr, t1);
++
++ bind(profile_continue);
++ }
++}
++
++void InterpreterMacroAssembler::profile_parameters_type(Register mdp, Register tmp1, Register tmp2, Register tmp3) {
++ assert_different_registers(t0, t1, mdp, tmp1, tmp2, tmp3);
++ if (ProfileInterpreter && MethodData::profile_parameters()) {
++ Label profile_continue, done;
++
++ test_method_data_pointer(mdp, profile_continue);
++
++ // Load the offset of the area within the MDO used for
++ // parameters. If it's negative we're not profiling any parameters
++ lwu(tmp1, Address(mdp, in_bytes(MethodData::parameters_type_data_di_offset()) - in_bytes(MethodData::data_offset())));
++ srli(tmp2, tmp1, 31);
++ bnez(tmp2, profile_continue); // i.e. sign bit set
++
++ // Compute a pointer to the area for parameters from the offset
++ // and move the pointer to the slot for the last
++ // parameters. Collect profiling from last parameter down.
++ // mdo start + parameters offset + array length - 1
++ add(mdp, mdp, tmp1);
++ ld(tmp1, Address(mdp, ArrayData::array_len_offset()));
++ add(tmp1, tmp1, - TypeStackSlotEntries::per_arg_count());
++
++ Label loop;
++ bind(loop);
++
++ int off_base = in_bytes(ParametersTypeData::stack_slot_offset(0));
++ int type_base = in_bytes(ParametersTypeData::type_offset(0));
++ int per_arg_scale = exact_log2(DataLayout::cell_size);
++ add(t0, mdp, off_base);
++ add(t1, mdp, type_base);
++
++ shadd(tmp2, tmp1, t0, tmp2, per_arg_scale);
++ // load offset on the stack from the slot for this parameter
++ ld(tmp2, Address(tmp2, 0));
++ neg(tmp2, tmp2);
++
++ // read the parameter from the local area
++ shadd(tmp2, tmp2, xlocals, tmp2, Interpreter::logStackElementSize);
++ ld(tmp2, Address(tmp2, 0));
++
++ // profile the parameter
++ shadd(t1, tmp1, t1, t0, per_arg_scale);
++ Address arg_type(t1, 0);
++ profile_obj_type(tmp2, arg_type, tmp3);
++
++ // go to next parameter
++ add(tmp1, tmp1, - TypeStackSlotEntries::per_arg_count());
++ bgez(tmp1, loop);
++
++ bind(profile_continue);
++ }
++}
++
++void InterpreterMacroAssembler::get_method_counters(Register method,
++ Register mcs, Label& skip) {
++ Label has_counters;
++ ld(mcs, Address(method, Method::method_counters_offset()));
++ bnez(mcs, has_counters);
++ call_VM(noreg, CAST_FROM_FN_PTR(address,
++ InterpreterRuntime::build_method_counters), method);
++ ld(mcs, Address(method, Method::method_counters_offset()));
++ beqz(mcs, skip); // No MethodCounters allocated, OutOfMemory
++ bind(has_counters);
++}
++
++#ifdef ASSERT
++void InterpreterMacroAssembler::verify_access_flags(Register access_flags, uint32_t flag,
++ const char* msg, bool stop_by_hit) {
++ Label L;
++ test_bit(t0, access_flags, exact_log2(flag));
++ if (stop_by_hit) {
++ beqz(t0, L);
++ } else {
++ bnez(t0, L);
++ }
++ stop(msg);
++ bind(L);
++}
++
++void InterpreterMacroAssembler::verify_frame_setup() {
++ Label L;
++ const Address monitor_block_top(fp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
++ ld(t0, monitor_block_top);
++ beq(esp, t0, L);
++ stop("broken stack frame setup in interpreter");
++ bind(L);
++}
++#endif
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/interp_masm_riscv.hpp
+@@ -0,0 +1,285 @@
++/*
++ * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, 2015, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_INTERP_MASM_RISCV_HPP
++#define CPU_RISCV_INTERP_MASM_RISCV_HPP
++
++#include "asm/macroAssembler.hpp"
++#include "interpreter/invocationCounter.hpp"
++#include "runtime/frame.hpp"
++
++// This file specializes the assember with interpreter-specific macros
++
++typedef ByteSize (*OffsetFunction)(uint);
++
++class InterpreterMacroAssembler: public MacroAssembler {
++ protected:
++ // Interpreter specific version of call_VM_base
++ using MacroAssembler::call_VM_leaf_base;
++
++ virtual void call_VM_leaf_base(address entry_point,
++ int number_of_arguments);
++
++ virtual void call_VM_base(Register oop_result,
++ Register java_thread,
++ Register last_java_sp,
++ address entry_point,
++ int number_of_arguments,
++ bool check_exceptions);
++
++ // base routine for all dispatches
++ void dispatch_base(TosState state, address* table, bool verifyoop = true,
++ bool generate_poll = false, Register Rs = t0);
++
++ public:
++ InterpreterMacroAssembler(CodeBuffer* code) : MacroAssembler(code) {}
++ virtual ~InterpreterMacroAssembler() {}
++
++ void load_earlyret_value(TosState state);
++
++ void jump_to_entry(address entry);
++
++ virtual void check_and_handle_popframe(Register java_thread);
++ virtual void check_and_handle_earlyret(Register java_thread);
++
++ // Interpreter-specific registers
++ void save_bcp() {
++ sd(xbcp, Address(fp, frame::interpreter_frame_bcp_offset * wordSize));
++ }
++
++ void restore_bcp() {
++ ld(xbcp, Address(fp, frame::interpreter_frame_bcp_offset * wordSize));
++ }
++
++ void restore_locals() {
++ ld(xlocals, Address(fp, frame::interpreter_frame_locals_offset * wordSize));
++ }
++
++ void restore_constant_pool_cache() {
++ ld(xcpool, Address(fp, frame::interpreter_frame_cache_offset * wordSize));
++ }
++
++ void get_dispatch();
++
++ // Helpers for runtime call arguments/results
++ void get_method(Register reg) {
++ ld(reg, Address(fp, frame::interpreter_frame_method_offset * wordSize));
++ }
++
++ void get_const(Register reg) {
++ get_method(reg);
++ ld(reg, Address(reg, in_bytes(Method::const_offset())));
++ }
++
++ void get_constant_pool(Register reg) {
++ get_const(reg);
++ ld(reg, Address(reg, in_bytes(ConstMethod::constants_offset())));
++ }
++
++ void get_constant_pool_cache(Register reg) {
++ get_constant_pool(reg);
++ ld(reg, Address(reg, ConstantPool::cache_offset_in_bytes()));
++ }
++
++ void get_cpool_and_tags(Register cpool, Register tags) {
++ get_constant_pool(cpool);
++ ld(tags, Address(cpool, ConstantPool::tags_offset_in_bytes()));
++ }
++
++ void get_unsigned_2_byte_index_at_bcp(Register reg, int bcp_offset);
++ void get_cache_and_index_at_bcp(Register cache, Register index, int bcp_offset, size_t index_size = sizeof(u2));
++ void get_cache_and_index_and_bytecode_at_bcp(Register cache, Register index, Register bytecode, int byte_no, int bcp_offset, size_t index_size = sizeof(u2));
++ void get_cache_entry_pointer_at_bcp(Register cache, Register tmp, int bcp_offset, size_t index_size = sizeof(u2));
++ void get_cache_index_at_bcp(Register index, int bcp_offset, size_t index_size = sizeof(u2));
++ void get_method_counters(Register method, Register mcs, Label& skip);
++
++ // Load cpool->resolved_references(index).
++ void load_resolved_reference_at_index(Register result, Register index, Register tmp = x15);
++
++ // Load cpool->resolved_klass_at(index).
++ void load_resolved_klass_at_offset(Register cpool, Register index, Register klass, Register temp);
++
++ void load_resolved_method_at_index(int byte_no, Register method, Register cache);
++
++ void pop_ptr(Register r = x10);
++ void pop_i(Register r = x10);
++ void pop_l(Register r = x10);
++ void pop_f(FloatRegister r = f10);
++ void pop_d(FloatRegister r = f10);
++ void push_ptr(Register r = x10);
++ void push_i(Register r = x10);
++ void push_l(Register r = x10);
++ void push_f(FloatRegister r = f10);
++ void push_d(FloatRegister r = f10);
++
++ void pop(TosState state); // transition vtos -> state
++ void push(TosState state); // transition state -> vtos
++
++ void empty_expression_stack() {
++ ld(esp, Address(fp, frame::interpreter_frame_monitor_block_top_offset * wordSize));
++ // NULL last_sp until next java call
++ sd(zr, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize));
++ }
++
++ // Helpers for swap and dup
++ void load_ptr(int n, Register val);
++ void store_ptr(int n, Register val);
++
++ // Load float value from 'address'. The value is loaded onto the fp register f10.
++ void load_float(Address src);
++ void load_double(Address src);
++
++ // Generate a subtype check: branch to ok_is_subtype if sub_klass is
++ // a subtype of super_klass.
++ void gen_subtype_check( Register sub_klass, Label &ok_is_subtype );
++
++ // Dispatching
++ void dispatch_prolog(TosState state, int step = 0);
++ void dispatch_epilog(TosState state, int step = 0);
++ // dispatch via t0
++ void dispatch_only(TosState state, bool generate_poll = false, Register Rs = t0);
++ // dispatch normal table via t0 (assume t0 is loaded already)
++ void dispatch_only_normal(TosState state, Register Rs = t0);
++ void dispatch_only_noverify(TosState state, Register Rs = t0);
++ // load t0 from [xbcp + step] and dispatch via t0
++ void dispatch_next(TosState state, int step = 0, bool generate_poll = false);
++ // load t0 from [xbcp] and dispatch via t0 and table
++ void dispatch_via (TosState state, address* table);
++
++ // jump to an invoked target
++ void prepare_to_jump_from_interpreted();
++ void jump_from_interpreted(Register method);
++
++
++ // Returning from interpreted functions
++ //
++ // Removes the current activation (incl. unlocking of monitors)
++ // and sets up the return address. This code is also used for
++ // exception unwindwing. In that case, we do not want to throw
++ // IllegalMonitorStateExceptions, since that might get us into an
++ // infinite rethrow exception loop.
++ // Additionally this code is used for popFrame and earlyReturn.
++ // In popFrame case we want to skip throwing an exception,
++ // installing an exception, and notifying jvmdi.
++ // In earlyReturn case we only want to skip throwing an exception
++ // and installing an exception.
++ void remove_activation(TosState state,
++ bool throw_monitor_exception = true,
++ bool install_monitor_exception = true,
++ bool notify_jvmdi = true);
++
++ // FIXME: Give us a valid frame at a null check.
++ virtual void null_check(Register reg, int offset = -1) {
++ MacroAssembler::null_check(reg, offset);
++ }
++
++ // Object locking
++ void lock_object (Register lock_reg);
++ void unlock_object(Register lock_reg);
++
++ // Interpreter profiling operations
++ void set_method_data_pointer_for_bcp();
++ void test_method_data_pointer(Register mdp, Label& zero_continue);
++ void verify_method_data_pointer();
++
++ void set_mdp_data_at(Register mdp_in, int constant, Register value);
++ void increment_mdp_data_at(Address data, bool decrement = false);
++ void increment_mdp_data_at(Register mdp_in, int constant,
++ bool decrement = false);
++ void increment_mdp_data_at(Register mdp_in, Register reg, int constant,
++ bool decrement = false);
++ void increment_mask_and_jump(Address counter_addr,
++ int increment, Address mask,
++ Register tmp1, Register tmp2,
++ bool preloaded, Label* where);
++
++ void set_mdp_flag_at(Register mdp_in, int flag_constant);
++ void test_mdp_data_at(Register mdp_in, int offset, Register value,
++ Register test_value_out,
++ Label& not_equal_continue);
++
++ void record_klass_in_profile(Register receiver, Register mdp,
++ Register reg2, bool is_virtual_call);
++ void record_klass_in_profile_helper(Register receiver, Register mdp,
++ Register reg2,
++ Label& done, bool is_virtual_call);
++ void record_item_in_profile_helper(Register item, Register mdp,
++ Register reg2, int start_row, Label& done, int total_rows,
++ OffsetFunction item_offset_fn, OffsetFunction item_count_offset_fn,
++ int non_profiled_offset);
++
++ void update_mdp_by_offset(Register mdp_in, int offset_of_offset);
++ void update_mdp_by_offset(Register mdp_in, Register reg, int offset_of_disp);
++ void update_mdp_by_constant(Register mdp_in, int constant);
++ void update_mdp_for_ret(Register return_bci);
++
++ // narrow int return value
++ void narrow(Register result);
++
++ void profile_taken_branch(Register mdp, Register bumped_count);
++ void profile_not_taken_branch(Register mdp);
++ void profile_call(Register mdp);
++ void profile_final_call(Register mdp);
++ void profile_virtual_call(Register receiver, Register mdp,
++ Register t1,
++ bool receiver_can_be_null = false);
++ void profile_ret(Register return_bci, Register mdp);
++ void profile_null_seen(Register mdp);
++ void profile_typecheck(Register mdp, Register klass, Register temp);
++ void profile_typecheck_failed(Register mdp);
++ void profile_switch_default(Register mdp);
++ void profile_switch_case(Register index_in_scratch, Register mdp,
++ Register temp);
++
++ void profile_obj_type(Register obj, const Address& mdo_addr, Register tmp);
++ void profile_arguments_type(Register mdp, Register callee, Register tmp, bool is_virtual);
++ void profile_return_type(Register mdp, Register ret, Register tmp);
++ void profile_parameters_type(Register mdp, Register tmp1, Register tmp2, Register tmp3);
++
++ // Debugging
++ // only if +VerifyFPU && (state == ftos || state == dtos)
++ void verify_FPU(int stack_depth, TosState state = ftos);
++
++ typedef enum { NotifyJVMTI, SkipNotifyJVMTI } NotifyMethodExitMode;
++
++ // support for jvmti/dtrace
++ void notify_method_entry();
++ void notify_method_exit(TosState state, NotifyMethodExitMode mode);
++
++ virtual void _call_Unimplemented(address call_site) {
++ save_bcp();
++ set_last_Java_frame(esp, fp, (address) pc(), t0);
++ MacroAssembler::_call_Unimplemented(call_site);
++ }
++
++#ifdef ASSERT
++ void verify_access_flags(Register access_flags, uint32_t flag,
++ const char* msg, bool stop_by_hit = true);
++ void verify_frame_setup();
++#endif
++};
++
++#endif // CPU_RISCV_INTERP_MASM_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/interpreterRT_riscv.cpp
+@@ -0,0 +1,295 @@
++/*
++ * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/macroAssembler.inline.hpp"
++#include "interpreter/interp_masm.hpp"
++#include "interpreter/interpreter.hpp"
++#include "interpreter/interpreterRuntime.hpp"
++#include "memory/allocation.inline.hpp"
++#include "memory/universe.hpp"
++#include "oops/method.hpp"
++#include "oops/oop.inline.hpp"
++#include "runtime/handles.inline.hpp"
++#include "runtime/icache.hpp"
++#include "runtime/interfaceSupport.inline.hpp"
++#include "runtime/signature.hpp"
++
++#define __ _masm->
++
++// Implementation of SignatureHandlerGenerator
++Register InterpreterRuntime::SignatureHandlerGenerator::from() { return xlocals; }
++Register InterpreterRuntime::SignatureHandlerGenerator::to() { return sp; }
++Register InterpreterRuntime::SignatureHandlerGenerator::temp() { return t0; }
++
++Register InterpreterRuntime::SignatureHandlerGenerator::next_gpr() {
++ if (_num_reg_int_args < Argument::n_int_register_parameters_c - 1) {
++ return g_INTArgReg[++_num_reg_int_args];
++ }
++ return noreg;
++}
++
++FloatRegister InterpreterRuntime::SignatureHandlerGenerator::next_fpr() {
++ if (_num_reg_fp_args < Argument::n_float_register_parameters_c) {
++ return g_FPArgReg[_num_reg_fp_args++];
++ } else {
++ return fnoreg;
++ }
++}
++
++int InterpreterRuntime::SignatureHandlerGenerator::next_stack_offset() {
++ int ret = _stack_offset;
++ _stack_offset += wordSize;
++ return ret;
++}
++
++InterpreterRuntime::SignatureHandlerGenerator::SignatureHandlerGenerator(
++ const methodHandle& method, CodeBuffer* buffer) : NativeSignatureIterator(method) {
++ _masm = new MacroAssembler(buffer); // allocate on resourse area by default
++ _num_reg_int_args = (method->is_static() ? 1 : 0);
++ _num_reg_fp_args = 0;
++ _stack_offset = 0;
++}
++
++void InterpreterRuntime::SignatureHandlerGenerator::pass_int() {
++ const Address src(from(), Interpreter::local_offset_in_bytes(offset()));
++
++ Register reg = next_gpr();
++ if (reg != noreg) {
++ __ lw(reg, src);
++ } else {
++ __ lw(x10, src);
++ __ sw(x10, Address(to(), next_stack_offset()));
++ }
++}
++
++void InterpreterRuntime::SignatureHandlerGenerator::pass_long() {
++ const Address src(from(), Interpreter::local_offset_in_bytes(offset() + 1));
++
++ Register reg = next_gpr();
++ if (reg != noreg) {
++ __ ld(reg, src);
++ } else {
++ __ ld(x10, src);
++ __ sd(x10, Address(to(), next_stack_offset()));
++ }
++}
++
++void InterpreterRuntime::SignatureHandlerGenerator::pass_float() {
++ const Address src(from(), Interpreter::local_offset_in_bytes(offset()));
++
++ FloatRegister reg = next_fpr();
++ if (reg != fnoreg) {
++ __ flw(reg, src);
++ } else {
++ // a floating-point argument is passed according to the integer calling
++ // convention if no floating-point argument register available
++ pass_int();
++ }
++}
++
++void InterpreterRuntime::SignatureHandlerGenerator::pass_double() {
++ const Address src(from(), Interpreter::local_offset_in_bytes(offset() + 1));
++
++ FloatRegister reg = next_fpr();
++ if (reg != fnoreg) {
++ __ fld(reg, src);
++ } else {
++ // a floating-point argument is passed according to the integer calling
++ // convention if no floating-point argument register available
++ pass_long();
++ }
++}
++
++void InterpreterRuntime::SignatureHandlerGenerator::pass_object() {
++ Register reg = next_gpr();
++ if (reg == c_rarg1) {
++ assert(offset() == 0, "argument register 1 can only be (non-null) receiver");
++ __ addi(c_rarg1, from(), Interpreter::local_offset_in_bytes(offset()));
++ } else if (reg != noreg) {
++ // c_rarg2-c_rarg7
++ __ addi(x10, from(), Interpreter::local_offset_in_bytes(offset()));
++ __ mv(reg, zr); //_num_reg_int_args:c_rarg -> 1:c_rarg2, 2:c_rarg3...
++ __ ld(temp(), x10);
++ Label L;
++ __ beqz(temp(), L);
++ __ mv(reg, x10);
++ __ bind(L);
++ } else {
++ //to stack
++ __ addi(x10, from(), Interpreter::local_offset_in_bytes(offset()));
++ __ ld(temp(), x10);
++ Label L;
++ __ bnez(temp(), L);
++ __ mv(x10, zr);
++ __ bind(L);
++ assert(sizeof(jobject) == wordSize, "");
++ __ sd(x10, Address(to(), next_stack_offset()));
++ }
++}
++
++void InterpreterRuntime::SignatureHandlerGenerator::generate(uint64_t fingerprint) {
++ // generate code to handle arguments
++ iterate(fingerprint);
++
++ // return result handler
++ __ la(x10, ExternalAddress(Interpreter::result_handler(method()->result_type())));
++ __ ret();
++
++ __ flush();
++}
++
++
++// Implementation of SignatureHandlerLibrary
++
++void SignatureHandlerLibrary::pd_set_handler(address handler) {}
++
++
++class SlowSignatureHandler
++ : public NativeSignatureIterator {
++ private:
++ address _from;
++ intptr_t* _to;
++ intptr_t* _int_args;
++ intptr_t* _fp_args;
++ intptr_t* _fp_identifiers;
++ unsigned int _num_reg_int_args;
++ unsigned int _num_reg_fp_args;
++
++ intptr_t* single_slot_addr() {
++ intptr_t* from_addr = (intptr_t*)(_from + Interpreter::local_offset_in_bytes(0));
++ _from -= Interpreter::stackElementSize;
++ return from_addr;
++ }
++
++ intptr_t* double_slot_addr() {
++ intptr_t* from_addr = (intptr_t*)(_from + Interpreter::local_offset_in_bytes(1));
++ _from -= 2 * Interpreter::stackElementSize;
++ return from_addr;
++ }
++
++ int pass_gpr(intptr_t value) {
++ if (_num_reg_int_args < Argument::n_int_register_parameters_c - 1) {
++ *_int_args++ = value;
++ return _num_reg_int_args++;
++ }
++ return -1;
++ }
++
++ int pass_fpr(intptr_t value) {
++ if (_num_reg_fp_args < Argument::n_float_register_parameters_c) {
++ *_fp_args++ = value;
++ return _num_reg_fp_args++;
++ }
++ return -1;
++ }
++
++ void pass_stack(intptr_t value) {
++ *_to++ = value;
++ }
++
++ virtual void pass_int() {
++ jint value = *(jint*)single_slot_addr();
++ if (pass_gpr(value) < 0) {
++ pass_stack(value);
++ }
++ }
++
++ virtual void pass_long() {
++ intptr_t value = *double_slot_addr();
++ if (pass_gpr(value) < 0) {
++ pass_stack(value);
++ }
++ }
++
++ virtual void pass_object() {
++ intptr_t* addr = single_slot_addr();
++ intptr_t value = *addr == 0 ? NULL : (intptr_t)addr;
++ if (pass_gpr(value) < 0) {
++ pass_stack(value);
++ }
++ }
++
++ virtual void pass_float() {
++ jint value = *(jint*) single_slot_addr();
++ // a floating-point argument is passed according to the integer calling
++ // convention if no floating-point argument register available
++ if (pass_fpr(value) < 0 && pass_gpr(value) < 0) {
++ pass_stack(value);
++ }
++ }
++
++ virtual void pass_double() {
++ intptr_t value = *double_slot_addr();
++ int arg = pass_fpr(value);
++ if (0 <= arg) {
++ *_fp_identifiers |= (1ull << arg); // mark as double
++ } else if (pass_gpr(value) < 0) { // no need to mark if passing by integer registers or stack
++ pass_stack(value);
++ }
++ }
++
++ public:
++ SlowSignatureHandler(const methodHandle& method, address from, intptr_t* to)
++ : NativeSignatureIterator(method)
++ {
++ _from = from;
++ _to = to;
++
++ _int_args = to - (method->is_static() ? 16 : 17);
++ _fp_args = to - 8;
++ _fp_identifiers = to - 9;
++ *(int*) _fp_identifiers = 0;
++ _num_reg_int_args = (method->is_static() ? 1 : 0);
++ _num_reg_fp_args = 0;
++ }
++
++ ~SlowSignatureHandler()
++ {
++ _from = NULL;
++ _to = NULL;
++ _int_args = NULL;
++ _fp_args = NULL;
++ _fp_identifiers = NULL;
++ }
++};
++
++
++JRT_ENTRY(address,
++ InterpreterRuntime::slow_signature_handler(JavaThread* current,
++ Method* method,
++ intptr_t* from,
++ intptr_t* to))
++ methodHandle m(current, (Method*)method);
++ assert(m->is_native(), "sanity check");
++
++ // handle arguments
++ SlowSignatureHandler ssh(m, (address)from, to);
++ ssh.iterate(UCONST64(-1));
++
++ // return result handler
++ return Interpreter::result_handler(m->result_type());
++JRT_END
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/interpreterRT_riscv.hpp
+@@ -0,0 +1,68 @@
++/*
++ * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_INTERPRETERRT_RISCV_HPP
++#define CPU_RISCV_INTERPRETERRT_RISCV_HPP
++
++// This is included in the middle of class Interpreter.
++// Do not include files here.
++
++// native method calls
++
++class SignatureHandlerGenerator: public NativeSignatureIterator {
++ private:
++ MacroAssembler* _masm;
++ unsigned int _num_reg_fp_args;
++ unsigned int _num_reg_int_args;
++ int _stack_offset;
++
++ void pass_int();
++ void pass_long();
++ void pass_float();
++ void pass_double();
++ void pass_object();
++
++ Register next_gpr();
++ FloatRegister next_fpr();
++ int next_stack_offset();
++
++ public:
++ // Creation
++ SignatureHandlerGenerator(const methodHandle& method, CodeBuffer* buffer);
++ virtual ~SignatureHandlerGenerator() {
++ _masm = NULL;
++ }
++
++ // Code generation
++ void generate(uint64_t fingerprint);
++
++ // Code generation support
++ static Register from();
++ static Register to();
++ static Register temp();
++};
++
++#endif // CPU_RISCV_INTERPRETERRT_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/javaFrameAnchor_riscv.hpp
+@@ -0,0 +1,86 @@
++/*
++ * Copyright (c) 2002, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_JAVAFRAMEANCHOR_RISCV_HPP
++#define CPU_RISCV_JAVAFRAMEANCHOR_RISCV_HPP
++
++private:
++
++ // FP value associated with _last_Java_sp:
++ intptr_t* volatile _last_Java_fp; // pointer is volatile not what it points to
++
++public:
++ // Each arch must define reset, save, restore
++ // These are used by objects that only care about:
++ // 1 - initializing a new state (thread creation, javaCalls)
++ // 2 - saving a current state (javaCalls)
++ // 3 - restoring an old state (javaCalls)
++
++ void clear(void) {
++ // clearing _last_Java_sp must be first
++ _last_Java_sp = NULL;
++ OrderAccess::release();
++ _last_Java_fp = NULL;
++ _last_Java_pc = NULL;
++ }
++
++ void copy(JavaFrameAnchor* src) {
++ // In order to make sure the transition state is valid for "this"
++ // We must clear _last_Java_sp before copying the rest of the new data
++ //
++ // Hack Alert: Temporary bugfix for 4717480/4721647
++ // To act like previous version (pd_cache_state) don't NULL _last_Java_sp
++ // unless the value is changing
++ //
++ assert(src != NULL, "Src should not be NULL.");
++ if (_last_Java_sp != src->_last_Java_sp) {
++ _last_Java_sp = NULL;
++ OrderAccess::release();
++ }
++ _last_Java_fp = src->_last_Java_fp;
++ _last_Java_pc = src->_last_Java_pc;
++ // Must be last so profiler will always see valid frame if has_last_frame() is true
++ _last_Java_sp = src->_last_Java_sp;
++ }
++
++ bool walkable(void) { return _last_Java_sp != NULL && _last_Java_pc != NULL; }
++
++ void make_walkable();
++
++ intptr_t* last_Java_sp(void) const { return _last_Java_sp; }
++
++ const address last_Java_pc(void) { return _last_Java_pc; }
++
++private:
++
++ static ByteSize last_Java_fp_offset() { return byte_offset_of(JavaFrameAnchor, _last_Java_fp); }
++
++public:
++
++ void set_last_Java_sp(intptr_t* java_sp) { _last_Java_sp = java_sp; OrderAccess::release(); }
++
++ intptr_t* last_Java_fp(void) { return _last_Java_fp; }
++
++#endif // CPU_RISCV_JAVAFRAMEANCHOR_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/jniFastGetField_riscv.cpp
+@@ -0,0 +1,221 @@
++/*
++ * Copyright (c) 2004, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/macroAssembler.hpp"
++#include "gc/shared/barrierSet.hpp"
++#include "gc/shared/barrierSetAssembler.hpp"
++#include "memory/resourceArea.hpp"
++#include "prims/jniFastGetField.hpp"
++#include "prims/jvm_misc.hpp"
++#include "prims/jvmtiExport.hpp"
++#include "runtime/safepoint.hpp"
++
++#define __ masm->
++
++#define BUFFER_SIZE 30*wordSize
++
++// Instead of issuing a LoadLoad barrier we create an address
++// dependency between loads; this might be more efficient.
++
++// Common register usage:
++// x10/f10: result
++// c_rarg0: jni env
++// c_rarg1: obj
++// c_rarg2: jfield id
++
++static const Register robj = x13;
++static const Register rcounter = x14;
++static const Register roffset = x15;
++static const Register rcounter_addr = x16;
++static const Register result = x17;
++
++address JNI_FastGetField::generate_fast_get_int_field0(BasicType type) {
++ const char *name;
++ switch (type) {
++ case T_BOOLEAN: name = "jni_fast_GetBooleanField"; break;
++ case T_BYTE: name = "jni_fast_GetByteField"; break;
++ case T_CHAR: name = "jni_fast_GetCharField"; break;
++ case T_SHORT: name = "jni_fast_GetShortField"; break;
++ case T_INT: name = "jni_fast_GetIntField"; break;
++ case T_LONG: name = "jni_fast_GetLongField"; break;
++ case T_FLOAT: name = "jni_fast_GetFloatField"; break;
++ case T_DOUBLE: name = "jni_fast_GetDoubleField"; break;
++ default: ShouldNotReachHere();
++ name = NULL; // unreachable
++ }
++ ResourceMark rm;
++ BufferBlob* blob = BufferBlob::create(name, BUFFER_SIZE);
++ CodeBuffer cbuf(blob);
++ MacroAssembler* masm = new MacroAssembler(&cbuf);
++ address fast_entry = __ pc();
++
++ Address target(SafepointSynchronize::safepoint_counter_addr());
++ __ relocate(target.rspec(), [&] {
++ int32_t offset;
++ __ la_patchable(rcounter_addr, target, offset);
++ __ addi(rcounter_addr, rcounter_addr, offset);
++ });
++
++ Label slow;
++ Address safepoint_counter_addr(rcounter_addr, 0);
++ __ lwu(rcounter, safepoint_counter_addr);
++ // An even value means there are no ongoing safepoint operations
++ __ test_bit(t0, rcounter, 0);
++ __ bnez(t0, slow);
++
++ if (JvmtiExport::can_post_field_access()) {
++ // Using barrier to order wrt. JVMTI check and load of result.
++ __ membar(MacroAssembler::LoadLoad);
++
++ // Check to see if a field access watch has been set before we
++ // take the fast path.
++ ExternalAddress target((address) JvmtiExport::get_field_access_count_addr());
++ __ relocate(target.rspec(), [&] {
++ int32_t offset;
++ __ la_patchable(result, target, offset);
++ __ lwu(result, Address(result, offset));
++ });
++ __ bnez(result, slow);
++
++ __ mv(robj, c_rarg1);
++ } else {
++ // Using address dependency to order wrt. load of result.
++ __ xorr(robj, c_rarg1, rcounter);
++ __ xorr(robj, robj, rcounter); // obj, since
++ // robj ^ rcounter ^ rcounter == robj
++ // robj is address dependent on rcounter.
++ }
++
++ // Both robj and t0 are clobbered by try_resolve_jobject_in_native.
++ BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
++ assert_cond(bs != NULL);
++ bs->try_resolve_jobject_in_native(masm, c_rarg0, robj, t0, slow);
++
++ __ srli(roffset, c_rarg2, 2); // offset
++
++ assert(count < LIST_CAPACITY, "LIST_CAPACITY too small");
++ speculative_load_pclist[count] = __ pc(); // Used by the segfault handler
++ __ add(roffset, robj, roffset);
++
++ switch (type) {
++ case T_BOOLEAN: __ lbu(result, Address(roffset, 0)); break;
++ case T_BYTE: __ lb(result, Address(roffset, 0)); break;
++ case T_CHAR: __ lhu(result, Address(roffset, 0)); break;
++ case T_SHORT: __ lh(result, Address(roffset, 0)); break;
++ case T_INT: __ lw(result, Address(roffset, 0)); break;
++ case T_LONG: __ ld(result, Address(roffset, 0)); break;
++ case T_FLOAT: {
++ __ flw(f28, Address(roffset, 0)); // f28 as temporaries
++ __ fmv_x_w(result, f28); // f{31--0}-->x
++ break;
++ }
++ case T_DOUBLE: {
++ __ fld(f28, Address(roffset, 0)); // f28 as temporaries
++ __ fmv_x_d(result, f28); // d{63--0}-->x
++ break;
++ }
++ default: ShouldNotReachHere();
++ }
++
++ // Using acquire: Order JVMTI check and load of result wrt. succeeding check
++ // (LoadStore for volatile field).
++ __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
++
++ __ lw(t0, safepoint_counter_addr);
++ __ bne(rcounter, t0, slow);
++
++ switch (type) {
++ case T_FLOAT: __ fmv_w_x(f10, result); break;
++ case T_DOUBLE: __ fmv_d_x(f10, result); break;
++ default: __ mv(x10, result); break;
++ }
++ __ ret();
++
++ slowcase_entry_pclist[count++] = __ pc();
++ __ bind(slow);
++ address slow_case_addr;
++ switch (type) {
++ case T_BOOLEAN: slow_case_addr = jni_GetBooleanField_addr(); break;
++ case T_BYTE: slow_case_addr = jni_GetByteField_addr(); break;
++ case T_CHAR: slow_case_addr = jni_GetCharField_addr(); break;
++ case T_SHORT: slow_case_addr = jni_GetShortField_addr(); break;
++ case T_INT: slow_case_addr = jni_GetIntField_addr(); break;
++ case T_LONG: slow_case_addr = jni_GetLongField_addr(); break;
++ case T_FLOAT: slow_case_addr = jni_GetFloatField_addr(); break;
++ case T_DOUBLE: slow_case_addr = jni_GetDoubleField_addr(); break;
++ default: ShouldNotReachHere();
++ slow_case_addr = NULL; // unreachable
++ }
++
++ {
++ __ enter();
++ ExternalAddress target(slow_case_addr);
++ __ relocate(target.rspec(), [&] {
++ int32_t offset;
++ __ la_patchable(t0, target, offset);
++ __ jalr(x1, t0, offset);
++ });
++ __ leave();
++ __ ret();
++ }
++ __ flush();
++
++ return fast_entry;
++}
++
++
++address JNI_FastGetField::generate_fast_get_boolean_field() {
++ return generate_fast_get_int_field0(T_BOOLEAN);
++}
++
++address JNI_FastGetField::generate_fast_get_byte_field() {
++ return generate_fast_get_int_field0(T_BYTE);
++}
++
++address JNI_FastGetField::generate_fast_get_char_field() {
++ return generate_fast_get_int_field0(T_CHAR);
++}
++
++address JNI_FastGetField::generate_fast_get_short_field() {
++ return generate_fast_get_int_field0(T_SHORT);
++}
++
++address JNI_FastGetField::generate_fast_get_int_field() {
++ return generate_fast_get_int_field0(T_INT);
++}
++
++address JNI_FastGetField::generate_fast_get_long_field() {
++ return generate_fast_get_int_field0(T_LONG);
++}
++
++address JNI_FastGetField::generate_fast_get_float_field() {
++ return generate_fast_get_int_field0(T_FLOAT);
++}
++
++address JNI_FastGetField::generate_fast_get_double_field() {
++ return generate_fast_get_int_field0(T_DOUBLE);
++}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/jniTypes_riscv.hpp
+@@ -0,0 +1,106 @@
++/*
++ * Copyright (c) 1998, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_JNITYPES_RISCV_HPP
++#define CPU_RISCV_JNITYPES_RISCV_HPP
++
++#include "jni.h"
++#include "memory/allStatic.hpp"
++#include "oops/oop.hpp"
++
++// This file holds platform-dependent routines used to write primitive jni
++// types to the array of arguments passed into JavaCalls::call
++
++class JNITypes : private AllStatic {
++ // These functions write a java primitive type (in native format)
++ // to a java stack slot array to be passed as an argument to JavaCalls:calls.
++ // I.e., they are functionally 'push' operations if they have a 'pos'
++ // formal parameter. Note that jlong's and jdouble's are written
++ // _in reverse_ of the order in which they appear in the interpreter
++ // stack. This is because call stubs (see stubGenerator_sparc.cpp)
++ // reverse the argument list constructed by JavaCallArguments (see
++ // javaCalls.hpp).
++
++public:
++ // Ints are stored in native format in one JavaCallArgument slot at *to.
++ static inline void put_int(jint from, intptr_t *to) { *(jint *)(to + 0 ) = from; }
++ static inline void put_int(jint from, intptr_t *to, int& pos) { *(jint *)(to + pos++) = from; }
++ static inline void put_int(jint *from, intptr_t *to, int& pos) { *(jint *)(to + pos++) = *from; }
++
++ // Longs are stored in native format in one JavaCallArgument slot at
++ // *(to+1).
++ static inline void put_long(jlong from, intptr_t *to) {
++ *(jlong*) (to + 1) = from;
++ }
++
++ static inline void put_long(jlong from, intptr_t *to, int& pos) {
++ *(jlong*) (to + 1 + pos) = from;
++ pos += 2;
++ }
++
++ static inline void put_long(jlong *from, intptr_t *to, int& pos) {
++ *(jlong*) (to + 1 + pos) = *from;
++ pos += 2;
++ }
++
++ // Oops are stored in native format in one JavaCallArgument slot at *to.
++ static inline void put_obj(const Handle& from_handle, intptr_t *to, int& pos) { *(to + pos++) = (intptr_t)from_handle.raw_value(); }
++ static inline void put_obj(jobject from_handle, intptr_t *to, int& pos) { *(to + pos++) = (intptr_t)from_handle; }
++
++ // Floats are stored in native format in one JavaCallArgument slot at *to.
++ static inline void put_float(jfloat from, intptr_t *to) { *(jfloat *)(to + 0 ) = from; }
++ static inline void put_float(jfloat from, intptr_t *to, int& pos) { *(jfloat *)(to + pos++) = from; }
++ static inline void put_float(jfloat *from, intptr_t *to, int& pos) { *(jfloat *)(to + pos++) = *from; }
++
++#undef _JNI_SLOT_OFFSET
++#define _JNI_SLOT_OFFSET 1
++ // Doubles are stored in native word format in one JavaCallArgument
++ // slot at *(to+1).
++ static inline void put_double(jdouble from, intptr_t *to) {
++ *(jdouble*) (to + 1) = from;
++ }
++
++ static inline void put_double(jdouble from, intptr_t *to, int& pos) {
++ *(jdouble*) (to + 1 + pos) = from;
++ pos += 2;
++ }
++
++ static inline void put_double(jdouble *from, intptr_t *to, int& pos) {
++ *(jdouble*) (to + 1 + pos) = *from;
++ pos += 2;
++ }
++
++ // The get_xxx routines, on the other hand, actually _do_ fetch
++ // java primitive types from the interpreter stack.
++ // No need to worry about alignment on Intel.
++ static inline jint get_int (intptr_t *from) { return *(jint *) from; }
++ static inline jlong get_long (intptr_t *from) { return *(jlong *) (from + _JNI_SLOT_OFFSET); }
++ static inline oop get_obj (intptr_t *from) { return *(oop *) from; }
++ static inline jfloat get_float (intptr_t *from) { return *(jfloat *) from; }
++ static inline jdouble get_double(intptr_t *from) { return *(jdouble *)(from + _JNI_SLOT_OFFSET); }
++#undef _JNI_SLOT_OFFSET
++};
++
++#endif // CPU_RISCV_JNITYPES_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/macroAssembler_riscv.cpp
+@@ -0,0 +1,4392 @@
++/*
++ * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2023, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/assembler.hpp"
++#include "asm/assembler.inline.hpp"
++#include "compiler/disassembler.hpp"
++#include "gc/shared/barrierSet.hpp"
++#include "gc/shared/barrierSetAssembler.hpp"
++#include "gc/shared/cardTable.hpp"
++#include "gc/shared/cardTableBarrierSet.hpp"
++#include "gc/shared/collectedHeap.hpp"
++#include "interpreter/bytecodeHistogram.hpp"
++#include "interpreter/interpreter.hpp"
++#include "memory/resourceArea.hpp"
++#include "memory/universe.hpp"
++#include "nativeInst_riscv.hpp"
++#include "oops/accessDecorators.hpp"
++#include "oops/compressedOops.inline.hpp"
++#include "oops/klass.inline.hpp"
++#include "oops/oop.hpp"
++#include "runtime/biasedLocking.hpp"
++#include "runtime/interfaceSupport.inline.hpp"
++#include "runtime/jniHandles.inline.hpp"
++#include "runtime/sharedRuntime.hpp"
++#include "runtime/stubRoutines.hpp"
++#include "runtime/thread.hpp"
++#include "utilities/powerOfTwo.hpp"
++#ifdef COMPILER2
++#include "opto/compile.hpp"
++#include "opto/node.hpp"
++#include "opto/output.hpp"
++#endif
++
++#ifdef PRODUCT
++#define BLOCK_COMMENT(str) /* nothing */
++#else
++#define BLOCK_COMMENT(str) block_comment(str)
++#endif
++#define BIND(label) bind(label); __ BLOCK_COMMENT(#label ":")
++
++static void pass_arg0(MacroAssembler* masm, Register arg) {
++ if (c_rarg0 != arg) {
++ masm->mv(c_rarg0, arg);
++ }
++}
++
++static void pass_arg1(MacroAssembler* masm, Register arg) {
++ if (c_rarg1 != arg) {
++ masm->mv(c_rarg1, arg);
++ }
++}
++
++static void pass_arg2(MacroAssembler* masm, Register arg) {
++ if (c_rarg2 != arg) {
++ masm->mv(c_rarg2, arg);
++ }
++}
++
++static void pass_arg3(MacroAssembler* masm, Register arg) {
++ if (c_rarg3 != arg) {
++ masm->mv(c_rarg3, arg);
++ }
++}
++
++void MacroAssembler::align(int modulus, int extra_offset) {
++ CompressibleRegion cr(this);
++ while ((offset() + extra_offset) % modulus != 0) { nop(); }
++}
++
++void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
++ call_VM_base(oop_result, noreg, noreg, entry_point, number_of_arguments, check_exceptions);
++}
++
++// Implementation of call_VM versions
++
++void MacroAssembler::call_VM(Register oop_result,
++ address entry_point,
++ bool check_exceptions) {
++ call_VM_helper(oop_result, entry_point, 0, check_exceptions);
++}
++
++void MacroAssembler::call_VM(Register oop_result,
++ address entry_point,
++ Register arg_1,
++ bool check_exceptions) {
++ pass_arg1(this, arg_1);
++ call_VM_helper(oop_result, entry_point, 1, check_exceptions);
++}
++
++void MacroAssembler::call_VM(Register oop_result,
++ address entry_point,
++ Register arg_1,
++ Register arg_2,
++ bool check_exceptions) {
++ assert(arg_1 != c_rarg2, "smashed arg");
++ pass_arg2(this, arg_2);
++ pass_arg1(this, arg_1);
++ call_VM_helper(oop_result, entry_point, 2, check_exceptions);
++}
++
++void MacroAssembler::call_VM(Register oop_result,
++ address entry_point,
++ Register arg_1,
++ Register arg_2,
++ Register arg_3,
++ bool check_exceptions) {
++ assert(arg_1 != c_rarg3, "smashed arg");
++ assert(arg_2 != c_rarg3, "smashed arg");
++ pass_arg3(this, arg_3);
++
++ assert(arg_1 != c_rarg2, "smashed arg");
++ pass_arg2(this, arg_2);
++
++ pass_arg1(this, arg_1);
++ call_VM_helper(oop_result, entry_point, 3, check_exceptions);
++}
++
++void MacroAssembler::call_VM(Register oop_result,
++ Register last_java_sp,
++ address entry_point,
++ int number_of_arguments,
++ bool check_exceptions) {
++ call_VM_base(oop_result, xthread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
++}
++
++void MacroAssembler::call_VM(Register oop_result,
++ Register last_java_sp,
++ address entry_point,
++ Register arg_1,
++ bool check_exceptions) {
++ pass_arg1(this, arg_1);
++ call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
++}
++
++void MacroAssembler::call_VM(Register oop_result,
++ Register last_java_sp,
++ address entry_point,
++ Register arg_1,
++ Register arg_2,
++ bool check_exceptions) {
++
++ assert(arg_1 != c_rarg2, "smashed arg");
++ pass_arg2(this, arg_2);
++ pass_arg1(this, arg_1);
++ call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
++}
++
++void MacroAssembler::call_VM(Register oop_result,
++ Register last_java_sp,
++ address entry_point,
++ Register arg_1,
++ Register arg_2,
++ Register arg_3,
++ bool check_exceptions) {
++ assert(arg_1 != c_rarg3, "smashed arg");
++ assert(arg_2 != c_rarg3, "smashed arg");
++ pass_arg3(this, arg_3);
++ assert(arg_1 != c_rarg2, "smashed arg");
++ pass_arg2(this, arg_2);
++ pass_arg1(this, arg_1);
++ call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
++}
++
++// these are no-ops overridden by InterpreterMacroAssembler
++void MacroAssembler::check_and_handle_earlyret(Register java_thread) {}
++void MacroAssembler::check_and_handle_popframe(Register java_thread) {}
++
++// Calls to C land
++//
++// When entering C land, the fp, & esp of the last Java frame have to be recorded
++// in the (thread-local) JavaThread object. When leaving C land, the last Java fp
++// has to be reset to 0. This is required to allow proper stack traversal.
++void MacroAssembler::set_last_Java_frame(Register last_java_sp,
++ Register last_java_fp,
++ Register last_java_pc,
++ Register tmp) {
++
++ if (last_java_pc->is_valid()) {
++ sd(last_java_pc, Address(xthread,
++ JavaThread::frame_anchor_offset() +
++ JavaFrameAnchor::last_Java_pc_offset()));
++ }
++
++ // determine last_java_sp register
++ if (last_java_sp == sp) {
++ mv(tmp, sp);
++ last_java_sp = tmp;
++ } else if (!last_java_sp->is_valid()) {
++ last_java_sp = esp;
++ }
++
++ sd(last_java_sp, Address(xthread, JavaThread::last_Java_sp_offset()));
++
++ // last_java_fp is optional
++ if (last_java_fp->is_valid()) {
++ sd(last_java_fp, Address(xthread, JavaThread::last_Java_fp_offset()));
++ }
++}
++
++void MacroAssembler::set_last_Java_frame(Register last_java_sp,
++ Register last_java_fp,
++ address last_java_pc,
++ Register tmp) {
++ assert(last_java_pc != NULL, "must provide a valid PC");
++
++ la(tmp, last_java_pc);
++ sd(tmp, Address(xthread, JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()));
++
++ set_last_Java_frame(last_java_sp, last_java_fp, noreg, tmp);
++}
++
++void MacroAssembler::set_last_Java_frame(Register last_java_sp,
++ Register last_java_fp,
++ Label &L,
++ Register tmp) {
++ if (L.is_bound()) {
++ set_last_Java_frame(last_java_sp, last_java_fp, target(L), tmp);
++ } else {
++ L.add_patch_at(code(), locator());
++ IncompressibleRegion ir(this); // the label address will be patched back.
++ set_last_Java_frame(last_java_sp, last_java_fp, pc() /* Patched later */, tmp);
++ }
++}
++
++void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
++ // we must set sp to zero to clear frame
++ sd(zr, Address(xthread, JavaThread::last_Java_sp_offset()));
++
++ // must clear fp, so that compiled frames are not confused; it is
++ // possible that we need it only for debugging
++ if (clear_fp) {
++ sd(zr, Address(xthread, JavaThread::last_Java_fp_offset()));
++ }
++
++ // Always clear the pc because it could have been set by make_walkable()
++ sd(zr, Address(xthread, JavaThread::last_Java_pc_offset()));
++}
++
++void MacroAssembler::call_VM_base(Register oop_result,
++ Register java_thread,
++ Register last_java_sp,
++ address entry_point,
++ int number_of_arguments,
++ bool check_exceptions) {
++ // determine java_thread register
++ if (!java_thread->is_valid()) {
++ java_thread = xthread;
++ }
++ // determine last_java_sp register
++ if (!last_java_sp->is_valid()) {
++ last_java_sp = esp;
++ }
++
++ // debugging support
++ assert(number_of_arguments >= 0 , "cannot have negative number of arguments");
++ assert(java_thread == xthread, "unexpected register");
++
++ assert(java_thread != oop_result , "cannot use the same register for java_thread & oop_result");
++ assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
++
++ // push java thread (becomes first argument of C function)
++ mv(c_rarg0, java_thread);
++
++ // set last Java frame before call
++ assert(last_java_sp != fp, "can't use fp");
++
++ Label l;
++ set_last_Java_frame(last_java_sp, fp, l, t0);
++
++ // do the call, remove parameters
++ MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments, &l);
++
++ // reset last Java frame
++ // Only interpreter should have to clear fp
++ reset_last_Java_frame(true);
++
++ // C++ interp handles this in the interpreter
++ check_and_handle_popframe(java_thread);
++ check_and_handle_earlyret(java_thread);
++
++ if (check_exceptions) {
++ // check for pending exceptions (java_thread is set upon return)
++ ld(t0, Address(java_thread, in_bytes(Thread::pending_exception_offset())));
++ Label ok;
++ beqz(t0, ok);
++ RuntimeAddress target(StubRoutines::forward_exception_entry());
++ relocate(target.rspec(), [&] {
++ int32_t offset;
++ la_patchable(t0, target, offset);
++ jalr(x0, t0, offset);
++ });
++ bind(ok);
++ }
++
++ // get oop result if there is one and reset the value in the thread
++ if (oop_result->is_valid()) {
++ get_vm_result(oop_result, java_thread);
++ }
++}
++
++void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
++ ld(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
++ sd(zr, Address(java_thread, JavaThread::vm_result_offset()));
++ verify_oop(oop_result, "broken oop in call_VM_base");
++}
++
++void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
++ ld(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
++ sd(zr, Address(java_thread, JavaThread::vm_result_2_offset()));
++}
++
++void MacroAssembler::clinit_barrier(Register klass, Register tmp, Label* L_fast_path, Label* L_slow_path) {
++ assert(L_fast_path != NULL || L_slow_path != NULL, "at least one is required");
++ assert_different_registers(klass, xthread, tmp);
++
++ Label L_fallthrough, L_tmp;
++ if (L_fast_path == NULL) {
++ L_fast_path = &L_fallthrough;
++ } else if (L_slow_path == NULL) {
++ L_slow_path = &L_fallthrough;
++ }
++
++ // Fast path check: class is fully initialized
++ lbu(tmp, Address(klass, InstanceKlass::init_state_offset()));
++ sub(tmp, tmp, InstanceKlass::fully_initialized);
++ beqz(tmp, *L_fast_path);
++
++ // Fast path check: current thread is initializer thread
++ ld(tmp, Address(klass, InstanceKlass::init_thread_offset()));
++
++ if (L_slow_path == &L_fallthrough) {
++ beq(xthread, tmp, *L_fast_path);
++ bind(*L_slow_path);
++ } else if (L_fast_path == &L_fallthrough) {
++ bne(xthread, tmp, *L_slow_path);
++ bind(*L_fast_path);
++ } else {
++ Unimplemented();
++ }
++}
++
++void MacroAssembler::verify_oop(Register reg, const char* s) {
++ if (!VerifyOops) { return; }
++
++ // Pass register number to verify_oop_subroutine
++ const char* b = NULL;
++ {
++ ResourceMark rm;
++ stringStream ss;
++ ss.print("verify_oop: %s: %s", reg->name(), s);
++ b = code_string(ss.as_string());
++ }
++ BLOCK_COMMENT("verify_oop {");
++
++ push_reg(RegSet::of(ra, t0, t1, c_rarg0), sp);
++
++ mv(c_rarg0, reg); // c_rarg0 : x10
++ {
++ // The length of the instruction sequence emitted should not depend
++ // on the address of the char buffer so that the size of mach nodes for
++ // scratch emit and normal emit matches.
++ IncompressibleRegion ir(this); // Fixed length
++ movptr(t0, (address) b);
++ }
++
++ // call indirectly to solve generation ordering problem
++ ExternalAddress target(StubRoutines::verify_oop_subroutine_entry_address());
++ relocate(target.rspec(), [&] {
++ int32_t offset;
++ la_patchable(t1, target, offset);
++ ld(t1, Address(t1, offset));
++ });
++ jalr(t1);
++
++ pop_reg(RegSet::of(ra, t0, t1, c_rarg0), sp);
++
++ BLOCK_COMMENT("} verify_oop");
++}
++
++void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
++ if (!VerifyOops) {
++ return;
++ }
++
++ const char* b = NULL;
++ {
++ ResourceMark rm;
++ stringStream ss;
++ ss.print("verify_oop_addr: %s", s);
++ b = code_string(ss.as_string());
++ }
++ BLOCK_COMMENT("verify_oop_addr {");
++
++ push_reg(RegSet::of(ra, t0, t1, c_rarg0), sp);
++
++ if (addr.uses(sp)) {
++ la(x10, addr);
++ ld(x10, Address(x10, 4 * wordSize));
++ } else {
++ ld(x10, addr);
++ }
++
++ {
++ // The length of the instruction sequence emitted should not depend
++ // on the address of the char buffer so that the size of mach nodes for
++ // scratch emit and normal emit matches.
++ IncompressibleRegion ir(this); // Fixed length
++ movptr(t0, (address) b);
++ }
++
++ // call indirectly to solve generation ordering problem
++ ExternalAddress target(StubRoutines::verify_oop_subroutine_entry_address());
++ relocate(target.rspec(), [&] {
++ int32_t offset;
++ la_patchable(t1, target, offset);
++ ld(t1, Address(t1, offset));
++ });
++ jalr(t1);
++
++ pop_reg(RegSet::of(ra, t0, t1, c_rarg0), sp);
++
++ BLOCK_COMMENT("} verify_oop_addr");
++}
++
++Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
++ int extra_slot_offset) {
++ // cf. TemplateTable::prepare_invoke(), if (load_receiver).
++ int stackElementSize = Interpreter::stackElementSize;
++ int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
++#ifdef ASSERT
++ int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
++ assert(offset1 - offset == stackElementSize, "correct arithmetic");
++#endif
++ if (arg_slot.is_constant()) {
++ return Address(esp, arg_slot.as_constant() * stackElementSize + offset);
++ } else {
++ assert_different_registers(t0, arg_slot.as_register());
++ shadd(t0, arg_slot.as_register(), esp, t0, exact_log2(stackElementSize));
++ return Address(t0, offset);
++ }
++}
++
++#ifndef PRODUCT
++extern "C" void findpc(intptr_t x);
++#endif
++
++void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[])
++{
++ // In order to get locks to work, we need to fake a in_VM state
++ if (ShowMessageBoxOnError) {
++ JavaThread* thread = JavaThread::current();
++ JavaThreadState saved_state = thread->thread_state();
++ thread->set_thread_state(_thread_in_vm);
++#ifndef PRODUCT
++ if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
++ ttyLocker ttyl;
++ BytecodeCounter::print();
++ }
++#endif
++ if (os::message_box(msg, "Execution stopped, print registers?")) {
++ ttyLocker ttyl;
++ tty->print_cr(" pc = 0x%016lx", pc);
++#ifndef PRODUCT
++ tty->cr();
++ findpc(pc);
++ tty->cr();
++#endif
++ tty->print_cr(" x0 = 0x%016lx", regs[0]);
++ tty->print_cr(" x1 = 0x%016lx", regs[1]);
++ tty->print_cr(" x2 = 0x%016lx", regs[2]);
++ tty->print_cr(" x3 = 0x%016lx", regs[3]);
++ tty->print_cr(" x4 = 0x%016lx", regs[4]);
++ tty->print_cr(" x5 = 0x%016lx", regs[5]);
++ tty->print_cr(" x6 = 0x%016lx", regs[6]);
++ tty->print_cr(" x7 = 0x%016lx", regs[7]);
++ tty->print_cr(" x8 = 0x%016lx", regs[8]);
++ tty->print_cr(" x9 = 0x%016lx", regs[9]);
++ tty->print_cr("x10 = 0x%016lx", regs[10]);
++ tty->print_cr("x11 = 0x%016lx", regs[11]);
++ tty->print_cr("x12 = 0x%016lx", regs[12]);
++ tty->print_cr("x13 = 0x%016lx", regs[13]);
++ tty->print_cr("x14 = 0x%016lx", regs[14]);
++ tty->print_cr("x15 = 0x%016lx", regs[15]);
++ tty->print_cr("x16 = 0x%016lx", regs[16]);
++ tty->print_cr("x17 = 0x%016lx", regs[17]);
++ tty->print_cr("x18 = 0x%016lx", regs[18]);
++ tty->print_cr("x19 = 0x%016lx", regs[19]);
++ tty->print_cr("x20 = 0x%016lx", regs[20]);
++ tty->print_cr("x21 = 0x%016lx", regs[21]);
++ tty->print_cr("x22 = 0x%016lx", regs[22]);
++ tty->print_cr("x23 = 0x%016lx", regs[23]);
++ tty->print_cr("x24 = 0x%016lx", regs[24]);
++ tty->print_cr("x25 = 0x%016lx", regs[25]);
++ tty->print_cr("x26 = 0x%016lx", regs[26]);
++ tty->print_cr("x27 = 0x%016lx", regs[27]);
++ tty->print_cr("x28 = 0x%016lx", regs[28]);
++ tty->print_cr("x30 = 0x%016lx", regs[30]);
++ tty->print_cr("x31 = 0x%016lx", regs[31]);
++ BREAKPOINT;
++ }
++ }
++ fatal("DEBUG MESSAGE: %s", msg);
++}
++
++void MacroAssembler::resolve_jobject(Register value, Register thread, Register tmp) {
++ Label done, not_weak;
++ beqz(value, done); // Use NULL as-is.
++
++ // Test for jweak tag.
++ test_bit(t0, value, exact_log2(JNIHandles::weak_tag_mask));
++ beqz(t0, not_weak);
++
++ // Resolve jweak.
++ access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF, value,
++ Address(value, -JNIHandles::weak_tag_value), tmp, thread);
++ verify_oop(value);
++ j(done);
++
++ bind(not_weak);
++ // Resolve (untagged) jobject.
++ access_load_at(T_OBJECT, IN_NATIVE, value, Address(value, 0), tmp, thread);
++ verify_oop(value);
++ bind(done);
++}
++
++void MacroAssembler::stop(const char* msg) {
++ BLOCK_COMMENT(msg);
++ illegal_instruction(Assembler::csr::time);
++ emit_int64((uintptr_t)msg);
++}
++
++void MacroAssembler::unimplemented(const char* what) {
++ const char* buf = NULL;
++ {
++ ResourceMark rm;
++ stringStream ss;
++ ss.print("unimplemented: %s", what);
++ buf = code_string(ss.as_string());
++ }
++ stop(buf);
++}
++
++void MacroAssembler::emit_static_call_stub() {
++ IncompressibleRegion ir(this); // Fixed length: see CompiledStaticCall::to_interp_stub_size().
++ // CompiledDirectStaticCall::set_to_interpreted knows the
++ // exact layout of this stub.
++
++ mov_metadata(xmethod, (Metadata*)NULL);
++
++ // Jump to the entry point of the i2c stub.
++ int32_t offset = 0;
++ movptr(t0, 0, offset);
++ jalr(x0, t0, offset);
++}
++
++void MacroAssembler::call_VM_leaf_base(address entry_point,
++ int number_of_arguments,
++ Label *retaddr) {
++ push_reg(RegSet::of(t0, xmethod), sp); // push << t0 & xmethod >> to sp
++ call(entry_point);
++ if (retaddr != NULL) {
++ bind(*retaddr);
++ }
++ pop_reg(RegSet::of(t0, xmethod), sp); // pop << t0 & xmethod >> from sp
++}
++
++void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
++ call_VM_leaf_base(entry_point, number_of_arguments);
++}
++
++void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
++ pass_arg0(this, arg_0);
++ call_VM_leaf_base(entry_point, 1);
++}
++
++void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
++ pass_arg0(this, arg_0);
++ pass_arg1(this, arg_1);
++ call_VM_leaf_base(entry_point, 2);
++}
++
++void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0,
++ Register arg_1, Register arg_2) {
++ pass_arg0(this, arg_0);
++ pass_arg1(this, arg_1);
++ pass_arg2(this, arg_2);
++ call_VM_leaf_base(entry_point, 3);
++}
++
++void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
++ pass_arg0(this, arg_0);
++ MacroAssembler::call_VM_leaf_base(entry_point, 1);
++}
++
++void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
++
++ assert(arg_0 != c_rarg1, "smashed arg");
++ pass_arg1(this, arg_1);
++ pass_arg0(this, arg_0);
++ MacroAssembler::call_VM_leaf_base(entry_point, 2);
++}
++
++void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
++ assert(arg_0 != c_rarg2, "smashed arg");
++ assert(arg_1 != c_rarg2, "smashed arg");
++ pass_arg2(this, arg_2);
++ assert(arg_0 != c_rarg1, "smashed arg");
++ pass_arg1(this, arg_1);
++ pass_arg0(this, arg_0);
++ MacroAssembler::call_VM_leaf_base(entry_point, 3);
++}
++
++void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
++ assert(arg_0 != c_rarg3, "smashed arg");
++ assert(arg_1 != c_rarg3, "smashed arg");
++ assert(arg_2 != c_rarg3, "smashed arg");
++ pass_arg3(this, arg_3);
++ assert(arg_0 != c_rarg2, "smashed arg");
++ assert(arg_1 != c_rarg2, "smashed arg");
++ pass_arg2(this, arg_2);
++ assert(arg_0 != c_rarg1, "smashed arg");
++ pass_arg1(this, arg_1);
++ pass_arg0(this, arg_0);
++ MacroAssembler::call_VM_leaf_base(entry_point, 4);
++}
++
++void MacroAssembler::la(Register Rd, const address dest) {
++ int64_t offset = dest - pc();
++ if (is_simm32(offset)) {
++ auipc(Rd, (int32_t)offset + 0x800); //0x800, Note:the 11th sign bit
++ addi(Rd, Rd, ((int64_t)offset << 52) >> 52);
++ } else {
++ movptr(Rd, dest);
++ }
++}
++
++void MacroAssembler::la(Register Rd, const Address &adr) {
++ switch (adr.getMode()) {
++ case Address::literal: {
++ relocInfo::relocType rtype = adr.rspec().reloc()->type();
++ if (rtype == relocInfo::none) {
++ mv(Rd, (intptr_t)(adr.target()));
++ } else {
++ relocate(adr.rspec(), [&] {
++ movptr(Rd, adr.target());
++ });
++ }
++ break;
++ }
++ case Address::base_plus_offset: {
++ Address new_adr = legitimize_address(Rd, adr);
++ if (!(new_adr.base() == Rd && new_adr.offset() == 0)) {
++ addi(Rd, new_adr.base(), new_adr.offset());
++ }
++ break;
++ }
++ default:
++ ShouldNotReachHere();
++ }
++}
++
++void MacroAssembler::la(Register Rd, Label &label) {
++ IncompressibleRegion ir(this); // the label address may be patched back.
++ la(Rd, target(label));
++}
++
++void MacroAssembler::li32(Register Rd, int32_t imm) {
++ // int32_t is in range 0x8000 0000 ~ 0x7fff ffff, and imm[31] is the sign bit
++ int64_t upper = imm, lower = imm;
++ lower = (imm << 20) >> 20;
++ upper -= lower;
++ upper = (int32_t)upper;
++ // lui Rd, imm[31:12] + imm[11]
++ lui(Rd, upper);
++ // use addiw to distinguish li32 to li64
++ addiw(Rd, Rd, lower);
++}
++
++void MacroAssembler::li64(Register Rd, int64_t imm) {
++ // Load upper 32 bits. upper = imm[63:32], but if imm[31] == 1 or
++ // (imm[31:20] == 0x7ff && imm[19] == 1), upper = imm[63:32] + 1.
++ int64_t lower = imm & 0xffffffff;
++ lower -= ((lower << 44) >> 44);
++ int64_t tmp_imm = ((uint64_t)(imm & 0xffffffff00000000)) + (uint64_t)lower;
++ int32_t upper = (tmp_imm - (int32_t)lower) >> 32;
++
++ // Load upper 32 bits
++ int64_t up = upper, lo = upper;
++ lo = (lo << 52) >> 52;
++ up -= lo;
++ up = (int32_t)up;
++ lui(Rd, up);
++ addi(Rd, Rd, lo);
++
++ // Load the rest 32 bits.
++ slli(Rd, Rd, 12);
++ addi(Rd, Rd, (int32_t)lower >> 20);
++ slli(Rd, Rd, 12);
++ lower = ((int32_t)imm << 12) >> 20;
++ addi(Rd, Rd, lower);
++ slli(Rd, Rd, 8);
++ lower = imm & 0xff;
++ addi(Rd, Rd, lower);
++}
++
++void MacroAssembler::li(Register Rd, int64_t imm) {
++ // int64_t is in range 0x8000 0000 0000 0000 ~ 0x7fff ffff ffff ffff
++ // li -> c.li
++ if (do_compress() && (is_simm6(imm) && Rd != x0)) {
++ c_li(Rd, imm);
++ return;
++ }
++
++ int shift = 12;
++ int64_t upper = imm, lower = imm;
++ // Split imm to a lower 12-bit sign-extended part and the remainder,
++ // because addi will sign-extend the lower imm.
++ lower = ((int32_t)imm << 20) >> 20;
++ upper -= lower;
++
++ // Test whether imm is a 32-bit integer.
++ if (!(((imm) & ~(int64_t)0x7fffffff) == 0 ||
++ (((imm) & ~(int64_t)0x7fffffff) == ~(int64_t)0x7fffffff))) {
++ while (((upper >> shift) & 1) == 0) { shift++; }
++ upper >>= shift;
++ li(Rd, upper);
++ slli(Rd, Rd, shift);
++ if (lower != 0) {
++ addi(Rd, Rd, lower);
++ }
++ } else {
++ // 32-bit integer
++ Register hi_Rd = zr;
++ if (upper != 0) {
++ lui(Rd, (int32_t)upper);
++ hi_Rd = Rd;
++ }
++ if (lower != 0 || hi_Rd == zr) {
++ addiw(Rd, hi_Rd, lower);
++ }
++ }
++}
++
++#define INSN(NAME, REGISTER) \
++ void MacroAssembler::NAME(const address dest, Register temp) { \
++ assert_cond(dest != NULL); \
++ int64_t distance = dest - pc(); \
++ if (is_simm21(distance) && ((distance % 2) == 0)) { \
++ Assembler::jal(REGISTER, distance); \
++ } else { \
++ assert(temp != noreg, "expecting a register"); \
++ int32_t offset = 0; \
++ movptr(temp, dest, offset); \
++ Assembler::jalr(REGISTER, temp, offset); \
++ } \
++ } \
++
++ INSN(j, x0);
++ INSN(jal, x1);
++
++#undef INSN
++
++#define INSN(NAME, REGISTER) \
++ void MacroAssembler::NAME(const Address &adr, Register temp) { \
++ switch (adr.getMode()) { \
++ case Address::literal: { \
++ relocate(adr.rspec()); \
++ NAME(adr.target(), temp); \
++ break; \
++ } \
++ case Address::base_plus_offset: { \
++ int32_t offset = ((int32_t)adr.offset() << 20) >> 20; \
++ la(temp, Address(adr.base(), adr.offset() - offset)); \
++ Assembler::jalr(REGISTER, temp, offset); \
++ break; \
++ } \
++ default: \
++ ShouldNotReachHere(); \
++ } \
++ }
++
++ INSN(j, x0);
++ INSN(jal, x1);
++
++#undef INSN
++
++#define INSN(NAME) \
++ void MacroAssembler::NAME(Register Rd, const address dest, Register temp) { \
++ assert_cond(dest != NULL); \
++ int64_t distance = dest - pc(); \
++ if (is_simm21(distance) && ((distance % 2) == 0)) { \
++ Assembler::NAME(Rd, distance); \
++ } else { \
++ assert_different_registers(Rd, temp); \
++ int32_t offset = 0; \
++ movptr(temp, dest, offset); \
++ jalr(Rd, temp, offset); \
++ } \
++ } \
++ void MacroAssembler::NAME(Register Rd, Label &L, Register temp) { \
++ assert_different_registers(Rd, temp); \
++ wrap_label(Rd, L, temp, &MacroAssembler::NAME); \
++ }
++
++ INSN(jal);
++
++#undef INSN
++
++#define INSN(NAME, REGISTER) \
++ void MacroAssembler::NAME(Label &l, Register temp) { \
++ jal(REGISTER, l, temp); \
++ } \
++
++ INSN(j, x0);
++ INSN(jal, x1);
++
++#undef INSN
++
++void MacroAssembler::wrap_label(Register Rt, Label &L, Register tmp, load_insn_by_temp insn) {
++ if (L.is_bound()) {
++ (this->*insn)(Rt, target(L), tmp);
++ } else {
++ L.add_patch_at(code(), locator());
++ (this->*insn)(Rt, pc(), tmp);
++ }
++}
++
++void MacroAssembler::wrap_label(Register Rt, Label &L, jal_jalr_insn insn) {
++ if (L.is_bound()) {
++ (this->*insn)(Rt, target(L));
++ } else {
++ L.add_patch_at(code(), locator());
++ (this->*insn)(Rt, pc());
++ }
++}
++
++void MacroAssembler::wrap_label(Register r1, Register r2, Label &L,
++ compare_and_branch_insn insn,
++ compare_and_branch_label_insn neg_insn, bool is_far) {
++ if (is_far) {
++ Label done;
++ (this->*neg_insn)(r1, r2, done, /* is_far */ false);
++ j(L);
++ bind(done);
++ } else {
++ if (L.is_bound()) {
++ (this->*insn)(r1, r2, target(L));
++ } else {
++ L.add_patch_at(code(), locator());
++ (this->*insn)(r1, r2, pc());
++ }
++ }
++}
++
++#define INSN(NAME, NEG_INSN) \
++ void MacroAssembler::NAME(Register Rs1, Register Rs2, Label &L, bool is_far) { \
++ wrap_label(Rs1, Rs2, L, &MacroAssembler::NAME, &MacroAssembler::NEG_INSN, is_far); \
++ }
++
++ INSN(beq, bne);
++ INSN(bne, beq);
++ INSN(blt, bge);
++ INSN(bge, blt);
++ INSN(bltu, bgeu);
++ INSN(bgeu, bltu);
++
++#undef INSN
++
++#define INSN(NAME) \
++ void MacroAssembler::NAME##z(Register Rs, const address dest) { \
++ NAME(Rs, zr, dest); \
++ } \
++ void MacroAssembler::NAME##z(Register Rs, Label &l, bool is_far) { \
++ NAME(Rs, zr, l, is_far); \
++ } \
++
++ INSN(beq);
++ INSN(bne);
++ INSN(blt);
++ INSN(ble);
++ INSN(bge);
++ INSN(bgt);
++
++#undef INSN
++
++#define INSN(NAME, NEG_INSN) \
++ void MacroAssembler::NAME(Register Rs, Register Rt, const address dest) { \
++ NEG_INSN(Rt, Rs, dest); \
++ } \
++ void MacroAssembler::NAME(Register Rs, Register Rt, Label &l, bool is_far) { \
++ NEG_INSN(Rt, Rs, l, is_far); \
++ }
++
++ INSN(bgt, blt);
++ INSN(ble, bge);
++ INSN(bgtu, bltu);
++ INSN(bleu, bgeu);
++
++#undef INSN
++
++// Float compare branch instructions
++
++#define INSN(NAME, FLOATCMP, BRANCH) \
++ void MacroAssembler::float_##NAME(FloatRegister Rs1, FloatRegister Rs2, Label &l, bool is_far, bool is_unordered) { \
++ FLOATCMP##_s(t0, Rs1, Rs2); \
++ BRANCH(t0, l, is_far); \
++ } \
++ void MacroAssembler::double_##NAME(FloatRegister Rs1, FloatRegister Rs2, Label &l, bool is_far, bool is_unordered) { \
++ FLOATCMP##_d(t0, Rs1, Rs2); \
++ BRANCH(t0, l, is_far); \
++ }
++
++ INSN(beq, feq, bnez);
++ INSN(bne, feq, beqz);
++
++#undef INSN
++
++
++#define INSN(NAME, FLOATCMP1, FLOATCMP2) \
++ void MacroAssembler::float_##NAME(FloatRegister Rs1, FloatRegister Rs2, Label &l, \
++ bool is_far, bool is_unordered) { \
++ if (is_unordered) { \
++ /* jump if either source is NaN or condition is expected */ \
++ FLOATCMP2##_s(t0, Rs2, Rs1); \
++ beqz(t0, l, is_far); \
++ } else { \
++ /* jump if no NaN in source and condition is expected */ \
++ FLOATCMP1##_s(t0, Rs1, Rs2); \
++ bnez(t0, l, is_far); \
++ } \
++ } \
++ void MacroAssembler::double_##NAME(FloatRegister Rs1, FloatRegister Rs2, Label &l, \
++ bool is_far, bool is_unordered) { \
++ if (is_unordered) { \
++ /* jump if either source is NaN or condition is expected */ \
++ FLOATCMP2##_d(t0, Rs2, Rs1); \
++ beqz(t0, l, is_far); \
++ } else { \
++ /* jump if no NaN in source and condition is expected */ \
++ FLOATCMP1##_d(t0, Rs1, Rs2); \
++ bnez(t0, l, is_far); \
++ } \
++ }
++
++ INSN(ble, fle, flt);
++ INSN(blt, flt, fle);
++
++#undef INSN
++
++#define INSN(NAME, CMP) \
++ void MacroAssembler::float_##NAME(FloatRegister Rs1, FloatRegister Rs2, Label &l, \
++ bool is_far, bool is_unordered) { \
++ float_##CMP(Rs2, Rs1, l, is_far, is_unordered); \
++ } \
++ void MacroAssembler::double_##NAME(FloatRegister Rs1, FloatRegister Rs2, Label &l, \
++ bool is_far, bool is_unordered) { \
++ double_##CMP(Rs2, Rs1, l, is_far, is_unordered); \
++ }
++
++ INSN(bgt, blt);
++ INSN(bge, ble);
++
++#undef INSN
++
++
++#define INSN(NAME, CSR) \
++ void MacroAssembler::NAME(Register Rd) { \
++ csrr(Rd, CSR); \
++ }
++
++ INSN(rdinstret, CSR_INSTRET);
++ INSN(rdcycle, CSR_CYCLE);
++ INSN(rdtime, CSR_TIME);
++ INSN(frcsr, CSR_FCSR);
++ INSN(frrm, CSR_FRM);
++ INSN(frflags, CSR_FFLAGS);
++
++#undef INSN
++
++void MacroAssembler::csrr(Register Rd, unsigned csr) {
++ csrrs(Rd, csr, x0);
++}
++
++#define INSN(NAME, OPFUN) \
++ void MacroAssembler::NAME(unsigned csr, Register Rs) { \
++ OPFUN(x0, csr, Rs); \
++ }
++
++ INSN(csrw, csrrw);
++ INSN(csrs, csrrs);
++ INSN(csrc, csrrc);
++
++#undef INSN
++
++#define INSN(NAME, OPFUN) \
++ void MacroAssembler::NAME(unsigned csr, unsigned imm) { \
++ OPFUN(x0, csr, imm); \
++ }
++
++ INSN(csrwi, csrrwi);
++ INSN(csrsi, csrrsi);
++ INSN(csrci, csrrci);
++
++#undef INSN
++
++#define INSN(NAME, CSR) \
++ void MacroAssembler::NAME(Register Rd, Register Rs) { \
++ csrrw(Rd, CSR, Rs); \
++ }
++
++ INSN(fscsr, CSR_FCSR);
++ INSN(fsrm, CSR_FRM);
++ INSN(fsflags, CSR_FFLAGS);
++
++#undef INSN
++
++#define INSN(NAME) \
++ void MacroAssembler::NAME(Register Rs) { \
++ NAME(x0, Rs); \
++ }
++
++ INSN(fscsr);
++ INSN(fsrm);
++ INSN(fsflags);
++
++#undef INSN
++
++void MacroAssembler::fsrmi(Register Rd, unsigned imm) {
++ guarantee(imm < 5, "Rounding Mode is invalid in Rounding Mode register");
++ csrrwi(Rd, CSR_FRM, imm);
++}
++
++void MacroAssembler::fsflagsi(Register Rd, unsigned imm) {
++ csrrwi(Rd, CSR_FFLAGS, imm);
++}
++
++#define INSN(NAME) \
++ void MacroAssembler::NAME(unsigned imm) { \
++ NAME(x0, imm); \
++ }
++
++ INSN(fsrmi);
++ INSN(fsflagsi);
++
++#undef INSN
++
++void MacroAssembler::push_reg(Register Rs)
++{
++ addi(esp, esp, 0 - wordSize);
++ sd(Rs, Address(esp, 0));
++}
++
++void MacroAssembler::pop_reg(Register Rd)
++{
++ ld(Rd, Address(esp, 0));
++ addi(esp, esp, wordSize);
++}
++
++int MacroAssembler::bitset_to_regs(unsigned int bitset, unsigned char* regs) {
++ int count = 0;
++ // Scan bitset to accumulate register pairs
++ for (int reg = 31; reg >= 0; reg--) {
++ if ((1U << 31) & bitset) {
++ regs[count++] = reg;
++ }
++ bitset <<= 1;
++ }
++ return count;
++}
++
++// Push integer registers in the bitset supplied. Don't push sp.
++// Return the number of words pushed
++int MacroAssembler::push_reg(unsigned int bitset, Register stack) {
++ DEBUG_ONLY(int words_pushed = 0;)
++ unsigned char regs[32];
++ int count = bitset_to_regs(bitset, regs);
++ // reserve one slot to align for odd count
++ int offset = is_even(count) ? 0 : wordSize;
++
++ if (count) {
++ addi(stack, stack, -count * wordSize - offset);
++ }
++ for (int i = count - 1; i >= 0; i--) {
++ sd(as_Register(regs[i]), Address(stack, (count - 1 - i) * wordSize + offset));
++ DEBUG_ONLY(words_pushed++;)
++ }
++
++ assert(words_pushed == count, "oops, pushed != count");
++
++ return count;
++}
++
++int MacroAssembler::pop_reg(unsigned int bitset, Register stack) {
++ DEBUG_ONLY(int words_popped = 0;)
++ unsigned char regs[32];
++ int count = bitset_to_regs(bitset, regs);
++ // reserve one slot to align for odd count
++ int offset = is_even(count) ? 0 : wordSize;
++
++ for (int i = count - 1; i >= 0; i--) {
++ ld(as_Register(regs[i]), Address(stack, (count - 1 - i) * wordSize + offset));
++ DEBUG_ONLY(words_popped++;)
++ }
++
++ if (count) {
++ addi(stack, stack, count * wordSize + offset);
++ }
++ assert(words_popped == count, "oops, popped != count");
++
++ return count;
++}
++
++// Push floating-point registers in the bitset supplied.
++// Return the number of words pushed
++int MacroAssembler::push_fp(unsigned int bitset, Register stack) {
++ DEBUG_ONLY(int words_pushed = 0;)
++ unsigned char regs[32];
++ int count = bitset_to_regs(bitset, regs);
++ int push_slots = count + (count & 1);
++
++ if (count) {
++ addi(stack, stack, -push_slots * wordSize);
++ }
++
++ for (int i = count - 1; i >= 0; i--) {
++ fsd(as_FloatRegister(regs[i]), Address(stack, (push_slots - 1 - i) * wordSize));
++ DEBUG_ONLY(words_pushed++;)
++ }
++
++ assert(words_pushed == count, "oops, pushed(%d) != count(%d)", words_pushed, count);
++
++ return count;
++}
++
++int MacroAssembler::pop_fp(unsigned int bitset, Register stack) {
++ DEBUG_ONLY(int words_popped = 0;)
++ unsigned char regs[32];
++ int count = bitset_to_regs(bitset, regs);
++ int pop_slots = count + (count & 1);
++
++ for (int i = count - 1; i >= 0; i--) {
++ fld(as_FloatRegister(regs[i]), Address(stack, (pop_slots - 1 - i) * wordSize));
++ DEBUG_ONLY(words_popped++;)
++ }
++
++ if (count) {
++ addi(stack, stack, pop_slots * wordSize);
++ }
++
++ assert(words_popped == count, "oops, popped(%d) != count(%d)", words_popped, count);
++
++ return count;
++}
++
++#ifdef COMPILER2
++// Push vector registers in the bitset supplied.
++// Return the number of words pushed
++int MacroAssembler::push_v(unsigned int bitset, Register stack) {
++ int vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE);
++
++ // Scan bitset to accumulate register pairs
++ unsigned char regs[32];
++ int count = bitset_to_regs(bitset, regs);
++
++ for (int i = 0; i < count; i++) {
++ sub(stack, stack, vector_size_in_bytes);
++ vs1r_v(as_VectorRegister(regs[i]), stack);
++ }
++
++ return count * vector_size_in_bytes / wordSize;
++}
++
++int MacroAssembler::pop_v(unsigned int bitset, Register stack) {
++ int vector_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE);
++
++ // Scan bitset to accumulate register pairs
++ unsigned char regs[32];
++ int count = bitset_to_regs(bitset, regs);
++
++ for (int i = count - 1; i >= 0; i--) {
++ vl1re8_v(as_VectorRegister(regs[i]), stack);
++ add(stack, stack, vector_size_in_bytes);
++ }
++
++ return count * vector_size_in_bytes / wordSize;
++}
++#endif // COMPILER2
++
++void MacroAssembler::push_call_clobbered_registers_except(RegSet exclude) {
++ // Push integer registers x7, x10-x17, x28-x31.
++ push_reg(RegSet::of(x7) + RegSet::range(x10, x17) + RegSet::range(x28, x31) - exclude, sp);
++
++ // Push float registers f0-f7, f10-f17, f28-f31.
++ addi(sp, sp, - wordSize * 20);
++ int offset = 0;
++ for (int i = 0; i < 32; i++) {
++ if (i <= f7->encoding() || i >= f28->encoding() || (i >= f10->encoding() && i <= f17->encoding())) {
++ fsd(as_FloatRegister(i), Address(sp, wordSize * (offset++)));
++ }
++ }
++}
++
++void MacroAssembler::pop_call_clobbered_registers_except(RegSet exclude) {
++ int offset = 0;
++ for (int i = 0; i < 32; i++) {
++ if (i <= f7->encoding() || i >= f28->encoding() || (i >= f10->encoding() && i <= f17->encoding())) {
++ fld(as_FloatRegister(i), Address(sp, wordSize * (offset++)));
++ }
++ }
++ addi(sp, sp, wordSize * 20);
++
++ pop_reg(RegSet::of(x7) + RegSet::range(x10, x17) + RegSet::range(x28, x31) - exclude, sp);
++}
++
++void MacroAssembler::push_CPU_state(bool save_vectors, int vector_size_in_bytes) {
++ // integer registers, except zr(x0) & ra(x1) & sp(x2) & gp(x3) & tp(x4)
++ push_reg(RegSet::range(x5, x31), sp);
++
++ // float registers
++ addi(sp, sp, - 32 * wordSize);
++ for (int i = 0; i < 32; i++) {
++ fsd(as_FloatRegister(i), Address(sp, i * wordSize));
++ }
++
++ // vector registers
++ if (save_vectors) {
++ sub(sp, sp, vector_size_in_bytes * VectorRegisterImpl::number_of_registers);
++ vsetvli(t0, x0, Assembler::e64, Assembler::m8);
++ for (int i = 0; i < VectorRegisterImpl::number_of_registers; i += 8) {
++ add(t0, sp, vector_size_in_bytes * i);
++ vse64_v(as_VectorRegister(i), t0);
++ }
++ }
++}
++
++void MacroAssembler::pop_CPU_state(bool restore_vectors, int vector_size_in_bytes) {
++ // vector registers
++ if (restore_vectors) {
++ vsetvli(t0, x0, Assembler::e64, Assembler::m8);
++ for (int i = 0; i < VectorRegisterImpl::number_of_registers; i += 8) {
++ vle64_v(as_VectorRegister(i), sp);
++ add(sp, sp, vector_size_in_bytes * 8);
++ }
++ }
++
++ // float registers
++ for (int i = 0; i < 32; i++) {
++ fld(as_FloatRegister(i), Address(sp, i * wordSize));
++ }
++ addi(sp, sp, 32 * wordSize);
++
++ // integer registers, except zr(x0) & ra(x1) & sp(x2) & gp(x3) & tp(x4)
++ pop_reg(RegSet::range(x5, x31), sp);
++}
++
++static int patch_offset_in_jal(address branch, int64_t offset) {
++ assert(Assembler::is_simm21(offset) && ((offset % 2) == 0),
++ "offset is too large to be patched in one jal instruction!\n");
++ Assembler::patch(branch, 31, 31, (offset >> 20) & 0x1); // offset[20] ==> branch[31]
++ Assembler::patch(branch, 30, 21, (offset >> 1) & 0x3ff); // offset[10:1] ==> branch[30:21]
++ Assembler::patch(branch, 20, 20, (offset >> 11) & 0x1); // offset[11] ==> branch[20]
++ Assembler::patch(branch, 19, 12, (offset >> 12) & 0xff); // offset[19:12] ==> branch[19:12]
++ return NativeInstruction::instruction_size; // only one instruction
++}
++
++static int patch_offset_in_conditional_branch(address branch, int64_t offset) {
++ assert(Assembler::is_simm13(offset) && ((offset % 2) == 0),
++ "offset is too large to be patched in one beq/bge/bgeu/blt/bltu/bne instruction!\n");
++ Assembler::patch(branch, 31, 31, (offset >> 12) & 0x1); // offset[12] ==> branch[31]
++ Assembler::patch(branch, 30, 25, (offset >> 5) & 0x3f); // offset[10:5] ==> branch[30:25]
++ Assembler::patch(branch, 7, 7, (offset >> 11) & 0x1); // offset[11] ==> branch[7]
++ Assembler::patch(branch, 11, 8, (offset >> 1) & 0xf); // offset[4:1] ==> branch[11:8]
++ return NativeInstruction::instruction_size; // only one instruction
++}
++
++static int patch_offset_in_pc_relative(address branch, int64_t offset) {
++ const int PC_RELATIVE_INSTRUCTION_NUM = 2; // auipc, addi/jalr/load
++ Assembler::patch(branch, 31, 12, ((offset + 0x800) >> 12) & 0xfffff); // Auipc. offset[31:12] ==> branch[31:12]
++ Assembler::patch(branch + 4, 31, 20, offset & 0xfff); // Addi/Jalr/Load. offset[11:0] ==> branch[31:20]
++ return PC_RELATIVE_INSTRUCTION_NUM * NativeInstruction::instruction_size;
++}
++
++static int patch_addr_in_movptr(address branch, address target) {
++ const int MOVPTR_INSTRUCTIONS_NUM = 6; // lui + addi + slli + addi + slli + addi/jalr/load
++ int32_t lower = ((intptr_t)target << 35) >> 35;
++ int64_t upper = ((intptr_t)target - lower) >> 29;
++ Assembler::patch(branch + 0, 31, 12, upper & 0xfffff); // Lui. target[48:29] + target[28] ==> branch[31:12]
++ Assembler::patch(branch + 4, 31, 20, (lower >> 17) & 0xfff); // Addi. target[28:17] ==> branch[31:20]
++ Assembler::patch(branch + 12, 31, 20, (lower >> 6) & 0x7ff); // Addi. target[16: 6] ==> branch[31:20]
++ Assembler::patch(branch + 20, 31, 20, lower & 0x3f); // Addi/Jalr/Load. target[ 5: 0] ==> branch[31:20]
++ return MOVPTR_INSTRUCTIONS_NUM * NativeInstruction::instruction_size;
++}
++
++static int patch_imm_in_li64(address branch, address target) {
++ const int LI64_INSTRUCTIONS_NUM = 8; // lui + addi + slli + addi + slli + addi + slli + addi
++ int64_t lower = (intptr_t)target & 0xffffffff;
++ lower = lower - ((lower << 44) >> 44);
++ int64_t tmp_imm = ((uint64_t)((intptr_t)target & 0xffffffff00000000)) + (uint64_t)lower;
++ int32_t upper = (tmp_imm - (int32_t)lower) >> 32;
++ int64_t tmp_upper = upper, tmp_lower = upper;
++ tmp_lower = (tmp_lower << 52) >> 52;
++ tmp_upper -= tmp_lower;
++ tmp_upper >>= 12;
++ // Load upper 32 bits. Upper = target[63:32], but if target[31] = 1 or (target[31:20] == 0x7ff && target[19] == 1),
++ // upper = target[63:32] + 1.
++ Assembler::patch(branch + 0, 31, 12, tmp_upper & 0xfffff); // Lui.
++ Assembler::patch(branch + 4, 31, 20, tmp_lower & 0xfff); // Addi.
++ // Load the rest 32 bits.
++ Assembler::patch(branch + 12, 31, 20, ((int32_t)lower >> 20) & 0xfff); // Addi.
++ Assembler::patch(branch + 20, 31, 20, (((intptr_t)target << 44) >> 52) & 0xfff); // Addi.
++ Assembler::patch(branch + 28, 31, 20, (intptr_t)target & 0xff); // Addi.
++ return LI64_INSTRUCTIONS_NUM * NativeInstruction::instruction_size;
++}
++
++static int patch_imm_in_li32(address branch, int32_t target) {
++ const int LI32_INSTRUCTIONS_NUM = 2; // lui + addiw
++ int64_t upper = (intptr_t)target;
++ int32_t lower = (((int32_t)target) << 20) >> 20;
++ upper -= lower;
++ upper = (int32_t)upper;
++ Assembler::patch(branch + 0, 31, 12, (upper >> 12) & 0xfffff); // Lui.
++ Assembler::patch(branch + 4, 31, 20, lower & 0xfff); // Addiw.
++ return LI32_INSTRUCTIONS_NUM * NativeInstruction::instruction_size;
++}
++
++static long get_offset_of_jal(address insn_addr) {
++ assert_cond(insn_addr != NULL);
++ long offset = 0;
++ unsigned insn = *(unsigned*)insn_addr;
++ long val = (long)Assembler::sextract(insn, 31, 12);
++ offset |= ((val >> 19) & 0x1) << 20;
++ offset |= (val & 0xff) << 12;
++ offset |= ((val >> 8) & 0x1) << 11;
++ offset |= ((val >> 9) & 0x3ff) << 1;
++ offset = (offset << 43) >> 43;
++ return offset;
++}
++
++static long get_offset_of_conditional_branch(address insn_addr) {
++ long offset = 0;
++ assert_cond(insn_addr != NULL);
++ unsigned insn = *(unsigned*)insn_addr;
++ offset = (long)Assembler::sextract(insn, 31, 31);
++ offset = (offset << 12) | (((long)(Assembler::sextract(insn, 7, 7) & 0x1)) << 11);
++ offset = offset | (((long)(Assembler::sextract(insn, 30, 25) & 0x3f)) << 5);
++ offset = offset | (((long)(Assembler::sextract(insn, 11, 8) & 0xf)) << 1);
++ offset = (offset << 41) >> 41;
++ return offset;
++}
++
++static long get_offset_of_pc_relative(address insn_addr) {
++ long offset = 0;
++ assert_cond(insn_addr != NULL);
++ offset = ((long)(Assembler::sextract(((unsigned*)insn_addr)[0], 31, 12))) << 12; // Auipc.
++ offset += ((long)Assembler::sextract(((unsigned*)insn_addr)[1], 31, 20)); // Addi/Jalr/Load.
++ offset = (offset << 32) >> 32;
++ return offset;
++}
++
++static address get_target_of_movptr(address insn_addr) {
++ assert_cond(insn_addr != NULL);
++ intptr_t target_address = (((int64_t)Assembler::sextract(((unsigned*)insn_addr)[0], 31, 12)) & 0xfffff) << 29; // Lui.
++ target_address += ((int64_t)Assembler::sextract(((unsigned*)insn_addr)[1], 31, 20)) << 17; // Addi.
++ target_address += ((int64_t)Assembler::sextract(((unsigned*)insn_addr)[3], 31, 20)) << 6; // Addi.
++ target_address += ((int64_t)Assembler::sextract(((unsigned*)insn_addr)[5], 31, 20)); // Addi/Jalr/Load.
++ return (address) target_address;
++}
++
++static address get_target_of_li64(address insn_addr) {
++ assert_cond(insn_addr != NULL);
++ intptr_t target_address = (((int64_t)Assembler::sextract(((unsigned*)insn_addr)[0], 31, 12)) & 0xfffff) << 44; // Lui.
++ target_address += ((int64_t)Assembler::sextract(((unsigned*)insn_addr)[1], 31, 20)) << 32; // Addi.
++ target_address += ((int64_t)Assembler::sextract(((unsigned*)insn_addr)[3], 31, 20)) << 20; // Addi.
++ target_address += ((int64_t)Assembler::sextract(((unsigned*)insn_addr)[5], 31, 20)) << 8; // Addi.
++ target_address += ((int64_t)Assembler::sextract(((unsigned*)insn_addr)[7], 31, 20)); // Addi.
++ return (address)target_address;
++}
++
++static address get_target_of_li32(address insn_addr) {
++ assert_cond(insn_addr != NULL);
++ intptr_t target_address = (((int64_t)Assembler::sextract(((unsigned*)insn_addr)[0], 31, 12)) & 0xfffff) << 12; // Lui.
++ target_address += ((int64_t)Assembler::sextract(((unsigned*)insn_addr)[1], 31, 20)); // Addiw.
++ return (address)target_address;
++}
++
++// Patch any kind of instruction; there may be several instructions.
++// Return the total length (in bytes) of the instructions.
++int MacroAssembler::pd_patch_instruction_size(address branch, address target) {
++ assert_cond(branch != NULL);
++ int64_t offset = target - branch;
++ if (NativeInstruction::is_jal_at(branch)) { // jal
++ return patch_offset_in_jal(branch, offset);
++ } else if (NativeInstruction::is_branch_at(branch)) { // beq/bge/bgeu/blt/bltu/bne
++ return patch_offset_in_conditional_branch(branch, offset);
++ } else if (NativeInstruction::is_pc_relative_at(branch)) { // auipc, addi/jalr/load
++ return patch_offset_in_pc_relative(branch, offset);
++ } else if (NativeInstruction::is_movptr_at(branch)) { // movptr
++ return patch_addr_in_movptr(branch, target);
++ } else if (NativeInstruction::is_li64_at(branch)) { // li64
++ return patch_imm_in_li64(branch, target);
++ } else if (NativeInstruction::is_li32_at(branch)) { // li32
++ int64_t imm = (intptr_t)target;
++ return patch_imm_in_li32(branch, (int32_t)imm);
++ } else {
++#ifdef ASSERT
++ tty->print_cr("pd_patch_instruction_size: instruction 0x%x at " INTPTR_FORMAT " could not be patched!\n",
++ *(unsigned*)branch, p2i(branch));
++ Disassembler::decode(branch - 16, branch + 16);
++#endif
++ ShouldNotReachHere();
++ return -1;
++ }
++}
++
++address MacroAssembler::target_addr_for_insn(address insn_addr) {
++ long offset = 0;
++ assert_cond(insn_addr != NULL);
++ if (NativeInstruction::is_jal_at(insn_addr)) { // jal
++ offset = get_offset_of_jal(insn_addr);
++ } else if (NativeInstruction::is_branch_at(insn_addr)) { // beq/bge/bgeu/blt/bltu/bne
++ offset = get_offset_of_conditional_branch(insn_addr);
++ } else if (NativeInstruction::is_pc_relative_at(insn_addr)) { // auipc, addi/jalr/load
++ offset = get_offset_of_pc_relative(insn_addr);
++ } else if (NativeInstruction::is_movptr_at(insn_addr)) { // movptr
++ return get_target_of_movptr(insn_addr);
++ } else if (NativeInstruction::is_li64_at(insn_addr)) { // li64
++ return get_target_of_li64(insn_addr);
++ } else if (NativeInstruction::is_li32_at(insn_addr)) { // li32
++ return get_target_of_li32(insn_addr);
++ } else {
++ ShouldNotReachHere();
++ }
++ return address(((uintptr_t)insn_addr + offset));
++}
++
++int MacroAssembler::patch_oop(address insn_addr, address o) {
++ // OOPs are either narrow (32 bits) or wide (48 bits). We encode
++ // narrow OOPs by setting the upper 16 bits in the first
++ // instruction.
++ if (NativeInstruction::is_li32_at(insn_addr)) {
++ // Move narrow OOP
++ uint32_t n = CompressedOops::narrow_oop_value(cast_to_oop(o));
++ return patch_imm_in_li32(insn_addr, (int32_t)n);
++ } else if (NativeInstruction::is_movptr_at(insn_addr)) {
++ // Move wide OOP
++ return patch_addr_in_movptr(insn_addr, o);
++ }
++ ShouldNotReachHere();
++ return -1;
++}
++
++void MacroAssembler::reinit_heapbase() {
++ if (UseCompressedOops) {
++ if (Universe::is_fully_initialized()) {
++ mv(xheapbase, CompressedOops::ptrs_base());
++ } else {
++ ExternalAddress target((address)CompressedOops::ptrs_base_addr());
++ relocate(target.rspec(), [&] {
++ int32_t offset;
++ la_patchable(xheapbase, target, offset);
++ ld(xheapbase, Address(xheapbase, offset));
++ });
++ }
++ }
++}
++
++void MacroAssembler::movptr(Register Rd, address addr, int32_t &offset) {
++ int64_t imm64 = (int64_t)addr;
++#ifndef PRODUCT
++ {
++ char buffer[64];
++ snprintf(buffer, sizeof(buffer), "0x%" PRIx64, imm64);
++ block_comment(buffer);
++ }
++#endif
++ assert((uintptr_t)imm64 < (1ull << 48), "48-bit overflow in address constant");
++ // Load upper 31 bits
++ int64_t imm = imm64 >> 17;
++ int64_t upper = imm, lower = imm;
++ lower = (lower << 52) >> 52;
++ upper -= lower;
++ upper = (int32_t)upper;
++ lui(Rd, upper);
++ addi(Rd, Rd, lower);
++
++ // Load the rest 17 bits.
++ slli(Rd, Rd, 11);
++ addi(Rd, Rd, (imm64 >> 6) & 0x7ff);
++ slli(Rd, Rd, 6);
++
++ // This offset will be used by following jalr/ld.
++ offset = imm64 & 0x3f;
++}
++
++void MacroAssembler::add(Register Rd, Register Rn, int64_t increment, Register temp) {
++ if (is_simm12(increment)) {
++ addi(Rd, Rn, increment);
++ } else {
++ assert_different_registers(Rn, temp);
++ li(temp, increment);
++ add(Rd, Rn, temp);
++ }
++}
++
++void MacroAssembler::addw(Register Rd, Register Rn, int32_t increment, Register temp) {
++ if (is_simm12(increment)) {
++ addiw(Rd, Rn, increment);
++ } else {
++ assert_different_registers(Rn, temp);
++ li(temp, increment);
++ addw(Rd, Rn, temp);
++ }
++}
++
++void MacroAssembler::sub(Register Rd, Register Rn, int64_t decrement, Register temp) {
++ if (is_simm12(-decrement)) {
++ addi(Rd, Rn, -decrement);
++ } else {
++ assert_different_registers(Rn, temp);
++ li(temp, decrement);
++ sub(Rd, Rn, temp);
++ }
++}
++
++void MacroAssembler::subw(Register Rd, Register Rn, int32_t decrement, Register temp) {
++ if (is_simm12(-decrement)) {
++ addiw(Rd, Rn, -decrement);
++ } else {
++ assert_different_registers(Rn, temp);
++ li(temp, decrement);
++ subw(Rd, Rn, temp);
++ }
++}
++
++void MacroAssembler::andrw(Register Rd, Register Rs1, Register Rs2) {
++ andr(Rd, Rs1, Rs2);
++ sign_extend(Rd, Rd, 32);
++}
++
++void MacroAssembler::orrw(Register Rd, Register Rs1, Register Rs2) {
++ orr(Rd, Rs1, Rs2);
++ sign_extend(Rd, Rd, 32);
++}
++
++void MacroAssembler::xorrw(Register Rd, Register Rs1, Register Rs2) {
++ xorr(Rd, Rs1, Rs2);
++ sign_extend(Rd, Rd, 32);
++}
++
++// Note: load_unsigned_short used to be called load_unsigned_word.
++int MacroAssembler::load_unsigned_short(Register dst, Address src) {
++ int off = offset();
++ lhu(dst, src);
++ return off;
++}
++
++int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
++ int off = offset();
++ lbu(dst, src);
++ return off;
++}
++
++int MacroAssembler::load_signed_short(Register dst, Address src) {
++ int off = offset();
++ lh(dst, src);
++ return off;
++}
++
++int MacroAssembler::load_signed_byte(Register dst, Address src) {
++ int off = offset();
++ lb(dst, src);
++ return off;
++}
++
++void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
++ switch (size_in_bytes) {
++ case 8: ld(dst, src); break;
++ case 4: is_signed ? lw(dst, src) : lwu(dst, src); break;
++ case 2: is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
++ case 1: is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
++ default: ShouldNotReachHere();
++ }
++}
++
++void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
++ switch (size_in_bytes) {
++ case 8: sd(src, dst); break;
++ case 4: sw(src, dst); break;
++ case 2: sh(src, dst); break;
++ case 1: sb(src, dst); break;
++ default: ShouldNotReachHere();
++ }
++}
++
++// reverse bytes in halfword in lower 16 bits and sign-extend
++// Rd[15:0] = Rs[7:0] Rs[15:8] (sign-extend to 64 bits)
++void MacroAssembler::revb_h_h(Register Rd, Register Rs, Register tmp) {
++ if (UseZbb) {
++ rev8(Rd, Rs);
++ srai(Rd, Rd, 48);
++ return;
++ }
++ assert_different_registers(Rs, tmp);
++ assert_different_registers(Rd, tmp);
++ srli(tmp, Rs, 8);
++ andi(tmp, tmp, 0xFF);
++ slli(Rd, Rs, 56);
++ srai(Rd, Rd, 48); // sign-extend
++ orr(Rd, Rd, tmp);
++}
++
++// reverse bytes in lower word and sign-extend
++// Rd[31:0] = Rs[7:0] Rs[15:8] Rs[23:16] Rs[31:24] (sign-extend to 64 bits)
++void MacroAssembler::revb_w_w(Register Rd, Register Rs, Register tmp1, Register tmp2) {
++ if (UseZbb) {
++ rev8(Rd, Rs);
++ srai(Rd, Rd, 32);
++ return;
++ }
++ assert_different_registers(Rs, tmp1, tmp2);
++ assert_different_registers(Rd, tmp1, tmp2);
++ revb_h_w_u(Rd, Rs, tmp1, tmp2);
++ slli(tmp2, Rd, 48);
++ srai(tmp2, tmp2, 32); // sign-extend
++ srli(Rd, Rd, 16);
++ orr(Rd, Rd, tmp2);
++}
++
++// reverse bytes in halfword in lower 16 bits and zero-extend
++// Rd[15:0] = Rs[7:0] Rs[15:8] (zero-extend to 64 bits)
++void MacroAssembler::revb_h_h_u(Register Rd, Register Rs, Register tmp) {
++ if (UseZbb) {
++ rev8(Rd, Rs);
++ srli(Rd, Rd, 48);
++ return;
++ }
++ assert_different_registers(Rs, tmp);
++ assert_different_registers(Rd, tmp);
++ srli(tmp, Rs, 8);
++ andi(tmp, tmp, 0xFF);
++ andi(Rd, Rs, 0xFF);
++ slli(Rd, Rd, 8);
++ orr(Rd, Rd, tmp);
++}
++
++// reverse bytes in halfwords in lower 32 bits and zero-extend
++// Rd[31:0] = Rs[23:16] Rs[31:24] Rs[7:0] Rs[15:8] (zero-extend to 64 bits)
++void MacroAssembler::revb_h_w_u(Register Rd, Register Rs, Register tmp1, Register tmp2) {
++ if (UseZbb) {
++ rev8(Rd, Rs);
++ rori(Rd, Rd, 32);
++ roriw(Rd, Rd, 16);
++ zero_extend(Rd, Rd, 32);
++ return;
++ }
++ assert_different_registers(Rs, tmp1, tmp2);
++ assert_different_registers(Rd, tmp1, tmp2);
++ srli(tmp2, Rs, 16);
++ revb_h_h_u(tmp2, tmp2, tmp1);
++ revb_h_h_u(Rd, Rs, tmp1);
++ slli(tmp2, tmp2, 16);
++ orr(Rd, Rd, tmp2);
++}
++
++// This method is only used for revb_h
++// Rd = Rs[47:0] Rs[55:48] Rs[63:56]
++void MacroAssembler::revb_h_helper(Register Rd, Register Rs, Register tmp1, Register tmp2) {
++ assert_different_registers(Rs, tmp1, tmp2);
++ assert_different_registers(Rd, tmp1);
++ srli(tmp1, Rs, 48);
++ andi(tmp2, tmp1, 0xFF);
++ slli(tmp2, tmp2, 8);
++ srli(tmp1, tmp1, 8);
++ orr(tmp1, tmp1, tmp2);
++ slli(Rd, Rs, 16);
++ orr(Rd, Rd, tmp1);
++}
++
++// reverse bytes in each halfword
++// Rd[63:0] = Rs[55:48] Rs[63:56] Rs[39:32] Rs[47:40] Rs[23:16] Rs[31:24] Rs[7:0] Rs[15:8]
++void MacroAssembler::revb_h(Register Rd, Register Rs, Register tmp1, Register tmp2) {
++ if (UseZbb) {
++ assert_different_registers(Rs, tmp1);
++ assert_different_registers(Rd, tmp1);
++ rev8(Rd, Rs);
++ zero_extend(tmp1, Rd, 32);
++ roriw(tmp1, tmp1, 16);
++ slli(tmp1, tmp1, 32);
++ srli(Rd, Rd, 32);
++ roriw(Rd, Rd, 16);
++ zero_extend(Rd, Rd, 32);
++ orr(Rd, Rd, tmp1);
++ return;
++ }
++ assert_different_registers(Rs, tmp1, tmp2);
++ assert_different_registers(Rd, tmp1, tmp2);
++ revb_h_helper(Rd, Rs, tmp1, tmp2);
++ for (int i = 0; i < 3; ++i) {
++ revb_h_helper(Rd, Rd, tmp1, tmp2);
++ }
++}
++
++// reverse bytes in each word
++// Rd[63:0] = Rs[39:32] Rs[47:40] Rs[55:48] Rs[63:56] Rs[7:0] Rs[15:8] Rs[23:16] Rs[31:24]
++void MacroAssembler::revb_w(Register Rd, Register Rs, Register tmp1, Register tmp2) {
++ if (UseZbb) {
++ rev8(Rd, Rs);
++ rori(Rd, Rd, 32);
++ return;
++ }
++ assert_different_registers(Rs, tmp1, tmp2);
++ assert_different_registers(Rd, tmp1, tmp2);
++ revb(Rd, Rs, tmp1, tmp2);
++ ror_imm(Rd, Rd, 32);
++}
++
++// reverse bytes in doubleword
++// Rd[63:0] = Rs[7:0] Rs[15:8] Rs[23:16] Rs[31:24] Rs[39:32] Rs[47,40] Rs[55,48] Rs[63:56]
++void MacroAssembler::revb(Register Rd, Register Rs, Register tmp1, Register tmp2) {
++ if (UseZbb) {
++ rev8(Rd, Rs);
++ return;
++ }
++ assert_different_registers(Rs, tmp1, tmp2);
++ assert_different_registers(Rd, tmp1, tmp2);
++ andi(tmp1, Rs, 0xFF);
++ slli(tmp1, tmp1, 8);
++ for (int step = 8; step < 56; step += 8) {
++ srli(tmp2, Rs, step);
++ andi(tmp2, tmp2, 0xFF);
++ orr(tmp1, tmp1, tmp2);
++ slli(tmp1, tmp1, 8);
++ }
++ srli(Rd, Rs, 56);
++ andi(Rd, Rd, 0xFF);
++ orr(Rd, tmp1, Rd);
++}
++
++// rotate right with shift bits
++void MacroAssembler::ror_imm(Register dst, Register src, uint32_t shift, Register tmp)
++{
++ if (UseZbb) {
++ rori(dst, src, shift);
++ return;
++ }
++
++ assert_different_registers(dst, tmp);
++ assert_different_registers(src, tmp);
++ assert(shift < 64, "shift amount must be < 64");
++ slli(tmp, src, 64 - shift);
++ srli(dst, src, shift);
++ orr(dst, dst, tmp);
++}
++
++void MacroAssembler::andi(Register Rd, Register Rn, int64_t imm, Register tmp) {
++ if (is_simm12(imm)) {
++ and_imm12(Rd, Rn, imm);
++ } else {
++ assert_different_registers(Rn, tmp);
++ mv(tmp, imm);
++ andr(Rd, Rn, tmp);
++ }
++}
++
++void MacroAssembler::orptr(Address adr, RegisterOrConstant src, Register tmp1, Register tmp2) {
++ ld(tmp1, adr);
++ if (src.is_register()) {
++ orr(tmp1, tmp1, src.as_register());
++ } else {
++ if (is_simm12(src.as_constant())) {
++ ori(tmp1, tmp1, src.as_constant());
++ } else {
++ assert_different_registers(tmp1, tmp2);
++ mv(tmp2, src.as_constant());
++ orr(tmp1, tmp1, tmp2);
++ }
++ }
++ sd(tmp1, adr);
++}
++
++void MacroAssembler::cmp_klass(Register oop, Register trial_klass, Register tmp1, Register tmp2, Label &L) {
++ assert_different_registers(oop, trial_klass, tmp1, tmp2);
++ if (UseCompressedClassPointers) {
++ lwu(tmp1, Address(oop, oopDesc::klass_offset_in_bytes()));
++ if (CompressedKlassPointers::base() == NULL) {
++ slli(tmp1, tmp1, CompressedKlassPointers::shift());
++ beq(trial_klass, tmp1, L);
++ return;
++ }
++ decode_klass_not_null(tmp1, tmp2);
++ } else {
++ ld(tmp1, Address(oop, oopDesc::klass_offset_in_bytes()));
++ }
++ beq(trial_klass, tmp1, L);
++}
++
++// Move an oop into a register. immediate is true if we want
++// immediate instructions and nmethod entry barriers are not enabled.
++// i.e. we are not going to patch this instruction while the code is being
++// executed by another thread.
++void MacroAssembler::movoop(Register dst, jobject obj, bool immediate) {
++ int oop_index;
++ if (obj == NULL) {
++ oop_index = oop_recorder()->allocate_oop_index(obj);
++ } else {
++#ifdef ASSERT
++ {
++ ThreadInVMfromUnknown tiv;
++ assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop");
++ }
++#endif
++ oop_index = oop_recorder()->find_index(obj);
++ }
++ RelocationHolder rspec = oop_Relocation::spec(oop_index);
++
++ // nmethod entry barrier necessitate using the constant pool. They have to be
++ // ordered with respected to oop access.
++ if (BarrierSet::barrier_set()->barrier_set_nmethod() != NULL || !immediate) {
++ address dummy = address(uintptr_t(pc()) & -wordSize); // A nearby aligned address
++ ld_constant(dst, Address(dummy, rspec));
++ } else
++ mv(dst, Address((address)obj, rspec));
++}
++
++// Move a metadata address into a register.
++void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
++ int oop_index;
++ if (obj == NULL) {
++ oop_index = oop_recorder()->allocate_metadata_index(obj);
++ } else {
++ oop_index = oop_recorder()->find_index(obj);
++ }
++ RelocationHolder rspec = metadata_Relocation::spec(oop_index);
++ mv(dst, Address((address)obj, rspec));
++}
++
++// Writes to stack successive pages until offset reached to check for
++// stack overflow + shadow pages. This clobbers tmp.
++void MacroAssembler::bang_stack_size(Register size, Register tmp) {
++ assert_different_registers(tmp, size, t0);
++ // Bang stack for total size given plus shadow page size.
++ // Bang one page at a time because large size can bang beyond yellow and
++ // red zones.
++ mv(t0, os::vm_page_size());
++ Label loop;
++ bind(loop);
++ sub(tmp, sp, t0);
++ subw(size, size, t0);
++ sd(size, Address(tmp));
++ bgtz(size, loop);
++
++ // Bang down shadow pages too.
++ // At this point, (tmp-0) is the last address touched, so don't
++ // touch it again. (It was touched as (tmp-pagesize) but then tmp
++ // was post-decremented.) Skip this address by starting at i=1, and
++ // touch a few more pages below. N.B. It is important to touch all
++ // the way down to and including i=StackShadowPages.
++ for (int i = 0; i < (int)(StackOverflow::stack_shadow_zone_size() / os::vm_page_size()) - 1; i++) {
++ // this could be any sized move but this is can be a debugging crumb
++ // so the bigger the better.
++ sub(tmp, tmp, os::vm_page_size());
++ sd(size, Address(tmp, 0));
++ }
++}
++
++SkipIfEqual::SkipIfEqual(MacroAssembler* masm, const bool* flag_addr, bool value) {
++ int32_t offset = 0;
++ _masm = masm;
++ ExternalAddress target((address)flag_addr);
++ _masm->relocate(target.rspec(), [&] {
++ int32_t offset;
++ _masm->la_patchable(t0, target, offset);
++ _masm->lbu(t0, Address(t0, offset));
++ });
++ _masm->beqz(t0, _label);
++}
++
++SkipIfEqual::~SkipIfEqual() {
++ _masm->bind(_label);
++ _masm = NULL;
++}
++
++void MacroAssembler::load_mirror(Register dst, Register method, Register tmp) {
++ const int mirror_offset = in_bytes(Klass::java_mirror_offset());
++ ld(dst, Address(xmethod, Method::const_offset()));
++ ld(dst, Address(dst, ConstMethod::constants_offset()));
++ ld(dst, Address(dst, ConstantPool::pool_holder_offset_in_bytes()));
++ ld(dst, Address(dst, mirror_offset));
++ resolve_oop_handle(dst, tmp);
++}
++
++void MacroAssembler::resolve_oop_handle(Register result, Register tmp) {
++ // OopHandle::resolve is an indirection.
++ assert_different_registers(result, tmp);
++ access_load_at(T_OBJECT, IN_NATIVE, result, Address(result, 0), tmp, noreg);
++}
++
++// ((WeakHandle)result).resolve()
++void MacroAssembler::resolve_weak_handle(Register result, Register tmp) {
++ assert_different_registers(result, tmp);
++ Label resolved;
++
++ // A null weak handle resolves to null.
++ beqz(result, resolved);
++
++ // Only 64 bit platforms support GCs that require a tmp register
++ // Only IN_HEAP loads require a thread_tmp register
++ // WeakHandle::resolve is an indirection like jweak.
++ access_load_at(T_OBJECT, IN_NATIVE | ON_PHANTOM_OOP_REF,
++ result, Address(result), tmp, noreg /* tmp_thread */);
++ bind(resolved);
++}
++
++void MacroAssembler::access_load_at(BasicType type, DecoratorSet decorators,
++ Register dst, Address src,
++ Register tmp1, Register thread_tmp) {
++ BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
++ decorators = AccessInternal::decorator_fixup(decorators);
++ bool as_raw = (decorators & AS_RAW) != 0;
++ if (as_raw) {
++ bs->BarrierSetAssembler::load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
++ } else {
++ bs->load_at(this, decorators, type, dst, src, tmp1, thread_tmp);
++ }
++}
++
++void MacroAssembler::null_check(Register reg, int offset) {
++ if (needs_explicit_null_check(offset)) {
++ // provoke OS NULL exception if reg = NULL by
++ // accessing M[reg] w/o changing any registers
++ // NOTE: this is plenty to provoke a segv
++ ld(zr, Address(reg, 0));
++ } else {
++ // nothing to do, (later) access of M[reg + offset]
++ // will provoke OS NULL exception if reg = NULL
++ }
++}
++
++void MacroAssembler::access_store_at(BasicType type, DecoratorSet decorators,
++ Address dst, Register src,
++ Register tmp1, Register thread_tmp) {
++ BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
++ decorators = AccessInternal::decorator_fixup(decorators);
++ bool as_raw = (decorators & AS_RAW) != 0;
++ if (as_raw) {
++ bs->BarrierSetAssembler::store_at(this, decorators, type, dst, src, tmp1, thread_tmp);
++ } else {
++ bs->store_at(this, decorators, type, dst, src, tmp1, thread_tmp);
++ }
++}
++
++// Algorithm must match CompressedOops::encode.
++void MacroAssembler::encode_heap_oop(Register d, Register s) {
++ verify_oop(s, "broken oop in encode_heap_oop");
++ if (CompressedOops::base() == NULL) {
++ if (CompressedOops::shift() != 0) {
++ assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
++ srli(d, s, LogMinObjAlignmentInBytes);
++ } else {
++ mv(d, s);
++ }
++ } else {
++ Label notNull;
++ sub(d, s, xheapbase);
++ bgez(d, notNull);
++ mv(d, zr);
++ bind(notNull);
++ if (CompressedOops::shift() != 0) {
++ assert (LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
++ srli(d, d, CompressedOops::shift());
++ }
++ }
++}
++
++void MacroAssembler::load_klass(Register dst, Register src, Register tmp) {
++ assert_different_registers(dst, tmp);
++ assert_different_registers(src, tmp);
++ if (UseCompressedClassPointers) {
++ lwu(dst, Address(src, oopDesc::klass_offset_in_bytes()));
++ decode_klass_not_null(dst, tmp);
++ } else {
++ ld(dst, Address(src, oopDesc::klass_offset_in_bytes()));
++ }
++}
++
++void MacroAssembler::store_klass(Register dst, Register src, Register tmp) {
++ // FIXME: Should this be a store release? concurrent gcs assumes
++ // klass length is valid if klass field is not null.
++ if (UseCompressedClassPointers) {
++ encode_klass_not_null(src, tmp);
++ sw(src, Address(dst, oopDesc::klass_offset_in_bytes()));
++ } else {
++ sd(src, Address(dst, oopDesc::klass_offset_in_bytes()));
++ }
++}
++
++void MacroAssembler::store_klass_gap(Register dst, Register src) {
++ if (UseCompressedClassPointers) {
++ // Store to klass gap in destination
++ sw(src, Address(dst, oopDesc::klass_gap_offset_in_bytes()));
++ }
++}
++
++void MacroAssembler::decode_klass_not_null(Register r, Register tmp) {
++ assert_different_registers(r, tmp);
++ decode_klass_not_null(r, r, tmp);
++}
++
++void MacroAssembler::decode_klass_not_null(Register dst, Register src, Register tmp) {
++ assert(UseCompressedClassPointers, "should only be used for compressed headers");
++
++ if (CompressedKlassPointers::base() == NULL) {
++ if (CompressedKlassPointers::shift() != 0) {
++ assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
++ slli(dst, src, LogKlassAlignmentInBytes);
++ } else {
++ mv(dst, src);
++ }
++ return;
++ }
++
++ Register xbase = dst;
++ if (dst == src) {
++ xbase = tmp;
++ }
++
++ assert_different_registers(src, xbase);
++ mv(xbase, (uintptr_t)CompressedKlassPointers::base());
++
++ if (CompressedKlassPointers::shift() != 0) {
++ assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
++ assert_different_registers(t0, xbase);
++ shadd(dst, src, xbase, t0, LogKlassAlignmentInBytes);
++ } else {
++ add(dst, xbase, src);
++ }
++}
++
++void MacroAssembler::encode_klass_not_null(Register r, Register tmp) {
++ assert_different_registers(r, tmp);
++ encode_klass_not_null(r, r, tmp);
++}
++
++void MacroAssembler::encode_klass_not_null(Register dst, Register src, Register tmp) {
++ assert(UseCompressedClassPointers, "should only be used for compressed headers");
++
++ if (CompressedKlassPointers::base() == NULL) {
++ if (CompressedKlassPointers::shift() != 0) {
++ assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
++ srli(dst, src, LogKlassAlignmentInBytes);
++ } else {
++ mv(dst, src);
++ }
++ return;
++ }
++
++ if (((uint64_t)CompressedKlassPointers::base() & 0xffffffff) == 0 &&
++ CompressedKlassPointers::shift() == 0) {
++ zero_extend(dst, src, 32);
++ return;
++ }
++
++ Register xbase = dst;
++ if (dst == src) {
++ xbase = tmp;
++ }
++
++ assert_different_registers(src, xbase);
++ mv(xbase, (uintptr_t)CompressedKlassPointers::base());
++ sub(dst, src, xbase);
++ if (CompressedKlassPointers::shift() != 0) {
++ assert(LogKlassAlignmentInBytes == CompressedKlassPointers::shift(), "decode alg wrong");
++ srli(dst, dst, LogKlassAlignmentInBytes);
++ }
++}
++
++void MacroAssembler::decode_heap_oop_not_null(Register r) {
++ decode_heap_oop_not_null(r, r);
++}
++
++void MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
++ assert(UseCompressedOops, "should only be used for compressed headers");
++ assert(Universe::heap() != NULL, "java heap should be initialized");
++ // Cannot assert, unverified entry point counts instructions (see .ad file)
++ // vtableStubs also counts instructions in pd_code_size_limit.
++ // Also do not verify_oop as this is called by verify_oop.
++ if (CompressedOops::shift() != 0) {
++ assert(LogMinObjAlignmentInBytes == CompressedOops::shift(), "decode alg wrong");
++ slli(dst, src, LogMinObjAlignmentInBytes);
++ if (CompressedOops::base() != NULL) {
++ add(dst, xheapbase, dst);
++ }
++ } else {
++ assert(CompressedOops::base() == NULL, "sanity");
++ mv(dst, src);
++ }
++}
++
++void MacroAssembler::decode_heap_oop(Register d, Register s) {
++ if (CompressedOops::base() == NULL) {
++ if (CompressedOops::shift() != 0 || d != s) {
++ slli(d, s, CompressedOops::shift());
++ }
++ } else {
++ Label done;
++ mv(d, s);
++ beqz(s, done);
++ shadd(d, s, xheapbase, d, LogMinObjAlignmentInBytes);
++ bind(done);
++ }
++ verify_oop(d, "broken oop in decode_heap_oop");
++}
++
++void MacroAssembler::store_heap_oop(Address dst, Register src, Register tmp1,
++ Register thread_tmp, DecoratorSet decorators) {
++ access_store_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp);
++}
++
++void MacroAssembler::load_heap_oop(Register dst, Address src, Register tmp1,
++ Register thread_tmp, DecoratorSet decorators) {
++ access_load_at(T_OBJECT, IN_HEAP | decorators, dst, src, tmp1, thread_tmp);
++}
++
++void MacroAssembler::load_heap_oop_not_null(Register dst, Address src, Register tmp1,
++ Register thread_tmp, DecoratorSet decorators) {
++ access_load_at(T_OBJECT, IN_HEAP | IS_NOT_NULL, dst, src, tmp1, thread_tmp);
++}
++
++// Used for storing NULLs.
++void MacroAssembler::store_heap_oop_null(Address dst) {
++ access_store_at(T_OBJECT, IN_HEAP, dst, noreg, noreg, noreg);
++}
++
++int MacroAssembler::corrected_idivl(Register result, Register rs1, Register rs2,
++ bool want_remainder)
++{
++ // Full implementation of Java idiv and irem. The function
++ // returns the (pc) offset of the div instruction - may be needed
++ // for implicit exceptions.
++ //
++ // input : rs1: dividend
++ // rs2: divisor
++ //
++ // result: either
++ // quotient (= rs1 idiv rs2)
++ // remainder (= rs1 irem rs2)
++
++
++ int idivl_offset = offset();
++ if (!want_remainder) {
++ divw(result, rs1, rs2);
++ } else {
++ remw(result, rs1, rs2); // result = rs1 % rs2;
++ }
++ return idivl_offset;
++}
++
++int MacroAssembler::corrected_idivq(Register result, Register rs1, Register rs2,
++ bool want_remainder)
++{
++ // Full implementation of Java ldiv and lrem. The function
++ // returns the (pc) offset of the div instruction - may be needed
++ // for implicit exceptions.
++ //
++ // input : rs1: dividend
++ // rs2: divisor
++ //
++ // result: either
++ // quotient (= rs1 idiv rs2)
++ // remainder (= rs1 irem rs2)
++
++ int idivq_offset = offset();
++ if (!want_remainder) {
++ div(result, rs1, rs2);
++ } else {
++ rem(result, rs1, rs2); // result = rs1 % rs2;
++ }
++ return idivq_offset;
++}
++
++// Look up the method for a megamorpic invkkeinterface call.
++// The target method is determined by <intf_klass, itable_index>.
++// The receiver klass is in recv_klass.
++// On success, the result will be in method_result, and execution falls through.
++// On failure, execution transfers to the given label.
++void MacroAssembler::lookup_interface_method(Register recv_klass,
++ Register intf_klass,
++ RegisterOrConstant itable_index,
++ Register method_result,
++ Register scan_tmp,
++ Label& L_no_such_interface,
++ bool return_method) {
++ assert_different_registers(recv_klass, intf_klass, scan_tmp);
++ assert_different_registers(method_result, intf_klass, scan_tmp);
++ assert(recv_klass != method_result || !return_method,
++ "recv_klass can be destroyed when mehtid isn't needed");
++ assert(itable_index.is_constant() || itable_index.as_register() == method_result,
++ "caller must be same register for non-constant itable index as for method");
++
++ // Compute start of first itableOffsetEntry (which is at the end of the vtable).
++ int vtable_base = in_bytes(Klass::vtable_start_offset());
++ int itentry_off = itableMethodEntry::method_offset_in_bytes();
++ int scan_step = itableOffsetEntry::size() * wordSize;
++ int vte_size = vtableEntry::size_in_bytes();
++ assert(vte_size == wordSize, "else adjust times_vte_scale");
++
++ lwu(scan_tmp, Address(recv_klass, Klass::vtable_length_offset()));
++
++ // %%% Could store the aligned, prescaled offset in the klassoop.
++ shadd(scan_tmp, scan_tmp, recv_klass, scan_tmp, 3);
++ add(scan_tmp, scan_tmp, vtable_base);
++
++ if (return_method) {
++ // Adjust recv_klass by scaled itable_index, so we can free itable_index.
++ assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
++ if (itable_index.is_register()) {
++ slli(t0, itable_index.as_register(), 3);
++ } else {
++ mv(t0, itable_index.as_constant() << 3);
++ }
++ add(recv_klass, recv_klass, t0);
++ if (itentry_off) {
++ add(recv_klass, recv_klass, itentry_off);
++ }
++ }
++
++ Label search, found_method;
++
++ ld(method_result, Address(scan_tmp, itableOffsetEntry::interface_offset_in_bytes()));
++ beq(intf_klass, method_result, found_method);
++ bind(search);
++ // Check that the previous entry is non-null. A null entry means that
++ // the receiver class doens't implement the interface, and wasn't the
++ // same as when the caller was compiled.
++ beqz(method_result, L_no_such_interface, /* is_far */ true);
++ addi(scan_tmp, scan_tmp, scan_step);
++ ld(method_result, Address(scan_tmp, itableOffsetEntry::interface_offset_in_bytes()));
++ bne(intf_klass, method_result, search);
++
++ bind(found_method);
++
++ // Got a hit.
++ if (return_method) {
++ lwu(scan_tmp, Address(scan_tmp, itableOffsetEntry::offset_offset_in_bytes()));
++ add(method_result, recv_klass, scan_tmp);
++ ld(method_result, Address(method_result));
++ }
++}
++
++// virtual method calling
++void MacroAssembler::lookup_virtual_method(Register recv_klass,
++ RegisterOrConstant vtable_index,
++ Register method_result) {
++ const int base = in_bytes(Klass::vtable_start_offset());
++ assert(vtableEntry::size() * wordSize == 8,
++ "adjust the scaling in the code below");
++ int vtable_offset_in_bytes = base + vtableEntry::method_offset_in_bytes();
++
++ if (vtable_index.is_register()) {
++ shadd(method_result, vtable_index.as_register(), recv_klass, method_result, LogBytesPerWord);
++ ld(method_result, Address(method_result, vtable_offset_in_bytes));
++ } else {
++ vtable_offset_in_bytes += vtable_index.as_constant() * wordSize;
++ ld(method_result, form_address(method_result, recv_klass, vtable_offset_in_bytes));
++ }
++}
++
++void MacroAssembler::membar(uint32_t order_constraint) {
++ address prev = pc() - NativeMembar::instruction_size;
++ address last = code()->last_insn();
++
++ if (last != NULL && nativeInstruction_at(last)->is_membar() && prev == last) {
++ NativeMembar *bar = NativeMembar_at(prev);
++ // We are merging two memory barrier instructions. On RISCV we
++ // can do this simply by ORing them together.
++ bar->set_kind(bar->get_kind() | order_constraint);
++ BLOCK_COMMENT("merged membar");
++ } else {
++ code()->set_last_insn(pc());
++
++ uint32_t predecessor = 0;
++ uint32_t successor = 0;
++
++ membar_mask_to_pred_succ(order_constraint, predecessor, successor);
++ fence(predecessor, successor);
++ }
++}
++
++// Form an addres from base + offset in Rd. Rd my or may not
++// actually be used: you must use the Address that is returned. It
++// is up to you to ensure that the shift provided mathces the size
++// of your data.
++Address MacroAssembler::form_address(Register Rd, Register base, int64_t byte_offset) {
++ if (is_simm12(byte_offset)) { // 12: imm in range 2^12
++ return Address(base, byte_offset);
++ }
++
++ assert_different_registers(Rd, base, noreg);
++
++ // Do it the hard way
++ mv(Rd, byte_offset);
++ add(Rd, base, Rd);
++ return Address(Rd);
++}
++
++void MacroAssembler::check_klass_subtype(Register sub_klass,
++ Register super_klass,
++ Register tmp_reg,
++ Label& L_success) {
++ Label L_failure;
++ check_klass_subtype_fast_path(sub_klass, super_klass, tmp_reg, &L_success, &L_failure, NULL);
++ check_klass_subtype_slow_path(sub_klass, super_klass, tmp_reg, noreg, &L_success, NULL);
++ bind(L_failure);
++}
++
++void MacroAssembler::safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod) {
++ ld(t0, Address(xthread, JavaThread::polling_word_offset()));
++ if (acquire) {
++ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
++ }
++ if (at_return) {
++ bgtu(in_nmethod ? sp : fp, t0, slow_path, true /* is_far */);
++ } else {
++ test_bit(t0, t0, exact_log2(SafepointMechanism::poll_bit()));
++ bnez(t0, slow_path, true /* is_far */);
++ }
++}
++
++void MacroAssembler::cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp,
++ Label &succeed, Label *fail) {
++ // oldv holds comparison value
++ // newv holds value to write in exchange
++ // addr identifies memory word to compare against/update
++ Label retry_load, nope;
++ bind(retry_load);
++ // Load reserved from the memory location
++ lr_d(tmp, addr, Assembler::aqrl);
++ // Fail and exit if it is not what we expect
++ bne(tmp, oldv, nope);
++ // If the store conditional succeeds, tmp will be zero
++ sc_d(tmp, newv, addr, Assembler::rl);
++ beqz(tmp, succeed);
++ // Retry only when the store conditional failed
++ j(retry_load);
++
++ bind(nope);
++ membar(AnyAny);
++ mv(oldv, tmp);
++ if (fail != NULL) {
++ j(*fail);
++ }
++}
++
++void MacroAssembler::cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp,
++ Label &succeed, Label *fail) {
++ assert(oopDesc::mark_offset_in_bytes() == 0, "assumption");
++ cmpxchgptr(oldv, newv, obj, tmp, succeed, fail);
++}
++
++void MacroAssembler::load_reserved(Register addr,
++ enum operand_size size,
++ Assembler::Aqrl acquire) {
++ switch (size) {
++ case int64:
++ lr_d(t0, addr, acquire);
++ break;
++ case int32:
++ lr_w(t0, addr, acquire);
++ break;
++ case uint32:
++ lr_w(t0, addr, acquire);
++ zero_extend(t0, t0, 32);
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++}
++
++void MacroAssembler::store_conditional(Register addr,
++ Register new_val,
++ enum operand_size size,
++ Assembler::Aqrl release) {
++ switch (size) {
++ case int64:
++ sc_d(t0, new_val, addr, release);
++ break;
++ case int32:
++ case uint32:
++ sc_w(t0, new_val, addr, release);
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++}
++
++
++void MacroAssembler::cmpxchg_narrow_value_helper(Register addr, Register expected,
++ Register new_val,
++ enum operand_size size,
++ Register tmp1, Register tmp2, Register tmp3) {
++ assert(size == int8 || size == int16, "unsupported operand size");
++
++ Register aligned_addr = t1, shift = tmp1, mask = tmp2, not_mask = tmp3;
++
++ andi(shift, addr, 3);
++ slli(shift, shift, 3);
++
++ andi(aligned_addr, addr, ~3);
++
++ if (size == int8) {
++ mv(mask, 0xff);
++ } else {
++ // size == int16 case
++ mv(mask, -1);
++ zero_extend(mask, mask, 16);
++ }
++ sll(mask, mask, shift);
++
++ xori(not_mask, mask, -1);
++
++ sll(expected, expected, shift);
++ andr(expected, expected, mask);
++
++ sll(new_val, new_val, shift);
++ andr(new_val, new_val, mask);
++}
++
++// cmpxchg_narrow_value will kill t0, t1, expected, new_val and tmps.
++// It's designed to implement compare and swap byte/boolean/char/short by lr.w/sc.w,
++// which are forced to work with 4-byte aligned address.
++void MacroAssembler::cmpxchg_narrow_value(Register addr, Register expected,
++ Register new_val,
++ enum operand_size size,
++ Assembler::Aqrl acquire, Assembler::Aqrl release,
++ Register result, bool result_as_bool,
++ Register tmp1, Register tmp2, Register tmp3) {
++ Register aligned_addr = t1, shift = tmp1, mask = tmp2, not_mask = tmp3, old = result, tmp = t0;
++ assert_different_registers(addr, old, mask, not_mask, new_val, expected, shift, tmp);
++ cmpxchg_narrow_value_helper(addr, expected, new_val, size, tmp1, tmp2, tmp3);
++
++ Label retry, fail, done;
++
++ bind(retry);
++ lr_w(old, aligned_addr, acquire);
++ andr(tmp, old, mask);
++ bne(tmp, expected, fail);
++
++ andr(tmp, old, not_mask);
++ orr(tmp, tmp, new_val);
++ sc_w(tmp, tmp, aligned_addr, release);
++ bnez(tmp, retry);
++
++ if (result_as_bool) {
++ mv(result, 1);
++ j(done);
++
++ bind(fail);
++ mv(result, zr);
++
++ bind(done);
++ } else {
++ andr(tmp, old, mask);
++
++ bind(fail);
++ srl(result, tmp, shift);
++
++ if (size == int8) {
++ sign_extend(result, result, 8);
++ } else {
++ // size == int16 case
++ sign_extend(result, result, 16);
++ }
++ }
++}
++
++// weak_cmpxchg_narrow_value is a weak version of cmpxchg_narrow_value, to implement
++// the weak CAS stuff. The major difference is that it just failed when store conditional
++// failed.
++void MacroAssembler::weak_cmpxchg_narrow_value(Register addr, Register expected,
++ Register new_val,
++ enum operand_size size,
++ Assembler::Aqrl acquire, Assembler::Aqrl release,
++ Register result,
++ Register tmp1, Register tmp2, Register tmp3) {
++ Register aligned_addr = t1, shift = tmp1, mask = tmp2, not_mask = tmp3, old = result, tmp = t0;
++ assert_different_registers(addr, old, mask, not_mask, new_val, expected, shift, tmp);
++ cmpxchg_narrow_value_helper(addr, expected, new_val, size, tmp1, tmp2, tmp3);
++
++ Label fail, done;
++
++ lr_w(old, aligned_addr, acquire);
++ andr(tmp, old, mask);
++ bne(tmp, expected, fail);
++
++ andr(tmp, old, not_mask);
++ orr(tmp, tmp, new_val);
++ sc_w(tmp, tmp, aligned_addr, release);
++ bnez(tmp, fail);
++
++ // Success
++ mv(result, 1);
++ j(done);
++
++ // Fail
++ bind(fail);
++ mv(result, zr);
++
++ bind(done);
++}
++
++void MacroAssembler::cmpxchg(Register addr, Register expected,
++ Register new_val,
++ enum operand_size size,
++ Assembler::Aqrl acquire, Assembler::Aqrl release,
++ Register result, bool result_as_bool) {
++ assert(size != int8 && size != int16, "unsupported operand size");
++
++ Label retry_load, done, ne_done;
++ bind(retry_load);
++ load_reserved(addr, size, acquire);
++ bne(t0, expected, ne_done);
++ store_conditional(addr, new_val, size, release);
++ bnez(t0, retry_load);
++
++ // equal, succeed
++ if (result_as_bool) {
++ mv(result, 1);
++ } else {
++ mv(result, expected);
++ }
++ j(done);
++
++ // not equal, failed
++ bind(ne_done);
++ if (result_as_bool) {
++ mv(result, zr);
++ } else {
++ mv(result, t0);
++ }
++
++ bind(done);
++}
++
++void MacroAssembler::cmpxchg_weak(Register addr, Register expected,
++ Register new_val,
++ enum operand_size size,
++ Assembler::Aqrl acquire, Assembler::Aqrl release,
++ Register result) {
++ Label fail, done;
++ load_reserved(addr, size, acquire);
++ bne(t0, expected, fail);
++ store_conditional(addr, new_val, size, release);
++ bnez(t0, fail);
++
++ // Success
++ mv(result, 1);
++ j(done);
++
++ // Fail
++ bind(fail);
++ mv(result, zr);
++
++ bind(done);
++}
++
++#define ATOMIC_OP(NAME, AOP, ACQUIRE, RELEASE) \
++void MacroAssembler::atomic_##NAME(Register prev, RegisterOrConstant incr, Register addr) { \
++ prev = prev->is_valid() ? prev : zr; \
++ if (incr.is_register()) { \
++ AOP(prev, addr, incr.as_register(), (Assembler::Aqrl)(ACQUIRE | RELEASE)); \
++ } else { \
++ mv(t0, incr.as_constant()); \
++ AOP(prev, addr, t0, (Assembler::Aqrl)(ACQUIRE | RELEASE)); \
++ } \
++ return; \
++}
++
++ATOMIC_OP(add, amoadd_d, Assembler::relaxed, Assembler::relaxed)
++ATOMIC_OP(addw, amoadd_w, Assembler::relaxed, Assembler::relaxed)
++ATOMIC_OP(addal, amoadd_d, Assembler::aq, Assembler::rl)
++ATOMIC_OP(addalw, amoadd_w, Assembler::aq, Assembler::rl)
++
++#undef ATOMIC_OP
++
++#define ATOMIC_XCHG(OP, AOP, ACQUIRE, RELEASE) \
++void MacroAssembler::atomic_##OP(Register prev, Register newv, Register addr) { \
++ prev = prev->is_valid() ? prev : zr; \
++ AOP(prev, addr, newv, (Assembler::Aqrl)(ACQUIRE | RELEASE)); \
++ return; \
++}
++
++ATOMIC_XCHG(xchg, amoswap_d, Assembler::relaxed, Assembler::relaxed)
++ATOMIC_XCHG(xchgw, amoswap_w, Assembler::relaxed, Assembler::relaxed)
++ATOMIC_XCHG(xchgal, amoswap_d, Assembler::aq, Assembler::rl)
++ATOMIC_XCHG(xchgalw, amoswap_w, Assembler::aq, Assembler::rl)
++
++#undef ATOMIC_XCHG
++
++#define ATOMIC_XCHGU(OP1, OP2) \
++void MacroAssembler::atomic_##OP1(Register prev, Register newv, Register addr) { \
++ atomic_##OP2(prev, newv, addr); \
++ zero_extend(prev, prev, 32); \
++ return; \
++}
++
++ATOMIC_XCHGU(xchgwu, xchgw)
++ATOMIC_XCHGU(xchgalwu, xchgalw)
++
++#undef ATOMIC_XCHGU
++
++void MacroAssembler::far_jump(Address entry, CodeBuffer *cbuf, Register tmp) {
++ assert(ReservedCodeCacheSize < 4*G, "branch out of range");
++ assert(CodeCache::find_blob(entry.target()) != NULL,
++ "destination of far call not found in code cache");
++ IncompressibleRegion ir(this); // Fixed length: see MacroAssembler::far_branch_size()
++ if (far_branches()) {
++ // We can use auipc + jalr here because we know that the total size of
++ // the code cache cannot exceed 2Gb.
++ relocate(entry.rspec(), [&] {
++ int32_t offset;
++ la_patchable(tmp, entry, offset);
++ if (cbuf != NULL) { cbuf->set_insts_mark(); }
++ jalr(x0, tmp, offset);
++ });
++ } else {
++ if (cbuf != NULL) { cbuf->set_insts_mark(); }
++ j(entry);
++ }
++}
++
++void MacroAssembler::far_call(Address entry, CodeBuffer *cbuf, Register tmp) {
++ assert(ReservedCodeCacheSize < 4*G, "branch out of range");
++ assert(CodeCache::find_blob(entry.target()) != NULL,
++ "destination of far call not found in code cache");
++ IncompressibleRegion ir(this); // Fixed length: see MacroAssembler::far_branch_size()
++ if (far_branches()) {
++ // We can use auipc + jalr here because we know that the total size of
++ // the code cache cannot exceed 2Gb.
++ relocate(entry.rspec(), [&] {
++ int32_t offset;
++ la_patchable(tmp, entry, offset);
++ if (cbuf != NULL) { cbuf->set_insts_mark(); }
++ jalr(x1, tmp, offset); // link
++ });
++ } else {
++ if (cbuf != NULL) { cbuf->set_insts_mark(); }
++ jal(entry); // link
++ }
++}
++
++void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
++ Register super_klass,
++ Register tmp_reg,
++ Label* L_success,
++ Label* L_failure,
++ Label* L_slow_path,
++ Register super_check_offset) {
++ assert_different_registers(sub_klass, super_klass, tmp_reg);
++ bool must_load_sco = (super_check_offset == noreg);
++ if (must_load_sco) {
++ assert(tmp_reg != noreg, "supply either a temp or a register offset");
++ } else {
++ assert_different_registers(sub_klass, super_klass, super_check_offset);
++ }
++
++ Label L_fallthrough;
++ int label_nulls = 0;
++ if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
++ if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
++ if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
++ assert(label_nulls <= 1, "at most one NULL in batch");
++
++ int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
++ int sco_offset = in_bytes(Klass::super_check_offset_offset());
++ Address super_check_offset_addr(super_klass, sco_offset);
++
++ // Hacked jmp, which may only be used just before L_fallthrough.
++#define final_jmp(label) \
++ if (&(label) == &L_fallthrough) { /*do nothing*/ } \
++ else j(label) /*omit semi*/
++
++ // If the pointers are equal, we are done (e.g., String[] elements).
++ // This self-check enables sharing of secondary supertype arrays among
++ // non-primary types such as array-of-interface. Otherwise, each such
++ // type would need its own customized SSA.
++ // We move this check to the front fo the fast path because many
++ // type checks are in fact trivially successful in this manner,
++ // so we get a nicely predicted branch right at the start of the check.
++ beq(sub_klass, super_klass, *L_success);
++
++ // Check the supertype display:
++ if (must_load_sco) {
++ lwu(tmp_reg, super_check_offset_addr);
++ super_check_offset = tmp_reg;
++ }
++ add(t0, sub_klass, super_check_offset);
++ Address super_check_addr(t0);
++ ld(t0, super_check_addr); // load displayed supertype
++
++ // Ths check has worked decisively for primary supers.
++ // Secondary supers are sought in the super_cache ('super_cache_addr').
++ // (Secondary supers are interfaces and very deeply nested subtypes.)
++ // This works in the same check above because of a tricky aliasing
++ // between the super_Cache and the primary super dispaly elements.
++ // (The 'super_check_addr' can address either, as the case requires.)
++ // Note that the cache is updated below if it does not help us find
++ // what we need immediately.
++ // So if it was a primary super, we can just fail immediately.
++ // Otherwise, it's the slow path for us (no success at this point).
++
++ beq(super_klass, t0, *L_success);
++ mv(t1, sc_offset);
++ if (L_failure == &L_fallthrough) {
++ beq(super_check_offset, t1, *L_slow_path);
++ } else {
++ bne(super_check_offset, t1, *L_failure, /* is_far */ true);
++ final_jmp(*L_slow_path);
++ }
++
++ bind(L_fallthrough);
++
++#undef final_jmp
++}
++
++// Scans count pointer sized words at [addr] for occurence of value,
++// generic
++void MacroAssembler::repne_scan(Register addr, Register value, Register count,
++ Register tmp) {
++ Label Lloop, Lexit;
++ beqz(count, Lexit);
++ bind(Lloop);
++ ld(tmp, addr);
++ beq(value, tmp, Lexit);
++ add(addr, addr, wordSize);
++ sub(count, count, 1);
++ bnez(count, Lloop);
++ bind(Lexit);
++}
++
++void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
++ Register super_klass,
++ Register tmp1_reg,
++ Register tmp2_reg,
++ Label* L_success,
++ Label* L_failure) {
++ assert_different_registers(sub_klass, super_klass, tmp1_reg);
++ if (tmp2_reg != noreg) {
++ assert_different_registers(sub_klass, super_klass, tmp1_reg, tmp2_reg, t0);
++ }
++#define IS_A_TEMP(reg) ((reg) == tmp1_reg || (reg) == tmp2_reg)
++
++ Label L_fallthrough;
++ int label_nulls = 0;
++ if (L_success == NULL) { L_success = &L_fallthrough; label_nulls++; }
++ if (L_failure == NULL) { L_failure = &L_fallthrough; label_nulls++; }
++
++ assert(label_nulls <= 1, "at most one NULL in the batch");
++
++ // A couple of usefule fields in sub_klass:
++ int ss_offset = in_bytes(Klass::secondary_supers_offset());
++ int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
++ Address secondary_supers_addr(sub_klass, ss_offset);
++ Address super_cache_addr( sub_klass, sc_offset);
++
++ BLOCK_COMMENT("check_klass_subtype_slow_path");
++
++ // Do a linear scan of the secondary super-klass chain.
++ // This code is rarely used, so simplicity is a virtue here.
++ // The repne_scan instruction uses fixed registers, which we must spill.
++ // Don't worry too much about pre-existing connecitons with the input regs.
++
++ assert(sub_klass != x10, "killed reg"); // killed by mv(x10, super)
++ assert(sub_klass != x12, "killed reg"); // killed by la(x12, &pst_counter)
++
++ RegSet pushed_registers;
++ if (!IS_A_TEMP(x12)) {
++ pushed_registers += x12;
++ }
++ if (!IS_A_TEMP(x15)) {
++ pushed_registers += x15;
++ }
++
++ if (super_klass != x10) {
++ if (!IS_A_TEMP(x10)) {
++ pushed_registers += x10;
++ }
++ }
++
++ push_reg(pushed_registers, sp);
++
++ // Get super_klass value into x10 (even if it was in x15 or x12)
++ mv(x10, super_klass);
++
++#ifndef PRODUCT
++ mv(t1, (address)&SharedRuntime::_partial_subtype_ctr);
++ Address pst_counter_addr(t1);
++ ld(t0, pst_counter_addr);
++ add(t0, t0, 1);
++ sd(t0, pst_counter_addr);
++#endif // PRODUCT
++
++ // We will consult the secondary-super array.
++ ld(x15, secondary_supers_addr);
++ // Load the array length.
++ lwu(x12, Address(x15, Array<Klass*>::length_offset_in_bytes()));
++ // Skip to start of data.
++ add(x15, x15, Array<Klass*>::base_offset_in_bytes());
++
++ // Set t0 to an obvious invalid value, falling through by default
++ mv(t0, -1);
++ // Scan X12 words at [X15] for an occurrence of X10.
++ repne_scan(x15, x10, x12, t0);
++
++ // pop will restore x10, so we should use a temp register to keep its value
++ mv(t1, x10);
++
++ // Unspill the temp registers:
++ pop_reg(pushed_registers, sp);
++
++ bne(t1, t0, *L_failure);
++
++ // Success. Cache the super we found an proceed in triumph.
++ sd(super_klass, super_cache_addr);
++
++ if (L_success != &L_fallthrough) {
++ j(*L_success);
++ }
++
++#undef IS_A_TEMP
++
++ bind(L_fallthrough);
++}
++
++// Defines obj, preserves var_size_in_bytes, okay for tmp2 == var_size_in_bytes.
++void MacroAssembler::tlab_allocate(Register obj,
++ Register var_size_in_bytes,
++ int con_size_in_bytes,
++ Register tmp1,
++ Register tmp2,
++ Label& slow_case,
++ bool is_far) {
++ BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
++ bs->tlab_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, tmp1, tmp2, slow_case, is_far);
++}
++
++// Defines obj, preserves var_size_in_bytes
++void MacroAssembler::eden_allocate(Register obj,
++ Register var_size_in_bytes,
++ int con_size_in_bytes,
++ Register tmp,
++ Label& slow_case,
++ bool is_far) {
++ BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
++ bs->eden_allocate(this, obj, var_size_in_bytes, con_size_in_bytes, tmp, slow_case, is_far);
++}
++
++
++// get_thread() can be called anywhere inside generated code so we
++// need to save whatever non-callee save context might get clobbered
++// by the call to Thread::current() or, indeed, the call setup code.
++void MacroAssembler::get_thread(Register thread) {
++ // save all call-clobbered regs except thread
++ RegSet saved_regs = RegSet::range(x5, x7) + RegSet::range(x10, x17) +
++ RegSet::range(x28, x31) + ra - thread;
++ push_reg(saved_regs, sp);
++
++ mv(ra, CAST_FROM_FN_PTR(address, Thread::current));
++ jalr(ra);
++ if (thread != c_rarg0) {
++ mv(thread, c_rarg0);
++ }
++
++ // restore pushed registers
++ pop_reg(saved_regs, sp);
++}
++
++void MacroAssembler::load_byte_map_base(Register reg) {
++ CardTable::CardValue* byte_map_base =
++ ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base();
++ mv(reg, (uint64_t)byte_map_base);
++}
++
++void MacroAssembler::la_patchable(Register reg1, const Address &dest, int32_t &offset) {
++ unsigned long low_address = (uintptr_t)CodeCache::low_bound();
++ unsigned long high_address = (uintptr_t)CodeCache::high_bound();
++ unsigned long dest_address = (uintptr_t)dest.target();
++ long offset_low = dest_address - low_address;
++ long offset_high = dest_address - high_address;
++
++ assert(dest.getMode() == Address::literal, "la_patchable must be applied to a literal address");
++ assert((uintptr_t)dest.target() < (1ull << 48), "bad address");
++
++ // RISC-V doesn't compute a page-aligned address, in order to partially
++ // compensate for the use of *signed* offsets in its base+disp12
++ // addressing mode (RISC-V's PC-relative reach remains asymmetric
++ // [-(2G + 2K), 2G - 2k).
++ if (offset_high >= -((1L << 31) + (1L << 11)) && offset_low < (1L << 31) - (1L << 11)) {
++ int64_t distance = dest.target() - pc();
++ auipc(reg1, (int32_t)distance + 0x800);
++ offset = ((int32_t)distance << 20) >> 20;
++ } else {
++ movptr(reg1, dest.target(), offset);
++ }
++}
++
++void MacroAssembler::build_frame(int framesize) {
++ assert(framesize >= 2, "framesize must include space for FP/RA");
++ assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment");
++ sub(sp, sp, framesize);
++ sd(fp, Address(sp, framesize - 2 * wordSize));
++ sd(ra, Address(sp, framesize - wordSize));
++ if (PreserveFramePointer) { add(fp, sp, framesize); }
++}
++
++void MacroAssembler::remove_frame(int framesize) {
++ assert(framesize >= 2, "framesize must include space for FP/RA");
++ assert(framesize % (2*wordSize) == 0, "must preserve 2*wordSize alignment");
++ ld(fp, Address(sp, framesize - 2 * wordSize));
++ ld(ra, Address(sp, framesize - wordSize));
++ add(sp, sp, framesize);
++}
++
++void MacroAssembler::reserved_stack_check() {
++ // testing if reserved zone needs to be enabled
++ Label no_reserved_zone_enabling;
++
++ ld(t0, Address(xthread, JavaThread::reserved_stack_activation_offset()));
++ bltu(sp, t0, no_reserved_zone_enabling);
++
++ enter(); // RA and FP are live.
++ mv(c_rarg0, xthread);
++ RuntimeAddress target(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone));
++ relocate(target.rspec(), [&] {
++ int32_t offset;
++ la_patchable(t0, target, offset);
++ jalr(x1, t0, offset);
++ });
++ leave();
++
++ // We have already removed our own frame.
++ // throw_delayed_StackOverflowError will think that it's been
++ // called by our caller.
++ target = RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry());
++ relocate(target.rspec(), [&] {
++ int32_t offset;
++ la_patchable(t0, target, offset);
++ jalr(x0, t0, offset);
++ });
++ should_not_reach_here();
++
++ bind(no_reserved_zone_enabling);
++}
++
++void MacroAssembler::biased_locking_enter(Register lock_reg,
++ Register obj_reg,
++ Register swap_reg,
++ Register tmp_reg,
++ bool swap_reg_contains_mark,
++ Label& done,
++ Label* slow_case,
++ BiasedLockingCounters* counters,
++ Register flag) {
++ assert(UseBiasedLocking, "why call this otherwise?");
++ assert_different_registers(lock_reg, obj_reg, swap_reg);
++
++ if (PrintBiasedLockingStatistics && counters == NULL) {
++ counters = BiasedLocking::counters();
++ }
++
++ assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg, t0, flag);
++ assert(markWord::age_shift == markWord::lock_bits + markWord::biased_lock_bits, "biased locking makes assumptions about bit layout");
++ Address mark_addr (obj_reg, oopDesc::mark_offset_in_bytes());
++
++ // Biased locking
++ // See whether the lock is currently biased toward our thread and
++ // whether the epoch is still valid
++ // Note that the runtime guarantees sufficient alignment of JavaThread
++ // pointers to allow age to be placed into low bits
++ // First check to see whether biasing is even enabled for this object
++ Label cas_label;
++ if (!swap_reg_contains_mark) {
++ ld(swap_reg, mark_addr);
++ }
++ andi(tmp_reg, swap_reg, markWord::biased_lock_mask_in_place);
++ xori(t0, tmp_reg, (u1)markWord::biased_lock_pattern);
++ bnez(t0, cas_label); // don't care flag unless jumping to done
++ // The bias pattern is present in the object's header. Need to check
++ // whether the bias owner and the epoch are both still current.
++ load_prototype_header(tmp_reg, obj_reg);
++ orr(tmp_reg, tmp_reg, xthread);
++ xorr(tmp_reg, tmp_reg, swap_reg);
++ andi(tmp_reg, tmp_reg, ~((int) markWord::age_mask_in_place));
++ if (flag->is_valid()) {
++ mv(flag, tmp_reg);
++ }
++
++ if (counters != NULL) {
++ Label around;
++ bnez(tmp_reg, around);
++ atomic_incw(Address((address)counters->biased_lock_entry_count_addr()), tmp_reg, t0);
++ j(done);
++ bind(around);
++ } else {
++ beqz(tmp_reg, done);
++ }
++
++ Label try_revoke_bias;
++ Label try_rebias;
++
++ // At this point we know the header has the bias pattern and
++ // that we are not the bias owner in the current epoch. We need to
++ // figure out more details about the state of the header in order to
++ // know what operations can be legally performed on the object's
++ // header.
++
++ // If the low three bits in the xor result aren't clear, that means
++ // the prototype header is no longer biased and we have to revoke
++ // the bias on this object.
++ andi(t0, tmp_reg, markWord::biased_lock_mask_in_place);
++ bnez(t0, try_revoke_bias);
++
++ // Biasing is still enabled for this data type. See whether the
++ // epoch of the current bias is still valid, meaning that the epoch
++ // bits of the mark word are equal to the epoch bits of the
++ // prototype header. (Note that the prototype header's epoch bits
++ // only change at a safepoint.) If not, attempt to rebias the object
++ // toward the current thread. Note that we must be absolutely sure
++ // that the current epoch is invalid in order to do this because
++ // otherwise the manipulations it performs on the mark word are
++ // illegal.
++ andi(t0, tmp_reg, markWord::epoch_mask_in_place);
++ bnez(t0, try_rebias);
++
++ // The epoch of the current bias is still valid but we know nothing
++ // about the owner; it might be set or it might be clear. Try to
++ // acquire the bias of the object using an atomic operation. If this
++ // fails we will go in to the runtime to revoke the object's bias.
++ // Note that we first construct the presumed unbiased header so we
++ // don't accidentally blow away another thread's valid bias.
++ {
++ Label cas_success;
++ Label counter;
++ li(t0, (int64_t)(markWord::biased_lock_mask_in_place | markWord::age_mask_in_place | markWord::epoch_mask_in_place));
++ andr(swap_reg, swap_reg, t0);
++ orr(tmp_reg, swap_reg, xthread);
++ cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, t0, cas_success, slow_case);
++ // cas failed here if slow_cas == NULL
++ if (flag->is_valid()) {
++ li(flag, 1);
++ j(counter);
++ }
++
++ // If the biasing toward our thread failed, this means that
++ // another thread succeeded in biasing it toward itself and we
++ // need to revoke that bias. The revocation will occur in the
++ // interpreter runtime in the slow case.
++ bind(cas_success);
++ if (flag->is_valid()) {
++ li(flag, 0);
++ bind(counter);
++ }
++
++ if (counters != NULL) {
++ atomic_incw(Address((address)counters->anonymously_biased_lock_entry_count_addr()),
++ tmp_reg, t0);
++ }
++ }
++ j(done);
++
++ bind(try_rebias);
++ // At this point we know the epoch has expired, meaning that the
++ // current "bias owner", if any, is actually invalid. Under these
++ // circumstantces _only_, we are allowed to use the current header's
++ // value as the comparison value when doing the cas to acquire the
++ // bias in the current epoch. In other words, we allow transfer of
++ // the bias from one thread to another directly in this situation.
++ //
++ // FIXME: due to a lack of registers we currently blow away the age
++ // bias in this situation. Should attempt to preserve them.
++ {
++ Label cas_success;
++ Label counter;
++ load_prototype_header(tmp_reg, obj_reg);
++ orr(tmp_reg, tmp_reg, xthread);
++ cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, t0, cas_success, slow_case);
++ // cas failed here if slow_case == NULL
++ if (flag->is_valid()) {
++ li(flag, 1);
++ j(counter);
++ }
++
++ // If the biasing toward our thread failed, then another thread
++ // succeeded in biasing it toward itself and we need to revoke that
++ // bias. The revocation will occur in the runtime in the slow case.
++ bind(cas_success);
++ if (flag->is_valid()) {
++ li(flag, 0);
++ bind(counter);
++ }
++
++ if (counters != NULL) {
++ atomic_incw(Address((address)counters->rebiased_lock_entry_count_addr()),
++ tmp_reg, t0);
++ }
++ }
++ j(done);
++
++ // don't care flag unless jumping to done
++ bind(try_revoke_bias);
++ // The prototype mark in the klass doesn't have the bias bit set any
++ // more, indicating that objects of this data type are not supposed
++ // to be biased any more. We are going to try to reset the mark of
++ // this object to the prototype value and fail through to the
++ // CAS-based locking scheme. Note that if our CAS fails, it means
++ // that another thread raced us for the privilege of revoking the
++ // bias of this particular object, so it's okay to continue in the
++ // normal locking code.
++ //
++ // FIXME: due to a lack of registers we currently blow away the age
++ // bits in this situation. Should attempt to preserve them.
++ {
++ Label cas_success, nope;
++ load_prototype_header(tmp_reg, obj_reg);
++ cmpxchg_obj_header(swap_reg, tmp_reg, obj_reg, t0, cas_success, &nope);
++ bind(cas_success);
++
++ // Fall through to the normal CAS-based lock, because no matter what
++ // the result of the above CAS, some thread must have succeeded in
++ // removing the bias bit from the object's header.
++ if (counters != NULL) {
++ atomic_incw(Address((address)counters->revoked_lock_entry_count_addr()),
++ tmp_reg, t0);
++ }
++ bind(nope);
++ }
++
++ bind(cas_label);
++}
++
++void MacroAssembler::biased_locking_exit(Register obj_reg, Register tmp_reg, Label& done, Register flag) {
++ assert(UseBiasedLocking, "why call this otherwise");
++
++ // Check for biased locking unlock case, which is a no-op
++ // Note: we do not have to check the thread ID for two reasons.
++ // First, the interpreter checks for IllegalMonitorStateException at
++ // a higher level. Second, if the bias was revoke while we held the
++ // lock, the object could not be rebiased toward another, so
++ // the bias bit would be clear.
++ ld(tmp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
++ andi(tmp_reg, tmp_reg, markWord::biased_lock_mask_in_place);
++ sub(tmp_reg, tmp_reg, markWord::biased_lock_pattern);
++ if (flag->is_valid()) {
++ mv(flag, tmp_reg);
++ }
++ beqz(tmp_reg, done);
++}
++
++void MacroAssembler::load_prototype_header(Register dst, Register src) {
++ load_klass(dst, src);
++ ld(dst, Address(dst, Klass::prototype_header_offset()));
++}
++
++void MacroAssembler::atomic_incw(Register counter_addr, Register tmp) {
++ Label retry_load;
++ bind(retry_load);
++ lr_w(tmp, counter_addr);
++ addw(tmp, tmp, 1);
++ sc_w(tmp, tmp, counter_addr);
++ bnez(tmp, retry_load);
++}
++
++// Move the address of the polling page into dest.
++void MacroAssembler::get_polling_page(Register dest, relocInfo::relocType rtype) {
++ ld(dest, Address(xthread, JavaThread::polling_page_offset()));
++}
++
++// Read the polling page. The address of the polling page must
++// already be in r.
++void MacroAssembler::read_polling_page(Register r, int32_t offset, relocInfo::relocType rtype) {
++ relocate(rtype, [&] {
++ lwu(zr, Address(r, offset));
++ });
++}
++
++void MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
++#ifdef ASSERT
++ {
++ ThreadInVMfromUnknown tiv;
++ assert (UseCompressedOops, "should only be used for compressed oops");
++ assert (Universe::heap() != NULL, "java heap should be initialized");
++ assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
++ assert(Universe::heap()->is_in(JNIHandles::resolve(obj)), "should be real oop");
++ }
++#endif
++ int oop_index = oop_recorder()->find_index(obj);
++ relocate(oop_Relocation::spec(oop_index), [&] {
++ li32(dst, 0xDEADBEEF);
++ });
++ zero_extend(dst, dst, 32);
++}
++
++void MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
++ assert (UseCompressedClassPointers, "should only be used for compressed headers");
++ assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
++ int index = oop_recorder()->find_index(k);
++ assert(!Universe::heap()->is_in(k), "should not be an oop");
++
++ narrowKlass nk = CompressedKlassPointers::encode(k);
++ relocate(metadata_Relocation::spec(index), [&] {
++ li32(dst, nk);
++ });
++ zero_extend(dst, dst, 32);
++}
++
++// Maybe emit a call via a trampoline. If the code cache is small
++// trampolines won't be emitted.
++address MacroAssembler::trampoline_call(Address entry, CodeBuffer* cbuf) {
++ assert(JavaThread::current()->is_Compiler_thread(), "just checking");
++ assert(entry.rspec().type() == relocInfo::runtime_call_type ||
++ entry.rspec().type() == relocInfo::opt_virtual_call_type ||
++ entry.rspec().type() == relocInfo::static_call_type ||
++ entry.rspec().type() == relocInfo::virtual_call_type, "wrong reloc type");
++
++ // We need a trampoline if branches are far.
++ if (far_branches()) {
++ bool in_scratch_emit_size = false;
++#ifdef COMPILER2
++ // We don't want to emit a trampoline if C2 is generating dummy
++ // code during its branch shortening phase.
++ CompileTask* task = ciEnv::current()->task();
++ in_scratch_emit_size =
++ (task != NULL && is_c2_compile(task->comp_level()) &&
++ Compile::current()->output()->in_scratch_emit_size());
++#endif
++ if (!in_scratch_emit_size) {
++ address stub = emit_trampoline_stub(offset(), entry.target());
++ if (stub == NULL) {
++ postcond(pc() == badAddress);
++ return NULL; // CodeCache is full
++ }
++ }
++ }
++
++ if (cbuf != NULL) { cbuf->set_insts_mark(); }
++#ifdef ASSERT
++ if (entry.rspec().type() != relocInfo::runtime_call_type) {
++ assert_alignment(pc());
++ }
++#endif
++ relocate(entry.rspec(), [&] {
++ if (!far_branches()) {
++ jal(entry.target());
++ } else {
++ jal(pc());
++ }
++ });
++ // just need to return a non-null address
++ postcond(pc() != badAddress);
++ return pc();
++}
++
++address MacroAssembler::ic_call(address entry, jint method_index) {
++ RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
++ IncompressibleRegion ir(this); // relocations
++ movptr(t1, (address)Universe::non_oop_word());
++ assert_cond(entry != NULL);
++ return trampoline_call(Address(entry, rh));
++}
++
++// Emit a trampoline stub for a call to a target which is too far away.
++//
++// code sequences:
++//
++// call-site:
++// branch-and-link to <destination> or <trampoline stub>
++//
++// Related trampoline stub for this call site in the stub section:
++// load the call target from the constant pool
++// branch (RA still points to the call site above)
++
++address MacroAssembler::emit_trampoline_stub(int insts_call_instruction_offset,
++ address dest) {
++ address stub = start_a_stub(NativeInstruction::instruction_size
++ + NativeCallTrampolineStub::instruction_size);
++ if (stub == NULL) {
++ return NULL; // CodeBuffer::expand failed
++ }
++
++ // Create a trampoline stub relocation which relates this trampoline stub
++ // with the call instruction at insts_call_instruction_offset in the
++ // instructions code-section.
++
++ // Make sure the address of destination 8-byte aligned after 3 instructions.
++ align(wordSize, NativeCallTrampolineStub::data_offset);
++
++ RelocationHolder rh = trampoline_stub_Relocation::spec(code()->insts()->start() +
++ insts_call_instruction_offset);
++ const int stub_start_offset = offset();
++ relocate(rh, [&] {
++ // Now, create the trampoline stub's code:
++ // - load the call
++ // - call
++ Label target;
++ ld(t0, target); // auipc + ld
++ jr(t0); // jalr
++ bind(target);
++ assert(offset() - stub_start_offset == NativeCallTrampolineStub::data_offset,
++ "should be");
++ assert(offset() % wordSize == 0, "bad alignment");
++ emit_int64((int64_t)dest);
++ });
++
++ const address stub_start_addr = addr_at(stub_start_offset);
++
++ assert(is_NativeCallTrampolineStub_at(stub_start_addr), "doesn't look like a trampoline");
++
++ end_a_stub();
++ return stub_start_addr;
++}
++
++Address MacroAssembler::add_memory_helper(const Address dst, Register tmp) {
++ switch (dst.getMode()) {
++ case Address::base_plus_offset:
++ // This is the expected mode, although we allow all the other
++ // forms below.
++ return form_address(tmp, dst.base(), dst.offset());
++ default:
++ la(tmp, dst);
++ return Address(tmp);
++ }
++}
++
++void MacroAssembler::increment(const Address dst, int64_t value, Register tmp1, Register tmp2) {
++ assert(((dst.getMode() == Address::base_plus_offset &&
++ is_simm12(dst.offset())) || is_simm12(value)),
++ "invalid value and address mode combination");
++ Address adr = add_memory_helper(dst, tmp2);
++ assert(!adr.uses(tmp1), "invalid dst for address increment");
++ ld(tmp1, adr);
++ add(tmp1, tmp1, value, tmp2);
++ sd(tmp1, adr);
++}
++
++void MacroAssembler::incrementw(const Address dst, int32_t value, Register tmp1, Register tmp2) {
++ assert(((dst.getMode() == Address::base_plus_offset &&
++ is_simm12(dst.offset())) || is_simm12(value)),
++ "invalid value and address mode combination");
++ Address adr = add_memory_helper(dst, tmp2);
++ assert(!adr.uses(tmp1), "invalid dst for address increment");
++ lwu(tmp1, adr);
++ addw(tmp1, tmp1, value, tmp2);
++ sw(tmp1, adr);
++}
++
++void MacroAssembler::decrement(const Address dst, int64_t value, Register tmp1, Register tmp2) {
++ assert(((dst.getMode() == Address::base_plus_offset &&
++ is_simm12(dst.offset())) || is_simm12(value)),
++ "invalid value and address mode combination");
++ Address adr = add_memory_helper(dst, tmp2);
++ assert(!adr.uses(tmp1), "invalid dst for address decrement");
++ ld(tmp1, adr);
++ sub(tmp1, tmp1, value, tmp2);
++ sd(tmp1, adr);
++}
++
++void MacroAssembler::decrementw(const Address dst, int32_t value, Register tmp1, Register tmp2) {
++ assert(((dst.getMode() == Address::base_plus_offset &&
++ is_simm12(dst.offset())) || is_simm12(value)),
++ "invalid value and address mode combination");
++ Address adr = add_memory_helper(dst, tmp2);
++ assert(!adr.uses(tmp1), "invalid dst for address decrement");
++ lwu(tmp1, adr);
++ subw(tmp1, tmp1, value, tmp2);
++ sw(tmp1, adr);
++}
++
++void MacroAssembler::cmpptr(Register src1, Address src2, Label& equal) {
++ assert_different_registers(src1, t0);
++ relocate(src2.rspec(), [&] {
++ int32_t offset;
++ la_patchable(t0, src2, offset);
++ ld(t0, Address(t0, offset));
++ });
++ beq(src1, t0, equal);
++}
++
++void MacroAssembler::load_method_holder_cld(Register result, Register method) {
++ load_method_holder(result, method);
++ ld(result, Address(result, InstanceKlass::class_loader_data_offset()));
++}
++
++void MacroAssembler::load_method_holder(Register holder, Register method) {
++ ld(holder, Address(method, Method::const_offset())); // ConstMethod*
++ ld(holder, Address(holder, ConstMethod::constants_offset())); // ConstantPool*
++ ld(holder, Address(holder, ConstantPool::pool_holder_offset_in_bytes())); // InstanceKlass*
++}
++
++// string indexof
++// compute index by trailing zeros
++void MacroAssembler::compute_index(Register haystack, Register trailing_zeros,
++ Register match_mask, Register result,
++ Register ch2, Register tmp,
++ bool haystack_isL) {
++ int haystack_chr_shift = haystack_isL ? 0 : 1;
++ srl(match_mask, match_mask, trailing_zeros);
++ srli(match_mask, match_mask, 1);
++ srli(tmp, trailing_zeros, LogBitsPerByte);
++ if (!haystack_isL) andi(tmp, tmp, 0xE);
++ add(haystack, haystack, tmp);
++ ld(ch2, Address(haystack));
++ if (!haystack_isL) srli(tmp, tmp, haystack_chr_shift);
++ add(result, result, tmp);
++}
++
++// string indexof
++// Find pattern element in src, compute match mask,
++// only the first occurrence of 0x80/0x8000 at low bits is the valid match index
++// match mask patterns and corresponding indices would be like:
++// - 0x8080808080808080 (Latin1)
++// - 7 6 5 4 3 2 1 0 (match index)
++// - 0x8000800080008000 (UTF16)
++// - 3 2 1 0 (match index)
++void MacroAssembler::compute_match_mask(Register src, Register pattern, Register match_mask,
++ Register mask1, Register mask2) {
++ xorr(src, pattern, src);
++ sub(match_mask, src, mask1);
++ orr(src, src, mask2);
++ notr(src, src);
++ andr(match_mask, match_mask, src);
++}
++
++#ifdef COMPILER2
++// Code for BigInteger::mulAdd instrinsic
++// out = x10
++// in = x11
++// offset = x12 (already out.length-offset)
++// len = x13
++// k = x14
++// tmp = x28
++//
++// pseudo code from java implementation:
++// long kLong = k & LONG_MASK;
++// carry = 0;
++// offset = out.length-offset - 1;
++// for (int j = len - 1; j >= 0; j--) {
++// product = (in[j] & LONG_MASK) * kLong + (out[offset] & LONG_MASK) + carry;
++// out[offset--] = (int)product;
++// carry = product >>> 32;
++// }
++// return (int)carry;
++void MacroAssembler::mul_add(Register out, Register in, Register offset,
++ Register len, Register k, Register tmp) {
++ Label L_tail_loop, L_unroll, L_end;
++ mv(tmp, out);
++ mv(out, zr);
++ blez(len, L_end);
++ zero_extend(k, k, 32);
++ slliw(t0, offset, LogBytesPerInt);
++ add(offset, tmp, t0);
++ slliw(t0, len, LogBytesPerInt);
++ add(in, in, t0);
++
++ const int unroll = 8;
++ mv(tmp, unroll);
++ blt(len, tmp, L_tail_loop);
++ bind(L_unroll);
++ for (int i = 0; i < unroll; i++) {
++ sub(in, in, BytesPerInt);
++ lwu(t0, Address(in, 0));
++ mul(t1, t0, k);
++ add(t0, t1, out);
++ sub(offset, offset, BytesPerInt);
++ lwu(t1, Address(offset, 0));
++ add(t0, t0, t1);
++ sw(t0, Address(offset, 0));
++ srli(out, t0, 32);
++ }
++ subw(len, len, tmp);
++ bge(len, tmp, L_unroll);
++
++ bind(L_tail_loop);
++ blez(len, L_end);
++ sub(in, in, BytesPerInt);
++ lwu(t0, Address(in, 0));
++ mul(t1, t0, k);
++ add(t0, t1, out);
++ sub(offset, offset, BytesPerInt);
++ lwu(t1, Address(offset, 0));
++ add(t0, t0, t1);
++ sw(t0, Address(offset, 0));
++ srli(out, t0, 32);
++ subw(len, len, 1);
++ j(L_tail_loop);
++
++ bind(L_end);
++}
++
++// add two unsigned input and output carry
++void MacroAssembler::cad(Register dst, Register src1, Register src2, Register carry)
++{
++ assert_different_registers(dst, carry);
++ assert_different_registers(dst, src2);
++ add(dst, src1, src2);
++ sltu(carry, dst, src2);
++}
++
++// add two input with carry
++void MacroAssembler::adc(Register dst, Register src1, Register src2, Register carry) {
++ assert_different_registers(dst, carry);
++ add(dst, src1, src2);
++ add(dst, dst, carry);
++}
++
++// add two unsigned input with carry and output carry
++void MacroAssembler::cadc(Register dst, Register src1, Register src2, Register carry) {
++ assert_different_registers(dst, src2);
++ adc(dst, src1, src2, carry);
++ sltu(carry, dst, src2);
++}
++
++void MacroAssembler::add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
++ Register src1, Register src2, Register carry) {
++ cad(dest_lo, dest_lo, src1, carry);
++ add(dest_hi, dest_hi, carry);
++ cad(dest_lo, dest_lo, src2, carry);
++ add(final_dest_hi, dest_hi, carry);
++}
++
++/**
++ * Multiply 32 bit by 32 bit first loop.
++ */
++void MacroAssembler::multiply_32_x_32_loop(Register x, Register xstart, Register x_xstart,
++ Register y, Register y_idx, Register z,
++ Register carry, Register product,
++ Register idx, Register kdx) {
++ // jlong carry, x[], y[], z[];
++ // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx--, kdx--) {
++ // long product = y[idx] * x[xstart] + carry;
++ // z[kdx] = (int)product;
++ // carry = product >>> 32;
++ // }
++ // z[xstart] = (int)carry;
++
++ Label L_first_loop, L_first_loop_exit;
++ blez(idx, L_first_loop_exit);
++
++ shadd(t0, xstart, x, t0, LogBytesPerInt);
++ lwu(x_xstart, Address(t0, 0));
++
++ bind(L_first_loop);
++ subw(idx, idx, 1);
++ shadd(t0, idx, y, t0, LogBytesPerInt);
++ lwu(y_idx, Address(t0, 0));
++ mul(product, x_xstart, y_idx);
++ add(product, product, carry);
++ srli(carry, product, 32);
++ subw(kdx, kdx, 1);
++ shadd(t0, kdx, z, t0, LogBytesPerInt);
++ sw(product, Address(t0, 0));
++ bgtz(idx, L_first_loop);
++
++ bind(L_first_loop_exit);
++}
++
++/**
++ * Multiply 64 bit by 64 bit first loop.
++ */
++void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
++ Register y, Register y_idx, Register z,
++ Register carry, Register product,
++ Register idx, Register kdx) {
++ //
++ // jlong carry, x[], y[], z[];
++ // for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx--, kdx--) {
++ // huge_128 product = y[idx] * x[xstart] + carry;
++ // z[kdx] = (jlong)product;
++ // carry = (jlong)(product >>> 64);
++ // }
++ // z[xstart] = carry;
++ //
++
++ Label L_first_loop, L_first_loop_exit;
++ Label L_one_x, L_one_y, L_multiply;
++
++ subw(xstart, xstart, 1);
++ bltz(xstart, L_one_x);
++
++ shadd(t0, xstart, x, t0, LogBytesPerInt);
++ ld(x_xstart, Address(t0, 0));
++ ror_imm(x_xstart, x_xstart, 32); // convert big-endian to little-endian
++
++ bind(L_first_loop);
++ subw(idx, idx, 1);
++ bltz(idx, L_first_loop_exit);
++ subw(idx, idx, 1);
++ bltz(idx, L_one_y);
++
++ shadd(t0, idx, y, t0, LogBytesPerInt);
++ ld(y_idx, Address(t0, 0));
++ ror_imm(y_idx, y_idx, 32); // convert big-endian to little-endian
++ bind(L_multiply);
++
++ mulhu(t0, x_xstart, y_idx);
++ mul(product, x_xstart, y_idx);
++ cad(product, product, carry, t1);
++ adc(carry, t0, zr, t1);
++
++ subw(kdx, kdx, 2);
++ ror_imm(product, product, 32); // back to big-endian
++ shadd(t0, kdx, z, t0, LogBytesPerInt);
++ sd(product, Address(t0, 0));
++
++ j(L_first_loop);
++
++ bind(L_one_y);
++ lwu(y_idx, Address(y, 0));
++ j(L_multiply);
++
++ bind(L_one_x);
++ lwu(x_xstart, Address(x, 0));
++ j(L_first_loop);
++
++ bind(L_first_loop_exit);
++}
++
++/**
++ * Multiply 128 bit by 128 bit. Unrolled inner loop.
++ *
++ */
++void MacroAssembler::multiply_128_x_128_loop(Register y, Register z,
++ Register carry, Register carry2,
++ Register idx, Register jdx,
++ Register yz_idx1, Register yz_idx2,
++ Register tmp, Register tmp3, Register tmp4,
++ Register tmp6, Register product_hi) {
++ // jlong carry, x[], y[], z[];
++ // int kdx = xstart+1;
++ // for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
++ // huge_128 tmp3 = (y[idx+1] * product_hi) + z[kdx+idx+1] + carry;
++ // jlong carry2 = (jlong)(tmp3 >>> 64);
++ // huge_128 tmp4 = (y[idx] * product_hi) + z[kdx+idx] + carry2;
++ // carry = (jlong)(tmp4 >>> 64);
++ // z[kdx+idx+1] = (jlong)tmp3;
++ // z[kdx+idx] = (jlong)tmp4;
++ // }
++ // idx += 2;
++ // if (idx > 0) {
++ // yz_idx1 = (y[idx] * product_hi) + z[kdx+idx] + carry;
++ // z[kdx+idx] = (jlong)yz_idx1;
++ // carry = (jlong)(yz_idx1 >>> 64);
++ // }
++ //
++
++ Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
++
++ srliw(jdx, idx, 2);
++
++ bind(L_third_loop);
++
++ subw(jdx, jdx, 1);
++ bltz(jdx, L_third_loop_exit);
++ subw(idx, idx, 4);
++
++ shadd(t0, idx, y, t0, LogBytesPerInt);
++ ld(yz_idx2, Address(t0, 0));
++ ld(yz_idx1, Address(t0, wordSize));
++
++ shadd(tmp6, idx, z, t0, LogBytesPerInt);
++
++ ror_imm(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
++ ror_imm(yz_idx2, yz_idx2, 32);
++
++ ld(t1, Address(tmp6, 0));
++ ld(t0, Address(tmp6, wordSize));
++
++ mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3
++ mulhu(tmp4, product_hi, yz_idx1);
++
++ ror_imm(t0, t0, 32, tmp); // convert big-endian to little-endian
++ ror_imm(t1, t1, 32, tmp);
++
++ mul(tmp, product_hi, yz_idx2); // yz_idx2 * product_hi -> carry2:tmp
++ mulhu(carry2, product_hi, yz_idx2);
++
++ cad(tmp3, tmp3, carry, carry);
++ adc(tmp4, tmp4, zr, carry);
++ cad(tmp3, tmp3, t0, t0);
++ cadc(tmp4, tmp4, tmp, t0);
++ adc(carry, carry2, zr, t0);
++ cad(tmp4, tmp4, t1, carry2);
++ adc(carry, carry, zr, carry2);
++
++ ror_imm(tmp3, tmp3, 32); // convert little-endian to big-endian
++ ror_imm(tmp4, tmp4, 32);
++ sd(tmp4, Address(tmp6, 0));
++ sd(tmp3, Address(tmp6, wordSize));
++
++ j(L_third_loop);
++
++ bind(L_third_loop_exit);
++
++ andi(idx, idx, 0x3);
++ beqz(idx, L_post_third_loop_done);
++
++ Label L_check_1;
++ subw(idx, idx, 2);
++ bltz(idx, L_check_1);
++
++ shadd(t0, idx, y, t0, LogBytesPerInt);
++ ld(yz_idx1, Address(t0, 0));
++ ror_imm(yz_idx1, yz_idx1, 32);
++
++ mul(tmp3, product_hi, yz_idx1); // yz_idx1 * product_hi -> tmp4:tmp3
++ mulhu(tmp4, product_hi, yz_idx1);
++
++ shadd(t0, idx, z, t0, LogBytesPerInt);
++ ld(yz_idx2, Address(t0, 0));
++ ror_imm(yz_idx2, yz_idx2, 32, tmp);
++
++ add2_with_carry(carry, tmp4, tmp3, carry, yz_idx2, tmp);
++
++ ror_imm(tmp3, tmp3, 32, tmp);
++ sd(tmp3, Address(t0, 0));
++
++ bind(L_check_1);
++
++ andi(idx, idx, 0x1);
++ subw(idx, idx, 1);
++ bltz(idx, L_post_third_loop_done);
++ shadd(t0, idx, y, t0, LogBytesPerInt);
++ lwu(tmp4, Address(t0, 0));
++ mul(tmp3, tmp4, product_hi); // tmp4 * product_hi -> carry2:tmp3
++ mulhu(carry2, tmp4, product_hi);
++
++ shadd(t0, idx, z, t0, LogBytesPerInt);
++ lwu(tmp4, Address(t0, 0));
++
++ add2_with_carry(carry2, carry2, tmp3, tmp4, carry, t0);
++
++ shadd(t0, idx, z, t0, LogBytesPerInt);
++ sw(tmp3, Address(t0, 0));
++
++ slli(t0, carry2, 32);
++ srli(carry, tmp3, 32);
++ orr(carry, carry, t0);
++
++ bind(L_post_third_loop_done);
++}
++
++/**
++ * Code for BigInteger::multiplyToLen() intrinsic.
++ *
++ * x10: x
++ * x11: xlen
++ * x12: y
++ * x13: ylen
++ * x14: z
++ * x15: zlen
++ * x16: tmp1
++ * x17: tmp2
++ * x7: tmp3
++ * x28: tmp4
++ * x29: tmp5
++ * x30: tmp6
++ * x31: tmp7
++ */
++void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen,
++ Register z, Register zlen,
++ Register tmp1, Register tmp2, Register tmp3, Register tmp4,
++ Register tmp5, Register tmp6, Register product_hi) {
++ assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6);
++
++ const Register idx = tmp1;
++ const Register kdx = tmp2;
++ const Register xstart = tmp3;
++
++ const Register y_idx = tmp4;
++ const Register carry = tmp5;
++ const Register product = xlen;
++ const Register x_xstart = zlen; // reuse register
++
++ mv(idx, ylen); // idx = ylen;
++ mv(kdx, zlen); // kdx = xlen+ylen;
++ mv(carry, zr); // carry = 0;
++
++ Label L_multiply_64_x_64_loop, L_done;
++
++ subw(xstart, xlen, 1);
++ bltz(xstart, L_done);
++
++ const Register jdx = tmp1;
++
++ if (AvoidUnalignedAccesses) {
++ // Check if x and y are both 8-byte aligned.
++ orr(t0, xlen, ylen);
++ test_bit(t0, t0, 0);
++ beqz(t0, L_multiply_64_x_64_loop);
++
++ multiply_32_x_32_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
++ shadd(t0, xstart, z, t0, LogBytesPerInt);
++ sw(carry, Address(t0, 0));
++
++ Label L_second_loop_unaligned;
++ bind(L_second_loop_unaligned);
++ mv(carry, zr);
++ mv(jdx, ylen);
++ subw(xstart, xstart, 1);
++ bltz(xstart, L_done);
++ sub(sp, sp, 2 * wordSize);
++ sd(z, Address(sp, 0));
++ sd(zr, Address(sp, wordSize));
++ shadd(t0, xstart, z, t0, LogBytesPerInt);
++ addi(z, t0, 4);
++ shadd(t0, xstart, x, t0, LogBytesPerInt);
++ lwu(product, Address(t0, 0));
++ Label L_third_loop, L_third_loop_exit;
++
++ blez(jdx, L_third_loop_exit);
++
++ bind(L_third_loop);
++ subw(jdx, jdx, 1);
++ shadd(t0, jdx, y, t0, LogBytesPerInt);
++ lwu(t0, Address(t0, 0));
++ mul(t1, t0, product);
++ add(t0, t1, carry);
++ shadd(tmp6, jdx, z, t1, LogBytesPerInt);
++ lwu(t1, Address(tmp6, 0));
++ add(t0, t0, t1);
++ sw(t0, Address(tmp6, 0));
++ srli(carry, t0, 32);
++ bgtz(jdx, L_third_loop);
++
++ bind(L_third_loop_exit);
++ ld(z, Address(sp, 0));
++ addi(sp, sp, 2 * wordSize);
++ shadd(t0, xstart, z, t0, LogBytesPerInt);
++ sw(carry, Address(t0, 0));
++
++ j(L_second_loop_unaligned);
++ }
++
++ bind(L_multiply_64_x_64_loop);
++ multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
++
++ Label L_second_loop_aligned;
++ beqz(kdx, L_second_loop_aligned);
++
++ Label L_carry;
++ subw(kdx, kdx, 1);
++ beqz(kdx, L_carry);
++
++ shadd(t0, kdx, z, t0, LogBytesPerInt);
++ sw(carry, Address(t0, 0));
++ srli(carry, carry, 32);
++ subw(kdx, kdx, 1);
++
++ bind(L_carry);
++ shadd(t0, kdx, z, t0, LogBytesPerInt);
++ sw(carry, Address(t0, 0));
++
++ // Second and third (nested) loops.
++ //
++ // for (int i = xstart-1; i >= 0; i--) { // Second loop
++ // carry = 0;
++ // for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
++ // long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
++ // (z[k] & LONG_MASK) + carry;
++ // z[k] = (int)product;
++ // carry = product >>> 32;
++ // }
++ // z[i] = (int)carry;
++ // }
++ //
++ // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = product_hi
++
++ bind(L_second_loop_aligned);
++ mv(carry, zr); // carry = 0;
++ mv(jdx, ylen); // j = ystart+1
++
++ subw(xstart, xstart, 1); // i = xstart-1;
++ bltz(xstart, L_done);
++
++ sub(sp, sp, 4 * wordSize);
++ sd(z, Address(sp, 0));
++
++ Label L_last_x;
++ shadd(t0, xstart, z, t0, LogBytesPerInt);
++ addi(z, t0, 4);
++ subw(xstart, xstart, 1); // i = xstart-1;
++ bltz(xstart, L_last_x);
++
++ shadd(t0, xstart, x, t0, LogBytesPerInt);
++ ld(product_hi, Address(t0, 0));
++ ror_imm(product_hi, product_hi, 32); // convert big-endian to little-endian
++
++ Label L_third_loop_prologue;
++ bind(L_third_loop_prologue);
++
++ sd(ylen, Address(sp, wordSize));
++ sd(x, Address(sp, 2 * wordSize));
++ sd(xstart, Address(sp, 3 * wordSize));
++ multiply_128_x_128_loop(y, z, carry, x, jdx, ylen, product,
++ tmp2, x_xstart, tmp3, tmp4, tmp6, product_hi);
++ ld(z, Address(sp, 0));
++ ld(ylen, Address(sp, wordSize));
++ ld(x, Address(sp, 2 * wordSize));
++ ld(xlen, Address(sp, 3 * wordSize)); // copy old xstart -> xlen
++ addi(sp, sp, 4 * wordSize);
++
++ addiw(tmp3, xlen, 1);
++ shadd(t0, tmp3, z, t0, LogBytesPerInt);
++ sw(carry, Address(t0, 0));
++
++ subw(tmp3, tmp3, 1);
++ bltz(tmp3, L_done);
++
++ srli(carry, carry, 32);
++ shadd(t0, tmp3, z, t0, LogBytesPerInt);
++ sw(carry, Address(t0, 0));
++ j(L_second_loop_aligned);
++
++ // Next infrequent code is moved outside loops.
++ bind(L_last_x);
++ lwu(product_hi, Address(x, 0));
++ j(L_third_loop_prologue);
++
++ bind(L_done);
++}
++#endif
++
++// Count bits of trailing zero chars from lsb to msb until first non-zero element.
++// For LL case, one byte for one element, so shift 8 bits once, and for other case,
++// shift 16 bits once.
++void MacroAssembler::ctzc_bit(Register Rd, Register Rs, bool isLL, Register tmp1, Register tmp2) {
++ if (UseZbb) {
++ assert_different_registers(Rd, Rs, tmp1);
++ int step = isLL ? 8 : 16;
++ ctz(Rd, Rs);
++ andi(tmp1, Rd, step - 1);
++ sub(Rd, Rd, tmp1);
++ return;
++ }
++
++ assert_different_registers(Rd, Rs, tmp1, tmp2);
++ Label Loop;
++ int step = isLL ? 8 : 16;
++ mv(Rd, -step);
++ mv(tmp2, Rs);
++
++ bind(Loop);
++ addi(Rd, Rd, step);
++ andi(tmp1, tmp2, ((1 << step) - 1));
++ srli(tmp2, tmp2, step);
++ beqz(tmp1, Loop);
++}
++
++// This instruction reads adjacent 4 bytes from the lower half of source register,
++// inflate into a register, for example:
++// Rs: A7A6A5A4A3A2A1A0
++// Rd: 00A300A200A100A0
++void MacroAssembler::inflate_lo32(Register Rd, Register Rs, Register tmp1, Register tmp2) {
++ assert_different_registers(Rd, Rs, tmp1, tmp2);
++
++ mv(tmp1, 0xFF);
++ mv(Rd, zr);
++ for (int i = 0; i <= 3; i++) {
++ andr(tmp2, Rs, tmp1);
++ if (i) {
++ slli(tmp2, tmp2, i * 8);
++ }
++ orr(Rd, Rd, tmp2);
++ if (i != 3) {
++ slli(tmp1, tmp1, 8);
++ }
++ }
++}
++
++// This instruction reads adjacent 4 bytes from the upper half of source register,
++// inflate into a register, for example:
++// Rs: A7A6A5A4A3A2A1A0
++// Rd: 00A700A600A500A4
++void MacroAssembler::inflate_hi32(Register Rd, Register Rs, Register tmp1, Register tmp2) {
++ assert_different_registers(Rd, Rs, tmp1, tmp2);
++
++ mv(tmp1, 0xFF00000000);
++ mv(Rd, zr);
++ for (int i = 0; i <= 3; i++) {
++ andr(tmp2, Rs, tmp1);
++ orr(Rd, Rd, tmp2);
++ srli(Rd, Rd, 8);
++ if (i != 3) {
++ slli(tmp1, tmp1, 8);
++ }
++ }
++}
++
++// The size of the blocks erased by the zero_blocks stub. We must
++// handle anything smaller than this ourselves in zero_words().
++const int MacroAssembler::zero_words_block_size = 8;
++
++// zero_words() is used by C2 ClearArray patterns. It is as small as
++// possible, handling small word counts locally and delegating
++// anything larger to the zero_blocks stub. It is expanded many times
++// in compiled code, so it is important to keep it short.
++
++// ptr: Address of a buffer to be zeroed.
++// cnt: Count in HeapWords.
++//
++// ptr, cnt, and t0 are clobbered.
++address MacroAssembler::zero_words(Register ptr, Register cnt) {
++ assert(is_power_of_2(zero_words_block_size), "adjust this");
++ assert(ptr == x28 && cnt == x29, "mismatch in register usage");
++ assert_different_registers(cnt, t0);
++
++ BLOCK_COMMENT("zero_words {");
++
++ mv(t0, zero_words_block_size);
++ Label around, done, done16;
++ bltu(cnt, t0, around);
++ {
++ RuntimeAddress zero_blocks = RuntimeAddress(StubRoutines::riscv::zero_blocks());
++ assert(zero_blocks.target() != NULL, "zero_blocks stub has not been generated");
++ if (StubRoutines::riscv::complete()) {
++ address tpc = trampoline_call(zero_blocks);
++ if (tpc == NULL) {
++ DEBUG_ONLY(reset_labels(around));
++ postcond(pc() == badAddress);
++ return NULL;
++ }
++ } else {
++ jal(zero_blocks);
++ }
++ }
++ bind(around);
++ for (int i = zero_words_block_size >> 1; i > 1; i >>= 1) {
++ Label l;
++ test_bit(t0, cnt, exact_log2(i));
++ beqz(t0, l);
++ for (int j = 0; j < i; j++) {
++ sd(zr, Address(ptr, 0));
++ addi(ptr, ptr, 8);
++ }
++ bind(l);
++ }
++ {
++ Label l;
++ test_bit(t0, cnt, 0);
++ beqz(t0, l);
++ sd(zr, Address(ptr, 0));
++ bind(l);
++ }
++
++ BLOCK_COMMENT("} zero_words");
++ postcond(pc() != badAddress);
++ return pc();
++}
++
++#define SmallArraySize (18 * BytesPerLong)
++
++// base: Address of a buffer to be zeroed, 8 bytes aligned.
++// cnt: Immediate count in HeapWords.
++void MacroAssembler::zero_words(Register base, u_int64_t cnt) {
++ assert_different_registers(base, t0, t1);
++
++ BLOCK_COMMENT("zero_words {");
++
++ if (cnt <= SmallArraySize / BytesPerLong) {
++ for (int i = 0; i < (int)cnt; i++) {
++ sd(zr, Address(base, i * wordSize));
++ }
++ } else {
++ const int unroll = 8; // Number of sd(zr, adr), instructions we'll unroll
++ int remainder = cnt % unroll;
++ for (int i = 0; i < remainder; i++) {
++ sd(zr, Address(base, i * wordSize));
++ }
++
++ Label loop;
++ Register cnt_reg = t0;
++ Register loop_base = t1;
++ cnt = cnt - remainder;
++ mv(cnt_reg, cnt);
++ add(loop_base, base, remainder * wordSize);
++ bind(loop);
++ sub(cnt_reg, cnt_reg, unroll);
++ for (int i = 0; i < unroll; i++) {
++ sd(zr, Address(loop_base, i * wordSize));
++ }
++ add(loop_base, loop_base, unroll * wordSize);
++ bnez(cnt_reg, loop);
++ }
++
++ BLOCK_COMMENT("} zero_words");
++}
++
++// base: Address of a buffer to be filled, 8 bytes aligned.
++// cnt: Count in 8-byte unit.
++// value: Value to be filled with.
++// base will point to the end of the buffer after filling.
++void MacroAssembler::fill_words(Register base, Register cnt, Register value) {
++// Algorithm:
++//
++// t0 = cnt & 7
++// cnt -= t0
++// p += t0
++// switch (t0):
++// switch start:
++// do while cnt
++// cnt -= 8
++// p[-8] = value
++// case 7:
++// p[-7] = value
++// case 6:
++// p[-6] = value
++// // ...
++// case 1:
++// p[-1] = value
++// case 0:
++// p += 8
++// do-while end
++// switch end
++
++ assert_different_registers(base, cnt, value, t0, t1);
++
++ Label fini, skip, entry, loop;
++ const int unroll = 8; // Number of sd instructions we'll unroll
++
++ beqz(cnt, fini);
++
++ andi(t0, cnt, unroll - 1);
++ sub(cnt, cnt, t0);
++ // align 8, so first sd n % 8 = mod, next loop sd 8 * n.
++ shadd(base, t0, base, t1, 3);
++ la(t1, entry);
++ slli(t0, t0, 2); // sd_inst_nums * 4; t0 is cnt % 8, so t1 = t1 - sd_inst_nums * 4, 4 is sizeof(inst)
++ sub(t1, t1, t0);
++ jr(t1);
++
++ bind(loop);
++ add(base, base, unroll * 8);
++ for (int i = -unroll; i < 0; i++) {
++ sd(value, Address(base, i * 8));
++ }
++ bind(entry);
++ sub(cnt, cnt, unroll);
++ bgez(cnt, loop);
++
++ bind(fini);
++}
++
++#define FCVT_SAFE(FLOATCVT, FLOATSIG) \
++void MacroAssembler::FLOATCVT##_safe(Register dst, FloatRegister src, Register tmp) { \
++ Label done; \
++ assert_different_registers(dst, tmp); \
++ fclass_##FLOATSIG(tmp, src); \
++ mv(dst, zr); \
++ /* check if src is NaN */ \
++ andi(tmp, tmp, 0b1100000000); \
++ bnez(tmp, done); \
++ FLOATCVT(dst, src); \
++ bind(done); \
++}
++
++FCVT_SAFE(fcvt_w_s, s);
++FCVT_SAFE(fcvt_l_s, s);
++FCVT_SAFE(fcvt_w_d, d);
++FCVT_SAFE(fcvt_l_d, d);
++
++#undef FCVT_SAFE
++
++#define FCMP(FLOATTYPE, FLOATSIG) \
++void MacroAssembler::FLOATTYPE##_compare(Register result, FloatRegister Rs1, \
++ FloatRegister Rs2, int unordered_result) { \
++ Label Ldone; \
++ if (unordered_result < 0) { \
++ /* we want -1 for unordered or less than, 0 for equal and 1 for greater than. */ \
++ /* installs 1 if gt else 0 */ \
++ flt_##FLOATSIG(result, Rs2, Rs1); \
++ /* Rs1 > Rs2, install 1 */ \
++ bgtz(result, Ldone); \
++ feq_##FLOATSIG(result, Rs1, Rs2); \
++ addi(result, result, -1); \
++ /* Rs1 = Rs2, install 0 */ \
++ /* NaN or Rs1 < Rs2, install -1 */ \
++ bind(Ldone); \
++ } else { \
++ /* we want -1 for less than, 0 for equal and 1 for unordered or greater than. */ \
++ /* installs 1 if gt or unordered else 0 */ \
++ flt_##FLOATSIG(result, Rs1, Rs2); \
++ /* Rs1 < Rs2, install -1 */ \
++ bgtz(result, Ldone); \
++ feq_##FLOATSIG(result, Rs1, Rs2); \
++ addi(result, result, -1); \
++ /* Rs1 = Rs2, install 0 */ \
++ /* NaN or Rs1 > Rs2, install 1 */ \
++ bind(Ldone); \
++ neg(result, result); \
++ } \
++}
++
++FCMP(float, s);
++FCMP(double, d);
++
++#undef FCMP
++
++// Zero words; len is in bytes
++// Destroys all registers except addr
++// len must be a nonzero multiple of wordSize
++void MacroAssembler::zero_memory(Register addr, Register len, Register tmp) {
++ assert_different_registers(addr, len, tmp, t0, t1);
++
++#ifdef ASSERT
++ {
++ Label L;
++ andi(t0, len, BytesPerWord - 1);
++ beqz(t0, L);
++ stop("len is not a multiple of BytesPerWord");
++ bind(L);
++ }
++#endif // ASSERT
++
++#ifndef PRODUCT
++ block_comment("zero memory");
++#endif // PRODUCT
++
++ Label loop;
++ Label entry;
++
++ // Algorithm:
++ //
++ // t0 = cnt & 7
++ // cnt -= t0
++ // p += t0
++ // switch (t0) {
++ // do {
++ // cnt -= 8
++ // p[-8] = 0
++ // case 7:
++ // p[-7] = 0
++ // case 6:
++ // p[-6] = 0
++ // ...
++ // case 1:
++ // p[-1] = 0
++ // case 0:
++ // p += 8
++ // } while (cnt)
++ // }
++
++ const int unroll = 8; // Number of sd(zr) instructions we'll unroll
++
++ srli(len, len, LogBytesPerWord);
++ andi(t0, len, unroll - 1); // t0 = cnt % unroll
++ sub(len, len, t0); // cnt -= unroll
++ // tmp always points to the end of the region we're about to zero
++ shadd(tmp, t0, addr, t1, LogBytesPerWord);
++ la(t1, entry);
++ slli(t0, t0, 2);
++ sub(t1, t1, t0);
++ jr(t1);
++ bind(loop);
++ sub(len, len, unroll);
++ for (int i = -unroll; i < 0; i++) {
++ sd(zr, Address(tmp, i * wordSize));
++ }
++ bind(entry);
++ add(tmp, tmp, unroll * wordSize);
++ bnez(len, loop);
++}
++
++// shift left by shamt and add
++// Rd = (Rs1 << shamt) + Rs2
++void MacroAssembler::shadd(Register Rd, Register Rs1, Register Rs2, Register tmp, int shamt) {
++ if (UseZba) {
++ if (shamt == 1) {
++ sh1add(Rd, Rs1, Rs2);
++ return;
++ } else if (shamt == 2) {
++ sh2add(Rd, Rs1, Rs2);
++ return;
++ } else if (shamt == 3) {
++ sh3add(Rd, Rs1, Rs2);
++ return;
++ }
++ }
++
++ if (shamt != 0) {
++ slli(tmp, Rs1, shamt);
++ add(Rd, Rs2, tmp);
++ } else {
++ add(Rd, Rs1, Rs2);
++ }
++}
++
++void MacroAssembler::zero_extend(Register dst, Register src, int bits) {
++ if (UseZba && bits == 32) {
++ zext_w(dst, src);
++ return;
++ }
++
++ if (UseZbb && bits == 16) {
++ zext_h(dst, src);
++ return;
++ }
++
++ if (bits == 8) {
++ zext_b(dst, src);
++ } else {
++ slli(dst, src, XLEN - bits);
++ srli(dst, dst, XLEN - bits);
++ }
++}
++
++void MacroAssembler::sign_extend(Register dst, Register src, int bits) {
++ if (UseZbb) {
++ if (bits == 8) {
++ sext_b(dst, src);
++ return;
++ } else if (bits == 16) {
++ sext_h(dst, src);
++ return;
++ }
++ }
++
++ if (bits == 32) {
++ sext_w(dst, src);
++ } else {
++ slli(dst, src, XLEN - bits);
++ srai(dst, dst, XLEN - bits);
++ }
++}
++
++void MacroAssembler::cmp_l2i(Register dst, Register src1, Register src2, Register tmp)
++{
++ if (src1 == src2) {
++ mv(dst, zr);
++ return;
++ }
++ Label done;
++ Register left = src1;
++ Register right = src2;
++ if (dst == src1) {
++ assert_different_registers(dst, src2, tmp);
++ mv(tmp, src1);
++ left = tmp;
++ } else if (dst == src2) {
++ assert_different_registers(dst, src1, tmp);
++ mv(tmp, src2);
++ right = tmp;
++ }
++
++ // installs 1 if gt else 0
++ slt(dst, right, left);
++ bnez(dst, done);
++ slt(dst, left, right);
++ // dst = -1 if lt; else if eq , dst = 0
++ neg(dst, dst);
++ bind(done);
++}
++
++void MacroAssembler::test_bit(Register Rd, Register Rs, uint32_t bit_pos, Register tmp) {
++ assert(bit_pos < 64, "invalid bit range");
++ if (UseZbs) {
++ bexti(Rd, Rs, bit_pos);
++ return;
++ }
++ andi(Rd, Rs, 1UL << bit_pos, tmp);
++}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/macroAssembler_riscv.hpp
+@@ -0,0 +1,1310 @@
++/*
++ * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_MACROASSEMBLER_RISCV_HPP
++#define CPU_RISCV_MACROASSEMBLER_RISCV_HPP
++
++#include "asm/assembler.inline.hpp"
++#include "metaprogramming/enableIf.hpp"
++#include "nativeInst_riscv.hpp"
++#include "oops/compressedOops.hpp"
++#include "utilities/powerOfTwo.hpp"
++
++// MacroAssembler extends Assembler by frequently used macros.
++//
++// Instructions for which a 'better' code sequence exists depending
++// on arguments should also go in here.
++
++class MacroAssembler: public Assembler {
++
++ public:
++ MacroAssembler(CodeBuffer* code) : Assembler(code) {}
++
++ virtual ~MacroAssembler() {}
++
++ void safepoint_poll(Label& slow_path, bool at_return, bool acquire, bool in_nmethod);
++
++ // Alignment
++ void align(int modulus, int extra_offset = 0);
++
++ static inline void assert_alignment(address pc, int alignment = NativeInstruction::instruction_size) {
++ assert(is_aligned(pc, alignment), "bad alignment");
++ }
++
++ // Stack frame creation/removal
++ // Note that SP must be updated to the right place before saving/restoring RA and FP
++ // because signal based thread suspend/resume could happen asynchronously.
++ void enter() {
++ addi(sp, sp, - 2 * wordSize);
++ sd(ra, Address(sp, wordSize));
++ sd(fp, Address(sp));
++ addi(fp, sp, 2 * wordSize);
++ }
++
++ void leave() {
++ addi(sp, fp, - 2 * wordSize);
++ ld(fp, Address(sp));
++ ld(ra, Address(sp, wordSize));
++ addi(sp, sp, 2 * wordSize);
++ }
++
++
++ // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
++ // The pointer will be loaded into the thread register.
++ void get_thread(Register thread);
++
++ // Support for VM calls
++ //
++ // It is imperative that all calls into the VM are handled via the call_VM macros.
++ // They make sure that the stack linkage is setup correctly. call_VM's correspond
++ // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
++
++ void call_VM(Register oop_result,
++ address entry_point,
++ bool check_exceptions = true);
++ void call_VM(Register oop_result,
++ address entry_point,
++ Register arg_1,
++ bool check_exceptions = true);
++ void call_VM(Register oop_result,
++ address entry_point,
++ Register arg_1, Register arg_2,
++ bool check_exceptions = true);
++ void call_VM(Register oop_result,
++ address entry_point,
++ Register arg_1, Register arg_2, Register arg_3,
++ bool check_exceptions = true);
++
++ // Overloadings with last_Java_sp
++ void call_VM(Register oop_result,
++ Register last_java_sp,
++ address entry_point,
++ int number_of_arguments = 0,
++ bool check_exceptions = true);
++ void call_VM(Register oop_result,
++ Register last_java_sp,
++ address entry_point,
++ Register arg_1,
++ bool check_exceptions = true);
++ void call_VM(Register oop_result,
++ Register last_java_sp,
++ address entry_point,
++ Register arg_1, Register arg_2,
++ bool check_exceptions = true);
++ void call_VM(Register oop_result,
++ Register last_java_sp,
++ address entry_point,
++ Register arg_1, Register arg_2, Register arg_3,
++ bool check_exceptions = true);
++
++ void get_vm_result(Register oop_result, Register java_thread);
++ void get_vm_result_2(Register metadata_result, Register java_thread);
++
++ // These always tightly bind to MacroAssembler::call_VM_leaf_base
++ // bypassing the virtual implementation
++ void call_VM_leaf(address entry_point,
++ int number_of_arguments = 0);
++ void call_VM_leaf(address entry_point,
++ Register arg_0);
++ void call_VM_leaf(address entry_point,
++ Register arg_0, Register arg_1);
++ void call_VM_leaf(address entry_point,
++ Register arg_0, Register arg_1, Register arg_2);
++
++ // These always tightly bind to MacroAssembler::call_VM_base
++ // bypassing the virtual implementation
++ void super_call_VM_leaf(address entry_point, Register arg_0);
++ void super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1);
++ void super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2);
++ void super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3);
++
++ // last Java Frame (fills frame anchor)
++ void set_last_Java_frame(Register last_java_sp, Register last_java_fp, address last_java_pc, Register tmp);
++ void set_last_Java_frame(Register last_java_sp, Register last_java_fp, Label &last_java_pc, Register tmp);
++ void set_last_Java_frame(Register last_java_sp, Register last_java_fp, Register last_java_pc, Register tmp);
++
++ // thread in the default location (xthread)
++ void reset_last_Java_frame(bool clear_fp);
++
++ virtual void call_VM_leaf_base(
++ address entry_point, // the entry point
++ int number_of_arguments, // the number of arguments to pop after the call
++ Label* retaddr = NULL
++ );
++
++ virtual void call_VM_leaf_base(
++ address entry_point, // the entry point
++ int number_of_arguments, // the number of arguments to pop after the call
++ Label& retaddr) {
++ call_VM_leaf_base(entry_point, number_of_arguments, &retaddr);
++ }
++
++ virtual void call_VM_base( // returns the register containing the thread upon return
++ Register oop_result, // where an oop-result ends up if any; use noreg otherwise
++ Register java_thread, // the thread if computed before ; use noreg otherwise
++ Register last_java_sp, // to set up last_Java_frame in stubs; use noreg otherwise
++ address entry_point, // the entry point
++ int number_of_arguments, // the number of arguments (w/o thread) to pop after the call
++ bool check_exceptions // whether to check for pending exceptions after return
++ );
++
++ void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions);
++
++ virtual void check_and_handle_earlyret(Register java_thread);
++ virtual void check_and_handle_popframe(Register java_thread);
++
++ void resolve_weak_handle(Register result, Register tmp);
++ void resolve_oop_handle(Register result, Register tmp = x15);
++ void resolve_jobject(Register value, Register thread, Register tmp);
++
++ void movoop(Register dst, jobject obj, bool immediate = false);
++ void mov_metadata(Register dst, Metadata* obj);
++ void bang_stack_size(Register size, Register tmp);
++ void set_narrow_oop(Register dst, jobject obj);
++ void set_narrow_klass(Register dst, Klass* k);
++
++ void load_mirror(Register dst, Register method, Register tmp = x15);
++ void access_load_at(BasicType type, DecoratorSet decorators, Register dst,
++ Address src, Register tmp1, Register thread_tmp);
++ void access_store_at(BasicType type, DecoratorSet decorators, Address dst,
++ Register src, Register tmp1, Register thread_tmp);
++ void load_klass(Register dst, Register src, Register tmp = t0);
++ void store_klass(Register dst, Register src, Register tmp = t0);
++ void cmp_klass(Register oop, Register trial_klass, Register tmp1, Register tmp2, Label &L);
++
++ void encode_klass_not_null(Register r, Register tmp = t0);
++ void decode_klass_not_null(Register r, Register tmp = t0);
++ void encode_klass_not_null(Register dst, Register src, Register tmp);
++ void decode_klass_not_null(Register dst, Register src, Register tmp);
++ void decode_heap_oop_not_null(Register r);
++ void decode_heap_oop_not_null(Register dst, Register src);
++ void decode_heap_oop(Register d, Register s);
++ void decode_heap_oop(Register r) { decode_heap_oop(r, r); }
++ void encode_heap_oop(Register d, Register s);
++ void encode_heap_oop(Register r) { encode_heap_oop(r, r); };
++ void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
++ Register thread_tmp = noreg, DecoratorSet decorators = 0);
++ void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
++ Register thread_tmp = noreg, DecoratorSet decorators = 0);
++ void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
++ Register thread_tmp = noreg, DecoratorSet decorators = 0);
++
++ void store_klass_gap(Register dst, Register src);
++
++ // currently unimplemented
++ // Used for storing NULL. All other oop constants should be
++ // stored using routines that take a jobject.
++ void store_heap_oop_null(Address dst);
++
++ // This dummy is to prevent a call to store_heap_oop from
++ // converting a zero (linke NULL) into a Register by giving
++ // the compiler two choices it can't resolve
++
++ void store_heap_oop(Address dst, void* dummy);
++
++ // Support for NULL-checks
++ //
++ // Generates code that causes a NULL OS exception if the content of reg is NULL.
++ // If the accessed location is M[reg + offset] and the offset is known, provide the
++ // offset. No explicit code generateion is needed if the offset is within a certain
++ // range (0 <= offset <= page_size).
++
++ virtual void null_check(Register reg, int offset = -1);
++ static bool needs_explicit_null_check(intptr_t offset);
++ static bool uses_implicit_null_check(void* address);
++
++ // idiv variant which deals with MINLONG as dividend and -1 as divisor
++ int corrected_idivl(Register result, Register rs1, Register rs2,
++ bool want_remainder);
++ int corrected_idivq(Register result, Register rs1, Register rs2,
++ bool want_remainder);
++
++ // interface method calling
++ void lookup_interface_method(Register recv_klass,
++ Register intf_klass,
++ RegisterOrConstant itable_index,
++ Register method_result,
++ Register scan_tmp,
++ Label& no_such_interface,
++ bool return_method = true);
++
++ // virtual method calling
++ // n.n. x86 allows RegisterOrConstant for vtable_index
++ void lookup_virtual_method(Register recv_klass,
++ RegisterOrConstant vtable_index,
++ Register method_result);
++
++ // Form an addres from base + offset in Rd. Rd my or may not
++ // actually be used: you must use the Address that is returned. It
++ // is up to you to ensure that the shift provided mathces the size
++ // of your data.
++ Address form_address(Register Rd, Register base, int64_t byte_offset);
++
++ // Sometimes we get misaligned loads and stores, usually from Unsafe
++ // accesses, and these can exceed the offset range.
++ Address legitimize_address(Register Rd, const Address &adr) {
++ if (adr.getMode() == Address::base_plus_offset) {
++ if (!is_simm12(adr.offset())) {
++ return form_address(Rd, adr.base(), adr.offset());
++ }
++ }
++ return adr;
++ }
++
++ // allocation
++ void tlab_allocate(
++ Register obj, // result: pointer to object after successful allocation
++ Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
++ int con_size_in_bytes, // object size in bytes if known at compile time
++ Register tmp1, // temp register
++ Register tmp2, // temp register
++ Label& slow_case, // continuation point of fast allocation fails
++ bool is_far = false
++ );
++
++ void eden_allocate(
++ Register obj, // result: pointer to object after successful allocation
++ Register var_size_in_bytes, // object size in bytes if unknown at compile time; invalid otherwise
++ int con_size_in_bytes, // object size in bytes if known at compile time
++ Register tmp, // temp register
++ Label& slow_case, // continuation point if fast allocation fails
++ bool is_far = false
++ );
++
++ // Test sub_klass against super_klass, with fast and slow paths.
++
++ // The fast path produces a tri-state answer: yes / no / maybe-slow.
++ // One of the three labels can be NULL, meaning take the fall-through.
++ // If super_check_offset is -1, the value is loaded up from super_klass.
++ // No registers are killed, except tmp_reg
++ void check_klass_subtype_fast_path(Register sub_klass,
++ Register super_klass,
++ Register tmp_reg,
++ Label* L_success,
++ Label* L_failure,
++ Label* L_slow_path,
++ Register super_check_offset = noreg);
++
++ // The reset of the type cehck; must be wired to a corresponding fast path.
++ // It does not repeat the fast path logic, so don't use it standalone.
++ // The tmp1_reg and tmp2_reg can be noreg, if no temps are avaliable.
++ // Updates the sub's secondary super cache as necessary.
++ void check_klass_subtype_slow_path(Register sub_klass,
++ Register super_klass,
++ Register tmp1_reg,
++ Register tmp2_reg,
++ Label* L_success,
++ Label* L_failure);
++
++ void check_klass_subtype(Register sub_klass,
++ Register super_klass,
++ Register tmp_reg,
++ Label& L_success);
++
++ Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
++
++ // only if +VerifyOops
++ void verify_oop(Register reg, const char* s = "broken oop");
++ void verify_oop_addr(Address addr, const char* s = "broken oop addr");
++
++ void _verify_method_ptr(Register reg, const char* msg, const char* file, int line) {}
++ void _verify_klass_ptr(Register reg, const char* msg, const char* file, int line) {}
++
++#define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
++#define verify_klass_ptr(reg) _verify_method_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
++
++ // A more convenient access to fence for our purposes
++ // We used four bit to indicate the read and write bits in the predecessors and successors,
++ // and extended i for r, o for w if UseConservativeFence enabled.
++ enum Membar_mask_bits {
++ StoreStore = 0b0101, // (pred = ow + succ = ow)
++ LoadStore = 0b1001, // (pred = ir + succ = ow)
++ StoreLoad = 0b0110, // (pred = ow + succ = ir)
++ LoadLoad = 0b1010, // (pred = ir + succ = ir)
++ AnyAny = LoadStore | StoreLoad // (pred = iorw + succ = iorw)
++ };
++
++ void membar(uint32_t order_constraint);
++
++ static void membar_mask_to_pred_succ(uint32_t order_constraint,
++ uint32_t& predecessor, uint32_t& successor) {
++ predecessor = (order_constraint >> 2) & 0x3;
++ successor = order_constraint & 0x3;
++
++ // extend rw -> iorw:
++ // 01(w) -> 0101(ow)
++ // 10(r) -> 1010(ir)
++ // 11(rw)-> 1111(iorw)
++ if (UseConservativeFence) {
++ predecessor |= predecessor << 2;
++ successor |= successor << 2;
++ }
++ }
++
++ static int pred_succ_to_membar_mask(uint32_t predecessor, uint32_t successor) {
++ return ((predecessor & 0x3) << 2) | (successor & 0x3);
++ }
++
++ // prints msg, dumps registers and stops execution
++ void stop(const char* msg);
++
++ static void debug64(char* msg, int64_t pc, int64_t regs[]);
++
++ void unimplemented(const char* what = "");
++
++ void should_not_reach_here() { stop("should not reach here"); }
++
++ static address target_addr_for_insn(address insn_addr);
++
++ // Required platform-specific helpers for Label::patch_instructions.
++ // They _shadow_ the declarations in AbstractAssembler, which are undefined.
++ static int pd_patch_instruction_size(address branch, address target);
++ static void pd_patch_instruction(address branch, address target, const char* file = NULL, int line = 0) {
++ pd_patch_instruction_size(branch, target);
++ }
++ static address pd_call_destination(address branch) {
++ return target_addr_for_insn(branch);
++ }
++
++ static int patch_oop(address insn_addr, address o);
++ address emit_trampoline_stub(int insts_call_instruction_offset, address target);
++ void emit_static_call_stub();
++
++ // The following 4 methods return the offset of the appropriate move instruction
++
++ // Support for fast byte/short loading with zero extension (depending on particular CPU)
++ int load_unsigned_byte(Register dst, Address src);
++ int load_unsigned_short(Register dst, Address src);
++
++ // Support for fast byte/short loading with sign extension (depending on particular CPU)
++ int load_signed_byte(Register dst, Address src);
++ int load_signed_short(Register dst, Address src);
++
++ // Load and store values by size and signed-ness
++ void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
++ void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
++
++ public:
++ // Standard pseudo instructions
++ inline void nop() {
++ addi(x0, x0, 0);
++ }
++
++ inline void mv(Register Rd, Register Rs) {
++ if (Rd != Rs) {
++ addi(Rd, Rs, 0);
++ }
++ }
++
++ inline void notr(Register Rd, Register Rs) {
++ xori(Rd, Rs, -1);
++ }
++
++ inline void neg(Register Rd, Register Rs) {
++ sub(Rd, x0, Rs);
++ }
++
++ inline void negw(Register Rd, Register Rs) {
++ subw(Rd, x0, Rs);
++ }
++
++ inline void sext_w(Register Rd, Register Rs) {
++ addiw(Rd, Rs, 0);
++ }
++
++ inline void zext_b(Register Rd, Register Rs) {
++ andi(Rd, Rs, 0xFF);
++ }
++
++ inline void seqz(Register Rd, Register Rs) {
++ sltiu(Rd, Rs, 1);
++ }
++
++ inline void snez(Register Rd, Register Rs) {
++ sltu(Rd, x0, Rs);
++ }
++
++ inline void sltz(Register Rd, Register Rs) {
++ slt(Rd, Rs, x0);
++ }
++
++ inline void sgtz(Register Rd, Register Rs) {
++ slt(Rd, x0, Rs);
++ }
++
++ // Bit-manipulation extension pseudo instructions
++ // zero extend word
++ inline void zext_w(Register Rd, Register Rs) {
++ add_uw(Rd, Rs, zr);
++ }
++
++ // Floating-point data-processing pseudo instructions
++ inline void fmv_s(FloatRegister Rd, FloatRegister Rs) {
++ if (Rd != Rs) {
++ fsgnj_s(Rd, Rs, Rs);
++ }
++ }
++
++ inline void fabs_s(FloatRegister Rd, FloatRegister Rs) {
++ fsgnjx_s(Rd, Rs, Rs);
++ }
++
++ inline void fneg_s(FloatRegister Rd, FloatRegister Rs) {
++ fsgnjn_s(Rd, Rs, Rs);
++ }
++
++ inline void fmv_d(FloatRegister Rd, FloatRegister Rs) {
++ if (Rd != Rs) {
++ fsgnj_d(Rd, Rs, Rs);
++ }
++ }
++
++ inline void fabs_d(FloatRegister Rd, FloatRegister Rs) {
++ fsgnjx_d(Rd, Rs, Rs);
++ }
++
++ inline void fneg_d(FloatRegister Rd, FloatRegister Rs) {
++ fsgnjn_d(Rd, Rs, Rs);
++ }
++
++ // Control and status pseudo instructions
++ void rdinstret(Register Rd); // read instruction-retired counter
++ void rdcycle(Register Rd); // read cycle counter
++ void rdtime(Register Rd); // read time
++ void csrr(Register Rd, unsigned csr); // read csr
++ void csrw(unsigned csr, Register Rs); // write csr
++ void csrs(unsigned csr, Register Rs); // set bits in csr
++ void csrc(unsigned csr, Register Rs); // clear bits in csr
++ void csrwi(unsigned csr, unsigned imm);
++ void csrsi(unsigned csr, unsigned imm);
++ void csrci(unsigned csr, unsigned imm);
++ void frcsr(Register Rd); // read float-point csr
++ void fscsr(Register Rd, Register Rs); // swap float-point csr
++ void fscsr(Register Rs); // write float-point csr
++ void frrm(Register Rd); // read float-point rounding mode
++ void fsrm(Register Rd, Register Rs); // swap float-point rounding mode
++ void fsrm(Register Rs); // write float-point rounding mode
++ void fsrmi(Register Rd, unsigned imm);
++ void fsrmi(unsigned imm);
++ void frflags(Register Rd); // read float-point exception flags
++ void fsflags(Register Rd, Register Rs); // swap float-point exception flags
++ void fsflags(Register Rs); // write float-point exception flags
++ void fsflagsi(Register Rd, unsigned imm);
++ void fsflagsi(unsigned imm);
++
++ // Control transfer pseudo instructions
++ void beqz(Register Rs, const address dest);
++ void bnez(Register Rs, const address dest);
++ void blez(Register Rs, const address dest);
++ void bgez(Register Rs, const address dest);
++ void bltz(Register Rs, const address dest);
++ void bgtz(Register Rs, const address dest);
++
++ void j(Label &l, Register temp = t0);
++ void j(const address dest, Register temp = t0);
++ void j(const Address &adr, Register temp = t0);
++ void jal(Label &l, Register temp = t0);
++ void jal(const address dest, Register temp = t0);
++ void jal(const Address &adr, Register temp = t0);
++ void jal(Register Rd, Label &L, Register temp = t0);
++ void jal(Register Rd, const address dest, Register temp = t0);
++
++ //label
++ void beqz(Register Rs, Label &l, bool is_far = false);
++ void bnez(Register Rs, Label &l, bool is_far = false);
++ void blez(Register Rs, Label &l, bool is_far = false);
++ void bgez(Register Rs, Label &l, bool is_far = false);
++ void bltz(Register Rs, Label &l, bool is_far = false);
++ void bgtz(Register Rs, Label &l, bool is_far = false);
++
++ void beq (Register Rs1, Register Rs2, Label &L, bool is_far = false);
++ void bne (Register Rs1, Register Rs2, Label &L, bool is_far = false);
++ void blt (Register Rs1, Register Rs2, Label &L, bool is_far = false);
++ void bge (Register Rs1, Register Rs2, Label &L, bool is_far = false);
++ void bltu(Register Rs1, Register Rs2, Label &L, bool is_far = false);
++ void bgeu(Register Rs1, Register Rs2, Label &L, bool is_far = false);
++
++ void bgt (Register Rs, Register Rt, const address dest);
++ void ble (Register Rs, Register Rt, const address dest);
++ void bgtu(Register Rs, Register Rt, const address dest);
++ void bleu(Register Rs, Register Rt, const address dest);
++
++ void bgt (Register Rs, Register Rt, Label &l, bool is_far = false);
++ void ble (Register Rs, Register Rt, Label &l, bool is_far = false);
++ void bgtu(Register Rs, Register Rt, Label &l, bool is_far = false);
++ void bleu(Register Rs, Register Rt, Label &l, bool is_far = false);
++
++#define INSN_ENTRY_RELOC(result_type, header) \
++ result_type header { \
++ guarantee(rtype == relocInfo::internal_word_type, \
++ "only internal_word_type relocs make sense here"); \
++ relocate(InternalAddress(dest).rspec()); \
++ IncompressibleRegion ir(this); /* relocations */
++
++#define INSN(NAME) \
++ void NAME(Register Rs1, Register Rs2, const address dest) { \
++ assert_cond(dest != NULL); \
++ int64_t offset = dest - pc(); \
++ guarantee(is_simm13(offset) && ((offset % 2) == 0), "offset is invalid."); \
++ Assembler::NAME(Rs1, Rs2, offset); \
++ } \
++ INSN_ENTRY_RELOC(void, NAME(Register Rs1, Register Rs2, address dest, relocInfo::relocType rtype)) \
++ NAME(Rs1, Rs2, dest); \
++ }
++
++ INSN(beq);
++ INSN(bne);
++ INSN(bge);
++ INSN(bgeu);
++ INSN(blt);
++ INSN(bltu);
++
++#undef INSN
++
++#undef INSN_ENTRY_RELOC
++
++ void float_beq(FloatRegister Rs1, FloatRegister Rs2, Label &l, bool is_far = false, bool is_unordered = false);
++ void float_bne(FloatRegister Rs1, FloatRegister Rs2, Label &l, bool is_far = false, bool is_unordered = false);
++ void float_ble(FloatRegister Rs1, FloatRegister Rs2, Label &l, bool is_far = false, bool is_unordered = false);
++ void float_bge(FloatRegister Rs1, FloatRegister Rs2, Label &l, bool is_far = false, bool is_unordered = false);
++ void float_blt(FloatRegister Rs1, FloatRegister Rs2, Label &l, bool is_far = false, bool is_unordered = false);
++ void float_bgt(FloatRegister Rs1, FloatRegister Rs2, Label &l, bool is_far = false, bool is_unordered = false);
++
++ void double_beq(FloatRegister Rs1, FloatRegister Rs2, Label &l, bool is_far = false, bool is_unordered = false);
++ void double_bne(FloatRegister Rs1, FloatRegister Rs2, Label &l, bool is_far = false, bool is_unordered = false);
++ void double_ble(FloatRegister Rs1, FloatRegister Rs2, Label &l, bool is_far = false, bool is_unordered = false);
++ void double_bge(FloatRegister Rs1, FloatRegister Rs2, Label &l, bool is_far = false, bool is_unordered = false);
++ void double_blt(FloatRegister Rs1, FloatRegister Rs2, Label &l, bool is_far = false, bool is_unordered = false);
++ void double_bgt(FloatRegister Rs1, FloatRegister Rs2, Label &l, bool is_far = false, bool is_unordered = false);
++
++private:
++ int push_reg(unsigned int bitset, Register stack);
++ int pop_reg(unsigned int bitset, Register stack);
++ int push_fp(unsigned int bitset, Register stack);
++ int pop_fp(unsigned int bitset, Register stack);
++#ifdef COMPILER2
++ int push_v(unsigned int bitset, Register stack);
++ int pop_v(unsigned int bitset, Register stack);
++#endif // COMPILER2
++
++public:
++ void push_reg(Register Rs);
++ void pop_reg(Register Rd);
++ void push_reg(RegSet regs, Register stack) { if (regs.bits()) push_reg(regs.bits(), stack); }
++ void pop_reg(RegSet regs, Register stack) { if (regs.bits()) pop_reg(regs.bits(), stack); }
++ void push_fp(FloatRegSet regs, Register stack) { if (regs.bits()) push_fp(regs.bits(), stack); }
++ void pop_fp(FloatRegSet regs, Register stack) { if (regs.bits()) pop_fp(regs.bits(), stack); }
++#ifdef COMPILER2
++ void push_v(VectorRegSet regs, Register stack) { if (regs.bits()) push_v(regs.bits(), stack); }
++ void pop_v(VectorRegSet regs, Register stack) { if (regs.bits()) pop_v(regs.bits(), stack); }
++#endif // COMPILER2
++
++ // Push and pop everything that might be clobbered by a native
++ // runtime call except t0 and t1. (They are always
++ // temporary registers, so we don't have to protect them.)
++ // Additional registers can be excluded in a passed RegSet.
++ void push_call_clobbered_registers_except(RegSet exclude);
++ void pop_call_clobbered_registers_except(RegSet exclude);
++
++ void push_call_clobbered_registers() {
++ push_call_clobbered_registers_except(RegSet());
++ }
++ void pop_call_clobbered_registers() {
++ pop_call_clobbered_registers_except(RegSet());
++ }
++
++ void push_CPU_state(bool save_vectors = false, int vector_size_in_bytes = 0);
++ void pop_CPU_state(bool restore_vectors = false, int vector_size_in_bytes = 0);
++
++ // if heap base register is used - reinit it with the correct value
++ void reinit_heapbase();
++
++ void bind(Label& L) {
++ Assembler::bind(L);
++ // fences across basic blocks should not be merged
++ code()->clear_last_insn();
++ }
++
++ typedef void (MacroAssembler::* compare_and_branch_insn)(Register Rs1, Register Rs2, const address dest);
++ typedef void (MacroAssembler::* compare_and_branch_label_insn)(Register Rs1, Register Rs2, Label &L, bool is_far);
++ typedef void (MacroAssembler::* jal_jalr_insn)(Register Rt, address dest);
++ typedef void (MacroAssembler::* load_insn_by_temp)(Register Rt, address dest, Register temp);
++
++ void wrap_label(Register r, Label &L, Register t, load_insn_by_temp insn);
++ void wrap_label(Register r, Label &L, jal_jalr_insn insn);
++ void wrap_label(Register r1, Register r2, Label &L,
++ compare_and_branch_insn insn,
++ compare_and_branch_label_insn neg_insn, bool is_far = false);
++
++ void la(Register Rd, Label &label);
++ void la(Register Rd, const address dest);
++ void la(Register Rd, const Address &adr);
++
++ void li32(Register Rd, int32_t imm);
++ void li64(Register Rd, int64_t imm);
++ void li (Register Rd, int64_t imm); // optimized load immediate
++
++ // mv
++ void mv(Register Rd, address addr) { li(Rd, (int64_t)addr); }
++ void mv(Register Rd, address addr, int32_t &offset) {
++ // Split address into a lower 12-bit sign-extended offset and the remainder,
++ // so that the offset could be encoded in jalr or load/store instruction.
++ offset = ((int32_t)(int64_t)addr << 20) >> 20;
++ li(Rd, (int64_t)addr - offset);
++ }
++
++ template<typename T, ENABLE_IF(std::is_integral<T>::value)>
++ inline void mv(Register Rd, T o) { li(Rd, (int64_t)o); }
++
++ void mv(Register Rd, Address dest) {
++ assert(dest.getMode() == Address::literal, "Address mode should be Address::literal");
++ relocate(dest.rspec(), [&] {
++ movptr(Rd, dest.target());
++ });
++ }
++
++ void mv(Register Rd, RegisterOrConstant src) {
++ if (src.is_register()) {
++ mv(Rd, src.as_register());
++ } else {
++ mv(Rd, src.as_constant());
++ }
++ }
++
++ void movptr(Register Rd, address addr, int32_t &offset);
++
++ void movptr(Register Rd, address addr) {
++ int offset = 0;
++ movptr(Rd, addr, offset);
++ addi(Rd, Rd, offset);
++ }
++
++ inline void movptr(Register Rd, uintptr_t imm64) {
++ movptr(Rd, (address)imm64);
++ }
++
++ // arith
++ void add (Register Rd, Register Rn, int64_t increment, Register temp = t0);
++ void addw(Register Rd, Register Rn, int32_t increment, Register temp = t0);
++ void sub (Register Rd, Register Rn, int64_t decrement, Register temp = t0);
++ void subw(Register Rd, Register Rn, int32_t decrement, Register temp = t0);
++
++#define INSN(NAME) \
++ inline void NAME(Register Rd, Register Rs1, Register Rs2) { \
++ Assembler::NAME(Rd, Rs1, Rs2); \
++ }
++
++ INSN(add);
++ INSN(addw);
++ INSN(sub);
++ INSN(subw);
++
++#undef INSN
++
++ // logic
++ void andrw(Register Rd, Register Rs1, Register Rs2);
++ void orrw(Register Rd, Register Rs1, Register Rs2);
++ void xorrw(Register Rd, Register Rs1, Register Rs2);
++
++ // revb
++ void revb_h_h(Register Rd, Register Rs, Register tmp = t0); // reverse bytes in halfword in lower 16 bits, sign-extend
++ void revb_w_w(Register Rd, Register Rs, Register tmp1 = t0, Register tmp2 = t1); // reverse bytes in lower word, sign-extend
++ void revb_h_h_u(Register Rd, Register Rs, Register tmp = t0); // reverse bytes in halfword in lower 16 bits, zero-extend
++ void revb_h_w_u(Register Rd, Register Rs, Register tmp1 = t0, Register tmp2 = t1); // reverse bytes in halfwords in lower 32 bits, zero-extend
++ void revb_h_helper(Register Rd, Register Rs, Register tmp1 = t0, Register tmp2= t1); // reverse bytes in upper 16 bits (48:63) and move to lower
++ void revb_h(Register Rd, Register Rs, Register tmp1 = t0, Register tmp2= t1); // reverse bytes in each halfword
++ void revb_w(Register Rd, Register Rs, Register tmp1 = t0, Register tmp2= t1); // reverse bytes in each word
++ void revb(Register Rd, Register Rs, Register tmp1 = t0, Register tmp2 = t1); // reverse bytes in doubleword
++
++ void ror_imm(Register dst, Register src, uint32_t shift, Register tmp = t0);
++ void andi(Register Rd, Register Rn, int64_t imm, Register tmp = t0);
++ void orptr(Address adr, RegisterOrConstant src, Register tmp1 = t0, Register tmp2 = t1);
++
++// Load and Store Instructions
++#define INSN_ENTRY_RELOC(result_type, header) \
++ result_type header { \
++ guarantee(rtype == relocInfo::internal_word_type, \
++ "only internal_word_type relocs make sense here"); \
++ relocate(InternalAddress(dest).rspec()); \
++ IncompressibleRegion ir(this); /* relocations */
++
++#define INSN(NAME) \
++ void NAME(Register Rd, address dest) { \
++ assert_cond(dest != NULL); \
++ int64_t distance = dest - pc(); \
++ if (is_simm32(distance)) { \
++ auipc(Rd, (int32_t)distance + 0x800); \
++ Assembler::NAME(Rd, Rd, ((int32_t)distance << 20) >> 20); \
++ } else { \
++ int32_t offset = 0; \
++ movptr(Rd, dest, offset); \
++ Assembler::NAME(Rd, Rd, offset); \
++ } \
++ } \
++ INSN_ENTRY_RELOC(void, NAME(Register Rd, address dest, relocInfo::relocType rtype)) \
++ NAME(Rd, dest); \
++ } \
++ void NAME(Register Rd, const Address &adr, Register temp = t0) { \
++ switch (adr.getMode()) { \
++ case Address::literal: { \
++ relocate(adr.rspec()); \
++ NAME(Rd, adr.target()); \
++ break; \
++ } \
++ case Address::base_plus_offset: { \
++ if (is_simm12(adr.offset())) { \
++ Assembler::NAME(Rd, adr.base(), adr.offset()); \
++ } else { \
++ int32_t offset = ((int32_t)adr.offset() << 20) >> 20; \
++ if (Rd == adr.base()) { \
++ la(temp, Address(adr.base(), adr.offset() - offset)); \
++ Assembler::NAME(Rd, temp, offset); \
++ } else { \
++ la(Rd, Address(adr.base(), adr.offset() - offset)); \
++ Assembler::NAME(Rd, Rd, offset); \
++ } \
++ } \
++ break; \
++ } \
++ default: \
++ ShouldNotReachHere(); \
++ } \
++ } \
++ void NAME(Register Rd, Label &L) { \
++ wrap_label(Rd, L, &MacroAssembler::NAME); \
++ }
++
++ INSN(lb);
++ INSN(lbu);
++ INSN(lh);
++ INSN(lhu);
++ INSN(lw);
++ INSN(lwu);
++ INSN(ld);
++
++#undef INSN
++
++#define INSN(NAME) \
++ void NAME(FloatRegister Rd, address dest, Register temp = t0) { \
++ assert_cond(dest != NULL); \
++ int64_t distance = dest - pc(); \
++ if (is_simm32(distance)) { \
++ auipc(temp, (int32_t)distance + 0x800); \
++ Assembler::NAME(Rd, temp, ((int32_t)distance << 20) >> 20); \
++ } else { \
++ int32_t offset = 0; \
++ movptr(temp, dest, offset); \
++ Assembler::NAME(Rd, temp, offset); \
++ } \
++ } \
++ INSN_ENTRY_RELOC(void, NAME(FloatRegister Rd, address dest, \
++ relocInfo::relocType rtype, Register temp = t0)) \
++ NAME(Rd, dest, temp); \
++ } \
++ void NAME(FloatRegister Rd, const Address &adr, Register temp = t0) { \
++ switch (adr.getMode()) { \
++ case Address::literal: { \
++ relocate(adr.rspec()); \
++ NAME(Rd, adr.target(), temp); \
++ break; \
++ } \
++ case Address::base_plus_offset: { \
++ if (is_simm12(adr.offset())) { \
++ Assembler::NAME(Rd, adr.base(), adr.offset()); \
++ } else { \
++ int32_t offset = ((int32_t)adr.offset() << 20) >> 20; \
++ la(temp, Address(adr.base(), adr.offset() - offset)); \
++ Assembler::NAME(Rd, temp, offset); \
++ } \
++ break; \
++ } \
++ default: \
++ ShouldNotReachHere(); \
++ } \
++ }
++
++ INSN(flw);
++ INSN(fld);
++
++#undef INSN
++
++#define INSN(NAME, REGISTER) \
++ INSN_ENTRY_RELOC(void, NAME(REGISTER Rs, address dest, \
++ relocInfo::relocType rtype, Register temp = t0)) \
++ NAME(Rs, dest, temp); \
++ }
++
++ INSN(sb, Register);
++ INSN(sh, Register);
++ INSN(sw, Register);
++ INSN(sd, Register);
++ INSN(fsw, FloatRegister);
++ INSN(fsd, FloatRegister);
++
++#undef INSN
++
++#define INSN(NAME) \
++ void NAME(Register Rs, address dest, Register temp = t0) { \
++ assert_cond(dest != NULL); \
++ assert_different_registers(Rs, temp); \
++ int64_t distance = dest - pc(); \
++ if (is_simm32(distance)) { \
++ auipc(temp, (int32_t)distance + 0x800); \
++ Assembler::NAME(Rs, temp, ((int32_t)distance << 20) >> 20); \
++ } else { \
++ int32_t offset = 0; \
++ movptr(temp, dest, offset); \
++ Assembler::NAME(Rs, temp, offset); \
++ } \
++ } \
++ void NAME(Register Rs, const Address &adr, Register temp = t0) { \
++ switch (adr.getMode()) { \
++ case Address::literal: { \
++ assert_different_registers(Rs, temp); \
++ relocate(adr.rspec()); \
++ NAME(Rs, adr.target(), temp); \
++ break; \
++ } \
++ case Address::base_plus_offset: { \
++ if (is_simm12(adr.offset())) { \
++ Assembler::NAME(Rs, adr.base(), adr.offset()); \
++ } else { \
++ assert_different_registers(Rs, temp); \
++ int32_t offset = ((int32_t)adr.offset() << 20) >> 20; \
++ la(temp, Address(adr.base(), adr.offset() - offset)); \
++ Assembler::NAME(Rs, temp, offset); \
++ } \
++ break; \
++ } \
++ default: \
++ ShouldNotReachHere(); \
++ } \
++ }
++
++ INSN(sb);
++ INSN(sh);
++ INSN(sw);
++ INSN(sd);
++
++#undef INSN
++
++#define INSN(NAME) \
++ void NAME(FloatRegister Rs, address dest, Register temp = t0) { \
++ assert_cond(dest != NULL); \
++ int64_t distance = dest - pc(); \
++ if (is_simm32(distance)) { \
++ auipc(temp, (int32_t)distance + 0x800); \
++ Assembler::NAME(Rs, temp, ((int32_t)distance << 20) >> 20); \
++ } else { \
++ int32_t offset = 0; \
++ movptr(temp, dest, offset); \
++ Assembler::NAME(Rs, temp, offset); \
++ } \
++ } \
++ void NAME(FloatRegister Rs, const Address &adr, Register temp = t0) { \
++ switch (adr.getMode()) { \
++ case Address::literal: { \
++ relocate(adr.rspec()); \
++ NAME(Rs, adr.target(), temp); \
++ break; \
++ } \
++ case Address::base_plus_offset: { \
++ if (is_simm12(adr.offset())) { \
++ Assembler::NAME(Rs, adr.base(), adr.offset()); \
++ } else { \
++ int32_t offset = ((int32_t)adr.offset() << 20) >> 20; \
++ la(temp, Address(adr.base(), adr.offset() - offset)); \
++ Assembler::NAME(Rs, temp, offset); \
++ } \
++ break; \
++ } \
++ default: \
++ ShouldNotReachHere(); \
++ } \
++ }
++
++ INSN(fsw);
++ INSN(fsd);
++
++#undef INSN
++
++#undef INSN_ENTRY_RELOC
++
++ void cmpxchg_obj_header(Register oldv, Register newv, Register obj, Register tmp, Label &succeed, Label *fail);
++ void cmpxchgptr(Register oldv, Register newv, Register addr, Register tmp, Label &succeed, Label *fail);
++ void cmpxchg(Register addr, Register expected,
++ Register new_val,
++ enum operand_size size,
++ Assembler::Aqrl acquire, Assembler::Aqrl release,
++ Register result, bool result_as_bool = false);
++ void cmpxchg_weak(Register addr, Register expected,
++ Register new_val,
++ enum operand_size size,
++ Assembler::Aqrl acquire, Assembler::Aqrl release,
++ Register result);
++ void cmpxchg_narrow_value_helper(Register addr, Register expected,
++ Register new_val,
++ enum operand_size size,
++ Register tmp1, Register tmp2, Register tmp3);
++ void cmpxchg_narrow_value(Register addr, Register expected,
++ Register new_val,
++ enum operand_size size,
++ Assembler::Aqrl acquire, Assembler::Aqrl release,
++ Register result, bool result_as_bool,
++ Register tmp1, Register tmp2, Register tmp3);
++ void weak_cmpxchg_narrow_value(Register addr, Register expected,
++ Register new_val,
++ enum operand_size size,
++ Assembler::Aqrl acquire, Assembler::Aqrl release,
++ Register result,
++ Register tmp1, Register tmp2, Register tmp3);
++
++ void atomic_add(Register prev, RegisterOrConstant incr, Register addr);
++ void atomic_addw(Register prev, RegisterOrConstant incr, Register addr);
++ void atomic_addal(Register prev, RegisterOrConstant incr, Register addr);
++ void atomic_addalw(Register prev, RegisterOrConstant incr, Register addr);
++
++ void atomic_xchg(Register prev, Register newv, Register addr);
++ void atomic_xchgw(Register prev, Register newv, Register addr);
++ void atomic_xchgal(Register prev, Register newv, Register addr);
++ void atomic_xchgalw(Register prev, Register newv, Register addr);
++ void atomic_xchgwu(Register prev, Register newv, Register addr);
++ void atomic_xchgalwu(Register prev, Register newv, Register addr);
++
++ void atomic_incw(Register counter_addr, Register tmp);
++ void atomic_incw(Address counter_addr, Register tmp1, Register tmp2) {
++ la(tmp1, counter_addr);
++ atomic_incw(tmp1, tmp2);
++ }
++
++ // Biased locking support
++ // lock_reg and obj_reg must be loaded up with the appropriate values.
++ // swap_reg is killed.
++ // tmp_reg must be supplied and must not be t0 or t1
++ // Optional slow case is for implementations (interpreter and C1) which branch to
++ // slow case directly. Leaves condition codes set for C2's Fast_Lock done.
++ // Returns offset of first potentially-faulting instruction for null
++ // check info (currently consumed only by C1). If
++ // swap_reg_contains_mark is true then returns -1 as it as assumed
++ // the calling code has already passed any potential faults.
++ void biased_locking_enter(Register lock_reg, Register obj_reg,
++ Register swap_reg, Register tmp_Reg,
++ bool swap_reg_contains_mark,
++ Label& done, Label* slow_case = NULL,
++ BiasedLockingCounters* counters = NULL,
++ Register flag = noreg);
++ void biased_locking_exit(Register obj_reg, Register tmp_reg, Label& done, Register flag = noreg);
++
++ static bool far_branches() {
++ return ReservedCodeCacheSize > branch_range;
++ }
++
++ // Jumps that can reach anywhere in the code cache.
++ // Trashes tmp.
++ void far_call(Address entry, CodeBuffer *cbuf = NULL, Register tmp = t0);
++ void far_jump(Address entry, CodeBuffer *cbuf = NULL, Register tmp = t0);
++
++ static int far_branch_size() {
++ if (far_branches()) {
++ return 2 * 4; // auipc + jalr, see far_call() & far_jump()
++ } else {
++ return 4;
++ }
++ }
++
++ void load_byte_map_base(Register reg);
++
++ void bang_stack_with_offset(int offset) {
++ // stack grows down, caller passes positive offset
++ assert(offset > 0, "must bang with negative offset");
++ sub(t0, sp, offset);
++ sd(zr, Address(t0));
++ }
++
++ void la_patchable(Register reg1, const Address &dest, int32_t &offset);
++
++ virtual void _call_Unimplemented(address call_site) {
++ mv(t1, call_site);
++ }
++
++ #define call_Unimplemented() _call_Unimplemented((address)__PRETTY_FUNCTION__)
++
++ // Frame creation and destruction shared between JITs.
++ void build_frame(int framesize);
++ void remove_frame(int framesize);
++
++ void reserved_stack_check();
++
++ void get_polling_page(Register dest, relocInfo::relocType rtype);
++ void read_polling_page(Register r, int32_t offset, relocInfo::relocType rtype);
++
++ address trampoline_call(Address entry, CodeBuffer* cbuf = NULL);
++ address ic_call(address entry, jint method_index = 0);
++
++ // Support for memory inc/dec
++ // n.b. increment/decrement calls with an Address destination will
++ // need to use a scratch register to load the value to be
++ // incremented. increment/decrement calls which add or subtract a
++ // constant value other than sign-extended 12-bit immediate will need
++ // to use a 2nd scratch register to hold the constant. so, an address
++ // increment/decrement may trash both t0 and t1.
++
++ void increment(const Address dst, int64_t value = 1, Register tmp1 = t0, Register tmp2 = t1);
++ void incrementw(const Address dst, int32_t value = 1, Register tmp1 = t0, Register tmp2 = t1);
++
++ void decrement(const Address dst, int64_t value = 1, Register tmp1 = t0, Register tmp2 = t1);
++ void decrementw(const Address dst, int32_t value = 1, Register tmp1 = t0, Register tmp2 = t1);
++
++ void cmpptr(Register src1, Address src2, Label& equal);
++
++ void clinit_barrier(Register klass, Register tmp, Label* L_fast_path = NULL, Label* L_slow_path = NULL);
++ void load_method_holder_cld(Register result, Register method);
++ void load_method_holder(Register holder, Register method);
++
++ void compute_index(Register str1, Register trailing_zeros, Register match_mask,
++ Register result, Register char_tmp, Register tmp,
++ bool haystack_isL);
++ void compute_match_mask(Register src, Register pattern, Register match_mask,
++ Register mask1, Register mask2);
++
++#ifdef COMPILER2
++ void mul_add(Register out, Register in, Register offset,
++ Register len, Register k, Register tmp);
++ void cad(Register dst, Register src1, Register src2, Register carry);
++ void cadc(Register dst, Register src1, Register src2, Register carry);
++ void adc(Register dst, Register src1, Register src2, Register carry);
++ void add2_with_carry(Register final_dest_hi, Register dest_hi, Register dest_lo,
++ Register src1, Register src2, Register carry);
++ void multiply_32_x_32_loop(Register x, Register xstart, Register x_xstart,
++ Register y, Register y_idx, Register z,
++ Register carry, Register product,
++ Register idx, Register kdx);
++ void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
++ Register y, Register y_idx, Register z,
++ Register carry, Register product,
++ Register idx, Register kdx);
++ void multiply_128_x_128_loop(Register y, Register z,
++ Register carry, Register carry2,
++ Register idx, Register jdx,
++ Register yz_idx1, Register yz_idx2,
++ Register tmp, Register tmp3, Register tmp4,
++ Register tmp6, Register product_hi);
++ void multiply_to_len(Register x, Register xlen, Register y, Register ylen,
++ Register z, Register zlen,
++ Register tmp1, Register tmp2, Register tmp3, Register tmp4,
++ Register tmp5, Register tmp6, Register product_hi);
++#endif
++
++ void inflate_lo32(Register Rd, Register Rs, Register tmp1 = t0, Register tmp2 = t1);
++ void inflate_hi32(Register Rd, Register Rs, Register tmp1 = t0, Register tmp2 = t1);
++
++ void ctzc_bit(Register Rd, Register Rs, bool isLL = false, Register tmp1 = t0, Register tmp2 = t1);
++
++ void zero_words(Register base, u_int64_t cnt);
++ address zero_words(Register ptr, Register cnt);
++ void fill_words(Register base, Register cnt, Register value);
++ void zero_memory(Register addr, Register len, Register tmp);
++
++ // shift left by shamt and add
++ void shadd(Register Rd, Register Rs1, Register Rs2, Register tmp, int shamt);
++
++ // test single bit in Rs, result is set to Rd
++ void test_bit(Register Rd, Register Rs, uint32_t bit_pos, Register tmp = t0);
++
++ // Here the float instructions with safe deal with some exceptions.
++ // e.g. convert from NaN, +Inf, -Inf to int, float, double
++ // will trigger exception, we need to deal with these situations
++ // to get correct results.
++ void fcvt_w_s_safe(Register dst, FloatRegister src, Register tmp = t0);
++ void fcvt_l_s_safe(Register dst, FloatRegister src, Register tmp = t0);
++ void fcvt_w_d_safe(Register dst, FloatRegister src, Register tmp = t0);
++ void fcvt_l_d_safe(Register dst, FloatRegister src, Register tmp = t0);
++
++ // vector load/store unit-stride instructions
++ void vlex_v(VectorRegister vd, Register base, Assembler::SEW sew, VectorMask vm = unmasked) {
++ switch (sew) {
++ case Assembler::e64:
++ vle64_v(vd, base, vm);
++ break;
++ case Assembler::e32:
++ vle32_v(vd, base, vm);
++ break;
++ case Assembler::e16:
++ vle16_v(vd, base, vm);
++ break;
++ case Assembler::e8: // fall through
++ default:
++ vle8_v(vd, base, vm);
++ break;
++ }
++ }
++
++ void vsex_v(VectorRegister store_data, Register base, Assembler::SEW sew, VectorMask vm = unmasked) {
++ switch (sew) {
++ case Assembler::e64:
++ vse64_v(store_data, base, vm);
++ break;
++ case Assembler::e32:
++ vse32_v(store_data, base, vm);
++ break;
++ case Assembler::e16:
++ vse16_v(store_data, base, vm);
++ break;
++ case Assembler::e8: // fall through
++ default:
++ vse8_v(store_data, base, vm);
++ break;
++ }
++ }
++
++ // vector pseudo instructions
++ inline void vmnot_m(VectorRegister vd, VectorRegister vs) {
++ vmnand_mm(vd, vs, vs);
++ }
++
++ inline void vncvt_x_x_w(VectorRegister vd, VectorRegister vs, VectorMask vm) {
++ vnsrl_wx(vd, vs, x0, vm);
++ }
++
++ inline void vfneg_v(VectorRegister vd, VectorRegister vs) {
++ vfsgnjn_vv(vd, vs, vs);
++ }
++
++ static const int zero_words_block_size;
++
++ void cast_primitive_type(BasicType type, Register Rt) {
++ switch (type) {
++ case T_BOOLEAN:
++ sltu(Rt, zr, Rt);
++ break;
++ case T_CHAR :
++ zero_extend(Rt, Rt, 16);
++ break;
++ case T_BYTE :
++ sign_extend(Rt, Rt, 8);
++ break;
++ case T_SHORT :
++ sign_extend(Rt, Rt, 16);
++ break;
++ case T_INT :
++ sign_extend(Rt, Rt, 32);
++ break;
++ case T_LONG : /* nothing to do */ break;
++ case T_VOID : /* nothing to do */ break;
++ case T_FLOAT : /* nothing to do */ break;
++ case T_DOUBLE : /* nothing to do */ break;
++ default: ShouldNotReachHere();
++ }
++ }
++
++ // float cmp with unordered_result
++ void float_compare(Register result, FloatRegister Rs1, FloatRegister Rs2, int unordered_result);
++ void double_compare(Register result, FloatRegister Rs1, FloatRegister Rs2, int unordered_result);
++
++ // Zero/Sign-extend
++ void zero_extend(Register dst, Register src, int bits);
++ void sign_extend(Register dst, Register src, int bits);
++
++ // compare src1 and src2 and get -1/0/1 in dst.
++ // if [src1 > src2], dst = 1;
++ // if [src1 == src2], dst = 0;
++ // if [src1 < src2], dst = -1;
++ void cmp_l2i(Register dst, Register src1, Register src2, Register tmp = t0);
++
++ void call(const address dest, Register temp = t0) {
++ assert_cond(dest != NULL);
++ assert(temp != noreg, "expecting a register");
++ int32_t offset = 0;
++ mv(temp, dest, offset);
++ jalr(x1, temp, offset);
++ }
++
++ inline void ret() {
++ jalr(x0, x1, 0);
++ }
++
++private:
++
++#ifdef ASSERT
++ // Template short-hand support to clean-up after a failed call to trampoline
++ // call generation (see trampoline_call() below), when a set of Labels must
++ // be reset (before returning).
++ template<typename Label, typename... More>
++ void reset_labels(Label& lbl, More&... more) {
++ lbl.reset(); reset_labels(more...);
++ }
++ template<typename Label>
++ void reset_labels(Label& lbl) {
++ lbl.reset();
++ }
++#endif
++ void repne_scan(Register addr, Register value, Register count, Register tmp);
++
++ void ld_constant(Register dest, const Address &const_addr) {
++ if (NearCpool) {
++ ld(dest, const_addr);
++ } else {
++ InternalAddress target(const_addr.target());
++ relocate(target.rspec(), [&] {
++ int32_t offset;
++ la_patchable(dest, target, offset);
++ ld(dest, Address(dest, offset));
++ });
++ }
++ }
++
++ int bitset_to_regs(unsigned int bitset, unsigned char* regs);
++ Address add_memory_helper(const Address dst, Register tmp);
++
++ void load_reserved(Register addr, enum operand_size size, Assembler::Aqrl acquire);
++ void store_conditional(Register addr, Register new_val, enum operand_size size, Assembler::Aqrl release);
++
++ void load_prototype_header(Register dst, Register src);
++};
++
++#ifdef ASSERT
++inline bool AbstractAssembler::pd_check_instruction_mark() { return false; }
++#endif
++
++/**
++ * class SkipIfEqual:
++ *
++ * Instantiating this class will result in assembly code being output that will
++ * jump around any code emitted between the creation of the instance and it's
++ * automatic destruction at the end of a scope block, depending on the value of
++ * the flag passed to the constructor, which will be checked at run-time.
++ */
++class SkipIfEqual {
++ private:
++ MacroAssembler* _masm;
++ Label _label;
++
++ public:
++ SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
++ ~SkipIfEqual();
++};
++
++#endif // CPU_RISCV_MACROASSEMBLER_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/macroAssembler_riscv.inline.hpp
+@@ -0,0 +1,31 @@
++/*
++ * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_MACROASSEMBLER_RISCV_INLINE_HPP
++#define CPU_RISCV_MACROASSEMBLER_RISCV_INLINE_HPP
++
++// Still empty.
++
++#endif // CPU_RISCV_MACROASSEMBLER_RISCV_INLINE_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/matcher_riscv.hpp
+@@ -0,0 +1,169 @@
++/*
++ * Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2021, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_MATCHER_RISCV_HPP
++#define CPU_RISCV_MATCHER_RISCV_HPP
++
++ // Defined within class Matcher
++
++ // false => size gets scaled to BytesPerLong, ok.
++ static const bool init_array_count_is_in_bytes = false;
++
++ // Whether this platform implements the scalable vector feature
++ static const bool implements_scalable_vector = true;
++
++ static const bool supports_scalable_vector() {
++ return UseRVV;
++ }
++
++ // riscv supports misaligned vectors store/load.
++ static constexpr bool misaligned_vectors_ok() {
++ return true;
++ }
++
++ // Whether code generation need accurate ConvI2L types.
++ static const bool convi2l_type_required = false;
++
++ // Does the CPU require late expand (see block.cpp for description of late expand)?
++ static const bool require_postalloc_expand = false;
++
++ // Do we need to mask the count passed to shift instructions or does
++ // the cpu only look at the lower 5/6 bits anyway?
++ static const bool need_masked_shift_count = false;
++
++ // No support for generic vector operands.
++ static const bool supports_generic_vector_operands = false;
++
++ static constexpr bool isSimpleConstant64(jlong value) {
++ // Will one (StoreL ConL) be cheaper than two (StoreI ConI)?.
++ // Probably always true, even if a temp register is required.
++ return true;
++ }
++
++ // Use conditional move (CMOVL)
++ static constexpr int long_cmove_cost() {
++ // long cmoves are no more expensive than int cmoves
++ return 0;
++ }
++
++ static constexpr int float_cmove_cost() {
++ // float cmoves are no more expensive than int cmoves
++ return 0;
++ }
++
++ // This affects two different things:
++ // - how Decode nodes are matched
++ // - how ImplicitNullCheck opportunities are recognized
++ // If true, the matcher will try to remove all Decodes and match them
++ // (as operands) into nodes. NullChecks are not prepared to deal with
++ // Decodes by final_graph_reshaping().
++ // If false, final_graph_reshaping() forces the decode behind the Cmp
++ // for a NullCheck. The matcher matches the Decode node into a register.
++ // Implicit_null_check optimization moves the Decode along with the
++ // memory operation back up before the NullCheck.
++ static bool narrow_oop_use_complex_address() {
++ return CompressedOops::shift() == 0;
++ }
++
++ static bool narrow_klass_use_complex_address() {
++ return false;
++ }
++
++ static bool const_oop_prefer_decode() {
++ // Prefer ConN+DecodeN over ConP in simple compressed oops mode.
++ return CompressedOops::base() == NULL;
++ }
++
++ static bool const_klass_prefer_decode() {
++ // Prefer ConNKlass+DecodeNKlass over ConP in simple compressed klass mode.
++ return CompressedKlassPointers::base() == NULL;
++ }
++
++ // Is it better to copy float constants, or load them directly from
++ // memory? Intel can load a float constant from a direct address,
++ // requiring no extra registers. Most RISCs will have to materialize
++ // an address into a register first, so they would do better to copy
++ // the constant from stack.
++ static const bool rematerialize_float_constants = false;
++
++ // If CPU can load and store mis-aligned doubles directly then no
++ // fixup is needed. Else we split the double into 2 integer pieces
++ // and move it piece-by-piece. Only happens when passing doubles into
++ // C code as the Java calling convention forces doubles to be aligned.
++ static const bool misaligned_doubles_ok = true;
++
++ // Advertise here if the CPU requires explicit rounding operations to implement strictfp mode.
++ static const bool strict_fp_requires_explicit_rounding = false;
++
++ // Are floats converted to double when stored to stack during
++ // deoptimization?
++ static constexpr bool float_in_double() { return false; }
++
++ // Do ints take an entire long register or just half?
++ // The relevant question is how the int is callee-saved:
++ // the whole long is written but de-opt'ing will have to extract
++ // the relevant 32 bits.
++ static const bool int_in_long = true;
++
++ // Does the CPU supports vector variable shift instructions?
++ static constexpr bool supports_vector_variable_shifts(void) {
++ return false;
++ }
++
++ // Does the CPU supports vector variable rotate instructions?
++ static constexpr bool supports_vector_variable_rotates(void) {
++ return false;
++ }
++
++ // Does the CPU supports vector constant rotate instructions?
++ static constexpr bool supports_vector_constant_rotates(int shift) {
++ return false;
++ }
++
++ // Does the CPU supports vector unsigned comparison instructions?
++ static const bool supports_vector_comparison_unsigned(int vlen, BasicType bt) {
++ return false;
++ }
++
++ // Some microarchitectures have mask registers used on vectors
++ static const bool has_predicated_vectors(void) {
++ return false;
++ }
++
++ // true means we have fast l2f convers
++ // false means that conversion is done by runtime call
++ static constexpr bool convL2FSupported(void) {
++ return true;
++ }
++
++ // Implements a variant of EncodeISOArrayNode that encode ASCII only
++ static const bool supports_encode_ascii_array = false;
++
++ // Returns pre-selection estimated size of a vector operation.
++ static int vector_op_pre_select_sz_estimate(int vopc, BasicType ety, int vlen) {
++ return 0;
++ }
++
++#endif // CPU_RISCV_MATCHER_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/methodHandles_riscv.cpp
+@@ -0,0 +1,455 @@
++/*
++ * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/macroAssembler.hpp"
++#include "classfile/javaClasses.inline.hpp"
++#include "classfile/vmClasses.hpp"
++#include "interpreter/interpreter.hpp"
++#include "interpreter/interpreterRuntime.hpp"
++#include "memory/allocation.inline.hpp"
++#include "prims/jvmtiExport.hpp"
++#include "prims/methodHandles.hpp"
++#include "runtime/flags/flagSetting.hpp"
++#include "runtime/frame.inline.hpp"
++#include "runtime/stubRoutines.hpp"
++
++#define __ _masm->
++
++#ifdef PRODUCT
++#define BLOCK_COMMENT(str) /* nothing */
++#else
++#define BLOCK_COMMENT(str) __ block_comment(str)
++#endif
++
++#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
++
++void MethodHandles::load_klass_from_Class(MacroAssembler* _masm, Register klass_reg) {
++ if (VerifyMethodHandles) {
++ verify_klass(_masm, klass_reg, VM_CLASS_ID(java_lang_Class),
++ "MH argument is a Class");
++ }
++ __ ld(klass_reg, Address(klass_reg, java_lang_Class::klass_offset()));
++}
++
++#ifdef ASSERT
++static int check_nonzero(const char* xname, int x) {
++ assert(x != 0, "%s should be nonzero", xname);
++ return x;
++}
++#define NONZERO(x) check_nonzero(#x, x)
++#else //ASSERT
++#define NONZERO(x) (x)
++#endif //PRODUCT
++
++#ifdef ASSERT
++void MethodHandles::verify_klass(MacroAssembler* _masm,
++ Register obj, vmClassID klass_id,
++ const char* error_message) {
++ InstanceKlass** klass_addr = vmClasses::klass_addr_at(klass_id);
++ Klass* klass = vmClasses::klass_at(klass_id);
++ Register temp1 = t1;
++ Register temp2 = t0; // used by MacroAssembler::cmpptr
++ Label L_ok, L_bad;
++ BLOCK_COMMENT("verify_klass {");
++ __ verify_oop(obj);
++ __ beqz(obj, L_bad);
++ __ push_reg(RegSet::of(temp1, temp2), sp);
++ __ load_klass(temp1, obj, temp2);
++ __ cmpptr(temp1, ExternalAddress((address) klass_addr), L_ok);
++ intptr_t super_check_offset = klass->super_check_offset();
++ __ ld(temp1, Address(temp1, super_check_offset));
++ __ cmpptr(temp1, ExternalAddress((address) klass_addr), L_ok);
++ __ pop_reg(RegSet::of(temp1, temp2), sp);
++ __ bind(L_bad);
++ __ stop(error_message);
++ __ BIND(L_ok);
++ __ pop_reg(RegSet::of(temp1, temp2), sp);
++ BLOCK_COMMENT("} verify_klass");
++}
++
++void MethodHandles::verify_ref_kind(MacroAssembler* _masm, int ref_kind, Register member_reg, Register temp) {}
++
++#endif //ASSERT
++
++void MethodHandles::jump_from_method_handle(MacroAssembler* _masm, Register method, Register temp,
++ bool for_compiler_entry) {
++ assert(method == xmethod, "interpreter calling convention");
++ Label L_no_such_method;
++ __ beqz(xmethod, L_no_such_method);
++ __ verify_method_ptr(method);
++
++ if (!for_compiler_entry && JvmtiExport::can_post_interpreter_events()) {
++ Label run_compiled_code;
++ // JVMTI events, such as single-stepping, are implemented partly by avoiding running
++ // compiled code in threads for which the event is enabled. Check here for
++ // interp_only_mode if these events CAN be enabled.
++
++ __ lwu(t0, Address(xthread, JavaThread::interp_only_mode_offset()));
++ __ beqz(t0, run_compiled_code);
++ __ ld(t0, Address(method, Method::interpreter_entry_offset()));
++ __ jr(t0);
++ __ BIND(run_compiled_code);
++ }
++
++ const ByteSize entry_offset = for_compiler_entry ? Method::from_compiled_offset() :
++ Method::from_interpreted_offset();
++ __ ld(t0,Address(method, entry_offset));
++ __ jr(t0);
++ __ bind(L_no_such_method);
++ __ far_jump(RuntimeAddress(StubRoutines::throw_AbstractMethodError_entry()));
++}
++
++void MethodHandles::jump_to_lambda_form(MacroAssembler* _masm,
++ Register recv, Register method_temp,
++ Register temp2,
++ bool for_compiler_entry) {
++ BLOCK_COMMENT("jump_to_lambda_form {");
++ // This is the initial entry point of a lazy method handle.
++ // After type checking, it picks up the invoker from the LambdaForm.
++ assert_different_registers(recv, method_temp, temp2);
++ assert(recv != noreg, "required register");
++ assert(method_temp == xmethod, "required register for loading method");
++
++ // Load the invoker, as MH -> MH.form -> LF.vmentry
++ __ verify_oop(recv);
++ __ load_heap_oop(method_temp, Address(recv, NONZERO(java_lang_invoke_MethodHandle::form_offset())), temp2);
++ __ verify_oop(method_temp);
++ __ load_heap_oop(method_temp, Address(method_temp, NONZERO(java_lang_invoke_LambdaForm::vmentry_offset())), temp2);
++ __ verify_oop(method_temp);
++ __ load_heap_oop(method_temp, Address(method_temp, NONZERO(java_lang_invoke_MemberName::method_offset())), temp2);
++ __ verify_oop(method_temp);
++ __ access_load_at(T_ADDRESS, IN_HEAP, method_temp, Address(method_temp, NONZERO(java_lang_invoke_ResolvedMethodName::vmtarget_offset())), noreg, noreg);
++
++ if (VerifyMethodHandles && !for_compiler_entry) {
++ // make sure recv is already on stack
++ __ ld(temp2, Address(method_temp, Method::const_offset()));
++ __ load_sized_value(temp2,
++ Address(temp2, ConstMethod::size_of_parameters_offset()),
++ sizeof(u2), /*is_signed*/ false);
++ Label L;
++ __ ld(t0, __ argument_address(temp2, -1));
++ __ beq(recv, t0, L);
++ __ ld(x10, __ argument_address(temp2, -1));
++ __ ebreak();
++ __ BIND(L);
++ }
++
++ jump_from_method_handle(_masm, method_temp, temp2, for_compiler_entry);
++ BLOCK_COMMENT("} jump_to_lambda_form");
++}
++
++// Code generation
++address MethodHandles::generate_method_handle_interpreter_entry(MacroAssembler* _masm,
++ vmIntrinsics::ID iid) {
++ const bool not_for_compiler_entry = false; // this is the interpreter entry
++ assert(is_signature_polymorphic(iid), "expected invoke iid");
++ if (iid == vmIntrinsics::_invokeGeneric ||
++ iid == vmIntrinsics::_compiledLambdaForm) {
++ // Perhaps surprisingly, the symbolic references visible to Java are not directly used.
++ // They are linked to Java-generated adapters via MethodHandleNatives.linkMethod.
++ // They all allow an appendix argument.
++ __ ebreak(); // empty stubs make SG sick
++ return NULL;
++ }
++
++ // No need in interpreter entry for linkToNative for now.
++ // Interpreter calls compiled entry through i2c.
++ if (iid == vmIntrinsics::_linkToNative) {
++ __ ebreak();
++ return NULL;
++ }
++
++ // x30: sender SP (must preserve; see prepare_to_jump_from_interpreted)
++ // xmethod: Method*
++ // x13: argument locator (parameter slot count, added to sp)
++ // x11: used as temp to hold mh or receiver
++ // x10, x29: garbage temps, blown away
++ Register argp = x13; // argument list ptr, live on error paths
++ Register mh = x11; // MH receiver; dies quickly and is recycled
++
++ // here's where control starts out:
++ __ align(CodeEntryAlignment);
++ address entry_point = __ pc();
++
++ if (VerifyMethodHandles) {
++ assert(Method::intrinsic_id_size_in_bytes() == 2, "assuming Method::_intrinsic_id is u2");
++
++ Label L;
++ BLOCK_COMMENT("verify_intrinsic_id {");
++ __ lhu(t0, Address(xmethod, Method::intrinsic_id_offset_in_bytes()));
++ __ mv(t1, (int) iid);
++ __ beq(t0, t1, L);
++ if (iid == vmIntrinsics::_linkToVirtual ||
++ iid == vmIntrinsics::_linkToSpecial) {
++ // could do this for all kinds, but would explode assembly code size
++ trace_method_handle(_masm, "bad Method*::intrinsic_id");
++ }
++ __ ebreak();
++ __ bind(L);
++ BLOCK_COMMENT("} verify_intrinsic_id");
++ }
++
++ // First task: Find out how big the argument list is.
++ Address x13_first_arg_addr;
++ int ref_kind = signature_polymorphic_intrinsic_ref_kind(iid);
++ assert(ref_kind != 0 || iid == vmIntrinsics::_invokeBasic, "must be _invokeBasic or a linkTo intrinsic");
++ if (ref_kind == 0 || MethodHandles::ref_kind_has_receiver(ref_kind)) {
++ __ ld(argp, Address(xmethod, Method::const_offset()));
++ __ load_sized_value(argp,
++ Address(argp, ConstMethod::size_of_parameters_offset()),
++ sizeof(u2), /*is_signed*/ false);
++ x13_first_arg_addr = __ argument_address(argp, -1);
++ } else {
++ DEBUG_ONLY(argp = noreg);
++ }
++
++ if (!is_signature_polymorphic_static(iid)) {
++ __ ld(mh, x13_first_arg_addr);
++ DEBUG_ONLY(argp = noreg);
++ }
++
++ // x13_first_arg_addr is live!
++
++ trace_method_handle_interpreter_entry(_masm, iid);
++ if (iid == vmIntrinsics::_invokeBasic) {
++ generate_method_handle_dispatch(_masm, iid, mh, noreg, not_for_compiler_entry);
++ } else {
++ // Adjust argument list by popping the trailing MemberName argument.
++ Register recv = noreg;
++ if (MethodHandles::ref_kind_has_receiver(ref_kind)) {
++ // Load the receiver (not the MH; the actual MemberName's receiver) up from the interpreter stack.
++ __ ld(recv = x12, x13_first_arg_addr);
++ }
++ DEBUG_ONLY(argp = noreg);
++ Register xmember = xmethod; // MemberName ptr; incoming method ptr is dead now
++ __ pop_reg(xmember); // extract last argument
++ generate_method_handle_dispatch(_masm, iid, recv, xmember, not_for_compiler_entry);
++ }
++
++ return entry_point;
++}
++
++
++void MethodHandles::generate_method_handle_dispatch(MacroAssembler* _masm,
++ vmIntrinsics::ID iid,
++ Register receiver_reg,
++ Register member_reg,
++ bool for_compiler_entry) {
++ assert(is_signature_polymorphic(iid), "expected invoke iid");
++ // temps used in this code are not used in *either* compiled or interpreted calling sequences
++ Register temp1 = x7;
++ Register temp2 = x28;
++ Register temp3 = x29; // x30 is live by this point: it contains the sender SP
++ if (for_compiler_entry) {
++ assert(receiver_reg == (iid == vmIntrinsics::_linkToStatic ? noreg : j_rarg0), "only valid assignment");
++ assert_different_registers(temp1, j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7);
++ assert_different_registers(temp2, j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7);
++ assert_different_registers(temp3, j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5, j_rarg6, j_rarg7);
++ }
++
++ assert_different_registers(temp1, temp2, temp3, receiver_reg);
++ assert_different_registers(temp1, temp2, temp3, member_reg);
++
++ if (iid == vmIntrinsics::_invokeBasic || iid == vmIntrinsics::_linkToNative) {
++ if (iid == vmIntrinsics::_linkToNative) {
++ assert(for_compiler_entry, "only compiler entry is supported");
++ }
++ // indirect through MH.form.vmentry.vmtarget
++ jump_to_lambda_form(_masm, receiver_reg, xmethod, temp1, for_compiler_entry);
++ } else {
++ // The method is a member invoker used by direct method handles.
++ if (VerifyMethodHandles) {
++ // make sure the trailing argument really is a MemberName (caller responsibility)
++ verify_klass(_masm, member_reg, VM_CLASS_ID(java_lang_invoke_MemberName),
++ "MemberName required for invokeVirtual etc.");
++ }
++
++ Address member_clazz( member_reg, NONZERO(java_lang_invoke_MemberName::clazz_offset()));
++ Address member_vmindex( member_reg, NONZERO(java_lang_invoke_MemberName::vmindex_offset()));
++ Address member_vmtarget( member_reg, NONZERO(java_lang_invoke_MemberName::method_offset()));
++ Address vmtarget_method( xmethod, NONZERO(java_lang_invoke_ResolvedMethodName::vmtarget_offset()));
++
++ Register temp1_recv_klass = temp1;
++ if (iid != vmIntrinsics::_linkToStatic) {
++ __ verify_oop(receiver_reg);
++ if (iid == vmIntrinsics::_linkToSpecial) {
++ // Don't actually load the klass; just null-check the receiver.
++ __ null_check(receiver_reg);
++ } else {
++ // load receiver klass itself
++ __ null_check(receiver_reg, oopDesc::klass_offset_in_bytes());
++ __ load_klass(temp1_recv_klass, receiver_reg);
++ __ verify_klass_ptr(temp1_recv_klass);
++ }
++ BLOCK_COMMENT("check_receiver {");
++ // The receiver for the MemberName must be in receiver_reg.
++ // Check the receiver against the MemberName.clazz
++ if (VerifyMethodHandles && iid == vmIntrinsics::_linkToSpecial) {
++ // Did not load it above...
++ __ load_klass(temp1_recv_klass, receiver_reg);
++ __ verify_klass_ptr(temp1_recv_klass);
++ }
++ if (VerifyMethodHandles && iid != vmIntrinsics::_linkToInterface) {
++ Label L_ok;
++ Register temp2_defc = temp2;
++ __ load_heap_oop(temp2_defc, member_clazz, temp3);
++ load_klass_from_Class(_masm, temp2_defc);
++ __ verify_klass_ptr(temp2_defc);
++ __ check_klass_subtype(temp1_recv_klass, temp2_defc, temp3, L_ok);
++ // If we get here, the type check failed!
++ __ ebreak();
++ __ bind(L_ok);
++ }
++ BLOCK_COMMENT("} check_receiver");
++ }
++ if (iid == vmIntrinsics::_linkToSpecial ||
++ iid == vmIntrinsics::_linkToStatic) {
++ DEBUG_ONLY(temp1_recv_klass = noreg); // these guys didn't load the recv_klass
++ }
++
++ // Live registers at this point:
++ // member_reg - MemberName that was the trailing argument
++ // temp1_recv_klass - klass of stacked receiver, if needed
++ // x30 - interpreter linkage (if interpreted)
++ // x11 ... x10 - compiler arguments (if compiled)
++
++ Label L_incompatible_class_change_error;
++ switch (iid) {
++ case vmIntrinsics::_linkToSpecial:
++ if (VerifyMethodHandles) {
++ verify_ref_kind(_masm, JVM_REF_invokeSpecial, member_reg, temp3);
++ }
++ __ load_heap_oop(xmethod, member_vmtarget);
++ __ access_load_at(T_ADDRESS, IN_HEAP, xmethod, vmtarget_method, noreg, noreg);
++ break;
++
++ case vmIntrinsics::_linkToStatic:
++ if (VerifyMethodHandles) {
++ verify_ref_kind(_masm, JVM_REF_invokeStatic, member_reg, temp3);
++ }
++ __ load_heap_oop(xmethod, member_vmtarget);
++ __ access_load_at(T_ADDRESS, IN_HEAP, xmethod, vmtarget_method, noreg, noreg);
++ break;
++
++ case vmIntrinsics::_linkToVirtual:
++ {
++ // same as TemplateTable::invokevirtual,
++ // minus the CP setup and profiling:
++
++ if (VerifyMethodHandles) {
++ verify_ref_kind(_masm, JVM_REF_invokeVirtual, member_reg, temp3);
++ }
++
++ // pick out the vtable index from the MemberName, and then we can discard it:
++ Register temp2_index = temp2;
++ __ access_load_at(T_ADDRESS, IN_HEAP, temp2_index, member_vmindex, noreg, noreg);
++
++ if (VerifyMethodHandles) {
++ Label L_index_ok;
++ __ bgez(temp2_index, L_index_ok);
++ __ ebreak();
++ __ BIND(L_index_ok);
++ }
++
++ // Note: The verifier invariants allow us to ignore MemberName.clazz and vmtarget
++ // at this point. And VerifyMethodHandles has already checked clazz, if needed.
++
++ // get target Method* & entry point
++ __ lookup_virtual_method(temp1_recv_klass, temp2_index, xmethod);
++ break;
++ }
++
++ case vmIntrinsics::_linkToInterface:
++ {
++ // same as TemplateTable::invokeinterface
++ // (minus the CP setup and profiling, with different argument motion)
++ if (VerifyMethodHandles) {
++ verify_ref_kind(_masm, JVM_REF_invokeInterface, member_reg, temp3);
++ }
++
++ Register temp3_intf = temp3;
++ __ load_heap_oop(temp3_intf, member_clazz);
++ load_klass_from_Class(_masm, temp3_intf);
++ __ verify_klass_ptr(temp3_intf);
++
++ Register rindex = xmethod;
++ __ access_load_at(T_ADDRESS, IN_HEAP, rindex, member_vmindex, noreg, noreg);
++ if (VerifyMethodHandles) {
++ Label L;
++ __ bgez(rindex, L);
++ __ ebreak();
++ __ bind(L);
++ }
++
++ // given intf, index, and recv klass, dispatch to the implementation method
++ __ lookup_interface_method(temp1_recv_klass, temp3_intf,
++ // note: next two args must be the same:
++ rindex, xmethod,
++ temp2,
++ L_incompatible_class_change_error);
++ break;
++ }
++
++ default:
++ fatal("unexpected intrinsic %d: %s", vmIntrinsics::as_int(iid), vmIntrinsics::name_at(iid));
++ break;
++ }
++
++ // live at this point: xmethod, x30 (if interpreted)
++
++ // After figuring out which concrete method to call, jump into it.
++ // Note that this works in the interpreter with no data motion.
++ // But the compiled version will require that r2_recv be shifted out.
++ __ verify_method_ptr(xmethod);
++ jump_from_method_handle(_masm, xmethod, temp1, for_compiler_entry);
++ if (iid == vmIntrinsics::_linkToInterface) {
++ __ bind(L_incompatible_class_change_error);
++ __ far_jump(RuntimeAddress(StubRoutines::throw_IncompatibleClassChangeError_entry()));
++ }
++ }
++
++}
++
++#ifndef PRODUCT
++void trace_method_handle_stub(const char* adaptername,
++ oopDesc* mh,
++ intptr_t* saved_regs,
++ intptr_t* entry_sp) { }
++
++// The stub wraps the arguments in a struct on the stack to avoid
++// dealing with the different calling conventions for passing 6
++// arguments.
++struct MethodHandleStubArguments {
++ const char* adaptername;
++ oopDesc* mh;
++ intptr_t* saved_regs;
++ intptr_t* entry_sp;
++};
++void trace_method_handle_stub_wrapper(MethodHandleStubArguments* args) { }
++
++void MethodHandles::trace_method_handle(MacroAssembler* _masm, const char* adaptername) { }
++#endif //PRODUCT
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/methodHandles_riscv.hpp
+@@ -0,0 +1,57 @@
++/*
++ * Copyright (c) 2010, 2012, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++// Platform-specific definitions for method handles.
++// These definitions are inlined into class MethodHandles.
++
++// Adapters
++enum /* platform_dependent_constants */ {
++ adapter_code_size = 32000 DEBUG_ONLY(+ 120000)
++};
++
++public:
++
++ static void load_klass_from_Class(MacroAssembler* _masm, Register klass_reg);
++
++ static void verify_klass(MacroAssembler* _masm,
++ Register obj, vmClassID klass_id,
++ const char* error_message = "wrong klass") NOT_DEBUG_RETURN;
++
++ static void verify_method_handle(MacroAssembler* _masm, Register mh_reg) {
++ verify_klass(_masm, mh_reg, VM_CLASS_ID(java_lang_invoke_MethodHandle),
++ "reference is a MH");
++ }
++
++ static void verify_ref_kind(MacroAssembler* _masm, int ref_kind, Register member_reg, Register temp) NOT_DEBUG_RETURN;
++
++ // Similar to InterpreterMacroAssembler::jump_from_interpreted.
++ // Takes care of special dispatch from single stepping too.
++ static void jump_from_method_handle(MacroAssembler* _masm, Register method, Register temp,
++ bool for_compiler_entry);
++
++ static void jump_to_lambda_form(MacroAssembler* _masm,
++ Register recv, Register method_temp,
++ Register temp2,
++ bool for_compiler_entry);
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/nativeInst_riscv.cpp
+@@ -0,0 +1,441 @@
++/*
++ * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/macroAssembler.hpp"
++#include "code/compiledIC.hpp"
++#include "memory/resourceArea.hpp"
++#include "nativeInst_riscv.hpp"
++#include "oops/oop.inline.hpp"
++#include "runtime/handles.hpp"
++#include "runtime/orderAccess.hpp"
++#include "runtime/safepoint.hpp"
++#include "runtime/sharedRuntime.hpp"
++#include "runtime/stubRoutines.hpp"
++#include "utilities/ostream.hpp"
++#ifdef COMPILER1
++#include "c1/c1_Runtime1.hpp"
++#endif
++
++Register NativeInstruction::extract_rs1(address instr) {
++ assert_cond(instr != NULL);
++ return as_Register(Assembler::extract(((unsigned*)instr)[0], 19, 15));
++}
++
++Register NativeInstruction::extract_rs2(address instr) {
++ assert_cond(instr != NULL);
++ return as_Register(Assembler::extract(((unsigned*)instr)[0], 24, 20));
++}
++
++Register NativeInstruction::extract_rd(address instr) {
++ assert_cond(instr != NULL);
++ return as_Register(Assembler::extract(((unsigned*)instr)[0], 11, 7));
++}
++
++uint32_t NativeInstruction::extract_opcode(address instr) {
++ assert_cond(instr != NULL);
++ return Assembler::extract(((unsigned*)instr)[0], 6, 0);
++}
++
++uint32_t NativeInstruction::extract_funct3(address instr) {
++ assert_cond(instr != NULL);
++ return Assembler::extract(((unsigned*)instr)[0], 14, 12);
++}
++
++bool NativeInstruction::is_pc_relative_at(address instr) {
++ // auipc + jalr
++ // auipc + addi
++ // auipc + load
++ // auipc + fload_load
++ return (is_auipc_at(instr)) &&
++ (is_addi_at(instr + instruction_size) ||
++ is_jalr_at(instr + instruction_size) ||
++ is_load_at(instr + instruction_size) ||
++ is_float_load_at(instr + instruction_size)) &&
++ check_pc_relative_data_dependency(instr);
++}
++
++// ie:ld(Rd, Label)
++bool NativeInstruction::is_load_pc_relative_at(address instr) {
++ return is_auipc_at(instr) && // auipc
++ is_ld_at(instr + instruction_size) && // ld
++ check_load_pc_relative_data_dependency(instr);
++}
++
++bool NativeInstruction::is_movptr_at(address instr) {
++ return is_lui_at(instr) && // Lui
++ is_addi_at(instr + instruction_size) && // Addi
++ is_slli_shift_at(instr + instruction_size * 2, 11) && // Slli Rd, Rs, 11
++ is_addi_at(instr + instruction_size * 3) && // Addi
++ is_slli_shift_at(instr + instruction_size * 4, 6) && // Slli Rd, Rs, 6
++ (is_addi_at(instr + instruction_size * 5) ||
++ is_jalr_at(instr + instruction_size * 5) ||
++ is_load_at(instr + instruction_size * 5)) && // Addi/Jalr/Load
++ check_movptr_data_dependency(instr);
++}
++
++bool NativeInstruction::is_li32_at(address instr) {
++ return is_lui_at(instr) && // lui
++ is_addiw_at(instr + instruction_size) && // addiw
++ check_li32_data_dependency(instr);
++}
++
++bool NativeInstruction::is_li64_at(address instr) {
++ return is_lui_at(instr) && // lui
++ is_addi_at(instr + instruction_size) && // addi
++ is_slli_shift_at(instr + instruction_size * 2, 12) && // Slli Rd, Rs, 12
++ is_addi_at(instr + instruction_size * 3) && // addi
++ is_slli_shift_at(instr + instruction_size * 4, 12) && // Slli Rd, Rs, 12
++ is_addi_at(instr + instruction_size * 5) && // addi
++ is_slli_shift_at(instr + instruction_size * 6, 8) && // Slli Rd, Rs, 8
++ is_addi_at(instr + instruction_size * 7) && // addi
++ check_li64_data_dependency(instr);
++}
++
++void NativeCall::verify() {
++ assert(NativeCall::is_call_at((address)this), "unexpected code at call site");
++}
++
++address NativeCall::destination() const {
++ address addr = (address)this;
++ assert(NativeInstruction::is_jal_at(instruction_address()), "inst must be jal.");
++ address destination = MacroAssembler::target_addr_for_insn(instruction_address());
++
++ // Do we use a trampoline stub for this call?
++ CodeBlob* cb = CodeCache::find_blob_unsafe(addr); // Else we get assertion if nmethod is zombie.
++ assert(cb && cb->is_nmethod(), "sanity");
++ nmethod *nm = (nmethod *)cb;
++ if (nm != NULL && nm->stub_contains(destination) && is_NativeCallTrampolineStub_at(destination)) {
++ // Yes we do, so get the destination from the trampoline stub.
++ const address trampoline_stub_addr = destination;
++ destination = nativeCallTrampolineStub_at(trampoline_stub_addr)->destination();
++ }
++
++ return destination;
++}
++
++// Similar to replace_mt_safe, but just changes the destination. The
++// important thing is that free-running threads are able to execute this
++// call instruction at all times.
++//
++// Used in the runtime linkage of calls; see class CompiledIC.
++//
++// Add parameter assert_lock to switch off assertion
++// during code generation, where no patching lock is needed.
++void NativeCall::set_destination_mt_safe(address dest, bool assert_lock) {
++ assert(!assert_lock ||
++ (Patching_lock->is_locked() || SafepointSynchronize::is_at_safepoint()) ||
++ CompiledICLocker::is_safe(addr_at(0)),
++ "concurrent code patching");
++
++ ResourceMark rm;
++ address addr_call = addr_at(0);
++ assert(NativeCall::is_call_at(addr_call), "unexpected code at call site");
++
++ // Patch the constant in the call's trampoline stub.
++ address trampoline_stub_addr = get_trampoline();
++ if (trampoline_stub_addr != NULL) {
++ assert (!is_NativeCallTrampolineStub_at(dest), "chained trampolines");
++ nativeCallTrampolineStub_at(trampoline_stub_addr)->set_destination(dest);
++ }
++
++ // Patch the call.
++ if (Assembler::reachable_from_branch_at(addr_call, dest)) {
++ set_destination(dest);
++ } else {
++ assert (trampoline_stub_addr != NULL, "we need a trampoline");
++ set_destination(trampoline_stub_addr);
++ }
++
++ ICache::invalidate_range(addr_call, instruction_size);
++}
++
++address NativeCall::get_trampoline() {
++ address call_addr = addr_at(0);
++
++ CodeBlob *code = CodeCache::find_blob(call_addr);
++ assert(code != NULL, "Could not find the containing code blob");
++
++ address jal_destination = MacroAssembler::pd_call_destination(call_addr);
++ if (code != NULL && code->contains(jal_destination) && is_NativeCallTrampolineStub_at(jal_destination)) {
++ return jal_destination;
++ }
++
++ if (code != NULL && code->is_nmethod()) {
++ return trampoline_stub_Relocation::get_trampoline_for(call_addr, (nmethod*)code);
++ }
++
++ return NULL;
++}
++
++// Inserts a native call instruction at a given pc
++void NativeCall::insert(address code_pos, address entry) { Unimplemented(); }
++
++//-------------------------------------------------------------------
++
++void NativeMovConstReg::verify() {
++ if (!(nativeInstruction_at(instruction_address())->is_movptr() ||
++ is_auipc_at(instruction_address()))) {
++ fatal("should be MOVPTR or AUIPC");
++ }
++}
++
++intptr_t NativeMovConstReg::data() const {
++ address addr = MacroAssembler::target_addr_for_insn(instruction_address());
++ if (maybe_cpool_ref(instruction_address())) {
++ return *(intptr_t*)addr;
++ } else {
++ return (intptr_t)addr;
++ }
++}
++
++void NativeMovConstReg::set_data(intptr_t x) {
++ if (maybe_cpool_ref(instruction_address())) {
++ address addr = MacroAssembler::target_addr_for_insn(instruction_address());
++ *(intptr_t*)addr = x;
++ } else {
++ // Store x into the instruction stream.
++ MacroAssembler::pd_patch_instruction_size(instruction_address(), (address)x);
++ ICache::invalidate_range(instruction_address(), movptr_instruction_size);
++ }
++
++ // Find and replace the oop/metadata corresponding to this
++ // instruction in oops section.
++ CodeBlob* cb = CodeCache::find_blob(instruction_address());
++ nmethod* nm = cb->as_nmethod_or_null();
++ if (nm != NULL) {
++ RelocIterator iter(nm, instruction_address(), next_instruction_address());
++ while (iter.next()) {
++ if (iter.type() == relocInfo::oop_type) {
++ oop* oop_addr = iter.oop_reloc()->oop_addr();
++ *oop_addr = cast_to_oop(x);
++ break;
++ } else if (iter.type() == relocInfo::metadata_type) {
++ Metadata** metadata_addr = iter.metadata_reloc()->metadata_addr();
++ *metadata_addr = (Metadata*)x;
++ break;
++ }
++ }
++ }
++}
++
++void NativeMovConstReg::print() {
++ tty->print_cr(PTR_FORMAT ": mov reg, " INTPTR_FORMAT,
++ p2i(instruction_address()), data());
++}
++
++//-------------------------------------------------------------------
++
++int NativeMovRegMem::offset() const {
++ Unimplemented();
++ return 0;
++}
++
++void NativeMovRegMem::set_offset(int x) { Unimplemented(); }
++
++void NativeMovRegMem::verify() {
++ Unimplemented();
++}
++
++//--------------------------------------------------------------------------------
++
++void NativeJump::verify() { }
++
++
++void NativeJump::check_verified_entry_alignment(address entry, address verified_entry) {
++ // Patching to not_entrant can happen while activations of the method are
++ // in use. The patching in that instance must happen only when certain
++ // alignment restrictions are true. These guarantees check those
++ // conditions.
++
++ // Must be 4 bytes aligned
++ MacroAssembler::assert_alignment(verified_entry);
++}
++
++
++address NativeJump::jump_destination() const {
++ address dest = MacroAssembler::target_addr_for_insn(instruction_address());
++
++ // We use jump to self as the unresolved address which the inline
++ // cache code (and relocs) know about
++ // As a special case we also use sequence movptr(r,0), jalr(r,0)
++ // i.e. jump to 0 when we need leave space for a wide immediate
++ // load
++
++ // return -1 if jump to self or to 0
++ if ((dest == (address) this) || dest == 0) {
++ dest = (address) -1;
++ }
++
++ return dest;
++};
++
++void NativeJump::set_jump_destination(address dest) {
++ // We use jump to self as the unresolved address which the inline
++ // cache code (and relocs) know about
++ if (dest == (address) -1)
++ dest = instruction_address();
++
++ MacroAssembler::pd_patch_instruction(instruction_address(), dest);
++ ICache::invalidate_range(instruction_address(), instruction_size);
++}
++
++//-------------------------------------------------------------------
++
++address NativeGeneralJump::jump_destination() const {
++ NativeMovConstReg* move = nativeMovConstReg_at(instruction_address());
++ address dest = (address) move->data();
++
++ // We use jump to self as the unresolved address which the inline
++ // cache code (and relocs) know about
++ // As a special case we also use jump to 0 when first generating
++ // a general jump
++
++ // return -1 if jump to self or to 0
++ if ((dest == (address) this) || dest == 0) {
++ dest = (address) -1;
++ }
++
++ return dest;
++}
++
++//-------------------------------------------------------------------
++
++bool NativeInstruction::is_safepoint_poll() {
++ return is_lwu_to_zr(address(this));
++}
++
++bool NativeInstruction::is_lwu_to_zr(address instr) {
++ assert_cond(instr != NULL);
++ return (extract_opcode(instr) == 0b0000011 &&
++ extract_funct3(instr) == 0b110 &&
++ extract_rd(instr) == zr); // zr
++}
++
++// A 16-bit instruction with all bits ones is permanently reserved as an illegal instruction.
++bool NativeInstruction::is_sigill_zombie_not_entrant() {
++ // jvmci
++ return uint_at(0) == 0xffffffff;
++}
++
++void NativeIllegalInstruction::insert(address code_pos) {
++ assert_cond(code_pos != NULL);
++ *(juint*)code_pos = 0xffffffff; // all bits ones is permanently reserved as an illegal instruction
++}
++
++bool NativeInstruction::is_stop() {
++ return uint_at(0) == 0xc0101073; // an illegal instruction, 'csrrw x0, time, x0'
++}
++
++//-------------------------------------------------------------------
++
++// MT-safe inserting of a jump over a jump or a nop (used by
++// nmethod::make_not_entrant_or_zombie)
++
++void NativeJump::patch_verified_entry(address entry, address verified_entry, address dest) {
++
++ assert(dest == SharedRuntime::get_handle_wrong_method_stub(), "expected fixed destination of patch");
++
++ assert(nativeInstruction_at(verified_entry)->is_jump_or_nop() ||
++ nativeInstruction_at(verified_entry)->is_sigill_zombie_not_entrant(),
++ "riscv cannot replace non-jump with jump");
++
++ check_verified_entry_alignment(entry, verified_entry);
++
++ // Patch this nmethod atomically.
++ if (Assembler::reachable_from_branch_at(verified_entry, dest)) {
++ ptrdiff_t offset = dest - verified_entry;
++ guarantee(Assembler::is_simm21(offset) && ((offset % 2) == 0),
++ "offset is too large to be patched in one jal instruction."); // 1M
++
++ uint32_t insn = 0;
++ address pInsn = (address)&insn;
++ Assembler::patch(pInsn, 31, 31, (offset >> 20) & 0x1);
++ Assembler::patch(pInsn, 30, 21, (offset >> 1) & 0x3ff);
++ Assembler::patch(pInsn, 20, 20, (offset >> 11) & 0x1);
++ Assembler::patch(pInsn, 19, 12, (offset >> 12) & 0xff);
++ Assembler::patch(pInsn, 11, 7, 0); // zero, no link jump
++ Assembler::patch(pInsn, 6, 0, 0b1101111); // j, (jal x0 offset)
++ *(unsigned int*)verified_entry = insn;
++ } else {
++ // We use an illegal instruction for marking a method as
++ // not_entrant or zombie.
++ NativeIllegalInstruction::insert(verified_entry);
++ }
++
++ ICache::invalidate_range(verified_entry, instruction_size);
++}
++
++void NativeGeneralJump::insert_unconditional(address code_pos, address entry) {
++ CodeBuffer cb(code_pos, instruction_size);
++ MacroAssembler a(&cb);
++ Assembler::IncompressibleRegion ir(&a); // Fixed length: see NativeGeneralJump::get_instruction_size()
++
++ int32_t offset = 0;
++ a.movptr(t0, entry, offset); // lui, addi, slli, addi, slli
++ a.jalr(x0, t0, offset); // jalr
++
++ ICache::invalidate_range(code_pos, instruction_size);
++}
++
++// MT-safe patching of a long jump instruction.
++void NativeGeneralJump::replace_mt_safe(address instr_addr, address code_buffer) {
++ ShouldNotCallThis();
++}
++
++
++address NativeCallTrampolineStub::destination(nmethod *nm) const {
++ return ptr_at(data_offset);
++}
++
++void NativeCallTrampolineStub::set_destination(address new_destination) {
++ set_ptr_at(data_offset, new_destination);
++ OrderAccess::release();
++}
++
++uint32_t NativeMembar::get_kind() {
++ uint32_t insn = uint_at(0);
++
++ uint32_t predecessor = Assembler::extract(insn, 27, 24);
++ uint32_t successor = Assembler::extract(insn, 23, 20);
++
++ return MacroAssembler::pred_succ_to_membar_mask(predecessor, successor);
++}
++
++void NativeMembar::set_kind(uint32_t order_kind) {
++ uint32_t predecessor = 0;
++ uint32_t successor = 0;
++
++ MacroAssembler::membar_mask_to_pred_succ(order_kind, predecessor, successor);
++
++ uint32_t insn = uint_at(0);
++ address pInsn = (address) &insn;
++ Assembler::patch(pInsn, 27, 24, predecessor);
++ Assembler::patch(pInsn, 23, 20, successor);
++
++ address membar = addr_at(0);
++ *(unsigned int*) membar = insn;
++}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/nativeInst_riscv.hpp
+@@ -0,0 +1,554 @@
++/*
++ * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, 2018, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_NATIVEINST_RISCV_HPP
++#define CPU_RISCV_NATIVEINST_RISCV_HPP
++
++#include "asm/assembler.hpp"
++#include "runtime/icache.hpp"
++#include "runtime/os.hpp"
++
++// We have interfaces for the following instructions:
++// - NativeInstruction
++// - - NativeCall
++// - - NativeMovConstReg
++// - - NativeMovRegMem
++// - - NativeJump
++// - - NativeGeneralJump
++// - - NativeIllegalInstruction
++// - - NativeCallTrampolineStub
++// - - NativeMembar
++
++// The base class for different kinds of native instruction abstractions.
++// Provides the primitive operations to manipulate code relative to this.
++
++class NativeCall;
++
++class NativeInstruction {
++ friend class Relocation;
++ friend bool is_NativeCallTrampolineStub_at(address);
++ public:
++ enum {
++ instruction_size = 4,
++ compressed_instruction_size = 2,
++ };
++
++ juint encoding() const {
++ return uint_at(0);
++ }
++
++ bool is_jal() const { return is_jal_at(addr_at(0)); }
++ bool is_movptr() const { return is_movptr_at(addr_at(0)); }
++ bool is_call() const { return is_call_at(addr_at(0)); }
++ bool is_jump() const { return is_jump_at(addr_at(0)); }
++
++ static bool is_jal_at(address instr) { assert_cond(instr != NULL); return extract_opcode(instr) == 0b1101111; }
++ static bool is_jalr_at(address instr) { assert_cond(instr != NULL); return extract_opcode(instr) == 0b1100111 && extract_funct3(instr) == 0b000; }
++ static bool is_branch_at(address instr) { assert_cond(instr != NULL); return extract_opcode(instr) == 0b1100011; }
++ static bool is_ld_at(address instr) { assert_cond(instr != NULL); return is_load_at(instr) && extract_funct3(instr) == 0b011; }
++ static bool is_load_at(address instr) { assert_cond(instr != NULL); return extract_opcode(instr) == 0b0000011; }
++ static bool is_float_load_at(address instr) { assert_cond(instr != NULL); return extract_opcode(instr) == 0b0000111; }
++ static bool is_auipc_at(address instr) { assert_cond(instr != NULL); return extract_opcode(instr) == 0b0010111; }
++ static bool is_jump_at(address instr) { assert_cond(instr != NULL); return is_branch_at(instr) || is_jal_at(instr) || is_jalr_at(instr); }
++ static bool is_addi_at(address instr) { assert_cond(instr != NULL); return extract_opcode(instr) == 0b0010011 && extract_funct3(instr) == 0b000; }
++ static bool is_addiw_at(address instr) { assert_cond(instr != NULL); return extract_opcode(instr) == 0b0011011 && extract_funct3(instr) == 0b000; }
++ static bool is_lui_at(address instr) { assert_cond(instr != NULL); return extract_opcode(instr) == 0b0110111; }
++ static bool is_slli_shift_at(address instr, uint32_t shift) {
++ assert_cond(instr != NULL);
++ return (extract_opcode(instr) == 0b0010011 && // opcode field
++ extract_funct3(instr) == 0b001 && // funct3 field, select the type of operation
++ Assembler::extract(((unsigned*)instr)[0], 25, 20) == shift); // shamt field
++ }
++
++ static Register extract_rs1(address instr);
++ static Register extract_rs2(address instr);
++ static Register extract_rd(address instr);
++ static uint32_t extract_opcode(address instr);
++ static uint32_t extract_funct3(address instr);
++
++ // the instruction sequence of movptr is as below:
++ // lui
++ // addi
++ // slli
++ // addi
++ // slli
++ // addi/jalr/load
++ static bool check_movptr_data_dependency(address instr) {
++ address lui = instr;
++ address addi1 = lui + instruction_size;
++ address slli1 = addi1 + instruction_size;
++ address addi2 = slli1 + instruction_size;
++ address slli2 = addi2 + instruction_size;
++ address last_instr = slli2 + instruction_size;
++ return extract_rs1(addi1) == extract_rd(lui) &&
++ extract_rs1(addi1) == extract_rd(addi1) &&
++ extract_rs1(slli1) == extract_rd(addi1) &&
++ extract_rs1(slli1) == extract_rd(slli1) &&
++ extract_rs1(addi2) == extract_rd(slli1) &&
++ extract_rs1(addi2) == extract_rd(addi2) &&
++ extract_rs1(slli2) == extract_rd(addi2) &&
++ extract_rs1(slli2) == extract_rd(slli2) &&
++ extract_rs1(last_instr) == extract_rd(slli2);
++ }
++
++ // the instruction sequence of li64 is as below:
++ // lui
++ // addi
++ // slli
++ // addi
++ // slli
++ // addi
++ // slli
++ // addi
++ static bool check_li64_data_dependency(address instr) {
++ address lui = instr;
++ address addi1 = lui + instruction_size;
++ address slli1 = addi1 + instruction_size;
++ address addi2 = slli1 + instruction_size;
++ address slli2 = addi2 + instruction_size;
++ address addi3 = slli2 + instruction_size;
++ address slli3 = addi3 + instruction_size;
++ address addi4 = slli3 + instruction_size;
++ return extract_rs1(addi1) == extract_rd(lui) &&
++ extract_rs1(addi1) == extract_rd(addi1) &&
++ extract_rs1(slli1) == extract_rd(addi1) &&
++ extract_rs1(slli1) == extract_rd(slli1) &&
++ extract_rs1(addi2) == extract_rd(slli1) &&
++ extract_rs1(addi2) == extract_rd(addi2) &&
++ extract_rs1(slli2) == extract_rd(addi2) &&
++ extract_rs1(slli2) == extract_rd(slli2) &&
++ extract_rs1(addi3) == extract_rd(slli2) &&
++ extract_rs1(addi3) == extract_rd(addi3) &&
++ extract_rs1(slli3) == extract_rd(addi3) &&
++ extract_rs1(slli3) == extract_rd(slli3) &&
++ extract_rs1(addi4) == extract_rd(slli3) &&
++ extract_rs1(addi4) == extract_rd(addi4);
++ }
++
++ // the instruction sequence of li32 is as below:
++ // lui
++ // addiw
++ static bool check_li32_data_dependency(address instr) {
++ address lui = instr;
++ address addiw = lui + instruction_size;
++
++ return extract_rs1(addiw) == extract_rd(lui) &&
++ extract_rs1(addiw) == extract_rd(addiw);
++ }
++
++ // the instruction sequence of pc-relative is as below:
++ // auipc
++ // jalr/addi/load/float_load
++ static bool check_pc_relative_data_dependency(address instr) {
++ address auipc = instr;
++ address last_instr = auipc + instruction_size;
++
++ return extract_rs1(last_instr) == extract_rd(auipc);
++ }
++
++ // the instruction sequence of load_label is as below:
++ // auipc
++ // load
++ static bool check_load_pc_relative_data_dependency(address instr) {
++ address auipc = instr;
++ address load = auipc + instruction_size;
++
++ return extract_rd(load) == extract_rd(auipc) &&
++ extract_rs1(load) == extract_rd(load);
++ }
++
++ static bool is_movptr_at(address instr);
++ static bool is_li32_at(address instr);
++ static bool is_li64_at(address instr);
++ static bool is_pc_relative_at(address branch);
++ static bool is_load_pc_relative_at(address branch);
++
++ static bool is_call_at(address instr) {
++ if (is_jal_at(instr) || is_jalr_at(instr)) {
++ return true;
++ }
++ return false;
++ }
++ static bool is_lwu_to_zr(address instr);
++
++ inline bool is_nop();
++ inline bool is_jump_or_nop();
++ bool is_safepoint_poll();
++ bool is_sigill_zombie_not_entrant();
++ bool is_stop();
++
++ protected:
++ address addr_at(int offset) const { return address(this) + offset; }
++
++ jint int_at(int offset) const { return *(jint*) addr_at(offset); }
++ juint uint_at(int offset) const { return *(juint*) addr_at(offset); }
++
++ address ptr_at(int offset) const { return *(address*) addr_at(offset); }
++
++ oop oop_at (int offset) const { return *(oop*) addr_at(offset); }
++
++
++ void set_int_at(int offset, jint i) { *(jint*)addr_at(offset) = i; }
++ void set_uint_at(int offset, jint i) { *(juint*)addr_at(offset) = i; }
++ void set_ptr_at (int offset, address ptr) { *(address*) addr_at(offset) = ptr; }
++ void set_oop_at (int offset, oop o) { *(oop*) addr_at(offset) = o; }
++
++ public:
++
++ inline friend NativeInstruction* nativeInstruction_at(address addr);
++
++ static bool maybe_cpool_ref(address instr) {
++ return is_auipc_at(instr);
++ }
++
++ bool is_membar() {
++ return (uint_at(0) & 0x7f) == 0b1111 && extract_funct3(addr_at(0)) == 0;
++ }
++};
++
++inline NativeInstruction* nativeInstruction_at(address addr) {
++ return (NativeInstruction*)addr;
++}
++
++// The natural type of an RISCV instruction is uint32_t
++inline NativeInstruction* nativeInstruction_at(uint32_t *addr) {
++ return (NativeInstruction*)addr;
++}
++
++inline NativeCall* nativeCall_at(address addr);
++// The NativeCall is an abstraction for accessing/manipulating native
++// call instructions (used to manipulate inline caches, primitive &
++// DSO calls, etc.).
++
++class NativeCall: public NativeInstruction {
++ public:
++ enum RISCV_specific_constants {
++ instruction_size = 4,
++ instruction_offset = 0,
++ displacement_offset = 0,
++ return_address_offset = 4
++ };
++
++ address instruction_address() const { return addr_at(instruction_offset); }
++ address next_instruction_address() const { return addr_at(return_address_offset); }
++ address return_address() const { return addr_at(return_address_offset); }
++ address destination() const;
++
++ void set_destination(address dest) {
++ assert(is_jal(), "Should be jal instruction!");
++ intptr_t offset = (intptr_t)(dest - instruction_address());
++ assert((offset & 0x1) == 0, "bad alignment");
++ assert(Assembler::is_simm21(offset), "encoding constraint");
++ unsigned int insn = 0b1101111; // jal
++ address pInsn = (address)(&insn);
++ Assembler::patch(pInsn, 31, 31, (offset >> 20) & 0x1);
++ Assembler::patch(pInsn, 30, 21, (offset >> 1) & 0x3ff);
++ Assembler::patch(pInsn, 20, 20, (offset >> 11) & 0x1);
++ Assembler::patch(pInsn, 19, 12, (offset >> 12) & 0xff);
++ Assembler::patch(pInsn, 11, 7, ra->encoding()); // Rd must be x1, need ra
++ set_int_at(displacement_offset, insn);
++ }
++
++ void verify_alignment() {} // do nothing on riscv
++ void verify();
++ void print();
++
++ // Creation
++ inline friend NativeCall* nativeCall_at(address addr);
++ inline friend NativeCall* nativeCall_before(address return_address);
++
++ static bool is_call_before(address return_address) {
++ return is_call_at(return_address - NativeCall::return_address_offset);
++ }
++
++ // MT-safe patching of a call instruction.
++ static void insert(address code_pos, address entry);
++
++ static void replace_mt_safe(address instr_addr, address code_buffer);
++
++ // Similar to replace_mt_safe, but just changes the destination. The
++ // important thing is that free-running threads are able to execute
++ // this call instruction at all times. If the call is an immediate BL
++ // instruction we can simply rely on atomicity of 32-bit writes to
++ // make sure other threads will see no intermediate states.
++
++ // We cannot rely on locks here, since the free-running threads must run at
++ // full speed.
++ //
++ // Used in the runtime linkage of calls; see class CompiledIC.
++ // (Cf. 4506997 and 4479829, where threads witnessed garbage displacements.)
++
++ // The parameter assert_lock disables the assertion during code generation.
++ void set_destination_mt_safe(address dest, bool assert_lock = true);
++
++ address get_trampoline();
++};
++
++inline NativeCall* nativeCall_at(address addr) {
++ assert_cond(addr != NULL);
++ NativeCall* call = (NativeCall*)(addr - NativeCall::instruction_offset);
++ DEBUG_ONLY(call->verify());
++ return call;
++}
++
++inline NativeCall* nativeCall_before(address return_address) {
++ assert_cond(return_address != NULL);
++ NativeCall* call = (NativeCall*)(return_address - NativeCall::return_address_offset);
++ DEBUG_ONLY(call->verify());
++ return call;
++}
++
++// An interface for accessing/manipulating native mov reg, imm instructions.
++// (used to manipulate inlined 64-bit data calls, etc.)
++class NativeMovConstReg: public NativeInstruction {
++ public:
++ enum RISCV_specific_constants {
++ movptr_instruction_size = 6 * NativeInstruction::instruction_size, // lui, addi, slli, addi, slli, addi. See movptr().
++ load_pc_relative_instruction_size = 2 * NativeInstruction::instruction_size, // auipc, ld
++ instruction_offset = 0,
++ displacement_offset = 0
++ };
++
++ address instruction_address() const { return addr_at(instruction_offset); }
++ address next_instruction_address() const {
++ // if the instruction at 5 * instruction_size is addi,
++ // it means a lui + addi + slli + addi + slli + addi instruction sequence,
++ // and the next instruction address should be addr_at(6 * instruction_size).
++ // However, when the instruction at 5 * instruction_size isn't addi,
++ // the next instruction address should be addr_at(5 * instruction_size)
++ if (nativeInstruction_at(instruction_address())->is_movptr()) {
++ if (is_addi_at(addr_at(movptr_instruction_size - NativeInstruction::instruction_size))) {
++ // Assume: lui, addi, slli, addi, slli, addi
++ return addr_at(movptr_instruction_size);
++ } else {
++ // Assume: lui, addi, slli, addi, slli
++ return addr_at(movptr_instruction_size - NativeInstruction::instruction_size);
++ }
++ } else if (is_load_pc_relative_at(instruction_address())) {
++ // Assume: auipc, ld
++ return addr_at(load_pc_relative_instruction_size);
++ }
++ guarantee(false, "Unknown instruction in NativeMovConstReg");
++ return NULL;
++ }
++
++ intptr_t data() const;
++ void set_data(intptr_t x);
++
++ void flush() {
++ if (!maybe_cpool_ref(instruction_address())) {
++ ICache::invalidate_range(instruction_address(), movptr_instruction_size);
++ }
++ }
++
++ void verify();
++ void print();
++
++ // Creation
++ inline friend NativeMovConstReg* nativeMovConstReg_at(address addr);
++ inline friend NativeMovConstReg* nativeMovConstReg_before(address addr);
++};
++
++inline NativeMovConstReg* nativeMovConstReg_at(address addr) {
++ assert_cond(addr != NULL);
++ NativeMovConstReg* test = (NativeMovConstReg*)(addr - NativeMovConstReg::instruction_offset);
++ DEBUG_ONLY(test->verify());
++ return test;
++}
++
++inline NativeMovConstReg* nativeMovConstReg_before(address addr) {
++ assert_cond(addr != NULL);
++ NativeMovConstReg* test = (NativeMovConstReg*)(addr - NativeMovConstReg::instruction_size - NativeMovConstReg::instruction_offset);
++ DEBUG_ONLY(test->verify());
++ return test;
++}
++
++// RISCV should not use C1 runtime patching, but still implement
++// NativeMovRegMem to keep some compilers happy.
++class NativeMovRegMem: public NativeInstruction {
++ public:
++ enum RISCV_specific_constants {
++ instruction_size = NativeInstruction::instruction_size,
++ instruction_offset = 0,
++ data_offset = 0,
++ next_instruction_offset = NativeInstruction::instruction_size
++ };
++
++ int instruction_start() const { return instruction_offset; }
++
++ address instruction_address() const { return addr_at(instruction_offset); }
++
++ int num_bytes_to_end_of_patch() const { return instruction_offset + instruction_size; }
++
++ int offset() const;
++
++ void set_offset(int x);
++
++ void add_offset_in_bytes(int add_offset) {
++ set_offset(offset() + add_offset);
++ }
++
++ void verify();
++ void print();
++
++ private:
++ inline friend NativeMovRegMem* nativeMovRegMem_at(address addr);
++};
++
++inline NativeMovRegMem* nativeMovRegMem_at(address addr) {
++ NativeMovRegMem* test = (NativeMovRegMem*)(addr - NativeMovRegMem::instruction_offset);
++ DEBUG_ONLY(test->verify());
++ return test;
++}
++
++class NativeJump: public NativeInstruction {
++ public:
++ enum RISCV_specific_constants {
++ instruction_size = NativeInstruction::instruction_size,
++ instruction_offset = 0,
++ data_offset = 0,
++ next_instruction_offset = NativeInstruction::instruction_size
++ };
++
++ address instruction_address() const { return addr_at(instruction_offset); }
++ address next_instruction_address() const { return addr_at(instruction_size); }
++ address jump_destination() const;
++ void set_jump_destination(address dest);
++
++ // Creation
++ inline friend NativeJump* nativeJump_at(address address);
++
++ void verify();
++
++ // Insertion of native jump instruction
++ static void insert(address code_pos, address entry);
++ // MT-safe insertion of native jump at verified method entry
++ static void check_verified_entry_alignment(address entry, address verified_entry);
++ static void patch_verified_entry(address entry, address verified_entry, address dest);
++};
++
++inline NativeJump* nativeJump_at(address addr) {
++ NativeJump* jump = (NativeJump*)(addr - NativeJump::instruction_offset);
++ DEBUG_ONLY(jump->verify());
++ return jump;
++}
++
++class NativeGeneralJump: public NativeJump {
++public:
++ enum RISCV_specific_constants {
++ instruction_size = 6 * NativeInstruction::instruction_size, // lui, addi, slli, addi, slli, jalr
++ instruction_offset = 0,
++ data_offset = 0,
++ next_instruction_offset = 6 * NativeInstruction::instruction_size // lui, addi, slli, addi, slli, jalr
++ };
++
++ address jump_destination() const;
++
++ static void insert_unconditional(address code_pos, address entry);
++ static void replace_mt_safe(address instr_addr, address code_buffer);
++};
++
++inline NativeGeneralJump* nativeGeneralJump_at(address addr) {
++ assert_cond(addr != NULL);
++ NativeGeneralJump* jump = (NativeGeneralJump*)(addr);
++ debug_only(jump->verify();)
++ return jump;
++}
++
++class NativeIllegalInstruction: public NativeInstruction {
++ public:
++ // Insert illegal opcode as specific address
++ static void insert(address code_pos);
++};
++
++inline bool NativeInstruction::is_nop() {
++ uint32_t insn = *(uint32_t*)addr_at(0);
++ return insn == 0x13;
++}
++
++inline bool NativeInstruction::is_jump_or_nop() {
++ return is_nop() || is_jump();
++}
++
++// Call trampoline stubs.
++class NativeCallTrampolineStub : public NativeInstruction {
++ public:
++
++ enum RISCV_specific_constants {
++ // Refer to function emit_trampoline_stub.
++ instruction_size = 3 * NativeInstruction::instruction_size + wordSize, // auipc + ld + jr + target address
++ data_offset = 3 * NativeInstruction::instruction_size, // auipc + ld + jr
++ };
++
++ address destination(nmethod *nm = NULL) const;
++ void set_destination(address new_destination);
++ ptrdiff_t destination_offset() const;
++};
++
++inline bool is_NativeCallTrampolineStub_at(address addr) {
++ // Ensure that the stub is exactly
++ // ld t0, L--->auipc + ld
++ // jr t0
++ // L:
++
++ // judge inst + register + imm
++ // 1). check the instructions: auipc + ld + jalr
++ // 2). check if auipc[11:7] == t0 and ld[11:7] == t0 and ld[19:15] == t0 && jr[19:15] == t0
++ // 3). check if the offset in ld[31:20] equals the data_offset
++ assert_cond(addr != NULL);
++ const int instr_size = NativeInstruction::instruction_size;
++ if (NativeInstruction::is_auipc_at(addr) &&
++ NativeInstruction::is_ld_at(addr + instr_size) &&
++ NativeInstruction::is_jalr_at(addr + 2 * instr_size) &&
++ (NativeInstruction::extract_rd(addr) == x5) &&
++ (NativeInstruction::extract_rd(addr + instr_size) == x5) &&
++ (NativeInstruction::extract_rs1(addr + instr_size) == x5) &&
++ (NativeInstruction::extract_rs1(addr + 2 * instr_size) == x5) &&
++ (Assembler::extract(((unsigned*)addr)[1], 31, 20) == NativeCallTrampolineStub::data_offset)) {
++ return true;
++ }
++ return false;
++}
++
++inline NativeCallTrampolineStub* nativeCallTrampolineStub_at(address addr) {
++ assert_cond(addr != NULL);
++ assert(is_NativeCallTrampolineStub_at(addr), "no call trampoline found");
++ return (NativeCallTrampolineStub*)addr;
++}
++
++class NativeMembar : public NativeInstruction {
++public:
++ uint32_t get_kind();
++ void set_kind(uint32_t order_kind);
++};
++
++inline NativeMembar *NativeMembar_at(address addr) {
++ assert_cond(addr != NULL);
++ assert(nativeInstruction_at(addr)->is_membar(), "no membar found");
++ return (NativeMembar*)addr;
++}
++
++#endif // CPU_RISCV_NATIVEINST_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/registerMap_riscv.cpp
+@@ -0,0 +1,45 @@
++/*
++ * Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "runtime/registerMap.hpp"
++#include "vmreg_riscv.inline.hpp"
++
++address RegisterMap::pd_location(VMReg base_reg, int slot_idx) const {
++ if (base_reg->is_VectorRegister()) {
++ assert(base_reg->is_concrete(), "must pass base reg");
++ int base_reg_enc = (base_reg->value() - ConcreteRegisterImpl::max_fpr) /
++ VectorRegisterImpl::max_slots_per_register;
++ intptr_t offset_in_bytes = slot_idx * VMRegImpl::stack_slot_size;
++ address base_location = location(base_reg);
++ if (base_location != NULL) {
++ return base_location + offset_in_bytes;
++ } else {
++ return NULL;
++ }
++ } else {
++ return location(base_reg->next(slot_idx));
++ }
++}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/registerMap_riscv.hpp
+@@ -0,0 +1,43 @@
++/*
++ * Copyright (c) 1998, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_REGISTERMAP_RISCV_HPP
++#define CPU_RISCV_REGISTERMAP_RISCV_HPP
++
++// machine-dependent implemention for register maps
++ friend class frame;
++
++ private:
++ // This is the hook for finding a register in an "well-known" location,
++ // such as a register block of a predetermined format.
++ address pd_location(VMReg reg) const { return NULL; }
++ address pd_location(VMReg base_reg, int slot_idx) const;
++
++ // no PD state to clear or copy:
++ void pd_clear() {}
++ void pd_initialize() {}
++ void pd_initialize_from(const RegisterMap* map) {}
++
++#endif // CPU_RISCV_REGISTERMAP_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/register_definitions_riscv.cpp
+@@ -0,0 +1,193 @@
++/*
++ * Copyright (c) 2002, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/assembler.hpp"
++#include "asm/macroAssembler.inline.hpp"
++#include "asm/register.hpp"
++#include "interp_masm_riscv.hpp"
++#include "register_riscv.hpp"
++
++REGISTER_DEFINITION(Register, noreg);
++
++REGISTER_DEFINITION(Register, x0);
++REGISTER_DEFINITION(Register, x1);
++REGISTER_DEFINITION(Register, x2);
++REGISTER_DEFINITION(Register, x3);
++REGISTER_DEFINITION(Register, x4);
++REGISTER_DEFINITION(Register, x5);
++REGISTER_DEFINITION(Register, x6);
++REGISTER_DEFINITION(Register, x7);
++REGISTER_DEFINITION(Register, x8);
++REGISTER_DEFINITION(Register, x9);
++REGISTER_DEFINITION(Register, x10);
++REGISTER_DEFINITION(Register, x11);
++REGISTER_DEFINITION(Register, x12);
++REGISTER_DEFINITION(Register, x13);
++REGISTER_DEFINITION(Register, x14);
++REGISTER_DEFINITION(Register, x15);
++REGISTER_DEFINITION(Register, x16);
++REGISTER_DEFINITION(Register, x17);
++REGISTER_DEFINITION(Register, x18);
++REGISTER_DEFINITION(Register, x19);
++REGISTER_DEFINITION(Register, x20);
++REGISTER_DEFINITION(Register, x21);
++REGISTER_DEFINITION(Register, x22);
++REGISTER_DEFINITION(Register, x23);
++REGISTER_DEFINITION(Register, x24);
++REGISTER_DEFINITION(Register, x25);
++REGISTER_DEFINITION(Register, x26);
++REGISTER_DEFINITION(Register, x27);
++REGISTER_DEFINITION(Register, x28);
++REGISTER_DEFINITION(Register, x29);
++REGISTER_DEFINITION(Register, x30);
++REGISTER_DEFINITION(Register, x31);
++
++REGISTER_DEFINITION(FloatRegister, fnoreg);
++
++REGISTER_DEFINITION(FloatRegister, f0);
++REGISTER_DEFINITION(FloatRegister, f1);
++REGISTER_DEFINITION(FloatRegister, f2);
++REGISTER_DEFINITION(FloatRegister, f3);
++REGISTER_DEFINITION(FloatRegister, f4);
++REGISTER_DEFINITION(FloatRegister, f5);
++REGISTER_DEFINITION(FloatRegister, f6);
++REGISTER_DEFINITION(FloatRegister, f7);
++REGISTER_DEFINITION(FloatRegister, f8);
++REGISTER_DEFINITION(FloatRegister, f9);
++REGISTER_DEFINITION(FloatRegister, f10);
++REGISTER_DEFINITION(FloatRegister, f11);
++REGISTER_DEFINITION(FloatRegister, f12);
++REGISTER_DEFINITION(FloatRegister, f13);
++REGISTER_DEFINITION(FloatRegister, f14);
++REGISTER_DEFINITION(FloatRegister, f15);
++REGISTER_DEFINITION(FloatRegister, f16);
++REGISTER_DEFINITION(FloatRegister, f17);
++REGISTER_DEFINITION(FloatRegister, f18);
++REGISTER_DEFINITION(FloatRegister, f19);
++REGISTER_DEFINITION(FloatRegister, f20);
++REGISTER_DEFINITION(FloatRegister, f21);
++REGISTER_DEFINITION(FloatRegister, f22);
++REGISTER_DEFINITION(FloatRegister, f23);
++REGISTER_DEFINITION(FloatRegister, f24);
++REGISTER_DEFINITION(FloatRegister, f25);
++REGISTER_DEFINITION(FloatRegister, f26);
++REGISTER_DEFINITION(FloatRegister, f27);
++REGISTER_DEFINITION(FloatRegister, f28);
++REGISTER_DEFINITION(FloatRegister, f29);
++REGISTER_DEFINITION(FloatRegister, f30);
++REGISTER_DEFINITION(FloatRegister, f31);
++
++REGISTER_DEFINITION(VectorRegister, vnoreg);
++
++REGISTER_DEFINITION(VectorRegister, v0);
++REGISTER_DEFINITION(VectorRegister, v1);
++REGISTER_DEFINITION(VectorRegister, v2);
++REGISTER_DEFINITION(VectorRegister, v3);
++REGISTER_DEFINITION(VectorRegister, v4);
++REGISTER_DEFINITION(VectorRegister, v5);
++REGISTER_DEFINITION(VectorRegister, v6);
++REGISTER_DEFINITION(VectorRegister, v7);
++REGISTER_DEFINITION(VectorRegister, v8);
++REGISTER_DEFINITION(VectorRegister, v9);
++REGISTER_DEFINITION(VectorRegister, v10);
++REGISTER_DEFINITION(VectorRegister, v11);
++REGISTER_DEFINITION(VectorRegister, v12);
++REGISTER_DEFINITION(VectorRegister, v13);
++REGISTER_DEFINITION(VectorRegister, v14);
++REGISTER_DEFINITION(VectorRegister, v15);
++REGISTER_DEFINITION(VectorRegister, v16);
++REGISTER_DEFINITION(VectorRegister, v17);
++REGISTER_DEFINITION(VectorRegister, v18);
++REGISTER_DEFINITION(VectorRegister, v19);
++REGISTER_DEFINITION(VectorRegister, v20);
++REGISTER_DEFINITION(VectorRegister, v21);
++REGISTER_DEFINITION(VectorRegister, v22);
++REGISTER_DEFINITION(VectorRegister, v23);
++REGISTER_DEFINITION(VectorRegister, v24);
++REGISTER_DEFINITION(VectorRegister, v25);
++REGISTER_DEFINITION(VectorRegister, v26);
++REGISTER_DEFINITION(VectorRegister, v27);
++REGISTER_DEFINITION(VectorRegister, v28);
++REGISTER_DEFINITION(VectorRegister, v29);
++REGISTER_DEFINITION(VectorRegister, v30);
++REGISTER_DEFINITION(VectorRegister, v31);
++
++REGISTER_DEFINITION(Register, c_rarg0);
++REGISTER_DEFINITION(Register, c_rarg1);
++REGISTER_DEFINITION(Register, c_rarg2);
++REGISTER_DEFINITION(Register, c_rarg3);
++REGISTER_DEFINITION(Register, c_rarg4);
++REGISTER_DEFINITION(Register, c_rarg5);
++REGISTER_DEFINITION(Register, c_rarg6);
++REGISTER_DEFINITION(Register, c_rarg7);
++
++REGISTER_DEFINITION(FloatRegister, c_farg0);
++REGISTER_DEFINITION(FloatRegister, c_farg1);
++REGISTER_DEFINITION(FloatRegister, c_farg2);
++REGISTER_DEFINITION(FloatRegister, c_farg3);
++REGISTER_DEFINITION(FloatRegister, c_farg4);
++REGISTER_DEFINITION(FloatRegister, c_farg5);
++REGISTER_DEFINITION(FloatRegister, c_farg6);
++REGISTER_DEFINITION(FloatRegister, c_farg7);
++
++REGISTER_DEFINITION(Register, j_rarg0);
++REGISTER_DEFINITION(Register, j_rarg1);
++REGISTER_DEFINITION(Register, j_rarg2);
++REGISTER_DEFINITION(Register, j_rarg3);
++REGISTER_DEFINITION(Register, j_rarg4);
++REGISTER_DEFINITION(Register, j_rarg5);
++REGISTER_DEFINITION(Register, j_rarg6);
++REGISTER_DEFINITION(Register, j_rarg7);
++
++REGISTER_DEFINITION(FloatRegister, j_farg0);
++REGISTER_DEFINITION(FloatRegister, j_farg1);
++REGISTER_DEFINITION(FloatRegister, j_farg2);
++REGISTER_DEFINITION(FloatRegister, j_farg3);
++REGISTER_DEFINITION(FloatRegister, j_farg4);
++REGISTER_DEFINITION(FloatRegister, j_farg5);
++REGISTER_DEFINITION(FloatRegister, j_farg6);
++REGISTER_DEFINITION(FloatRegister, j_farg7);
++
++REGISTER_DEFINITION(Register, zr);
++REGISTER_DEFINITION(Register, gp);
++REGISTER_DEFINITION(Register, tp);
++REGISTER_DEFINITION(Register, xmethod);
++REGISTER_DEFINITION(Register, ra);
++REGISTER_DEFINITION(Register, sp);
++REGISTER_DEFINITION(Register, fp);
++REGISTER_DEFINITION(Register, xheapbase);
++REGISTER_DEFINITION(Register, xcpool);
++REGISTER_DEFINITION(Register, xmonitors);
++REGISTER_DEFINITION(Register, xlocals);
++REGISTER_DEFINITION(Register, xthread);
++REGISTER_DEFINITION(Register, xbcp);
++REGISTER_DEFINITION(Register, xdispatch);
++REGISTER_DEFINITION(Register, esp);
++
++REGISTER_DEFINITION(Register, t0);
++REGISTER_DEFINITION(Register, t1);
++REGISTER_DEFINITION(Register, t2);
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/register_riscv.cpp
+@@ -0,0 +1,69 @@
++/*
++ * Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "register_riscv.hpp"
++
++const int ConcreteRegisterImpl::max_gpr = RegisterImpl::number_of_registers *
++ RegisterImpl::max_slots_per_register;
++
++const int ConcreteRegisterImpl::max_fpr =
++ ConcreteRegisterImpl::max_gpr +
++ FloatRegisterImpl::number_of_registers * FloatRegisterImpl::max_slots_per_register;
++
++const int ConcreteRegisterImpl::max_vpr =
++ ConcreteRegisterImpl::max_fpr +
++ VectorRegisterImpl::number_of_registers * VectorRegisterImpl::max_slots_per_register;
++
++
++const char* RegisterImpl::name() const {
++ static const char *const names[number_of_registers] = {
++ "zr", "ra", "sp", "gp", "tp", "t0", "t1", "t2", "fp", "x9",
++ "c_rarg0", "c_rarg1", "c_rarg2", "c_rarg3", "c_rarg4", "c_rarg5", "c_rarg6", "c_rarg7",
++ "x18", "x19", "esp", "xdispatch", "xbcp", "xthread", "xlocals",
++ "xmonitors", "xcpool", "xheapbase", "x28", "x29", "x30", "xmethod"
++ };
++ return is_valid() ? names[encoding()] : "noreg";
++}
++
++const char* FloatRegisterImpl::name() const {
++ static const char *const names[number_of_registers] = {
++ "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
++ "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
++ "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
++ "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
++ };
++ return is_valid() ? names[encoding()] : "noreg";
++}
++
++const char* VectorRegisterImpl::name() const {
++ static const char *const names[number_of_registers] = {
++ "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
++ "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
++ "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
++ "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
++ };
++ return is_valid() ? names[encoding()] : "noreg";
++}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/register_riscv.hpp
+@@ -0,0 +1,385 @@
++/*
++ * Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_REGISTER_RISCV_HPP
++#define CPU_RISCV_REGISTER_RISCV_HPP
++
++#include "asm/register.hpp"
++
++#define CSR_FFLAGS 0x001 // Floating-Point Accrued Exceptions.
++#define CSR_FRM 0x002 // Floating-Point Dynamic Rounding Mode.
++#define CSR_FCSR 0x003 // Floating-Point Control and Status Register (frm + fflags).
++#define CSR_VSTART 0x008 // Vector start position
++#define CSR_VXSAT 0x009 // Fixed-Point Saturate Flag
++#define CSR_VXRM 0x00A // Fixed-Point Rounding Mode
++#define CSR_VCSR 0x00F // Vector control and status register
++#define CSR_VL 0xC20 // Vector length
++#define CSR_VTYPE 0xC21 // Vector data type register
++#define CSR_VLENB 0xC22 // VLEN/8 (vector register length in bytes)
++#define CSR_CYCLE 0xc00 // Cycle counter for RDCYCLE instruction.
++#define CSR_TIME 0xc01 // Timer for RDTIME instruction.
++#define CSR_INSTRET 0xc02 // Instructions-retired counter for RDINSTRET instruction.
++
++class VMRegImpl;
++typedef VMRegImpl* VMReg;
++
++// Use Register as shortcut
++class RegisterImpl;
++typedef RegisterImpl* Register;
++
++inline Register as_Register(int encoding) {
++ return (Register)(intptr_t) encoding;
++}
++
++class RegisterImpl: public AbstractRegisterImpl {
++
++ public:
++ enum {
++ number_of_registers = 32,
++ max_slots_per_register = 2,
++
++ // integer registers x8 - x15 and floating-point registers f8 - f15 are allocatable
++ // for compressed instructions. See Table 17.2 in spec.
++ compressed_register_base = 8,
++ compressed_register_top = 15,
++ };
++
++ // derived registers, offsets, and addresses
++ Register successor() const { return as_Register(encoding() + 1); }
++
++ // construction
++ inline friend Register as_Register(int encoding);
++
++ VMReg as_VMReg();
++
++ // accessors
++ int encoding() const { assert(is_valid(), "invalid register"); return encoding_nocheck(); }
++ bool is_valid() const { return 0 <= encoding_nocheck() && encoding_nocheck() < number_of_registers; }
++ const char* name() const;
++ int encoding_nocheck() const { return (intptr_t)this; }
++
++ // Return the bit which represents this register. This is intended
++ // to be ORed into a bitmask: for usage see class AbstractRegSet below.
++ unsigned long bit(bool should_set = true) const { return should_set ? 1 << encoding() : 0; }
++
++ // for rvc
++ int compressed_encoding() const {
++ assert(is_compressed_valid(), "invalid compressed register");
++ return encoding() - compressed_register_base;
++ }
++
++ int compressed_encoding_nocheck() const {
++ return encoding_nocheck() - compressed_register_base;
++ }
++
++ bool is_compressed_valid() const {
++ return encoding_nocheck() >= compressed_register_base &&
++ encoding_nocheck() <= compressed_register_top;
++ }
++};
++
++// The integer registers of the RISCV architecture
++
++CONSTANT_REGISTER_DECLARATION(Register, noreg, (-1));
++
++CONSTANT_REGISTER_DECLARATION(Register, x0, (0));
++CONSTANT_REGISTER_DECLARATION(Register, x1, (1));
++CONSTANT_REGISTER_DECLARATION(Register, x2, (2));
++CONSTANT_REGISTER_DECLARATION(Register, x3, (3));
++CONSTANT_REGISTER_DECLARATION(Register, x4, (4));
++CONSTANT_REGISTER_DECLARATION(Register, x5, (5));
++CONSTANT_REGISTER_DECLARATION(Register, x6, (6));
++CONSTANT_REGISTER_DECLARATION(Register, x7, (7));
++CONSTANT_REGISTER_DECLARATION(Register, x8, (8));
++CONSTANT_REGISTER_DECLARATION(Register, x9, (9));
++CONSTANT_REGISTER_DECLARATION(Register, x10, (10));
++CONSTANT_REGISTER_DECLARATION(Register, x11, (11));
++CONSTANT_REGISTER_DECLARATION(Register, x12, (12));
++CONSTANT_REGISTER_DECLARATION(Register, x13, (13));
++CONSTANT_REGISTER_DECLARATION(Register, x14, (14));
++CONSTANT_REGISTER_DECLARATION(Register, x15, (15));
++CONSTANT_REGISTER_DECLARATION(Register, x16, (16));
++CONSTANT_REGISTER_DECLARATION(Register, x17, (17));
++CONSTANT_REGISTER_DECLARATION(Register, x18, (18));
++CONSTANT_REGISTER_DECLARATION(Register, x19, (19));
++CONSTANT_REGISTER_DECLARATION(Register, x20, (20));
++CONSTANT_REGISTER_DECLARATION(Register, x21, (21));
++CONSTANT_REGISTER_DECLARATION(Register, x22, (22));
++CONSTANT_REGISTER_DECLARATION(Register, x23, (23));
++CONSTANT_REGISTER_DECLARATION(Register, x24, (24));
++CONSTANT_REGISTER_DECLARATION(Register, x25, (25));
++CONSTANT_REGISTER_DECLARATION(Register, x26, (26));
++CONSTANT_REGISTER_DECLARATION(Register, x27, (27));
++CONSTANT_REGISTER_DECLARATION(Register, x28, (28));
++CONSTANT_REGISTER_DECLARATION(Register, x29, (29));
++CONSTANT_REGISTER_DECLARATION(Register, x30, (30));
++CONSTANT_REGISTER_DECLARATION(Register, x31, (31));
++
++// Use FloatRegister as shortcut
++class FloatRegisterImpl;
++typedef FloatRegisterImpl* FloatRegister;
++
++inline FloatRegister as_FloatRegister(int encoding) {
++ return (FloatRegister)(intptr_t) encoding;
++}
++
++// The implementation of floating point registers for the architecture
++class FloatRegisterImpl: public AbstractRegisterImpl {
++
++ public:
++ enum {
++ number_of_registers = 32,
++ max_slots_per_register = 2,
++
++ // float registers in the range of [f8~f15] correspond to RVC. Please see Table 16.2 in spec.
++ compressed_register_base = 8,
++ compressed_register_top = 15,
++ };
++
++ // construction
++ inline friend FloatRegister as_FloatRegister(int encoding);
++
++ VMReg as_VMReg();
++
++ // derived registers, offsets, and addresses
++ FloatRegister successor() const {
++ return as_FloatRegister((encoding() + 1));
++ }
++
++ // accessors
++ int encoding() const { assert(is_valid(), "invalid register"); return encoding_nocheck(); }
++ int encoding_nocheck() const { return (intptr_t)this; }
++ int is_valid() const { return 0 <= encoding_nocheck() && encoding_nocheck() < number_of_registers; }
++ const char* name() const;
++
++ // for rvc
++ int compressed_encoding() const {
++ assert(is_compressed_valid(), "invalid compressed register");
++ return encoding() - compressed_register_base;
++ }
++
++ int compressed_encoding_nocheck() const {
++ return encoding_nocheck() - compressed_register_base;
++ }
++
++ bool is_compressed_valid() const {
++ return encoding_nocheck() >= compressed_register_base &&
++ encoding_nocheck() <= compressed_register_top;
++ }
++};
++
++// The float registers of the RISCV architecture
++
++CONSTANT_REGISTER_DECLARATION(FloatRegister, fnoreg , (-1));
++
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f0 , ( 0));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f1 , ( 1));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f2 , ( 2));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f3 , ( 3));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f4 , ( 4));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f5 , ( 5));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f6 , ( 6));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f7 , ( 7));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f8 , ( 8));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f9 , ( 9));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f10 , (10));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f11 , (11));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f12 , (12));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f13 , (13));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f14 , (14));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f15 , (15));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f16 , (16));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f17 , (17));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f18 , (18));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f19 , (19));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f20 , (20));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f21 , (21));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f22 , (22));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f23 , (23));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f24 , (24));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f25 , (25));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f26 , (26));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f27 , (27));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f28 , (28));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f29 , (29));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f30 , (30));
++CONSTANT_REGISTER_DECLARATION(FloatRegister, f31 , (31));
++
++// Use VectorRegister as shortcut
++class VectorRegisterImpl;
++typedef VectorRegisterImpl* VectorRegister;
++
++inline VectorRegister as_VectorRegister(int encoding) {
++ return (VectorRegister)(intptr_t) encoding;
++}
++
++// The implementation of vector registers for RVV
++class VectorRegisterImpl: public AbstractRegisterImpl {
++
++ public:
++ enum {
++ number_of_registers = 32,
++ max_slots_per_register = 4
++ };
++
++ // construction
++ inline friend VectorRegister as_VectorRegister(int encoding);
++
++ VMReg as_VMReg();
++
++ // derived registers, offsets, and addresses
++ VectorRegister successor() const { return as_VectorRegister(encoding() + 1); }
++
++ // accessors
++ int encoding() const { assert(is_valid(), "invalid register"); return encoding_nocheck(); }
++ int encoding_nocheck() const { return (intptr_t)this; }
++ bool is_valid() const { return 0 <= encoding_nocheck() && encoding_nocheck() < number_of_registers; }
++ const char* name() const;
++
++};
++
++// The vector registers of RVV
++CONSTANT_REGISTER_DECLARATION(VectorRegister, vnoreg , (-1));
++
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v0 , ( 0));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v1 , ( 1));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v2 , ( 2));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v3 , ( 3));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v4 , ( 4));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v5 , ( 5));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v6 , ( 6));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v7 , ( 7));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v8 , ( 8));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v9 , ( 9));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v10 , (10));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v11 , (11));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v12 , (12));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v13 , (13));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v14 , (14));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v15 , (15));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v16 , (16));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v17 , (17));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v18 , (18));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v19 , (19));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v20 , (20));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v21 , (21));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v22 , (22));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v23 , (23));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v24 , (24));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v25 , (25));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v26 , (26));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v27 , (27));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v28 , (28));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v29 , (29));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v30 , (30));
++CONSTANT_REGISTER_DECLARATION(VectorRegister, v31 , (31));
++
++
++// Need to know the total number of registers of all sorts for SharedInfo.
++// Define a class that exports it.
++class ConcreteRegisterImpl : public AbstractRegisterImpl {
++ public:
++ enum {
++ // A big enough number for C2: all the registers plus flags
++ // This number must be large enough to cover REG_COUNT (defined by c2) registers.
++ // There is no requirement that any ordering here matches any ordering c2 gives
++ // it's optoregs.
++
++ number_of_registers = (RegisterImpl::max_slots_per_register * RegisterImpl::number_of_registers +
++ FloatRegisterImpl::max_slots_per_register * FloatRegisterImpl::number_of_registers +
++ VectorRegisterImpl::max_slots_per_register * VectorRegisterImpl::number_of_registers)
++ };
++
++ // added to make it compile
++ static const int max_gpr;
++ static const int max_fpr;
++ static const int max_vpr;
++};
++
++// A set of registers
++template<class RegImpl>
++class AbstractRegSet {
++ uint32_t _bitset;
++
++ AbstractRegSet(uint32_t bitset) : _bitset(bitset) { }
++
++ public:
++ AbstractRegSet() : _bitset(0) { }
++
++ AbstractRegSet(RegImpl r1) : _bitset(1 << r1->encoding()) { }
++
++ AbstractRegSet operator+(const AbstractRegSet aSet) const {
++ AbstractRegSet result(_bitset | aSet._bitset);
++ return result;
++ }
++
++ AbstractRegSet operator-(const AbstractRegSet aSet) const {
++ AbstractRegSet result(_bitset & ~aSet._bitset);
++ return result;
++ }
++
++ AbstractRegSet &operator+=(const AbstractRegSet aSet) {
++ *this = *this + aSet;
++ return *this;
++ }
++
++ AbstractRegSet &operator-=(const AbstractRegSet aSet) {
++ *this = *this - aSet;
++ return *this;
++ }
++
++ static AbstractRegSet of(RegImpl r1) {
++ return AbstractRegSet(r1);
++ }
++
++ static AbstractRegSet of(RegImpl r1, RegImpl r2) {
++ return of(r1) + r2;
++ }
++
++ static AbstractRegSet of(RegImpl r1, RegImpl r2, RegImpl r3) {
++ return of(r1, r2) + r3;
++ }
++
++ static AbstractRegSet of(RegImpl r1, RegImpl r2, RegImpl r3, RegImpl r4) {
++ return of(r1, r2, r3) + r4;
++ }
++
++ static AbstractRegSet range(RegImpl start, RegImpl end) {
++ uint32_t bits = ~0;
++ bits <<= start->encoding();
++ bits <<= (31 - end->encoding());
++ bits >>= (31 - end->encoding());
++
++ return AbstractRegSet(bits);
++ }
++
++ uint32_t bits() const { return _bitset; }
++};
++
++typedef AbstractRegSet<Register> RegSet;
++typedef AbstractRegSet<FloatRegister> FloatRegSet;
++typedef AbstractRegSet<VectorRegister> VectorRegSet;
++
++#endif // CPU_RISCV_REGISTER_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/relocInfo_riscv.cpp
+@@ -0,0 +1,113 @@
++/*
++ * Copyright (c) 1998, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/macroAssembler.hpp"
++#include "code/relocInfo.hpp"
++#include "nativeInst_riscv.hpp"
++#include "oops/oop.inline.hpp"
++#include "runtime/safepoint.hpp"
++
++void Relocation::pd_set_data_value(address x, intptr_t o, bool verify_only) {
++ if (verify_only) {
++ return;
++ }
++
++ int bytes;
++
++ switch (type()) {
++ case relocInfo::oop_type: {
++ oop_Relocation *reloc = (oop_Relocation *)this;
++ // in movoop when BarrierSet::barrier_set()->barrier_set_nmethod() != NULL || !immediate
++ if (NativeInstruction::is_load_pc_relative_at(addr())) {
++ address constptr = (address)code()->oop_addr_at(reloc->oop_index());
++ bytes = MacroAssembler::pd_patch_instruction_size(addr(), constptr);
++ assert(*(address*)constptr == x, "error in oop relocation");
++ } else {
++ bytes = MacroAssembler::patch_oop(addr(), x);
++ }
++ break;
++ }
++ default:
++ bytes = MacroAssembler::pd_patch_instruction_size(addr(), x);
++ break;
++ }
++ ICache::invalidate_range(addr(), bytes);
++}
++
++address Relocation::pd_call_destination(address orig_addr) {
++ assert(is_call(), "should be an address instruction here");
++ if (NativeCall::is_call_at(addr())) {
++ address trampoline = nativeCall_at(addr())->get_trampoline();
++ if (trampoline != NULL) {
++ return nativeCallTrampolineStub_at(trampoline)->destination();
++ }
++ }
++ if (orig_addr != NULL) {
++ // the extracted address from the instructions in address orig_addr
++ address new_addr = MacroAssembler::pd_call_destination(orig_addr);
++ // If call is branch to self, don't try to relocate it, just leave it
++ // as branch to self. This happens during code generation if the code
++ // buffer expands. It will be relocated to the trampoline above once
++ // code generation is complete.
++ new_addr = (new_addr == orig_addr) ? addr() : new_addr;
++ return new_addr;
++ }
++ return MacroAssembler::pd_call_destination(addr());
++}
++
++void Relocation::pd_set_call_destination(address x) {
++ assert(is_call(), "should be an address instruction here");
++ if (NativeCall::is_call_at(addr())) {
++ address trampoline = nativeCall_at(addr())->get_trampoline();
++ if (trampoline != NULL) {
++ nativeCall_at(addr())->set_destination_mt_safe(x, /* assert_lock */false);
++ return;
++ }
++ }
++ MacroAssembler::pd_patch_instruction_size(addr(), x);
++ address pd_call = pd_call_destination(addr());
++ assert(pd_call == x, "fail in reloc");
++}
++
++address* Relocation::pd_address_in_code() {
++ assert(NativeCall::is_load_pc_relative_at(addr()), "Not the expected instruction sequence!");
++ return (address*)(MacroAssembler::target_addr_for_insn(addr()));
++}
++
++address Relocation::pd_get_address_from_code() {
++ return MacroAssembler::pd_call_destination(addr());
++}
++
++void poll_Relocation::fix_relocation_after_move(const CodeBuffer* src, CodeBuffer* dest) {
++ if (NativeInstruction::maybe_cpool_ref(addr())) {
++ address old_addr = old_addr_for(addr(), src, dest);
++ MacroAssembler::pd_patch_instruction_size(addr(), MacroAssembler::target_addr_for_insn(old_addr));
++ }
++}
++
++void metadata_Relocation::pd_fix_value(address x) {
++}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/relocInfo_riscv.hpp
+@@ -0,0 +1,44 @@
++/*
++ * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_RELOCINFO_RISCV_HPP
++#define CPU_RISCV_RELOCINFO_RISCV_HPP
++
++ // machine-dependent parts of class relocInfo
++ private:
++ enum {
++ // Relocations are byte-aligned.
++ offset_unit = 1,
++ // Must be at least 1 for RelocInfo::narrow_oop_in_const.
++ format_width = 1
++ };
++
++ public:
++
++ // This platform has no oops in the code that are not also
++ // listed in the oop section.
++ static bool mustIterateImmediateOopsInCode() { return false; }
++
++#endif // CPU_RISCV_RELOCINFO_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/riscv.ad
+@@ -0,0 +1,10645 @@
++//
++// Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved.
++// Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
++// Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++//
++// This code is free software; you can redistribute it and/or modify it
++// under the terms of the GNU General Public License version 2 only, as
++// published by the Free Software Foundation.
++//
++// This code is distributed in the hope that it will be useful, but WITHOUT
++// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++// version 2 for more details (a copy is included in the LICENSE file that
++// accompanied this code).
++//
++// You should have received a copy of the GNU General Public License version
++// 2 along with this work; if not, write to the Free Software Foundation,
++// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++//
++// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++// or visit www.oracle.com if you need additional information or have any
++// questions.
++//
++//
++
++// RISCV Architecture Description File
++
++//----------REGISTER DEFINITION BLOCK------------------------------------------
++// This information is used by the matcher and the register allocator to
++// describe individual registers and classes of registers within the target
++// archtecture.
++
++register %{
++//----------Architecture Description Register Definitions----------------------
++// General Registers
++// "reg_def" name ( register save type, C convention save type,
++// ideal register type, encoding );
++// Register Save Types:
++//
++// NS = No-Save: The register allocator assumes that these registers
++// can be used without saving upon entry to the method, &
++// that they do not need to be saved at call sites.
++//
++// SOC = Save-On-Call: The register allocator assumes that these registers
++// can be used without saving upon entry to the method,
++// but that they must be saved at call sites.
++//
++// SOE = Save-On-Entry: The register allocator assumes that these registers
++// must be saved before using them upon entry to the
++// method, but they do not need to be saved at call
++// sites.
++//
++// AS = Always-Save: The register allocator assumes that these registers
++// must be saved before using them upon entry to the
++// method, & that they must be saved at call sites.
++//
++// Ideal Register Type is used to determine how to save & restore a
++// register. Op_RegI will get spilled with LoadI/StoreI, Op_RegP will get
++// spilled with LoadP/StoreP. If the register supports both, use Op_RegI.
++//
++// The encoding number is the actual bit-pattern placed into the opcodes.
++
++// We must define the 64 bit int registers in two 32 bit halves, the
++// real lower register and a virtual upper half register. upper halves
++// are used by the register allocator but are not actually supplied as
++// operands to memory ops.
++//
++// follow the C1 compiler in making registers
++//
++// x7, x9-x17, x27-x31 volatile (caller save)
++// x0-x4, x8, x23 system (no save, no allocate)
++// x5-x6 non-allocatable (so we can use them as temporary regs)
++
++//
++// as regards Java usage. we don't use any callee save registers
++// because this makes it difficult to de-optimise a frame (see comment
++// in x86 implementation of Deoptimization::unwind_callee_save_values)
++//
++
++// General Registers
++
++reg_def R0 ( NS, NS, Op_RegI, 0, x0->as_VMReg() ); // zr
++reg_def R0_H ( NS, NS, Op_RegI, 0, x0->as_VMReg()->next() );
++reg_def R1 ( NS, SOC, Op_RegI, 1, x1->as_VMReg() ); // ra
++reg_def R1_H ( NS, SOC, Op_RegI, 1, x1->as_VMReg()->next() );
++reg_def R2 ( NS, SOE, Op_RegI, 2, x2->as_VMReg() ); // sp
++reg_def R2_H ( NS, SOE, Op_RegI, 2, x2->as_VMReg()->next() );
++reg_def R3 ( NS, NS, Op_RegI, 3, x3->as_VMReg() ); // gp
++reg_def R3_H ( NS, NS, Op_RegI, 3, x3->as_VMReg()->next() );
++reg_def R4 ( NS, NS, Op_RegI, 4, x4->as_VMReg() ); // tp
++reg_def R4_H ( NS, NS, Op_RegI, 4, x4->as_VMReg()->next() );
++reg_def R7 ( SOC, SOC, Op_RegI, 7, x7->as_VMReg() );
++reg_def R7_H ( SOC, SOC, Op_RegI, 7, x7->as_VMReg()->next() );
++reg_def R8 ( NS, SOE, Op_RegI, 8, x8->as_VMReg() ); // fp
++reg_def R8_H ( NS, SOE, Op_RegI, 8, x8->as_VMReg()->next() );
++reg_def R9 ( SOC, SOE, Op_RegI, 9, x9->as_VMReg() );
++reg_def R9_H ( SOC, SOE, Op_RegI, 9, x9->as_VMReg()->next() );
++reg_def R10 ( SOC, SOC, Op_RegI, 10, x10->as_VMReg() );
++reg_def R10_H ( SOC, SOC, Op_RegI, 10, x10->as_VMReg()->next());
++reg_def R11 ( SOC, SOC, Op_RegI, 11, x11->as_VMReg() );
++reg_def R11_H ( SOC, SOC, Op_RegI, 11, x11->as_VMReg()->next());
++reg_def R12 ( SOC, SOC, Op_RegI, 12, x12->as_VMReg() );
++reg_def R12_H ( SOC, SOC, Op_RegI, 12, x12->as_VMReg()->next());
++reg_def R13 ( SOC, SOC, Op_RegI, 13, x13->as_VMReg() );
++reg_def R13_H ( SOC, SOC, Op_RegI, 13, x13->as_VMReg()->next());
++reg_def R14 ( SOC, SOC, Op_RegI, 14, x14->as_VMReg() );
++reg_def R14_H ( SOC, SOC, Op_RegI, 14, x14->as_VMReg()->next());
++reg_def R15 ( SOC, SOC, Op_RegI, 15, x15->as_VMReg() );
++reg_def R15_H ( SOC, SOC, Op_RegI, 15, x15->as_VMReg()->next());
++reg_def R16 ( SOC, SOC, Op_RegI, 16, x16->as_VMReg() );
++reg_def R16_H ( SOC, SOC, Op_RegI, 16, x16->as_VMReg()->next());
++reg_def R17 ( SOC, SOC, Op_RegI, 17, x17->as_VMReg() );
++reg_def R17_H ( SOC, SOC, Op_RegI, 17, x17->as_VMReg()->next());
++reg_def R18 ( SOC, SOE, Op_RegI, 18, x18->as_VMReg() );
++reg_def R18_H ( SOC, SOE, Op_RegI, 18, x18->as_VMReg()->next());
++reg_def R19 ( SOC, SOE, Op_RegI, 19, x19->as_VMReg() );
++reg_def R19_H ( SOC, SOE, Op_RegI, 19, x19->as_VMReg()->next());
++reg_def R20 ( SOC, SOE, Op_RegI, 20, x20->as_VMReg() ); // caller esp
++reg_def R20_H ( SOC, SOE, Op_RegI, 20, x20->as_VMReg()->next());
++reg_def R21 ( SOC, SOE, Op_RegI, 21, x21->as_VMReg() );
++reg_def R21_H ( SOC, SOE, Op_RegI, 21, x21->as_VMReg()->next());
++reg_def R22 ( SOC, SOE, Op_RegI, 22, x22->as_VMReg() );
++reg_def R22_H ( SOC, SOE, Op_RegI, 22, x22->as_VMReg()->next());
++reg_def R23 ( NS, SOE, Op_RegI, 23, x23->as_VMReg() ); // java thread
++reg_def R23_H ( NS, SOE, Op_RegI, 23, x23->as_VMReg()->next());
++reg_def R24 ( SOC, SOE, Op_RegI, 24, x24->as_VMReg() );
++reg_def R24_H ( SOC, SOE, Op_RegI, 24, x24->as_VMReg()->next());
++reg_def R25 ( SOC, SOE, Op_RegI, 25, x25->as_VMReg() );
++reg_def R25_H ( SOC, SOE, Op_RegI, 25, x25->as_VMReg()->next());
++reg_def R26 ( SOC, SOE, Op_RegI, 26, x26->as_VMReg() );
++reg_def R26_H ( SOC, SOE, Op_RegI, 26, x26->as_VMReg()->next());
++reg_def R27 ( SOC, SOE, Op_RegI, 27, x27->as_VMReg() ); // heapbase
++reg_def R27_H ( SOC, SOE, Op_RegI, 27, x27->as_VMReg()->next());
++reg_def R28 ( SOC, SOC, Op_RegI, 28, x28->as_VMReg() );
++reg_def R28_H ( SOC, SOC, Op_RegI, 28, x28->as_VMReg()->next());
++reg_def R29 ( SOC, SOC, Op_RegI, 29, x29->as_VMReg() );
++reg_def R29_H ( SOC, SOC, Op_RegI, 29, x29->as_VMReg()->next());
++reg_def R30 ( SOC, SOC, Op_RegI, 30, x30->as_VMReg() );
++reg_def R30_H ( SOC, SOC, Op_RegI, 30, x30->as_VMReg()->next());
++reg_def R31 ( SOC, SOC, Op_RegI, 31, x31->as_VMReg() );
++reg_def R31_H ( SOC, SOC, Op_RegI, 31, x31->as_VMReg()->next());
++
++// ----------------------------
++// Float/Double Registers
++// ----------------------------
++
++// Double Registers
++
++// The rules of ADL require that double registers be defined in pairs.
++// Each pair must be two 32-bit values, but not necessarily a pair of
++// single float registers. In each pair, ADLC-assigned register numbers
++// must be adjacent, with the lower number even. Finally, when the
++// CPU stores such a register pair to memory, the word associated with
++// the lower ADLC-assigned number must be stored to the lower address.
++
++// RISCV has 32 floating-point registers. Each can store a single
++// or double precision floating-point value.
++
++// for Java use float registers f0-f31 are always save on call whereas
++// the platform ABI treats f8-f9 and f18-f27 as callee save). Other
++// float registers are SOC as per the platform spec
++
++reg_def F0 ( SOC, SOC, Op_RegF, 0, f0->as_VMReg() );
++reg_def F0_H ( SOC, SOC, Op_RegF, 0, f0->as_VMReg()->next() );
++reg_def F1 ( SOC, SOC, Op_RegF, 1, f1->as_VMReg() );
++reg_def F1_H ( SOC, SOC, Op_RegF, 1, f1->as_VMReg()->next() );
++reg_def F2 ( SOC, SOC, Op_RegF, 2, f2->as_VMReg() );
++reg_def F2_H ( SOC, SOC, Op_RegF, 2, f2->as_VMReg()->next() );
++reg_def F3 ( SOC, SOC, Op_RegF, 3, f3->as_VMReg() );
++reg_def F3_H ( SOC, SOC, Op_RegF, 3, f3->as_VMReg()->next() );
++reg_def F4 ( SOC, SOC, Op_RegF, 4, f4->as_VMReg() );
++reg_def F4_H ( SOC, SOC, Op_RegF, 4, f4->as_VMReg()->next() );
++reg_def F5 ( SOC, SOC, Op_RegF, 5, f5->as_VMReg() );
++reg_def F5_H ( SOC, SOC, Op_RegF, 5, f5->as_VMReg()->next() );
++reg_def F6 ( SOC, SOC, Op_RegF, 6, f6->as_VMReg() );
++reg_def F6_H ( SOC, SOC, Op_RegF, 6, f6->as_VMReg()->next() );
++reg_def F7 ( SOC, SOC, Op_RegF, 7, f7->as_VMReg() );
++reg_def F7_H ( SOC, SOC, Op_RegF, 7, f7->as_VMReg()->next() );
++reg_def F8 ( SOC, SOE, Op_RegF, 8, f8->as_VMReg() );
++reg_def F8_H ( SOC, SOE, Op_RegF, 8, f8->as_VMReg()->next() );
++reg_def F9 ( SOC, SOE, Op_RegF, 9, f9->as_VMReg() );
++reg_def F9_H ( SOC, SOE, Op_RegF, 9, f9->as_VMReg()->next() );
++reg_def F10 ( SOC, SOC, Op_RegF, 10, f10->as_VMReg() );
++reg_def F10_H ( SOC, SOC, Op_RegF, 10, f10->as_VMReg()->next() );
++reg_def F11 ( SOC, SOC, Op_RegF, 11, f11->as_VMReg() );
++reg_def F11_H ( SOC, SOC, Op_RegF, 11, f11->as_VMReg()->next() );
++reg_def F12 ( SOC, SOC, Op_RegF, 12, f12->as_VMReg() );
++reg_def F12_H ( SOC, SOC, Op_RegF, 12, f12->as_VMReg()->next() );
++reg_def F13 ( SOC, SOC, Op_RegF, 13, f13->as_VMReg() );
++reg_def F13_H ( SOC, SOC, Op_RegF, 13, f13->as_VMReg()->next() );
++reg_def F14 ( SOC, SOC, Op_RegF, 14, f14->as_VMReg() );
++reg_def F14_H ( SOC, SOC, Op_RegF, 14, f14->as_VMReg()->next() );
++reg_def F15 ( SOC, SOC, Op_RegF, 15, f15->as_VMReg() );
++reg_def F15_H ( SOC, SOC, Op_RegF, 15, f15->as_VMReg()->next() );
++reg_def F16 ( SOC, SOC, Op_RegF, 16, f16->as_VMReg() );
++reg_def F16_H ( SOC, SOC, Op_RegF, 16, f16->as_VMReg()->next() );
++reg_def F17 ( SOC, SOC, Op_RegF, 17, f17->as_VMReg() );
++reg_def F17_H ( SOC, SOC, Op_RegF, 17, f17->as_VMReg()->next() );
++reg_def F18 ( SOC, SOE, Op_RegF, 18, f18->as_VMReg() );
++reg_def F18_H ( SOC, SOE, Op_RegF, 18, f18->as_VMReg()->next() );
++reg_def F19 ( SOC, SOE, Op_RegF, 19, f19->as_VMReg() );
++reg_def F19_H ( SOC, SOE, Op_RegF, 19, f19->as_VMReg()->next() );
++reg_def F20 ( SOC, SOE, Op_RegF, 20, f20->as_VMReg() );
++reg_def F20_H ( SOC, SOE, Op_RegF, 20, f20->as_VMReg()->next() );
++reg_def F21 ( SOC, SOE, Op_RegF, 21, f21->as_VMReg() );
++reg_def F21_H ( SOC, SOE, Op_RegF, 21, f21->as_VMReg()->next() );
++reg_def F22 ( SOC, SOE, Op_RegF, 22, f22->as_VMReg() );
++reg_def F22_H ( SOC, SOE, Op_RegF, 22, f22->as_VMReg()->next() );
++reg_def F23 ( SOC, SOE, Op_RegF, 23, f23->as_VMReg() );
++reg_def F23_H ( SOC, SOE, Op_RegF, 23, f23->as_VMReg()->next() );
++reg_def F24 ( SOC, SOE, Op_RegF, 24, f24->as_VMReg() );
++reg_def F24_H ( SOC, SOE, Op_RegF, 24, f24->as_VMReg()->next() );
++reg_def F25 ( SOC, SOE, Op_RegF, 25, f25->as_VMReg() );
++reg_def F25_H ( SOC, SOE, Op_RegF, 25, f25->as_VMReg()->next() );
++reg_def F26 ( SOC, SOE, Op_RegF, 26, f26->as_VMReg() );
++reg_def F26_H ( SOC, SOE, Op_RegF, 26, f26->as_VMReg()->next() );
++reg_def F27 ( SOC, SOE, Op_RegF, 27, f27->as_VMReg() );
++reg_def F27_H ( SOC, SOE, Op_RegF, 27, f27->as_VMReg()->next() );
++reg_def F28 ( SOC, SOC, Op_RegF, 28, f28->as_VMReg() );
++reg_def F28_H ( SOC, SOC, Op_RegF, 28, f28->as_VMReg()->next() );
++reg_def F29 ( SOC, SOC, Op_RegF, 29, f29->as_VMReg() );
++reg_def F29_H ( SOC, SOC, Op_RegF, 29, f29->as_VMReg()->next() );
++reg_def F30 ( SOC, SOC, Op_RegF, 30, f30->as_VMReg() );
++reg_def F30_H ( SOC, SOC, Op_RegF, 30, f30->as_VMReg()->next() );
++reg_def F31 ( SOC, SOC, Op_RegF, 31, f31->as_VMReg() );
++reg_def F31_H ( SOC, SOC, Op_RegF, 31, f31->as_VMReg()->next() );
++
++// ----------------------------
++// Vector Registers
++// ----------------------------
++
++// For RVV vector registers, we simply extend vector register size to 4
++// 'logical' slots. This is nominally 128 bits but it actually covers
++// all possible 'physical' RVV vector register lengths from 128 ~ 1024
++// bits. The 'physical' RVV vector register length is detected during
++// startup, so the register allocator is able to identify the correct
++// number of bytes needed for an RVV spill/unspill.
++
++reg_def V0 ( SOC, SOC, Op_VecA, 0, v0->as_VMReg() );
++reg_def V0_H ( SOC, SOC, Op_VecA, 0, v0->as_VMReg()->next() );
++reg_def V0_J ( SOC, SOC, Op_VecA, 0, v0->as_VMReg()->next(2) );
++reg_def V0_K ( SOC, SOC, Op_VecA, 0, v0->as_VMReg()->next(3) );
++
++reg_def V1 ( SOC, SOC, Op_VecA, 1, v1->as_VMReg() );
++reg_def V1_H ( SOC, SOC, Op_VecA, 1, v1->as_VMReg()->next() );
++reg_def V1_J ( SOC, SOC, Op_VecA, 1, v1->as_VMReg()->next(2) );
++reg_def V1_K ( SOC, SOC, Op_VecA, 1, v1->as_VMReg()->next(3) );
++
++reg_def V2 ( SOC, SOC, Op_VecA, 2, v2->as_VMReg() );
++reg_def V2_H ( SOC, SOC, Op_VecA, 2, v2->as_VMReg()->next() );
++reg_def V2_J ( SOC, SOC, Op_VecA, 2, v2->as_VMReg()->next(2) );
++reg_def V2_K ( SOC, SOC, Op_VecA, 2, v2->as_VMReg()->next(3) );
++
++reg_def V3 ( SOC, SOC, Op_VecA, 3, v3->as_VMReg() );
++reg_def V3_H ( SOC, SOC, Op_VecA, 3, v3->as_VMReg()->next() );
++reg_def V3_J ( SOC, SOC, Op_VecA, 3, v3->as_VMReg()->next(2) );
++reg_def V3_K ( SOC, SOC, Op_VecA, 3, v3->as_VMReg()->next(3) );
++
++reg_def V4 ( SOC, SOC, Op_VecA, 4, v4->as_VMReg() );
++reg_def V4_H ( SOC, SOC, Op_VecA, 4, v4->as_VMReg()->next() );
++reg_def V4_J ( SOC, SOC, Op_VecA, 4, v4->as_VMReg()->next(2) );
++reg_def V4_K ( SOC, SOC, Op_VecA, 4, v4->as_VMReg()->next(3) );
++
++reg_def V5 ( SOC, SOC, Op_VecA, 5, v5->as_VMReg() );
++reg_def V5_H ( SOC, SOC, Op_VecA, 5, v5->as_VMReg()->next() );
++reg_def V5_J ( SOC, SOC, Op_VecA, 5, v5->as_VMReg()->next(2) );
++reg_def V5_K ( SOC, SOC, Op_VecA, 5, v5->as_VMReg()->next(3) );
++
++reg_def V6 ( SOC, SOC, Op_VecA, 6, v6->as_VMReg() );
++reg_def V6_H ( SOC, SOC, Op_VecA, 6, v6->as_VMReg()->next() );
++reg_def V6_J ( SOC, SOC, Op_VecA, 6, v6->as_VMReg()->next(2) );
++reg_def V6_K ( SOC, SOC, Op_VecA, 6, v6->as_VMReg()->next(3) );
++
++reg_def V7 ( SOC, SOC, Op_VecA, 7, v7->as_VMReg() );
++reg_def V7_H ( SOC, SOC, Op_VecA, 7, v7->as_VMReg()->next() );
++reg_def V7_J ( SOC, SOC, Op_VecA, 7, v7->as_VMReg()->next(2) );
++reg_def V7_K ( SOC, SOC, Op_VecA, 7, v7->as_VMReg()->next(3) );
++
++reg_def V8 ( SOC, SOC, Op_VecA, 8, v8->as_VMReg() );
++reg_def V8_H ( SOC, SOC, Op_VecA, 8, v8->as_VMReg()->next() );
++reg_def V8_J ( SOC, SOC, Op_VecA, 8, v8->as_VMReg()->next(2) );
++reg_def V8_K ( SOC, SOC, Op_VecA, 8, v8->as_VMReg()->next(3) );
++
++reg_def V9 ( SOC, SOC, Op_VecA, 9, v9->as_VMReg() );
++reg_def V9_H ( SOC, SOC, Op_VecA, 9, v9->as_VMReg()->next() );
++reg_def V9_J ( SOC, SOC, Op_VecA, 9, v9->as_VMReg()->next(2) );
++reg_def V9_K ( SOC, SOC, Op_VecA, 9, v9->as_VMReg()->next(3) );
++
++reg_def V10 ( SOC, SOC, Op_VecA, 10, v10->as_VMReg() );
++reg_def V10_H ( SOC, SOC, Op_VecA, 10, v10->as_VMReg()->next() );
++reg_def V10_J ( SOC, SOC, Op_VecA, 10, v10->as_VMReg()->next(2) );
++reg_def V10_K ( SOC, SOC, Op_VecA, 10, v10->as_VMReg()->next(3) );
++
++reg_def V11 ( SOC, SOC, Op_VecA, 11, v11->as_VMReg() );
++reg_def V11_H ( SOC, SOC, Op_VecA, 11, v11->as_VMReg()->next() );
++reg_def V11_J ( SOC, SOC, Op_VecA, 11, v11->as_VMReg()->next(2) );
++reg_def V11_K ( SOC, SOC, Op_VecA, 11, v11->as_VMReg()->next(3) );
++
++reg_def V12 ( SOC, SOC, Op_VecA, 12, v12->as_VMReg() );
++reg_def V12_H ( SOC, SOC, Op_VecA, 12, v12->as_VMReg()->next() );
++reg_def V12_J ( SOC, SOC, Op_VecA, 12, v12->as_VMReg()->next(2) );
++reg_def V12_K ( SOC, SOC, Op_VecA, 12, v12->as_VMReg()->next(3) );
++
++reg_def V13 ( SOC, SOC, Op_VecA, 13, v13->as_VMReg() );
++reg_def V13_H ( SOC, SOC, Op_VecA, 13, v13->as_VMReg()->next() );
++reg_def V13_J ( SOC, SOC, Op_VecA, 13, v13->as_VMReg()->next(2) );
++reg_def V13_K ( SOC, SOC, Op_VecA, 13, v13->as_VMReg()->next(3) );
++
++reg_def V14 ( SOC, SOC, Op_VecA, 14, v14->as_VMReg() );
++reg_def V14_H ( SOC, SOC, Op_VecA, 14, v14->as_VMReg()->next() );
++reg_def V14_J ( SOC, SOC, Op_VecA, 14, v14->as_VMReg()->next(2) );
++reg_def V14_K ( SOC, SOC, Op_VecA, 14, v14->as_VMReg()->next(3) );
++
++reg_def V15 ( SOC, SOC, Op_VecA, 15, v15->as_VMReg() );
++reg_def V15_H ( SOC, SOC, Op_VecA, 15, v15->as_VMReg()->next() );
++reg_def V15_J ( SOC, SOC, Op_VecA, 15, v15->as_VMReg()->next(2) );
++reg_def V15_K ( SOC, SOC, Op_VecA, 15, v15->as_VMReg()->next(3) );
++
++reg_def V16 ( SOC, SOC, Op_VecA, 16, v16->as_VMReg() );
++reg_def V16_H ( SOC, SOC, Op_VecA, 16, v16->as_VMReg()->next() );
++reg_def V16_J ( SOC, SOC, Op_VecA, 16, v16->as_VMReg()->next(2) );
++reg_def V16_K ( SOC, SOC, Op_VecA, 16, v16->as_VMReg()->next(3) );
++
++reg_def V17 ( SOC, SOC, Op_VecA, 17, v17->as_VMReg() );
++reg_def V17_H ( SOC, SOC, Op_VecA, 17, v17->as_VMReg()->next() );
++reg_def V17_J ( SOC, SOC, Op_VecA, 17, v17->as_VMReg()->next(2) );
++reg_def V17_K ( SOC, SOC, Op_VecA, 17, v17->as_VMReg()->next(3) );
++
++reg_def V18 ( SOC, SOC, Op_VecA, 18, v18->as_VMReg() );
++reg_def V18_H ( SOC, SOC, Op_VecA, 18, v18->as_VMReg()->next() );
++reg_def V18_J ( SOC, SOC, Op_VecA, 18, v18->as_VMReg()->next(2) );
++reg_def V18_K ( SOC, SOC, Op_VecA, 18, v18->as_VMReg()->next(3) );
++
++reg_def V19 ( SOC, SOC, Op_VecA, 19, v19->as_VMReg() );
++reg_def V19_H ( SOC, SOC, Op_VecA, 19, v19->as_VMReg()->next() );
++reg_def V19_J ( SOC, SOC, Op_VecA, 19, v19->as_VMReg()->next(2) );
++reg_def V19_K ( SOC, SOC, Op_VecA, 19, v19->as_VMReg()->next(3) );
++
++reg_def V20 ( SOC, SOC, Op_VecA, 20, v20->as_VMReg() );
++reg_def V20_H ( SOC, SOC, Op_VecA, 20, v20->as_VMReg()->next() );
++reg_def V20_J ( SOC, SOC, Op_VecA, 20, v20->as_VMReg()->next(2) );
++reg_def V20_K ( SOC, SOC, Op_VecA, 20, v20->as_VMReg()->next(3) );
++
++reg_def V21 ( SOC, SOC, Op_VecA, 21, v21->as_VMReg() );
++reg_def V21_H ( SOC, SOC, Op_VecA, 21, v21->as_VMReg()->next() );
++reg_def V21_J ( SOC, SOC, Op_VecA, 21, v21->as_VMReg()->next(2) );
++reg_def V21_K ( SOC, SOC, Op_VecA, 21, v21->as_VMReg()->next(3) );
++
++reg_def V22 ( SOC, SOC, Op_VecA, 22, v22->as_VMReg() );
++reg_def V22_H ( SOC, SOC, Op_VecA, 22, v22->as_VMReg()->next() );
++reg_def V22_J ( SOC, SOC, Op_VecA, 22, v22->as_VMReg()->next(2) );
++reg_def V22_K ( SOC, SOC, Op_VecA, 22, v22->as_VMReg()->next(3) );
++
++reg_def V23 ( SOC, SOC, Op_VecA, 23, v23->as_VMReg() );
++reg_def V23_H ( SOC, SOC, Op_VecA, 23, v23->as_VMReg()->next() );
++reg_def V23_J ( SOC, SOC, Op_VecA, 23, v23->as_VMReg()->next(2) );
++reg_def V23_K ( SOC, SOC, Op_VecA, 23, v23->as_VMReg()->next(3) );
++
++reg_def V24 ( SOC, SOC, Op_VecA, 24, v24->as_VMReg() );
++reg_def V24_H ( SOC, SOC, Op_VecA, 24, v24->as_VMReg()->next() );
++reg_def V24_J ( SOC, SOC, Op_VecA, 24, v24->as_VMReg()->next(2) );
++reg_def V24_K ( SOC, SOC, Op_VecA, 24, v24->as_VMReg()->next(3) );
++
++reg_def V25 ( SOC, SOC, Op_VecA, 25, v25->as_VMReg() );
++reg_def V25_H ( SOC, SOC, Op_VecA, 25, v25->as_VMReg()->next() );
++reg_def V25_J ( SOC, SOC, Op_VecA, 25, v25->as_VMReg()->next(2) );
++reg_def V25_K ( SOC, SOC, Op_VecA, 25, v25->as_VMReg()->next(3) );
++
++reg_def V26 ( SOC, SOC, Op_VecA, 26, v26->as_VMReg() );
++reg_def V26_H ( SOC, SOC, Op_VecA, 26, v26->as_VMReg()->next() );
++reg_def V26_J ( SOC, SOC, Op_VecA, 26, v26->as_VMReg()->next(2) );
++reg_def V26_K ( SOC, SOC, Op_VecA, 26, v26->as_VMReg()->next(3) );
++
++reg_def V27 ( SOC, SOC, Op_VecA, 27, v27->as_VMReg() );
++reg_def V27_H ( SOC, SOC, Op_VecA, 27, v27->as_VMReg()->next() );
++reg_def V27_J ( SOC, SOC, Op_VecA, 27, v27->as_VMReg()->next(2) );
++reg_def V27_K ( SOC, SOC, Op_VecA, 27, v27->as_VMReg()->next(3) );
++
++reg_def V28 ( SOC, SOC, Op_VecA, 28, v28->as_VMReg() );
++reg_def V28_H ( SOC, SOC, Op_VecA, 28, v28->as_VMReg()->next() );
++reg_def V28_J ( SOC, SOC, Op_VecA, 28, v28->as_VMReg()->next(2) );
++reg_def V28_K ( SOC, SOC, Op_VecA, 28, v28->as_VMReg()->next(3) );
++
++reg_def V29 ( SOC, SOC, Op_VecA, 29, v29->as_VMReg() );
++reg_def V29_H ( SOC, SOC, Op_VecA, 29, v29->as_VMReg()->next() );
++reg_def V29_J ( SOC, SOC, Op_VecA, 29, v29->as_VMReg()->next(2) );
++reg_def V29_K ( SOC, SOC, Op_VecA, 29, v29->as_VMReg()->next(3) );
++
++reg_def V30 ( SOC, SOC, Op_VecA, 30, v30->as_VMReg() );
++reg_def V30_H ( SOC, SOC, Op_VecA, 30, v30->as_VMReg()->next() );
++reg_def V30_J ( SOC, SOC, Op_VecA, 30, v30->as_VMReg()->next(2) );
++reg_def V30_K ( SOC, SOC, Op_VecA, 30, v30->as_VMReg()->next(3) );
++
++reg_def V31 ( SOC, SOC, Op_VecA, 31, v31->as_VMReg() );
++reg_def V31_H ( SOC, SOC, Op_VecA, 31, v31->as_VMReg()->next() );
++reg_def V31_J ( SOC, SOC, Op_VecA, 31, v31->as_VMReg()->next(2) );
++reg_def V31_K ( SOC, SOC, Op_VecA, 31, v31->as_VMReg()->next(3) );
++
++// ----------------------------
++// Special Registers
++// ----------------------------
++
++// On riscv, the physical flag register is missing, so we use t1 instead,
++// to bridge the RegFlag semantics in share/opto
++
++reg_def RFLAGS (SOC, SOC, Op_RegFlags, 6, x6->as_VMReg() );
++
++// Specify priority of register selection within phases of register
++// allocation. Highest priority is first. A useful heuristic is to
++// give registers a low priority when they are required by machine
++// instructions, like EAX and EDX on I486, and choose no-save registers
++// before save-on-call, & save-on-call before save-on-entry. Registers
++// which participate in fixed calling sequences should come last.
++// Registers which are used as pairs must fall on an even boundary.
++
++alloc_class chunk0(
++ // volatiles
++ R7, R7_H,
++ R28, R28_H,
++ R29, R29_H,
++ R30, R30_H,
++ R31, R31_H,
++
++ // arg registers
++ R10, R10_H,
++ R11, R11_H,
++ R12, R12_H,
++ R13, R13_H,
++ R14, R14_H,
++ R15, R15_H,
++ R16, R16_H,
++ R17, R17_H,
++
++ // non-volatiles
++ R9, R9_H,
++ R18, R18_H,
++ R19, R19_H,
++ R20, R20_H,
++ R21, R21_H,
++ R22, R22_H,
++ R24, R24_H,
++ R25, R25_H,
++ R26, R26_H,
++
++ // non-allocatable registers
++ R23, R23_H, // java thread
++ R27, R27_H, // heapbase
++ R4, R4_H, // thread
++ R8, R8_H, // fp
++ R0, R0_H, // zero
++ R1, R1_H, // ra
++ R2, R2_H, // sp
++ R3, R3_H, // gp
++);
++
++alloc_class chunk1(
++
++ // no save
++ F0, F0_H,
++ F1, F1_H,
++ F2, F2_H,
++ F3, F3_H,
++ F4, F4_H,
++ F5, F5_H,
++ F6, F6_H,
++ F7, F7_H,
++ F28, F28_H,
++ F29, F29_H,
++ F30, F30_H,
++ F31, F31_H,
++
++ // arg registers
++ F10, F10_H,
++ F11, F11_H,
++ F12, F12_H,
++ F13, F13_H,
++ F14, F14_H,
++ F15, F15_H,
++ F16, F16_H,
++ F17, F17_H,
++
++ // non-volatiles
++ F8, F8_H,
++ F9, F9_H,
++ F18, F18_H,
++ F19, F19_H,
++ F20, F20_H,
++ F21, F21_H,
++ F22, F22_H,
++ F23, F23_H,
++ F24, F24_H,
++ F25, F25_H,
++ F26, F26_H,
++ F27, F27_H,
++);
++
++alloc_class chunk2(
++ V0, V0_H, V0_J, V0_K,
++ V1, V1_H, V1_J, V1_K,
++ V2, V2_H, V2_J, V2_K,
++ V3, V3_H, V3_J, V3_K,
++ V4, V4_H, V4_J, V4_K,
++ V5, V5_H, V5_J, V5_K,
++ V6, V6_H, V6_J, V6_K,
++ V7, V7_H, V7_J, V7_K,
++ V8, V8_H, V8_J, V8_K,
++ V9, V9_H, V9_J, V9_K,
++ V10, V10_H, V10_J, V10_K,
++ V11, V11_H, V11_J, V11_K,
++ V12, V12_H, V12_J, V12_K,
++ V13, V13_H, V13_J, V13_K,
++ V14, V14_H, V14_J, V14_K,
++ V15, V15_H, V15_J, V15_K,
++ V16, V16_H, V16_J, V16_K,
++ V17, V17_H, V17_J, V17_K,
++ V18, V18_H, V18_J, V18_K,
++ V19, V19_H, V19_J, V19_K,
++ V20, V20_H, V20_J, V20_K,
++ V21, V21_H, V21_J, V21_K,
++ V22, V22_H, V22_J, V22_K,
++ V23, V23_H, V23_J, V23_K,
++ V24, V24_H, V24_J, V24_K,
++ V25, V25_H, V25_J, V25_K,
++ V26, V26_H, V26_J, V26_K,
++ V27, V27_H, V27_J, V27_K,
++ V28, V28_H, V28_J, V28_K,
++ V29, V29_H, V29_J, V29_K,
++ V30, V30_H, V30_J, V30_K,
++ V31, V31_H, V31_J, V31_K,
++);
++
++alloc_class chunk3(RFLAGS);
++
++//----------Architecture Description Register Classes--------------------------
++// Several register classes are automatically defined based upon information in
++// this architecture description.
++// 1) reg_class inline_cache_reg ( /* as def'd in frame section */ )
++// 2) reg_class stack_slots( /* one chunk of stack-based "registers" */ )
++//
++
++// Class for all 32 bit general purpose registers
++reg_class all_reg32(
++ R0,
++ R1,
++ R2,
++ R3,
++ R4,
++ R7,
++ R8,
++ R9,
++ R10,
++ R11,
++ R12,
++ R13,
++ R14,
++ R15,
++ R16,
++ R17,
++ R18,
++ R19,
++ R20,
++ R21,
++ R22,
++ R23,
++ R24,
++ R25,
++ R26,
++ R27,
++ R28,
++ R29,
++ R30,
++ R31
++);
++
++// Class for any 32 bit integer registers (excluding zr)
++reg_class any_reg32 %{
++ return _ANY_REG32_mask;
++%}
++
++// Singleton class for R10 int register
++reg_class int_r10_reg(R10);
++
++// Singleton class for R12 int register
++reg_class int_r12_reg(R12);
++
++// Singleton class for R13 int register
++reg_class int_r13_reg(R13);
++
++// Singleton class for R14 int register
++reg_class int_r14_reg(R14);
++
++// Class for all long integer registers
++reg_class all_reg(
++ R0, R0_H,
++ R1, R1_H,
++ R2, R2_H,
++ R3, R3_H,
++ R4, R4_H,
++ R7, R7_H,
++ R8, R8_H,
++ R9, R9_H,
++ R10, R10_H,
++ R11, R11_H,
++ R12, R12_H,
++ R13, R13_H,
++ R14, R14_H,
++ R15, R15_H,
++ R16, R16_H,
++ R17, R17_H,
++ R18, R18_H,
++ R19, R19_H,
++ R20, R20_H,
++ R21, R21_H,
++ R22, R22_H,
++ R23, R23_H,
++ R24, R24_H,
++ R25, R25_H,
++ R26, R26_H,
++ R27, R27_H,
++ R28, R28_H,
++ R29, R29_H,
++ R30, R30_H,
++ R31, R31_H
++);
++
++// Class for all long integer registers (excluding zr)
++reg_class any_reg %{
++ return _ANY_REG_mask;
++%}
++
++// Class for non-allocatable 32 bit registers
++reg_class non_allocatable_reg32(
++ R0, // zr
++ R1, // ra
++ R2, // sp
++ R3, // gp
++ R4, // tp
++ R23 // java thread
++);
++
++// Class for non-allocatable 64 bit registers
++reg_class non_allocatable_reg(
++ R0, R0_H, // zr
++ R1, R1_H, // ra
++ R2, R2_H, // sp
++ R3, R3_H, // gp
++ R4, R4_H, // tp
++ R23, R23_H // java thread
++);
++
++reg_class no_special_reg32 %{
++ return _NO_SPECIAL_REG32_mask;
++%}
++
++reg_class no_special_reg %{
++ return _NO_SPECIAL_REG_mask;
++%}
++
++reg_class ptr_reg %{
++ return _PTR_REG_mask;
++%}
++
++reg_class no_special_ptr_reg %{
++ return _NO_SPECIAL_PTR_REG_mask;
++%}
++
++// Class for 64 bit register r10
++reg_class r10_reg(
++ R10, R10_H
++);
++
++// Class for 64 bit register r11
++reg_class r11_reg(
++ R11, R11_H
++);
++
++// Class for 64 bit register r12
++reg_class r12_reg(
++ R12, R12_H
++);
++
++// Class for 64 bit register r13
++reg_class r13_reg(
++ R13, R13_H
++);
++
++// Class for 64 bit register r14
++reg_class r14_reg(
++ R14, R14_H
++);
++
++// Class for 64 bit register r15
++reg_class r15_reg(
++ R15, R15_H
++);
++
++// Class for 64 bit register r16
++reg_class r16_reg(
++ R16, R16_H
++);
++
++// Class for method register
++reg_class method_reg(
++ R31, R31_H
++);
++
++// Class for heapbase register
++reg_class heapbase_reg(
++ R27, R27_H
++);
++
++// Class for java thread register
++reg_class java_thread_reg(
++ R23, R23_H
++);
++
++reg_class r28_reg(
++ R28, R28_H
++);
++
++reg_class r29_reg(
++ R29, R29_H
++);
++
++reg_class r30_reg(
++ R30, R30_H
++);
++
++// Class for zero registesr
++reg_class zr_reg(
++ R0, R0_H
++);
++
++// Class for thread register
++reg_class thread_reg(
++ R4, R4_H
++);
++
++// Class for frame pointer register
++reg_class fp_reg(
++ R8, R8_H
++);
++
++// Class for link register
++reg_class ra_reg(
++ R1, R1_H
++);
++
++// Class for long sp register
++reg_class sp_reg(
++ R2, R2_H
++);
++
++// Class for all float registers
++reg_class float_reg(
++ F0,
++ F1,
++ F2,
++ F3,
++ F4,
++ F5,
++ F6,
++ F7,
++ F8,
++ F9,
++ F10,
++ F11,
++ F12,
++ F13,
++ F14,
++ F15,
++ F16,
++ F17,
++ F18,
++ F19,
++ F20,
++ F21,
++ F22,
++ F23,
++ F24,
++ F25,
++ F26,
++ F27,
++ F28,
++ F29,
++ F30,
++ F31
++);
++
++// Double precision float registers have virtual `high halves' that
++// are needed by the allocator.
++// Class for all double registers
++reg_class double_reg(
++ F0, F0_H,
++ F1, F1_H,
++ F2, F2_H,
++ F3, F3_H,
++ F4, F4_H,
++ F5, F5_H,
++ F6, F6_H,
++ F7, F7_H,
++ F8, F8_H,
++ F9, F9_H,
++ F10, F10_H,
++ F11, F11_H,
++ F12, F12_H,
++ F13, F13_H,
++ F14, F14_H,
++ F15, F15_H,
++ F16, F16_H,
++ F17, F17_H,
++ F18, F18_H,
++ F19, F19_H,
++ F20, F20_H,
++ F21, F21_H,
++ F22, F22_H,
++ F23, F23_H,
++ F24, F24_H,
++ F25, F25_H,
++ F26, F26_H,
++ F27, F27_H,
++ F28, F28_H,
++ F29, F29_H,
++ F30, F30_H,
++ F31, F31_H
++);
++
++// Class for all RVV vector registers
++reg_class vectora_reg(
++ V1, V1_H, V1_J, V1_K,
++ V2, V2_H, V2_J, V2_K,
++ V3, V3_H, V3_J, V3_K,
++ V4, V4_H, V4_J, V4_K,
++ V5, V5_H, V5_J, V5_K,
++ V6, V6_H, V6_J, V6_K,
++ V7, V7_H, V7_J, V7_K,
++ V8, V8_H, V8_J, V8_K,
++ V9, V9_H, V9_J, V9_K,
++ V10, V10_H, V10_J, V10_K,
++ V11, V11_H, V11_J, V11_K,
++ V12, V12_H, V12_J, V12_K,
++ V13, V13_H, V13_J, V13_K,
++ V14, V14_H, V14_J, V14_K,
++ V15, V15_H, V15_J, V15_K,
++ V16, V16_H, V16_J, V16_K,
++ V17, V17_H, V17_J, V17_K,
++ V18, V18_H, V18_J, V18_K,
++ V19, V19_H, V19_J, V19_K,
++ V20, V20_H, V20_J, V20_K,
++ V21, V21_H, V21_J, V21_K,
++ V22, V22_H, V22_J, V22_K,
++ V23, V23_H, V23_J, V23_K,
++ V24, V24_H, V24_J, V24_K,
++ V25, V25_H, V25_J, V25_K,
++ V26, V26_H, V26_J, V26_K,
++ V27, V27_H, V27_J, V27_K,
++ V28, V28_H, V28_J, V28_K,
++ V29, V29_H, V29_J, V29_K,
++ V30, V30_H, V30_J, V30_K,
++ V31, V31_H, V31_J, V31_K
++);
++
++// Class for 64 bit register f0
++reg_class f0_reg(
++ F0, F0_H
++);
++
++// Class for 64 bit register f1
++reg_class f1_reg(
++ F1, F1_H
++);
++
++// Class for 64 bit register f2
++reg_class f2_reg(
++ F2, F2_H
++);
++
++// Class for 64 bit register f3
++reg_class f3_reg(
++ F3, F3_H
++);
++
++// class for vector register v1
++reg_class v1_reg(
++ V1, V1_H, V1_J, V1_K
++);
++
++// class for vector register v2
++reg_class v2_reg(
++ V2, V2_H, V2_J, V2_K
++);
++
++// class for vector register v3
++reg_class v3_reg(
++ V3, V3_H, V3_J, V3_K
++);
++
++// class for vector register v4
++reg_class v4_reg(
++ V4, V4_H, V4_J, V4_K
++);
++
++// class for vector register v5
++reg_class v5_reg(
++ V5, V5_H, V5_J, V5_K
++);
++
++// class for condition codes
++reg_class reg_flags(RFLAGS);
++%}
++
++//----------DEFINITION BLOCK---------------------------------------------------
++// Define name --> value mappings to inform the ADLC of an integer valued name
++// Current support includes integer values in the range [0, 0x7FFFFFFF]
++// Format:
++// int_def <name> ( <int_value>, <expression>);
++// Generated Code in ad_<arch>.hpp
++// #define <name> (<expression>)
++// // value == <int_value>
++// Generated code in ad_<arch>.cpp adlc_verification()
++// assert( <name> == <int_value>, "Expect (<expression>) to equal <int_value>");
++//
++
++// we follow the ppc-aix port in using a simple cost model which ranks
++// register operations as cheap, memory ops as more expensive and
++// branches as most expensive. the first two have a low as well as a
++// normal cost. huge cost appears to be a way of saying don't do
++// something
++
++definitions %{
++ // The default cost (of a register move instruction).
++ int_def DEFAULT_COST ( 100, 100);
++ int_def ALU_COST ( 100, 1 * DEFAULT_COST); // unknown, const, arith, shift, slt,
++ // multi, auipc, nop, logical, move
++ int_def LOAD_COST ( 300, 3 * DEFAULT_COST); // load, fpload
++ int_def STORE_COST ( 100, 1 * DEFAULT_COST); // store, fpstore
++ int_def XFER_COST ( 300, 3 * DEFAULT_COST); // mfc, mtc, fcvt, fmove, fcmp
++ int_def BRANCH_COST ( 200, 2 * DEFAULT_COST); // branch, jmp, call
++ int_def IMUL_COST ( 1000, 10 * DEFAULT_COST); // imul
++ int_def IDIVSI_COST ( 3400, 34 * DEFAULT_COST); // idivdi
++ int_def IDIVDI_COST ( 6600, 66 * DEFAULT_COST); // idivsi
++ int_def FMUL_SINGLE_COST ( 500, 5 * DEFAULT_COST); // fmul, fmadd
++ int_def FMUL_DOUBLE_COST ( 700, 7 * DEFAULT_COST); // fmul, fmadd
++ int_def FDIV_COST ( 2000, 20 * DEFAULT_COST); // fdiv
++ int_def FSQRT_COST ( 2500, 25 * DEFAULT_COST); // fsqrt
++ int_def VOLATILE_REF_COST ( 1000, 10 * DEFAULT_COST);
++%}
++
++
++
++//----------SOURCE BLOCK-------------------------------------------------------
++// This is a block of C++ code which provides values, functions, and
++// definitions necessary in the rest of the architecture description
++
++source_hpp %{
++
++#include "asm/macroAssembler.hpp"
++#include "gc/shared/barrierSetAssembler.hpp"
++#include "gc/shared/cardTable.hpp"
++#include "gc/shared/cardTableBarrierSet.hpp"
++#include "gc/shared/collectedHeap.hpp"
++#include "opto/addnode.hpp"
++#include "opto/convertnode.hpp"
++#include "runtime/objectMonitor.hpp"
++
++extern RegMask _ANY_REG32_mask;
++extern RegMask _ANY_REG_mask;
++extern RegMask _PTR_REG_mask;
++extern RegMask _NO_SPECIAL_REG32_mask;
++extern RegMask _NO_SPECIAL_REG_mask;
++extern RegMask _NO_SPECIAL_PTR_REG_mask;
++
++class CallStubImpl {
++
++ //--------------------------------------------------------------
++ //---< Used for optimization in Compile::shorten_branches >---
++ //--------------------------------------------------------------
++
++ public:
++ // Size of call trampoline stub.
++ static uint size_call_trampoline() {
++ return 0; // no call trampolines on this platform
++ }
++
++ // number of relocations needed by a call trampoline stub
++ static uint reloc_call_trampoline() {
++ return 0; // no call trampolines on this platform
++ }
++};
++
++class HandlerImpl {
++
++ public:
++
++ static int emit_exception_handler(CodeBuffer &cbuf);
++ static int emit_deopt_handler(CodeBuffer& cbuf);
++
++ static uint size_exception_handler() {
++ return MacroAssembler::far_branch_size();
++ }
++
++ static uint size_deopt_handler() {
++ // count auipc + far branch
++ return NativeInstruction::instruction_size + MacroAssembler::far_branch_size();
++ }
++};
++
++class Node::PD {
++public:
++ enum NodeFlags {
++ _last_flag = Node::_last_flag
++ };
++};
++
++bool is_CAS(int opcode, bool maybe_volatile);
++
++// predicate controlling translation of CompareAndSwapX
++bool needs_acquiring_load_reserved(const Node *load);
++
++// predicate controlling addressing modes
++bool size_fits_all_mem_uses(AddPNode* addp, int shift);
++%}
++
++source %{
++
++// Derived RegMask with conditionally allocatable registers
++
++RegMask _ANY_REG32_mask;
++RegMask _ANY_REG_mask;
++RegMask _PTR_REG_mask;
++RegMask _NO_SPECIAL_REG32_mask;
++RegMask _NO_SPECIAL_REG_mask;
++RegMask _NO_SPECIAL_PTR_REG_mask;
++
++void reg_mask_init() {
++
++ _ANY_REG32_mask = _ALL_REG32_mask;
++ _ANY_REG32_mask.Remove(OptoReg::as_OptoReg(x0->as_VMReg()));
++
++ _ANY_REG_mask = _ALL_REG_mask;
++ _ANY_REG_mask.SUBTRACT(_ZR_REG_mask);
++
++ _PTR_REG_mask = _ALL_REG_mask;
++ _PTR_REG_mask.SUBTRACT(_ZR_REG_mask);
++
++ _NO_SPECIAL_REG32_mask = _ALL_REG32_mask;
++ _NO_SPECIAL_REG32_mask.SUBTRACT(_NON_ALLOCATABLE_REG32_mask);
++
++ _NO_SPECIAL_REG_mask = _ALL_REG_mask;
++ _NO_SPECIAL_REG_mask.SUBTRACT(_NON_ALLOCATABLE_REG_mask);
++
++ _NO_SPECIAL_PTR_REG_mask = _ALL_REG_mask;
++ _NO_SPECIAL_PTR_REG_mask.SUBTRACT(_NON_ALLOCATABLE_REG_mask);
++
++ // x27 is not allocatable when compressed oops is on
++ if (UseCompressedOops) {
++ _NO_SPECIAL_REG32_mask.Remove(OptoReg::as_OptoReg(x27->as_VMReg()));
++ _NO_SPECIAL_REG_mask.SUBTRACT(_HEAPBASE_REG_mask);
++ _NO_SPECIAL_PTR_REG_mask.SUBTRACT(_HEAPBASE_REG_mask);
++ }
++
++ // x8 is not allocatable when PreserveFramePointer is on
++ if (PreserveFramePointer) {
++ _NO_SPECIAL_REG32_mask.Remove(OptoReg::as_OptoReg(x8->as_VMReg()));
++ _NO_SPECIAL_REG_mask.SUBTRACT(_FP_REG_mask);
++ _NO_SPECIAL_PTR_REG_mask.SUBTRACT(_FP_REG_mask);
++ }
++}
++
++void PhaseOutput::pd_perform_mach_node_analysis() {
++}
++
++int MachNode::pd_alignment_required() const {
++ return 1;
++}
++
++int MachNode::compute_padding(int current_offset) const {
++ return 0;
++}
++
++// is_CAS(int opcode, bool maybe_volatile)
++//
++// return true if opcode is one of the possible CompareAndSwapX
++// values otherwise false.
++bool is_CAS(int opcode, bool maybe_volatile)
++{
++ switch (opcode) {
++ // We handle these
++ case Op_CompareAndSwapI:
++ case Op_CompareAndSwapL:
++ case Op_CompareAndSwapP:
++ case Op_CompareAndSwapN:
++ case Op_ShenandoahCompareAndSwapP:
++ case Op_ShenandoahCompareAndSwapN:
++ case Op_CompareAndSwapB:
++ case Op_CompareAndSwapS:
++ case Op_GetAndSetI:
++ case Op_GetAndSetL:
++ case Op_GetAndSetP:
++ case Op_GetAndSetN:
++ case Op_GetAndAddI:
++ case Op_GetAndAddL:
++ return true;
++ case Op_CompareAndExchangeI:
++ case Op_CompareAndExchangeN:
++ case Op_CompareAndExchangeB:
++ case Op_CompareAndExchangeS:
++ case Op_CompareAndExchangeL:
++ case Op_CompareAndExchangeP:
++ case Op_WeakCompareAndSwapB:
++ case Op_WeakCompareAndSwapS:
++ case Op_WeakCompareAndSwapI:
++ case Op_WeakCompareAndSwapL:
++ case Op_WeakCompareAndSwapP:
++ case Op_WeakCompareAndSwapN:
++ case Op_ShenandoahWeakCompareAndSwapP:
++ case Op_ShenandoahWeakCompareAndSwapN:
++ case Op_ShenandoahCompareAndExchangeP:
++ case Op_ShenandoahCompareAndExchangeN:
++ return maybe_volatile;
++ default:
++ return false;
++ }
++}
++
++// predicate controlling translation of CAS
++//
++// returns true if CAS needs to use an acquiring load otherwise false
++bool needs_acquiring_load_reserved(const Node *n)
++{
++ assert(n != NULL && is_CAS(n->Opcode(), true), "expecting a compare and swap");
++
++ LoadStoreNode* ldst = n->as_LoadStore();
++ if (n != NULL && is_CAS(n->Opcode(), false)) {
++ assert(ldst != NULL && ldst->trailing_membar() != NULL, "expected trailing membar");
++ } else {
++ return ldst != NULL && ldst->trailing_membar() != NULL;
++ }
++ // so we can just return true here
++ return true;
++}
++#define __ _masm.
++
++// advance declarations for helper functions to convert register
++// indices to register objects
++
++// the ad file has to provide implementations of certain methods
++// expected by the generic code
++//
++// REQUIRED FUNCTIONALITY
++
++//=============================================================================
++
++// !!!!! Special hack to get all types of calls to specify the byte offset
++// from the start of the call to the point where the return address
++// will point.
++
++int MachCallStaticJavaNode::ret_addr_offset()
++{
++ // jal
++ return 1 * NativeInstruction::instruction_size;
++}
++
++int MachCallDynamicJavaNode::ret_addr_offset()
++{
++ return 7 * NativeInstruction::instruction_size; // movptr, jal
++}
++
++int MachCallRuntimeNode::ret_addr_offset() {
++ // for generated stubs the call will be
++ // jal(addr)
++ // or with far branches
++ // jal(trampoline_stub)
++ // for real runtime callouts it will be 11 instructions
++ // see riscv_enc_java_to_runtime
++ // la(t1, retaddr) -> auipc + addi
++ // la(t0, RuntimeAddress(addr)) -> lui + addi + slli + addi + slli + addi
++ // addi(sp, sp, -2 * wordSize) -> addi
++ // sd(t1, Address(sp, wordSize)) -> sd
++ // jalr(t0) -> jalr
++ CodeBlob *cb = CodeCache::find_blob(_entry_point);
++ if (cb != NULL) {
++ return 1 * NativeInstruction::instruction_size;
++ } else {
++ return 11 * NativeInstruction::instruction_size;
++ }
++}
++
++int MachCallNativeNode::ret_addr_offset() {
++ Unimplemented();
++ return -1;
++}
++
++//
++// Compute padding required for nodes which need alignment
++//
++
++// With RVC a call instruction may get 2-byte aligned.
++// The address of the call instruction needs to be 4-byte aligned to
++// ensure that it does not span a cache line so that it can be patched.
++int CallStaticJavaDirectNode::compute_padding(int current_offset) const
++{
++ // to make sure the address of jal 4-byte aligned.
++ return align_up(current_offset, alignment_required()) - current_offset;
++}
++
++// With RVC a call instruction may get 2-byte aligned.
++// The address of the call instruction needs to be 4-byte aligned to
++// ensure that it does not span a cache line so that it can be patched.
++int CallDynamicJavaDirectNode::compute_padding(int current_offset) const
++{
++ // skip the movptr in MacroAssembler::ic_call():
++ // lui + addi + slli + addi + slli + addi
++ // Though movptr() has already 4-byte aligned with or without RVC,
++ // We need to prevent from further changes by explicitly calculating the size.
++ const int movptr_size = 6 * NativeInstruction::instruction_size;
++ current_offset += movptr_size;
++ // to make sure the address of jal 4-byte aligned.
++ return align_up(current_offset, alignment_required()) - current_offset;
++}
++
++//=============================================================================
++
++#ifndef PRODUCT
++void MachBreakpointNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
++ assert_cond(st != NULL);
++ st->print("BREAKPOINT");
++}
++#endif
++
++void MachBreakpointNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
++ C2_MacroAssembler _masm(&cbuf);
++ __ ebreak();
++}
++
++uint MachBreakpointNode::size(PhaseRegAlloc *ra_) const {
++ return MachNode::size(ra_);
++}
++
++//=============================================================================
++
++#ifndef PRODUCT
++ void MachNopNode::format(PhaseRegAlloc*, outputStream* st) const {
++ st->print("nop \t# %d bytes pad for loops and calls", _count);
++ }
++#endif
++
++ void MachNopNode::emit(CodeBuffer &cbuf, PhaseRegAlloc*) const {
++ C2_MacroAssembler _masm(&cbuf);
++ Assembler::CompressibleRegion cr(&_masm); // nops shall be 2-byte under RVC for alignment purposes.
++ for (int i = 0; i < _count; i++) {
++ __ nop();
++ }
++ }
++
++ uint MachNopNode::size(PhaseRegAlloc*) const {
++ return _count * (UseRVC ? NativeInstruction::compressed_instruction_size : NativeInstruction::instruction_size);
++ }
++
++//=============================================================================
++const RegMask& MachConstantBaseNode::_out_RegMask = RegMask::Empty;
++
++int ConstantTable::calculate_table_base_offset() const {
++ return 0; // absolute addressing, no offset
++}
++
++bool MachConstantBaseNode::requires_postalloc_expand() const { return false; }
++void MachConstantBaseNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {
++ ShouldNotReachHere();
++}
++
++void MachConstantBaseNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const {
++ // Empty encoding
++}
++
++uint MachConstantBaseNode::size(PhaseRegAlloc* ra_) const {
++ return 0;
++}
++
++#ifndef PRODUCT
++void MachConstantBaseNode::format(PhaseRegAlloc* ra_, outputStream* st) const {
++ assert_cond(st != NULL);
++ st->print("-- \t// MachConstantBaseNode (empty encoding)");
++}
++#endif
++
++#ifndef PRODUCT
++void MachPrologNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
++ assert_cond(st != NULL && ra_ != NULL);
++ Compile* C = ra_->C;
++
++ int framesize = C->output()->frame_slots() << LogBytesPerInt;
++
++ if (C->output()->need_stack_bang(framesize)) {
++ st->print("# stack bang size=%d\n\t", framesize);
++ }
++
++ st->print("sd fp, [sp, #%d]\n\t", - 2 * wordSize);
++ st->print("sd ra, [sp, #%d]\n\t", - wordSize);
++ if (PreserveFramePointer) { st->print("sub fp, sp, #%d\n\t", 2 * wordSize); }
++ st->print("sub sp, sp, #%d\n\t", framesize);
++
++ if (C->stub_function() == NULL && BarrierSet::barrier_set()->barrier_set_nmethod() != NULL) {
++ st->print("ld t0, [guard]\n\t");
++ st->print("membar LoadLoad\n\t");
++ st->print("ld t1, [xthread, #thread_disarmed_offset]\n\t");
++ st->print("beq t0, t1, skip\n\t");
++ st->print("jalr #nmethod_entry_barrier_stub\n\t");
++ st->print("j skip\n\t");
++ st->print("guard: int\n\t");
++ st->print("skip:\n\t");
++ }
++}
++#endif
++
++void MachPrologNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
++ assert_cond(ra_ != NULL);
++ Compile* C = ra_->C;
++ C2_MacroAssembler _masm(&cbuf);
++
++ // n.b. frame size includes space for return pc and fp
++ const int framesize = C->output()->frame_size_in_bytes();
++
++ // insert a nop at the start of the prolog so we can patch in a
++ // branch if we need to invalidate the method later
++ {
++ Assembler::IncompressibleRegion ir(&_masm); // keep the nop as 4 bytes for patching.
++ MacroAssembler::assert_alignment(__ pc());
++ __ nop(); // 4 bytes
++ }
++
++ assert_cond(C != NULL);
++
++ if (C->clinit_barrier_on_entry()) {
++ assert(!C->method()->holder()->is_not_initialized(), "initialization should have been started");
++
++ Label L_skip_barrier;
++
++ __ mov_metadata(t1, C->method()->holder()->constant_encoding());
++ __ clinit_barrier(t1, t0, &L_skip_barrier);
++ __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
++ __ bind(L_skip_barrier);
++ }
++
++ int bangsize = C->output()->bang_size_in_bytes();
++ if (C->output()->need_stack_bang(bangsize)) {
++ __ generate_stack_overflow_check(bangsize);
++ }
++
++ __ build_frame(framesize);
++
++ if (C->stub_function() == NULL) {
++ BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
++ bs->nmethod_entry_barrier(&_masm);
++ }
++
++ if (VerifyStackAtCalls) {
++ Unimplemented();
++ }
++
++ C->output()->set_frame_complete(cbuf.insts_size());
++
++ if (C->has_mach_constant_base_node()) {
++ // NOTE: We set the table base offset here because users might be
++ // emitted before MachConstantBaseNode.
++ ConstantTable& constant_table = C->output()->constant_table();
++ constant_table.set_table_base_offset(constant_table.calculate_table_base_offset());
++ }
++}
++
++uint MachPrologNode::size(PhaseRegAlloc* ra_) const
++{
++ assert_cond(ra_ != NULL);
++ return MachNode::size(ra_); // too many variables; just compute it
++ // the hard way
++}
++
++int MachPrologNode::reloc() const
++{
++ return 0;
++}
++
++//=============================================================================
++
++#ifndef PRODUCT
++void MachEpilogNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
++ assert_cond(st != NULL && ra_ != NULL);
++ Compile* C = ra_->C;
++ assert_cond(C != NULL);
++ int framesize = C->output()->frame_size_in_bytes();
++
++ st->print("# pop frame %d\n\t", framesize);
++
++ if (framesize == 0) {
++ st->print("ld ra, [sp,#%d]\n\t", (2 * wordSize));
++ st->print("ld fp, [sp,#%d]\n\t", (3 * wordSize));
++ st->print("add sp, sp, #%d\n\t", (2 * wordSize));
++ } else {
++ st->print("add sp, sp, #%d\n\t", framesize);
++ st->print("ld ra, [sp,#%d]\n\t", - 2 * wordSize);
++ st->print("ld fp, [sp,#%d]\n\t", - wordSize);
++ }
++
++ if (do_polling() && C->is_method_compilation()) {
++ st->print("# test polling word\n\t");
++ st->print("ld t0, [xthread,#%d]\n\t", in_bytes(JavaThread::polling_word_offset()));
++ st->print("bgtu sp, t0, #slow_path");
++ }
++}
++#endif
++
++void MachEpilogNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
++ assert_cond(ra_ != NULL);
++ Compile* C = ra_->C;
++ C2_MacroAssembler _masm(&cbuf);
++ assert_cond(C != NULL);
++ int framesize = C->output()->frame_size_in_bytes();
++
++ __ remove_frame(framesize);
++
++ if (StackReservedPages > 0 && C->has_reserved_stack_access()) {
++ __ reserved_stack_check();
++ }
++
++ if (do_polling() && C->is_method_compilation()) {
++ Label dummy_label;
++ Label* code_stub = &dummy_label;
++ if (!C->output()->in_scratch_emit_size()) {
++ code_stub = &C->output()->safepoint_poll_table()->add_safepoint(__ offset());
++ }
++ __ relocate(relocInfo::poll_return_type);
++ __ safepoint_poll(*code_stub, true /* at_return */, false /* acquire */, true /* in_nmethod */);
++ }
++}
++
++uint MachEpilogNode::size(PhaseRegAlloc *ra_) const {
++ assert_cond(ra_ != NULL);
++ // Variable size. Determine dynamically.
++ return MachNode::size(ra_);
++}
++
++int MachEpilogNode::reloc() const {
++ // Return number of relocatable values contained in this instruction.
++ return 1; // 1 for polling page.
++}
++const Pipeline * MachEpilogNode::pipeline() const {
++ return MachNode::pipeline_class();
++}
++
++//=============================================================================
++
++// Figure out which register class each belongs in: rc_int, rc_float or
++// rc_stack.
++enum RC { rc_bad, rc_int, rc_float, rc_vector, rc_stack };
++
++static enum RC rc_class(OptoReg::Name reg) {
++
++ if (reg == OptoReg::Bad) {
++ return rc_bad;
++ }
++
++ // we have 30 int registers * 2 halves
++ // (t0 and t1 are omitted)
++ int slots_of_int_registers = RegisterImpl::max_slots_per_register * (RegisterImpl::number_of_registers - 2);
++ if (reg < slots_of_int_registers) {
++ return rc_int;
++ }
++
++ // we have 32 float register * 2 halves
++ int slots_of_float_registers = FloatRegisterImpl::max_slots_per_register * FloatRegisterImpl::number_of_registers;
++ if (reg < slots_of_int_registers + slots_of_float_registers) {
++ return rc_float;
++ }
++
++ // we have 32 vector register * 4 halves
++ int slots_of_vector_registers = VectorRegisterImpl::max_slots_per_register * VectorRegisterImpl::number_of_registers;
++ if (reg < slots_of_int_registers + slots_of_float_registers + slots_of_vector_registers) {
++ return rc_vector;
++ }
++
++ // Between vector regs & stack is the flags regs.
++ assert(OptoReg::is_stack(reg), "blow up if spilling flags");
++
++ return rc_stack;
++}
++
++uint MachSpillCopyNode::implementation(CodeBuffer *cbuf, PhaseRegAlloc *ra_, bool do_size, outputStream *st) const {
++ assert_cond(ra_ != NULL);
++ Compile* C = ra_->C;
++
++ // Get registers to move.
++ OptoReg::Name src_hi = ra_->get_reg_second(in(1));
++ OptoReg::Name src_lo = ra_->get_reg_first(in(1));
++ OptoReg::Name dst_hi = ra_->get_reg_second(this);
++ OptoReg::Name dst_lo = ra_->get_reg_first(this);
++
++ enum RC src_hi_rc = rc_class(src_hi);
++ enum RC src_lo_rc = rc_class(src_lo);
++ enum RC dst_hi_rc = rc_class(dst_hi);
++ enum RC dst_lo_rc = rc_class(dst_lo);
++
++ assert(src_lo != OptoReg::Bad && dst_lo != OptoReg::Bad, "must move at least 1 register");
++
++ if (src_hi != OptoReg::Bad) {
++ assert((src_lo & 1) == 0 && src_lo + 1 == src_hi &&
++ (dst_lo & 1) == 0 && dst_lo + 1 == dst_hi,
++ "expected aligned-adjacent pairs");
++ }
++
++ if (src_lo == dst_lo && src_hi == dst_hi) {
++ return 0; // Self copy, no move.
++ }
++
++ bool is64 = (src_lo & 1) == 0 && src_lo + 1 == src_hi &&
++ (dst_lo & 1) == 0 && dst_lo + 1 == dst_hi;
++ int src_offset = ra_->reg2offset(src_lo);
++ int dst_offset = ra_->reg2offset(dst_lo);
++
++ if (bottom_type()->isa_vect() != NULL) {
++ uint ireg = ideal_reg();
++ if (ireg == Op_VecA && cbuf) {
++ C2_MacroAssembler _masm(cbuf);
++ int vector_reg_size_in_bytes = Matcher::scalable_vector_reg_size(T_BYTE);
++ if (src_lo_rc == rc_stack && dst_lo_rc == rc_stack) {
++ // stack to stack
++ __ spill_copy_vector_stack_to_stack(src_offset, dst_offset,
++ vector_reg_size_in_bytes);
++ } else if (src_lo_rc == rc_vector && dst_lo_rc == rc_stack) {
++ // vpr to stack
++ __ spill(as_VectorRegister(Matcher::_regEncode[src_lo]), ra_->reg2offset(dst_lo));
++ } else if (src_lo_rc == rc_stack && dst_lo_rc == rc_vector) {
++ // stack to vpr
++ __ unspill(as_VectorRegister(Matcher::_regEncode[dst_lo]), ra_->reg2offset(src_lo));
++ } else if (src_lo_rc == rc_vector && dst_lo_rc == rc_vector) {
++ // vpr to vpr
++ __ vmv1r_v(as_VectorRegister(Matcher::_regEncode[dst_lo]), as_VectorRegister(Matcher::_regEncode[src_lo]));
++ } else {
++ ShouldNotReachHere();
++ }
++ }
++ } else if (cbuf != NULL) {
++ C2_MacroAssembler _masm(cbuf);
++ switch (src_lo_rc) {
++ case rc_int:
++ if (dst_lo_rc == rc_int) { // gpr --> gpr copy
++ if (!is64 && this->ideal_reg() != Op_RegI) { // zero extended for narrow oop or klass
++ __ zero_extend(as_Register(Matcher::_regEncode[dst_lo]), as_Register(Matcher::_regEncode[src_lo]), 32);
++ } else {
++ __ mv(as_Register(Matcher::_regEncode[dst_lo]), as_Register(Matcher::_regEncode[src_lo]));
++ }
++ } else if (dst_lo_rc == rc_float) { // gpr --> fpr copy
++ if (is64) {
++ __ fmv_d_x(as_FloatRegister(Matcher::_regEncode[dst_lo]),
++ as_Register(Matcher::_regEncode[src_lo]));
++ } else {
++ __ fmv_w_x(as_FloatRegister(Matcher::_regEncode[dst_lo]),
++ as_Register(Matcher::_regEncode[src_lo]));
++ }
++ } else { // gpr --> stack spill
++ assert(dst_lo_rc == rc_stack, "spill to bad register class");
++ __ spill(as_Register(Matcher::_regEncode[src_lo]), is64, dst_offset);
++ }
++ break;
++ case rc_float:
++ if (dst_lo_rc == rc_int) { // fpr --> gpr copy
++ if (is64) {
++ __ fmv_x_d(as_Register(Matcher::_regEncode[dst_lo]),
++ as_FloatRegister(Matcher::_regEncode[src_lo]));
++ } else {
++ __ fmv_x_w(as_Register(Matcher::_regEncode[dst_lo]),
++ as_FloatRegister(Matcher::_regEncode[src_lo]));
++ }
++ } else if (dst_lo_rc == rc_float) { // fpr --> fpr copy
++ if (is64) {
++ __ fmv_d(as_FloatRegister(Matcher::_regEncode[dst_lo]),
++ as_FloatRegister(Matcher::_regEncode[src_lo]));
++ } else {
++ __ fmv_s(as_FloatRegister(Matcher::_regEncode[dst_lo]),
++ as_FloatRegister(Matcher::_regEncode[src_lo]));
++ }
++ } else { // fpr --> stack spill
++ assert(dst_lo_rc == rc_stack, "spill to bad register class");
++ __ spill(as_FloatRegister(Matcher::_regEncode[src_lo]),
++ is64, dst_offset);
++ }
++ break;
++ case rc_stack:
++ if (dst_lo_rc == rc_int) { // stack --> gpr load
++ if (this->ideal_reg() == Op_RegI) {
++ __ unspill(as_Register(Matcher::_regEncode[dst_lo]), is64, src_offset);
++ } else { // // zero extended for narrow oop or klass
++ __ unspillu(as_Register(Matcher::_regEncode[dst_lo]), is64, src_offset);
++ }
++ } else if (dst_lo_rc == rc_float) { // stack --> fpr load
++ __ unspill(as_FloatRegister(Matcher::_regEncode[dst_lo]),
++ is64, src_offset);
++ } else { // stack --> stack copy
++ assert(dst_lo_rc == rc_stack, "spill to bad register class");
++ if (this->ideal_reg() == Op_RegI) {
++ __ unspill(t0, is64, src_offset);
++ } else { // zero extended for narrow oop or klass
++ __ unspillu(t0, is64, src_offset);
++ }
++ __ spill(t0, is64, dst_offset);
++ }
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++ }
++
++ if (st != NULL) {
++ st->print("spill ");
++ if (src_lo_rc == rc_stack) {
++ st->print("[sp, #%d] -> ", src_offset);
++ } else {
++ st->print("%s -> ", Matcher::regName[src_lo]);
++ }
++ if (dst_lo_rc == rc_stack) {
++ st->print("[sp, #%d]", dst_offset);
++ } else {
++ st->print("%s", Matcher::regName[dst_lo]);
++ }
++ if (bottom_type()->isa_vect() != NULL) {
++ int vsize = 0;
++ if (ideal_reg() == Op_VecA) {
++ vsize = Matcher::scalable_vector_reg_size(T_BYTE) * 8;
++ } else {
++ ShouldNotReachHere();
++ }
++ st->print("\t# vector spill size = %d", vsize);
++ } else {
++ st->print("\t# spill size = %d", is64 ? 64 : 32);
++ }
++ }
++
++ return 0;
++}
++
++#ifndef PRODUCT
++void MachSpillCopyNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
++ if (ra_ == NULL) {
++ st->print("N%d = SpillCopy(N%d)", _idx, in(1)->_idx);
++ } else {
++ implementation(NULL, ra_, false, st);
++ }
++}
++#endif
++
++void MachSpillCopyNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
++ implementation(&cbuf, ra_, false, NULL);
++}
++
++uint MachSpillCopyNode::size(PhaseRegAlloc *ra_) const {
++ return MachNode::size(ra_);
++}
++
++//=============================================================================
++
++#ifndef PRODUCT
++void BoxLockNode::format(PhaseRegAlloc *ra_, outputStream *st) const {
++ assert_cond(ra_ != NULL && st != NULL);
++ int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
++ int reg = ra_->get_reg_first(this);
++ st->print("add %s, sp, #%d\t# box lock",
++ Matcher::regName[reg], offset);
++}
++#endif
++
++void BoxLockNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
++ C2_MacroAssembler _masm(&cbuf);
++ Assembler::IncompressibleRegion ir(&_masm); // Fixed length: see BoxLockNode::size()
++
++ assert_cond(ra_ != NULL);
++ int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
++ int reg = ra_->get_encode(this);
++
++ if (Assembler::is_simm12(offset)) {
++ __ addi(as_Register(reg), sp, offset);
++ } else {
++ __ li32(t0, offset);
++ __ add(as_Register(reg), sp, t0);
++ }
++}
++
++uint BoxLockNode::size(PhaseRegAlloc *ra_) const {
++ // BoxLockNode is not a MachNode, so we can't just call MachNode::size(ra_).
++ int offset = ra_->reg2offset(in_RegMask(0).find_first_elem());
++
++ if (Assembler::is_simm12(offset)) {
++ return NativeInstruction::instruction_size;
++ } else {
++ return 3 * NativeInstruction::instruction_size; // lui + addiw + add;
++ }
++}
++
++//=============================================================================
++
++#ifndef PRODUCT
++void MachUEPNode::format(PhaseRegAlloc* ra_, outputStream* st) const
++{
++ assert_cond(st != NULL);
++ st->print_cr("# MachUEPNode");
++ if (UseCompressedClassPointers) {
++ st->print_cr("\tlwu t0, [j_rarg0, oopDesc::klass_offset_in_bytes()]\t# compressed klass");
++ if (CompressedKlassPointers::shift() != 0) {
++ st->print_cr("\tdecode_klass_not_null t0, t0");
++ }
++ } else {
++ st->print_cr("\tld t0, [j_rarg0, oopDesc::klass_offset_in_bytes()]\t# compressed klass");
++ }
++ st->print_cr("\tbeq t0, t1, ic_hit");
++ st->print_cr("\tj, SharedRuntime::_ic_miss_stub\t # Inline cache check");
++ st->print_cr("\tic_hit:");
++}
++#endif
++
++void MachUEPNode::emit(CodeBuffer& cbuf, PhaseRegAlloc* ra_) const
++{
++ // This is the unverified entry point.
++ C2_MacroAssembler _masm(&cbuf);
++
++ Label skip;
++ __ cmp_klass(j_rarg0, t1, t0, t2 /* call-clobbered t2 as a tmp */, skip);
++ __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
++ __ bind(skip);
++
++ // These NOPs are critical so that verified entry point is properly
++ // 4 bytes aligned for patching by NativeJump::patch_verified_entry()
++ __ align(NativeInstruction::instruction_size);
++}
++
++uint MachUEPNode::size(PhaseRegAlloc* ra_) const
++{
++ assert_cond(ra_ != NULL);
++ return MachNode::size(ra_);
++}
++
++// REQUIRED EMIT CODE
++
++//=============================================================================
++
++// Emit exception handler code.
++int HandlerImpl::emit_exception_handler(CodeBuffer& cbuf)
++{
++ // la_patchable t0, #exception_blob_entry_point
++ // jr (offset)t0
++ // or
++ // j #exception_blob_entry_point
++ // Note that the code buffer's insts_mark is always relative to insts.
++ // That's why we must use the macroassembler to generate a handler.
++ C2_MacroAssembler _masm(&cbuf);
++ address base = __ start_a_stub(size_exception_handler());
++ if (base == NULL) {
++ ciEnv::current()->record_failure("CodeCache is full");
++ return 0; // CodeBuffer::expand failed
++ }
++ int offset = __ offset();
++ __ far_jump(RuntimeAddress(OptoRuntime::exception_blob()->entry_point()));
++ assert(__ offset() - offset <= (int) size_exception_handler(), "overflow");
++ __ end_a_stub();
++ return offset;
++}
++
++// Emit deopt handler code.
++int HandlerImpl::emit_deopt_handler(CodeBuffer& cbuf)
++{
++ // Note that the code buffer's insts_mark is always relative to insts.
++ // That's why we must use the macroassembler to generate a handler.
++ C2_MacroAssembler _masm(&cbuf);
++ address base = __ start_a_stub(size_deopt_handler());
++ if (base == NULL) {
++ ciEnv::current()->record_failure("CodeCache is full");
++ return 0; // CodeBuffer::expand failed
++ }
++ int offset = __ offset();
++
++ __ auipc(ra, 0);
++ __ far_jump(RuntimeAddress(SharedRuntime::deopt_blob()->unpack()));
++
++ assert(__ offset() - offset <= (int) size_deopt_handler(), "overflow");
++ __ end_a_stub();
++ return offset;
++
++}
++// REQUIRED MATCHER CODE
++
++//=============================================================================
++
++const bool Matcher::match_rule_supported(int opcode) {
++ if (!has_match_rule(opcode)) {
++ return false;
++ }
++
++ switch (opcode) {
++ case Op_CacheWB: // fall through
++ case Op_CacheWBPreSync: // fall through
++ case Op_CacheWBPostSync:
++ if (!VM_Version::supports_data_cache_line_flush()) {
++ return false;
++ }
++ break;
++
++ case Op_StrCompressedCopy: // fall through
++ case Op_StrInflatedCopy: // fall through
++ case Op_HasNegatives:
++ return UseRVV;
++
++ case Op_EncodeISOArray:
++ return UseRVV && SpecialEncodeISOArray;
++
++ case Op_PopCountI:
++ case Op_PopCountL:
++ return UsePopCountInstruction;
++
++ case Op_RotateRight:
++ case Op_RotateLeft:
++ case Op_CountLeadingZerosI:
++ case Op_CountLeadingZerosL:
++ case Op_CountTrailingZerosI:
++ case Op_CountTrailingZerosL:
++ return UseZbb;
++ }
++
++ return true; // Per default match rules are supported.
++}
++
++// Identify extra cases that we might want to provide match rules for vector nodes and
++// other intrinsics guarded with vector length (vlen) and element type (bt).
++const bool Matcher::match_rule_supported_vector(int opcode, int vlen, BasicType bt) {
++ if (!match_rule_supported(opcode) || !vector_size_supported(bt, vlen)) {
++ return false;
++ }
++
++ return op_vec_supported(opcode);
++}
++
++const RegMask* Matcher::predicate_reg_mask(void) {
++ return NULL;
++}
++
++const TypeVect* Matcher::predicate_reg_type(const Type* elemTy, int length) {
++ return NULL;
++}
++
++// Vector calling convention not yet implemented.
++const bool Matcher::supports_vector_calling_convention(void) {
++ return false;
++}
++
++OptoRegPair Matcher::vector_return_value(uint ideal_reg) {
++ Unimplemented();
++ return OptoRegPair(0, 0);
++}
++
++// Is this branch offset short enough that a short branch can be used?
++//
++// NOTE: If the platform does not provide any short branch variants, then
++// this method should return false for offset 0.
++// |---label(L1)-----|
++// |-----------------|
++// |-----------------|----------eq: float-------------------
++// |-----------------| // far_cmpD_branch | cmpD_branch
++// |------- ---------| feq; | feq;
++// |-far_cmpD_branch-| beqz done; | bnez L;
++// |-----------------| j L; |
++// |-----------------| bind(done); |
++// |-----------------|--------------------------------------
++// |-----------------| // so shortBrSize = br_size - 4;
++// |-----------------| // so offs = offset - shortBrSize + 4;
++// |---label(L2)-----|
++bool Matcher::is_short_branch_offset(int rule, int br_size, int offset) {
++ // The passed offset is relative to address of the branch.
++ int shortBrSize = br_size - 4;
++ int offs = offset - shortBrSize + 4;
++ return (-4096 <= offs && offs < 4096);
++}
++
++// Vector width in bytes.
++const int Matcher::vector_width_in_bytes(BasicType bt) {
++ if (UseRVV) {
++ // The MaxVectorSize should have been set by detecting RVV max vector register size when check UseRVV.
++ // MaxVectorSize == VM_Version::_initial_vector_length
++ return MaxVectorSize;
++ }
++ return 0;
++}
++
++// Limits on vector size (number of elements) loaded into vector.
++const int Matcher::max_vector_size(const BasicType bt) {
++ return vector_width_in_bytes(bt) / type2aelembytes(bt);
++}
++const int Matcher::min_vector_size(const BasicType bt) {
++ return max_vector_size(bt);
++}
++
++// Vector ideal reg.
++const uint Matcher::vector_ideal_reg(int len) {
++ assert(MaxVectorSize >= len, "");
++ if (UseRVV) {
++ return Op_VecA;
++ }
++
++ ShouldNotReachHere();
++ return 0;
++}
++
++const int Matcher::scalable_vector_reg_size(const BasicType bt) {
++ return Matcher::max_vector_size(bt);
++}
++
++MachOper* Matcher::pd_specialize_generic_vector_operand(MachOper* original_opnd, uint ideal_reg, bool is_temp) {
++ ShouldNotReachHere(); // generic vector operands not supported
++ return NULL;
++}
++
++bool Matcher::is_generic_reg2reg_move(MachNode* m) {
++ ShouldNotReachHere(); // generic vector operands not supported
++ return false;
++}
++
++bool Matcher::is_generic_vector(MachOper* opnd) {
++ ShouldNotReachHere(); // generic vector operands not supported
++ return false;
++}
++
++// Return whether or not this register is ever used as an argument.
++// This function is used on startup to build the trampoline stubs in
++// generateOptoStub. Registers not mentioned will be killed by the VM
++// call in the trampoline, and arguments in those registers not be
++// available to the callee.
++bool Matcher::can_be_java_arg(int reg)
++{
++ return
++ reg == R10_num || reg == R10_H_num ||
++ reg == R11_num || reg == R11_H_num ||
++ reg == R12_num || reg == R12_H_num ||
++ reg == R13_num || reg == R13_H_num ||
++ reg == R14_num || reg == R14_H_num ||
++ reg == R15_num || reg == R15_H_num ||
++ reg == R16_num || reg == R16_H_num ||
++ reg == R17_num || reg == R17_H_num ||
++ reg == F10_num || reg == F10_H_num ||
++ reg == F11_num || reg == F11_H_num ||
++ reg == F12_num || reg == F12_H_num ||
++ reg == F13_num || reg == F13_H_num ||
++ reg == F14_num || reg == F14_H_num ||
++ reg == F15_num || reg == F15_H_num ||
++ reg == F16_num || reg == F16_H_num ||
++ reg == F17_num || reg == F17_H_num;
++}
++
++bool Matcher::is_spillable_arg(int reg)
++{
++ return can_be_java_arg(reg);
++}
++
++const int Matcher::float_pressure(int default_pressure_threshold) {
++ return default_pressure_threshold;
++}
++
++bool Matcher::use_asm_for_ldiv_by_con(jlong divisor) {
++ return false;
++}
++
++RegMask Matcher::divI_proj_mask() {
++ ShouldNotReachHere();
++ return RegMask();
++}
++
++// Register for MODI projection of divmodI.
++RegMask Matcher::modI_proj_mask() {
++ ShouldNotReachHere();
++ return RegMask();
++}
++
++// Register for DIVL projection of divmodL.
++RegMask Matcher::divL_proj_mask() {
++ ShouldNotReachHere();
++ return RegMask();
++}
++
++// Register for MODL projection of divmodL.
++RegMask Matcher::modL_proj_mask() {
++ ShouldNotReachHere();
++ return RegMask();
++}
++
++const RegMask Matcher::method_handle_invoke_SP_save_mask() {
++ return FP_REG_mask();
++}
++
++bool size_fits_all_mem_uses(AddPNode* addp, int shift) {
++ assert_cond(addp != NULL);
++ for (DUIterator_Fast imax, i = addp->fast_outs(imax); i < imax; i++) {
++ Node* u = addp->fast_out(i);
++ if (u != NULL && u->is_Mem()) {
++ int opsize = u->as_Mem()->memory_size();
++ assert(opsize > 0, "unexpected memory operand size");
++ if (u->as_Mem()->memory_size() != (1 << shift)) {
++ return false;
++ }
++ }
++ }
++ return true;
++}
++
++// Should the Matcher clone input 'm' of node 'n'?
++bool Matcher::pd_clone_node(Node* n, Node* m, Matcher::MStack& mstack) {
++ assert_cond(m != NULL);
++ if (is_vshift_con_pattern(n, m)) { // ShiftV src (ShiftCntV con)
++ mstack.push(m, Visit); // m = ShiftCntV
++ return true;
++ }
++ return false;
++}
++
++// Should the Matcher clone shifts on addressing modes, expecting them
++// to be subsumed into complex addressing expressions or compute them
++// into registers?
++bool Matcher::pd_clone_address_expressions(AddPNode* m, Matcher::MStack& mstack, VectorSet& address_visited) {
++ return clone_base_plus_offset_address(m, mstack, address_visited);
++}
++
++%}
++
++
++
++//----------ENCODING BLOCK-----------------------------------------------------
++// This block specifies the encoding classes used by the compiler to
++// output byte streams. Encoding classes are parameterized macros
++// used by Machine Instruction Nodes in order to generate the bit
++// encoding of the instruction. Operands specify their base encoding
++// interface with the interface keyword. There are currently
++// supported four interfaces, REG_INTER, CONST_INTER, MEMORY_INTER, &
++// COND_INTER. REG_INTER causes an operand to generate a function
++// which returns its register number when queried. CONST_INTER causes
++// an operand to generate a function which returns the value of the
++// constant when queried. MEMORY_INTER causes an operand to generate
++// four functions which return the Base Register, the Index Register,
++// the Scale Value, and the Offset Value of the operand when queried.
++// COND_INTER causes an operand to generate six functions which return
++// the encoding code (ie - encoding bits for the instruction)
++// associated with each basic boolean condition for a conditional
++// instruction.
++//
++// Instructions specify two basic values for encoding. Again, a
++// function is available to check if the constant displacement is an
++// oop. They use the ins_encode keyword to specify their encoding
++// classes (which must be a sequence of enc_class names, and their
++// parameters, specified in the encoding block), and they use the
++// opcode keyword to specify, in order, their primary, secondary, and
++// tertiary opcode. Only the opcode sections which a particular
++// instruction needs for encoding need to be specified.
++encode %{
++ // BEGIN Non-volatile memory access
++
++ enc_class riscv_enc_li_imm(iRegIorL dst, immIorL src) %{
++ C2_MacroAssembler _masm(&cbuf);
++ int64_t con = (int64_t)$src$$constant;
++ Register dst_reg = as_Register($dst$$reg);
++ __ mv(dst_reg, con);
++ %}
++
++ enc_class riscv_enc_mov_p(iRegP dst, immP src) %{
++ C2_MacroAssembler _masm(&cbuf);
++ Register dst_reg = as_Register($dst$$reg);
++ address con = (address)$src$$constant;
++ if (con == NULL || con == (address)1) {
++ ShouldNotReachHere();
++ } else {
++ relocInfo::relocType rtype = $src->constant_reloc();
++ if (rtype == relocInfo::oop_type) {
++ __ movoop(dst_reg, (jobject)con, /*immediate*/true);
++ } else if (rtype == relocInfo::metadata_type) {
++ __ mov_metadata(dst_reg, (Metadata*)con);
++ } else {
++ assert(rtype == relocInfo::none, "unexpected reloc type");
++ __ mv(dst_reg, $src$$constant);
++ }
++ }
++ %}
++
++ enc_class riscv_enc_mov_p1(iRegP dst) %{
++ C2_MacroAssembler _masm(&cbuf);
++ Register dst_reg = as_Register($dst$$reg);
++ __ mv(dst_reg, 1);
++ %}
++
++ enc_class riscv_enc_mov_byte_map_base(iRegP dst) %{
++ C2_MacroAssembler _masm(&cbuf);
++ __ load_byte_map_base($dst$$Register);
++ %}
++
++ enc_class riscv_enc_mov_n(iRegN dst, immN src) %{
++ C2_MacroAssembler _masm(&cbuf);
++ Register dst_reg = as_Register($dst$$reg);
++ address con = (address)$src$$constant;
++ if (con == NULL) {
++ ShouldNotReachHere();
++ } else {
++ relocInfo::relocType rtype = $src->constant_reloc();
++ assert(rtype == relocInfo::oop_type, "unexpected reloc type");
++ __ set_narrow_oop(dst_reg, (jobject)con);
++ }
++ %}
++
++ enc_class riscv_enc_mov_zero(iRegNorP dst) %{
++ C2_MacroAssembler _masm(&cbuf);
++ Register dst_reg = as_Register($dst$$reg);
++ __ mv(dst_reg, zr);
++ %}
++
++ enc_class riscv_enc_mov_nk(iRegN dst, immNKlass src) %{
++ C2_MacroAssembler _masm(&cbuf);
++ Register dst_reg = as_Register($dst$$reg);
++ address con = (address)$src$$constant;
++ if (con == NULL) {
++ ShouldNotReachHere();
++ } else {
++ relocInfo::relocType rtype = $src->constant_reloc();
++ assert(rtype == relocInfo::metadata_type, "unexpected reloc type");
++ __ set_narrow_klass(dst_reg, (Klass *)con);
++ }
++ %}
++
++ enc_class riscv_enc_cmpxchgw(iRegINoSp res, memory mem, iRegI oldval, iRegI newval) %{
++ C2_MacroAssembler _masm(&cbuf);
++ __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32,
++ /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register,
++ /*result as bool*/ true);
++ %}
++
++ enc_class riscv_enc_cmpxchgn(iRegINoSp res, memory mem, iRegI oldval, iRegI newval) %{
++ C2_MacroAssembler _masm(&cbuf);
++ __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32,
++ /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register,
++ /*result as bool*/ true);
++ %}
++
++ enc_class riscv_enc_cmpxchg(iRegINoSp res, memory mem, iRegL oldval, iRegL newval) %{
++ C2_MacroAssembler _masm(&cbuf);
++ __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
++ /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register,
++ /*result as bool*/ true);
++ %}
++
++ enc_class riscv_enc_cmpxchgw_acq(iRegINoSp res, memory mem, iRegI oldval, iRegI newval) %{
++ C2_MacroAssembler _masm(&cbuf);
++ __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32,
++ /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register,
++ /*result as bool*/ true);
++ %}
++
++ enc_class riscv_enc_cmpxchgn_acq(iRegINoSp res, memory mem, iRegI oldval, iRegI newval) %{
++ C2_MacroAssembler _masm(&cbuf);
++ __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32,
++ /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register,
++ /*result as bool*/ true);
++ %}
++
++ enc_class riscv_enc_cmpxchg_acq(iRegINoSp res, memory mem, iRegL oldval, iRegL newval) %{
++ C2_MacroAssembler _masm(&cbuf);
++ __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
++ /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register,
++ /*result as bool*/ true);
++ %}
++
++ // compare and branch instruction encodings
++
++ enc_class riscv_enc_j(label lbl) %{
++ C2_MacroAssembler _masm(&cbuf);
++ Label* L = $lbl$$label;
++ __ j(*L);
++ %}
++
++ enc_class riscv_enc_far_cmpULtGe_imm0_branch(cmpOpULtGe cmp, iRegIorL op1, label lbl) %{
++ C2_MacroAssembler _masm(&cbuf);
++ Label* L = $lbl$$label;
++ switch ($cmp$$cmpcode) {
++ case(BoolTest::ge):
++ __ j(*L);
++ break;
++ case(BoolTest::lt):
++ break;
++ default:
++ Unimplemented();
++ }
++ %}
++
++ // call instruction encodings
++
++ enc_class riscv_enc_partial_subtype_check(iRegP sub, iRegP super, iRegP temp, iRegP result) %{
++ Register sub_reg = as_Register($sub$$reg);
++ Register super_reg = as_Register($super$$reg);
++ Register temp_reg = as_Register($temp$$reg);
++ Register result_reg = as_Register($result$$reg);
++ Register cr_reg = t1;
++
++ Label miss;
++ Label done;
++ C2_MacroAssembler _masm(&cbuf);
++ __ check_klass_subtype_slow_path(sub_reg, super_reg, temp_reg, result_reg,
++ NULL, &miss);
++ if ($primary) {
++ __ mv(result_reg, zr);
++ } else {
++ __ mv(cr_reg, zr);
++ __ j(done);
++ }
++
++ __ bind(miss);
++ if (!$primary) {
++ __ mv(cr_reg, 1);
++ }
++
++ __ bind(done);
++ %}
++
++ enc_class riscv_enc_java_static_call(method meth) %{
++ C2_MacroAssembler _masm(&cbuf);
++ Assembler::IncompressibleRegion ir(&_masm); // Fixed length: see ret_addr_offset
++
++ address addr = (address)$meth$$method;
++ address call = NULL;
++ assert_cond(addr != NULL);
++ if (!_method) {
++ // A call to a runtime wrapper, e.g. new, new_typeArray_Java, uncommon_trap.
++ call = __ trampoline_call(Address(addr, relocInfo::runtime_call_type), &cbuf);
++ if (call == NULL) {
++ ciEnv::current()->record_failure("CodeCache is full");
++ return;
++ }
++ } else {
++ int method_index = resolved_method_index(cbuf);
++ RelocationHolder rspec = _optimized_virtual ? opt_virtual_call_Relocation::spec(method_index)
++ : static_call_Relocation::spec(method_index);
++ call = __ trampoline_call(Address(addr, rspec), &cbuf);
++ if (call == NULL) {
++ ciEnv::current()->record_failure("CodeCache is full");
++ return;
++ }
++
++ // Emit stub for static call
++ address stub = CompiledStaticCall::emit_to_interp_stub(cbuf);
++ if (stub == NULL) {
++ ciEnv::current()->record_failure("CodeCache is full");
++ return;
++ }
++ }
++ %}
++
++ enc_class riscv_enc_java_dynamic_call(method meth) %{
++ C2_MacroAssembler _masm(&cbuf);
++ Assembler::IncompressibleRegion ir(&_masm); // Fixed length: see ret_addr_offset
++ int method_index = resolved_method_index(cbuf);
++ address call = __ ic_call((address)$meth$$method, method_index);
++ if (call == NULL) {
++ ciEnv::current()->record_failure("CodeCache is full");
++ return;
++ }
++ %}
++
++ enc_class riscv_enc_call_epilog() %{
++ C2_MacroAssembler _masm(&cbuf);
++ if (VerifyStackAtCalls) {
++ // Check that stack depth is unchanged: find majik cookie on stack
++ __ call_Unimplemented();
++ }
++ %}
++
++ enc_class riscv_enc_java_to_runtime(method meth) %{
++ C2_MacroAssembler _masm(&cbuf);
++ Assembler::IncompressibleRegion ir(&_masm); // Fixed length: see ret_addr_offset
++
++ // some calls to generated routines (arraycopy code) are scheduled
++ // by C2 as runtime calls. if so we can call them using a jr (they
++ // will be in a reachable segment) otherwise we have to use a jalr
++ // which loads the absolute address into a register.
++ address entry = (address)$meth$$method;
++ CodeBlob *cb = CodeCache::find_blob(entry);
++ if (cb != NULL) {
++ address call = __ trampoline_call(Address(entry, relocInfo::runtime_call_type));
++ if (call == NULL) {
++ ciEnv::current()->record_failure("CodeCache is full");
++ return;
++ }
++ } else {
++ Label retaddr;
++ __ la(t1, retaddr);
++ __ la(t0, RuntimeAddress(entry));
++ // Leave a breadcrumb for JavaFrameAnchor::capture_last_Java_pc()
++ __ addi(sp, sp, -2 * wordSize);
++ __ sd(t1, Address(sp, wordSize));
++ __ jalr(t0);
++ __ bind(retaddr);
++ __ addi(sp, sp, 2 * wordSize);
++ }
++ %}
++
++ // using the cr register as the bool result: 0 for success; others failed.
++ enc_class riscv_enc_fast_lock(iRegP object, iRegP box, iRegPNoSp tmp1, iRegPNoSp tmp2) %{
++ C2_MacroAssembler _masm(&cbuf);
++ Register flag = t1;
++ Register oop = as_Register($object$$reg);
++ Register box = as_Register($box$$reg);
++ Register disp_hdr = as_Register($tmp1$$reg);
++ Register tmp = as_Register($tmp2$$reg);
++ Label cont;
++ Label object_has_monitor;
++
++ assert_different_registers(oop, box, tmp, disp_hdr, t0);
++
++ // Load markWord from object into displaced_header.
++ __ ld(disp_hdr, Address(oop, oopDesc::mark_offset_in_bytes()));
++
++ if (DiagnoseSyncOnValueBasedClasses != 0) {
++ __ load_klass(flag, oop);
++ __ lwu(flag, Address(flag, Klass::access_flags_offset()));
++ __ test_bit(flag, flag, exact_log2(JVM_ACC_IS_VALUE_BASED_CLASS), tmp /* tmp */);
++ __ bnez(flag, cont, true /* is_far */);
++ }
++
++ if (UseBiasedLocking && !UseOptoBiasInlining) {
++ __ biased_locking_enter(box, oop, disp_hdr, tmp, true, cont, NULL /* slow_case */, NULL, flag);
++ }
++
++ // Check for existing monitor
++ __ test_bit(t0, disp_hdr, exact_log2(markWord::monitor_value));
++ __ bnez(t0, object_has_monitor);
++
++ // Set tmp to be (markWord of object | UNLOCK_VALUE).
++ __ ori(tmp, disp_hdr, markWord::unlocked_value);
++
++ // Initialize the box. (Must happen before we update the object mark!)
++ __ sd(tmp, Address(box, BasicLock::displaced_header_offset_in_bytes()));
++
++ // Compare object markWord with an unlocked value (tmp) and if
++ // equal exchange the stack address of our box with object markWord.
++ // On failure disp_hdr contains the possibly locked markWord.
++ __ cmpxchg(/*memory address*/oop, /*expected value*/tmp, /*new value*/box, Assembler::int64, Assembler::aq,
++ Assembler::rl, /*result*/disp_hdr);
++ __ mv(flag, zr);
++ __ beq(disp_hdr, tmp, cont); // prepare zero flag and goto cont if we won the cas
++
++ assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
++
++ // If the compare-and-exchange succeeded, then we found an unlocked
++ // object, will have now locked it will continue at label cont
++ // We did not see an unlocked object so try the fast recursive case.
++
++ // Check if the owner is self by comparing the value in the
++ // markWord of object (disp_hdr) with the stack pointer.
++ __ sub(disp_hdr, disp_hdr, sp);
++ __ mv(tmp, (intptr_t) (~(os::vm_page_size()-1) | (uintptr_t)markWord::lock_mask_in_place));
++ // If (mark & lock_mask) == 0 and mark - sp < page_size, we are stack-locking and goto cont,
++ // hence we can store 0 as the displaced header in the box, which indicates that it is a
++ // recursive lock.
++ __ andr(tmp/*==0?*/, disp_hdr, tmp);
++ __ sd(tmp/*==0, perhaps*/, Address(box, BasicLock::displaced_header_offset_in_bytes()));
++ __ mv(flag, tmp); // we can use the value of tmp as the result here
++
++ __ j(cont);
++
++ // Handle existing monitor.
++ __ bind(object_has_monitor);
++ // The object's monitor m is unlocked iff m->owner == NULL,
++ // otherwise m->owner may contain a thread or a stack address.
++ //
++ // Try to CAS m->owner from NULL to current thread.
++ __ add(tmp, disp_hdr, (ObjectMonitor::owner_offset_in_bytes() - markWord::monitor_value));
++ __ cmpxchg(/*memory address*/tmp, /*expected value*/zr, /*new value*/xthread, Assembler::int64, Assembler::aq,
++ Assembler::rl, /*result*/flag); // cas succeeds if flag == zr(expected)
++
++ // Store a non-null value into the box to avoid looking like a re-entrant
++ // lock. The fast-path monitor unlock code checks for
++ // markWord::monitor_value so use markWord::unused_mark which has the
++ // relevant bit set, and also matches ObjectSynchronizer::slow_enter.
++ __ mv(tmp, (address)markWord::unused_mark().value());
++ __ sd(tmp, Address(box, BasicLock::displaced_header_offset_in_bytes()));
++
++ __ beqz(flag, cont); // CAS success means locking succeeded
++
++ __ bne(flag, xthread, cont); // Check for recursive locking
++
++ // Recursive lock case
++ __ mv(flag, zr);
++ __ increment(Address(disp_hdr, ObjectMonitor::recursions_offset_in_bytes() - markWord::monitor_value), 1, t0, tmp);
++
++ __ bind(cont);
++ %}
++
++ // using cr flag to indicate the fast_unlock result: 0 for success; others failed.
++ enc_class riscv_enc_fast_unlock(iRegP object, iRegP box, iRegPNoSp tmp1, iRegPNoSp tmp2) %{
++ C2_MacroAssembler _masm(&cbuf);
++ Register flag = t1;
++ Register oop = as_Register($object$$reg);
++ Register box = as_Register($box$$reg);
++ Register disp_hdr = as_Register($tmp1$$reg);
++ Register tmp = as_Register($tmp2$$reg);
++ Label cont;
++ Label object_has_monitor;
++
++ assert_different_registers(oop, box, tmp, disp_hdr, flag);
++
++ if (UseBiasedLocking && !UseOptoBiasInlining) {
++ __ biased_locking_exit(oop, tmp, cont, flag);
++ }
++
++ // Find the lock address and load the displaced header from the stack.
++ __ ld(disp_hdr, Address(box, BasicLock::displaced_header_offset_in_bytes()));
++
++ // If the displaced header is 0, we have a recursive unlock.
++ __ mv(flag, disp_hdr);
++ __ beqz(disp_hdr, cont);
++
++ // Handle existing monitor.
++ __ ld(tmp, Address(oop, oopDesc::mark_offset_in_bytes()));
++ __ test_bit(t0, tmp, exact_log2(markWord::monitor_value));
++ __ bnez(t0, object_has_monitor);
++
++ // Check if it is still a light weight lock, this is true if we
++ // see the stack address of the basicLock in the markWord of the
++ // object.
++
++ __ cmpxchg(/*memory address*/oop, /*expected value*/box, /*new value*/disp_hdr, Assembler::int64, Assembler::relaxed,
++ Assembler::rl, /*result*/tmp);
++ __ xorr(flag, box, tmp); // box == tmp if cas succeeds
++ __ j(cont);
++
++ assert(oopDesc::mark_offset_in_bytes() == 0, "offset of _mark is not 0");
++
++ // Handle existing monitor.
++ __ bind(object_has_monitor);
++ STATIC_ASSERT(markWord::monitor_value <= INT_MAX);
++ __ add(tmp, tmp, -(int)markWord::monitor_value); // monitor
++ __ ld(disp_hdr, Address(tmp, ObjectMonitor::recursions_offset_in_bytes()));
++
++ Label notRecursive;
++ __ beqz(disp_hdr, notRecursive); // Will be 0 if not recursive.
++
++ // Recursive lock
++ __ addi(disp_hdr, disp_hdr, -1);
++ __ sd(disp_hdr, Address(tmp, ObjectMonitor::recursions_offset_in_bytes()));
++ __ mv(flag, zr);
++ __ j(cont);
++
++ __ bind(notRecursive);
++ __ ld(flag, Address(tmp, ObjectMonitor::EntryList_offset_in_bytes()));
++ __ ld(disp_hdr, Address(tmp, ObjectMonitor::cxq_offset_in_bytes()));
++ __ orr(flag, flag, disp_hdr); // Will be 0 if both are 0.
++ __ bnez(flag, cont);
++ // need a release store here
++ __ la(tmp, Address(tmp, ObjectMonitor::owner_offset_in_bytes()));
++ __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore);
++ __ sd(zr, Address(tmp)); // set unowned
++
++ __ bind(cont);
++ %}
++
++ // arithmetic encodings
++
++ enc_class riscv_enc_divw(iRegI dst, iRegI src1, iRegI src2) %{
++ C2_MacroAssembler _masm(&cbuf);
++ Register dst_reg = as_Register($dst$$reg);
++ Register src1_reg = as_Register($src1$$reg);
++ Register src2_reg = as_Register($src2$$reg);
++ __ corrected_idivl(dst_reg, src1_reg, src2_reg, false);
++ %}
++
++ enc_class riscv_enc_div(iRegI dst, iRegI src1, iRegI src2) %{
++ C2_MacroAssembler _masm(&cbuf);
++ Register dst_reg = as_Register($dst$$reg);
++ Register src1_reg = as_Register($src1$$reg);
++ Register src2_reg = as_Register($src2$$reg);
++ __ corrected_idivq(dst_reg, src1_reg, src2_reg, false);
++ %}
++
++ enc_class riscv_enc_modw(iRegI dst, iRegI src1, iRegI src2) %{
++ C2_MacroAssembler _masm(&cbuf);
++ Register dst_reg = as_Register($dst$$reg);
++ Register src1_reg = as_Register($src1$$reg);
++ Register src2_reg = as_Register($src2$$reg);
++ __ corrected_idivl(dst_reg, src1_reg, src2_reg, true);
++ %}
++
++ enc_class riscv_enc_mod(iRegI dst, iRegI src1, iRegI src2) %{
++ C2_MacroAssembler _masm(&cbuf);
++ Register dst_reg = as_Register($dst$$reg);
++ Register src1_reg = as_Register($src1$$reg);
++ Register src2_reg = as_Register($src2$$reg);
++ __ corrected_idivq(dst_reg, src1_reg, src2_reg, true);
++ %}
++
++ enc_class riscv_enc_tail_call(iRegP jump_target) %{
++ C2_MacroAssembler _masm(&cbuf);
++ Register target_reg = as_Register($jump_target$$reg);
++ __ jr(target_reg);
++ %}
++
++ enc_class riscv_enc_tail_jmp(iRegP jump_target) %{
++ C2_MacroAssembler _masm(&cbuf);
++ Register target_reg = as_Register($jump_target$$reg);
++ // exception oop should be in x10
++ // ret addr has been popped into ra
++ // callee expects it in x13
++ __ mv(x13, ra);
++ __ jr(target_reg);
++ %}
++
++ enc_class riscv_enc_rethrow() %{
++ C2_MacroAssembler _masm(&cbuf);
++ __ far_jump(RuntimeAddress(OptoRuntime::rethrow_stub()));
++ %}
++
++ enc_class riscv_enc_ret() %{
++ C2_MacroAssembler _masm(&cbuf);
++ __ ret();
++ %}
++
++%}
++
++//----------FRAME--------------------------------------------------------------
++// Definition of frame structure and management information.
++//
++// S T A C K L A Y O U T Allocators stack-slot number
++// | (to get allocators register number
++// G Owned by | | v add OptoReg::stack0())
++// r CALLER | |
++// o | +--------+ pad to even-align allocators stack-slot
++// w V | pad0 | numbers; owned by CALLER
++// t -----------+--------+----> Matcher::_in_arg_limit, unaligned
++// h ^ | in | 5
++// | | args | 4 Holes in incoming args owned by SELF
++// | | | | 3
++// | | +--------+
++// V | | old out| Empty on Intel, window on Sparc
++// | old |preserve| Must be even aligned.
++// | SP-+--------+----> Matcher::_old_SP, even aligned
++// | | in | 3 area for Intel ret address
++// Owned by |preserve| Empty on Sparc.
++// SELF +--------+
++// | | pad2 | 2 pad to align old SP
++// | +--------+ 1
++// | | locks | 0
++// | +--------+----> OptoReg::stack0(), even aligned
++// | | pad1 | 11 pad to align new SP
++// | +--------+
++// | | | 10
++// | | spills | 9 spills
++// V | | 8 (pad0 slot for callee)
++// -----------+--------+----> Matcher::_out_arg_limit, unaligned
++// ^ | out | 7
++// | | args | 6 Holes in outgoing args owned by CALLEE
++// Owned by +--------+
++// CALLEE | new out| 6 Empty on Intel, window on Sparc
++// | new |preserve| Must be even-aligned.
++// | SP-+--------+----> Matcher::_new_SP, even aligned
++// | | |
++//
++// Note 1: Only region 8-11 is determined by the allocator. Region 0-5 is
++// known from SELF's arguments and the Java calling convention.
++// Region 6-7 is determined per call site.
++// Note 2: If the calling convention leaves holes in the incoming argument
++// area, those holes are owned by SELF. Holes in the outgoing area
++// are owned by the CALLEE. Holes should not be nessecary in the
++// incoming area, as the Java calling convention is completely under
++// the control of the AD file. Doubles can be sorted and packed to
++// avoid holes. Holes in the outgoing arguments may be nessecary for
++// varargs C calling conventions.
++// Note 3: Region 0-3 is even aligned, with pad2 as needed. Region 3-5 is
++// even aligned with pad0 as needed.
++// Region 6 is even aligned. Region 6-7 is NOT even aligned;
++// (the latter is true on Intel but is it false on RISCV?)
++// region 6-11 is even aligned; it may be padded out more so that
++// the region from SP to FP meets the minimum stack alignment.
++// Note 4: For I2C adapters, the incoming FP may not meet the minimum stack
++// alignment. Region 11, pad1, may be dynamically extended so that
++// SP meets the minimum alignment.
++
++frame %{
++ // These three registers define part of the calling convention
++ // between compiled code and the interpreter.
++
++ // Inline Cache Register or methodOop for I2C.
++ inline_cache_reg(R31);
++
++ // Optional: name the operand used by cisc-spilling to access [stack_pointer + offset]
++ cisc_spilling_operand_name(indOffset);
++
++ // Number of stack slots consumed by locking an object
++ // generate Compile::sync_stack_slots
++ // VMRegImpl::slots_per_word = wordSize / stack_slot_size = 8 / 4 = 2
++ sync_stack_slots(1 * VMRegImpl::slots_per_word);
++
++ // Compiled code's Frame Pointer
++ frame_pointer(R2);
++
++ // Interpreter stores its frame pointer in a register which is
++ // stored to the stack by I2CAdaptors.
++ // I2CAdaptors convert from interpreted java to compiled java.
++ interpreter_frame_pointer(R8);
++
++ // Stack alignment requirement
++ stack_alignment(StackAlignmentInBytes); // Alignment size in bytes (128-bit -> 16 bytes)
++
++ // Number of outgoing stack slots killed above the out_preserve_stack_slots
++ // for calls to C. Supports the var-args backing area for register parms.
++ varargs_C_out_slots_killed(frame::arg_reg_save_area_bytes / BytesPerInt);
++
++ // The after-PROLOG location of the return address. Location of
++ // return address specifies a type (REG or STACK) and a number
++ // representing the register number (i.e. - use a register name) or
++ // stack slot.
++ // Ret Addr is on stack in slot 0 if no locks or verification or alignment.
++ // Otherwise, it is above the locks and verification slot and alignment word
++ // TODO this may well be correct but need to check why that - 2 is there
++ // ppc port uses 0 but we definitely need to allow for fixed_slots
++ // which folds in the space used for monitors
++ return_addr(STACK - 2 +
++ align_up((Compile::current()->in_preserve_stack_slots() +
++ Compile::current()->fixed_slots()),
++ stack_alignment_in_slots()));
++
++ // Location of compiled Java return values. Same as C for now.
++ return_value
++ %{
++ assert(ideal_reg >= Op_RegI && ideal_reg <= Op_RegL,
++ "only return normal values");
++
++ static const int lo[Op_RegL + 1] = { // enum name
++ 0, // Op_Node
++ 0, // Op_Set
++ R10_num, // Op_RegN
++ R10_num, // Op_RegI
++ R10_num, // Op_RegP
++ F10_num, // Op_RegF
++ F10_num, // Op_RegD
++ R10_num // Op_RegL
++ };
++
++ static const int hi[Op_RegL + 1] = { // enum name
++ 0, // Op_Node
++ 0, // Op_Set
++ OptoReg::Bad, // Op_RegN
++ OptoReg::Bad, // Op_RegI
++ R10_H_num, // Op_RegP
++ OptoReg::Bad, // Op_RegF
++ F10_H_num, // Op_RegD
++ R10_H_num // Op_RegL
++ };
++
++ return OptoRegPair(hi[ideal_reg], lo[ideal_reg]);
++ %}
++%}
++
++//----------ATTRIBUTES---------------------------------------------------------
++//----------Operand Attributes-------------------------------------------------
++op_attrib op_cost(1); // Required cost attribute
++
++//----------Instruction Attributes---------------------------------------------
++ins_attrib ins_cost(DEFAULT_COST); // Required cost attribute
++ins_attrib ins_size(32); // Required size attribute (in bits)
++ins_attrib ins_short_branch(0); // Required flag: is this instruction
++ // a non-matching short branch variant
++ // of some long branch?
++ins_attrib ins_alignment(4); // Required alignment attribute (must
++ // be a power of 2) specifies the
++ // alignment that some part of the
++ // instruction (not necessarily the
++ // start) requires. If > 1, a
++ // compute_padding() function must be
++ // provided for the instruction
++
++//----------OPERANDS-----------------------------------------------------------
++// Operand definitions must precede instruction definitions for correct parsing
++// in the ADLC because operands constitute user defined types which are used in
++// instruction definitions.
++
++//----------Simple Operands----------------------------------------------------
++
++// Integer operands 32 bit
++// 32 bit immediate
++operand immI()
++%{
++ match(ConI);
++
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++// 32 bit zero
++operand immI0()
++%{
++ predicate(n->get_int() == 0);
++ match(ConI);
++
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++// 32 bit unit increment
++operand immI_1()
++%{
++ predicate(n->get_int() == 1);
++ match(ConI);
++
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++// 32 bit unit decrement
++operand immI_M1()
++%{
++ predicate(n->get_int() == -1);
++ match(ConI);
++
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++// Unsigned Integer Immediate: 6-bit int, greater than 32
++operand uimmI6_ge32() %{
++ predicate(((unsigned int)(n->get_int()) < 64) && (n->get_int() >= 32));
++ match(ConI);
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++operand immI_le_4()
++%{
++ predicate(n->get_int() <= 4);
++ match(ConI);
++
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++operand immI_16()
++%{
++ predicate(n->get_int() == 16);
++ match(ConI);
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++operand immI_24()
++%{
++ predicate(n->get_int() == 24);
++ match(ConI);
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++operand immI_31()
++%{
++ predicate(n->get_int() == 31);
++ match(ConI);
++
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++operand immI_63()
++%{
++ predicate(n->get_int() == 63);
++ match(ConI);
++
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++// 32 bit integer valid for add immediate
++operand immIAdd()
++%{
++ predicate(Assembler::is_simm12((int64_t)n->get_int()));
++ match(ConI);
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++// 32 bit integer valid for sub immediate
++operand immISub()
++%{
++ predicate(Assembler::is_simm12(-(int64_t)n->get_int()));
++ match(ConI);
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++// 5 bit signed value.
++operand immI5()
++%{
++ predicate(n->get_int() <= 15 && n->get_int() >= -16);
++ match(ConI);
++
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++// 5 bit signed value (simm5)
++operand immL5()
++%{
++ predicate(n->get_long() <= 15 && n->get_long() >= -16);
++ match(ConL);
++
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++// Integer operands 64 bit
++// 64 bit immediate
++operand immL()
++%{
++ match(ConL);
++
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++// 64 bit zero
++operand immL0()
++%{
++ predicate(n->get_long() == 0);
++ match(ConL);
++
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++// Pointer operands
++// Pointer Immediate
++operand immP()
++%{
++ match(ConP);
++
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++// NULL Pointer Immediate
++operand immP0()
++%{
++ predicate(n->get_ptr() == 0);
++ match(ConP);
++
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++// Pointer Immediate One
++// this is used in object initialization (initial object header)
++operand immP_1()
++%{
++ predicate(n->get_ptr() == 1);
++ match(ConP);
++
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++// Card Table Byte Map Base
++operand immByteMapBase()
++%{
++ // Get base of card map
++ predicate(BarrierSet::barrier_set()->is_a(BarrierSet::CardTableBarrierSet) &&
++ (CardTable::CardValue*)n->get_ptr() ==
++ ((CardTableBarrierSet*)(BarrierSet::barrier_set()))->card_table()->byte_map_base());
++ match(ConP);
++
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++// Int Immediate: low 16-bit mask
++operand immI_16bits()
++%{
++ predicate(n->get_int() == 0xFFFF);
++ match(ConI);
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++operand immIpowerOf2() %{
++ predicate(is_power_of_2((juint)(n->get_int())));
++ match(ConI);
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++// Long Immediate: low 32-bit mask
++operand immL_32bits()
++%{
++ predicate(n->get_long() == 0xFFFFFFFFL);
++ match(ConL);
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++// 64 bit unit decrement
++operand immL_M1()
++%{
++ predicate(n->get_long() == -1);
++ match(ConL);
++
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++
++// 32 bit offset of pc in thread anchor
++
++operand immL_pc_off()
++%{
++ predicate(n->get_long() == in_bytes(JavaThread::frame_anchor_offset()) +
++ in_bytes(JavaFrameAnchor::last_Java_pc_offset()));
++ match(ConL);
++
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++// 64 bit integer valid for add immediate
++operand immLAdd()
++%{
++ predicate(Assembler::is_simm12(n->get_long()));
++ match(ConL);
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++// 64 bit integer valid for sub immediate
++operand immLSub()
++%{
++ predicate(Assembler::is_simm12(-(n->get_long())));
++ match(ConL);
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++// Narrow pointer operands
++// Narrow Pointer Immediate
++operand immN()
++%{
++ match(ConN);
++
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++// Narrow NULL Pointer Immediate
++operand immN0()
++%{
++ predicate(n->get_narrowcon() == 0);
++ match(ConN);
++
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++operand immNKlass()
++%{
++ match(ConNKlass);
++
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++// Float and Double operands
++// Double Immediate
++operand immD()
++%{
++ match(ConD);
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++// Double Immediate: +0.0d
++operand immD0()
++%{
++ predicate(jlong_cast(n->getd()) == 0);
++ match(ConD);
++
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++// Float Immediate
++operand immF()
++%{
++ match(ConF);
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++// Float Immediate: +0.0f.
++operand immF0()
++%{
++ predicate(jint_cast(n->getf()) == 0);
++ match(ConF);
++
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++operand immIOffset()
++%{
++ predicate(Assembler::is_simm12(n->get_int()));
++ match(ConI);
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++operand immLOffset()
++%{
++ predicate(Assembler::is_simm12(n->get_long()));
++ match(ConL);
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++// Scale values
++operand immIScale()
++%{
++ predicate(1 <= n->get_int() && (n->get_int() <= 3));
++ match(ConI);
++
++ op_cost(0);
++ format %{ %}
++ interface(CONST_INTER);
++%}
++
++// Integer 32 bit Register Operands
++operand iRegI()
++%{
++ constraint(ALLOC_IN_RC(any_reg32));
++ match(RegI);
++ match(iRegINoSp);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++// Integer 32 bit Register not Special
++operand iRegINoSp()
++%{
++ constraint(ALLOC_IN_RC(no_special_reg32));
++ match(RegI);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++// Register R10 only
++operand iRegI_R10()
++%{
++ constraint(ALLOC_IN_RC(int_r10_reg));
++ match(RegI);
++ match(iRegINoSp);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++// Register R12 only
++operand iRegI_R12()
++%{
++ constraint(ALLOC_IN_RC(int_r12_reg));
++ match(RegI);
++ match(iRegINoSp);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++// Register R13 only
++operand iRegI_R13()
++%{
++ constraint(ALLOC_IN_RC(int_r13_reg));
++ match(RegI);
++ match(iRegINoSp);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++// Register R14 only
++operand iRegI_R14()
++%{
++ constraint(ALLOC_IN_RC(int_r14_reg));
++ match(RegI);
++ match(iRegINoSp);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++// Integer 64 bit Register Operands
++operand iRegL()
++%{
++ constraint(ALLOC_IN_RC(any_reg));
++ match(RegL);
++ match(iRegLNoSp);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++// Integer 64 bit Register not Special
++operand iRegLNoSp()
++%{
++ constraint(ALLOC_IN_RC(no_special_reg));
++ match(RegL);
++ match(iRegL_R10);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++// Long 64 bit Register R28 only
++operand iRegL_R28()
++%{
++ constraint(ALLOC_IN_RC(r28_reg));
++ match(RegL);
++ match(iRegLNoSp);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++// Long 64 bit Register R29 only
++operand iRegL_R29()
++%{
++ constraint(ALLOC_IN_RC(r29_reg));
++ match(RegL);
++ match(iRegLNoSp);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++// Long 64 bit Register R30 only
++operand iRegL_R30()
++%{
++ constraint(ALLOC_IN_RC(r30_reg));
++ match(RegL);
++ match(iRegLNoSp);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++// Pointer Register Operands
++// Pointer Register
++operand iRegP()
++%{
++ constraint(ALLOC_IN_RC(ptr_reg));
++ match(RegP);
++ match(iRegPNoSp);
++ match(iRegP_R10);
++ match(iRegP_R15);
++ match(javaThread_RegP);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++// Pointer 64 bit Register not Special
++operand iRegPNoSp()
++%{
++ constraint(ALLOC_IN_RC(no_special_ptr_reg));
++ match(RegP);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++operand iRegP_R10()
++%{
++ constraint(ALLOC_IN_RC(r10_reg));
++ match(RegP);
++ // match(iRegP);
++ match(iRegPNoSp);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++// Pointer 64 bit Register R11 only
++operand iRegP_R11()
++%{
++ constraint(ALLOC_IN_RC(r11_reg));
++ match(RegP);
++ match(iRegPNoSp);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++operand iRegP_R12()
++%{
++ constraint(ALLOC_IN_RC(r12_reg));
++ match(RegP);
++ // match(iRegP);
++ match(iRegPNoSp);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++// Pointer 64 bit Register R13 only
++operand iRegP_R13()
++%{
++ constraint(ALLOC_IN_RC(r13_reg));
++ match(RegP);
++ match(iRegPNoSp);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++operand iRegP_R14()
++%{
++ constraint(ALLOC_IN_RC(r14_reg));
++ match(RegP);
++ // match(iRegP);
++ match(iRegPNoSp);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++operand iRegP_R15()
++%{
++ constraint(ALLOC_IN_RC(r15_reg));
++ match(RegP);
++ // match(iRegP);
++ match(iRegPNoSp);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++operand iRegP_R16()
++%{
++ constraint(ALLOC_IN_RC(r16_reg));
++ match(RegP);
++ // match(iRegP);
++ match(iRegPNoSp);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++// Pointer 64 bit Register R28 only
++operand iRegP_R28()
++%{
++ constraint(ALLOC_IN_RC(r28_reg));
++ match(RegP);
++ match(iRegPNoSp);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++// Pointer Register Operands
++// Narrow Pointer Register
++operand iRegN()
++%{
++ constraint(ALLOC_IN_RC(any_reg32));
++ match(RegN);
++ match(iRegNNoSp);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++// Integer 64 bit Register not Special
++operand iRegNNoSp()
++%{
++ constraint(ALLOC_IN_RC(no_special_reg32));
++ match(RegN);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++// heap base register -- used for encoding immN0
++operand iRegIHeapbase()
++%{
++ constraint(ALLOC_IN_RC(heapbase_reg));
++ match(RegI);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++// Long 64 bit Register R10 only
++operand iRegL_R10()
++%{
++ constraint(ALLOC_IN_RC(r10_reg));
++ match(RegL);
++ match(iRegLNoSp);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++// Float Register
++// Float register operands
++operand fRegF()
++%{
++ constraint(ALLOC_IN_RC(float_reg));
++ match(RegF);
++
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++// Double Register
++// Double register operands
++operand fRegD()
++%{
++ constraint(ALLOC_IN_RC(double_reg));
++ match(RegD);
++
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++// Generic vector class. This will be used for
++// all vector operands.
++operand vReg()
++%{
++ constraint(ALLOC_IN_RC(vectora_reg));
++ match(VecA);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++operand vReg_V1()
++%{
++ constraint(ALLOC_IN_RC(v1_reg));
++ match(VecA);
++ match(vReg);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++operand vReg_V2()
++%{
++ constraint(ALLOC_IN_RC(v2_reg));
++ match(VecA);
++ match(vReg);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++operand vReg_V3()
++%{
++ constraint(ALLOC_IN_RC(v3_reg));
++ match(VecA);
++ match(vReg);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++operand vReg_V4()
++%{
++ constraint(ALLOC_IN_RC(v4_reg));
++ match(VecA);
++ match(vReg);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++operand vReg_V5()
++%{
++ constraint(ALLOC_IN_RC(v5_reg));
++ match(VecA);
++ match(vReg);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++// Java Thread Register
++operand javaThread_RegP(iRegP reg)
++%{
++ constraint(ALLOC_IN_RC(java_thread_reg)); // java_thread_reg
++ match(reg);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++//----------Memory Operands----------------------------------------------------
++// RISCV has only base_plus_offset and literal address mode, so no need to use
++// index and scale. Here set index as 0xffffffff and scale as 0x0.
++operand indirect(iRegP reg)
++%{
++ constraint(ALLOC_IN_RC(ptr_reg));
++ match(reg);
++ op_cost(0);
++ format %{ "[$reg]" %}
++ interface(MEMORY_INTER) %{
++ base($reg);
++ index(0xffffffff);
++ scale(0x0);
++ disp(0x0);
++ %}
++%}
++
++operand indOffI(iRegP reg, immIOffset off)
++%{
++ constraint(ALLOC_IN_RC(ptr_reg));
++ match(AddP reg off);
++ op_cost(0);
++ format %{ "[$reg, $off]" %}
++ interface(MEMORY_INTER) %{
++ base($reg);
++ index(0xffffffff);
++ scale(0x0);
++ disp($off);
++ %}
++%}
++
++operand indOffL(iRegP reg, immLOffset off)
++%{
++ constraint(ALLOC_IN_RC(ptr_reg));
++ match(AddP reg off);
++ op_cost(0);
++ format %{ "[$reg, $off]" %}
++ interface(MEMORY_INTER) %{
++ base($reg);
++ index(0xffffffff);
++ scale(0x0);
++ disp($off);
++ %}
++%}
++
++operand indirectN(iRegN reg)
++%{
++ predicate(CompressedOops::shift() == 0);
++ constraint(ALLOC_IN_RC(ptr_reg));
++ match(DecodeN reg);
++ op_cost(0);
++ format %{ "[$reg]\t# narrow" %}
++ interface(MEMORY_INTER) %{
++ base($reg);
++ index(0xffffffff);
++ scale(0x0);
++ disp(0x0);
++ %}
++%}
++
++operand indOffIN(iRegN reg, immIOffset off)
++%{
++ predicate(CompressedOops::shift() == 0);
++ constraint(ALLOC_IN_RC(ptr_reg));
++ match(AddP (DecodeN reg) off);
++ op_cost(0);
++ format %{ "[$reg, $off]\t# narrow" %}
++ interface(MEMORY_INTER) %{
++ base($reg);
++ index(0xffffffff);
++ scale(0x0);
++ disp($off);
++ %}
++%}
++
++operand indOffLN(iRegN reg, immLOffset off)
++%{
++ predicate(CompressedOops::shift() == 0);
++ constraint(ALLOC_IN_RC(ptr_reg));
++ match(AddP (DecodeN reg) off);
++ op_cost(0);
++ format %{ "[$reg, $off]\t# narrow" %}
++ interface(MEMORY_INTER) %{
++ base($reg);
++ index(0xffffffff);
++ scale(0x0);
++ disp($off);
++ %}
++%}
++
++// RISCV opto stubs need to write to the pc slot in the thread anchor
++operand thread_anchor_pc(javaThread_RegP reg, immL_pc_off off)
++%{
++ constraint(ALLOC_IN_RC(ptr_reg));
++ match(AddP reg off);
++ op_cost(0);
++ format %{ "[$reg, $off]" %}
++ interface(MEMORY_INTER) %{
++ base($reg);
++ index(0xffffffff);
++ scale(0x0);
++ disp($off);
++ %}
++%}
++
++
++//----------Special Memory Operands--------------------------------------------
++// Stack Slot Operand - This operand is used for loading and storing temporary
++// values on the stack where a match requires a value to
++// flow through memory.
++operand stackSlotI(sRegI reg)
++%{
++ constraint(ALLOC_IN_RC(stack_slots));
++ // No match rule because this operand is only generated in matching
++ // match(RegI);
++ format %{ "[$reg]" %}
++ interface(MEMORY_INTER) %{
++ base(0x02); // RSP
++ index(0xffffffff); // No Index
++ scale(0x0); // No Scale
++ disp($reg); // Stack Offset
++ %}
++%}
++
++operand stackSlotF(sRegF reg)
++%{
++ constraint(ALLOC_IN_RC(stack_slots));
++ // No match rule because this operand is only generated in matching
++ // match(RegF);
++ format %{ "[$reg]" %}
++ interface(MEMORY_INTER) %{
++ base(0x02); // RSP
++ index(0xffffffff); // No Index
++ scale(0x0); // No Scale
++ disp($reg); // Stack Offset
++ %}
++%}
++
++operand stackSlotD(sRegD reg)
++%{
++ constraint(ALLOC_IN_RC(stack_slots));
++ // No match rule because this operand is only generated in matching
++ // match(RegD);
++ format %{ "[$reg]" %}
++ interface(MEMORY_INTER) %{
++ base(0x02); // RSP
++ index(0xffffffff); // No Index
++ scale(0x0); // No Scale
++ disp($reg); // Stack Offset
++ %}
++%}
++
++operand stackSlotL(sRegL reg)
++%{
++ constraint(ALLOC_IN_RC(stack_slots));
++ // No match rule because this operand is only generated in matching
++ // match(RegL);
++ format %{ "[$reg]" %}
++ interface(MEMORY_INTER) %{
++ base(0x02); // RSP
++ index(0xffffffff); // No Index
++ scale(0x0); // No Scale
++ disp($reg); // Stack Offset
++ %}
++%}
++
++// Special operand allowing long args to int ops to be truncated for free
++
++operand iRegL2I(iRegL reg) %{
++
++ op_cost(0);
++
++ match(ConvL2I reg);
++
++ format %{ "l2i($reg)" %}
++
++ interface(REG_INTER)
++%}
++
++
++// Comparison Operands
++// NOTE: Label is a predefined operand which should not be redefined in
++// the AD file. It is generically handled within the ADLC.
++
++//----------Conditional Branch Operands----------------------------------------
++// Comparison Op - This is the operation of the comparison, and is limited to
++// the following set of codes:
++// L (<), LE (<=), G (>), GE (>=), E (==), NE (!=)
++//
++// Other attributes of the comparison, such as unsignedness, are specified
++// by the comparison instruction that sets a condition code flags register.
++// That result is represented by a flags operand whose subtype is appropriate
++// to the unsignedness (etc.) of the comparison.
++//
++// Later, the instruction which matches both the Comparison Op (a Bool) and
++// the flags (produced by the Cmp) specifies the coding of the comparison op
++// by matching a specific subtype of Bool operand below, such as cmpOpU.
++
++
++// used for signed integral comparisons and fp comparisons
++operand cmpOp()
++%{
++ match(Bool);
++
++ format %{ "" %}
++
++ // the values in interface derives from struct BoolTest::mask
++ interface(COND_INTER) %{
++ equal(0x0, "eq");
++ greater(0x1, "gt");
++ overflow(0x2, "overflow");
++ less(0x3, "lt");
++ not_equal(0x4, "ne");
++ less_equal(0x5, "le");
++ no_overflow(0x6, "no_overflow");
++ greater_equal(0x7, "ge");
++ %}
++%}
++
++// used for unsigned integral comparisons
++operand cmpOpU()
++%{
++ match(Bool);
++
++ format %{ "" %}
++ // the values in interface derives from struct BoolTest::mask
++ interface(COND_INTER) %{
++ equal(0x0, "eq");
++ greater(0x1, "gtu");
++ overflow(0x2, "overflow");
++ less(0x3, "ltu");
++ not_equal(0x4, "ne");
++ less_equal(0x5, "leu");
++ no_overflow(0x6, "no_overflow");
++ greater_equal(0x7, "geu");
++ %}
++%}
++
++// used for certain integral comparisons which can be
++// converted to bxx instructions
++operand cmpOpEqNe()
++%{
++ match(Bool);
++ op_cost(0);
++ predicate(n->as_Bool()->_test._test == BoolTest::ne ||
++ n->as_Bool()->_test._test == BoolTest::eq);
++
++ format %{ "" %}
++ interface(COND_INTER) %{
++ equal(0x0, "eq");
++ greater(0x1, "gt");
++ overflow(0x2, "overflow");
++ less(0x3, "lt");
++ not_equal(0x4, "ne");
++ less_equal(0x5, "le");
++ no_overflow(0x6, "no_overflow");
++ greater_equal(0x7, "ge");
++ %}
++%}
++
++operand cmpOpULtGe()
++%{
++ match(Bool);
++ op_cost(0);
++ predicate(n->as_Bool()->_test._test == BoolTest::lt ||
++ n->as_Bool()->_test._test == BoolTest::ge);
++
++ format %{ "" %}
++ interface(COND_INTER) %{
++ equal(0x0, "eq");
++ greater(0x1, "gtu");
++ overflow(0x2, "overflow");
++ less(0x3, "ltu");
++ not_equal(0x4, "ne");
++ less_equal(0x5, "leu");
++ no_overflow(0x6, "no_overflow");
++ greater_equal(0x7, "geu");
++ %}
++%}
++
++operand cmpOpUEqNeLeGt()
++%{
++ match(Bool);
++ op_cost(0);
++ predicate(n->as_Bool()->_test._test == BoolTest::ne ||
++ n->as_Bool()->_test._test == BoolTest::eq ||
++ n->as_Bool()->_test._test == BoolTest::le ||
++ n->as_Bool()->_test._test == BoolTest::gt);
++
++ format %{ "" %}
++ interface(COND_INTER) %{
++ equal(0x0, "eq");
++ greater(0x1, "gtu");
++ overflow(0x2, "overflow");
++ less(0x3, "ltu");
++ not_equal(0x4, "ne");
++ less_equal(0x5, "leu");
++ no_overflow(0x6, "no_overflow");
++ greater_equal(0x7, "geu");
++ %}
++%}
++
++
++// Flags register, used as output of compare logic
++operand rFlagsReg()
++%{
++ constraint(ALLOC_IN_RC(reg_flags));
++ match(RegFlags);
++
++ op_cost(0);
++ format %{ "RFLAGS" %}
++ interface(REG_INTER);
++%}
++
++// Special Registers
++
++// Method Register
++operand inline_cache_RegP(iRegP reg)
++%{
++ constraint(ALLOC_IN_RC(method_reg)); // inline_cache_reg
++ match(reg);
++ match(iRegPNoSp);
++ op_cost(0);
++ format %{ %}
++ interface(REG_INTER);
++%}
++
++//----------OPERAND CLASSES----------------------------------------------------
++// Operand Classes are groups of operands that are used as to simplify
++// instruction definitions by not requiring the AD writer to specify
++// separate instructions for every form of operand when the
++// instruction accepts multiple operand types with the same basic
++// encoding and format. The classic case of this is memory operands.
++
++// memory is used to define read/write location for load/store
++// instruction defs. we can turn a memory op into an Address
++
++opclass memory(indirect, indOffI, indOffL, indirectN, indOffIN, indOffLN);
++
++// iRegIorL2I is used for src inputs in rules for 32 bit int (I)
++// operations. it allows the src to be either an iRegI or a (ConvL2I
++// iRegL). in the latter case the l2i normally planted for a ConvL2I
++// can be elided because the 32-bit instruction will just employ the
++// lower 32 bits anyway.
++//
++// n.b. this does not elide all L2I conversions. if the truncated
++// value is consumed by more than one operation then the ConvL2I
++// cannot be bundled into the consuming nodes so an l2i gets planted
++// (actually an addiw $dst, $src, 0) and the downstream instructions
++// consume the result of the L2I as an iRegI input. That's a shame since
++// the addiw is actually redundant but its not too costly.
++
++opclass iRegIorL2I(iRegI, iRegL2I);
++opclass iRegIorL(iRegI, iRegL);
++opclass iRegNorP(iRegN, iRegP);
++opclass iRegILNP(iRegI, iRegL, iRegN, iRegP);
++opclass iRegILNPNoSp(iRegINoSp, iRegLNoSp, iRegNNoSp, iRegPNoSp);
++opclass immIorL(immI, immL);
++
++//----------PIPELINE-----------------------------------------------------------
++// Rules which define the behavior of the target architectures pipeline.
++
++// For specific pipelines, e.g. generic RISC-V, define the stages of that pipeline
++//pipe_desc(ID, EX, MEM, WR);
++#define ID S0
++#define EX S1
++#define MEM S2
++#define WR S3
++
++// Integer ALU reg operation
++pipeline %{
++
++attributes %{
++ // RISC-V instructions are of fixed length
++ fixed_size_instructions; // Fixed size instructions TODO does
++ max_instructions_per_bundle = 2; // Generic RISC-V 1, Sifive Series 7 2
++ // RISC-V instructions come in 32-bit word units
++ instruction_unit_size = 4; // An instruction is 4 bytes long
++ instruction_fetch_unit_size = 64; // The processor fetches one line
++ instruction_fetch_units = 1; // of 64 bytes
++
++ // List of nop instructions
++ nops( MachNop );
++%}
++
++// We don't use an actual pipeline model so don't care about resources
++// or description. we do use pipeline classes to introduce fixed
++// latencies
++
++//----------RESOURCES----------------------------------------------------------
++// Resources are the functional units available to the machine
++
++// Generic RISC-V pipeline
++// 1 decoder
++// 1 instruction decoded per cycle
++// 1 load/store ops per cycle, 1 branch, 1 FPU
++// 1 mul, 1 div
++
++resources ( DECODE,
++ ALU,
++ MUL,
++ DIV,
++ BRANCH,
++ LDST,
++ FPU);
++
++//----------PIPELINE DESCRIPTION-----------------------------------------------
++// Pipeline Description specifies the stages in the machine's pipeline
++
++// Define the pipeline as a generic 6 stage pipeline
++pipe_desc(S0, S1, S2, S3, S4, S5);
++
++//----------PIPELINE CLASSES---------------------------------------------------
++// Pipeline Classes describe the stages in which input and output are
++// referenced by the hardware pipeline.
++
++pipe_class fp_dop_reg_reg_s(fRegF dst, fRegF src1, fRegF src2)
++%{
++ single_instruction;
++ src1 : S1(read);
++ src2 : S2(read);
++ dst : S5(write);
++ DECODE : ID;
++ FPU : S5;
++%}
++
++pipe_class fp_dop_reg_reg_d(fRegD dst, fRegD src1, fRegD src2)
++%{
++ src1 : S1(read);
++ src2 : S2(read);
++ dst : S5(write);
++ DECODE : ID;
++ FPU : S5;
++%}
++
++pipe_class fp_uop_s(fRegF dst, fRegF src)
++%{
++ single_instruction;
++ src : S1(read);
++ dst : S5(write);
++ DECODE : ID;
++ FPU : S5;
++%}
++
++pipe_class fp_uop_d(fRegD dst, fRegD src)
++%{
++ single_instruction;
++ src : S1(read);
++ dst : S5(write);
++ DECODE : ID;
++ FPU : S5;
++%}
++
++pipe_class fp_d2f(fRegF dst, fRegD src)
++%{
++ single_instruction;
++ src : S1(read);
++ dst : S5(write);
++ DECODE : ID;
++ FPU : S5;
++%}
++
++pipe_class fp_f2d(fRegD dst, fRegF src)
++%{
++ single_instruction;
++ src : S1(read);
++ dst : S5(write);
++ DECODE : ID;
++ FPU : S5;
++%}
++
++pipe_class fp_f2i(iRegINoSp dst, fRegF src)
++%{
++ single_instruction;
++ src : S1(read);
++ dst : S5(write);
++ DECODE : ID;
++ FPU : S5;
++%}
++
++pipe_class fp_f2l(iRegLNoSp dst, fRegF src)
++%{
++ single_instruction;
++ src : S1(read);
++ dst : S5(write);
++ DECODE : ID;
++ FPU : S5;
++%}
++
++pipe_class fp_i2f(fRegF dst, iRegIorL2I src)
++%{
++ single_instruction;
++ src : S1(read);
++ dst : S5(write);
++ DECODE : ID;
++ FPU : S5;
++%}
++
++pipe_class fp_l2f(fRegF dst, iRegL src)
++%{
++ single_instruction;
++ src : S1(read);
++ dst : S5(write);
++ DECODE : ID;
++ FPU : S5;
++%}
++
++pipe_class fp_d2i(iRegINoSp dst, fRegD src)
++%{
++ single_instruction;
++ src : S1(read);
++ dst : S5(write);
++ DECODE : ID;
++ FPU : S5;
++%}
++
++pipe_class fp_d2l(iRegLNoSp dst, fRegD src)
++%{
++ single_instruction;
++ src : S1(read);
++ dst : S5(write);
++ DECODE : ID;
++ FPU : S5;
++%}
++
++pipe_class fp_i2d(fRegD dst, iRegIorL2I src)
++%{
++ single_instruction;
++ src : S1(read);
++ dst : S5(write);
++ DECODE : ID;
++ FPU : S5;
++%}
++
++pipe_class fp_l2d(fRegD dst, iRegIorL2I src)
++%{
++ single_instruction;
++ src : S1(read);
++ dst : S5(write);
++ DECODE : ID;
++ FPU : S5;
++%}
++
++pipe_class fp_div_s(fRegF dst, fRegF src1, fRegF src2)
++%{
++ single_instruction;
++ src1 : S1(read);
++ src2 : S2(read);
++ dst : S5(write);
++ DECODE : ID;
++ FPU : S5;
++%}
++
++pipe_class fp_div_d(fRegD dst, fRegD src1, fRegD src2)
++%{
++ single_instruction;
++ src1 : S1(read);
++ src2 : S2(read);
++ dst : S5(write);
++ DECODE : ID;
++ FPU : S5;
++%}
++
++pipe_class fp_sqrt_s(fRegF dst, fRegF src1, fRegF src2)
++%{
++ single_instruction;
++ src1 : S1(read);
++ src2 : S2(read);
++ dst : S5(write);
++ DECODE : ID;
++ FPU : S5;
++%}
++
++pipe_class fp_sqrt_d(fRegD dst, fRegD src1, fRegD src2)
++%{
++ single_instruction;
++ src1 : S1(read);
++ src2 : S2(read);
++ dst : S5(write);
++ DECODE : ID;
++ FPU : S5;
++%}
++
++pipe_class fp_load_constant_s(fRegF dst)
++%{
++ single_instruction;
++ dst : S5(write);
++ DECODE : ID;
++ FPU : S5;
++%}
++
++pipe_class fp_load_constant_d(fRegD dst)
++%{
++ single_instruction;
++ dst : S5(write);
++ DECODE : ID;
++ FPU : S5;
++%}
++
++pipe_class fp_load_mem_s(fRegF dst, memory mem)
++%{
++ single_instruction;
++ mem : S1(read);
++ dst : S5(write);
++ DECODE : ID;
++ LDST : MEM;
++%}
++
++pipe_class fp_load_mem_d(fRegD dst, memory mem)
++%{
++ single_instruction;
++ mem : S1(read);
++ dst : S5(write);
++ DECODE : ID;
++ LDST : MEM;
++%}
++
++pipe_class fp_store_reg_s(fRegF src, memory mem)
++%{
++ single_instruction;
++ src : S1(read);
++ mem : S5(write);
++ DECODE : ID;
++ LDST : MEM;
++%}
++
++pipe_class fp_store_reg_d(fRegD src, memory mem)
++%{
++ single_instruction;
++ src : S1(read);
++ mem : S5(write);
++ DECODE : ID;
++ LDST : MEM;
++%}
++
++//------- Integer ALU operations --------------------------
++
++// Integer ALU reg-reg operation
++// Operands needs in ID, result generated in EX
++// E.g. ADD Rd, Rs1, Rs2
++pipe_class ialu_reg_reg(iRegI dst, iRegI src1, iRegI src2)
++%{
++ single_instruction;
++ dst : EX(write);
++ src1 : ID(read);
++ src2 : ID(read);
++ DECODE : ID;
++ ALU : EX;
++%}
++
++// Integer ALU reg operation with constant shift
++// E.g. SLLI Rd, Rs1, #shift
++pipe_class ialu_reg_shift(iRegI dst, iRegI src1)
++%{
++ single_instruction;
++ dst : EX(write);
++ src1 : ID(read);
++ DECODE : ID;
++ ALU : EX;
++%}
++
++// Integer ALU reg-reg operation with variable shift
++// both operands must be available in ID
++// E.g. SLL Rd, Rs1, Rs2
++pipe_class ialu_reg_reg_vshift(iRegI dst, iRegI src1, iRegI src2)
++%{
++ single_instruction;
++ dst : EX(write);
++ src1 : ID(read);
++ src2 : ID(read);
++ DECODE : ID;
++ ALU : EX;
++%}
++
++// Integer ALU reg operation
++// E.g. NEG Rd, Rs2
++pipe_class ialu_reg(iRegI dst, iRegI src)
++%{
++ single_instruction;
++ dst : EX(write);
++ src : ID(read);
++ DECODE : ID;
++ ALU : EX;
++%}
++
++// Integer ALU reg immediate operation
++// E.g. ADDI Rd, Rs1, #imm
++pipe_class ialu_reg_imm(iRegI dst, iRegI src1)
++%{
++ single_instruction;
++ dst : EX(write);
++ src1 : ID(read);
++ DECODE : ID;
++ ALU : EX;
++%}
++
++// Integer ALU immediate operation (no source operands)
++// E.g. LI Rd, #imm
++pipe_class ialu_imm(iRegI dst)
++%{
++ single_instruction;
++ dst : EX(write);
++ DECODE : ID;
++ ALU : EX;
++%}
++
++//------- Multiply pipeline operations --------------------
++
++// Multiply reg-reg
++// E.g. MULW Rd, Rs1, Rs2
++pipe_class imul_reg_reg(iRegI dst, iRegI src1, iRegI src2)
++%{
++ single_instruction;
++ dst : WR(write);
++ src1 : ID(read);
++ src2 : ID(read);
++ DECODE : ID;
++ MUL : WR;
++%}
++
++// E.g. MUL RD, Rs1, Rs2
++pipe_class lmul_reg_reg(iRegL dst, iRegL src1, iRegL src2)
++%{
++ single_instruction;
++ fixed_latency(3); // Maximum latency for 64 bit mul
++ dst : WR(write);
++ src1 : ID(read);
++ src2 : ID(read);
++ DECODE : ID;
++ MUL : WR;
++%}
++
++//------- Divide pipeline operations --------------------
++
++// E.g. DIVW Rd, Rs1, Rs2
++pipe_class idiv_reg_reg(iRegI dst, iRegI src1, iRegI src2)
++%{
++ single_instruction;
++ fixed_latency(8); // Maximum latency for 32 bit divide
++ dst : WR(write);
++ src1 : ID(read);
++ src2 : ID(read);
++ DECODE : ID;
++ DIV : WR;
++%}
++
++// E.g. DIV RD, Rs1, Rs2
++pipe_class ldiv_reg_reg(iRegL dst, iRegL src1, iRegL src2)
++%{
++ single_instruction;
++ fixed_latency(16); // Maximum latency for 64 bit divide
++ dst : WR(write);
++ src1 : ID(read);
++ src2 : ID(read);
++ DECODE : ID;
++ DIV : WR;
++%}
++
++//------- Load pipeline operations ------------------------
++
++// Load - reg, mem
++// E.g. LA Rd, mem
++pipe_class iload_reg_mem(iRegI dst, memory mem)
++%{
++ single_instruction;
++ dst : WR(write);
++ mem : ID(read);
++ DECODE : ID;
++ LDST : MEM;
++%}
++
++// Load - reg, reg
++// E.g. LD Rd, Rs
++pipe_class iload_reg_reg(iRegI dst, iRegI src)
++%{
++ single_instruction;
++ dst : WR(write);
++ src : ID(read);
++ DECODE : ID;
++ LDST : MEM;
++%}
++
++//------- Store pipeline operations -----------------------
++
++// Store - zr, mem
++// E.g. SD zr, mem
++pipe_class istore_mem(memory mem)
++%{
++ single_instruction;
++ mem : ID(read);
++ DECODE : ID;
++ LDST : MEM;
++%}
++
++// Store - reg, mem
++// E.g. SD Rs, mem
++pipe_class istore_reg_mem(iRegI src, memory mem)
++%{
++ single_instruction;
++ mem : ID(read);
++ src : EX(read);
++ DECODE : ID;
++ LDST : MEM;
++%}
++
++// Store - reg, reg
++// E.g. SD Rs2, Rs1
++pipe_class istore_reg_reg(iRegI dst, iRegI src)
++%{
++ single_instruction;
++ dst : ID(read);
++ src : EX(read);
++ DECODE : ID;
++ LDST : MEM;
++%}
++
++//------- Control transfer pipeline operations ------------
++
++// Branch
++pipe_class pipe_branch()
++%{
++ single_instruction;
++ DECODE : ID;
++ BRANCH : EX;
++%}
++
++// Branch
++pipe_class pipe_branch_reg(iRegI src)
++%{
++ single_instruction;
++ src : ID(read);
++ DECODE : ID;
++ BRANCH : EX;
++%}
++
++// Compare & Branch
++// E.g. BEQ Rs1, Rs2, L
++pipe_class pipe_cmp_branch(iRegI src1, iRegI src2)
++%{
++ single_instruction;
++ src1 : ID(read);
++ src2 : ID(read);
++ DECODE : ID;
++ BRANCH : EX;
++%}
++
++// E.g. BEQZ Rs, L
++pipe_class pipe_cmpz_branch(iRegI src)
++%{
++ single_instruction;
++ src : ID(read);
++ DECODE : ID;
++ BRANCH : EX;
++%}
++
++//------- Synchronisation operations ----------------------
++// Any operation requiring serialization
++// E.g. FENCE/Atomic Ops/Load Acquire/Store Release
++pipe_class pipe_serial()
++%{
++ single_instruction;
++ force_serialization;
++ fixed_latency(16);
++ DECODE : ID;
++ LDST : MEM;
++%}
++
++pipe_class pipe_slow()
++%{
++ instruction_count(10);
++ multiple_bundles;
++ force_serialization;
++ fixed_latency(16);
++ DECODE : ID;
++ LDST : MEM;
++%}
++
++// Empty pipeline class
++pipe_class pipe_class_empty()
++%{
++ single_instruction;
++ fixed_latency(0);
++%}
++
++// Default pipeline class.
++pipe_class pipe_class_default()
++%{
++ single_instruction;
++ fixed_latency(2);
++%}
++
++// Pipeline class for compares.
++pipe_class pipe_class_compare()
++%{
++ single_instruction;
++ fixed_latency(16);
++%}
++
++// Pipeline class for memory operations.
++pipe_class pipe_class_memory()
++%{
++ single_instruction;
++ fixed_latency(16);
++%}
++
++// Pipeline class for call.
++pipe_class pipe_class_call()
++%{
++ single_instruction;
++ fixed_latency(100);
++%}
++
++// Define the class for the Nop node.
++define %{
++ MachNop = pipe_class_empty;
++%}
++%}
++//----------INSTRUCTIONS-------------------------------------------------------
++//
++// match -- States which machine-independent subtree may be replaced
++// by this instruction.
++// ins_cost -- The estimated cost of this instruction is used by instruction
++// selection to identify a minimum cost tree of machine
++// instructions that matches a tree of machine-independent
++// instructions.
++// format -- A string providing the disassembly for this instruction.
++// The value of an instruction's operand may be inserted
++// by referring to it with a '$' prefix.
++// opcode -- Three instruction opcodes may be provided. These are referred
++// to within an encode class as $primary, $secondary, and $tertiary
++// rrspectively. The primary opcode is commonly used to
++// indicate the type of machine instruction, while secondary
++// and tertiary are often used for prefix options or addressing
++// modes.
++// ins_encode -- A list of encode classes with parameters. The encode class
++// name must have been defined in an 'enc_class' specification
++// in the encode section of the architecture description.
++
++// ============================================================================
++// Memory (Load/Store) Instructions
++
++// Load Instructions
++
++// Load Byte (8 bit signed)
++instruct loadB(iRegINoSp dst, memory mem)
++%{
++ match(Set dst (LoadB mem));
++
++ ins_cost(LOAD_COST);
++ format %{ "lb $dst, $mem\t# byte, #@loadB" %}
++
++ ins_encode %{
++ __ lb(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(iload_reg_mem);
++%}
++
++// Load Byte (8 bit signed) into long
++instruct loadB2L(iRegLNoSp dst, memory mem)
++%{
++ match(Set dst (ConvI2L (LoadB mem)));
++
++ ins_cost(LOAD_COST);
++ format %{ "lb $dst, $mem\t# byte, #@loadB2L" %}
++
++ ins_encode %{
++ __ lb(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(iload_reg_mem);
++%}
++
++// Load Byte (8 bit unsigned)
++instruct loadUB(iRegINoSp dst, memory mem)
++%{
++ match(Set dst (LoadUB mem));
++
++ ins_cost(LOAD_COST);
++ format %{ "lbu $dst, $mem\t# byte, #@loadUB" %}
++
++ ins_encode %{
++ __ lbu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(iload_reg_mem);
++%}
++
++// Load Byte (8 bit unsigned) into long
++instruct loadUB2L(iRegLNoSp dst, memory mem)
++%{
++ match(Set dst (ConvI2L (LoadUB mem)));
++
++ ins_cost(LOAD_COST);
++ format %{ "lbu $dst, $mem\t# byte, #@loadUB2L" %}
++
++ ins_encode %{
++ __ lbu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(iload_reg_mem);
++%}
++
++// Load Short (16 bit signed)
++instruct loadS(iRegINoSp dst, memory mem)
++%{
++ match(Set dst (LoadS mem));
++
++ ins_cost(LOAD_COST);
++ format %{ "lh $dst, $mem\t# short, #@loadS" %}
++
++ ins_encode %{
++ __ lh(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(iload_reg_mem);
++%}
++
++// Load Short (16 bit signed) into long
++instruct loadS2L(iRegLNoSp dst, memory mem)
++%{
++ match(Set dst (ConvI2L (LoadS mem)));
++
++ ins_cost(LOAD_COST);
++ format %{ "lh $dst, $mem\t# short, #@loadS2L" %}
++
++ ins_encode %{
++ __ lh(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(iload_reg_mem);
++%}
++
++// Load Char (16 bit unsigned)
++instruct loadUS(iRegINoSp dst, memory mem)
++%{
++ match(Set dst (LoadUS mem));
++
++ ins_cost(LOAD_COST);
++ format %{ "lhu $dst, $mem\t# short, #@loadUS" %}
++
++ ins_encode %{
++ __ lhu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(iload_reg_mem);
++%}
++
++// Load Short/Char (16 bit unsigned) into long
++instruct loadUS2L(iRegLNoSp dst, memory mem)
++%{
++ match(Set dst (ConvI2L (LoadUS mem)));
++
++ ins_cost(LOAD_COST);
++ format %{ "lhu $dst, $mem\t# short, #@loadUS2L" %}
++
++ ins_encode %{
++ __ lhu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(iload_reg_mem);
++%}
++
++// Load Integer (32 bit signed)
++instruct loadI(iRegINoSp dst, memory mem)
++%{
++ match(Set dst (LoadI mem));
++
++ ins_cost(LOAD_COST);
++ format %{ "lw $dst, $mem\t# int, #@loadI" %}
++
++ ins_encode %{
++ __ lw(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(iload_reg_mem);
++%}
++
++// Load Integer (32 bit signed) into long
++instruct loadI2L(iRegLNoSp dst, memory mem)
++%{
++ match(Set dst (ConvI2L (LoadI mem)));
++
++ ins_cost(LOAD_COST);
++ format %{ "lw $dst, $mem\t# int, #@loadI2L" %}
++
++ ins_encode %{
++ __ lw(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(iload_reg_mem);
++%}
++
++// Load Integer (32 bit unsigned) into long
++instruct loadUI2L(iRegLNoSp dst, memory mem, immL_32bits mask)
++%{
++ match(Set dst (AndL (ConvI2L (LoadI mem)) mask));
++
++ ins_cost(LOAD_COST);
++ format %{ "lwu $dst, $mem\t# int, #@loadUI2L" %}
++
++ ins_encode %{
++ __ lwu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(iload_reg_mem);
++%}
++
++// Load Long (64 bit signed)
++instruct loadL(iRegLNoSp dst, memory mem)
++%{
++ match(Set dst (LoadL mem));
++
++ ins_cost(LOAD_COST);
++ format %{ "ld $dst, $mem\t# int, #@loadL" %}
++
++ ins_encode %{
++ __ ld(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(iload_reg_mem);
++%}
++
++// Load Range
++instruct loadRange(iRegINoSp dst, memory mem)
++%{
++ match(Set dst (LoadRange mem));
++
++ ins_cost(LOAD_COST);
++ format %{ "lwu $dst, $mem\t# range, #@loadRange" %}
++
++ ins_encode %{
++ __ lwu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(iload_reg_mem);
++%}
++
++// Load Pointer
++instruct loadP(iRegPNoSp dst, memory mem)
++%{
++ match(Set dst (LoadP mem));
++ predicate(n->as_Load()->barrier_data() == 0);
++
++ ins_cost(LOAD_COST);
++ format %{ "ld $dst, $mem\t# ptr, #@loadP" %}
++
++ ins_encode %{
++ __ ld(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(iload_reg_mem);
++%}
++
++// Load Compressed Pointer
++instruct loadN(iRegNNoSp dst, memory mem)
++%{
++ match(Set dst (LoadN mem));
++
++ ins_cost(LOAD_COST);
++ format %{ "lwu $dst, $mem\t# loadN, compressed ptr, #@loadN" %}
++
++ ins_encode %{
++ __ lwu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(iload_reg_mem);
++%}
++
++// Load Klass Pointer
++instruct loadKlass(iRegPNoSp dst, memory mem)
++%{
++ match(Set dst (LoadKlass mem));
++
++ ins_cost(LOAD_COST);
++ format %{ "ld $dst, $mem\t# class, #@loadKlass" %}
++
++ ins_encode %{
++ __ ld(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(iload_reg_mem);
++%}
++
++// Load Narrow Klass Pointer
++instruct loadNKlass(iRegNNoSp dst, memory mem)
++%{
++ match(Set dst (LoadNKlass mem));
++
++ ins_cost(LOAD_COST);
++ format %{ "lwu $dst, $mem\t# loadNKlass, compressed class ptr, #@loadNKlass" %}
++
++ ins_encode %{
++ __ lwu(as_Register($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(iload_reg_mem);
++%}
++
++// Load Float
++instruct loadF(fRegF dst, memory mem)
++%{
++ match(Set dst (LoadF mem));
++
++ ins_cost(LOAD_COST);
++ format %{ "flw $dst, $mem\t# float, #@loadF" %}
++
++ ins_encode %{
++ __ flw(as_FloatRegister($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(fp_load_mem_s);
++%}
++
++// Load Double
++instruct loadD(fRegD dst, memory mem)
++%{
++ match(Set dst (LoadD mem));
++
++ ins_cost(LOAD_COST);
++ format %{ "fld $dst, $mem\t# double, #@loadD" %}
++
++ ins_encode %{
++ __ fld(as_FloatRegister($dst$$reg), Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(fp_load_mem_d);
++%}
++
++// Load Int Constant
++instruct loadConI(iRegINoSp dst, immI src)
++%{
++ match(Set dst src);
++
++ ins_cost(ALU_COST);
++ format %{ "li $dst, $src\t# int, #@loadConI" %}
++
++ ins_encode(riscv_enc_li_imm(dst, src));
++
++ ins_pipe(ialu_imm);
++%}
++
++// Load Long Constant
++instruct loadConL(iRegLNoSp dst, immL src)
++%{
++ match(Set dst src);
++
++ ins_cost(ALU_COST);
++ format %{ "li $dst, $src\t# long, #@loadConL" %}
++
++ ins_encode(riscv_enc_li_imm(dst, src));
++
++ ins_pipe(ialu_imm);
++%}
++
++// Load Pointer Constant
++instruct loadConP(iRegPNoSp dst, immP con)
++%{
++ match(Set dst con);
++
++ ins_cost(ALU_COST);
++ format %{ "mv $dst, $con\t# ptr, #@loadConP" %}
++
++ ins_encode(riscv_enc_mov_p(dst, con));
++
++ ins_pipe(ialu_imm);
++%}
++
++// Load Null Pointer Constant
++instruct loadConP0(iRegPNoSp dst, immP0 con)
++%{
++ match(Set dst con);
++
++ ins_cost(ALU_COST);
++ format %{ "mv $dst, $con\t# NULL ptr, #@loadConP0" %}
++
++ ins_encode(riscv_enc_mov_zero(dst));
++
++ ins_pipe(ialu_imm);
++%}
++
++// Load Pointer Constant One
++instruct loadConP1(iRegPNoSp dst, immP_1 con)
++%{
++ match(Set dst con);
++
++ ins_cost(ALU_COST);
++ format %{ "mv $dst, $con\t# load ptr constant one, #@loadConP1" %}
++
++ ins_encode(riscv_enc_mov_p1(dst));
++
++ ins_pipe(ialu_imm);
++%}
++
++// Load Byte Map Base Constant
++instruct loadByteMapBase(iRegPNoSp dst, immByteMapBase con)
++%{
++ match(Set dst con);
++ ins_cost(ALU_COST);
++ format %{ "mv $dst, $con\t# Byte Map Base, #@loadByteMapBase" %}
++
++ ins_encode(riscv_enc_mov_byte_map_base(dst));
++
++ ins_pipe(ialu_imm);
++%}
++
++// Load Narrow Pointer Constant
++instruct loadConN(iRegNNoSp dst, immN con)
++%{
++ match(Set dst con);
++
++ ins_cost(ALU_COST * 4);
++ format %{ "mv $dst, $con\t# compressed ptr, #@loadConN" %}
++
++ ins_encode(riscv_enc_mov_n(dst, con));
++
++ ins_pipe(ialu_imm);
++%}
++
++// Load Narrow Null Pointer Constant
++instruct loadConN0(iRegNNoSp dst, immN0 con)
++%{
++ match(Set dst con);
++
++ ins_cost(ALU_COST);
++ format %{ "mv $dst, $con\t# compressed NULL ptr, #@loadConN0" %}
++
++ ins_encode(riscv_enc_mov_zero(dst));
++
++ ins_pipe(ialu_imm);
++%}
++
++// Load Narrow Klass Constant
++instruct loadConNKlass(iRegNNoSp dst, immNKlass con)
++%{
++ match(Set dst con);
++
++ ins_cost(ALU_COST * 6);
++ format %{ "mv $dst, $con\t# compressed klass ptr, #@loadConNKlass" %}
++
++ ins_encode(riscv_enc_mov_nk(dst, con));
++
++ ins_pipe(ialu_imm);
++%}
++
++// Load Float Constant
++instruct loadConF(fRegF dst, immF con) %{
++ match(Set dst con);
++
++ ins_cost(LOAD_COST);
++ format %{
++ "flw $dst, [$constantaddress]\t# load from constant table: float=$con, #@loadConF"
++ %}
++
++ ins_encode %{
++ __ flw(as_FloatRegister($dst$$reg), $constantaddress($con));
++ %}
++
++ ins_pipe(fp_load_constant_s);
++%}
++
++instruct loadConF0(fRegF dst, immF0 con) %{
++ match(Set dst con);
++
++ ins_cost(XFER_COST);
++
++ format %{ "fmv.w.x $dst, zr\t# float, #@loadConF0" %}
++
++ ins_encode %{
++ __ fmv_w_x(as_FloatRegister($dst$$reg), zr);
++ %}
++
++ ins_pipe(fp_load_constant_s);
++%}
++
++// Load Double Constant
++instruct loadConD(fRegD dst, immD con) %{
++ match(Set dst con);
++
++ ins_cost(LOAD_COST);
++ format %{
++ "fld $dst, [$constantaddress]\t# load from constant table: double=$con, #@loadConD"
++ %}
++
++ ins_encode %{
++ __ fld(as_FloatRegister($dst$$reg), $constantaddress($con));
++ %}
++
++ ins_pipe(fp_load_constant_d);
++%}
++
++instruct loadConD0(fRegD dst, immD0 con) %{
++ match(Set dst con);
++
++ ins_cost(XFER_COST);
++
++ format %{ "fmv.d.x $dst, zr\t# double, #@loadConD0" %}
++
++ ins_encode %{
++ __ fmv_d_x(as_FloatRegister($dst$$reg), zr);
++ %}
++
++ ins_pipe(fp_load_constant_d);
++%}
++
++// Store Instructions
++// Store CMS card-mark Immediate
++instruct storeimmCM0(immI0 zero, memory mem)
++%{
++ match(Set mem (StoreCM mem zero));
++
++ ins_cost(STORE_COST);
++ format %{ "storestore (elided)\n\t"
++ "sb zr, $mem\t# byte, #@storeimmCM0" %}
++
++ ins_encode %{
++ __ sb(zr, Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(istore_mem);
++%}
++
++// Store CMS card-mark Immediate with intervening StoreStore
++// needed when using CMS with no conditional card marking
++instruct storeimmCM0_ordered(immI0 zero, memory mem)
++%{
++ match(Set mem (StoreCM mem zero));
++
++ ins_cost(ALU_COST + STORE_COST);
++ format %{ "membar(StoreStore)\n\t"
++ "sb zr, $mem\t# byte, #@storeimmCM0_ordered" %}
++
++ ins_encode %{
++ __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore);
++ __ sb(zr, Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(istore_mem);
++%}
++
++// Store Byte
++instruct storeB(iRegIorL2I src, memory mem)
++%{
++ match(Set mem (StoreB mem src));
++
++ ins_cost(STORE_COST);
++ format %{ "sb $src, $mem\t# byte, #@storeB" %}
++
++ ins_encode %{
++ __ sb(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(istore_reg_mem);
++%}
++
++instruct storeimmB0(immI0 zero, memory mem)
++%{
++ match(Set mem (StoreB mem zero));
++
++ ins_cost(STORE_COST);
++ format %{ "sb zr, $mem\t# byte, #@storeimmB0" %}
++
++ ins_encode %{
++ __ sb(zr, Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(istore_mem);
++%}
++
++// Store Char/Short
++instruct storeC(iRegIorL2I src, memory mem)
++%{
++ match(Set mem (StoreC mem src));
++
++ ins_cost(STORE_COST);
++ format %{ "sh $src, $mem\t# short, #@storeC" %}
++
++ ins_encode %{
++ __ sh(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(istore_reg_mem);
++%}
++
++instruct storeimmC0(immI0 zero, memory mem)
++%{
++ match(Set mem (StoreC mem zero));
++
++ ins_cost(STORE_COST);
++ format %{ "sh zr, $mem\t# short, #@storeimmC0" %}
++
++ ins_encode %{
++ __ sh(zr, Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(istore_mem);
++%}
++
++// Store Integer
++instruct storeI(iRegIorL2I src, memory mem)
++%{
++ match(Set mem(StoreI mem src));
++
++ ins_cost(STORE_COST);
++ format %{ "sw $src, $mem\t# int, #@storeI" %}
++
++ ins_encode %{
++ __ sw(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(istore_reg_mem);
++%}
++
++instruct storeimmI0(immI0 zero, memory mem)
++%{
++ match(Set mem(StoreI mem zero));
++
++ ins_cost(STORE_COST);
++ format %{ "sw zr, $mem\t# int, #@storeimmI0" %}
++
++ ins_encode %{
++ __ sw(zr, Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(istore_mem);
++%}
++
++// Store Long (64 bit signed)
++instruct storeL(iRegL src, memory mem)
++%{
++ match(Set mem (StoreL mem src));
++
++ ins_cost(STORE_COST);
++ format %{ "sd $src, $mem\t# long, #@storeL" %}
++
++ ins_encode %{
++ __ sd(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(istore_reg_mem);
++%}
++
++// Store Long (64 bit signed)
++instruct storeimmL0(immL0 zero, memory mem)
++%{
++ match(Set mem (StoreL mem zero));
++
++ ins_cost(STORE_COST);
++ format %{ "sd zr, $mem\t# long, #@storeimmL0" %}
++
++ ins_encode %{
++ __ sd(zr, Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(istore_mem);
++%}
++
++// Store Pointer
++instruct storeP(iRegP src, memory mem)
++%{
++ match(Set mem (StoreP mem src));
++
++ ins_cost(STORE_COST);
++ format %{ "sd $src, $mem\t# ptr, #@storeP" %}
++
++ ins_encode %{
++ __ sd(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(istore_reg_mem);
++%}
++
++// Store Pointer
++instruct storeimmP0(immP0 zero, memory mem)
++%{
++ match(Set mem (StoreP mem zero));
++
++ ins_cost(STORE_COST);
++ format %{ "sd zr, $mem\t# ptr, #@storeimmP0" %}
++
++ ins_encode %{
++ __ sd(zr, Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(istore_mem);
++%}
++
++// Store Compressed Pointer
++instruct storeN(iRegN src, memory mem)
++%{
++ match(Set mem (StoreN mem src));
++
++ ins_cost(STORE_COST);
++ format %{ "sw $src, $mem\t# compressed ptr, #@storeN" %}
++
++ ins_encode %{
++ __ sw(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(istore_reg_mem);
++%}
++
++instruct storeImmN0(immN0 zero, memory mem)
++%{
++ match(Set mem (StoreN mem zero));
++
++ ins_cost(STORE_COST);
++ format %{ "sw zr, $mem\t# compressed ptr, #@storeImmN0" %}
++
++ ins_encode %{
++ __ sw(zr, Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(istore_reg_mem);
++%}
++
++// Store Float
++instruct storeF(fRegF src, memory mem)
++%{
++ match(Set mem (StoreF mem src));
++
++ ins_cost(STORE_COST);
++ format %{ "fsw $src, $mem\t# float, #@storeF" %}
++
++ ins_encode %{
++ __ fsw(as_FloatRegister($src$$reg), Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(fp_store_reg_s);
++%}
++
++// Store Double
++instruct storeD(fRegD src, memory mem)
++%{
++ match(Set mem (StoreD mem src));
++
++ ins_cost(STORE_COST);
++ format %{ "fsd $src, $mem\t# double, #@storeD" %}
++
++ ins_encode %{
++ __ fsd(as_FloatRegister($src$$reg), Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(fp_store_reg_d);
++%}
++
++// Store Compressed Klass Pointer
++instruct storeNKlass(iRegN src, memory mem)
++%{
++ match(Set mem (StoreNKlass mem src));
++
++ ins_cost(STORE_COST);
++ format %{ "sw $src, $mem\t# compressed klass ptr, #@storeNKlass" %}
++
++ ins_encode %{
++ __ sw(as_Register($src$$reg), Address(as_Register($mem$$base), $mem$$disp));
++ %}
++
++ ins_pipe(istore_reg_mem);
++%}
++
++// ============================================================================
++// Atomic operation instructions
++//
++// Intel and SPARC both implement Ideal Node LoadPLocked and
++// Store{PIL}Conditional instructions using a normal load for the
++// LoadPLocked and a CAS for the Store{PIL}Conditional.
++//
++// The ideal code appears only to use LoadPLocked/storePConditional as a
++// pair to lock object allocations from Eden space when not using
++// TLABs.
++//
++// There does not appear to be a Load{IL}Locked Ideal Node and the
++// Ideal code appears to use Store{IL}Conditional as an alias for CAS
++// and to use StoreIConditional only for 32-bit and StoreLConditional
++// only for 64-bit.
++//
++// We implement LoadPLocked and storePConditional instructions using,
++// respectively the RISCV hw load-reserve and store-conditional
++// instructions. Whereas we must implement each of
++// Store{IL}Conditional using a CAS which employs a pair of
++// instructions comprising a load-reserve followed by a
++// store-conditional.
++
++
++// Locked-load (load reserved) of the current heap-top
++// used when updating the eden heap top
++// implemented using lr_d on RISCV64
++instruct loadPLocked(iRegPNoSp dst, indirect mem)
++%{
++ match(Set dst (LoadPLocked mem));
++
++ ins_cost(ALU_COST * 2 + LOAD_COST);
++
++ format %{ "lr.d $dst, $mem\t# ptr load reserved, #@loadPLocked" %}
++
++ ins_encode %{
++ __ la(t0, Address(as_Register($mem$$base), $mem$$disp));
++ __ lr_d($dst$$Register, t0, Assembler::aq);
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++// Conditional-store of the updated heap-top.
++// Used during allocation of the shared heap.
++// implemented using sc_d on RISCV64.
++instruct storePConditional(memory heap_top_ptr, iRegP oldval, iRegP newval, rFlagsReg cr)
++%{
++ match(Set cr (StorePConditional heap_top_ptr (Binary oldval newval)));
++
++ ins_cost(ALU_COST * 2 + STORE_COST);
++
++ format %{
++ "sc_d t1, $newval $heap_top_ptr,\t# ptr store conditional, #@storePConditional"
++ %}
++
++ ins_encode %{
++ __ la(t0, Address(as_Register($heap_top_ptr$$base), $heap_top_ptr$$disp));
++ __ sc_d($cr$$Register, $newval$$Register, t0, Assembler::rl);
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++instruct storeLConditional(indirect mem, iRegL oldval, iRegL newval, rFlagsReg cr)
++%{
++ match(Set cr (StoreLConditional mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + 2 * BRANCH_COST);
++
++ format %{
++ "cmpxchg t1, $mem, $oldval, $newval, $mem\t# if $mem == $oldval then $mem <-- $newval"
++ "xorr $cr, $cr, $oldval\t# $cr == 0 on successful write, #@storeLConditional"
++ %}
++
++ ins_encode %{
++ __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
++ /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $cr$$Register);
++ __ xorr($cr$$Register,$cr$$Register, $oldval$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++// storeIConditional also has acquire semantics, for no better reason
++// than matching storeLConditional.
++instruct storeIConditional(indirect mem, iRegI oldval, iRegI newval, rFlagsReg cr)
++%{
++ match(Set cr (StoreIConditional mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2);
++
++ format %{
++ "cmpxchgw t1, $mem, $oldval, $newval, $mem\t# if $mem == $oldval then $mem <-- $newval"
++ "xorr $cr, $cr, $oldval\t# $cr == 0 on successful write, #@storeIConditional"
++ %}
++
++ ins_encode %{
++ __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32,
++ /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $cr$$Register);
++ __ xorr($cr$$Register,$cr$$Register, $oldval$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++// standard CompareAndSwapX when we are using barriers
++// these have higher priority than the rules selected by a predicate
++instruct compareAndSwapB(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
++ iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
++%{
++ match(Set res (CompareAndSwapB mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + ALU_COST * 10 + BRANCH_COST * 4);
++
++ effect(TEMP_DEF res, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3, KILL cr);
++
++ format %{
++ "cmpxchg $mem, $oldval, $newval\t# (byte) if $mem == $oldval then $mem <-- $newval\n\t"
++ "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapB"
++ %}
++
++ ins_encode %{
++ __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8,
++ Assembler::relaxed /* acquire */, Assembler::rl /* release */, $res$$Register,
++ true /* result as bool */, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct compareAndSwapS(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
++ iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
++%{
++ match(Set res (CompareAndSwapS mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + ALU_COST * 11 + BRANCH_COST * 4);
++
++ effect(TEMP_DEF res, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3, KILL cr);
++
++ format %{
++ "cmpxchg $mem, $oldval, $newval\t# (short) if $mem == $oldval then $mem <-- $newval\n\t"
++ "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapS"
++ %}
++
++ ins_encode %{
++ __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16,
++ Assembler::relaxed /* acquire */, Assembler::rl /* release */, $res$$Register,
++ true /* result as bool */, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct compareAndSwapI(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval)
++%{
++ match(Set res (CompareAndSwapI mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4);
++
++ format %{
++ "cmpxchg $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval\n\t"
++ "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapI"
++ %}
++
++ ins_encode(riscv_enc_cmpxchgw(res, mem, oldval, newval));
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct compareAndSwapL(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval)
++%{
++ match(Set res (CompareAndSwapL mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4);
++
++ format %{
++ "cmpxchg $mem, $oldval, $newval\t# (long) if $mem == $oldval then $mem <-- $newval\n\t"
++ "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapL"
++ %}
++
++ ins_encode(riscv_enc_cmpxchg(res, mem, oldval, newval));
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct compareAndSwapP(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval)
++%{
++ predicate(n->as_LoadStore()->barrier_data() == 0);
++
++ match(Set res (CompareAndSwapP mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4);
++
++ format %{
++ "cmpxchg $mem, $oldval, $newval\t# (ptr) if $mem == $oldval then $mem <-- $newval\n\t"
++ "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapP"
++ %}
++
++ ins_encode(riscv_enc_cmpxchg(res, mem, oldval, newval));
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct compareAndSwapN(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval)
++%{
++ match(Set res (CompareAndSwapN mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + ALU_COST * 8 + BRANCH_COST * 4);
++
++ format %{
++ "cmpxchg $mem, $oldval, $newval\t# (narrow oop) if $mem == $oldval then $mem <-- $newval\n\t"
++ "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapN"
++ %}
++
++ ins_encode(riscv_enc_cmpxchgn(res, mem, oldval, newval));
++
++ ins_pipe(pipe_slow);
++%}
++
++// alternative CompareAndSwapX when we are eliding barriers
++instruct compareAndSwapBAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
++ iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
++%{
++ predicate(needs_acquiring_load_reserved(n));
++
++ match(Set res (CompareAndSwapB mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + ALU_COST * 10 + BRANCH_COST * 4);
++
++ effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
++
++ format %{
++ "cmpxchg_acq $mem, $oldval, $newval\t# (byte) if $mem == $oldval then $mem <-- $newval\n\t"
++ "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapBAcq"
++ %}
++
++ ins_encode %{
++ __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8,
++ Assembler::aq /* acquire */, Assembler::rl /* release */, $res$$Register,
++ true /* result as bool */, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct compareAndSwapSAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
++ iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
++%{
++ predicate(needs_acquiring_load_reserved(n));
++
++ match(Set res (CompareAndSwapS mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + ALU_COST * 11 + BRANCH_COST * 4);
++
++ effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
++
++ format %{
++ "cmpxchg_acq $mem, $oldval, $newval\t# (short) if $mem == $oldval then $mem <-- $newval\n\t"
++ "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapSAcq"
++ %}
++
++ ins_encode %{
++ __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16,
++ Assembler::aq /* acquire */, Assembler::rl /* release */, $res$$Register,
++ true /* result as bool */, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct compareAndSwapIAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval)
++%{
++ predicate(needs_acquiring_load_reserved(n));
++
++ match(Set res (CompareAndSwapI mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4);
++
++ format %{
++ "cmpxchg_acq $mem, $oldval, $newval\t# (int) if $mem == $oldval then $mem <-- $newval\n\t"
++ "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapIAcq"
++ %}
++
++ ins_encode(riscv_enc_cmpxchgw_acq(res, mem, oldval, newval));
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct compareAndSwapLAcq(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval)
++%{
++ predicate(needs_acquiring_load_reserved(n));
++
++ match(Set res (CompareAndSwapL mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4);
++
++ format %{
++ "cmpxchg_acq $mem, $oldval, $newval\t# (long) if $mem == $oldval then $mem <-- $newval\n\t"
++ "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapLAcq"
++ %}
++
++ ins_encode(riscv_enc_cmpxchg_acq(res, mem, oldval, newval));
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct compareAndSwapPAcq(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval)
++%{
++ predicate(needs_acquiring_load_reserved(n) && (n->as_LoadStore()->barrier_data() == 0));
++
++ match(Set res (CompareAndSwapP mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + ALU_COST * 6 + BRANCH_COST * 4);
++
++ format %{
++ "cmpxchg_acq $mem, $oldval, $newval\t# (ptr) if $mem == $oldval then $mem <-- $newval\n\t"
++ "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapPAcq"
++ %}
++
++ ins_encode(riscv_enc_cmpxchg_acq(res, mem, oldval, newval));
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct compareAndSwapNAcq(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval)
++%{
++ predicate(needs_acquiring_load_reserved(n));
++
++ match(Set res (CompareAndSwapN mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + ALU_COST * 8 + BRANCH_COST * 4);
++
++ format %{
++ "cmpxchg_acq $mem, $oldval, $newval\t# (narrow oop) if $mem == $oldval then $mem <-- $newval\n\t"
++ "mv $res, $res == $oldval\t# $res <-- ($res == $oldval ? 1 : 0), #@compareAndSwapNAcq"
++ %}
++
++ ins_encode(riscv_enc_cmpxchgn_acq(res, mem, oldval, newval));
++
++ ins_pipe(pipe_slow);
++%}
++
++// Sundry CAS operations. Note that release is always true,
++// regardless of the memory ordering of the CAS. This is because we
++// need the volatile case to be sequentially consistent but there is
++// no trailing StoreLoad barrier emitted by C2. Unfortunately we
++// can't check the type of memory ordering here, so we always emit a
++// sc_d(w) with rl bit set.
++instruct compareAndExchangeB(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
++ iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
++%{
++ match(Set res (CompareAndExchangeB mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 5);
++
++ effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
++
++ format %{
++ "cmpxchg $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeB"
++ %}
++
++ ins_encode %{
++ __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8,
++ /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register,
++ /*result_as_bool*/ false, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct compareAndExchangeS(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
++ iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
++%{
++ match(Set res (CompareAndExchangeS mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 6);
++
++ effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
++
++ format %{
++ "cmpxchg $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeS"
++ %}
++
++ ins_encode %{
++ __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16,
++ /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register,
++ /*result_as_bool*/ false, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct compareAndExchangeI(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval)
++%{
++ match(Set res (CompareAndExchangeI mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST);
++
++ effect(TEMP_DEF res);
++
++ format %{
++ "cmpxchg $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeI"
++ %}
++
++ ins_encode %{
++ __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32,
++ /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct compareAndExchangeL(iRegLNoSp res, indirect mem, iRegL oldval, iRegL newval)
++%{
++ match(Set res (CompareAndExchangeL mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST);
++
++ effect(TEMP_DEF res);
++
++ format %{
++ "cmpxchg $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeL"
++ %}
++
++ ins_encode %{
++ __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
++ /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct compareAndExchangeN(iRegNNoSp res, indirect mem, iRegN oldval, iRegN newval)
++%{
++ match(Set res (CompareAndExchangeN mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 3);
++
++ effect(TEMP_DEF res);
++
++ format %{
++ "cmpxchg $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeN"
++ %}
++
++ ins_encode %{
++ __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32,
++ /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct compareAndExchangeP(iRegPNoSp res, indirect mem, iRegP oldval, iRegP newval)
++%{
++ predicate(n->as_LoadStore()->barrier_data() == 0);
++ match(Set res (CompareAndExchangeP mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST);
++
++ effect(TEMP_DEF res);
++
++ format %{
++ "cmpxchg $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeP"
++ %}
++
++ ins_encode %{
++ __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
++ /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct compareAndExchangeBAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
++ iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
++%{
++ predicate(needs_acquiring_load_reserved(n));
++
++ match(Set res (CompareAndExchangeB mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 5);
++
++ effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
++
++ format %{
++ "cmpxchg_acq $res = $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeBAcq"
++ %}
++
++ ins_encode %{
++ __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8,
++ /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register,
++ /*result_as_bool*/ false, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct compareAndExchangeSAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
++ iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
++%{
++ predicate(needs_acquiring_load_reserved(n));
++
++ match(Set res (CompareAndExchangeS mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST * 6);
++
++ effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
++
++ format %{
++ "cmpxchg_acq $res = $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeSAcq"
++ %}
++
++ ins_encode %{
++ __ cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16,
++ /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register,
++ /*result_as_bool*/ false, $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct compareAndExchangeIAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval)
++%{
++ predicate(needs_acquiring_load_reserved(n));
++
++ match(Set res (CompareAndExchangeI mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST);
++
++ effect(TEMP_DEF res);
++
++ format %{
++ "cmpxchg_acq $res = $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeIAcq"
++ %}
++
++ ins_encode %{
++ __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32,
++ /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct compareAndExchangeLAcq(iRegLNoSp res, indirect mem, iRegL oldval, iRegL newval)
++%{
++ predicate(needs_acquiring_load_reserved(n));
++
++ match(Set res (CompareAndExchangeL mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST);
++
++ effect(TEMP_DEF res);
++
++ format %{
++ "cmpxchg_acq $res = $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeLAcq"
++ %}
++
++ ins_encode %{
++ __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
++ /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct compareAndExchangeNAcq(iRegNNoSp res, indirect mem, iRegN oldval, iRegN newval)
++%{
++ predicate(needs_acquiring_load_reserved(n));
++
++ match(Set res (CompareAndExchangeN mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST);
++
++ effect(TEMP_DEF res);
++
++ format %{
++ "cmpxchg_acq $res = $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangeNAcq"
++ %}
++
++ ins_encode %{
++ __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32,
++ /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct compareAndExchangePAcq(iRegPNoSp res, indirect mem, iRegP oldval, iRegP newval)
++%{
++ predicate(needs_acquiring_load_reserved(n) && (n->as_LoadStore()->barrier_data() == 0));
++
++ match(Set res (CompareAndExchangeP mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 3 + ALU_COST);
++
++ effect(TEMP_DEF res);
++
++ format %{
++ "cmpxchg_acq $res = $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval, #@compareAndExchangePAcq"
++ %}
++
++ ins_encode %{
++ __ cmpxchg(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
++ /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct weakCompareAndSwapB(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
++ iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
++%{
++ match(Set res (WeakCompareAndSwapB mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 6);
++
++ effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
++
++ format %{
++ "cmpxchg_weak $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval\n\t"
++ "# $res == 1 when success, #@weakCompareAndSwapB"
++ %}
++
++ ins_encode %{
++ __ weak_cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8,
++ /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register,
++ $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct weakCompareAndSwapS(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
++ iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
++%{
++ match(Set res (WeakCompareAndSwapS mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 7);
++
++ effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
++
++ format %{
++ "cmpxchg_weak $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval\n\t"
++ "# $res == 1 when success, #@weakCompareAndSwapS"
++ %}
++
++ ins_encode %{
++ __ weak_cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16,
++ /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register,
++ $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct weakCompareAndSwapI(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval)
++%{
++ match(Set res (WeakCompareAndSwapI mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2);
++
++ format %{
++ "cmpxchg_weak $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval\n\t"
++ "# $res == 1 when success, #@weakCompareAndSwapI"
++ %}
++
++ ins_encode %{
++ __ cmpxchg_weak(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32,
++ /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct weakCompareAndSwapL(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval)
++%{
++ match(Set res (WeakCompareAndSwapL mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2);
++
++ format %{
++ "cmpxchg_weak $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval\n\t"
++ "# $res == 1 when success, #@weakCompareAndSwapL"
++ %}
++
++ ins_encode %{
++ __ cmpxchg_weak(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
++ /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct weakCompareAndSwapN(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval)
++%{
++ match(Set res (WeakCompareAndSwapN mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 4);
++
++ format %{
++ "cmpxchg_weak $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval\n\t"
++ "# $res == 1 when success, #@weakCompareAndSwapN"
++ %}
++
++ ins_encode %{
++ __ cmpxchg_weak(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32,
++ /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct weakCompareAndSwapP(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval)
++%{
++ predicate(n->as_LoadStore()->barrier_data() == 0);
++ match(Set res (WeakCompareAndSwapP mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2);
++
++ format %{
++ "cmpxchg_weak $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval\n\t"
++ "# $res == 1 when success, #@weakCompareAndSwapP"
++ %}
++
++ ins_encode %{
++ __ cmpxchg_weak(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
++ /*acquire*/ Assembler::relaxed, /*release*/ Assembler::rl, $res$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct weakCompareAndSwapBAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
++ iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
++%{
++ predicate(needs_acquiring_load_reserved(n));
++
++ match(Set res (WeakCompareAndSwapB mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 6);
++
++ effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
++
++ format %{
++ "cmpxchg_weak_acq $mem, $oldval, $newval\t# (byte, weak) if $mem == $oldval then $mem <-- $newval\n\t"
++ "# $res == 1 when success, #@weakCompareAndSwapBAcq"
++ %}
++
++ ins_encode %{
++ __ weak_cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int8,
++ /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register,
++ $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct weakCompareAndSwapSAcq(iRegINoSp res, indirect mem, iRegI_R12 oldval, iRegI_R13 newval,
++ iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3, rFlagsReg cr)
++%{
++ predicate(needs_acquiring_load_reserved(n));
++
++ match(Set res (WeakCompareAndSwapS mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 7);
++
++ effect(TEMP_DEF res, KILL cr, USE_KILL oldval, USE_KILL newval, TEMP tmp1, TEMP tmp2, TEMP tmp3);
++
++ format %{
++ "cmpxchg_weak_acq $mem, $oldval, $newval\t# (short, weak) if $mem == $oldval then $mem <-- $newval\n\t"
++ "# $res == 1 when success, #@weakCompareAndSwapSAcq"
++ %}
++
++ ins_encode %{
++ __ weak_cmpxchg_narrow_value(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int16,
++ /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register,
++ $tmp1$$Register, $tmp2$$Register, $tmp3$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct weakCompareAndSwapIAcq(iRegINoSp res, indirect mem, iRegI oldval, iRegI newval)
++%{
++ predicate(needs_acquiring_load_reserved(n));
++
++ match(Set res (WeakCompareAndSwapI mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2);
++
++ format %{
++ "cmpxchg_weak_acq $mem, $oldval, $newval\t# (int, weak) if $mem == $oldval then $mem <-- $newval\n\t"
++ "# $res == 1 when success, #@weakCompareAndSwapIAcq"
++ %}
++
++ ins_encode %{
++ __ cmpxchg_weak(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int32,
++ /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct weakCompareAndSwapLAcq(iRegINoSp res, indirect mem, iRegL oldval, iRegL newval)
++%{
++ predicate(needs_acquiring_load_reserved(n));
++
++ match(Set res (WeakCompareAndSwapL mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2);
++
++ format %{
++ "cmpxchg_weak_acq $mem, $oldval, $newval\t# (long, weak) if $mem == $oldval then $mem <-- $newval\n\t"
++ "# $res == 1 when success, #@weakCompareAndSwapLAcq"
++ %}
++
++ ins_encode %{
++ __ cmpxchg_weak(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
++ /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct weakCompareAndSwapNAcq(iRegINoSp res, indirect mem, iRegN oldval, iRegN newval)
++%{
++ predicate(needs_acquiring_load_reserved(n));
++
++ match(Set res (WeakCompareAndSwapN mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 4);
++
++ format %{
++ "cmpxchg_weak_acq $mem, $oldval, $newval\t# (narrow oop, weak) if $mem == $oldval then $mem <-- $newval\n\t"
++ "# $res == 1 when success, #@weakCompareAndSwapNAcq"
++ %}
++
++ ins_encode %{
++ __ cmpxchg_weak(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::uint32,
++ /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct weakCompareAndSwapPAcq(iRegINoSp res, indirect mem, iRegP oldval, iRegP newval)
++%{
++ predicate(needs_acquiring_load_reserved(n) && (n->as_LoadStore()->barrier_data() == 0));
++
++ match(Set res (WeakCompareAndSwapP mem (Binary oldval newval)));
++
++ ins_cost(LOAD_COST + STORE_COST + BRANCH_COST * 2 + ALU_COST * 2);
++
++ format %{
++ "cmpxchg_weak_acq $mem, $oldval, $newval\t# (ptr, weak) if $mem == $oldval then $mem <-- $newval\n\t"
++ "\t# $res == 1 when success, #@weakCompareAndSwapPAcq"
++ %}
++
++ ins_encode %{
++ __ cmpxchg_weak(as_Register($mem$$base), $oldval$$Register, $newval$$Register, Assembler::int64,
++ /*acquire*/ Assembler::aq, /*release*/ Assembler::rl, $res$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct get_and_setI(indirect mem, iRegI newv, iRegINoSp prev)
++%{
++ match(Set prev (GetAndSetI mem newv));
++
++ ins_cost(ALU_COST);
++
++ format %{ "atomic_xchgw $prev, $newv, [$mem]\t#@get_and_setI" %}
++
++ ins_encode %{
++ __ atomic_xchgw($prev$$Register, $newv$$Register, as_Register($mem$$base));
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++instruct get_and_setL(indirect mem, iRegL newv, iRegLNoSp prev)
++%{
++ match(Set prev (GetAndSetL mem newv));
++
++ ins_cost(ALU_COST);
++
++ format %{ "atomic_xchg $prev, $newv, [$mem]\t#@get_and_setL" %}
++
++ ins_encode %{
++ __ atomic_xchg($prev$$Register, $newv$$Register, as_Register($mem$$base));
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++instruct get_and_setN(indirect mem, iRegN newv, iRegINoSp prev)
++%{
++ match(Set prev (GetAndSetN mem newv));
++
++ ins_cost(ALU_COST);
++
++ format %{ "atomic_xchgwu $prev, $newv, [$mem]\t#@get_and_setN" %}
++
++ ins_encode %{
++ __ atomic_xchgwu($prev$$Register, $newv$$Register, as_Register($mem$$base));
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++instruct get_and_setP(indirect mem, iRegP newv, iRegPNoSp prev)
++%{
++ predicate(n->as_LoadStore()->barrier_data() == 0);
++ match(Set prev (GetAndSetP mem newv));
++
++ ins_cost(ALU_COST);
++
++ format %{ "atomic_xchg $prev, $newv, [$mem]\t#@get_and_setP" %}
++
++ ins_encode %{
++ __ atomic_xchg($prev$$Register, $newv$$Register, as_Register($mem$$base));
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++instruct get_and_setIAcq(indirect mem, iRegI newv, iRegINoSp prev)
++%{
++ predicate(needs_acquiring_load_reserved(n));
++
++ match(Set prev (GetAndSetI mem newv));
++
++ ins_cost(ALU_COST);
++
++ format %{ "atomic_xchgw_acq $prev, $newv, [$mem]\t#@get_and_setIAcq" %}
++
++ ins_encode %{
++ __ atomic_xchgalw($prev$$Register, $newv$$Register, as_Register($mem$$base));
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++instruct get_and_setLAcq(indirect mem, iRegL newv, iRegLNoSp prev)
++%{
++ predicate(needs_acquiring_load_reserved(n));
++
++ match(Set prev (GetAndSetL mem newv));
++
++ ins_cost(ALU_COST);
++
++ format %{ "atomic_xchg_acq $prev, $newv, [$mem]\t#@get_and_setLAcq" %}
++
++ ins_encode %{
++ __ atomic_xchgal($prev$$Register, $newv$$Register, as_Register($mem$$base));
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++instruct get_and_setNAcq(indirect mem, iRegN newv, iRegINoSp prev)
++%{
++ predicate(needs_acquiring_load_reserved(n));
++
++ match(Set prev (GetAndSetN mem newv));
++
++ ins_cost(ALU_COST);
++
++ format %{ "atomic_xchgwu_acq $prev, $newv, [$mem]\t#@get_and_setNAcq" %}
++
++ ins_encode %{
++ __ atomic_xchgalwu($prev$$Register, $newv$$Register, as_Register($mem$$base));
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++instruct get_and_setPAcq(indirect mem, iRegP newv, iRegPNoSp prev)
++%{
++ predicate(needs_acquiring_load_reserved(n) && (n->as_LoadStore()->barrier_data() == 0));
++
++ match(Set prev (GetAndSetP mem newv));
++
++ ins_cost(ALU_COST);
++
++ format %{ "atomic_xchg_acq $prev, $newv, [$mem]\t#@get_and_setPAcq" %}
++
++ ins_encode %{
++ __ atomic_xchgal($prev$$Register, $newv$$Register, as_Register($mem$$base));
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++instruct get_and_addL(indirect mem, iRegLNoSp newval, iRegL incr)
++%{
++ match(Set newval (GetAndAddL mem incr));
++
++ ins_cost(ALU_COST);
++
++ format %{ "get_and_addL $newval, [$mem], $incr\t#@get_and_addL" %}
++
++ ins_encode %{
++ __ atomic_add($newval$$Register, $incr$$Register, as_Register($mem$$base));
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++instruct get_and_addL_no_res(indirect mem, Universe dummy, iRegL incr)
++%{
++ predicate(n->as_LoadStore()->result_not_used());
++
++ match(Set dummy (GetAndAddL mem incr));
++
++ ins_cost(ALU_COST);
++
++ format %{ "get_and_addL [$mem], $incr\t#@get_and_addL_no_res" %}
++
++ ins_encode %{
++ __ atomic_add(noreg, $incr$$Register, as_Register($mem$$base));
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++instruct get_and_addLi(indirect mem, iRegLNoSp newval, immLAdd incr)
++%{
++ match(Set newval (GetAndAddL mem incr));
++
++ ins_cost(ALU_COST);
++
++ format %{ "get_and_addL $newval, [$mem], $incr\t#@get_and_addLi" %}
++
++ ins_encode %{
++ __ atomic_add($newval$$Register, $incr$$constant, as_Register($mem$$base));
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++instruct get_and_addLi_no_res(indirect mem, Universe dummy, immLAdd incr)
++%{
++ predicate(n->as_LoadStore()->result_not_used());
++
++ match(Set dummy (GetAndAddL mem incr));
++
++ ins_cost(ALU_COST);
++
++ format %{ "get_and_addL [$mem], $incr\t#@get_and_addLi_no_res" %}
++
++ ins_encode %{
++ __ atomic_add(noreg, $incr$$constant, as_Register($mem$$base));
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++instruct get_and_addI(indirect mem, iRegINoSp newval, iRegIorL2I incr)
++%{
++ match(Set newval (GetAndAddI mem incr));
++
++ ins_cost(ALU_COST);
++
++ format %{ "get_and_addI $newval, [$mem], $incr\t#@get_and_addI" %}
++
++ ins_encode %{
++ __ atomic_addw($newval$$Register, $incr$$Register, as_Register($mem$$base));
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++instruct get_and_addI_no_res(indirect mem, Universe dummy, iRegIorL2I incr)
++%{
++ predicate(n->as_LoadStore()->result_not_used());
++
++ match(Set dummy (GetAndAddI mem incr));
++
++ ins_cost(ALU_COST);
++
++ format %{ "get_and_addI [$mem], $incr\t#@get_and_addI_no_res" %}
++
++ ins_encode %{
++ __ atomic_addw(noreg, $incr$$Register, as_Register($mem$$base));
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++instruct get_and_addIi(indirect mem, iRegINoSp newval, immIAdd incr)
++%{
++ match(Set newval (GetAndAddI mem incr));
++
++ ins_cost(ALU_COST);
++
++ format %{ "get_and_addI $newval, [$mem], $incr\t#@get_and_addIi" %}
++
++ ins_encode %{
++ __ atomic_addw($newval$$Register, $incr$$constant, as_Register($mem$$base));
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++instruct get_and_addIi_no_res(indirect mem, Universe dummy, immIAdd incr)
++%{
++ predicate(n->as_LoadStore()->result_not_used());
++
++ match(Set dummy (GetAndAddI mem incr));
++
++ ins_cost(ALU_COST);
++
++ format %{ "get_and_addI [$mem], $incr\t#@get_and_addIi_no_res" %}
++
++ ins_encode %{
++ __ atomic_addw(noreg, $incr$$constant, as_Register($mem$$base));
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++instruct get_and_addLAcq(indirect mem, iRegLNoSp newval, iRegL incr)
++%{
++ predicate(needs_acquiring_load_reserved(n));
++
++ match(Set newval (GetAndAddL mem incr));
++
++ ins_cost(ALU_COST);
++
++ format %{ "get_and_addL_acq $newval, [$mem], $incr\t#@get_and_addLAcq" %}
++
++ ins_encode %{
++ __ atomic_addal($newval$$Register, $incr$$Register, as_Register($mem$$base));
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++instruct get_and_addL_no_resAcq(indirect mem, Universe dummy, iRegL incr) %{
++ predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_reserved(n));
++
++ match(Set dummy (GetAndAddL mem incr));
++
++ ins_cost(ALU_COST);
++
++ format %{ "get_and_addL_acq [$mem], $incr\t#@get_and_addL_no_resAcq" %}
++
++ ins_encode %{
++ __ atomic_addal(noreg, $incr$$Register, as_Register($mem$$base));
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++instruct get_and_addLiAcq(indirect mem, iRegLNoSp newval, immLAdd incr)
++%{
++ predicate(needs_acquiring_load_reserved(n));
++
++ match(Set newval (GetAndAddL mem incr));
++
++ ins_cost(ALU_COST);
++
++ format %{ "get_and_addL_acq $newval, [$mem], $incr\t#@get_and_addLiAcq" %}
++
++ ins_encode %{
++ __ atomic_addal($newval$$Register, $incr$$constant, as_Register($mem$$base));
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++instruct get_and_addLi_no_resAcq(indirect mem, Universe dummy, immLAdd incr)
++%{
++ predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_reserved(n));
++
++ match(Set dummy (GetAndAddL mem incr));
++
++ ins_cost(ALU_COST);
++
++ format %{ "get_and_addL_acq [$mem], $incr\t#@get_and_addLi_no_resAcq" %}
++
++ ins_encode %{
++ __ atomic_addal(noreg, $incr$$constant, as_Register($mem$$base));
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++instruct get_and_addIAcq(indirect mem, iRegINoSp newval, iRegIorL2I incr)
++%{
++ predicate(needs_acquiring_load_reserved(n));
++
++ match(Set newval (GetAndAddI mem incr));
++
++ ins_cost(ALU_COST);
++
++ format %{ "get_and_addI_acq $newval, [$mem], $incr\t#@get_and_addIAcq" %}
++
++ ins_encode %{
++ __ atomic_addalw($newval$$Register, $incr$$Register, as_Register($mem$$base));
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++instruct get_and_addI_no_resAcq(indirect mem, Universe dummy, iRegIorL2I incr)
++%{
++ predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_reserved(n));
++
++ match(Set dummy (GetAndAddI mem incr));
++
++ ins_cost(ALU_COST);
++
++ format %{ "get_and_addI_acq [$mem], $incr\t#@get_and_addI_no_resAcq" %}
++
++ ins_encode %{
++ __ atomic_addalw(noreg, $incr$$Register, as_Register($mem$$base));
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++instruct get_and_addIiAcq(indirect mem, iRegINoSp newval, immIAdd incr)
++%{
++ predicate(needs_acquiring_load_reserved(n));
++
++ match(Set newval (GetAndAddI mem incr));
++
++ ins_cost(ALU_COST);
++
++ format %{ "get_and_addI_acq $newval, [$mem], $incr\t#@get_and_addIiAcq" %}
++
++ ins_encode %{
++ __ atomic_addalw($newval$$Register, $incr$$constant, as_Register($mem$$base));
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++instruct get_and_addIi_no_resAcq(indirect mem, Universe dummy, immIAdd incr)
++%{
++ predicate(n->as_LoadStore()->result_not_used() && needs_acquiring_load_reserved(n));
++
++ match(Set dummy (GetAndAddI mem incr));
++
++ ins_cost(ALU_COST);
++
++ format %{ "get_and_addI_acq [$mem], $incr\t#@get_and_addIi_no_resAcq" %}
++
++ ins_encode %{
++ __ atomic_addalw(noreg, $incr$$constant, as_Register($mem$$base));
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++// ============================================================================
++// Arithmetic Instructions
++//
++
++// Integer Addition
++
++// TODO
++// these currently employ operations which do not set CR and hence are
++// not flagged as killing CR but we would like to isolate the cases
++// where we want to set flags from those where we don't. need to work
++// out how to do that.
++instruct addI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
++ match(Set dst (AddI src1 src2));
++
++ ins_cost(ALU_COST);
++ format %{ "addw $dst, $src1, $src2\t#@addI_reg_reg" %}
++
++ ins_encode %{
++ __ addw(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ as_Register($src2$$reg));
++ %}
++
++ ins_pipe(ialu_reg_reg);
++%}
++
++instruct addI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immIAdd src2) %{
++ match(Set dst (AddI src1 src2));
++
++ ins_cost(ALU_COST);
++ format %{ "addiw $dst, $src1, $src2\t#@addI_reg_imm" %}
++
++ ins_encode %{
++ int32_t con = (int32_t)$src2$$constant;
++ __ addiw(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ $src2$$constant);
++ %}
++
++ ins_pipe(ialu_reg_imm);
++%}
++
++instruct addI_reg_imm_l2i(iRegINoSp dst, iRegL src1, immIAdd src2) %{
++ match(Set dst (AddI (ConvL2I src1) src2));
++
++ ins_cost(ALU_COST);
++ format %{ "addiw $dst, $src1, $src2\t#@addI_reg_imm_l2i" %}
++
++ ins_encode %{
++ __ addiw(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ $src2$$constant);
++ %}
++
++ ins_pipe(ialu_reg_imm);
++%}
++
++// Pointer Addition
++instruct addP_reg_reg(iRegPNoSp dst, iRegP src1, iRegL src2) %{
++ match(Set dst (AddP src1 src2));
++
++ ins_cost(ALU_COST);
++ format %{ "add $dst, $src1, $src2\t# ptr, #@addP_reg_reg" %}
++
++ ins_encode %{
++ __ add(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ as_Register($src2$$reg));
++ %}
++
++ ins_pipe(ialu_reg_reg);
++%}
++
++// If we shift more than 32 bits, we need not convert I2L.
++instruct lShiftL_regI_immGE32(iRegLNoSp dst, iRegI src, uimmI6_ge32 scale) %{
++ match(Set dst (LShiftL (ConvI2L src) scale));
++ ins_cost(ALU_COST);
++ format %{ "slli $dst, $src, $scale & 63\t#@lShiftL_regI_immGE32" %}
++
++ ins_encode %{
++ __ slli(as_Register($dst$$reg), as_Register($src$$reg), $scale$$constant & 63);
++ %}
++
++ ins_pipe(ialu_reg_shift);
++%}
++
++// Pointer Immediate Addition
++// n.b. this needs to be more expensive than using an indirect memory
++// operand
++instruct addP_reg_imm(iRegPNoSp dst, iRegP src1, immLAdd src2) %{
++ match(Set dst (AddP src1 src2));
++ ins_cost(ALU_COST);
++ format %{ "addi $dst, $src1, $src2\t# ptr, #@addP_reg_imm" %}
++
++ ins_encode %{
++ // src2 is imm, so actually call the addi
++ __ add(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ $src2$$constant);
++ %}
++
++ ins_pipe(ialu_reg_imm);
++%}
++
++// Long Addition
++instruct addL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
++ match(Set dst (AddL src1 src2));
++ ins_cost(ALU_COST);
++ format %{ "add $dst, $src1, $src2\t#@addL_reg_reg" %}
++
++ ins_encode %{
++ __ add(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ as_Register($src2$$reg));
++ %}
++
++ ins_pipe(ialu_reg_reg);
++%}
++
++// No constant pool entries requiredLong Immediate Addition.
++instruct addL_reg_imm(iRegLNoSp dst, iRegL src1, immLAdd src2) %{
++ match(Set dst (AddL src1 src2));
++ ins_cost(ALU_COST);
++ format %{ "addi $dst, $src1, $src2\t#@addL_reg_imm" %}
++
++ ins_encode %{
++ // src2 is imm, so actually call the addi
++ __ add(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ $src2$$constant);
++ %}
++
++ ins_pipe(ialu_reg_imm);
++%}
++
++// Integer Subtraction
++instruct subI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
++ match(Set dst (SubI src1 src2));
++
++ ins_cost(ALU_COST);
++ format %{ "subw $dst, $src1, $src2\t#@subI_reg_reg" %}
++
++ ins_encode %{
++ __ subw(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ as_Register($src2$$reg));
++ %}
++
++ ins_pipe(ialu_reg_reg);
++%}
++
++// Immediate Subtraction
++instruct subI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immISub src2) %{
++ match(Set dst (SubI src1 src2));
++
++ ins_cost(ALU_COST);
++ format %{ "addiw $dst, $src1, -$src2\t#@subI_reg_imm" %}
++
++ ins_encode %{
++ // src2 is imm, so actually call the addiw
++ __ subw(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ $src2$$constant);
++ %}
++
++ ins_pipe(ialu_reg_imm);
++%}
++
++// Long Subtraction
++instruct subL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
++ match(Set dst (SubL src1 src2));
++ ins_cost(ALU_COST);
++ format %{ "sub $dst, $src1, $src2\t#@subL_reg_reg" %}
++
++ ins_encode %{
++ __ sub(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ as_Register($src2$$reg));
++ %}
++
++ ins_pipe(ialu_reg_reg);
++%}
++
++// No constant pool entries requiredLong Immediate Subtraction.
++instruct subL_reg_imm(iRegLNoSp dst, iRegL src1, immLSub src2) %{
++ match(Set dst (SubL src1 src2));
++ ins_cost(ALU_COST);
++ format %{ "addi $dst, $src1, -$src2\t#@subL_reg_imm" %}
++
++ ins_encode %{
++ // src2 is imm, so actually call the addi
++ __ sub(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ $src2$$constant);
++ %}
++
++ ins_pipe(ialu_reg_imm);
++%}
++
++// Integer Negation (special case for sub)
++
++instruct negI_reg(iRegINoSp dst, iRegIorL2I src, immI0 zero) %{
++ match(Set dst (SubI zero src));
++ ins_cost(ALU_COST);
++ format %{ "subw $dst, x0, $src\t# int, #@negI_reg" %}
++
++ ins_encode %{
++ // actually call the subw
++ __ negw(as_Register($dst$$reg),
++ as_Register($src$$reg));
++ %}
++
++ ins_pipe(ialu_reg);
++%}
++
++// Long Negation
++
++instruct negL_reg(iRegLNoSp dst, iRegL src, immL0 zero) %{
++ match(Set dst (SubL zero src));
++ ins_cost(ALU_COST);
++ format %{ "sub $dst, x0, $src\t# long, #@negL_reg" %}
++
++ ins_encode %{
++ // actually call the sub
++ __ neg(as_Register($dst$$reg),
++ as_Register($src$$reg));
++ %}
++
++ ins_pipe(ialu_reg);
++%}
++
++// Integer Multiply
++
++instruct mulI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
++ match(Set dst (MulI src1 src2));
++ ins_cost(IMUL_COST);
++ format %{ "mulw $dst, $src1, $src2\t#@mulI" %}
++
++ //this means 2 word multi, and no sign extend to 64 bits
++ ins_encode %{
++ // riscv64 mulw will sign-extension to high 32 bits in dst reg
++ __ mulw(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ as_Register($src2$$reg));
++ %}
++
++ ins_pipe(imul_reg_reg);
++%}
++
++// Long Multiply
++
++instruct mulL(iRegLNoSp dst, iRegL src1, iRegL src2) %{
++ match(Set dst (MulL src1 src2));
++ ins_cost(IMUL_COST);
++ format %{ "mul $dst, $src1, $src2\t#@mulL" %}
++
++ ins_encode %{
++ __ mul(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ as_Register($src2$$reg));
++ %}
++
++ ins_pipe(lmul_reg_reg);
++%}
++
++instruct mulHiL_rReg(iRegLNoSp dst, iRegL src1, iRegL src2)
++%{
++ match(Set dst (MulHiL src1 src2));
++ ins_cost(IMUL_COST);
++ format %{ "mulh $dst, $src1, $src2\t# mulhi, #@mulHiL_rReg" %}
++
++ ins_encode %{
++ __ mulh(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ as_Register($src2$$reg));
++ %}
++
++ ins_pipe(lmul_reg_reg);
++%}
++
++// Integer Divide
++
++instruct divI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
++ match(Set dst (DivI src1 src2));
++ ins_cost(IDIVSI_COST);
++ format %{ "divw $dst, $src1, $src2\t#@divI"%}
++
++ ins_encode(riscv_enc_divw(dst, src1, src2));
++ ins_pipe(idiv_reg_reg);
++%}
++
++instruct signExtract(iRegINoSp dst, iRegIorL2I src1, immI_31 div1, immI_31 div2) %{
++ match(Set dst (URShiftI (RShiftI src1 div1) div2));
++ ins_cost(ALU_COST);
++ format %{ "srliw $dst, $src1, $div1\t# int signExtract, #@signExtract" %}
++
++ ins_encode %{
++ __ srliw(as_Register($dst$$reg), as_Register($src1$$reg), 31);
++ %}
++ ins_pipe(ialu_reg_shift);
++%}
++
++// Long Divide
++
++instruct divL(iRegLNoSp dst, iRegL src1, iRegL src2) %{
++ match(Set dst (DivL src1 src2));
++ ins_cost(IDIVDI_COST);
++ format %{ "div $dst, $src1, $src2\t#@divL" %}
++
++ ins_encode(riscv_enc_div(dst, src1, src2));
++ ins_pipe(ldiv_reg_reg);
++%}
++
++instruct signExtractL(iRegLNoSp dst, iRegL src1, immI_63 div1, immI_63 div2) %{
++ match(Set dst (URShiftL (RShiftL src1 div1) div2));
++ ins_cost(ALU_COST);
++ format %{ "srli $dst, $src1, $div1\t# long signExtract, #@signExtractL" %}
++
++ ins_encode %{
++ __ srli(as_Register($dst$$reg), as_Register($src1$$reg), 63);
++ %}
++ ins_pipe(ialu_reg_shift);
++%}
++
++// Integer Remainder
++
++instruct modI(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
++ match(Set dst (ModI src1 src2));
++ ins_cost(IDIVSI_COST);
++ format %{ "remw $dst, $src1, $src2\t#@modI" %}
++
++ ins_encode(riscv_enc_modw(dst, src1, src2));
++ ins_pipe(ialu_reg_reg);
++%}
++
++// Long Remainder
++
++instruct modL(iRegLNoSp dst, iRegL src1, iRegL src2) %{
++ match(Set dst (ModL src1 src2));
++ ins_cost(IDIVDI_COST);
++ format %{ "rem $dst, $src1, $src2\t#@modL" %}
++
++ ins_encode(riscv_enc_mod(dst, src1, src2));
++ ins_pipe(ialu_reg_reg);
++%}
++
++// Integer Shifts
++
++// Shift Left Register
++// In RV64I, only the low 5 bits of src2 are considered for the shift amount
++instruct lShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
++ match(Set dst (LShiftI src1 src2));
++ ins_cost(ALU_COST);
++ format %{ "sllw $dst, $src1, $src2\t#@lShiftI_reg_reg" %}
++
++ ins_encode %{
++ __ sllw(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ as_Register($src2$$reg));
++ %}
++
++ ins_pipe(ialu_reg_reg_vshift);
++%}
++
++// Shift Left Immediate
++instruct lShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{
++ match(Set dst (LShiftI src1 src2));
++ ins_cost(ALU_COST);
++ format %{ "slliw $dst, $src1, ($src2 & 0x1f)\t#@lShiftI_reg_imm" %}
++
++ ins_encode %{
++ // the shift amount is encoded in the lower
++ // 5 bits of the I-immediate field for RV32I
++ __ slliw(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ (unsigned) $src2$$constant & 0x1f);
++ %}
++
++ ins_pipe(ialu_reg_shift);
++%}
++
++// Shift Right Logical Register
++// In RV64I, only the low 5 bits of src2 are considered for the shift amount
++instruct urShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
++ match(Set dst (URShiftI src1 src2));
++ ins_cost(ALU_COST);
++ format %{ "srlw $dst, $src1, $src2\t#@urShiftI_reg_reg" %}
++
++ ins_encode %{
++ __ srlw(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ as_Register($src2$$reg));
++ %}
++
++ ins_pipe(ialu_reg_reg_vshift);
++%}
++
++// Shift Right Logical Immediate
++instruct urShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{
++ match(Set dst (URShiftI src1 src2));
++ ins_cost(ALU_COST);
++ format %{ "srliw $dst, $src1, ($src2 & 0x1f)\t#@urShiftI_reg_imm" %}
++
++ ins_encode %{
++ // the shift amount is encoded in the lower
++ // 6 bits of the I-immediate field for RV64I
++ __ srliw(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ (unsigned) $src2$$constant & 0x1f);
++ %}
++
++ ins_pipe(ialu_reg_shift);
++%}
++
++// Shift Right Arithmetic Register
++// In RV64I, only the low 5 bits of src2 are considered for the shift amount
++instruct rShiftI_reg_reg(iRegINoSp dst, iRegIorL2I src1, iRegIorL2I src2) %{
++ match(Set dst (RShiftI src1 src2));
++ ins_cost(ALU_COST);
++ format %{ "sraw $dst, $src1, $src2\t#@rShiftI_reg_reg" %}
++
++ ins_encode %{
++ // riscv will sign-ext dst high 32 bits
++ __ sraw(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ as_Register($src2$$reg));
++ %}
++
++ ins_pipe(ialu_reg_reg_vshift);
++%}
++
++// Shift Right Arithmetic Immediate
++instruct rShiftI_reg_imm(iRegINoSp dst, iRegIorL2I src1, immI src2) %{
++ match(Set dst (RShiftI src1 src2));
++ ins_cost(ALU_COST);
++ format %{ "sraiw $dst, $src1, ($src2 & 0x1f)\t#@rShiftI_reg_imm" %}
++
++ ins_encode %{
++ // riscv will sign-ext dst high 32 bits
++ __ sraiw(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ (unsigned) $src2$$constant & 0x1f);
++ %}
++
++ ins_pipe(ialu_reg_shift);
++%}
++
++// Long Shifts
++
++// Shift Left Register
++// In RV64I, only the low 6 bits of src2 are considered for the shift amount
++instruct lShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{
++ match(Set dst (LShiftL src1 src2));
++
++ ins_cost(ALU_COST);
++ format %{ "sll $dst, $src1, $src2\t#@lShiftL_reg_reg" %}
++
++ ins_encode %{
++ __ sll(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ as_Register($src2$$reg));
++ %}
++
++ ins_pipe(ialu_reg_reg_vshift);
++%}
++
++// Shift Left Immediate
++instruct lShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{
++ match(Set dst (LShiftL src1 src2));
++
++ ins_cost(ALU_COST);
++ format %{ "slli $dst, $src1, ($src2 & 0x3f)\t#@lShiftL_reg_imm" %}
++
++ ins_encode %{
++ // the shift amount is encoded in the lower
++ // 6 bits of the I-immediate field for RV64I
++ __ slli(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ (unsigned) $src2$$constant & 0x3f);
++ %}
++
++ ins_pipe(ialu_reg_shift);
++%}
++
++// Shift Right Logical Register
++// In RV64I, only the low 6 bits of src2 are considered for the shift amount
++instruct urShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{
++ match(Set dst (URShiftL src1 src2));
++
++ ins_cost(ALU_COST);
++ format %{ "srl $dst, $src1, $src2\t#@urShiftL_reg_reg" %}
++
++ ins_encode %{
++ __ srl(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ as_Register($src2$$reg));
++ %}
++
++ ins_pipe(ialu_reg_reg_vshift);
++%}
++
++// Shift Right Logical Immediate
++instruct urShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{
++ match(Set dst (URShiftL src1 src2));
++
++ ins_cost(ALU_COST);
++ format %{ "srli $dst, $src1, ($src2 & 0x3f)\t#@urShiftL_reg_imm" %}
++
++ ins_encode %{
++ // the shift amount is encoded in the lower
++ // 6 bits of the I-immediate field for RV64I
++ __ srli(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ (unsigned) $src2$$constant & 0x3f);
++ %}
++
++ ins_pipe(ialu_reg_shift);
++%}
++
++// A special-case pattern for card table stores.
++instruct urShiftP_reg_imm(iRegLNoSp dst, iRegP src1, immI src2) %{
++ match(Set dst (URShiftL (CastP2X src1) src2));
++
++ ins_cost(ALU_COST);
++ format %{ "srli $dst, p2x($src1), ($src2 & 0x3f)\t#@urShiftP_reg_imm" %}
++
++ ins_encode %{
++ // the shift amount is encoded in the lower
++ // 6 bits of the I-immediate field for RV64I
++ __ srli(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ (unsigned) $src2$$constant & 0x3f);
++ %}
++
++ ins_pipe(ialu_reg_shift);
++%}
++
++// Shift Right Arithmetic Register
++// In RV64I, only the low 6 bits of src2 are considered for the shift amount
++instruct rShiftL_reg_reg(iRegLNoSp dst, iRegL src1, iRegIorL2I src2) %{
++ match(Set dst (RShiftL src1 src2));
++
++ ins_cost(ALU_COST);
++ format %{ "sra $dst, $src1, $src2\t#@rShiftL_reg_reg" %}
++
++ ins_encode %{
++ __ sra(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ as_Register($src2$$reg));
++ %}
++
++ ins_pipe(ialu_reg_reg_vshift);
++%}
++
++// Shift Right Arithmetic Immediate
++instruct rShiftL_reg_imm(iRegLNoSp dst, iRegL src1, immI src2) %{
++ match(Set dst (RShiftL src1 src2));
++
++ ins_cost(ALU_COST);
++ format %{ "srai $dst, $src1, ($src2 & 0x3f)\t#@rShiftL_reg_imm" %}
++
++ ins_encode %{
++ // the shift amount is encoded in the lower
++ // 6 bits of the I-immediate field for RV64I
++ __ srai(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ (unsigned) $src2$$constant & 0x3f);
++ %}
++
++ ins_pipe(ialu_reg_shift);
++%}
++
++instruct regI_not_reg(iRegINoSp dst, iRegI src1, immI_M1 m1) %{
++ match(Set dst (XorI src1 m1));
++ ins_cost(ALU_COST);
++ format %{ "xori $dst, $src1, -1\t#@regI_not_reg" %}
++
++ ins_encode %{
++ __ xori(as_Register($dst$$reg), as_Register($src1$$reg), -1);
++ %}
++
++ ins_pipe(ialu_reg_imm);
++%}
++
++instruct regL_not_reg(iRegLNoSp dst, iRegL src1, immL_M1 m1) %{
++ match(Set dst (XorL src1 m1));
++ ins_cost(ALU_COST);
++ format %{ "xori $dst, $src1, -1\t#@regL_not_reg" %}
++
++ ins_encode %{
++ __ xori(as_Register($dst$$reg), as_Register($src1$$reg), -1);
++ %}
++
++ ins_pipe(ialu_reg_imm);
++%}
++
++
++// ============================================================================
++// Floating Point Arithmetic Instructions
++
++instruct addF_reg_reg(fRegF dst, fRegF src1, fRegF src2) %{
++ match(Set dst (AddF src1 src2));
++
++ ins_cost(DEFAULT_COST * 5);
++ format %{ "fadd.s $dst, $src1, $src2\t#@addF_reg_reg" %}
++
++ ins_encode %{
++ __ fadd_s(as_FloatRegister($dst$$reg),
++ as_FloatRegister($src1$$reg),
++ as_FloatRegister($src2$$reg));
++ %}
++
++ ins_pipe(fp_dop_reg_reg_s);
++%}
++
++instruct addD_reg_reg(fRegD dst, fRegD src1, fRegD src2) %{
++ match(Set dst (AddD src1 src2));
++
++ ins_cost(DEFAULT_COST * 5);
++ format %{ "fadd.d $dst, $src1, $src2\t#@addD_reg_reg" %}
++
++ ins_encode %{
++ __ fadd_d(as_FloatRegister($dst$$reg),
++ as_FloatRegister($src1$$reg),
++ as_FloatRegister($src2$$reg));
++ %}
++
++ ins_pipe(fp_dop_reg_reg_d);
++%}
++
++instruct subF_reg_reg(fRegF dst, fRegF src1, fRegF src2) %{
++ match(Set dst (SubF src1 src2));
++
++ ins_cost(DEFAULT_COST * 5);
++ format %{ "fsub.s $dst, $src1, $src2\t#@subF_reg_reg" %}
++
++ ins_encode %{
++ __ fsub_s(as_FloatRegister($dst$$reg),
++ as_FloatRegister($src1$$reg),
++ as_FloatRegister($src2$$reg));
++ %}
++
++ ins_pipe(fp_dop_reg_reg_s);
++%}
++
++instruct subD_reg_reg(fRegD dst, fRegD src1, fRegD src2) %{
++ match(Set dst (SubD src1 src2));
++
++ ins_cost(DEFAULT_COST * 5);
++ format %{ "fsub.d $dst, $src1, $src2\t#@subD_reg_reg" %}
++
++ ins_encode %{
++ __ fsub_d(as_FloatRegister($dst$$reg),
++ as_FloatRegister($src1$$reg),
++ as_FloatRegister($src2$$reg));
++ %}
++
++ ins_pipe(fp_dop_reg_reg_d);
++%}
++
++instruct mulF_reg_reg(fRegF dst, fRegF src1, fRegF src2) %{
++ match(Set dst (MulF src1 src2));
++
++ ins_cost(FMUL_SINGLE_COST);
++ format %{ "fmul.s $dst, $src1, $src2\t#@mulF_reg_reg" %}
++
++ ins_encode %{
++ __ fmul_s(as_FloatRegister($dst$$reg),
++ as_FloatRegister($src1$$reg),
++ as_FloatRegister($src2$$reg));
++ %}
++
++ ins_pipe(fp_dop_reg_reg_s);
++%}
++
++instruct mulD_reg_reg(fRegD dst, fRegD src1, fRegD src2) %{
++ match(Set dst (MulD src1 src2));
++
++ ins_cost(FMUL_DOUBLE_COST);
++ format %{ "fmul.d $dst, $src1, $src2\t#@mulD_reg_reg" %}
++
++ ins_encode %{
++ __ fmul_d(as_FloatRegister($dst$$reg),
++ as_FloatRegister($src1$$reg),
++ as_FloatRegister($src2$$reg));
++ %}
++
++ ins_pipe(fp_dop_reg_reg_d);
++%}
++
++// src1 * src2 + src3
++instruct maddF_reg_reg(fRegF dst, fRegF src1, fRegF src2, fRegF src3) %{
++ predicate(UseFMA);
++ match(Set dst (FmaF src3 (Binary src1 src2)));
++
++ ins_cost(FMUL_SINGLE_COST);
++ format %{ "fmadd.s $dst, $src1, $src2, $src3\t#@maddF_reg_reg" %}
++
++ ins_encode %{
++ __ fmadd_s(as_FloatRegister($dst$$reg),
++ as_FloatRegister($src1$$reg),
++ as_FloatRegister($src2$$reg),
++ as_FloatRegister($src3$$reg));
++ %}
++
++ ins_pipe(pipe_class_default);
++%}
++
++// src1 * src2 + src3
++instruct maddD_reg_reg(fRegD dst, fRegD src1, fRegD src2, fRegD src3) %{
++ predicate(UseFMA);
++ match(Set dst (FmaD src3 (Binary src1 src2)));
++
++ ins_cost(FMUL_DOUBLE_COST);
++ format %{ "fmadd.d $dst, $src1, $src2, $src3\t#@maddD_reg_reg" %}
++
++ ins_encode %{
++ __ fmadd_d(as_FloatRegister($dst$$reg),
++ as_FloatRegister($src1$$reg),
++ as_FloatRegister($src2$$reg),
++ as_FloatRegister($src3$$reg));
++ %}
++
++ ins_pipe(pipe_class_default);
++%}
++
++// src1 * src2 - src3
++instruct msubF_reg_reg(fRegF dst, fRegF src1, fRegF src2, fRegF src3) %{
++ predicate(UseFMA);
++ match(Set dst (FmaF (NegF src3) (Binary src1 src2)));
++
++ ins_cost(FMUL_SINGLE_COST);
++ format %{ "fmsub.s $dst, $src1, $src2, $src3\t#@msubF_reg_reg" %}
++
++ ins_encode %{
++ __ fmsub_s(as_FloatRegister($dst$$reg),
++ as_FloatRegister($src1$$reg),
++ as_FloatRegister($src2$$reg),
++ as_FloatRegister($src3$$reg));
++ %}
++
++ ins_pipe(pipe_class_default);
++%}
++
++// src1 * src2 - src3
++instruct msubD_reg_reg(fRegD dst, fRegD src1, fRegD src2, fRegD src3) %{
++ predicate(UseFMA);
++ match(Set dst (FmaD (NegD src3) (Binary src1 src2)));
++
++ ins_cost(FMUL_DOUBLE_COST);
++ format %{ "fmsub.d $dst, $src1, $src2, $src3\t#@msubD_reg_reg" %}
++
++ ins_encode %{
++ __ fmsub_d(as_FloatRegister($dst$$reg),
++ as_FloatRegister($src1$$reg),
++ as_FloatRegister($src2$$reg),
++ as_FloatRegister($src3$$reg));
++ %}
++
++ ins_pipe(pipe_class_default);
++%}
++
++// -src1 * src2 + src3
++instruct nmsubF_reg_reg(fRegF dst, fRegF src1, fRegF src2, fRegF src3) %{
++ predicate(UseFMA);
++ match(Set dst (FmaF src3 (Binary (NegF src1) src2)));
++ match(Set dst (FmaF src3 (Binary src1 (NegF src2))));
++
++ ins_cost(FMUL_SINGLE_COST);
++ format %{ "fnmsub.s $dst, $src1, $src2, $src3\t#@nmsubF_reg_reg" %}
++
++ ins_encode %{
++ __ fnmsub_s(as_FloatRegister($dst$$reg),
++ as_FloatRegister($src1$$reg),
++ as_FloatRegister($src2$$reg),
++ as_FloatRegister($src3$$reg));
++ %}
++
++ ins_pipe(pipe_class_default);
++%}
++
++// -src1 * src2 + src3
++instruct nmsubD_reg_reg(fRegD dst, fRegD src1, fRegD src2, fRegD src3) %{
++ predicate(UseFMA);
++ match(Set dst (FmaD src3 (Binary (NegD src1) src2)));
++ match(Set dst (FmaD src3 (Binary src1 (NegD src2))));
++
++ ins_cost(FMUL_DOUBLE_COST);
++ format %{ "fnmsub.d $dst, $src1, $src2, $src3\t#@nmsubD_reg_reg" %}
++
++ ins_encode %{
++ __ fnmsub_d(as_FloatRegister($dst$$reg),
++ as_FloatRegister($src1$$reg),
++ as_FloatRegister($src2$$reg),
++ as_FloatRegister($src3$$reg));
++ %}
++
++ ins_pipe(pipe_class_default);
++%}
++
++// -src1 * src2 - src3
++instruct nmaddF_reg_reg(fRegF dst, fRegF src1, fRegF src2, fRegF src3) %{
++ predicate(UseFMA);
++ match(Set dst (FmaF (NegF src3) (Binary (NegF src1) src2)));
++ match(Set dst (FmaF (NegF src3) (Binary src1 (NegF src2))));
++
++ ins_cost(FMUL_SINGLE_COST);
++ format %{ "fnmadd.s $dst, $src1, $src2, $src3\t#@nmaddF_reg_reg" %}
++
++ ins_encode %{
++ __ fnmadd_s(as_FloatRegister($dst$$reg),
++ as_FloatRegister($src1$$reg),
++ as_FloatRegister($src2$$reg),
++ as_FloatRegister($src3$$reg));
++ %}
++
++ ins_pipe(pipe_class_default);
++%}
++
++// -src1 * src2 - src3
++instruct nmaddD_reg_reg(fRegD dst, fRegD src1, fRegD src2, fRegD src3) %{
++ predicate(UseFMA);
++ match(Set dst (FmaD (NegD src3) (Binary (NegD src1) src2)));
++ match(Set dst (FmaD (NegD src3) (Binary src1 (NegD src2))));
++
++ ins_cost(FMUL_DOUBLE_COST);
++ format %{ "fnmadd.d $dst, $src1, $src2, $src3\t#@nmaddD_reg_reg" %}
++
++ ins_encode %{
++ __ fnmadd_d(as_FloatRegister($dst$$reg),
++ as_FloatRegister($src1$$reg),
++ as_FloatRegister($src2$$reg),
++ as_FloatRegister($src3$$reg));
++ %}
++
++ ins_pipe(pipe_class_default);
++%}
++
++// Math.max(FF)F
++instruct maxF_reg_reg(fRegF dst, fRegF src1, fRegF src2, rFlagsReg cr) %{
++ match(Set dst (MaxF src1 src2));
++ effect(TEMP_DEF dst, KILL cr);
++
++ format %{ "maxF $dst, $src1, $src2" %}
++
++ ins_encode %{
++ __ minmax_FD(as_FloatRegister($dst$$reg),
++ as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg),
++ false /* is_double */, false /* is_min */);
++ %}
++
++ ins_pipe(pipe_class_default);
++%}
++
++// Math.min(FF)F
++instruct minF_reg_reg(fRegF dst, fRegF src1, fRegF src2, rFlagsReg cr) %{
++ match(Set dst (MinF src1 src2));
++ effect(TEMP_DEF dst, KILL cr);
++
++ format %{ "minF $dst, $src1, $src2" %}
++
++ ins_encode %{
++ __ minmax_FD(as_FloatRegister($dst$$reg),
++ as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg),
++ false /* is_double */, true /* is_min */);
++ %}
++
++ ins_pipe(pipe_class_default);
++%}
++
++// Math.max(DD)D
++instruct maxD_reg_reg(fRegD dst, fRegD src1, fRegD src2, rFlagsReg cr) %{
++ match(Set dst (MaxD src1 src2));
++ effect(TEMP_DEF dst, KILL cr);
++
++ format %{ "maxD $dst, $src1, $src2" %}
++
++ ins_encode %{
++ __ minmax_FD(as_FloatRegister($dst$$reg),
++ as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg),
++ true /* is_double */, false /* is_min */);
++ %}
++
++ ins_pipe(pipe_class_default);
++%}
++
++// Math.min(DD)D
++instruct minD_reg_reg(fRegD dst, fRegD src1, fRegD src2, rFlagsReg cr) %{
++ match(Set dst (MinD src1 src2));
++ effect(TEMP_DEF dst, KILL cr);
++
++ format %{ "minD $dst, $src1, $src2" %}
++
++ ins_encode %{
++ __ minmax_FD(as_FloatRegister($dst$$reg),
++ as_FloatRegister($src1$$reg), as_FloatRegister($src2$$reg),
++ true /* is_double */, true /* is_min */);
++ %}
++
++ ins_pipe(pipe_class_default);
++%}
++
++instruct divF_reg_reg(fRegF dst, fRegF src1, fRegF src2) %{
++ match(Set dst (DivF src1 src2));
++
++ ins_cost(FDIV_COST);
++ format %{ "fdiv.s $dst, $src1, $src2\t#@divF_reg_reg" %}
++
++ ins_encode %{
++ __ fdiv_s(as_FloatRegister($dst$$reg),
++ as_FloatRegister($src1$$reg),
++ as_FloatRegister($src2$$reg));
++ %}
++
++ ins_pipe(fp_div_s);
++%}
++
++instruct divD_reg_reg(fRegD dst, fRegD src1, fRegD src2) %{
++ match(Set dst (DivD src1 src2));
++
++ ins_cost(FDIV_COST);
++ format %{ "fdiv.d $dst, $src1, $src2\t#@divD_reg_reg" %}
++
++ ins_encode %{
++ __ fdiv_d(as_FloatRegister($dst$$reg),
++ as_FloatRegister($src1$$reg),
++ as_FloatRegister($src2$$reg));
++ %}
++
++ ins_pipe(fp_div_d);
++%}
++
++instruct negF_reg_reg(fRegF dst, fRegF src) %{
++ match(Set dst (NegF src));
++
++ ins_cost(XFER_COST);
++ format %{ "fsgnjn.s $dst, $src, $src\t#@negF_reg_reg" %}
++
++ ins_encode %{
++ __ fneg_s(as_FloatRegister($dst$$reg),
++ as_FloatRegister($src$$reg));
++ %}
++
++ ins_pipe(fp_uop_s);
++%}
++
++instruct negD_reg_reg(fRegD dst, fRegD src) %{
++ match(Set dst (NegD src));
++
++ ins_cost(XFER_COST);
++ format %{ "fsgnjn.d $dst, $src, $src\t#@negD_reg_reg" %}
++
++ ins_encode %{
++ __ fneg_d(as_FloatRegister($dst$$reg),
++ as_FloatRegister($src$$reg));
++ %}
++
++ ins_pipe(fp_uop_d);
++%}
++
++instruct absI_reg(iRegINoSp dst, iRegIorL2I src) %{
++ match(Set dst (AbsI src));
++
++ ins_cost(ALU_COST * 3);
++ format %{
++ "sraiw t0, $src, 0x1f\n\t"
++ "addw $dst, $src, t0\n\t"
++ "xorr $dst, $dst, t0\t#@absI_reg"
++ %}
++
++ ins_encode %{
++ __ sraiw(t0, as_Register($src$$reg), 0x1f);
++ __ addw(as_Register($dst$$reg), as_Register($src$$reg), t0);
++ __ xorr(as_Register($dst$$reg), as_Register($dst$$reg), t0);
++ %}
++
++ ins_pipe(pipe_class_default);
++%}
++
++instruct absL_reg(iRegLNoSp dst, iRegL src) %{
++ match(Set dst (AbsL src));
++
++ ins_cost(ALU_COST * 3);
++ format %{
++ "srai t0, $src, 0x3f\n\t"
++ "add $dst, $src, t0\n\t"
++ "xorr $dst, $dst, t0\t#@absL_reg"
++ %}
++
++ ins_encode %{
++ __ srai(t0, as_Register($src$$reg), 0x3f);
++ __ add(as_Register($dst$$reg), as_Register($src$$reg), t0);
++ __ xorr(as_Register($dst$$reg), as_Register($dst$$reg), t0);
++ %}
++
++ ins_pipe(pipe_class_default);
++%}
++
++instruct absF_reg(fRegF dst, fRegF src) %{
++ match(Set dst (AbsF src));
++
++ ins_cost(XFER_COST);
++ format %{ "fsgnjx.s $dst, $src, $src\t#@absF_reg" %}
++ ins_encode %{
++ __ fabs_s(as_FloatRegister($dst$$reg),
++ as_FloatRegister($src$$reg));
++ %}
++
++ ins_pipe(fp_uop_s);
++%}
++
++instruct absD_reg(fRegD dst, fRegD src) %{
++ match(Set dst (AbsD src));
++
++ ins_cost(XFER_COST);
++ format %{ "fsgnjx.d $dst, $src, $src\t#@absD_reg" %}
++ ins_encode %{
++ __ fabs_d(as_FloatRegister($dst$$reg),
++ as_FloatRegister($src$$reg));
++ %}
++
++ ins_pipe(fp_uop_d);
++%}
++
++instruct sqrtF_reg(fRegF dst, fRegF src) %{
++ match(Set dst (SqrtF src));
++
++ ins_cost(FSQRT_COST);
++ format %{ "fsqrt.s $dst, $src\t#@sqrtF_reg" %}
++ ins_encode %{
++ __ fsqrt_s(as_FloatRegister($dst$$reg),
++ as_FloatRegister($src$$reg));
++ %}
++
++ ins_pipe(fp_sqrt_s);
++%}
++
++instruct sqrtD_reg(fRegD dst, fRegD src) %{
++ match(Set dst (SqrtD src));
++
++ ins_cost(FSQRT_COST);
++ format %{ "fsqrt.d $dst, $src\t#@sqrtD_reg" %}
++ ins_encode %{
++ __ fsqrt_d(as_FloatRegister($dst$$reg),
++ as_FloatRegister($src$$reg));
++ %}
++
++ ins_pipe(fp_sqrt_d);
++%}
++
++// Arithmetic Instructions End
++
++// ============================================================================
++// Logical Instructions
++
++// Register And
++instruct andI_reg_reg(iRegINoSp dst, iRegI src1, iRegI src2) %{
++ match(Set dst (AndI src1 src2));
++
++ format %{ "andr $dst, $src1, $src2\t#@andI_reg_reg" %}
++
++ ins_cost(ALU_COST);
++ ins_encode %{
++ __ andr(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ as_Register($src2$$reg));
++ %}
++
++ ins_pipe(ialu_reg_reg);
++%}
++
++// Immediate And
++instruct andI_reg_imm(iRegINoSp dst, iRegI src1, immIAdd src2) %{
++ match(Set dst (AndI src1 src2));
++
++ format %{ "andi $dst, $src1, $src2\t#@andI_reg_imm" %}
++
++ ins_cost(ALU_COST);
++ ins_encode %{
++ __ andi(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ (int32_t)($src2$$constant));
++ %}
++
++ ins_pipe(ialu_reg_imm);
++%}
++
++// Register Or
++instruct orI_reg_reg(iRegINoSp dst, iRegI src1, iRegI src2) %{
++ match(Set dst (OrI src1 src2));
++
++ format %{ "orr $dst, $src1, $src2\t#@orI_reg_reg" %}
++
++ ins_cost(ALU_COST);
++ ins_encode %{
++ __ orr(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ as_Register($src2$$reg));
++ %}
++
++ ins_pipe(ialu_reg_reg);
++%}
++
++// Immediate Or
++instruct orI_reg_imm(iRegINoSp dst, iRegI src1, immIAdd src2) %{
++ match(Set dst (OrI src1 src2));
++
++ format %{ "ori $dst, $src1, $src2\t#@orI_reg_imm" %}
++
++ ins_cost(ALU_COST);
++ ins_encode %{
++ __ ori(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ (int32_t)($src2$$constant));
++ %}
++
++ ins_pipe(ialu_reg_imm);
++%}
++
++// Register Xor
++instruct xorI_reg_reg(iRegINoSp dst, iRegI src1, iRegI src2) %{
++ match(Set dst (XorI src1 src2));
++
++ format %{ "xorr $dst, $src1, $src2\t#@xorI_reg_reg" %}
++
++ ins_cost(ALU_COST);
++ ins_encode %{
++ __ xorr(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ as_Register($src2$$reg));
++ %}
++
++ ins_pipe(ialu_reg_reg);
++%}
++
++// Immediate Xor
++instruct xorI_reg_imm(iRegINoSp dst, iRegI src1, immIAdd src2) %{
++ match(Set dst (XorI src1 src2));
++
++ format %{ "xori $dst, $src1, $src2\t#@xorI_reg_imm" %}
++
++ ins_cost(ALU_COST);
++ ins_encode %{
++ __ xori(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ (int32_t)($src2$$constant));
++ %}
++
++ ins_pipe(ialu_reg_imm);
++%}
++
++// Register And Long
++instruct andL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
++ match(Set dst (AndL src1 src2));
++
++ format %{ "andr $dst, $src1, $src2\t#@andL_reg_reg" %}
++
++ ins_cost(ALU_COST);
++ ins_encode %{
++ __ andr(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ as_Register($src2$$reg));
++ %}
++
++ ins_pipe(ialu_reg_reg);
++%}
++
++// Immediate And Long
++instruct andL_reg_imm(iRegLNoSp dst, iRegL src1, immLAdd src2) %{
++ match(Set dst (AndL src1 src2));
++
++ format %{ "andi $dst, $src1, $src2\t#@andL_reg_imm" %}
++
++ ins_cost(ALU_COST);
++ ins_encode %{
++ __ andi(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ (int32_t)($src2$$constant));
++ %}
++
++ ins_pipe(ialu_reg_imm);
++%}
++
++// Register Or Long
++instruct orL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
++ match(Set dst (OrL src1 src2));
++
++ format %{ "orr $dst, $src1, $src2\t#@orL_reg_reg" %}
++
++ ins_cost(ALU_COST);
++ ins_encode %{
++ __ orr(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ as_Register($src2$$reg));
++ %}
++
++ ins_pipe(ialu_reg_reg);
++%}
++
++// Immediate Or Long
++instruct orL_reg_imm(iRegLNoSp dst, iRegL src1, immLAdd src2) %{
++ match(Set dst (OrL src1 src2));
++
++ format %{ "ori $dst, $src1, $src2\t#@orL_reg_imm" %}
++
++ ins_cost(ALU_COST);
++ ins_encode %{
++ __ ori(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ (int32_t)($src2$$constant));
++ %}
++
++ ins_pipe(ialu_reg_imm);
++%}
++
++// Register Xor Long
++instruct xorL_reg_reg(iRegLNoSp dst, iRegL src1, iRegL src2) %{
++ match(Set dst (XorL src1 src2));
++
++ format %{ "xorr $dst, $src1, $src2\t#@xorL_reg_reg" %}
++
++ ins_cost(ALU_COST);
++ ins_encode %{
++ __ xorr(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ as_Register($src2$$reg));
++ %}
++
++ ins_pipe(ialu_reg_reg);
++%}
++
++// Immediate Xor Long
++instruct xorL_reg_imm(iRegLNoSp dst, iRegL src1, immLAdd src2) %{
++ match(Set dst (XorL src1 src2));
++
++ ins_cost(ALU_COST);
++ format %{ "xori $dst, $src1, $src2\t#@xorL_reg_imm" %}
++
++ ins_encode %{
++ __ xori(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ (int32_t)($src2$$constant));
++ %}
++
++ ins_pipe(ialu_reg_imm);
++%}
++
++// ============================================================================
++// BSWAP Instructions
++
++instruct bytes_reverse_int(iRegINoSp dst, iRegIorL2I src, rFlagsReg cr) %{
++ match(Set dst (ReverseBytesI src));
++ effect(KILL cr);
++
++ ins_cost(ALU_COST * 13);
++ format %{ "revb_w_w $dst, $src\t#@bytes_reverse_int" %}
++
++ ins_encode %{
++ __ revb_w_w(as_Register($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(pipe_class_default);
++%}
++
++instruct bytes_reverse_long(iRegLNoSp dst, iRegL src, rFlagsReg cr) %{
++ match(Set dst (ReverseBytesL src));
++ effect(KILL cr);
++
++ ins_cost(ALU_COST * 29);
++ format %{ "revb $dst, $src\t#@bytes_reverse_long" %}
++
++ ins_encode %{
++ __ revb(as_Register($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(pipe_class_default);
++%}
++
++instruct bytes_reverse_unsigned_short(iRegINoSp dst, iRegIorL2I src) %{
++ match(Set dst (ReverseBytesUS src));
++
++ ins_cost(ALU_COST * 5);
++ format %{ "revb_h_h_u $dst, $src\t#@bytes_reverse_unsigned_short" %}
++
++ ins_encode %{
++ __ revb_h_h_u(as_Register($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(pipe_class_default);
++%}
++
++instruct bytes_reverse_short(iRegINoSp dst, iRegIorL2I src) %{
++ match(Set dst (ReverseBytesS src));
++
++ ins_cost(ALU_COST * 5);
++ format %{ "revb_h_h $dst, $src\t#@bytes_reverse_short" %}
++
++ ins_encode %{
++ __ revb_h_h(as_Register($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(pipe_class_default);
++%}
++
++// ============================================================================
++// MemBar Instruction
++
++instruct load_fence() %{
++ match(LoadFence);
++ ins_cost(ALU_COST);
++
++ format %{ "#@load_fence" %}
++
++ ins_encode %{
++ __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
++ %}
++ ins_pipe(pipe_serial);
++%}
++
++instruct membar_acquire() %{
++ match(MemBarAcquire);
++ ins_cost(ALU_COST);
++
++ format %{ "#@membar_acquire\n\t"
++ "fence ir iorw" %}
++
++ ins_encode %{
++ __ block_comment("membar_acquire");
++ __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++instruct membar_acquire_lock() %{
++ match(MemBarAcquireLock);
++ ins_cost(0);
++
++ format %{ "#@membar_acquire_lock (elided)" %}
++
++ ins_encode %{
++ __ block_comment("membar_acquire_lock (elided)");
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++instruct store_fence() %{
++ match(StoreFence);
++ ins_cost(ALU_COST);
++
++ format %{ "#@store_fence" %}
++
++ ins_encode %{
++ __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore);
++ %}
++ ins_pipe(pipe_serial);
++%}
++
++instruct membar_release() %{
++ match(MemBarRelease);
++ ins_cost(ALU_COST);
++
++ format %{ "#@membar_release\n\t"
++ "fence iorw ow" %}
++
++ ins_encode %{
++ __ block_comment("membar_release");
++ __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore);
++ %}
++ ins_pipe(pipe_serial);
++%}
++
++instruct membar_storestore() %{
++ match(MemBarStoreStore);
++ match(StoreStoreFence);
++ ins_cost(ALU_COST);
++
++ format %{ "MEMBAR-store-store\t#@membar_storestore" %}
++
++ ins_encode %{
++ __ membar(MacroAssembler::StoreStore);
++ %}
++ ins_pipe(pipe_serial);
++%}
++
++instruct membar_release_lock() %{
++ match(MemBarReleaseLock);
++ ins_cost(0);
++
++ format %{ "#@membar_release_lock (elided)" %}
++
++ ins_encode %{
++ __ block_comment("membar_release_lock (elided)");
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++instruct membar_volatile() %{
++ match(MemBarVolatile);
++ ins_cost(ALU_COST);
++
++ format %{ "#@membar_volatile\n\t"
++ "fence iorw iorw"%}
++
++ ins_encode %{
++ __ block_comment("membar_volatile");
++ __ membar(MacroAssembler::StoreLoad);
++ %}
++
++ ins_pipe(pipe_serial);
++%}
++
++// ============================================================================
++// Cast Instructions (Java-level type cast)
++
++instruct castX2P(iRegPNoSp dst, iRegL src) %{
++ match(Set dst (CastX2P src));
++
++ ins_cost(ALU_COST);
++ format %{ "mv $dst, $src\t# long -> ptr, #@castX2P" %}
++
++ ins_encode %{
++ if ($dst$$reg != $src$$reg) {
++ __ mv(as_Register($dst$$reg), as_Register($src$$reg));
++ }
++ %}
++
++ ins_pipe(ialu_reg);
++%}
++
++instruct castP2X(iRegLNoSp dst, iRegP src) %{
++ match(Set dst (CastP2X src));
++
++ ins_cost(ALU_COST);
++ format %{ "mv $dst, $src\t# ptr -> long, #@castP2X" %}
++
++ ins_encode %{
++ if ($dst$$reg != $src$$reg) {
++ __ mv(as_Register($dst$$reg), as_Register($src$$reg));
++ }
++ %}
++
++ ins_pipe(ialu_reg);
++%}
++
++instruct castPP(iRegPNoSp dst)
++%{
++ match(Set dst (CastPP dst));
++ ins_cost(0);
++
++ size(0);
++ format %{ "# castPP of $dst, #@castPP" %}
++ ins_encode(/* empty encoding */);
++ ins_pipe(pipe_class_empty);
++%}
++
++instruct castLL(iRegL dst)
++%{
++ match(Set dst (CastLL dst));
++
++ size(0);
++ format %{ "# castLL of $dst, #@castLL" %}
++ ins_encode(/* empty encoding */);
++ ins_cost(0);
++ ins_pipe(pipe_class_empty);
++%}
++
++instruct castII(iRegI dst)
++%{
++ match(Set dst (CastII dst));
++
++ size(0);
++ format %{ "# castII of $dst, #@castII" %}
++ ins_encode(/* empty encoding */);
++ ins_cost(0);
++ ins_pipe(pipe_class_empty);
++%}
++
++instruct checkCastPP(iRegPNoSp dst)
++%{
++ match(Set dst (CheckCastPP dst));
++
++ size(0);
++ ins_cost(0);
++ format %{ "# checkcastPP of $dst, #@checkCastPP" %}
++ ins_encode(/* empty encoding */);
++ ins_pipe(pipe_class_empty);
++%}
++
++instruct castFF(fRegF dst)
++%{
++ match(Set dst (CastFF dst));
++
++ size(0);
++ format %{ "# castFF of $dst" %}
++ ins_encode(/* empty encoding */);
++ ins_cost(0);
++ ins_pipe(pipe_class_empty);
++%}
++
++instruct castDD(fRegD dst)
++%{
++ match(Set dst (CastDD dst));
++
++ size(0);
++ format %{ "# castDD of $dst" %}
++ ins_encode(/* empty encoding */);
++ ins_cost(0);
++ ins_pipe(pipe_class_empty);
++%}
++
++instruct castVV(vReg dst)
++%{
++ match(Set dst (CastVV dst));
++
++ size(0);
++ format %{ "# castVV of $dst" %}
++ ins_encode(/* empty encoding */);
++ ins_cost(0);
++ ins_pipe(pipe_class_empty);
++%}
++
++// ============================================================================
++// Convert Instructions
++
++// int to bool
++instruct convI2Bool(iRegINoSp dst, iRegI src)
++%{
++ match(Set dst (Conv2B src));
++
++ ins_cost(ALU_COST);
++ format %{ "snez $dst, $src\t#@convI2Bool" %}
++
++ ins_encode %{
++ __ snez(as_Register($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(ialu_reg);
++%}
++
++// pointer to bool
++instruct convP2Bool(iRegINoSp dst, iRegP src)
++%{
++ match(Set dst (Conv2B src));
++
++ ins_cost(ALU_COST);
++ format %{ "snez $dst, $src\t#@convP2Bool" %}
++
++ ins_encode %{
++ __ snez(as_Register($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(ialu_reg);
++%}
++
++// int <-> long
++
++instruct convI2L_reg_reg(iRegLNoSp dst, iRegIorL2I src)
++%{
++ match(Set dst (ConvI2L src));
++
++ ins_cost(ALU_COST);
++ format %{ "addw $dst, $src, zr\t#@convI2L_reg_reg" %}
++ ins_encode %{
++ __ sign_extend(as_Register($dst$$reg), as_Register($src$$reg), 32);
++ %}
++ ins_pipe(ialu_reg);
++%}
++
++instruct convL2I_reg(iRegINoSp dst, iRegL src) %{
++ match(Set dst (ConvL2I src));
++
++ ins_cost(ALU_COST);
++ format %{ "addw $dst, $src, zr\t#@convL2I_reg" %}
++
++ ins_encode %{
++ __ sign_extend(as_Register($dst$$reg), as_Register($src$$reg), 32);
++ %}
++
++ ins_pipe(ialu_reg);
++%}
++
++// int to unsigned long (Zero-extend)
++instruct convI2UL_reg_reg(iRegLNoSp dst, iRegIorL2I src, immL_32bits mask)
++%{
++ match(Set dst (AndL (ConvI2L src) mask));
++
++ ins_cost(ALU_COST * 2);
++ format %{ "zero_extend $dst, $src, 32\t# i2ul, #@convI2UL_reg_reg" %}
++
++ ins_encode %{
++ __ zero_extend(as_Register($dst$$reg), as_Register($src$$reg), 32);
++ %}
++
++ ins_pipe(ialu_reg_shift);
++%}
++
++// float <-> double
++
++instruct convF2D_reg(fRegD dst, fRegF src) %{
++ match(Set dst (ConvF2D src));
++
++ ins_cost(XFER_COST);
++ format %{ "fcvt.d.s $dst, $src\t#@convF2D_reg" %}
++
++ ins_encode %{
++ __ fcvt_d_s(as_FloatRegister($dst$$reg), as_FloatRegister($src$$reg));
++ %}
++
++ ins_pipe(fp_f2d);
++%}
++
++instruct convD2F_reg(fRegF dst, fRegD src) %{
++ match(Set dst (ConvD2F src));
++
++ ins_cost(XFER_COST);
++ format %{ "fcvt.s.d $dst, $src\t#@convD2F_reg" %}
++
++ ins_encode %{
++ __ fcvt_s_d(as_FloatRegister($dst$$reg), as_FloatRegister($src$$reg));
++ %}
++
++ ins_pipe(fp_d2f);
++%}
++
++// float <-> int
++
++instruct convF2I_reg_reg(iRegINoSp dst, fRegF src) %{
++ match(Set dst (ConvF2I src));
++
++ ins_cost(XFER_COST);
++ format %{ "fcvt.w.s $dst, $src\t#@convF2I_reg_reg" %}
++
++ ins_encode %{
++ __ fcvt_w_s_safe($dst$$Register, $src$$FloatRegister);
++ %}
++
++ ins_pipe(fp_f2i);
++%}
++
++instruct convI2F_reg_reg(fRegF dst, iRegIorL2I src) %{
++ match(Set dst (ConvI2F src));
++
++ ins_cost(XFER_COST);
++ format %{ "fcvt.s.w $dst, $src\t#@convI2F_reg_reg" %}
++
++ ins_encode %{
++ __ fcvt_s_w(as_FloatRegister($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(fp_i2f);
++%}
++
++// float <-> long
++
++instruct convF2L_reg_reg(iRegLNoSp dst, fRegF src) %{
++ match(Set dst (ConvF2L src));
++
++ ins_cost(XFER_COST);
++ format %{ "fcvt.l.s $dst, $src\t#@convF2L_reg_reg" %}
++
++ ins_encode %{
++ __ fcvt_l_s_safe($dst$$Register, $src$$FloatRegister);
++ %}
++
++ ins_pipe(fp_f2l);
++%}
++
++instruct convL2F_reg_reg(fRegF dst, iRegL src) %{
++ match(Set dst (ConvL2F src));
++
++ ins_cost(XFER_COST);
++ format %{ "fcvt.s.l $dst, $src\t#@convL2F_reg_reg" %}
++
++ ins_encode %{
++ __ fcvt_s_l(as_FloatRegister($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(fp_l2f);
++%}
++
++// double <-> int
++
++instruct convD2I_reg_reg(iRegINoSp dst, fRegD src) %{
++ match(Set dst (ConvD2I src));
++
++ ins_cost(XFER_COST);
++ format %{ "fcvt.w.d $dst, $src\t#@convD2I_reg_reg" %}
++
++ ins_encode %{
++ __ fcvt_w_d_safe($dst$$Register, $src$$FloatRegister);
++ %}
++
++ ins_pipe(fp_d2i);
++%}
++
++instruct convI2D_reg_reg(fRegD dst, iRegIorL2I src) %{
++ match(Set dst (ConvI2D src));
++
++ ins_cost(XFER_COST);
++ format %{ "fcvt.d.w $dst, $src\t#@convI2D_reg_reg" %}
++
++ ins_encode %{
++ __ fcvt_d_w(as_FloatRegister($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(fp_i2d);
++%}
++
++// double <-> long
++
++instruct convD2L_reg_reg(iRegLNoSp dst, fRegD src) %{
++ match(Set dst (ConvD2L src));
++
++ ins_cost(XFER_COST);
++ format %{ "fcvt.l.d $dst, $src\t#@convD2L_reg_reg" %}
++
++ ins_encode %{
++ __ fcvt_l_d_safe($dst$$Register, $src$$FloatRegister);
++ %}
++
++ ins_pipe(fp_d2l);
++%}
++
++instruct convL2D_reg_reg(fRegD dst, iRegL src) %{
++ match(Set dst (ConvL2D src));
++
++ ins_cost(XFER_COST);
++ format %{ "fcvt.d.l $dst, $src\t#@convL2D_reg_reg" %}
++
++ ins_encode %{
++ __ fcvt_d_l(as_FloatRegister($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(fp_l2d);
++%}
++
++// Convert oop into int for vectors alignment masking
++instruct convP2I(iRegINoSp dst, iRegP src) %{
++ match(Set dst (ConvL2I (CastP2X src)));
++
++ ins_cost(ALU_COST * 2);
++ format %{ "zero_extend $dst, $src, 32\t# ptr -> int, #@convP2I" %}
++
++ ins_encode %{
++ __ zero_extend($dst$$Register, $src$$Register, 32);
++ %}
++
++ ins_pipe(ialu_reg);
++%}
++
++// Convert compressed oop into int for vectors alignment masking
++// in case of 32bit oops (heap < 4Gb).
++instruct convN2I(iRegINoSp dst, iRegN src)
++%{
++ predicate(CompressedOops::shift() == 0);
++ match(Set dst (ConvL2I (CastP2X (DecodeN src))));
++
++ ins_cost(ALU_COST);
++ format %{ "mv $dst, $src\t# compressed ptr -> int, #@convN2I" %}
++
++ ins_encode %{
++ __ mv($dst$$Register, $src$$Register);
++ %}
++
++ ins_pipe(ialu_reg);
++%}
++
++// Convert oop pointer into compressed form
++instruct encodeHeapOop(iRegNNoSp dst, iRegP src) %{
++ match(Set dst (EncodeP src));
++ ins_cost(ALU_COST);
++ format %{ "encode_heap_oop $dst, $src\t#@encodeHeapOop" %}
++ ins_encode %{
++ Register s = $src$$Register;
++ Register d = $dst$$Register;
++ __ encode_heap_oop(d, s);
++ %}
++ ins_pipe(pipe_class_default);
++%}
++
++instruct decodeHeapOop(iRegPNoSp dst, iRegN src) %{
++ predicate(n->bottom_type()->is_ptr()->ptr() != TypePtr::NotNull &&
++ n->bottom_type()->is_ptr()->ptr() != TypePtr::Constant);
++ match(Set dst (DecodeN src));
++
++ ins_cost(0);
++ format %{ "decode_heap_oop $dst, $src\t#@decodeHeapOop" %}
++ ins_encode %{
++ Register s = $src$$Register;
++ Register d = $dst$$Register;
++ __ decode_heap_oop(d, s);
++ %}
++ ins_pipe(pipe_class_default);
++%}
++
++instruct decodeHeapOop_not_null(iRegPNoSp dst, iRegN src) %{
++ predicate(n->bottom_type()->is_ptr()->ptr() == TypePtr::NotNull ||
++ n->bottom_type()->is_ptr()->ptr() == TypePtr::Constant);
++ match(Set dst (DecodeN src));
++
++ ins_cost(0);
++ format %{ "decode_heap_oop_not_null $dst, $src\t#@decodeHeapOop_not_null" %}
++ ins_encode %{
++ Register s = $src$$Register;
++ Register d = $dst$$Register;
++ __ decode_heap_oop_not_null(d, s);
++ %}
++ ins_pipe(pipe_class_default);
++%}
++
++// Convert klass pointer into compressed form.
++instruct encodeKlass_not_null(iRegNNoSp dst, iRegP src) %{
++ match(Set dst (EncodePKlass src));
++
++ ins_cost(ALU_COST);
++ format %{ "encode_klass_not_null $dst, $src\t#@encodeKlass_not_null" %}
++
++ ins_encode %{
++ Register src_reg = as_Register($src$$reg);
++ Register dst_reg = as_Register($dst$$reg);
++ __ encode_klass_not_null(dst_reg, src_reg, t0);
++ %}
++
++ ins_pipe(pipe_class_default);
++%}
++
++instruct decodeKlass_not_null(iRegPNoSp dst, iRegN src, iRegPNoSp tmp) %{
++ match(Set dst (DecodeNKlass src));
++
++ effect(TEMP tmp);
++
++ ins_cost(ALU_COST);
++ format %{ "decode_klass_not_null $dst, $src\t#@decodeKlass_not_null" %}
++
++ ins_encode %{
++ Register src_reg = as_Register($src$$reg);
++ Register dst_reg = as_Register($dst$$reg);
++ Register tmp_reg = as_Register($tmp$$reg);
++ __ decode_klass_not_null(dst_reg, src_reg, tmp_reg);
++ %}
++
++ ins_pipe(pipe_class_default);
++%}
++
++// stack <-> reg and reg <-> reg shuffles with no conversion
++
++instruct MoveF2I_stack_reg(iRegINoSp dst, stackSlotF src) %{
++
++ match(Set dst (MoveF2I src));
++
++ effect(DEF dst, USE src);
++
++ ins_cost(LOAD_COST);
++
++ format %{ "lw $dst, $src\t#@MoveF2I_stack_reg" %}
++
++ ins_encode %{
++ __ lw(as_Register($dst$$reg), Address(sp, $src$$disp));
++ %}
++
++ ins_pipe(iload_reg_reg);
++
++%}
++
++instruct MoveI2F_stack_reg(fRegF dst, stackSlotI src) %{
++
++ match(Set dst (MoveI2F src));
++
++ effect(DEF dst, USE src);
++
++ ins_cost(LOAD_COST);
++
++ format %{ "flw $dst, $src\t#@MoveI2F_stack_reg" %}
++
++ ins_encode %{
++ __ flw(as_FloatRegister($dst$$reg), Address(sp, $src$$disp));
++ %}
++
++ ins_pipe(fp_load_mem_s);
++
++%}
++
++instruct MoveD2L_stack_reg(iRegLNoSp dst, stackSlotD src) %{
++
++ match(Set dst (MoveD2L src));
++
++ effect(DEF dst, USE src);
++
++ ins_cost(LOAD_COST);
++
++ format %{ "ld $dst, $src\t#@MoveD2L_stack_reg" %}
++
++ ins_encode %{
++ __ ld(as_Register($dst$$reg), Address(sp, $src$$disp));
++ %}
++
++ ins_pipe(iload_reg_reg);
++
++%}
++
++instruct MoveL2D_stack_reg(fRegD dst, stackSlotL src) %{
++
++ match(Set dst (MoveL2D src));
++
++ effect(DEF dst, USE src);
++
++ ins_cost(LOAD_COST);
++
++ format %{ "fld $dst, $src\t#@MoveL2D_stack_reg" %}
++
++ ins_encode %{
++ __ fld(as_FloatRegister($dst$$reg), Address(sp, $src$$disp));
++ %}
++
++ ins_pipe(fp_load_mem_d);
++
++%}
++
++instruct MoveF2I_reg_stack(stackSlotI dst, fRegF src) %{
++
++ match(Set dst (MoveF2I src));
++
++ effect(DEF dst, USE src);
++
++ ins_cost(STORE_COST);
++
++ format %{ "fsw $src, $dst\t#@MoveF2I_reg_stack" %}
++
++ ins_encode %{
++ __ fsw(as_FloatRegister($src$$reg), Address(sp, $dst$$disp));
++ %}
++
++ ins_pipe(fp_store_reg_s);
++
++%}
++
++instruct MoveI2F_reg_stack(stackSlotF dst, iRegI src) %{
++
++ match(Set dst (MoveI2F src));
++
++ effect(DEF dst, USE src);
++
++ ins_cost(STORE_COST);
++
++ format %{ "sw $src, $dst\t#@MoveI2F_reg_stack" %}
++
++ ins_encode %{
++ __ sw(as_Register($src$$reg), Address(sp, $dst$$disp));
++ %}
++
++ ins_pipe(istore_reg_reg);
++
++%}
++
++instruct MoveD2L_reg_stack(stackSlotL dst, fRegD src) %{
++
++ match(Set dst (MoveD2L src));
++
++ effect(DEF dst, USE src);
++
++ ins_cost(STORE_COST);
++
++ format %{ "fsd $dst, $src\t#@MoveD2L_reg_stack" %}
++
++ ins_encode %{
++ __ fsd(as_FloatRegister($src$$reg), Address(sp, $dst$$disp));
++ %}
++
++ ins_pipe(fp_store_reg_d);
++
++%}
++
++instruct MoveL2D_reg_stack(stackSlotD dst, iRegL src) %{
++
++ match(Set dst (MoveL2D src));
++
++ effect(DEF dst, USE src);
++
++ ins_cost(STORE_COST);
++
++ format %{ "sd $src, $dst\t#@MoveL2D_reg_stack" %}
++
++ ins_encode %{
++ __ sd(as_Register($src$$reg), Address(sp, $dst$$disp));
++ %}
++
++ ins_pipe(istore_reg_reg);
++
++%}
++
++instruct MoveF2I_reg_reg(iRegINoSp dst, fRegF src) %{
++
++ match(Set dst (MoveF2I src));
++
++ effect(DEF dst, USE src);
++
++ ins_cost(XFER_COST);
++
++ format %{ "fmv.x.w $dst, $src\t#@MoveL2D_reg_stack" %}
++
++ ins_encode %{
++ __ fmv_x_w(as_Register($dst$$reg), as_FloatRegister($src$$reg));
++ %}
++
++ ins_pipe(fp_f2i);
++
++%}
++
++instruct MoveI2F_reg_reg(fRegF dst, iRegI src) %{
++
++ match(Set dst (MoveI2F src));
++
++ effect(DEF dst, USE src);
++
++ ins_cost(XFER_COST);
++
++ format %{ "fmv.w.x $dst, $src\t#@MoveI2F_reg_reg" %}
++
++ ins_encode %{
++ __ fmv_w_x(as_FloatRegister($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(fp_i2f);
++
++%}
++
++instruct MoveD2L_reg_reg(iRegLNoSp dst, fRegD src) %{
++
++ match(Set dst (MoveD2L src));
++
++ effect(DEF dst, USE src);
++
++ ins_cost(XFER_COST);
++
++ format %{ "fmv.x.d $dst, $src\t#@MoveD2L_reg_reg" %}
++
++ ins_encode %{
++ __ fmv_x_d(as_Register($dst$$reg), as_FloatRegister($src$$reg));
++ %}
++
++ ins_pipe(fp_d2l);
++
++%}
++
++instruct MoveL2D_reg_reg(fRegD dst, iRegL src) %{
++
++ match(Set dst (MoveL2D src));
++
++ effect(DEF dst, USE src);
++
++ ins_cost(XFER_COST);
++
++ format %{ "fmv.d.x $dst, $src\t#@MoveD2L_reg_reg" %}
++
++ ins_encode %{
++ __ fmv_d_x(as_FloatRegister($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(fp_l2d);
++
++%}
++
++// ============================================================================
++// Compare Instructions which set the result float comparisons in dest register.
++
++instruct cmpF3_reg_reg(iRegINoSp dst, fRegF op1, fRegF op2)
++%{
++ match(Set dst (CmpF3 op1 op2));
++
++ ins_cost(XFER_COST * 2 + BRANCH_COST + ALU_COST);
++ format %{ "flt.s $dst, $op2, $op1\t#@cmpF3_reg_reg\n\t"
++ "bgtz $dst, done\n\t"
++ "feq.s $dst, $op1, $op2\n\t"
++ "addi $dst, $dst, -1\t#@cmpF3_reg_reg"
++ %}
++
++ ins_encode %{
++ // we want -1 for unordered or less than, 0 for equal and 1 for greater than.
++ __ float_compare(as_Register($dst$$reg), as_FloatRegister($op1$$reg),
++ as_FloatRegister($op2$$reg), -1 /*unordered_result < 0*/);
++ %}
++
++ ins_pipe(pipe_class_default);
++%}
++
++instruct cmpD3_reg_reg(iRegINoSp dst, fRegD op1, fRegD op2)
++%{
++ match(Set dst (CmpD3 op1 op2));
++
++ ins_cost(XFER_COST * 2 + BRANCH_COST + ALU_COST);
++ format %{ "flt.d $dst, $op2, $op1\t#@cmpD3_reg_reg\n\t"
++ "bgtz $dst, done\n\t"
++ "feq.d $dst, $op1, $op2\n\t"
++ "addi $dst, $dst, -1\t#@cmpD3_reg_reg"
++ %}
++
++ ins_encode %{
++ // we want -1 for unordered or less than, 0 for equal and 1 for greater than.
++ __ double_compare(as_Register($dst$$reg), as_FloatRegister($op1$$reg), as_FloatRegister($op2$$reg), -1 /*unordered_result < 0*/);
++ %}
++
++ ins_pipe(pipe_class_default);
++%}
++
++instruct cmpL3_reg_reg(iRegINoSp dst, iRegL op1, iRegL op2)
++%{
++ match(Set dst (CmpL3 op1 op2));
++
++ ins_cost(ALU_COST * 3 + BRANCH_COST);
++ format %{ "slt $dst, $op2, $op1\t#@cmpL3_reg_reg\n\t"
++ "bnez $dst, done\n\t"
++ "slt $dst, $op1, $op2\n\t"
++ "neg $dst, $dst\t#@cmpL3_reg_reg"
++ %}
++ ins_encode %{
++ __ cmp_l2i(t0, as_Register($op1$$reg), as_Register($op2$$reg));
++ __ mv(as_Register($dst$$reg), t0);
++ %}
++
++ ins_pipe(pipe_class_default);
++%}
++
++instruct cmpLTMask_reg_reg(iRegINoSp dst, iRegI p, iRegI q)
++%{
++ match(Set dst (CmpLTMask p q));
++
++ ins_cost(2 * ALU_COST);
++
++ format %{ "slt $dst, $p, $q\t#@cmpLTMask_reg_reg\n\t"
++ "subw $dst, zr, $dst\t#@cmpLTMask_reg_reg"
++ %}
++
++ ins_encode %{
++ __ slt(as_Register($dst$$reg), as_Register($p$$reg), as_Register($q$$reg));
++ __ subw(as_Register($dst$$reg), zr, as_Register($dst$$reg));
++ %}
++
++ ins_pipe(ialu_reg_reg);
++%}
++
++instruct cmpLTMask_reg_zero(iRegINoSp dst, iRegIorL2I op, immI0 zero)
++%{
++ match(Set dst (CmpLTMask op zero));
++
++ ins_cost(ALU_COST);
++
++ format %{ "sraiw $dst, $dst, 31\t#@cmpLTMask_reg_reg" %}
++
++ ins_encode %{
++ __ sraiw(as_Register($dst$$reg), as_Register($op$$reg), 31);
++ %}
++
++ ins_pipe(ialu_reg_shift);
++%}
++
++
++// ============================================================================
++// Max and Min
++
++instruct minI_reg_reg(iRegINoSp dst, iRegI src)
++%{
++ match(Set dst (MinI dst src));
++
++ ins_cost(BRANCH_COST + ALU_COST);
++ format %{
++ "ble $dst, $src, skip\t#@minI_reg_reg\n\t"
++ "mv $dst, $src\n\t"
++ "skip:"
++ %}
++
++ ins_encode %{
++ Label Lskip;
++ __ ble(as_Register($dst$$reg), as_Register($src$$reg), Lskip);
++ __ mv(as_Register($dst$$reg), as_Register($src$$reg));
++ __ bind(Lskip);
++ %}
++
++ ins_pipe(pipe_class_compare);
++%}
++
++instruct maxI_reg_reg(iRegINoSp dst, iRegI src)
++%{
++ match(Set dst (MaxI dst src));
++
++ ins_cost(BRANCH_COST + ALU_COST);
++ format %{
++ "bge $dst, $src, skip\t#@maxI_reg_reg\n\t"
++ "mv $dst, $src\n\t"
++ "skip:"
++ %}
++
++ ins_encode %{
++ Label Lskip;
++ __ bge(as_Register($dst$$reg), as_Register($src$$reg), Lskip);
++ __ mv(as_Register($dst$$reg), as_Register($src$$reg));
++ __ bind(Lskip);
++ %}
++
++ ins_pipe(pipe_class_compare);
++%}
++
++// special case for comparing with zero
++// n.b. this is selected in preference to the rule above because it
++// avoids loading constant 0 into a source register
++
++instruct minI_reg_zero(iRegINoSp dst, immI0 zero)
++%{
++ match(Set dst (MinI dst zero));
++ match(Set dst (MinI zero dst));
++
++ ins_cost(BRANCH_COST + ALU_COST);
++ format %{
++ "blez $dst, skip\t#@minI_reg_zero\n\t"
++ "mv $dst, zr\n\t"
++ "skip:"
++ %}
++
++ ins_encode %{
++ Label Lskip;
++ __ blez(as_Register($dst$$reg), Lskip);
++ __ mv(as_Register($dst$$reg), zr);
++ __ bind(Lskip);
++ %}
++
++ ins_pipe(pipe_class_compare);
++%}
++
++instruct maxI_reg_zero(iRegINoSp dst, immI0 zero)
++%{
++ match(Set dst (MaxI dst zero));
++ match(Set dst (MaxI zero dst));
++
++ ins_cost(BRANCH_COST + ALU_COST);
++ format %{
++ "bgez $dst, skip\t#@maxI_reg_zero\n\t"
++ "mv $dst, zr\n\t"
++ "skip:"
++ %}
++
++ ins_encode %{
++ Label Lskip;
++ __ bgez(as_Register($dst$$reg), Lskip);
++ __ mv(as_Register($dst$$reg), zr);
++ __ bind(Lskip);
++ %}
++
++ ins_pipe(pipe_class_compare);
++%}
++
++instruct minI_rReg(iRegINoSp dst, iRegI src1, iRegI src2)
++%{
++ match(Set dst (MinI src1 src2));
++
++ effect(DEF dst, USE src1, USE src2);
++
++ ins_cost(BRANCH_COST + ALU_COST * 2);
++ format %{
++ "ble $src1, $src2, Lsrc1.\t#@minI_rReg\n\t"
++ "mv $dst, $src2\n\t"
++ "j Ldone\n\t"
++ "bind Lsrc1\n\t"
++ "mv $dst, $src1\n\t"
++ "bind\t#@minI_rReg"
++ %}
++
++ ins_encode %{
++ Label Lsrc1, Ldone;
++ __ ble(as_Register($src1$$reg), as_Register($src2$$reg), Lsrc1);
++ __ mv(as_Register($dst$$reg), as_Register($src2$$reg));
++ __ j(Ldone);
++ __ bind(Lsrc1);
++ __ mv(as_Register($dst$$reg), as_Register($src1$$reg));
++ __ bind(Ldone);
++ %}
++
++ ins_pipe(pipe_class_compare);
++%}
++
++instruct maxI_rReg(iRegINoSp dst, iRegI src1, iRegI src2)
++%{
++ match(Set dst (MaxI src1 src2));
++
++ effect(DEF dst, USE src1, USE src2);
++
++ ins_cost(BRANCH_COST + ALU_COST * 2);
++ format %{
++ "bge $src1, $src2, Lsrc1\t#@maxI_rReg\n\t"
++ "mv $dst, $src2\n\t"
++ "j Ldone\n\t"
++ "bind Lsrc1\n\t"
++ "mv $dst, $src1\n\t"
++ "bind\t#@maxI_rReg"
++ %}
++
++ ins_encode %{
++ Label Lsrc1, Ldone;
++ __ bge(as_Register($src1$$reg), as_Register($src2$$reg), Lsrc1);
++ __ mv(as_Register($dst$$reg), as_Register($src2$$reg));
++ __ j(Ldone);
++ __ bind(Lsrc1);
++ __ mv(as_Register($dst$$reg), as_Register($src1$$reg));
++ __ bind(Ldone);
++
++ %}
++
++ ins_pipe(pipe_class_compare);
++%}
++
++// ============================================================================
++// Branch Instructions
++// Direct Branch.
++instruct branch(label lbl)
++%{
++ match(Goto);
++
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST);
++ format %{ "j $lbl\t#@branch" %}
++
++ ins_encode(riscv_enc_j(lbl));
++
++ ins_pipe(pipe_branch);
++%}
++
++// ============================================================================
++// Compare and Branch Instructions
++
++// Patterns for short (< 12KiB) variants
++
++// Compare flags and branch near instructions.
++instruct cmpFlag_branch(cmpOpEqNe cmp, rFlagsReg cr, label lbl) %{
++ match(If cmp cr);
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST);
++ format %{ "b$cmp $cr, zr, $lbl\t#@cmpFlag_branch" %}
++
++ ins_encode %{
++ __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($cr$$reg), *($lbl$$label));
++ %}
++ ins_pipe(pipe_cmpz_branch);
++ ins_short_branch(1);
++%}
++
++// Compare signed int and branch near instructions
++instruct cmpI_branch(cmpOp cmp, iRegI op1, iRegI op2, label lbl)
++%{
++ // Same match rule as `far_cmpI_branch'.
++ match(If cmp (CmpI op1 op2));
++
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "b$cmp $op1, $op2, $lbl\t#@cmpI_branch" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_cmp_branch);
++ ins_short_branch(1);
++%}
++
++instruct cmpI_loop(cmpOp cmp, iRegI op1, iRegI op2, label lbl)
++%{
++ // Same match rule as `far_cmpI_loop'.
++ match(CountedLoopEnd cmp (CmpI op1 op2));
++
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "b$cmp $op1, $op2, $lbl\t#@cmpI_loop" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_cmp_branch);
++ ins_short_branch(1);
++%}
++
++// Compare unsigned int and branch near instructions
++instruct cmpU_branch(cmpOpU cmp, iRegI op1, iRegI op2, label lbl)
++%{
++ // Same match rule as `far_cmpU_branch'.
++ match(If cmp (CmpU op1 op2));
++
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "b$cmp $op1, $op2, $lbl\t#@cmpU_branch" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
++ as_Register($op2$$reg), *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_cmp_branch);
++ ins_short_branch(1);
++%}
++
++instruct cmpU_loop(cmpOpU cmp, iRegI op1, iRegI op2, label lbl)
++%{
++ // Same match rule as `far_cmpU_loop'.
++ match(CountedLoopEnd cmp (CmpU op1 op2));
++
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "b$cmp $op1, $op2, $lbl\t#@cmpU_loop" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
++ as_Register($op2$$reg), *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_cmp_branch);
++ ins_short_branch(1);
++%}
++
++// Compare signed long and branch near instructions
++instruct cmpL_branch(cmpOp cmp, iRegL op1, iRegL op2, label lbl)
++%{
++ // Same match rule as `far_cmpL_branch'.
++ match(If cmp (CmpL op1 op2));
++
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "b$cmp $op1, $op2, $lbl\t#@cmpL_branch" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_cmp_branch);
++ ins_short_branch(1);
++%}
++
++instruct cmpL_loop(cmpOp cmp, iRegL op1, iRegL op2, label lbl)
++%{
++ // Same match rule as `far_cmpL_loop'.
++ match(CountedLoopEnd cmp (CmpL op1 op2));
++
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "b$cmp $op1, $op2, $lbl\t#@cmpL_loop" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_cmp_branch);
++ ins_short_branch(1);
++%}
++
++// Compare unsigned long and branch near instructions
++instruct cmpUL_branch(cmpOpU cmp, iRegL op1, iRegL op2, label lbl)
++%{
++ // Same match rule as `far_cmpUL_branch'.
++ match(If cmp (CmpUL op1 op2));
++
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST);
++ format %{ "b$cmp $op1, $op2, $lbl\t#@cmpUL_branch" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
++ as_Register($op2$$reg), *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_cmp_branch);
++ ins_short_branch(1);
++%}
++
++instruct cmpUL_loop(cmpOpU cmp, iRegL op1, iRegL op2, label lbl)
++%{
++ // Same match rule as `far_cmpUL_loop'.
++ match(CountedLoopEnd cmp (CmpUL op1 op2));
++
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST);
++ format %{ "b$cmp $op1, $op2, $lbl\t#@cmpUL_loop" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
++ as_Register($op2$$reg), *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_cmp_branch);
++ ins_short_branch(1);
++%}
++
++// Compare pointer and branch near instructions
++instruct cmpP_branch(cmpOpU cmp, iRegP op1, iRegP op2, label lbl)
++%{
++ // Same match rule as `far_cmpP_branch'.
++ match(If cmp (CmpP op1 op2));
++
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "b$cmp $op1, $op2, $lbl\t#@cmpP_branch" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
++ as_Register($op2$$reg), *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_cmp_branch);
++ ins_short_branch(1);
++%}
++
++instruct cmpP_loop(cmpOpU cmp, iRegP op1, iRegP op2, label lbl)
++%{
++ // Same match rule as `far_cmpP_loop'.
++ match(CountedLoopEnd cmp (CmpP op1 op2));
++
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "b$cmp $op1, $op2, $lbl\t#@cmpP_loop" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
++ as_Register($op2$$reg), *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_cmp_branch);
++ ins_short_branch(1);
++%}
++
++// Compare narrow pointer and branch near instructions
++instruct cmpN_branch(cmpOpU cmp, iRegN op1, iRegN op2, label lbl)
++%{
++ // Same match rule as `far_cmpN_branch'.
++ match(If cmp (CmpN op1 op2));
++
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "b$cmp $op1, $op2, $lbl\t#@cmpN_branch" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
++ as_Register($op2$$reg), *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_cmp_branch);
++ ins_short_branch(1);
++%}
++
++instruct cmpN_loop(cmpOpU cmp, iRegN op1, iRegN op2, label lbl)
++%{
++ // Same match rule as `far_cmpN_loop'.
++ match(CountedLoopEnd cmp (CmpN op1 op2));
++
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "b$cmp $op1, $op2, $lbl\t#@cmpN_loop" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
++ as_Register($op2$$reg), *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_cmp_branch);
++ ins_short_branch(1);
++%}
++
++// Compare float and branch near instructions
++instruct cmpF_branch(cmpOp cmp, fRegF op1, fRegF op2, label lbl)
++%{
++ // Same match rule as `far_cmpF_branch'.
++ match(If cmp (CmpF op1 op2));
++
++ effect(USE lbl);
++
++ ins_cost(XFER_COST + BRANCH_COST);
++ format %{ "float_b$cmp $op1, $op2, $lbl \t#@cmpF_branch"%}
++
++ ins_encode %{
++ __ float_cmp_branch($cmp$$cmpcode, as_FloatRegister($op1$$reg), as_FloatRegister($op2$$reg), *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_class_compare);
++ ins_short_branch(1);
++%}
++
++instruct cmpF_loop(cmpOp cmp, fRegF op1, fRegF op2, label lbl)
++%{
++ // Same match rule as `far_cmpF_loop'.
++ match(CountedLoopEnd cmp (CmpF op1 op2));
++ effect(USE lbl);
++
++ ins_cost(XFER_COST + BRANCH_COST);
++ format %{ "float_b$cmp $op1, $op2, $lbl\t#@cmpF_loop"%}
++
++ ins_encode %{
++ __ float_cmp_branch($cmp$$cmpcode, as_FloatRegister($op1$$reg), as_FloatRegister($op2$$reg), *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_class_compare);
++ ins_short_branch(1);
++%}
++
++// Compare double and branch near instructions
++instruct cmpD_branch(cmpOp cmp, fRegD op1, fRegD op2, label lbl)
++%{
++ // Same match rule as `far_cmpD_branch'.
++ match(If cmp (CmpD op1 op2));
++ effect(USE lbl);
++
++ ins_cost(XFER_COST + BRANCH_COST);
++ format %{ "double_b$cmp $op1, $op2, $lbl\t#@cmpD_branch"%}
++
++ ins_encode %{
++ __ float_cmp_branch($cmp$$cmpcode | C2_MacroAssembler::double_branch_mask, as_FloatRegister($op1$$reg),
++ as_FloatRegister($op2$$reg), *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_class_compare);
++ ins_short_branch(1);
++%}
++
++instruct cmpD_loop(cmpOp cmp, fRegD op1, fRegD op2, label lbl)
++%{
++ // Same match rule as `far_cmpD_loop'.
++ match(CountedLoopEnd cmp (CmpD op1 op2));
++ effect(USE lbl);
++
++ ins_cost(XFER_COST + BRANCH_COST);
++ format %{ "double_b$cmp $op1, $op2, $lbl\t#@cmpD_loop"%}
++
++ ins_encode %{
++ __ float_cmp_branch($cmp$$cmpcode | C2_MacroAssembler::double_branch_mask, as_FloatRegister($op1$$reg),
++ as_FloatRegister($op2$$reg), *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_class_compare);
++ ins_short_branch(1);
++%}
++
++// Compare signed int with zero and branch near instructions
++instruct cmpI_reg_imm0_branch(cmpOp cmp, iRegI op1, immI0 zero, label lbl)
++%{
++ // Same match rule as `far_cmpI_reg_imm0_branch'.
++ match(If cmp (CmpI op1 zero));
++
++ effect(USE op1, USE lbl);
++
++ ins_cost(BRANCH_COST);
++ format %{ "b$cmp $op1, zr, $lbl\t#@cmpI_reg_imm0_branch" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_cmpz_branch);
++ ins_short_branch(1);
++%}
++
++instruct cmpI_reg_imm0_loop(cmpOp cmp, iRegI op1, immI0 zero, label lbl)
++%{
++ // Same match rule as `far_cmpI_reg_imm0_loop'.
++ match(CountedLoopEnd cmp (CmpI op1 zero));
++
++ effect(USE op1, USE lbl);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "b$cmp $op1, zr, $lbl\t#@cmpI_reg_imm0_loop" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_cmpz_branch);
++ ins_short_branch(1);
++%}
++
++// Compare unsigned int with zero and branch near instructions
++instruct cmpUEqNeLeGt_reg_imm0_branch(cmpOpUEqNeLeGt cmp, iRegI op1, immI0 zero, label lbl)
++%{
++ // Same match rule as `far_cmpUEqNeLeGt_reg_imm0_branch'.
++ match(If cmp (CmpU op1 zero));
++
++ effect(USE op1, USE lbl);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "b$cmp $op1, zr, $lbl\t#@cmpUEqNeLeGt_reg_imm0_branch" %}
++
++ ins_encode %{
++ __ enc_cmpUEqNeLeGt_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_cmpz_branch);
++ ins_short_branch(1);
++%}
++
++instruct cmpUEqNeLeGt_reg_imm0_loop(cmpOpUEqNeLeGt cmp, iRegI op1, immI0 zero, label lbl)
++%{
++ // Same match rule as `far_cmpUEqNeLeGt_reg_imm0_loop'.
++ match(CountedLoopEnd cmp (CmpU op1 zero));
++
++ effect(USE op1, USE lbl);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "b$cmp $op1, zr, $lbl\t#@cmpUEqNeLeGt_reg_imm0_loop" %}
++
++
++ ins_encode %{
++ __ enc_cmpUEqNeLeGt_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_cmpz_branch);
++ ins_short_branch(1);
++%}
++
++// Compare signed long with zero and branch near instructions
++instruct cmpL_reg_imm0_branch(cmpOp cmp, iRegL op1, immL0 zero, label lbl)
++%{
++ // Same match rule as `far_cmpL_reg_imm0_branch'.
++ match(If cmp (CmpL op1 zero));
++
++ effect(USE op1, USE lbl);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "b$cmp $op1, zr, $lbl\t#@cmpL_reg_imm0_branch" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_cmpz_branch);
++ ins_short_branch(1);
++%}
++
++instruct cmpL_reg_imm0_loop(cmpOp cmp, iRegL op1, immL0 zero, label lbl)
++%{
++ // Same match rule as `far_cmpL_reg_imm0_loop'.
++ match(CountedLoopEnd cmp (CmpL op1 zero));
++
++ effect(USE op1, USE lbl);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "b$cmp $op1, zr, $lbl\t#@cmpL_reg_imm0_loop" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_cmpz_branch);
++ ins_short_branch(1);
++%}
++
++// Compare unsigned long with zero and branch near instructions
++instruct cmpULEqNeLeGt_reg_imm0_branch(cmpOpUEqNeLeGt cmp, iRegL op1, immL0 zero, label lbl)
++%{
++ // Same match rule as `far_cmpULEqNeLeGt_reg_imm0_branch'.
++ match(If cmp (CmpUL op1 zero));
++
++ effect(USE op1, USE lbl);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "b$cmp $op1, zr, $lbl\t#@cmpULEqNeLeGt_reg_imm0_branch" %}
++
++ ins_encode %{
++ __ enc_cmpUEqNeLeGt_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_cmpz_branch);
++ ins_short_branch(1);
++%}
++
++instruct cmpULEqNeLeGt_reg_imm0_loop(cmpOpUEqNeLeGt cmp, iRegL op1, immL0 zero, label lbl)
++%{
++ // Same match rule as `far_cmpULEqNeLeGt_reg_imm0_loop'.
++ match(CountedLoopEnd cmp (CmpUL op1 zero));
++
++ effect(USE op1, USE lbl);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "b$cmp $op1, zr, $lbl\t#@cmpULEqNeLeGt_reg_imm0_loop" %}
++
++ ins_encode %{
++ __ enc_cmpUEqNeLeGt_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_cmpz_branch);
++ ins_short_branch(1);
++%}
++
++// Compare pointer with zero and branch near instructions
++instruct cmpP_imm0_branch(cmpOpEqNe cmp, iRegP op1, immP0 zero, label lbl) %{
++ // Same match rule as `far_cmpP_reg_imm0_branch'.
++ match(If cmp (CmpP op1 zero));
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST);
++ format %{ "b$cmp $op1, zr, $lbl\t#@cmpP_imm0_branch" %}
++
++ ins_encode %{
++ __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_cmpz_branch);
++ ins_short_branch(1);
++%}
++
++instruct cmpP_imm0_loop(cmpOpEqNe cmp, iRegP op1, immP0 zero, label lbl) %{
++ // Same match rule as `far_cmpP_reg_imm0_loop'.
++ match(CountedLoopEnd cmp (CmpP op1 zero));
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST);
++ format %{ "b$cmp $op1, zr, $lbl\t#@cmpP_imm0_loop" %}
++
++ ins_encode %{
++ __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_cmpz_branch);
++ ins_short_branch(1);
++%}
++
++// Compare narrow pointer with zero and branch near instructions
++instruct cmpN_imm0_branch(cmpOpEqNe cmp, iRegN op1, immN0 zero, label lbl) %{
++ // Same match rule as `far_cmpN_reg_imm0_branch'.
++ match(If cmp (CmpN op1 zero));
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "b$cmp $op1, zr, $lbl\t#@cmpN_imm0_branch" %}
++
++ ins_encode %{
++ __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_cmpz_branch);
++ ins_short_branch(1);
++%}
++
++instruct cmpN_imm0_loop(cmpOpEqNe cmp, iRegN op1, immN0 zero, label lbl) %{
++ // Same match rule as `far_cmpN_reg_imm0_loop'.
++ match(CountedLoopEnd cmp (CmpN op1 zero));
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "b$cmp $op1, zr, $lbl\t#@cmpN_imm0_loop" %}
++
++ ins_encode %{
++ __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_cmpz_branch);
++ ins_short_branch(1);
++%}
++
++// Compare narrow pointer with pointer zero and branch near instructions
++instruct cmpP_narrowOop_imm0_branch(cmpOpEqNe cmp, iRegN op1, immP0 zero, label lbl) %{
++ // Same match rule as `far_cmpP_narrowOop_imm0_branch'.
++ match(If cmp (CmpP (DecodeN op1) zero));
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST);
++ format %{ "b$cmp $op1, zr, $lbl\t#@cmpP_narrowOop_imm0_branch" %}
++
++ ins_encode %{
++ __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_cmpz_branch);
++ ins_short_branch(1);
++%}
++
++instruct cmpP_narrowOop_imm0_loop(cmpOpEqNe cmp, iRegN op1, immP0 zero, label lbl) %{
++ // Same match rule as `far_cmpP_narrowOop_imm0_loop'.
++ match(CountedLoopEnd cmp (CmpP (DecodeN op1) zero));
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST);
++ format %{ "b$cmp $op1, zr, $lbl\t#@cmpP_narrowOop_imm0_loop" %}
++
++ ins_encode %{
++ __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label));
++ %}
++
++ ins_pipe(pipe_cmpz_branch);
++ ins_short_branch(1);
++%}
++
++// Patterns for far (20KiB) variants
++
++instruct far_cmpFlag_branch(cmpOp cmp, rFlagsReg cr, label lbl) %{
++ match(If cmp cr);
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST);
++ format %{ "far_b$cmp $cr, zr, $lbl\t#@far_cmpFlag_branch"%}
++
++ ins_encode %{
++ __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($cr$$reg), *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_cmpz_branch);
++%}
++
++// Compare signed int and branch far instructions
++instruct far_cmpI_branch(cmpOp cmp, iRegI op1, iRegI op2, label lbl) %{
++ match(If cmp (CmpI op1 op2));
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST * 2);
++
++ // the format instruction [far_b$cmp] here is be used as two insructions
++ // in macroassembler: b$not_cmp(op1, op2, done), j($lbl), bind(done)
++ format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpI_branch" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_cmp_branch);
++%}
++
++instruct far_cmpI_loop(cmpOp cmp, iRegI op1, iRegI op2, label lbl) %{
++ match(CountedLoopEnd cmp (CmpI op1 op2));
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST * 2);
++ format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpI_loop" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_cmp_branch);
++%}
++
++instruct far_cmpU_branch(cmpOpU cmp, iRegI op1, iRegI op2, label lbl) %{
++ match(If cmp (CmpU op1 op2));
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST * 2);
++ format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpU_branch" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
++ as_Register($op2$$reg), *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_cmp_branch);
++%}
++
++instruct far_cmpU_loop(cmpOpU cmp, iRegI op1, iRegI op2, label lbl) %{
++ match(CountedLoopEnd cmp (CmpU op1 op2));
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST * 2);
++ format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpU_loop" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
++ as_Register($op2$$reg), *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_cmp_branch);
++%}
++
++instruct far_cmpL_branch(cmpOp cmp, iRegL op1, iRegL op2, label lbl) %{
++ match(If cmp (CmpL op1 op2));
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST * 2);
++ format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpL_branch" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_cmp_branch);
++%}
++
++instruct far_cmpLloop(cmpOp cmp, iRegL op1, iRegL op2, label lbl) %{
++ match(CountedLoopEnd cmp (CmpL op1 op2));
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST * 2);
++ format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpL_loop" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), as_Register($op2$$reg), *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_cmp_branch);
++%}
++
++instruct far_cmpUL_branch(cmpOpU cmp, iRegL op1, iRegL op2, label lbl) %{
++ match(If cmp (CmpUL op1 op2));
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST * 2);
++ format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpUL_branch" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
++ as_Register($op2$$reg), *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_cmp_branch);
++%}
++
++instruct far_cmpUL_loop(cmpOpU cmp, iRegL op1, iRegL op2, label lbl) %{
++ match(CountedLoopEnd cmp (CmpUL op1 op2));
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST * 2);
++ format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpUL_loop" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
++ as_Register($op2$$reg), *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_cmp_branch);
++%}
++
++instruct far_cmpP_branch(cmpOpU cmp, iRegP op1, iRegP op2, label lbl)
++%{
++ match(If cmp (CmpP op1 op2));
++
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST * 2);
++
++ format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpP_branch" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
++ as_Register($op2$$reg), *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_cmp_branch);
++%}
++
++instruct far_cmpP_loop(cmpOpU cmp, iRegP op1, iRegP op2, label lbl)
++%{
++ match(CountedLoopEnd cmp (CmpP op1 op2));
++
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST * 2);
++
++ format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpP_loop" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
++ as_Register($op2$$reg), *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_cmp_branch);
++%}
++
++instruct far_cmpN_branch(cmpOpU cmp, iRegN op1, iRegN op2, label lbl)
++%{
++ match(If cmp (CmpN op1 op2));
++
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST * 2);
++
++ format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpN_branch" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
++ as_Register($op2$$reg), *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_cmp_branch);
++%}
++
++instruct far_cmpN_loop(cmpOpU cmp, iRegN op1, iRegN op2, label lbl)
++%{
++ match(CountedLoopEnd cmp (CmpN op1 op2));
++
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST * 2);
++
++ format %{ "far_b$cmp $op1, $op2, $lbl\t#@far_cmpN_loop" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode | C2_MacroAssembler::unsigned_branch_mask, as_Register($op1$$reg),
++ as_Register($op2$$reg), *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_cmp_branch);
++%}
++
++// Float compare and branch instructions
++instruct far_cmpF_branch(cmpOp cmp, fRegF op1, fRegF op2, label lbl)
++%{
++ match(If cmp (CmpF op1 op2));
++
++ effect(USE lbl);
++
++ ins_cost(XFER_COST + BRANCH_COST * 2);
++ format %{ "far_float_b$cmp $op1, $op2, $lbl\t#@far_cmpF_branch"%}
++
++ ins_encode %{
++ __ float_cmp_branch($cmp$$cmpcode, as_FloatRegister($op1$$reg), as_FloatRegister($op2$$reg),
++ *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_class_compare);
++%}
++
++instruct far_cmpF_loop(cmpOp cmp, fRegF op1, fRegF op2, label lbl)
++%{
++ match(CountedLoopEnd cmp (CmpF op1 op2));
++ effect(USE lbl);
++
++ ins_cost(XFER_COST + BRANCH_COST * 2);
++ format %{ "far_float_b$cmp $op1, $op2, $lbl\t#@far_cmpF_loop"%}
++
++ ins_encode %{
++ __ float_cmp_branch($cmp$$cmpcode, as_FloatRegister($op1$$reg), as_FloatRegister($op2$$reg),
++ *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_class_compare);
++%}
++
++// Double compare and branch instructions
++instruct far_cmpD_branch(cmpOp cmp, fRegD op1, fRegD op2, label lbl)
++%{
++ match(If cmp (CmpD op1 op2));
++ effect(USE lbl);
++
++ ins_cost(XFER_COST + BRANCH_COST * 2);
++ format %{ "far_double_b$cmp $op1, $op2, $lbl\t#@far_cmpD_branch"%}
++
++ ins_encode %{
++ __ float_cmp_branch($cmp$$cmpcode | C2_MacroAssembler::double_branch_mask, as_FloatRegister($op1$$reg),
++ as_FloatRegister($op2$$reg), *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_class_compare);
++%}
++
++instruct far_cmpD_loop(cmpOp cmp, fRegD op1, fRegD op2, label lbl)
++%{
++ match(CountedLoopEnd cmp (CmpD op1 op2));
++ effect(USE lbl);
++
++ ins_cost(XFER_COST + BRANCH_COST * 2);
++ format %{ "far_double_b$cmp $op1, $op2, $lbl\t#@far_cmpD_loop"%}
++
++ ins_encode %{
++ __ float_cmp_branch($cmp$$cmpcode | C2_MacroAssembler::double_branch_mask, as_FloatRegister($op1$$reg),
++ as_FloatRegister($op2$$reg), *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_class_compare);
++%}
++
++instruct far_cmpI_reg_imm0_branch(cmpOp cmp, iRegI op1, immI0 zero, label lbl)
++%{
++ match(If cmp (CmpI op1 zero));
++
++ effect(USE op1, USE lbl);
++
++ ins_cost(BRANCH_COST * 2);
++
++ format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpI_reg_imm0_branch" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_cmpz_branch);
++%}
++
++instruct far_cmpI_reg_imm0_loop(cmpOp cmp, iRegI op1, immI0 zero, label lbl)
++%{
++ match(CountedLoopEnd cmp (CmpI op1 zero));
++
++ effect(USE op1, USE lbl);
++
++ ins_cost(BRANCH_COST * 2);
++
++ format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpI_reg_imm0_loop" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_cmpz_branch);
++%}
++
++instruct far_cmpUEqNeLeGt_imm0_branch(cmpOpUEqNeLeGt cmp, iRegI op1, immI0 zero, label lbl)
++%{
++ match(If cmp (CmpU op1 zero));
++
++ effect(USE op1, USE lbl);
++
++ ins_cost(BRANCH_COST * 2);
++
++ format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpUEqNeLeGt_imm0_branch" %}
++
++ ins_encode %{
++ __ enc_cmpUEqNeLeGt_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_cmpz_branch);
++%}
++
++instruct far_cmpUEqNeLeGt_reg_imm0_loop(cmpOpUEqNeLeGt cmp, iRegI op1, immI0 zero, label lbl)
++%{
++ match(CountedLoopEnd cmp (CmpU op1 zero));
++
++ effect(USE op1, USE lbl);
++
++ ins_cost(BRANCH_COST * 2);
++
++ format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpUEqNeLeGt_reg_imm0_loop" %}
++
++
++ ins_encode %{
++ __ enc_cmpUEqNeLeGt_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_cmpz_branch);
++%}
++
++// compare lt/ge unsigned instructs has no short instruct with same match
++instruct far_cmpULtGe_reg_imm0_branch(cmpOpULtGe cmp, iRegI op1, immI0 zero, label lbl)
++%{
++ match(If cmp (CmpU op1 zero));
++
++ effect(USE op1, USE lbl);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "j $lbl if $cmp == ge\t#@far_cmpULtGe_reg_imm0_branch" %}
++
++ ins_encode(riscv_enc_far_cmpULtGe_imm0_branch(cmp, op1, lbl));
++
++ ins_pipe(pipe_cmpz_branch);
++%}
++
++instruct far_cmpULtGe_reg_imm0_loop(cmpOpULtGe cmp, iRegI op1, immI0 zero, label lbl)
++%{
++ match(CountedLoopEnd cmp (CmpU op1 zero));
++
++ effect(USE op1, USE lbl);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "j $lbl if $cmp == ge\t#@far_cmpULtGe_reg_imm0_loop" %}
++
++ ins_encode(riscv_enc_far_cmpULtGe_imm0_branch(cmp, op1, lbl));
++
++ ins_pipe(pipe_cmpz_branch);
++%}
++
++instruct far_cmpL_reg_imm0_branch(cmpOp cmp, iRegL op1, immL0 zero, label lbl)
++%{
++ match(If cmp (CmpL op1 zero));
++
++ effect(USE op1, USE lbl);
++
++ ins_cost(BRANCH_COST * 2);
++
++ format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpL_reg_imm0_branch" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_cmpz_branch);
++%}
++
++instruct far_cmpL_reg_imm0_loop(cmpOp cmp, iRegL op1, immL0 zero, label lbl)
++%{
++ match(CountedLoopEnd cmp (CmpL op1 zero));
++
++ effect(USE op1, USE lbl);
++
++ ins_cost(BRANCH_COST * 2);
++
++ format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpL_reg_imm0_loop" %}
++
++ ins_encode %{
++ __ cmp_branch($cmp$$cmpcode, as_Register($op1$$reg), zr, *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_cmpz_branch);
++%}
++
++instruct far_cmpULEqNeLeGt_reg_imm0_branch(cmpOpUEqNeLeGt cmp, iRegL op1, immL0 zero, label lbl)
++%{
++ match(If cmp (CmpUL op1 zero));
++
++ effect(USE op1, USE lbl);
++
++ ins_cost(BRANCH_COST * 2);
++
++ format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpULEqNeLeGt_reg_imm0_branch" %}
++
++ ins_encode %{
++ __ enc_cmpUEqNeLeGt_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_cmpz_branch);
++%}
++
++instruct far_cmpULEqNeLeGt_reg_imm0_loop(cmpOpUEqNeLeGt cmp, iRegL op1, immL0 zero, label lbl)
++%{
++ match(CountedLoopEnd cmp (CmpUL op1 zero));
++
++ effect(USE op1, USE lbl);
++
++ ins_cost(BRANCH_COST * 2);
++
++ format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpULEqNeLeGt_reg_imm0_loop" %}
++
++ ins_encode %{
++ __ enc_cmpUEqNeLeGt_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_cmpz_branch);
++%}
++
++// compare lt/ge unsigned instructs has no short instruct with same match
++instruct far_cmpULLtGe_reg_imm0_branch(cmpOpULtGe cmp, iRegL op1, immL0 zero, label lbl)
++%{
++ match(If cmp (CmpUL op1 zero));
++
++ effect(USE op1, USE lbl);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "j $lbl if $cmp == ge\t#@far_cmpULLtGe_reg_imm0_branch" %}
++
++ ins_encode(riscv_enc_far_cmpULtGe_imm0_branch(cmp, op1, lbl));
++
++ ins_pipe(pipe_cmpz_branch);
++%}
++
++instruct far_cmpULLtGe_reg_imm0_loop(cmpOpULtGe cmp, iRegL op1, immL0 zero, label lbl)
++%{
++ match(CountedLoopEnd cmp (CmpUL op1 zero));
++
++ effect(USE op1, USE lbl);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "j $lbl if $cmp == ge\t#@far_cmpULLtGe_reg_imm0_loop" %}
++
++ ins_encode(riscv_enc_far_cmpULtGe_imm0_branch(cmp, op1, lbl));
++
++ ins_pipe(pipe_cmpz_branch);
++%}
++
++instruct far_cmpP_imm0_branch(cmpOpEqNe cmp, iRegP op1, immP0 zero, label lbl) %{
++ match(If cmp (CmpP op1 zero));
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST * 2);
++ format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpP_imm0_branch" %}
++
++ ins_encode %{
++ __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_cmpz_branch);
++%}
++
++instruct far_cmpP_imm0_loop(cmpOpEqNe cmp, iRegP op1, immP0 zero, label lbl) %{
++ match(CountedLoopEnd cmp (CmpP op1 zero));
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST * 2);
++ format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpP_imm0_loop" %}
++
++ ins_encode %{
++ __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_cmpz_branch);
++%}
++
++instruct far_cmpN_imm0_branch(cmpOpEqNe cmp, iRegN op1, immN0 zero, label lbl) %{
++ match(If cmp (CmpN op1 zero));
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST * 2);
++
++ format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpN_imm0_branch" %}
++
++ ins_encode %{
++ __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_cmpz_branch);
++%}
++
++instruct far_cmpN_imm0_loop(cmpOpEqNe cmp, iRegN op1, immN0 zero, label lbl) %{
++ match(CountedLoopEnd cmp (CmpN op1 zero));
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST * 2);
++
++ format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpN_imm0_loop" %}
++
++ ins_encode %{
++ __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_cmpz_branch);
++%}
++
++instruct far_cmpP_narrowOop_imm0_branch(cmpOpEqNe cmp, iRegN op1, immP0 zero, label lbl) %{
++ match(If cmp (CmpP (DecodeN op1) zero));
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST * 2);
++ format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpP_narrowOop_imm0_branch" %}
++
++ ins_encode %{
++ __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_cmpz_branch);
++%}
++
++instruct far_cmpP_narrowOop_imm0_loop(cmpOpEqNe cmp, iRegN op1, immP0 zero, label lbl) %{
++ match(CountedLoopEnd cmp (CmpP (DecodeN op1) zero));
++ effect(USE lbl);
++
++ ins_cost(BRANCH_COST * 2);
++ format %{ "far_b$cmp $op1, zr, $lbl\t#@far_cmpP_narrowOop_imm0_loop" %}
++
++ ins_encode %{
++ __ enc_cmpEqNe_imm0_branch($cmp$$cmpcode, as_Register($op1$$reg), *($lbl$$label), /* is_far */ true);
++ %}
++
++ ins_pipe(pipe_cmpz_branch);
++%}
++
++// ============================================================================
++// Conditional Move Instructions
++instruct cmovI_cmpI(iRegINoSp dst, iRegI src, iRegI op1, iRegI op2, cmpOp cop) %{
++ match(Set dst (CMoveI (Binary cop (CmpI op1 op2)) (Binary dst src)));
++ ins_cost(ALU_COST + BRANCH_COST);
++
++ format %{
++ "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpI\n\t"
++ %}
++
++ ins_encode %{
++ __ enc_cmove($cop$$cmpcode,
++ as_Register($op1$$reg), as_Register($op2$$reg),
++ as_Register($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(pipe_class_compare);
++%}
++
++instruct cmovI_cmpU(iRegINoSp dst, iRegI src, iRegI op1, iRegI op2, cmpOpU cop) %{
++ match(Set dst (CMoveI (Binary cop (CmpU op1 op2)) (Binary dst src)));
++ ins_cost(ALU_COST + BRANCH_COST);
++
++ format %{
++ "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpU\n\t"
++ %}
++
++ ins_encode %{
++ __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask,
++ as_Register($op1$$reg), as_Register($op2$$reg),
++ as_Register($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(pipe_class_compare);
++%}
++
++instruct cmovI_cmpL(iRegINoSp dst, iRegI src, iRegL op1, iRegL op2, cmpOp cop) %{
++ match(Set dst (CMoveI (Binary cop (CmpL op1 op2)) (Binary dst src)));
++ ins_cost(ALU_COST + BRANCH_COST);
++
++ format %{
++ "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpL\n\t"
++ %}
++
++ ins_encode %{
++ __ enc_cmove($cop$$cmpcode,
++ as_Register($op1$$reg), as_Register($op2$$reg),
++ as_Register($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(pipe_class_compare);
++%}
++
++instruct cmovI_cmpUL(iRegINoSp dst, iRegI src, iRegL op1, iRegL op2, cmpOpU cop) %{
++ match(Set dst (CMoveI (Binary cop (CmpUL op1 op2)) (Binary dst src)));
++ ins_cost(ALU_COST + BRANCH_COST);
++
++ format %{
++ "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovI_cmpUL\n\t"
++ %}
++
++ ins_encode %{
++ __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask,
++ as_Register($op1$$reg), as_Register($op2$$reg),
++ as_Register($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(pipe_class_compare);
++%}
++
++instruct cmovL_cmpL(iRegLNoSp dst, iRegL src, iRegL op1, iRegL op2, cmpOp cop) %{
++ match(Set dst (CMoveL (Binary cop (CmpL op1 op2)) (Binary dst src)));
++ ins_cost(ALU_COST + BRANCH_COST);
++
++ format %{
++ "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpL\n\t"
++ %}
++
++ ins_encode %{
++ __ enc_cmove($cop$$cmpcode,
++ as_Register($op1$$reg), as_Register($op2$$reg),
++ as_Register($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(pipe_class_compare);
++%}
++
++instruct cmovL_cmpUL(iRegLNoSp dst, iRegL src, iRegL op1, iRegL op2, cmpOpU cop) %{
++ match(Set dst (CMoveL (Binary cop (CmpUL op1 op2)) (Binary dst src)));
++ ins_cost(ALU_COST + BRANCH_COST);
++
++ format %{
++ "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpUL\n\t"
++ %}
++
++ ins_encode %{
++ __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask,
++ as_Register($op1$$reg), as_Register($op2$$reg),
++ as_Register($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(pipe_class_compare);
++%}
++
++instruct cmovL_cmpI(iRegLNoSp dst, iRegL src, iRegI op1, iRegI op2, cmpOp cop) %{
++ match(Set dst (CMoveL (Binary cop (CmpI op1 op2)) (Binary dst src)));
++ ins_cost(ALU_COST + BRANCH_COST);
++
++ format %{
++ "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpI\n\t"
++ %}
++
++ ins_encode %{
++ __ enc_cmove($cop$$cmpcode,
++ as_Register($op1$$reg), as_Register($op2$$reg),
++ as_Register($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(pipe_class_compare);
++%}
++
++instruct cmovL_cmpU(iRegLNoSp dst, iRegL src, iRegI op1, iRegI op2, cmpOpU cop) %{
++ match(Set dst (CMoveL (Binary cop (CmpU op1 op2)) (Binary dst src)));
++ ins_cost(ALU_COST + BRANCH_COST);
++
++ format %{
++ "CMove $dst, ($op1 $cop $op2), $dst, $src\t#@cmovL_cmpU\n\t"
++ %}
++
++ ins_encode %{
++ __ enc_cmove($cop$$cmpcode | C2_MacroAssembler::unsigned_branch_mask,
++ as_Register($op1$$reg), as_Register($op2$$reg),
++ as_Register($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(pipe_class_compare);
++%}
++
++// ============================================================================
++// Procedure Call/Return Instructions
++
++// Call Java Static Instruction
++// Note: If this code changes, the corresponding ret_addr_offset() and
++// compute_padding() functions will have to be adjusted.
++instruct CallStaticJavaDirect(method meth)
++%{
++ match(CallStaticJava);
++
++ effect(USE meth);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "CALL,static $meth\t#@CallStaticJavaDirect" %}
++
++ ins_encode(riscv_enc_java_static_call(meth),
++ riscv_enc_call_epilog);
++
++ ins_pipe(pipe_class_call);
++ ins_alignment(4);
++%}
++
++// TO HERE
++
++// Call Java Dynamic Instruction
++// Note: If this code changes, the corresponding ret_addr_offset() and
++// compute_padding() functions will have to be adjusted.
++instruct CallDynamicJavaDirect(method meth, rFlagsReg cr)
++%{
++ match(CallDynamicJava);
++
++ effect(USE meth, KILL cr);
++
++ ins_cost(BRANCH_COST + ALU_COST * 6);
++
++ format %{ "CALL,dynamic $meth\t#@CallDynamicJavaDirect" %}
++
++ ins_encode(riscv_enc_java_dynamic_call(meth),
++ riscv_enc_call_epilog);
++
++ ins_pipe(pipe_class_call);
++ ins_alignment(4);
++%}
++
++// Call Runtime Instruction
++
++instruct CallRuntimeDirect(method meth, rFlagsReg cr)
++%{
++ match(CallRuntime);
++
++ effect(USE meth, KILL cr);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "CALL, runtime $meth\t#@CallRuntimeDirect" %}
++
++ ins_encode(riscv_enc_java_to_runtime(meth));
++
++ ins_pipe(pipe_class_call);
++%}
++
++// Call Runtime Instruction
++
++instruct CallLeafDirect(method meth, rFlagsReg cr)
++%{
++ match(CallLeaf);
++
++ effect(USE meth, KILL cr);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "CALL, runtime leaf $meth\t#@CallLeafDirect" %}
++
++ ins_encode(riscv_enc_java_to_runtime(meth));
++
++ ins_pipe(pipe_class_call);
++%}
++
++// Call Runtime Instruction
++
++instruct CallLeafNoFPDirect(method meth, rFlagsReg cr)
++%{
++ match(CallLeafNoFP);
++
++ effect(USE meth, KILL cr);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "CALL, runtime leaf nofp $meth\t#@CallLeafNoFPDirect" %}
++
++ ins_encode(riscv_enc_java_to_runtime(meth));
++
++ ins_pipe(pipe_class_call);
++%}
++
++// ============================================================================
++// Partial Subtype Check
++//
++// superklass array for an instance of the superklass. Set a hidden
++// internal cache on a hit (cache is checked with exposed code in
++// gen_subtype_check()). Return zero for a hit. The encoding
++// ALSO sets flags.
++
++instruct partialSubtypeCheck(iRegP_R15 result, iRegP_R14 sub, iRegP_R10 super, iRegP_R12 tmp, rFlagsReg cr)
++%{
++ match(Set result (PartialSubtypeCheck sub super));
++ effect(KILL tmp, KILL cr);
++
++ ins_cost(2 * STORE_COST + 3 * LOAD_COST + 4 * ALU_COST + BRANCH_COST * 4);
++ format %{ "partialSubtypeCheck $result, $sub, $super\t#@partialSubtypeCheck" %}
++
++ ins_encode(riscv_enc_partial_subtype_check(sub, super, tmp, result));
++
++ opcode(0x1); // Force zero of result reg on hit
++
++ ins_pipe(pipe_class_memory);
++%}
++
++instruct partialSubtypeCheckVsZero(iRegP_R15 result, iRegP_R14 sub, iRegP_R10 super, iRegP_R12 tmp,
++ immP0 zero, rFlagsReg cr)
++%{
++ match(Set cr (CmpP (PartialSubtypeCheck sub super) zero));
++ effect(KILL tmp, KILL result);
++
++ ins_cost(2 * STORE_COST + 3 * LOAD_COST + 4 * ALU_COST + BRANCH_COST * 4);
++ format %{ "partialSubtypeCheck $result, $sub, $super == 0\t#@partialSubtypeCheckVsZero" %}
++
++ ins_encode(riscv_enc_partial_subtype_check(sub, super, tmp, result));
++
++ opcode(0x0); // Don't zero result reg on hit
++
++ ins_pipe(pipe_class_memory);
++%}
++
++instruct string_compareU(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2,
++ iRegI_R10 result, iRegP_R28 tmp1, iRegL_R29 tmp2, iRegL_R30 tmp3, rFlagsReg cr)
++%{
++ predicate(!UseRVV && ((StrCompNode *)n)->encoding() == StrIntrinsicNode::UU);
++ match(Set result (StrComp(Binary str1 cnt1)(Binary str2 cnt2)));
++ effect(KILL tmp1, KILL tmp2, KILL tmp3, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
++
++ format %{ "String Compare $str1, $cnt1, $str2, $cnt2 -> $result\t#@string_compareU" %}
++ ins_encode %{
++ // Count is in 8-bit bytes; non-Compact chars are 16 bits.
++ __ string_compare($str1$$Register, $str2$$Register,
++ $cnt1$$Register, $cnt2$$Register, $result$$Register,
++ $tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
++ StrIntrinsicNode::UU);
++ %}
++ ins_pipe(pipe_class_memory);
++%}
++
++instruct string_compareL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2,
++ iRegI_R10 result, iRegP_R28 tmp1, iRegL_R29 tmp2, iRegL_R30 tmp3, rFlagsReg cr)
++%{
++ predicate(!UseRVV && ((StrCompNode *)n)->encoding() == StrIntrinsicNode::LL);
++ match(Set result (StrComp(Binary str1 cnt1)(Binary str2 cnt2)));
++ effect(KILL tmp1, KILL tmp2, KILL tmp3, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
++
++ format %{ "String Compare $str1, $cnt1, $str2, $cnt2 -> $result\t#@string_compareL" %}
++ ins_encode %{
++ __ string_compare($str1$$Register, $str2$$Register,
++ $cnt1$$Register, $cnt2$$Register, $result$$Register,
++ $tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
++ StrIntrinsicNode::LL);
++ %}
++ ins_pipe(pipe_class_memory);
++%}
++
++instruct string_compareUL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2,
++ iRegI_R10 result, iRegP_R28 tmp1, iRegL_R29 tmp2, iRegL_R30 tmp3, rFlagsReg cr)
++%{
++ predicate(!UseRVV && ((StrCompNode *)n)->encoding() == StrIntrinsicNode::UL);
++ match(Set result (StrComp(Binary str1 cnt1)(Binary str2 cnt2)));
++ effect(KILL tmp1, KILL tmp2, KILL tmp3, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
++
++ format %{"String Compare $str1, $cnt1, $str2, $cnt2 -> $result\t#@string_compareUL" %}
++ ins_encode %{
++ __ string_compare($str1$$Register, $str2$$Register,
++ $cnt1$$Register, $cnt2$$Register, $result$$Register,
++ $tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
++ StrIntrinsicNode::UL);
++ %}
++ ins_pipe(pipe_class_memory);
++%}
++
++instruct string_compareLU(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2,
++ iRegI_R10 result, iRegP_R28 tmp1, iRegL_R29 tmp2, iRegL_R30 tmp3,
++ rFlagsReg cr)
++%{
++ predicate(!UseRVV && ((StrCompNode *)n)->encoding() == StrIntrinsicNode::LU);
++ match(Set result (StrComp(Binary str1 cnt1)(Binary str2 cnt2)));
++ effect(KILL tmp1, KILL tmp2, KILL tmp3, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, KILL cr);
++
++ format %{ "String Compare $str1, $cnt1, $str2, $cnt2 -> $result\t#@string_compareLU" %}
++ ins_encode %{
++ __ string_compare($str1$$Register, $str2$$Register,
++ $cnt1$$Register, $cnt2$$Register, $result$$Register,
++ $tmp1$$Register, $tmp2$$Register, $tmp3$$Register,
++ StrIntrinsicNode::LU);
++ %}
++ ins_pipe(pipe_class_memory);
++%}
++
++instruct string_indexofUU(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2,
++ iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3,
++ iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6, rFlagsReg cr)
++%{
++ predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU);
++ match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
++ effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, TEMP_DEF result,
++ TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6, KILL cr);
++
++ format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (UU)" %}
++ ins_encode %{
++ __ string_indexof($str1$$Register, $str2$$Register,
++ $cnt1$$Register, $cnt2$$Register,
++ $tmp1$$Register, $tmp2$$Register,
++ $tmp3$$Register, $tmp4$$Register,
++ $tmp5$$Register, $tmp6$$Register,
++ $result$$Register, StrIntrinsicNode::UU);
++ %}
++ ins_pipe(pipe_class_memory);
++%}
++
++instruct string_indexofLL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2,
++ iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3,
++ iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6, rFlagsReg cr)
++%{
++ predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL);
++ match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
++ effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, TEMP_DEF result,
++ TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6, KILL cr);
++
++ format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (LL)" %}
++ ins_encode %{
++ __ string_indexof($str1$$Register, $str2$$Register,
++ $cnt1$$Register, $cnt2$$Register,
++ $tmp1$$Register, $tmp2$$Register,
++ $tmp3$$Register, $tmp4$$Register,
++ $tmp5$$Register, $tmp6$$Register,
++ $result$$Register, StrIntrinsicNode::LL);
++ %}
++ ins_pipe(pipe_class_memory);
++%}
++
++instruct string_indexofUL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2,
++ iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2, iRegINoSp tmp3,
++ iRegINoSp tmp4, iRegINoSp tmp5, iRegINoSp tmp6, rFlagsReg cr)
++%{
++ predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL);
++ match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 cnt2)));
++ effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2, TEMP_DEF result,
++ TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, TEMP tmp5, TEMP tmp6, KILL cr);
++ format %{ "String IndexOf $str1,$cnt1,$str2,$cnt2 -> $result (UL)" %}
++
++ ins_encode %{
++ __ string_indexof($str1$$Register, $str2$$Register,
++ $cnt1$$Register, $cnt2$$Register,
++ $tmp1$$Register, $tmp2$$Register,
++ $tmp3$$Register, $tmp4$$Register,
++ $tmp5$$Register, $tmp6$$Register,
++ $result$$Register, StrIntrinsicNode::UL);
++ %}
++ ins_pipe(pipe_class_memory);
++%}
++
++instruct string_indexof_conUU(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2,
++ immI_le_4 int_cnt2, iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2,
++ iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr)
++%{
++ predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UU);
++ match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
++ effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, TEMP_DEF result,
++ TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
++
++ format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (UU)" %}
++
++ ins_encode %{
++ int icnt2 = (int)$int_cnt2$$constant;
++ __ string_indexof_linearscan($str1$$Register, $str2$$Register,
++ $cnt1$$Register, zr,
++ $tmp1$$Register, $tmp2$$Register,
++ $tmp3$$Register, $tmp4$$Register,
++ icnt2, $result$$Register, StrIntrinsicNode::UU);
++ %}
++ ins_pipe(pipe_class_memory);
++%}
++
++instruct string_indexof_conLL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2,
++ immI_le_4 int_cnt2, iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2,
++ iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr)
++%{
++ predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::LL);
++ match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
++ effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, TEMP_DEF result,
++ TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
++
++ format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (LL)" %}
++ ins_encode %{
++ int icnt2 = (int)$int_cnt2$$constant;
++ __ string_indexof_linearscan($str1$$Register, $str2$$Register,
++ $cnt1$$Register, zr,
++ $tmp1$$Register, $tmp2$$Register,
++ $tmp3$$Register, $tmp4$$Register,
++ icnt2, $result$$Register, StrIntrinsicNode::LL);
++ %}
++ ins_pipe(pipe_class_memory);
++%}
++
++instruct string_indexof_conUL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2,
++ immI_1 int_cnt2, iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2,
++ iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr)
++%{
++ predicate(((StrIndexOfNode*)n)->encoding() == StrIntrinsicNode::UL);
++ match(Set result (StrIndexOf (Binary str1 cnt1) (Binary str2 int_cnt2)));
++ effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt1, TEMP_DEF result,
++ TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
++
++ format %{ "String IndexOf $str1,$cnt1,$str2,$int_cnt2 -> $result (UL)" %}
++ ins_encode %{
++ int icnt2 = (int)$int_cnt2$$constant;
++ __ string_indexof_linearscan($str1$$Register, $str2$$Register,
++ $cnt1$$Register, zr,
++ $tmp1$$Register, $tmp2$$Register,
++ $tmp3$$Register, $tmp4$$Register,
++ icnt2, $result$$Register, StrIntrinsicNode::UL);
++ %}
++ ins_pipe(pipe_class_memory);
++%}
++
++instruct stringU_indexof_char(iRegP_R11 str1, iRegI_R12 cnt1, iRegI_R13 ch,
++ iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2,
++ iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr)
++%{
++ match(Set result (StrIndexOfChar (Binary str1 cnt1) ch));
++ predicate(!UseRVV && (((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::U));
++ effect(USE_KILL str1, USE_KILL cnt1, USE_KILL ch, TEMP_DEF result,
++ TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
++
++ format %{ "StringUTF16 IndexOf char[] $str1, $cnt1, $ch -> $result" %}
++ ins_encode %{
++ __ string_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register,
++ $result$$Register, $tmp1$$Register, $tmp2$$Register,
++ $tmp3$$Register, $tmp4$$Register, false /* isU */);
++ %}
++ ins_pipe(pipe_class_memory);
++%}
++
++
++instruct stringL_indexof_char(iRegP_R11 str1, iRegI_R12 cnt1, iRegI_R13 ch,
++ iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2,
++ iRegINoSp tmp3, iRegINoSp tmp4, rFlagsReg cr)
++%{
++ match(Set result (StrIndexOfChar (Binary str1 cnt1) ch));
++ predicate(!UseRVV && (((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::L));
++ effect(USE_KILL str1, USE_KILL cnt1, USE_KILL ch, TEMP_DEF result,
++ TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL cr);
++
++ format %{ "StringLatin1 IndexOf char[] $str1, $cnt1, $ch -> $result" %}
++ ins_encode %{
++ __ string_indexof_char($str1$$Register, $cnt1$$Register, $ch$$Register,
++ $result$$Register, $tmp1$$Register, $tmp2$$Register,
++ $tmp3$$Register, $tmp4$$Register, true /* isL */);
++ %}
++ ins_pipe(pipe_class_memory);
++%}
++
++// clearing of an array
++instruct clearArray_reg_reg(iRegL_R29 cnt, iRegP_R28 base, Universe dummy)
++%{
++ predicate(!UseRVV);
++ match(Set dummy (ClearArray cnt base));
++ effect(USE_KILL cnt, USE_KILL base);
++
++ ins_cost(4 * DEFAULT_COST);
++ format %{ "ClearArray $cnt, $base\t#@clearArray_reg_reg" %}
++
++ ins_encode %{
++ address tpc = __ zero_words($base$$Register, $cnt$$Register);
++ if (tpc == NULL) {
++ ciEnv::current()->record_failure("CodeCache is full");
++ return;
++ }
++ %}
++
++ ins_pipe(pipe_class_memory);
++%}
++
++instruct clearArray_imm_reg(immL cnt, iRegP_R28 base, Universe dummy, rFlagsReg cr)
++%{
++ predicate(!UseRVV && (uint64_t)n->in(2)->get_long()
++ < (uint64_t)(BlockZeroingLowLimit >> LogBytesPerWord));
++ match(Set dummy (ClearArray cnt base));
++ effect(USE_KILL base, KILL cr);
++
++ ins_cost(4 * DEFAULT_COST);
++ format %{ "ClearArray $cnt, $base\t#@clearArray_imm_reg" %}
++
++ ins_encode %{
++ __ zero_words($base$$Register, (uint64_t)$cnt$$constant);
++ %}
++
++ ins_pipe(pipe_class_memory);
++%}
++
++instruct string_equalsL(iRegP_R11 str1, iRegP_R13 str2, iRegI_R14 cnt,
++ iRegI_R10 result, rFlagsReg cr)
++%{
++ predicate(!UseRVV && ((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::LL);
++ match(Set result (StrEquals (Binary str1 str2) cnt));
++ effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL cr);
++
++ format %{ "String Equals $str1, $str2, $cnt -> $result\t#@string_equalsL" %}
++ ins_encode %{
++ // Count is in 8-bit bytes; non-Compact chars are 16 bits.
++ __ string_equals($str1$$Register, $str2$$Register,
++ $result$$Register, $cnt$$Register, 1);
++ %}
++ ins_pipe(pipe_class_memory);
++%}
++
++instruct string_equalsU(iRegP_R11 str1, iRegP_R13 str2, iRegI_R14 cnt,
++ iRegI_R10 result, rFlagsReg cr)
++%{
++ predicate(!UseRVV && ((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::UU);
++ match(Set result (StrEquals (Binary str1 str2) cnt));
++ effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, KILL cr);
++
++ format %{ "String Equals $str1, $str2, $cnt -> $result\t#@string_equalsU" %}
++ ins_encode %{
++ // Count is in 8-bit bytes; non-Compact chars are 16 bits.
++ __ string_equals($str1$$Register, $str2$$Register,
++ $result$$Register, $cnt$$Register, 2);
++ %}
++ ins_pipe(pipe_class_memory);
++%}
++
++instruct array_equalsB(iRegP_R11 ary1, iRegP_R12 ary2, iRegI_R10 result,
++ iRegP_R13 tmp1, iRegP_R14 tmp2, iRegP_R15 tmp3,
++ iRegP_R16 tmp4, iRegP_R28 tmp5, rFlagsReg cr)
++%{
++ predicate(!UseRVV && ((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL);
++ match(Set result (AryEq ary1 ary2));
++ effect(USE_KILL ary1, USE_KILL ary2, TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL tmp5, KILL cr);
++
++ format %{ "Array Equals $ary1, ary2 -> $result\t#@array_equalsB // KILL $tmp5" %}
++ ins_encode %{
++ __ arrays_equals($ary1$$Register, $ary2$$Register,
++ $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register,
++ $result$$Register, $tmp5$$Register, 1);
++ %}
++ ins_pipe(pipe_class_memory);
++%}
++
++instruct array_equalsC(iRegP_R11 ary1, iRegP_R12 ary2, iRegI_R10 result,
++ iRegP_R13 tmp1, iRegP_R14 tmp2, iRegP_R15 tmp3,
++ iRegP_R16 tmp4, iRegP_R28 tmp5, rFlagsReg cr)
++%{
++ predicate(!UseRVV && ((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU);
++ match(Set result (AryEq ary1 ary2));
++ effect(USE_KILL ary1, USE_KILL ary2, TEMP tmp1, TEMP tmp2, TEMP tmp3, TEMP tmp4, KILL tmp5, KILL cr);
++
++ format %{ "Array Equals $ary1, ary2 -> $result\t#@array_equalsC // KILL $tmp5" %}
++ ins_encode %{
++ __ arrays_equals($ary1$$Register, $ary2$$Register,
++ $tmp1$$Register, $tmp2$$Register, $tmp3$$Register, $tmp4$$Register,
++ $result$$Register, $tmp5$$Register, 2);
++ %}
++ ins_pipe(pipe_class_memory);
++%}
++
++// ============================================================================
++// Safepoint Instructions
++
++instruct safePoint(iRegP poll)
++%{
++ match(SafePoint poll);
++
++ ins_cost(2 * LOAD_COST);
++ format %{
++ "lwu zr, [$poll]\t# Safepoint: poll for GC, #@safePoint"
++ %}
++ ins_encode %{
++ __ read_polling_page(as_Register($poll$$reg), 0, relocInfo::poll_type);
++ %}
++ ins_pipe(pipe_serial); // ins_pipe(iload_reg_mem);
++%}
++
++// ============================================================================
++// This name is KNOWN by the ADLC and cannot be changed.
++// The ADLC forces a 'TypeRawPtr::BOTTOM' output type
++// for this guy.
++instruct tlsLoadP(javaThread_RegP dst)
++%{
++ match(Set dst (ThreadLocal));
++
++ ins_cost(0);
++
++ format %{ " -- \t// $dst=Thread::current(), empty, #@tlsLoadP" %}
++
++ size(0);
++
++ ins_encode( /*empty*/ );
++
++ ins_pipe(pipe_class_empty);
++%}
++
++// inlined locking and unlocking
++// using t1 as the 'flag' register to bridge the BoolNode producers and consumers
++instruct cmpFastLock(rFlagsReg cr, iRegP object, iRegP box, iRegPNoSp tmp1, iRegPNoSp tmp2)
++%{
++ match(Set cr (FastLock object box));
++ effect(TEMP tmp1, TEMP tmp2);
++
++ ins_cost(LOAD_COST * 2 + STORE_COST * 3 + ALU_COST * 6 + BRANCH_COST * 3);
++ format %{ "fastlock $object,$box\t! kills $tmp1,$tmp2, #@cmpFastLock" %}
++
++ ins_encode(riscv_enc_fast_lock(object, box, tmp1, tmp2));
++
++ ins_pipe(pipe_serial);
++%}
++
++// using t1 as the 'flag' register to bridge the BoolNode producers and consumers
++instruct cmpFastUnlock(rFlagsReg cr, iRegP object, iRegP box, iRegPNoSp tmp1, iRegPNoSp tmp2)
++%{
++ match(Set cr (FastUnlock object box));
++ effect(TEMP tmp1, TEMP tmp2);
++
++ ins_cost(LOAD_COST * 2 + STORE_COST + ALU_COST * 2 + BRANCH_COST * 4);
++ format %{ "fastunlock $object,$box\t! kills $tmp1, $tmp2, #@cmpFastUnlock" %}
++
++ ins_encode(riscv_enc_fast_unlock(object, box, tmp1, tmp2));
++
++ ins_pipe(pipe_serial);
++%}
++
++// Tail Call; Jump from runtime stub to Java code.
++// Also known as an 'interprocedural jump'.
++// Target of jump will eventually return to caller.
++// TailJump below removes the return address.
++instruct TailCalljmpInd(iRegPNoSp jump_target, inline_cache_RegP method_oop)
++%{
++ match(TailCall jump_target method_oop);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "jalr $jump_target\t# $method_oop holds method oop, #@TailCalljmpInd." %}
++
++ ins_encode(riscv_enc_tail_call(jump_target));
++
++ ins_pipe(pipe_class_call);
++%}
++
++instruct TailjmpInd(iRegPNoSp jump_target, iRegP_R10 ex_oop)
++%{
++ match(TailJump jump_target ex_oop);
++
++ ins_cost(ALU_COST + BRANCH_COST);
++
++ format %{ "jalr $jump_target\t# $ex_oop holds exception oop, #@TailjmpInd." %}
++
++ ins_encode(riscv_enc_tail_jmp(jump_target));
++
++ ins_pipe(pipe_class_call);
++%}
++
++// Create exception oop: created by stack-crawling runtime code.
++// Created exception is now available to this handler, and is setup
++// just prior to jumping to this handler. No code emitted.
++instruct CreateException(iRegP_R10 ex_oop)
++%{
++ match(Set ex_oop (CreateEx));
++
++ ins_cost(0);
++ format %{ " -- \t// exception oop; no code emitted, #@CreateException" %}
++
++ size(0);
++
++ ins_encode( /*empty*/ );
++
++ ins_pipe(pipe_class_empty);
++%}
++
++// Rethrow exception: The exception oop will come in the first
++// argument position. Then JUMP (not call) to the rethrow stub code.
++instruct RethrowException()
++%{
++ match(Rethrow);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "j rethrow_stub\t#@RethrowException" %}
++
++ ins_encode(riscv_enc_rethrow());
++
++ ins_pipe(pipe_class_call);
++%}
++
++// Return Instruction
++// epilog node loads ret address into ra as part of frame pop
++instruct Ret()
++%{
++ match(Return);
++
++ ins_cost(BRANCH_COST);
++ format %{ "ret\t// return register, #@Ret" %}
++
++ ins_encode(riscv_enc_ret());
++
++ ins_pipe(pipe_branch);
++%}
++
++// Die now.
++instruct ShouldNotReachHere() %{
++ match(Halt);
++
++ ins_cost(BRANCH_COST);
++
++ format %{ "#@ShouldNotReachHere" %}
++
++ ins_encode %{
++ if (is_reachable()) {
++ __ stop(_halt_reason);
++ }
++ %}
++
++ ins_pipe(pipe_class_default);
++%}
++
++
++//----------PEEPHOLE RULES-----------------------------------------------------
++// These must follow all instruction definitions as they use the names
++// defined in the instructions definitions.
++//
++// peepmatch ( root_instr_name [preceding_instruction]* );
++//
++// peepconstraint %{
++// (instruction_number.operand_name relational_op instruction_number.operand_name
++// [, ...] );
++// // instruction numbers are zero-based using left to right order in peepmatch
++//
++// peepreplace ( instr_name ( [instruction_number.operand_name]* ) );
++// // provide an instruction_number.operand_name for each operand that appears
++// // in the replacement instruction's match rule
++//
++// ---------VM FLAGS---------------------------------------------------------
++//
++// All peephole optimizations can be turned off using -XX:-OptoPeephole
++//
++// Each peephole rule is given an identifying number starting with zero and
++// increasing by one in the order seen by the parser. An individual peephole
++// can be enabled, and all others disabled, by using -XX:OptoPeepholeAt=#
++// on the command-line.
++//
++// ---------CURRENT LIMITATIONS----------------------------------------------
++//
++// Only match adjacent instructions in same basic block
++// Only equality constraints
++// Only constraints between operands, not (0.dest_reg == RAX_enc)
++// Only one replacement instruction
++//
++//----------SMARTSPILL RULES---------------------------------------------------
++// These must follow all instruction definitions as they use the names
++// defined in the instructions definitions.
++
++// Local Variables:
++// mode: c++
++// End:
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/riscv_b.ad
+@@ -0,0 +1,575 @@
++//
++// Copyright (c) 2021, Oracle and/or its affiliates. All rights reserved.
++// Copyright (c) 2022, Huawei Technologies Co., Ltd. All rights reserved.
++// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++//
++// This code is free software; you can redistribute it and/or modify it
++// under the terms of the GNU General Public License version 2 only, as
++// published by the Free Software Foundation.
++//
++// This code is distributed in the hope that it will be useful, but WITHOUT
++// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++// version 2 for more details (a copy is included in the LICENSE file that
++// accompanied this code).
++//
++// You should have received a copy of the GNU General Public License version
++// 2 along with this work; if not, write to the Free Software Foundation,
++// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++//
++// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++// or visit www.oracle.com if you need additional information or have any
++// questions.
++//
++//
++
++// RISCV Bit-Manipulation Extension Architecture Description File
++
++instruct rorI_imm_b(iRegINoSp dst, iRegI src, immI shift) %{
++ predicate(UseZbb);
++ match(Set dst (RotateRight src shift));
++
++ format %{ "roriw $dst, $src, ($shift & 0x1f)\t#@rorI_imm_b" %}
++
++ ins_cost(ALU_COST);
++ ins_encode %{
++ __ roriw(as_Register($dst$$reg), as_Register($src$$reg), $shift$$constant & 0x1f);
++ %}
++
++ ins_pipe(ialu_reg_shift);
++%}
++
++instruct rorL_imm_b(iRegLNoSp dst, iRegL src, immI shift) %{
++ predicate(UseZbb);
++ match(Set dst (RotateRight src shift));
++
++ format %{ "rori $dst, $src, ($shift & 0x3f)\t#@rorL_imm_b" %}
++
++ ins_cost(ALU_COST);
++ ins_encode %{
++ __ rori(as_Register($dst$$reg), as_Register($src$$reg), $shift$$constant & 0x3f);
++ %}
++
++ ins_pipe(ialu_reg_shift);
++%}
++
++instruct rorI_reg_b(iRegINoSp dst, iRegI src, iRegI shift) %{
++ predicate(UseZbb);
++ match(Set dst (RotateRight src shift));
++
++ format %{ "rorw $dst, $src, $shift\t#@rorI_reg_b" %}
++ ins_cost(ALU_COST);
++ ins_encode %{
++ __ rorw(as_Register($dst$$reg), as_Register($src$$reg), as_Register($shift$$reg));
++ %}
++ ins_pipe(ialu_reg_reg);
++%}
++
++instruct rorL_reg_b(iRegLNoSp dst, iRegL src, iRegI shift) %{
++ predicate(UseZbb);
++ match(Set dst (RotateRight src shift));
++
++ format %{ "ror $dst, $src, $shift\t#@rorL_reg_b" %}
++ ins_cost(ALU_COST);
++ ins_encode %{
++ __ ror(as_Register($dst$$reg), as_Register($src$$reg), as_Register($shift$$reg));
++ %}
++ ins_pipe(ialu_reg_reg);
++%}
++
++instruct rolI_reg_b(iRegINoSp dst, iRegI src, iRegI shift) %{
++ predicate(UseZbb);
++ match(Set dst (RotateLeft src shift));
++
++ format %{ "rolw $dst, $src, $shift\t#@rolI_reg_b" %}
++ ins_cost(ALU_COST);
++ ins_encode %{
++ __ rolw(as_Register($dst$$reg), as_Register($src$$reg), as_Register($shift$$reg));
++ %}
++ ins_pipe(ialu_reg_reg);
++%}
++
++instruct rolL_reg_b(iRegLNoSp dst, iRegL src, iRegI shift) %{
++ predicate(UseZbb);
++ match(Set dst (RotateLeft src shift));
++
++ format %{ "rol $dst, $src, $shift\t#@rolL_reg_b" %}
++ ins_cost(ALU_COST);
++ ins_encode %{
++ __ rol(as_Register($dst$$reg), as_Register($src$$reg), as_Register($shift$$reg));
++ %}
++ ins_pipe(ialu_reg_reg);
++%}
++
++// Convert oop into int for vectors alignment masking
++instruct convP2I_b(iRegINoSp dst, iRegP src) %{
++ predicate(UseZba);
++ match(Set dst (ConvL2I (CastP2X src)));
++
++ format %{ "zext.w $dst, $src\t# ptr -> int @convP2I_b" %}
++
++ ins_cost(ALU_COST);
++ ins_encode %{
++ __ zext_w(as_Register($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(ialu_reg);
++%}
++
++// byte to int
++instruct convB2I_reg_reg_b(iRegINoSp dst, iRegIorL2I src, immI_24 lshift, immI_24 rshift) %{
++ predicate(UseZbb);
++ match(Set dst (RShiftI (LShiftI src lshift) rshift));
++
++ format %{ "sext.b $dst, $src\t# b2i, #@convB2I_reg_reg_b" %}
++
++ ins_cost(ALU_COST);
++ ins_encode %{
++ __ sext_b(as_Register($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(ialu_reg);
++%}
++
++// int to short
++instruct convI2S_reg_reg_b(iRegINoSp dst, iRegIorL2I src, immI_16 lshift, immI_16 rshift) %{
++ predicate(UseZbb);
++ match(Set dst (RShiftI (LShiftI src lshift) rshift));
++
++ format %{ "sext.h $dst, $src\t# i2s, #@convI2S_reg_reg_b" %}
++
++ ins_cost(ALU_COST);
++ ins_encode %{
++ __ sext_h(as_Register($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(ialu_reg);
++%}
++
++// short to unsigned int
++instruct convS2UI_reg_reg_b(iRegINoSp dst, iRegIorL2I src, immI_16bits mask) %{
++ predicate(UseZbb);
++ match(Set dst (AndI src mask));
++
++ format %{ "zext.h $dst, $src\t# s2ui, #@convS2UI_reg_reg_b" %}
++
++ ins_cost(ALU_COST);
++ ins_encode %{
++ __ zext_h(as_Register($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(ialu_reg);
++%}
++
++// int to unsigned long (zero extend)
++instruct convI2UL_reg_reg_b(iRegLNoSp dst, iRegIorL2I src, immL_32bits mask) %{
++ predicate(UseZba);
++ match(Set dst (AndL (ConvI2L src) mask));
++
++ format %{ "zext.w $dst, $src\t# i2ul, #@convI2UL_reg_reg_b" %}
++
++ ins_cost(ALU_COST);
++ ins_encode %{
++ __ zext_w(as_Register($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(ialu_reg_shift);
++%}
++
++// BSWAP instructions
++instruct bytes_reverse_int_b(iRegINoSp dst, iRegIorL2I src) %{
++ predicate(UseZbb);
++ match(Set dst (ReverseBytesI src));
++
++ ins_cost(ALU_COST * 2);
++ format %{ "revb_w_w $dst, $src\t#@bytes_reverse_int_b" %}
++
++ ins_encode %{
++ __ revb_w_w(as_Register($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(ialu_reg);
++%}
++
++instruct bytes_reverse_long_b(iRegLNoSp dst, iRegL src) %{
++ predicate(UseZbb);
++ match(Set dst (ReverseBytesL src));
++
++ ins_cost(ALU_COST);
++ format %{ "rev8 $dst, $src\t#@bytes_reverse_long_b" %}
++
++ ins_encode %{
++ __ rev8(as_Register($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(ialu_reg);
++%}
++
++instruct bytes_reverse_unsigned_short_b(iRegINoSp dst, iRegIorL2I src) %{
++ predicate(UseZbb);
++ match(Set dst (ReverseBytesUS src));
++
++ ins_cost(ALU_COST * 2);
++ format %{ "revb_h_h_u $dst, $src\t#@bytes_reverse_unsigned_short_b" %}
++
++ ins_encode %{
++ __ revb_h_h_u(as_Register($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(ialu_reg);
++%}
++
++instruct bytes_reverse_short_b(iRegINoSp dst, iRegIorL2I src) %{
++ predicate(UseZbb);
++ match(Set dst (ReverseBytesS src));
++
++ ins_cost(ALU_COST * 2);
++ format %{ "revb_h_h $dst, $src\t#@bytes_reverse_short_b" %}
++
++ ins_encode %{
++ __ revb_h_h(as_Register($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(ialu_reg);
++%}
++
++// Shift Add Pointer
++instruct shaddP_reg_reg_b(iRegPNoSp dst, iRegP src1, iRegL src2, immIScale imm) %{
++ predicate(UseZba);
++ match(Set dst (AddP src1 (LShiftL src2 imm)));
++
++ ins_cost(ALU_COST);
++ format %{ "shadd $dst, $src2, $src1, $imm\t# ptr, #@shaddP_reg_reg_b" %}
++
++ ins_encode %{
++ __ shadd(as_Register($dst$$reg),
++ as_Register($src2$$reg),
++ as_Register($src1$$reg),
++ t0,
++ $imm$$constant);
++ %}
++
++ ins_pipe(ialu_reg_reg);
++%}
++
++instruct shaddP_reg_reg_ext_b(iRegPNoSp dst, iRegP src1, iRegI src2, immIScale imm) %{
++ predicate(UseZba);
++ match(Set dst (AddP src1 (LShiftL (ConvI2L src2) imm)));
++
++ ins_cost(ALU_COST);
++ format %{ "shadd $dst, $src2, $src1, $imm\t# ptr, #@shaddP_reg_reg_ext_b" %}
++
++ ins_encode %{
++ __ shadd(as_Register($dst$$reg),
++ as_Register($src2$$reg),
++ as_Register($src1$$reg),
++ t0,
++ $imm$$constant);
++ %}
++
++ ins_pipe(ialu_reg_reg);
++%}
++
++// Shift Add Long
++instruct shaddL_reg_reg_b(iRegLNoSp dst, iRegL src1, iRegL src2, immIScale imm) %{
++ predicate(UseZba);
++ match(Set dst (AddL src1 (LShiftL src2 imm)));
++
++ ins_cost(ALU_COST);
++ format %{ "shadd $dst, $src2, $src1, $imm\t#@shaddL_reg_reg_b" %}
++
++ ins_encode %{
++ __ shadd(as_Register($dst$$reg),
++ as_Register($src2$$reg),
++ as_Register($src1$$reg),
++ t0,
++ $imm$$constant);
++ %}
++
++ ins_pipe(ialu_reg_reg);
++%}
++
++instruct shaddL_reg_reg_ext_b(iRegLNoSp dst, iRegL src1, iRegI src2, immIScale imm) %{
++ predicate(UseZba);
++ match(Set dst (AddL src1 (LShiftL (ConvI2L src2) imm)));
++
++ ins_cost(ALU_COST);
++ format %{ "shadd $dst, $src2, $src1, $imm\t#@shaddL_reg_reg_ext_b" %}
++
++ ins_encode %{
++ __ shadd(as_Register($dst$$reg),
++ as_Register($src2$$reg),
++ as_Register($src1$$reg),
++ t0,
++ $imm$$constant);
++ %}
++
++ ins_pipe(ialu_reg_reg);
++%}
++
++// Zeros Count instructions
++instruct countLeadingZerosI_b(iRegINoSp dst, iRegIorL2I src) %{
++ predicate(UseZbb);
++ match(Set dst (CountLeadingZerosI src));
++
++ ins_cost(ALU_COST);
++ format %{ "clzw $dst, $src\t#@countLeadingZerosI_b" %}
++
++ ins_encode %{
++ __ clzw(as_Register($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(ialu_reg);
++%}
++
++instruct countLeadingZerosL_b(iRegINoSp dst, iRegL src) %{
++ predicate(UseZbb);
++ match(Set dst (CountLeadingZerosL src));
++
++ ins_cost(ALU_COST);
++ format %{ "clz $dst, $src\t#@countLeadingZerosL_b" %}
++
++ ins_encode %{
++ __ clz(as_Register($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(ialu_reg);
++%}
++
++instruct countTrailingZerosI_b(iRegINoSp dst, iRegIorL2I src) %{
++ predicate(UseZbb);
++ match(Set dst (CountTrailingZerosI src));
++
++ ins_cost(ALU_COST);
++ format %{ "ctzw $dst, $src\t#@countTrailingZerosI_b" %}
++
++ ins_encode %{
++ __ ctzw(as_Register($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(ialu_reg);
++%}
++
++instruct countTrailingZerosL_b(iRegINoSp dst, iRegL src) %{
++ predicate(UseZbb);
++ match(Set dst (CountTrailingZerosL src));
++
++ ins_cost(ALU_COST);
++ format %{ "ctz $dst, $src\t#@countTrailingZerosL_b" %}
++
++ ins_encode %{
++ __ ctz(as_Register($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(ialu_reg);
++%}
++
++// Population Count instructions
++instruct popCountI_b(iRegINoSp dst, iRegIorL2I src) %{
++ predicate(UsePopCountInstruction);
++ match(Set dst (PopCountI src));
++
++ ins_cost(ALU_COST);
++ format %{ "cpopw $dst, $src\t#@popCountI_b" %}
++
++ ins_encode %{
++ __ cpopw(as_Register($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(ialu_reg);
++%}
++
++// Note: Long/bitCount(long) returns an int.
++instruct popCountL_b(iRegINoSp dst, iRegL src) %{
++ predicate(UsePopCountInstruction);
++ match(Set dst (PopCountL src));
++
++ ins_cost(ALU_COST);
++ format %{ "cpop $dst, $src\t#@popCountL_b" %}
++
++ ins_encode %{
++ __ cpop(as_Register($dst$$reg), as_Register($src$$reg));
++ %}
++
++ ins_pipe(ialu_reg);
++%}
++
++// Max and Min
++instruct minI_reg_reg_b(iRegINoSp dst, iRegI src1, iRegI src2) %{
++ predicate(UseZbb);
++ match(Set dst (MinI src1 src2));
++
++ ins_cost(ALU_COST);
++ format %{ "min $dst, $src1, $src2\t#@minI_reg_reg_b" %}
++
++ ins_encode %{
++ __ min(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg));
++ %}
++
++ ins_pipe(ialu_reg_reg);
++%}
++
++instruct maxI_reg_reg_b(iRegINoSp dst, iRegI src1, iRegI src2) %{
++ predicate(UseZbb);
++ match(Set dst (MaxI src1 src2));
++
++ ins_cost(ALU_COST);
++ format %{ "max $dst, $src1, $src2\t#@maxI_reg_reg_b" %}
++
++ ins_encode %{
++ __ max(as_Register($dst$$reg), as_Register($src1$$reg), as_Register($src2$$reg));
++ %}
++
++ ins_pipe(ialu_reg_reg);
++%}
++
++// special case for comparing with zero
++// n.b. this is selected in preference to the rule above because it
++// avoids loading constant 0 into a source register
++
++instruct minI_reg_zero_b(iRegINoSp dst, iRegI src1, immI0 zero) %{
++ predicate(UseZbb);
++ match(Set dst (MinI src1 zero));
++ match(Set dst (MinI zero src1));
++
++ ins_cost(ALU_COST);
++ format %{ "min $dst, $src1, zr\t#@minI_reg_zero_b" %}
++
++ ins_encode %{
++ __ min(as_Register($dst$$reg), as_Register($src1$$reg), zr);
++ %}
++
++ ins_pipe(ialu_reg_reg);
++%}
++
++instruct maxI_reg_zero_b(iRegINoSp dst, iRegI src1, immI0 zero) %{
++ predicate(UseZbb);
++ match(Set dst (MaxI src1 zero));
++ match(Set dst (MaxI zero src1));
++
++ ins_cost(ALU_COST);
++ format %{ "max $dst, $src1, zr\t#@maxI_reg_zero_b" %}
++
++ ins_encode %{
++ __ max(as_Register($dst$$reg), as_Register($src1$$reg), zr);
++ %}
++
++ ins_pipe(ialu_reg_reg);
++%}
++
++// Abs
++instruct absI_reg_b(iRegINoSp dst, iRegI src) %{
++ predicate(UseZbb);
++ match(Set dst (AbsI src));
++
++ ins_cost(ALU_COST * 2);
++ format %{
++ "negw t0, $src\n\t"
++ "max $dst, $src, t0\t#@absI_reg_b"
++ %}
++
++ ins_encode %{
++ __ negw(t0, as_Register($src$$reg));
++ __ max(as_Register($dst$$reg), as_Register($src$$reg), t0);
++ %}
++
++ ins_pipe(ialu_reg_reg);
++%}
++
++instruct absL_reg_b(iRegLNoSp dst, iRegL src) %{
++ predicate(UseZbb);
++ match(Set dst (AbsL src));
++
++ ins_cost(ALU_COST * 2);
++ format %{
++ "neg t0, $src\n\t"
++ "max $dst, $src, t0\t#@absL_reg_b"
++ %}
++
++ ins_encode %{
++ __ neg(t0, as_Register($src$$reg));
++ __ max(as_Register($dst$$reg), as_Register($src$$reg), t0);
++ %}
++
++ ins_pipe(ialu_reg);
++%}
++
++// And Not
++instruct andnI_reg_reg_b(iRegINoSp dst, iRegI src1, iRegI src2, immI_M1 m1) %{
++ predicate(UseZbb);
++ match(Set dst (AndI src1 (XorI src2 m1)));
++
++ ins_cost(ALU_COST);
++ format %{ "andn $dst, $src1, $src2\t#@andnI_reg_reg_b" %}
++
++ ins_encode %{
++ __ andn(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ as_Register($src2$$reg));
++ %}
++
++ ins_pipe(ialu_reg_reg);
++%}
++
++instruct andnL_reg_reg_b(iRegLNoSp dst, iRegL src1, iRegL src2, immL_M1 m1) %{
++ predicate(UseZbb);
++ match(Set dst (AndL src1 (XorL src2 m1)));
++
++ ins_cost(ALU_COST);
++ format %{ "andn $dst, $src1, $src2\t#@andnL_reg_reg_b" %}
++
++ ins_encode %{
++ __ andn(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ as_Register($src2$$reg));
++ %}
++
++ ins_pipe(ialu_reg_reg);
++%}
++
++// Or Not
++instruct ornI_reg_reg_b(iRegINoSp dst, iRegI src1, iRegI src2, immI_M1 m1) %{
++ predicate(UseZbb);
++ match(Set dst (OrI src1 (XorI src2 m1)));
++
++ ins_cost(ALU_COST);
++ format %{ "orn $dst, $src1, $src2\t#@ornI_reg_reg_b" %}
++
++ ins_encode %{
++ __ orn(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ as_Register($src2$$reg));
++ %}
++
++ ins_pipe(ialu_reg_reg);
++%}
++
++instruct ornL_reg_reg_b(iRegLNoSp dst, iRegL src1, iRegL src2, immL_M1 m1) %{
++ predicate(UseZbb);
++ match(Set dst (OrL src1 (XorL src2 m1)));
++
++ ins_cost(ALU_COST);
++ format %{ "orn $dst, $src1, $src2\t#@ornL_reg_reg_b" %}
++
++ ins_encode %{
++ __ orn(as_Register($dst$$reg),
++ as_Register($src1$$reg),
++ as_Register($src2$$reg));
++ %}
++
++ ins_pipe(ialu_reg_reg);
++%}
++
++// AndI 0b0..010..0 + ConvI2B
++instruct convI2Bool_andI_reg_immIpowerOf2(iRegINoSp dst, iRegIorL2I src, immIpowerOf2 mask) %{
++ predicate(UseZbs);
++ match(Set dst (Conv2B (AndI src mask)));
++ ins_cost(ALU_COST);
++
++ format %{ "bexti $dst, $src, $mask\t#@convI2Bool_andI_reg_immIpowerOf2" %}
++ ins_encode %{
++ __ bexti($dst$$Register, $src$$Register, exact_log2((juint)($mask$$constant)));
++ %}
++
++ ins_pipe(ialu_reg_reg);
++%}
+\ No newline at end of file
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/riscv_v.ad
+@@ -0,0 +1,2038 @@
++//
++// Copyright (c) 2020, Oracle and/or its affiliates. All rights reserved.
++// Copyright (c) 2020, Arm Limited. All rights reserved.
++// Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++// DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++//
++// This code is free software; you can redistribute it and/or modify it
++// under the terms of the GNU General Public License version 2 only, as
++// published by the Free Software Foundation.
++//
++// This code is distributed in the hope that it will be useful, but WITHOUT
++// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++// version 2 for more details (a copy is included in the LICENSE file that
++// accompanied this code).
++//
++// You should have received a copy of the GNU General Public License version
++// 2 along with this work; if not, write to the Free Software Foundation,
++// Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++//
++// Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++// or visit www.oracle.com if you need additional information or have any
++// questions.
++//
++//
++
++// RISCV Vector Extension Architecture Description File
++
++opclass vmemA(indirect);
++
++source_hpp %{
++ bool op_vec_supported(int opcode);
++%}
++
++source %{
++ static inline BasicType vector_element_basic_type(const MachNode* n) {
++ const TypeVect* vt = n->bottom_type()->is_vect();
++ return vt->element_basic_type();
++ }
++
++ static inline BasicType vector_element_basic_type(const MachNode* use, const MachOper* opnd) {
++ int def_idx = use->operand_index(opnd);
++ Node* def = use->in(def_idx);
++ const TypeVect* vt = def->bottom_type()->is_vect();
++ return vt->element_basic_type();
++ }
++
++ static void loadStore(C2_MacroAssembler masm, bool is_store,
++ VectorRegister reg, BasicType bt, Register base) {
++ Assembler::SEW sew = Assembler::elemtype_to_sew(bt);
++ masm.vsetvli(t0, x0, sew);
++ if (is_store) {
++ masm.vsex_v(reg, base, sew);
++ } else {
++ masm.vlex_v(reg, base, sew);
++ }
++ }
++
++ bool op_vec_supported(int opcode) {
++ switch (opcode) {
++ // No multiply reduction instructions
++ case Op_MulReductionVD:
++ case Op_MulReductionVF:
++ case Op_MulReductionVI:
++ case Op_MulReductionVL:
++ // Others
++ case Op_Extract:
++ case Op_ExtractB:
++ case Op_ExtractC:
++ case Op_ExtractD:
++ case Op_ExtractF:
++ case Op_ExtractI:
++ case Op_ExtractL:
++ case Op_ExtractS:
++ case Op_ExtractUB:
++ // Vector API specific
++ case Op_AndReductionV:
++ case Op_OrReductionV:
++ case Op_XorReductionV:
++ case Op_LoadVectorGather:
++ case Op_StoreVectorScatter:
++ case Op_VectorBlend:
++ case Op_VectorCast:
++ case Op_VectorCastB2X:
++ case Op_VectorCastD2X:
++ case Op_VectorCastF2X:
++ case Op_VectorCastI2X:
++ case Op_VectorCastL2X:
++ case Op_VectorCastS2X:
++ case Op_VectorInsert:
++ case Op_VectorLoadConst:
++ case Op_VectorLoadMask:
++ case Op_VectorLoadShuffle:
++ case Op_VectorMaskCmp:
++ case Op_VectorRearrange:
++ case Op_VectorReinterpret:
++ case Op_VectorStoreMask:
++ case Op_VectorTest:
++ case Op_PopCountVI:
++ return false;
++ default:
++ return UseRVV;
++ }
++ }
++
++%}
++
++definitions %{
++ int_def VEC_COST (200, 200);
++%}
++
++// All VEC instructions
++
++// vector load/store
++instruct loadV(vReg dst, vmemA mem) %{
++ match(Set dst (LoadVector mem));
++ ins_cost(VEC_COST);
++ format %{ "vle $dst, $mem\t#@loadV" %}
++ ins_encode %{
++ VectorRegister dst_reg = as_VectorRegister($dst$$reg);
++ loadStore(C2_MacroAssembler(&cbuf), false, dst_reg,
++ vector_element_basic_type(this), as_Register($mem$$base));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct storeV(vReg src, vmemA mem) %{
++ match(Set mem (StoreVector mem src));
++ ins_cost(VEC_COST);
++ format %{ "vse $src, $mem\t#@storeV" %}
++ ins_encode %{
++ VectorRegister src_reg = as_VectorRegister($src$$reg);
++ loadStore(C2_MacroAssembler(&cbuf), true, src_reg,
++ vector_element_basic_type(this, $src), as_Register($mem$$base));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// vector abs
++
++instruct vabsB(vReg dst, vReg src, vReg tmp) %{
++ match(Set dst (AbsVB src));
++ ins_cost(VEC_COST);
++ effect(TEMP tmp);
++ format %{ "vrsub.vi $tmp, 0, $src\t#@vabsB\n\t"
++ "vmax.vv $dst, $tmp, $src" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e8);
++ __ vrsub_vi(as_VectorRegister($tmp$$reg), as_VectorRegister($src$$reg), 0);
++ __ vmax_vv(as_VectorRegister($dst$$reg), as_VectorRegister($tmp$$reg), as_VectorRegister($src$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vabsS(vReg dst, vReg src, vReg tmp) %{
++ match(Set dst (AbsVS src));
++ ins_cost(VEC_COST);
++ effect(TEMP tmp);
++ format %{ "vrsub.vi $tmp, 0, $src\t#@vabsS\n\t"
++ "vmax.vv $dst, $tmp, $src" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e16);
++ __ vrsub_vi(as_VectorRegister($tmp$$reg), as_VectorRegister($src$$reg), 0);
++ __ vmax_vv(as_VectorRegister($dst$$reg), as_VectorRegister($tmp$$reg), as_VectorRegister($src$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vabsI(vReg dst, vReg src, vReg tmp) %{
++ match(Set dst (AbsVI src));
++ ins_cost(VEC_COST);
++ effect(TEMP tmp);
++ format %{ "vrsub.vi $tmp, 0, $src\t#@vabsI\n\t"
++ "vmax.vv $dst, $tmp, $src" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e32);
++ __ vrsub_vi(as_VectorRegister($tmp$$reg), as_VectorRegister($src$$reg), 0);
++ __ vmax_vv(as_VectorRegister($dst$$reg), as_VectorRegister($tmp$$reg), as_VectorRegister($src$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vabsL(vReg dst, vReg src, vReg tmp) %{
++ match(Set dst (AbsVL src));
++ ins_cost(VEC_COST);
++ effect(TEMP tmp);
++ format %{ "vrsub.vi $tmp, 0, $src\t#@vabsL\n\t"
++ "vmax.vv $dst, $tmp, $src" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vrsub_vi(as_VectorRegister($tmp$$reg), as_VectorRegister($src$$reg), 0);
++ __ vmax_vv(as_VectorRegister($dst$$reg), as_VectorRegister($tmp$$reg), as_VectorRegister($src$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vabsF(vReg dst, vReg src) %{
++ match(Set dst (AbsVF src));
++ ins_cost(VEC_COST);
++ format %{ "vfsgnjx.vv $dst, $src, $src, vm\t#@vabsF" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e32);
++ __ vfsgnjx_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg), as_VectorRegister($src$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vabsD(vReg dst, vReg src) %{
++ match(Set dst (AbsVD src));
++ ins_cost(VEC_COST);
++ format %{ "vfsgnjx.vv $dst, $src, $src, vm\t#@vabsD" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vfsgnjx_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg), as_VectorRegister($src$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// vector add
++
++instruct vaddB(vReg dst, vReg src1, vReg src2) %{
++ match(Set dst (AddVB src1 src2));
++ ins_cost(VEC_COST);
++ format %{ "vadd.vv $dst, $src1, $src2\t#@vaddB" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e8);
++ __ vadd_vv(as_VectorRegister($dst$$reg),
++ as_VectorRegister($src1$$reg),
++ as_VectorRegister($src2$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vaddS(vReg dst, vReg src1, vReg src2) %{
++ match(Set dst (AddVS src1 src2));
++ ins_cost(VEC_COST);
++ format %{ "vadd.vv $dst, $src1, $src2\t#@vaddS" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e16);
++ __ vadd_vv(as_VectorRegister($dst$$reg),
++ as_VectorRegister($src1$$reg),
++ as_VectorRegister($src2$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vaddI(vReg dst, vReg src1, vReg src2) %{
++ match(Set dst (AddVI src1 src2));
++ ins_cost(VEC_COST);
++ format %{ "vadd.vv $dst, $src1, $src2\t#@vaddI" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e32);
++ __ vadd_vv(as_VectorRegister($dst$$reg),
++ as_VectorRegister($src1$$reg),
++ as_VectorRegister($src2$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vaddL(vReg dst, vReg src1, vReg src2) %{
++ match(Set dst (AddVL src1 src2));
++ ins_cost(VEC_COST);
++ format %{ "vadd.vv $dst, $src1, $src2\t#@vaddL" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vadd_vv(as_VectorRegister($dst$$reg),
++ as_VectorRegister($src1$$reg),
++ as_VectorRegister($src2$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vaddF(vReg dst, vReg src1, vReg src2) %{
++ match(Set dst (AddVF src1 src2));
++ ins_cost(VEC_COST);
++ format %{ "vfadd.vv $dst, $src1, $src2\t#@vaddF" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e32);
++ __ vfadd_vv(as_VectorRegister($dst$$reg),
++ as_VectorRegister($src1$$reg),
++ as_VectorRegister($src2$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vaddD(vReg dst, vReg src1, vReg src2) %{
++ match(Set dst (AddVD src1 src2));
++ ins_cost(VEC_COST);
++ format %{ "vfadd.vv $dst, $src1, $src2\t#@vaddD" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vfadd_vv(as_VectorRegister($dst$$reg),
++ as_VectorRegister($src1$$reg),
++ as_VectorRegister($src2$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// vector and
++
++instruct vand(vReg dst, vReg src1, vReg src2) %{
++ match(Set dst (AndV src1 src2));
++ ins_cost(VEC_COST);
++ format %{ "vand.vv $dst, $src1, $src2\t#@vand" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vand_vv(as_VectorRegister($dst$$reg),
++ as_VectorRegister($src1$$reg),
++ as_VectorRegister($src2$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// vector or
++
++instruct vor(vReg dst, vReg src1, vReg src2) %{
++ match(Set dst (OrV src1 src2));
++ ins_cost(VEC_COST);
++ format %{ "vor.vv $dst, $src1, $src2\t#@vor" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vor_vv(as_VectorRegister($dst$$reg),
++ as_VectorRegister($src1$$reg),
++ as_VectorRegister($src2$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// vector xor
++
++instruct vxor(vReg dst, vReg src1, vReg src2) %{
++ match(Set dst (XorV src1 src2));
++ ins_cost(VEC_COST);
++ format %{ "vxor.vv $dst, $src1, $src2\t#@vxor" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vxor_vv(as_VectorRegister($dst$$reg),
++ as_VectorRegister($src1$$reg),
++ as_VectorRegister($src2$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// vector float div
++
++instruct vdivF(vReg dst, vReg src1, vReg src2) %{
++ match(Set dst (DivVF src1 src2));
++ ins_cost(VEC_COST);
++ format %{ "vfdiv.vv $dst, $src1, $src2\t#@vdivF" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e32);
++ __ vfdiv_vv(as_VectorRegister($dst$$reg),
++ as_VectorRegister($src1$$reg),
++ as_VectorRegister($src2$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vdivD(vReg dst, vReg src1, vReg src2) %{
++ match(Set dst (DivVD src1 src2));
++ ins_cost(VEC_COST);
++ format %{ "vfdiv.vv $dst, $src1, $src2\t#@vdivD" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vfdiv_vv(as_VectorRegister($dst$$reg),
++ as_VectorRegister($src1$$reg),
++ as_VectorRegister($src2$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// vector integer max/min
++
++instruct vmax(vReg dst, vReg src1, vReg src2) %{
++ predicate(n->bottom_type()->is_vect()->element_basic_type() != T_FLOAT &&
++ n->bottom_type()->is_vect()->element_basic_type() != T_DOUBLE);
++ match(Set dst (MaxV src1 src2));
++ ins_cost(VEC_COST);
++ format %{ "vmax.vv $dst, $src1, $src2\t#@vmax" %}
++ ins_encode %{
++ BasicType bt = vector_element_basic_type(this);
++ Assembler::SEW sew = Assembler::elemtype_to_sew(bt);
++ __ vsetvli(t0, x0, sew);
++ __ vmax_vv(as_VectorRegister($dst$$reg),
++ as_VectorRegister($src1$$reg), as_VectorRegister($src2$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vmin(vReg dst, vReg src1, vReg src2) %{
++ predicate(n->bottom_type()->is_vect()->element_basic_type() != T_FLOAT &&
++ n->bottom_type()->is_vect()->element_basic_type() != T_DOUBLE);
++ match(Set dst (MinV src1 src2));
++ ins_cost(VEC_COST);
++ format %{ "vmin.vv $dst, $src1, $src2\t#@vmin" %}
++ ins_encode %{
++ BasicType bt = vector_element_basic_type(this);
++ Assembler::SEW sew = Assembler::elemtype_to_sew(bt);
++ __ vsetvli(t0, x0, sew);
++ __ vmin_vv(as_VectorRegister($dst$$reg),
++ as_VectorRegister($src1$$reg), as_VectorRegister($src2$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// vector float-point max/min
++
++instruct vmaxF(vReg dst, vReg src1, vReg src2) %{
++ predicate(n->bottom_type()->is_vect()->element_basic_type() == T_FLOAT);
++ match(Set dst (MaxV src1 src2));
++ effect(TEMP_DEF dst);
++ ins_cost(VEC_COST);
++ format %{ "vmaxF $dst, $src1, $src2\t#@vmaxF" %}
++ ins_encode %{
++ __ minmax_FD_v(as_VectorRegister($dst$$reg),
++ as_VectorRegister($src1$$reg), as_VectorRegister($src2$$reg),
++ false /* is_double */, false /* is_min */);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vmaxD(vReg dst, vReg src1, vReg src2) %{
++ predicate(n->bottom_type()->is_vect()->element_basic_type() == T_DOUBLE);
++ match(Set dst (MaxV src1 src2));
++ effect(TEMP_DEF dst);
++ ins_cost(VEC_COST);
++ format %{ "vmaxD $dst, $src1, $src2\t#@vmaxD" %}
++ ins_encode %{
++ __ minmax_FD_v(as_VectorRegister($dst$$reg),
++ as_VectorRegister($src1$$reg), as_VectorRegister($src2$$reg),
++ true /* is_double */, false /* is_min */);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vminF(vReg dst, vReg src1, vReg src2) %{
++ predicate(n->bottom_type()->is_vect()->element_basic_type() == T_FLOAT);
++ match(Set dst (MinV src1 src2));
++ effect(TEMP_DEF dst);
++ ins_cost(VEC_COST);
++ format %{ "vminF $dst, $src1, $src2\t#@vminF" %}
++ ins_encode %{
++ __ minmax_FD_v(as_VectorRegister($dst$$reg),
++ as_VectorRegister($src1$$reg), as_VectorRegister($src2$$reg),
++ false /* is_double */, true /* is_min */);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vminD(vReg dst, vReg src1, vReg src2) %{
++ predicate(n->bottom_type()->is_vect()->element_basic_type() == T_DOUBLE);
++ match(Set dst (MinV src1 src2));
++ effect(TEMP_DEF dst);
++ ins_cost(VEC_COST);
++ format %{ "vminD $dst, $src1, $src2\t#@vminD" %}
++ ins_encode %{
++ __ minmax_FD_v(as_VectorRegister($dst$$reg),
++ as_VectorRegister($src1$$reg), as_VectorRegister($src2$$reg),
++ true /* is_double */, true /* is_min */);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// vector fmla
++
++// dst_src1 = dst_src1 + src2 * src3
++instruct vfmlaF(vReg dst_src1, vReg src2, vReg src3) %{
++ predicate(UseFMA);
++ match(Set dst_src1 (FmaVF dst_src1 (Binary src2 src3)));
++ ins_cost(VEC_COST);
++ format %{ "vfmacc.vv $dst_src1, $src2, $src3\t#@vfmlaF" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e32);
++ __ vfmacc_vv(as_VectorRegister($dst_src1$$reg),
++ as_VectorRegister($src2$$reg), as_VectorRegister($src3$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// dst_src1 = dst_src1 + src2 * src3
++instruct vfmlaD(vReg dst_src1, vReg src2, vReg src3) %{
++ predicate(UseFMA);
++ match(Set dst_src1 (FmaVD dst_src1 (Binary src2 src3)));
++ ins_cost(VEC_COST);
++ format %{ "vfmacc.vv $dst_src1, $src2, $src3\t#@vfmlaD" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vfmacc_vv(as_VectorRegister($dst_src1$$reg),
++ as_VectorRegister($src2$$reg), as_VectorRegister($src3$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// vector fmls
++
++// dst_src1 = dst_src1 + -src2 * src3
++// dst_src1 = dst_src1 + src2 * -src3
++instruct vfmlsF(vReg dst_src1, vReg src2, vReg src3) %{
++ predicate(UseFMA);
++ match(Set dst_src1 (FmaVF dst_src1 (Binary (NegVF src2) src3)));
++ match(Set dst_src1 (FmaVF dst_src1 (Binary src2 (NegVF src3))));
++ ins_cost(VEC_COST);
++ format %{ "vfnmsac.vv $dst_src1, $src2, $src3\t#@vfmlsF" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e32);
++ __ vfnmsac_vv(as_VectorRegister($dst_src1$$reg),
++ as_VectorRegister($src2$$reg), as_VectorRegister($src3$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// dst_src1 = dst_src1 + -src2 * src3
++// dst_src1 = dst_src1 + src2 * -src3
++instruct vfmlsD(vReg dst_src1, vReg src2, vReg src3) %{
++ predicate(UseFMA);
++ match(Set dst_src1 (FmaVD dst_src1 (Binary (NegVD src2) src3)));
++ match(Set dst_src1 (FmaVD dst_src1 (Binary src2 (NegVD src3))));
++ ins_cost(VEC_COST);
++ format %{ "vfnmsac.vv $dst_src1, $src2, $src3\t#@vfmlsD" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vfnmsac_vv(as_VectorRegister($dst_src1$$reg),
++ as_VectorRegister($src2$$reg), as_VectorRegister($src3$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// vector fnmla
++
++// dst_src1 = -dst_src1 + -src2 * src3
++// dst_src1 = -dst_src1 + src2 * -src3
++instruct vfnmlaF(vReg dst_src1, vReg src2, vReg src3) %{
++ predicate(UseFMA);
++ match(Set dst_src1 (FmaVF (NegVF dst_src1) (Binary (NegVF src2) src3)));
++ match(Set dst_src1 (FmaVF (NegVF dst_src1) (Binary src2 (NegVF src3))));
++ ins_cost(VEC_COST);
++ format %{ "vfnmacc.vv $dst_src1, $src2, $src3\t#@vfnmlaF" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e32);
++ __ vfnmacc_vv(as_VectorRegister($dst_src1$$reg),
++ as_VectorRegister($src2$$reg), as_VectorRegister($src3$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// dst_src1 = -dst_src1 + -src2 * src3
++// dst_src1 = -dst_src1 + src2 * -src3
++instruct vfnmlaD(vReg dst_src1, vReg src2, vReg src3) %{
++ predicate(UseFMA);
++ match(Set dst_src1 (FmaVD (NegVD dst_src1) (Binary (NegVD src2) src3)));
++ match(Set dst_src1 (FmaVD (NegVD dst_src1) (Binary src2 (NegVD src3))));
++ ins_cost(VEC_COST);
++ format %{ "vfnmacc.vv $dst_src1, $src2, $src3\t#@vfnmlaD" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vfnmacc_vv(as_VectorRegister($dst_src1$$reg),
++ as_VectorRegister($src2$$reg), as_VectorRegister($src3$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// vector fnmls
++
++// dst_src1 = -dst_src1 + src2 * src3
++instruct vfnmlsF(vReg dst_src1, vReg src2, vReg src3) %{
++ predicate(UseFMA);
++ match(Set dst_src1 (FmaVF (NegVF dst_src1) (Binary src2 src3)));
++ ins_cost(VEC_COST);
++ format %{ "vfmsac.vv $dst_src1, $src2, $src3\t#@vfnmlsF" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e32);
++ __ vfmsac_vv(as_VectorRegister($dst_src1$$reg),
++ as_VectorRegister($src2$$reg), as_VectorRegister($src3$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// dst_src1 = -dst_src1 + src2 * src3
++instruct vfnmlsD(vReg dst_src1, vReg src2, vReg src3) %{
++ predicate(UseFMA);
++ match(Set dst_src1 (FmaVD (NegVD dst_src1) (Binary src2 src3)));
++ ins_cost(VEC_COST);
++ format %{ "vfmsac.vv $dst_src1, $src2, $src3\t#@vfnmlsD" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vfmsac_vv(as_VectorRegister($dst_src1$$reg),
++ as_VectorRegister($src2$$reg), as_VectorRegister($src3$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// vector mla
++
++// dst_src1 = dst_src1 + src2 * src3
++instruct vmlaB(vReg dst_src1, vReg src2, vReg src3) %{
++ match(Set dst_src1 (AddVB dst_src1 (MulVB src2 src3)));
++ ins_cost(VEC_COST);
++ format %{ "vmacc.vv $dst_src1, src2, src3\t#@vmlaB" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e8);
++ __ vmacc_vv(as_VectorRegister($dst_src1$$reg),
++ as_VectorRegister($src2$$reg), as_VectorRegister($src3$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// dst_src1 = dst_src1 + src2 * src3
++instruct vmlaS(vReg dst_src1, vReg src2, vReg src3) %{
++ match(Set dst_src1 (AddVS dst_src1 (MulVS src2 src3)));
++ ins_cost(VEC_COST);
++ format %{ "vmacc.vv $dst_src1, src2, src3\t#@vmlaS" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e16);
++ __ vmacc_vv(as_VectorRegister($dst_src1$$reg),
++ as_VectorRegister($src2$$reg), as_VectorRegister($src3$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// dst_src1 = dst_src1 + src2 * src3
++instruct vmlaI(vReg dst_src1, vReg src2, vReg src3) %{
++ match(Set dst_src1 (AddVI dst_src1 (MulVI src2 src3)));
++ ins_cost(VEC_COST);
++ format %{ "vmacc.vv $dst_src1, src2, src3\t#@vmlaI" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e32);
++ __ vmacc_vv(as_VectorRegister($dst_src1$$reg),
++ as_VectorRegister($src2$$reg), as_VectorRegister($src3$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// dst_src1 = dst_src1 + src2 * src3
++instruct vmlaL(vReg dst_src1, vReg src2, vReg src3) %{
++ match(Set dst_src1 (AddVL dst_src1 (MulVL src2 src3)));
++ ins_cost(VEC_COST);
++ format %{ "vmacc.vv $dst_src1, src2, src3\t#@vmlaL" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vmacc_vv(as_VectorRegister($dst_src1$$reg),
++ as_VectorRegister($src2$$reg), as_VectorRegister($src3$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// vector mls
++
++// dst_src1 = dst_src1 - src2 * src3
++instruct vmlsB(vReg dst_src1, vReg src2, vReg src3) %{
++ match(Set dst_src1 (SubVB dst_src1 (MulVB src2 src3)));
++ ins_cost(VEC_COST);
++ format %{ "vnmsac.vv $dst_src1, src2, src3\t#@vmlsB" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e8);
++ __ vnmsac_vv(as_VectorRegister($dst_src1$$reg),
++ as_VectorRegister($src2$$reg), as_VectorRegister($src3$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// dst_src1 = dst_src1 - src2 * src3
++instruct vmlsS(vReg dst_src1, vReg src2, vReg src3) %{
++ match(Set dst_src1 (SubVS dst_src1 (MulVS src2 src3)));
++ ins_cost(VEC_COST);
++ format %{ "vnmsac.vv $dst_src1, src2, src3\t#@vmlsS" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e16);
++ __ vnmsac_vv(as_VectorRegister($dst_src1$$reg),
++ as_VectorRegister($src2$$reg), as_VectorRegister($src3$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// dst_src1 = dst_src1 - src2 * src3
++instruct vmlsI(vReg dst_src1, vReg src2, vReg src3) %{
++ match(Set dst_src1 (SubVI dst_src1 (MulVI src2 src3)));
++ ins_cost(VEC_COST);
++ format %{ "vnmsac.vv $dst_src1, src2, src3\t#@vmlsI" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e32);
++ __ vnmsac_vv(as_VectorRegister($dst_src1$$reg),
++ as_VectorRegister($src2$$reg), as_VectorRegister($src3$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// dst_src1 = dst_src1 - src2 * src3
++instruct vmlsL(vReg dst_src1, vReg src2, vReg src3) %{
++ match(Set dst_src1 (SubVL dst_src1 (MulVL src2 src3)));
++ ins_cost(VEC_COST);
++ format %{ "vnmsac.vv $dst_src1, src2, src3\t#@vmlsL" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vnmsac_vv(as_VectorRegister($dst_src1$$reg),
++ as_VectorRegister($src2$$reg), as_VectorRegister($src3$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// vector mul
++
++instruct vmulB(vReg dst, vReg src1, vReg src2) %{
++ match(Set dst (MulVB src1 src2));
++ ins_cost(VEC_COST);
++ format %{ "vmul.vv $dst, $src1, $src2\t#@vmulB" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e8);
++ __ vmul_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src1$$reg),
++ as_VectorRegister($src2$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vmulS(vReg dst, vReg src1, vReg src2) %{
++ match(Set dst (MulVS src1 src2));
++ ins_cost(VEC_COST);
++ format %{ "vmul.vv $dst, $src1, $src2\t#@vmulS" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e16);
++ __ vmul_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src1$$reg),
++ as_VectorRegister($src2$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vmulI(vReg dst, vReg src1, vReg src2) %{
++ match(Set dst (MulVI src1 src2));
++ ins_cost(VEC_COST);
++ format %{ "vmul.vv $dst, $src1, $src2\t#@vmulI" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e32);
++ __ vmul_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src1$$reg),
++ as_VectorRegister($src2$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vmulL(vReg dst, vReg src1, vReg src2) %{
++ match(Set dst (MulVL src1 src2));
++ ins_cost(VEC_COST);
++ format %{ "vmul.vv $dst, $src1, $src2\t#@vmulL" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vmul_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src1$$reg),
++ as_VectorRegister($src2$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vmulF(vReg dst, vReg src1, vReg src2) %{
++ match(Set dst (MulVF src1 src2));
++ ins_cost(VEC_COST);
++ format %{ "vfmul.vv $dst, $src1, $src2\t#@vmulF" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e32);
++ __ vfmul_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src1$$reg),
++ as_VectorRegister($src2$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vmulD(vReg dst, vReg src1, vReg src2) %{
++ match(Set dst (MulVD src1 src2));
++ ins_cost(VEC_COST);
++ format %{ "vfmul.vv $dst, $src1, $src2\t#@vmulD" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vfmul_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src1$$reg),
++ as_VectorRegister($src2$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// vector fneg
++
++instruct vnegF(vReg dst, vReg src) %{
++ match(Set dst (NegVF src));
++ ins_cost(VEC_COST);
++ format %{ "vfsgnjn.vv $dst, $src, $src\t#@vnegF" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e32);
++ __ vfneg_v(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vnegD(vReg dst, vReg src) %{
++ match(Set dst (NegVD src));
++ ins_cost(VEC_COST);
++ format %{ "vfsgnjn.vv $dst, $src, $src\t#@vnegD" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vfneg_v(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// vector add reduction
++
++instruct reduce_addB(iRegINoSp dst, iRegIorL2I src1, vReg src2, vReg tmp) %{
++ predicate(n->in(2)->bottom_type()->is_vect()->element_basic_type() == T_BYTE);
++ match(Set dst (AddReductionVI src1 src2));
++ effect(TEMP tmp);
++ ins_cost(VEC_COST);
++ format %{ "vmv.s.x $tmp, $src1\t#@reduce_addB\n\t"
++ "vredsum.vs $tmp, $src2, $tmp\n\t"
++ "vmv.x.s $dst, $tmp" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e8);
++ __ vmv_s_x(as_VectorRegister($tmp$$reg), $src1$$Register);
++ __ vredsum_vs(as_VectorRegister($tmp$$reg), as_VectorRegister($src2$$reg),
++ as_VectorRegister($tmp$$reg));
++ __ vmv_x_s($dst$$Register, as_VectorRegister($tmp$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct reduce_addS(iRegINoSp dst, iRegIorL2I src1, vReg src2, vReg tmp) %{
++ predicate(n->in(2)->bottom_type()->is_vect()->element_basic_type() == T_SHORT);
++ match(Set dst (AddReductionVI src1 src2));
++ effect(TEMP tmp);
++ ins_cost(VEC_COST);
++ format %{ "vmv.s.x $tmp, $src1\t#@reduce_addS\n\t"
++ "vredsum.vs $tmp, $src2, $tmp\n\t"
++ "vmv.x.s $dst, $tmp" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e16);
++ __ vmv_s_x(as_VectorRegister($tmp$$reg), $src1$$Register);
++ __ vredsum_vs(as_VectorRegister($tmp$$reg), as_VectorRegister($src2$$reg),
++ as_VectorRegister($tmp$$reg));
++ __ vmv_x_s($dst$$Register, as_VectorRegister($tmp$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct reduce_addI(iRegINoSp dst, iRegIorL2I src1, vReg src2, vReg tmp) %{
++ predicate(n->in(2)->bottom_type()->is_vect()->element_basic_type() == T_INT);
++ match(Set dst (AddReductionVI src1 src2));
++ effect(TEMP tmp);
++ ins_cost(VEC_COST);
++ format %{ "vmv.s.x $tmp, $src1\t#@reduce_addI\n\t"
++ "vredsum.vs $tmp, $src2, $tmp\n\t"
++ "vmv.x.s $dst, $tmp" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e32);
++ __ vmv_s_x(as_VectorRegister($tmp$$reg), $src1$$Register);
++ __ vredsum_vs(as_VectorRegister($tmp$$reg), as_VectorRegister($src2$$reg),
++ as_VectorRegister($tmp$$reg));
++ __ vmv_x_s($dst$$Register, as_VectorRegister($tmp$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct reduce_addL(iRegLNoSp dst, iRegL src1, vReg src2, vReg tmp) %{
++ predicate(n->in(2)->bottom_type()->is_vect()->element_basic_type() == T_LONG);
++ match(Set dst (AddReductionVL src1 src2));
++ effect(TEMP tmp);
++ ins_cost(VEC_COST);
++ format %{ "vmv.s.x $tmp, $src1\t#@reduce_addL\n\t"
++ "vredsum.vs $tmp, $src2, $tmp\n\t"
++ "vmv.x.s $dst, $tmp" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vmv_s_x(as_VectorRegister($tmp$$reg), $src1$$Register);
++ __ vredsum_vs(as_VectorRegister($tmp$$reg), as_VectorRegister($src2$$reg),
++ as_VectorRegister($tmp$$reg));
++ __ vmv_x_s($dst$$Register, as_VectorRegister($tmp$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct reduce_addF(fRegF src1_dst, vReg src2, vReg tmp) %{
++ match(Set src1_dst (AddReductionVF src1_dst src2));
++ effect(TEMP tmp);
++ ins_cost(VEC_COST);
++ format %{ "vfmv.s.f $tmp, $src1_dst\t#@reduce_addF\n\t"
++ "vfredosum.vs $tmp, $src2, $tmp\n\t"
++ "vfmv.f.s $src1_dst, $tmp" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e32);
++ __ vfmv_s_f(as_VectorRegister($tmp$$reg), $src1_dst$$FloatRegister);
++ __ vfredosum_vs(as_VectorRegister($tmp$$reg), as_VectorRegister($src2$$reg),
++ as_VectorRegister($tmp$$reg));
++ __ vfmv_f_s($src1_dst$$FloatRegister, as_VectorRegister($tmp$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct reduce_addD(fRegD src1_dst, vReg src2, vReg tmp) %{
++ match(Set src1_dst (AddReductionVD src1_dst src2));
++ effect(TEMP tmp);
++ ins_cost(VEC_COST);
++ format %{ "vfmv.s.f $tmp, $src1_dst\t#@reduce_addD\n\t"
++ "vfredosum.vs $tmp, $src2, $tmp\n\t"
++ "vfmv.f.s $src1_dst, $tmp" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vfmv_s_f(as_VectorRegister($tmp$$reg), $src1_dst$$FloatRegister);
++ __ vfredosum_vs(as_VectorRegister($tmp$$reg), as_VectorRegister($src2$$reg),
++ as_VectorRegister($tmp$$reg));
++ __ vfmv_f_s($src1_dst$$FloatRegister, as_VectorRegister($tmp$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// vector integer max reduction
++instruct vreduce_maxB(iRegINoSp dst, iRegI src1, vReg src2, vReg tmp) %{
++ predicate(n->in(2)->bottom_type()->is_vect()->element_basic_type() == T_BYTE);
++ match(Set dst (MaxReductionV src1 src2));
++ ins_cost(VEC_COST);
++ effect(TEMP tmp);
++ format %{ "vreduce_maxB $dst, $src1, $src2, $tmp" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e8);
++ __ vredmax_vs(as_VectorRegister($tmp$$reg), as_VectorRegister($src2$$reg), as_VectorRegister($src2$$reg));
++ __ vmv_x_s($dst$$Register, as_VectorRegister($tmp$$reg));
++ Label Ldone;
++ __ ble(as_Register($src1$$reg), as_Register($dst$$reg), Ldone);
++ __ mv(as_Register($dst$$reg), as_Register($src1$$reg));
++ __ bind(Ldone);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vreduce_maxS(iRegINoSp dst, iRegI src1, vReg src2, vReg tmp) %{
++ predicate(n->in(2)->bottom_type()->is_vect()->element_basic_type() == T_SHORT);
++ match(Set dst (MaxReductionV src1 src2));
++ ins_cost(VEC_COST);
++ effect(TEMP tmp);
++ format %{ "vreduce_maxS $dst, $src1, $src2, $tmp" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e16);
++ __ vredmax_vs(as_VectorRegister($tmp$$reg), as_VectorRegister($src2$$reg), as_VectorRegister($src2$$reg));
++ __ vmv_x_s($dst$$Register, as_VectorRegister($tmp$$reg));
++ Label Ldone;
++ __ ble(as_Register($src1$$reg), as_Register($dst$$reg), Ldone);
++ __ mv(as_Register($dst$$reg), as_Register($src1$$reg));
++ __ bind(Ldone);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vreduce_maxI(iRegINoSp dst, iRegIorL2I src1, vReg src2, vReg tmp) %{
++ predicate(n->in(2)->bottom_type()->is_vect()->element_basic_type() == T_INT);
++ match(Set dst (MaxReductionV src1 src2));
++ ins_cost(VEC_COST);
++ effect(TEMP tmp);
++ format %{ "vreduce_maxI $dst, $src1, $src2, $tmp" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e32);
++ __ vmv_s_x(as_VectorRegister($tmp$$reg), $src1$$Register);
++ __ vredmax_vs(as_VectorRegister($tmp$$reg), as_VectorRegister($src2$$reg), as_VectorRegister($tmp$$reg));
++ __ vmv_x_s($dst$$Register, as_VectorRegister($tmp$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vreduce_maxL(iRegLNoSp dst, iRegL src1, vReg src2, vReg tmp) %{
++ predicate(n->in(2)->bottom_type()->is_vect()->element_basic_type() == T_LONG);
++ match(Set dst (MaxReductionV src1 src2));
++ ins_cost(VEC_COST);
++ effect(TEMP tmp);
++ format %{ "vreduce_maxL $dst, $src1, $src2, $tmp" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vmv_s_x(as_VectorRegister($tmp$$reg), $src1$$Register);
++ __ vredmax_vs(as_VectorRegister($tmp$$reg), as_VectorRegister($src2$$reg), as_VectorRegister($tmp$$reg));
++ __ vmv_x_s($dst$$Register, as_VectorRegister($tmp$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// vector integer min reduction
++instruct vreduce_minB(iRegINoSp dst, iRegI src1, vReg src2, vReg tmp) %{
++ predicate(n->in(2)->bottom_type()->is_vect()->element_basic_type() == T_BYTE);
++ match(Set dst (MinReductionV src1 src2));
++ ins_cost(VEC_COST);
++ effect(TEMP tmp);
++ format %{ "vreduce_minB $dst, $src1, $src2, $tmp" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e8);
++ __ vredmin_vs(as_VectorRegister($tmp$$reg), as_VectorRegister($src2$$reg), as_VectorRegister($src2$$reg));
++ __ vmv_x_s($dst$$Register, as_VectorRegister($tmp$$reg));
++ Label Ldone;
++ __ bge(as_Register($src1$$reg), as_Register($dst$$reg), Ldone);
++ __ mv(as_Register($dst$$reg), as_Register($src1$$reg));
++ __ bind(Ldone);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vreduce_minS(iRegINoSp dst, iRegI src1, vReg src2, vReg tmp) %{
++ predicate(n->in(2)->bottom_type()->is_vect()->element_basic_type() == T_SHORT);
++ match(Set dst (MinReductionV src1 src2));
++ ins_cost(VEC_COST);
++ effect(TEMP tmp);
++ format %{ "vreduce_minS $dst, $src1, $src2, $tmp" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e16);
++ __ vredmin_vs(as_VectorRegister($tmp$$reg), as_VectorRegister($src2$$reg), as_VectorRegister($src2$$reg));
++ __ vmv_x_s($dst$$Register, as_VectorRegister($tmp$$reg));
++ Label Ldone;
++ __ bge(as_Register($src1$$reg), as_Register($dst$$reg), Ldone);
++ __ mv(as_Register($dst$$reg), as_Register($src1$$reg));
++ __ bind(Ldone);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vreduce_minI(iRegINoSp dst, iRegIorL2I src1, vReg src2, vReg tmp) %{
++ predicate(n->in(2)->bottom_type()->is_vect()->element_basic_type() == T_INT);
++ match(Set dst (MinReductionV src1 src2));
++ ins_cost(VEC_COST);
++ effect(TEMP tmp);
++ format %{ "vreduce_minI $dst, $src1, $src2, $tmp" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e32);
++ __ vmv_s_x(as_VectorRegister($tmp$$reg), $src1$$Register);
++ __ vredmin_vs(as_VectorRegister($tmp$$reg), as_VectorRegister($src2$$reg), as_VectorRegister($tmp$$reg));
++ __ vmv_x_s($dst$$Register, as_VectorRegister($tmp$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vreduce_minL(iRegLNoSp dst, iRegL src1, vReg src2, vReg tmp) %{
++ predicate(n->in(2)->bottom_type()->is_vect()->element_basic_type() == T_LONG);
++ match(Set dst (MinReductionV src1 src2));
++ ins_cost(VEC_COST);
++ effect(TEMP tmp);
++ format %{ "vreduce_minL $dst, $src1, $src2, $tmp" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vmv_s_x(as_VectorRegister($tmp$$reg), $src1$$Register);
++ __ vredmin_vs(as_VectorRegister($tmp$$reg), as_VectorRegister($src2$$reg), as_VectorRegister($tmp$$reg));
++ __ vmv_x_s($dst$$Register, as_VectorRegister($tmp$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// vector float max reduction
++
++instruct vreduce_maxF(fRegF dst, fRegF src1, vReg src2, vReg tmp1, vReg tmp2) %{
++ predicate(n->in(2)->bottom_type()->is_vect()->element_basic_type() == T_FLOAT);
++ match(Set dst (MaxReductionV src1 src2));
++ ins_cost(VEC_COST);
++ effect(TEMP_DEF dst, TEMP tmp1, TEMP tmp2);
++ format %{ "reduce_maxF $dst, $src1, $src2, $tmp1, $tmp2" %}
++ ins_encode %{
++ __ reduce_minmax_FD_v($dst$$FloatRegister,
++ $src1$$FloatRegister, as_VectorRegister($src2$$reg),
++ as_VectorRegister($tmp1$$reg), as_VectorRegister($tmp2$$reg),
++ false /* is_double */, false /* is_min */);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vreduce_maxD(fRegD dst, fRegD src1, vReg src2, vReg tmp1, vReg tmp2) %{
++ predicate(n->in(2)->bottom_type()->is_vect()->element_basic_type() == T_DOUBLE);
++ match(Set dst (MaxReductionV src1 src2));
++ ins_cost(VEC_COST);
++ effect(TEMP_DEF dst, TEMP tmp1, TEMP tmp2);
++ format %{ "reduce_maxD $dst, $src1, $src2, $tmp1, $tmp2" %}
++ ins_encode %{
++ __ reduce_minmax_FD_v($dst$$FloatRegister,
++ $src1$$FloatRegister, as_VectorRegister($src2$$reg),
++ as_VectorRegister($tmp1$$reg), as_VectorRegister($tmp2$$reg),
++ true /* is_double */, false /* is_min */);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// vector float min reduction
++
++instruct vreduce_minF(fRegF dst, fRegF src1, vReg src2, vReg tmp1, vReg tmp2) %{
++ predicate(n->in(2)->bottom_type()->is_vect()->element_basic_type() == T_FLOAT);
++ match(Set dst (MinReductionV src1 src2));
++ ins_cost(VEC_COST);
++ effect(TEMP_DEF dst, TEMP tmp1, TEMP tmp2);
++ format %{ "reduce_minF $dst, $src1, $src2, $tmp1, $tmp2" %}
++ ins_encode %{
++ __ reduce_minmax_FD_v($dst$$FloatRegister,
++ $src1$$FloatRegister, as_VectorRegister($src2$$reg),
++ as_VectorRegister($tmp1$$reg), as_VectorRegister($tmp2$$reg),
++ false /* is_double */, true /* is_min */);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vreduce_minD(fRegD dst, fRegD src1, vReg src2, vReg tmp1, vReg tmp2) %{
++ predicate(n->in(2)->bottom_type()->is_vect()->element_basic_type() == T_DOUBLE);
++ match(Set dst (MinReductionV src1 src2));
++ ins_cost(VEC_COST);
++ effect(TEMP_DEF dst, TEMP tmp1, TEMP tmp2);
++ format %{ "reduce_minD $dst, $src1, $src2, $tmp1, $tmp2" %}
++ ins_encode %{
++ __ reduce_minmax_FD_v($dst$$FloatRegister,
++ $src1$$FloatRegister, as_VectorRegister($src2$$reg),
++ as_VectorRegister($tmp1$$reg), as_VectorRegister($tmp2$$reg),
++ true /* is_double */, true /* is_min */);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// vector replicate
++
++instruct replicateB(vReg dst, iRegIorL2I src) %{
++ match(Set dst (ReplicateB src));
++ ins_cost(VEC_COST);
++ format %{ "vmv.v.x $dst, $src\t#@replicateB" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e8);
++ __ vmv_v_x(as_VectorRegister($dst$$reg), as_Register($src$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct replicateS(vReg dst, iRegIorL2I src) %{
++ match(Set dst (ReplicateS src));
++ ins_cost(VEC_COST);
++ format %{ "vmv.v.x $dst, $src\t#@replicateS" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e16);
++ __ vmv_v_x(as_VectorRegister($dst$$reg), as_Register($src$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct replicateI(vReg dst, iRegIorL2I src) %{
++ match(Set dst (ReplicateI src));
++ ins_cost(VEC_COST);
++ format %{ "vmv.v.x $dst, $src\t#@replicateI" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e32);
++ __ vmv_v_x(as_VectorRegister($dst$$reg), as_Register($src$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct replicateL(vReg dst, iRegL src) %{
++ match(Set dst (ReplicateL src));
++ ins_cost(VEC_COST);
++ format %{ "vmv.v.x $dst, $src\t#@replicateL" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vmv_v_x(as_VectorRegister($dst$$reg), as_Register($src$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct replicateB_imm5(vReg dst, immI5 con) %{
++ match(Set dst (ReplicateB con));
++ ins_cost(VEC_COST);
++ format %{ "vmv.v.i $dst, $con\t#@replicateB_imm5" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e8);
++ __ vmv_v_i(as_VectorRegister($dst$$reg), $con$$constant);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct replicateS_imm5(vReg dst, immI5 con) %{
++ match(Set dst (ReplicateS con));
++ ins_cost(VEC_COST);
++ format %{ "vmv.v.i $dst, $con\t#@replicateS_imm5" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e16);
++ __ vmv_v_i(as_VectorRegister($dst$$reg), $con$$constant);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct replicateI_imm5(vReg dst, immI5 con) %{
++ match(Set dst (ReplicateI con));
++ ins_cost(VEC_COST);
++ format %{ "vmv.v.i $dst, $con\t#@replicateI_imm5" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e32);
++ __ vmv_v_i(as_VectorRegister($dst$$reg), $con$$constant);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct replicateL_imm5(vReg dst, immL5 con) %{
++ match(Set dst (ReplicateL con));
++ ins_cost(VEC_COST);
++ format %{ "vmv.v.i $dst, $con\t#@replicateL_imm5" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vmv_v_i(as_VectorRegister($dst$$reg), $con$$constant);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct replicateF(vReg dst, fRegF src) %{
++ match(Set dst (ReplicateF src));
++ ins_cost(VEC_COST);
++ format %{ "vfmv.v.f $dst, $src\t#@replicateF" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e32);
++ __ vfmv_v_f(as_VectorRegister($dst$$reg), $src$$FloatRegister);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct replicateD(vReg dst, fRegD src) %{
++ match(Set dst (ReplicateD src));
++ ins_cost(VEC_COST);
++ format %{ "vfmv.v.f $dst, $src\t#@replicateD" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vfmv_v_f(as_VectorRegister($dst$$reg), $src$$FloatRegister);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// vector shift
++
++instruct vasrB(vReg dst, vReg src, vReg shift) %{
++ match(Set dst (RShiftVB src shift));
++ ins_cost(VEC_COST);
++ effect(TEMP_DEF dst);
++ format %{ "vmsgtu.vi v0, $shift 7\t#@vasrB\n\t"
++ "vsra.vi $dst, $src, 7, Assembler::v0_t\n\t"
++ "vmnot.m v0, v0\n\t"
++ "vsra.vv $dst, $src, $shift, Assembler::v0_t" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e8);
++ // if shift > BitsPerByte - 1, clear the low BitsPerByte - 1 bits
++ __ vmsgtu_vi(v0, as_VectorRegister($shift$$reg), BitsPerByte - 1);
++ __ vsra_vi(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ BitsPerByte - 1, Assembler::v0_t);
++ // otherwise, shift
++ __ vmnot_m(v0, v0);
++ __ vsra_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ as_VectorRegister($shift$$reg), Assembler::v0_t);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vasrS(vReg dst, vReg src, vReg shift) %{
++ match(Set dst (RShiftVS src shift));
++ ins_cost(VEC_COST);
++ effect(TEMP_DEF dst);
++ format %{ "vmsgtu.vi v0, $shift, 15\t#@vasrS\n\t"
++ "vsra.vi $dst, $src, 15, Assembler::v0_t\n\t"
++ "vmnot.m v0, v0\n\t"
++ "vsra.vv $dst, $src, $shift, Assembler::v0_t" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e16);
++ // if shift > BitsPerShort - 1, clear the low BitsPerShort - 1 bits
++ __ vmsgtu_vi(v0, as_VectorRegister($shift$$reg), BitsPerShort - 1);
++ __ vsra_vi(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ BitsPerShort - 1, Assembler::v0_t);
++ // otherwise, shift
++ __ vmnot_m(v0, v0);
++ __ vsra_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ as_VectorRegister($shift$$reg), Assembler::v0_t);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vasrI(vReg dst, vReg src, vReg shift) %{
++ match(Set dst (RShiftVI src shift));
++ ins_cost(VEC_COST);
++ format %{ "vsra.vv $dst, $src, $shift\t#@vasrI" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e32);
++ __ vsra_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ as_VectorRegister($shift$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vasrL(vReg dst, vReg src, vReg shift) %{
++ match(Set dst (RShiftVL src shift));
++ ins_cost(VEC_COST);
++ format %{ "vsra.vv $dst, $src, $shift\t#@vasrL" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vsra_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ as_VectorRegister($shift$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vlslB(vReg dst, vReg src, vReg shift) %{
++ match(Set dst (LShiftVB src shift));
++ ins_cost(VEC_COST);
++ effect( TEMP_DEF dst);
++ format %{ "vmsgtu.vi v0, $shift, 7\t#@vlslB\n\t"
++ "vxor.vv $dst, $src, $src, Assembler::v0_t\n\t"
++ "vmnot.m v0, v0\n\t"
++ "vsll.vv $dst, $src, $shift, Assembler::v0_t" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e8);
++ // if shift > BitsPerByte - 1, clear the element
++ __ vmsgtu_vi(v0, as_VectorRegister($shift$$reg), BitsPerByte - 1);
++ __ vxor_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ as_VectorRegister($src$$reg), Assembler::v0_t);
++ // otherwise, shift
++ __ vmnot_m(v0, v0);
++ __ vsll_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ as_VectorRegister($shift$$reg), Assembler::v0_t);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vlslS(vReg dst, vReg src, vReg shift) %{
++ match(Set dst (LShiftVS src shift));
++ ins_cost(VEC_COST);
++ effect(TEMP_DEF dst);
++ format %{ "vmsgtu.vi v0, $shift, 15\t#@vlslS\n\t"
++ "vxor.vv $dst, $src, $src, Assembler::v0_t\n\t"
++ "vmnot.m v0, v0\n\t"
++ "vsll.vv $dst, $src, $shift, Assembler::v0_t" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e16);
++ // if shift > BitsPerShort - 1, clear the element
++ __ vmsgtu_vi(v0, as_VectorRegister($shift$$reg), BitsPerShort - 1);
++ __ vxor_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ as_VectorRegister($src$$reg), Assembler::v0_t);
++ // otherwise, shift
++ __ vmnot_m(v0, v0);
++ __ vsll_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ as_VectorRegister($shift$$reg), Assembler::v0_t);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vlslI(vReg dst, vReg src, vReg shift) %{
++ match(Set dst (LShiftVI src shift));
++ ins_cost(VEC_COST);
++ format %{ "vsll.vv $dst, $src, $shift\t#@vlslI" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e32);
++ __ vsll_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ as_VectorRegister($shift$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vlslL(vReg dst, vReg src, vReg shift) %{
++ match(Set dst (LShiftVL src shift));
++ ins_cost(VEC_COST);
++ format %{ "vsll.vv $dst, $src, $shift\t# vector (D)" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vsll_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ as_VectorRegister($shift$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vlsrB(vReg dst, vReg src, vReg shift) %{
++ match(Set dst (URShiftVB src shift));
++ ins_cost(VEC_COST);
++ effect(TEMP_DEF dst);
++ format %{ "vmsgtu.vi v0, $shift, 7\t#@vlsrB\n\t"
++ "vxor.vv $dst, $src, $src, Assembler::v0_t\n\t"
++ "vmnot.m v0, v0, v0\n\t"
++ "vsll.vv $dst, $src, $shift, Assembler::v0_t" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e8);
++ // if shift > BitsPerByte - 1, clear the element
++ __ vmsgtu_vi(v0, as_VectorRegister($shift$$reg), BitsPerByte - 1);
++ __ vxor_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ as_VectorRegister($src$$reg), Assembler::v0_t);
++ // otherwise, shift
++ __ vmnot_m(v0, v0);
++ __ vsrl_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ as_VectorRegister($shift$$reg), Assembler::v0_t);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vlsrS(vReg dst, vReg src, vReg shift) %{
++ match(Set dst (URShiftVS src shift));
++ ins_cost(VEC_COST);
++ effect(TEMP_DEF dst);
++ format %{ "vmsgtu.vi v0, $shift, 15\t#@vlsrS\n\t"
++ "vxor.vv $dst, $src, $src, Assembler::v0_t\n\t"
++ "vmnot.m v0, v0\n\t"
++ "vsll.vv $dst, $src, $shift, Assembler::v0_t" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e16);
++ // if shift > BitsPerShort - 1, clear the element
++ __ vmsgtu_vi(v0, as_VectorRegister($shift$$reg), BitsPerShort - 1);
++ __ vxor_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ as_VectorRegister($src$$reg), Assembler::v0_t);
++ // otherwise, shift
++ __ vmnot_m(v0, v0);
++ __ vsrl_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ as_VectorRegister($shift$$reg), Assembler::v0_t);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++
++instruct vlsrI(vReg dst, vReg src, vReg shift) %{
++ match(Set dst (URShiftVI src shift));
++ ins_cost(VEC_COST);
++ format %{ "vsrl.vv $dst, $src, $shift\t#@vlsrI" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e32);
++ __ vsrl_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ as_VectorRegister($shift$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++
++instruct vlsrL(vReg dst, vReg src, vReg shift) %{
++ match(Set dst (URShiftVL src shift));
++ ins_cost(VEC_COST);
++ format %{ "vsrl.vv $dst, $src, $shift\t#@vlsrL" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vsrl_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ as_VectorRegister($shift$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vasrB_imm(vReg dst, vReg src, immI shift) %{
++ match(Set dst (RShiftVB src (RShiftCntV shift)));
++ ins_cost(VEC_COST);
++ format %{ "vsra.vi $dst, $src, $shift\t#@vasrB_imm" %}
++ ins_encode %{
++ uint32_t con = (unsigned)$shift$$constant & 0x1f;
++ __ vsetvli(t0, x0, Assembler::e8);
++ if (con == 0) {
++ __ vor_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ as_VectorRegister($src$$reg));
++ return;
++ }
++ if (con >= BitsPerByte) con = BitsPerByte - 1;
++ __ vsra_vi(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg), con);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vasrS_imm(vReg dst, vReg src, immI shift) %{
++ match(Set dst (RShiftVS src (RShiftCntV shift)));
++ ins_cost(VEC_COST);
++ format %{ "vsra.vi $dst, $src, $shift\t#@vasrS_imm" %}
++ ins_encode %{
++ uint32_t con = (unsigned)$shift$$constant & 0x1f;
++ __ vsetvli(t0, x0, Assembler::e16);
++ if (con == 0) {
++ __ vor_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ as_VectorRegister($src$$reg));
++ return;
++ }
++ if (con >= BitsPerShort) con = BitsPerShort - 1;
++ __ vsra_vi(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg), con);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vasrI_imm(vReg dst, vReg src, immI shift) %{
++ match(Set dst (RShiftVI src (RShiftCntV shift)));
++ ins_cost(VEC_COST);
++ format %{ "vsrl.vi $dst, $src, $shift\t#@vasrI_imm" %}
++ ins_encode %{
++ uint32_t con = (unsigned)$shift$$constant & 0x1f;
++ __ vsetvli(t0, x0, Assembler::e32);
++ if (con == 0) {
++ __ vor_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ as_VectorRegister($src$$reg));
++ return;
++ }
++ __ vsra_vi(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg), con);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vasrL_imm(vReg dst, vReg src, immI shift) %{
++ predicate((n->in(2)->in(1)->get_int() & 0x3f) < 32);
++ match(Set dst (RShiftVL src (RShiftCntV shift)));
++ ins_cost(VEC_COST);
++ format %{ "vsrl.vi $dst, $src, $shift\t#@vasrL_imm" %}
++ ins_encode %{
++ uint32_t con = (unsigned)$shift$$constant & 0x1f;
++ __ vsetvli(t0, x0, Assembler::e64);
++ if (con == 0) {
++ __ vor_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ as_VectorRegister($src$$reg));
++ return;
++ }
++ __ vsra_vi(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg), con);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vlsrB_imm(vReg dst, vReg src, immI shift) %{
++ match(Set dst (URShiftVB src (RShiftCntV shift)));
++ ins_cost(VEC_COST);
++ format %{ "vsrl.vi $dst, $src, $shift\t#@vlsrB_imm" %}
++ ins_encode %{
++ uint32_t con = (unsigned)$shift$$constant & 0x1f;
++ __ vsetvli(t0, x0, Assembler::e8);
++ if (con == 0) {
++ __ vor_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ as_VectorRegister($src$$reg));
++ return;
++ }
++ if (con >= BitsPerByte) {
++ __ vxor_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ as_VectorRegister($src$$reg));
++ return;
++ }
++ __ vsrl_vi(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg), con);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vlsrS_imm(vReg dst, vReg src, immI shift) %{
++ match(Set dst (URShiftVS src (RShiftCntV shift)));
++ ins_cost(VEC_COST);
++ format %{ "vsrl.vi $dst, $src, $shift\t#@vlsrS_imm" %}
++ ins_encode %{
++ uint32_t con = (unsigned)$shift$$constant & 0x1f;
++ __ vsetvli(t0, x0, Assembler::e16);
++ if (con == 0) {
++ __ vor_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ as_VectorRegister($src$$reg));
++ return;
++ }
++ if (con >= BitsPerShort) {
++ __ vxor_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ as_VectorRegister($src$$reg));
++ return;
++ }
++ __ vsrl_vi(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg), con);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vlsrI_imm(vReg dst, vReg src, immI shift) %{
++ match(Set dst (URShiftVI src (RShiftCntV shift)));
++ ins_cost(VEC_COST);
++ format %{ "vsrl.vi $dst, $src, $shift\t#@vlsrI_imm" %}
++ ins_encode %{
++ uint32_t con = (unsigned)$shift$$constant & 0x1f;
++ __ vsetvli(t0, x0, Assembler::e32);
++ if (con == 0) {
++ __ vor_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ as_VectorRegister($src$$reg));
++ return;
++ }
++ __ vsrl_vi(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg), con);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vlsrL_imm(vReg dst, vReg src, immI shift) %{
++ predicate((n->in(2)->in(1)->get_int() & 0x3f) < 32);
++ match(Set dst (URShiftVL src (RShiftCntV shift)));
++ ins_cost(VEC_COST);
++ format %{ "vsrl.vi $dst, $src, $shift\t#@vlsrL_imm" %}
++ ins_encode %{
++ uint32_t con = (unsigned)$shift$$constant & 0x1f;
++ __ vsetvli(t0, x0, Assembler::e64);
++ if (con == 0) {
++ __ vor_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ as_VectorRegister($src$$reg));
++ return;
++ }
++ __ vsrl_vi(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg), con);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vlslB_imm(vReg dst, vReg src, immI shift) %{
++ match(Set dst (LShiftVB src (LShiftCntV shift)));
++ ins_cost(VEC_COST);
++ format %{ "vsll.vi $dst, $src, $shift\t#@vlslB_imm" %}
++ ins_encode %{
++ uint32_t con = (unsigned)$shift$$constant & 0x1f;
++ __ vsetvli(t0, x0, Assembler::e8);
++ if (con >= BitsPerByte) {
++ __ vxor_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ as_VectorRegister($src$$reg));
++ return;
++ }
++ __ vsll_vi(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg), con);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vlslS_imm(vReg dst, vReg src, immI shift) %{
++ match(Set dst (LShiftVS src (LShiftCntV shift)));
++ ins_cost(VEC_COST);
++ format %{ "vsll.vi $dst, $src, $shift\t#@vlslS_imm" %}
++ ins_encode %{
++ uint32_t con = (unsigned)$shift$$constant & 0x1f;
++ __ vsetvli(t0, x0, Assembler::e16);
++ if (con >= BitsPerShort) {
++ __ vxor_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg),
++ as_VectorRegister($src$$reg));
++ return;
++ }
++ __ vsll_vi(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg), con);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vlslI_imm(vReg dst, vReg src, immI shift) %{
++ match(Set dst (LShiftVI src (LShiftCntV shift)));
++ ins_cost(VEC_COST);
++ format %{ "vsll.vi $dst, $src, $shift\t#@vlslI_imm" %}
++ ins_encode %{
++ uint32_t con = (unsigned)$shift$$constant & 0x1f;
++ __ vsetvli(t0, x0, Assembler::e32);
++ __ vsll_vi(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg), con);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vlslL_imm(vReg dst, vReg src, immI shift) %{
++ predicate((n->in(2)->in(1)->get_int() & 0x3f) < 32);
++ match(Set dst (LShiftVL src (LShiftCntV shift)));
++ ins_cost(VEC_COST);
++ format %{ "vsll.vi $dst, $src, $shift\t#@vlslL_imm" %}
++ ins_encode %{
++ uint32_t con = (unsigned)$shift$$constant & 0x1f;
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vsll_vi(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg), con);
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vshiftcntB(vReg dst, iRegIorL2I cnt) %{
++ predicate(n->bottom_type()->is_vect()->element_basic_type() == T_BYTE);
++ match(Set dst (LShiftCntV cnt));
++ match(Set dst (RShiftCntV cnt));
++ format %{ "vmv.v.x $dst, $cnt\t#@vshiftcntB" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e8);
++ __ vmv_v_x(as_VectorRegister($dst$$reg), as_Register($cnt$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vshiftcntS(vReg dst, iRegIorL2I cnt) %{
++ predicate(n->bottom_type()->is_vect()->element_basic_type() == T_SHORT ||
++ n->bottom_type()->is_vect()->element_basic_type() == T_CHAR);
++ match(Set dst (LShiftCntV cnt));
++ match(Set dst (RShiftCntV cnt));
++ format %{ "vmv.v.x $dst, $cnt\t#@vshiftcntS" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e16);
++ __ vmv_v_x(as_VectorRegister($dst$$reg), as_Register($cnt$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vshiftcntI(vReg dst, iRegIorL2I cnt) %{
++ predicate(n->bottom_type()->is_vect()->element_basic_type() == T_INT);
++ match(Set dst (LShiftCntV cnt));
++ match(Set dst (RShiftCntV cnt));
++ format %{ "vmv.v.x $dst, $cnt\t#@vshiftcntI" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e32);
++ __ vmv_v_x(as_VectorRegister($dst$$reg), as_Register($cnt$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vshiftcntL(vReg dst, iRegIorL2I cnt) %{
++ predicate(n->bottom_type()->is_vect()->element_basic_type() == T_LONG);
++ match(Set dst (LShiftCntV cnt));
++ match(Set dst (RShiftCntV cnt));
++ format %{ "vmv.v.x $dst, $cnt\t#@vshiftcntL" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vmv_v_x(as_VectorRegister($dst$$reg), as_Register($cnt$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// vector sqrt
++
++instruct vsqrtF(vReg dst, vReg src) %{
++ match(Set dst (SqrtVF src));
++ ins_cost(VEC_COST);
++ format %{ "vfsqrt.v $dst, $src\t#@vsqrtF" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e32);
++ __ vfsqrt_v(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vsqrtD(vReg dst, vReg src) %{
++ match(Set dst (SqrtVD src));
++ ins_cost(VEC_COST);
++ format %{ "vfsqrt.v $dst, $src\t#@vsqrtD" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vfsqrt_v(as_VectorRegister($dst$$reg), as_VectorRegister($src$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++// vector sub
++
++instruct vsubB(vReg dst, vReg src1, vReg src2) %{
++ match(Set dst (SubVB src1 src2));
++ ins_cost(VEC_COST);
++ format %{ "vsub.vv $dst, $src1, $src2\t#@vsubB" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e8);
++ __ vsub_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src1$$reg),
++ as_VectorRegister($src2$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vsubS(vReg dst, vReg src1, vReg src2) %{
++ match(Set dst (SubVS src1 src2));
++ ins_cost(VEC_COST);
++ format %{ "vsub.vv $dst, $src1, $src2\t#@vsubS" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e16);
++ __ vsub_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src1$$reg),
++ as_VectorRegister($src2$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vsubI(vReg dst, vReg src1, vReg src2) %{
++ match(Set dst (SubVI src1 src2));
++ ins_cost(VEC_COST);
++ format %{ "vsub.vv $dst, $src1, $src2\t#@vsubI" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e32);
++ __ vsub_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src1$$reg),
++ as_VectorRegister($src2$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vsubL(vReg dst, vReg src1, vReg src2) %{
++ match(Set dst (SubVL src1 src2));
++ ins_cost(VEC_COST);
++ format %{ "vsub.vv $dst, $src1, $src2\t#@vsubL" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vsub_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src1$$reg),
++ as_VectorRegister($src2$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vsubF(vReg dst, vReg src1, vReg src2) %{
++ match(Set dst (SubVF src1 src2));
++ ins_cost(VEC_COST);
++ format %{ "vfsub.vv $dst, $src1, $src2\t@vsubF" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e32);
++ __ vfsub_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src1$$reg),
++ as_VectorRegister($src2$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vsubD(vReg dst, vReg src1, vReg src2) %{
++ match(Set dst (SubVD src1 src2));
++ ins_cost(VEC_COST);
++ format %{ "vfsub.vv $dst, $src1, $src2\t#@vsubD" %}
++ ins_encode %{
++ __ vsetvli(t0, x0, Assembler::e64);
++ __ vfsub_vv(as_VectorRegister($dst$$reg), as_VectorRegister($src1$$reg),
++ as_VectorRegister($src2$$reg));
++ %}
++ ins_pipe(pipe_slow);
++%}
++
++instruct vstring_equalsL(iRegP_R11 str1, iRegP_R13 str2, iRegI_R14 cnt,
++ iRegI_R10 result, vReg_V1 v1,
++ vReg_V2 v2, vReg_V3 v3, rFlagsReg cr)
++%{
++ predicate(UseRVV && ((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::LL);
++ match(Set result (StrEquals (Binary str1 str2) cnt));
++ effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, TEMP v1, TEMP v2, TEMP v3, KILL cr);
++
++ format %{ "String Equals $str1, $str2, $cnt -> $result\t#@string_equalsL" %}
++ ins_encode %{
++ // Count is in 8-bit bytes; non-Compact chars are 16 bits.
++ __ string_equals_v($str1$$Register, $str2$$Register,
++ $result$$Register, $cnt$$Register, 1);
++ %}
++ ins_pipe(pipe_class_memory);
++%}
++
++instruct vstring_equalsU(iRegP_R11 str1, iRegP_R13 str2, iRegI_R14 cnt,
++ iRegI_R10 result, vReg_V1 v1,
++ vReg_V2 v2, vReg_V3 v3, rFlagsReg cr)
++%{
++ predicate(UseRVV && ((StrEqualsNode*)n)->encoding() == StrIntrinsicNode::UU);
++ match(Set result (StrEquals (Binary str1 str2) cnt));
++ effect(USE_KILL str1, USE_KILL str2, USE_KILL cnt, TEMP v1, TEMP v2, TEMP v3, KILL cr);
++
++ format %{ "String Equals $str1, $str2, $cnt -> $result\t#@string_equalsU" %}
++ ins_encode %{
++ // Count is in 8-bit bytes; non-Compact chars are 16 bits.
++ __ string_equals_v($str1$$Register, $str2$$Register,
++ $result$$Register, $cnt$$Register, 2);
++ %}
++ ins_pipe(pipe_class_memory);
++%}
++
++instruct varray_equalsB(iRegP_R11 ary1, iRegP_R12 ary2, iRegI_R10 result,
++ vReg_V1 v1, vReg_V2 v2, vReg_V3 v3, iRegP_R28 tmp, rFlagsReg cr)
++%{
++ predicate(UseRVV && ((AryEqNode*)n)->encoding() == StrIntrinsicNode::LL);
++ match(Set result (AryEq ary1 ary2));
++ effect(KILL tmp, USE_KILL ary1, USE_KILL ary2, TEMP v1, TEMP v2, TEMP v3, KILL cr);
++
++ format %{ "Array Equals $ary1, ary2 -> $result\t#@array_equalsB // KILL $tmp" %}
++ ins_encode %{
++ __ arrays_equals_v($ary1$$Register, $ary2$$Register,
++ $result$$Register, $tmp$$Register, 1);
++ %}
++ ins_pipe(pipe_class_memory);
++%}
++
++instruct varray_equalsC(iRegP_R11 ary1, iRegP_R12 ary2, iRegI_R10 result,
++ vReg_V1 v1, vReg_V2 v2, vReg_V3 v3, iRegP_R28 tmp, rFlagsReg cr)
++%{
++ predicate(UseRVV && ((AryEqNode*)n)->encoding() == StrIntrinsicNode::UU);
++ match(Set result (AryEq ary1 ary2));
++ effect(KILL tmp, USE_KILL ary1, USE_KILL ary2, TEMP v1, TEMP v2, TEMP v3, KILL cr);
++
++ format %{ "Array Equals $ary1, ary2 -> $result\t#@array_equalsC // KILL $tmp" %}
++ ins_encode %{
++ __ arrays_equals_v($ary1$$Register, $ary2$$Register,
++ $result$$Register, $tmp$$Register, 2);
++ %}
++ ins_pipe(pipe_class_memory);
++%}
++
++instruct vstring_compareU(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2,
++ iRegI_R10 result, vReg_V1 v1, vReg_V2 v2, vReg_V3 v3, vReg_V4 v4, vReg_V5 v5,
++ iRegP_R28 tmp1, iRegL_R29 tmp2)
++%{
++ predicate(UseRVV && ((StrCompNode *)n)->encoding() == StrIntrinsicNode::UU);
++ match(Set result(StrComp(Binary str1 cnt1)(Binary str2 cnt2)));
++ effect(KILL tmp1, KILL tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2,
++ TEMP v1, TEMP v2, TEMP v3, TEMP v4, TEMP v5);
++
++ format %{ "String Compare $str1, $cnt1, $str2, $cnt2 -> $result\t#@string_compareU" %}
++ ins_encode %{
++ // Count is in 8-bit bytes; non-Compact chars are 16 bits.
++ __ string_compare_v($str1$$Register, $str2$$Register,
++ $cnt1$$Register, $cnt2$$Register, $result$$Register,
++ $tmp1$$Register, $tmp2$$Register,
++ StrIntrinsicNode::UU);
++ %}
++ ins_pipe(pipe_class_memory);
++%}
++instruct vstring_compareL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2,
++ iRegI_R10 result, vReg_V1 v1, vReg_V2 v2, vReg_V3 v3, vReg_V4 v4, vReg_V5 v5,
++ iRegP_R28 tmp1, iRegL_R29 tmp2)
++%{
++ predicate(UseRVV && ((StrCompNode *)n)->encoding() == StrIntrinsicNode::LL);
++ match(Set result(StrComp(Binary str1 cnt1)(Binary str2 cnt2)));
++ effect(KILL tmp1, KILL tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2,
++ TEMP v1, TEMP v2, TEMP v3, TEMP v4, TEMP v5);
++
++ format %{ "String Compare $str1, $cnt1, $str2, $cnt2 -> $result\t#@string_compareL" %}
++ ins_encode %{
++ __ string_compare_v($str1$$Register, $str2$$Register,
++ $cnt1$$Register, $cnt2$$Register, $result$$Register,
++ $tmp1$$Register, $tmp2$$Register,
++ StrIntrinsicNode::LL);
++ %}
++ ins_pipe(pipe_class_memory);
++%}
++
++instruct vstring_compareUL(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2,
++ iRegI_R10 result, vReg_V1 v1, vReg_V2 v2, vReg_V3 v3, vReg_V4 v4, vReg_V5 v5,
++ iRegP_R28 tmp1, iRegL_R29 tmp2)
++%{
++ predicate(UseRVV && ((StrCompNode *)n)->encoding() == StrIntrinsicNode::UL);
++ match(Set result(StrComp(Binary str1 cnt1)(Binary str2 cnt2)));
++ effect(KILL tmp1, KILL tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2,
++ TEMP v1, TEMP v2, TEMP v3, TEMP v4, TEMP v5);
++
++ format %{"String Compare $str1, $cnt1, $str2, $cnt2 -> $result\t#@string_compareUL" %}
++ ins_encode %{
++ __ string_compare_v($str1$$Register, $str2$$Register,
++ $cnt1$$Register, $cnt2$$Register, $result$$Register,
++ $tmp1$$Register, $tmp2$$Register,
++ StrIntrinsicNode::UL);
++ %}
++ ins_pipe(pipe_class_memory);
++%}
++instruct vstring_compareLU(iRegP_R11 str1, iRegI_R12 cnt1, iRegP_R13 str2, iRegI_R14 cnt2,
++ iRegI_R10 result, vReg_V1 v1, vReg_V2 v2, vReg_V3 v3, vReg_V4 v4, vReg_V5 v5,
++ iRegP_R28 tmp1, iRegL_R29 tmp2)
++%{
++ predicate(UseRVV && ((StrCompNode *)n)->encoding() == StrIntrinsicNode::LU);
++ match(Set result(StrComp(Binary str1 cnt1)(Binary str2 cnt2)));
++ effect(KILL tmp1, KILL tmp2, USE_KILL str1, USE_KILL str2, USE_KILL cnt1, USE_KILL cnt2,
++ TEMP v1, TEMP v2, TEMP v3, TEMP v4, TEMP v5);
++
++ format %{ "String Compare $str1, $cnt1, $str2, $cnt2 -> $result\t#@string_compareLU" %}
++ ins_encode %{
++ __ string_compare_v($str1$$Register, $str2$$Register,
++ $cnt1$$Register, $cnt2$$Register, $result$$Register,
++ $tmp1$$Register, $tmp2$$Register,
++ StrIntrinsicNode::LU);
++ %}
++ ins_pipe(pipe_class_memory);
++%}
++
++// fast byte[] to char[] inflation
++instruct vstring_inflate(Universe dummy, iRegP_R10 src, iRegP_R11 dst, iRegI_R12 len,
++ vReg_V1 v1, vReg_V2 v2, vReg_V3 v3, iRegLNoSp tmp)
++%{
++ predicate(UseRVV);
++ match(Set dummy (StrInflatedCopy src (Binary dst len)));
++ effect(TEMP v1, TEMP v2, TEMP v3, TEMP tmp, USE_KILL src, USE_KILL dst, USE_KILL len);
++
++ format %{ "String Inflate $src,$dst" %}
++ ins_encode %{
++ __ byte_array_inflate_v($src$$Register, $dst$$Register, $len$$Register, $tmp$$Register);
++ %}
++ ins_pipe(pipe_class_memory);
++%}
++
++// encode char[] to byte[] in ISO_8859_1
++instruct vencode_iso_array(iRegP_R12 src, iRegP_R11 dst, iRegI_R13 len, iRegI_R10 result,
++ vReg_V1 v1, vReg_V2 v2, vReg_V3 v3, iRegLNoSp tmp)
++%{
++ predicate(UseRVV);
++ match(Set result (EncodeISOArray src (Binary dst len)));
++ effect(TEMP_DEF result, USE_KILL src, USE_KILL dst, USE_KILL len,
++ TEMP v1, TEMP v2, TEMP v3, TEMP tmp);
++
++ format %{ "Encode array $src,$dst,$len -> $result" %}
++ ins_encode %{
++ __ encode_iso_array_v($src$$Register, $dst$$Register, $len$$Register,
++ $result$$Register, $tmp$$Register);
++ %}
++ ins_pipe( pipe_class_memory );
++%}
++
++// fast char[] to byte[] compression
++instruct vstring_compress(iRegP_R12 src, iRegP_R11 dst, iRegI_R13 len, iRegI_R10 result,
++ vReg_V1 v1, vReg_V2 v2, vReg_V3 v3, iRegLNoSp tmp)
++%{
++ predicate(UseRVV);
++ match(Set result (StrCompressedCopy src (Binary dst len)));
++ effect(TEMP_DEF result, USE_KILL src, USE_KILL dst, USE_KILL len,
++ TEMP v1, TEMP v2, TEMP v3, TEMP tmp);
++
++ format %{ "String Compress $src,$dst -> $result // KILL R11, R12, R13" %}
++ ins_encode %{
++ __ char_array_compress_v($src$$Register, $dst$$Register, $len$$Register,
++ $result$$Register, $tmp$$Register);
++ %}
++ ins_pipe( pipe_slow );
++%}
++
++instruct vhas_negatives(iRegP_R11 ary, iRegI_R12 len, iRegI_R10 result,
++ vReg_V1 v1, vReg_V2 v2, vReg_V3 v3, iRegLNoSp tmp)
++%{
++ predicate(UseRVV);
++ match(Set result (HasNegatives ary len));
++ effect(TEMP_DEF result, USE_KILL ary, USE_KILL len, TEMP v1, TEMP v2, TEMP v3, TEMP tmp);
++
++ format %{ "has negatives byte[] $ary, $len -> $result" %}
++ ins_encode %{
++ __ has_negatives_v($ary$$Register, $len$$Register, $result$$Register, $tmp$$Register);
++ %}
++
++ ins_pipe(pipe_slow);
++%}
++
++instruct vstringU_indexof_char(iRegP_R11 str1, iRegI_R12 cnt1, iRegI_R13 ch,
++ iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2,
++ vReg_V1 v1, vReg_V2 v2, vReg_V3 v3)
++%{
++ predicate(UseRVV && (((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::U));
++ match(Set result (StrIndexOfChar (Binary str1 cnt1) ch));
++ effect(TEMP_DEF result, USE_KILL str1, USE_KILL cnt1, USE_KILL ch,
++ TEMP tmp1, TEMP tmp2, TEMP v1, TEMP v2, TEMP v3);
++
++ format %{ "StringUTF16 IndexOf char[] $str1, $cnt1, $ch -> $result" %}
++
++ ins_encode %{
++ __ string_indexof_char_v($str1$$Register, $cnt1$$Register, $ch$$Register,
++ $result$$Register, $tmp1$$Register, $tmp2$$Register,
++ false /* isL */);
++ %}
++
++ ins_pipe(pipe_class_memory);
++%}
++
++instruct vstringL_indexof_char(iRegP_R11 str1, iRegI_R12 cnt1, iRegI_R13 ch,
++ iRegI_R10 result, iRegINoSp tmp1, iRegINoSp tmp2,
++ vReg_V1 v1, vReg_V2 v2, vReg_V3 v3)
++%{
++ predicate(UseRVV && (((StrIndexOfCharNode*)n)->encoding() == StrIntrinsicNode::L));
++ match(Set result (StrIndexOfChar (Binary str1 cnt1) ch));
++ effect(TEMP_DEF result, USE_KILL str1, USE_KILL cnt1, USE_KILL ch,
++ TEMP tmp1, TEMP tmp2, TEMP v1, TEMP v2, TEMP v3);
++
++ format %{ "StringLatin1 IndexOf char[] $str1, $cnt1, $ch -> $result" %}
++
++ ins_encode %{
++ __ string_indexof_char_v($str1$$Register, $cnt1$$Register, $ch$$Register,
++ $result$$Register, $tmp1$$Register, $tmp2$$Register,
++ true /* isL */);
++ %}
++
++ ins_pipe(pipe_class_memory);
++%}
++
++// clearing of an array
++instruct vclearArray_reg_reg(iRegL_R29 cnt, iRegP_R28 base, Universe dummy,
++ vReg_V1 vReg1, vReg_V2 vReg2, vReg_V3 vReg3)
++%{
++ predicate(UseRVV);
++ match(Set dummy (ClearArray cnt base));
++ effect(USE_KILL cnt, USE_KILL base, TEMP vReg1, TEMP vReg2, TEMP vReg3);
++
++ format %{ "ClearArray $cnt, $base\t#@clearArray_reg_reg" %}
++
++ ins_encode %{
++ __ clear_array_v($base$$Register, $cnt$$Register);
++ %}
++
++ ins_pipe(pipe_class_memory);
++%}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/sharedRuntime_riscv.cpp
+@@ -0,0 +1,2966 @@
++/*
++ * Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2023, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/macroAssembler.hpp"
++#include "asm/macroAssembler.inline.hpp"
++#include "code/debugInfoRec.hpp"
++#include "code/icBuffer.hpp"
++#include "code/vtableStubs.hpp"
++#include "compiler/oopMap.hpp"
++#include "gc/shared/barrierSetAssembler.hpp"
++#include "interpreter/interp_masm.hpp"
++#include "interpreter/interpreter.hpp"
++#include "logging/log.hpp"
++#include "memory/resourceArea.hpp"
++#include "nativeInst_riscv.hpp"
++#include "oops/compiledICHolder.hpp"
++#include "oops/klass.inline.hpp"
++#include "prims/methodHandles.hpp"
++#include "runtime/jniHandles.hpp"
++#include "runtime/safepointMechanism.hpp"
++#include "runtime/sharedRuntime.hpp"
++#include "runtime/signature.hpp"
++#include "runtime/stubRoutines.hpp"
++#include "runtime/vframeArray.hpp"
++#include "utilities/align.hpp"
++#include "utilities/formatBuffer.hpp"
++#include "vmreg_riscv.inline.hpp"
++#ifdef COMPILER1
++#include "c1/c1_Runtime1.hpp"
++#endif
++#ifdef COMPILER2
++#include "adfiles/ad_riscv.hpp"
++#include "opto/runtime.hpp"
++#endif
++
++#define __ masm->
++
++const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
++
++class SimpleRuntimeFrame {
++public:
++
++ // Most of the runtime stubs have this simple frame layout.
++ // This class exists to make the layout shared in one place.
++ // Offsets are for compiler stack slots, which are jints.
++ enum layout {
++ // The frame sender code expects that fp will be in the "natural" place and
++ // will override any oopMap setting for it. We must therefore force the layout
++ // so that it agrees with the frame sender code.
++ // we don't expect any arg reg save area so riscv asserts that
++ // frame::arg_reg_save_area_bytes == 0
++ fp_off = 0, fp_off2,
++ return_off, return_off2,
++ framesize
++ };
++};
++
++class RegisterSaver {
++ const bool _save_vectors;
++ public:
++ RegisterSaver(bool save_vectors) : _save_vectors(UseRVV && save_vectors) {}
++ ~RegisterSaver() {}
++ OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words);
++ void restore_live_registers(MacroAssembler* masm);
++
++ // Offsets into the register save area
++ // Used by deoptimization when it is managing result register
++ // values on its own
++ // gregs:28, float_register:32; except: x1(ra) & x2(sp) & gp(x3) & tp(x4)
++ // |---v0---|<---SP
++ // |---v1---|save vectors only in generate_handler_blob
++ // |-- .. --|
++ // |---v31--|-----
++ // |---f0---|
++ // |---f1---|
++ // | .. |
++ // |---f31--|
++ // |---reserved slot for stack alignment---|
++ // |---x5---|
++ // | x6 |
++ // |---.. --|
++ // |---x31--|
++ // |---fp---|
++ // |---ra---|
++ int v0_offset_in_bytes(void) { return 0; }
++ int f0_offset_in_bytes(void) {
++ int f0_offset = 0;
++#ifdef COMPILER2
++ if (_save_vectors) {
++ f0_offset += Matcher::scalable_vector_reg_size(T_INT) * VectorRegisterImpl::number_of_registers *
++ BytesPerInt;
++ }
++#endif
++ return f0_offset;
++ }
++ int reserved_slot_offset_in_bytes(void) {
++ return f0_offset_in_bytes() +
++ FloatRegisterImpl::max_slots_per_register *
++ FloatRegisterImpl::number_of_registers *
++ BytesPerInt;
++ }
++
++ int reg_offset_in_bytes(Register r) {
++ assert (r->encoding() > 4, "ra, sp, gp and tp not saved");
++ return reserved_slot_offset_in_bytes() + (r->encoding() - 4 /* x1, x2, x3, x4 */) * wordSize;
++ }
++
++ int freg_offset_in_bytes(FloatRegister f) {
++ return f0_offset_in_bytes() + f->encoding() * wordSize;
++ }
++
++ int ra_offset_in_bytes(void) {
++ return reserved_slot_offset_in_bytes() +
++ (RegisterImpl::number_of_registers - 3) *
++ RegisterImpl::max_slots_per_register *
++ BytesPerInt;
++ }
++};
++
++OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words) {
++ int vector_size_in_bytes = 0;
++ int vector_size_in_slots = 0;
++#ifdef COMPILER2
++ if (_save_vectors) {
++ vector_size_in_bytes += Matcher::scalable_vector_reg_size(T_BYTE);
++ vector_size_in_slots += Matcher::scalable_vector_reg_size(T_INT);
++ }
++#endif
++
++ int frame_size_in_bytes = align_up(additional_frame_words * wordSize + ra_offset_in_bytes() + wordSize, 16);
++ // OopMap frame size is in compiler stack slots (jint's) not bytes or words
++ int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
++ // The caller will allocate additional_frame_words
++ int additional_frame_slots = additional_frame_words * wordSize / BytesPerInt;
++ // CodeBlob frame size is in words.
++ int frame_size_in_words = frame_size_in_bytes / wordSize;
++ *total_frame_words = frame_size_in_words;
++
++ // Save Integer, Float and Vector registers.
++ __ enter();
++ __ push_CPU_state(_save_vectors, vector_size_in_bytes);
++
++ // Set an oopmap for the call site. This oopmap will map all
++ // oop-registers and debug-info registers as callee-saved. This
++ // will allow deoptimization at this safepoint to find all possible
++ // debug-info recordings, as well as let GC find all oops.
++
++ OopMapSet *oop_maps = new OopMapSet();
++ OopMap* oop_map = new OopMap(frame_size_in_slots, 0);
++ assert_cond(oop_maps != NULL && oop_map != NULL);
++
++ int sp_offset_in_slots = 0;
++ int step_in_slots = 0;
++ if (_save_vectors) {
++ step_in_slots = vector_size_in_slots;
++ for (int i = 0; i < VectorRegisterImpl::number_of_registers; i++, sp_offset_in_slots += step_in_slots) {
++ VectorRegister r = as_VectorRegister(i);
++ oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset_in_slots), r->as_VMReg());
++ }
++ }
++
++ step_in_slots = FloatRegisterImpl::max_slots_per_register;
++ for (int i = 0; i < FloatRegisterImpl::number_of_registers; i++, sp_offset_in_slots += step_in_slots) {
++ FloatRegister r = as_FloatRegister(i);
++ oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset_in_slots), r->as_VMReg());
++ }
++
++ step_in_slots = RegisterImpl::max_slots_per_register;
++ // skip the slot reserved for alignment, see MacroAssembler::push_reg;
++ // also skip x5 ~ x6 on the stack because they are caller-saved registers.
++ sp_offset_in_slots += RegisterImpl::max_slots_per_register * 3;
++ // besides, we ignore x0 ~ x4 because push_CPU_state won't push them on the stack.
++ for (int i = 7; i < RegisterImpl::number_of_registers; i++, sp_offset_in_slots += step_in_slots) {
++ Register r = as_Register(i);
++ if (r != xthread) {
++ oop_map->set_callee_saved(VMRegImpl::stack2reg(sp_offset_in_slots + additional_frame_slots), r->as_VMReg());
++ }
++ }
++
++ return oop_map;
++}
++
++void RegisterSaver::restore_live_registers(MacroAssembler* masm) {
++#ifdef COMPILER2
++ __ pop_CPU_state(_save_vectors, Matcher::scalable_vector_reg_size(T_BYTE));
++#else
++ __ pop_CPU_state(_save_vectors);
++#endif
++ __ leave();
++}
++
++// Is vector's size (in bytes) bigger than a size saved by default?
++// riscv does not ovlerlay the floating-point registers on vector registers like aarch64.
++bool SharedRuntime::is_wide_vector(int size) {
++ return UseRVV;
++}
++
++// The java_calling_convention describes stack locations as ideal slots on
++// a frame with no abi restrictions. Since we must observe abi restrictions
++// (like the placement of the register window) the slots must be biased by
++// the following value.
++static int reg2offset_in(VMReg r) {
++ // Account for saved fp and ra
++ // This should really be in_preserve_stack_slots
++ return r->reg2stack() * VMRegImpl::stack_slot_size;
++}
++
++static int reg2offset_out(VMReg r) {
++ return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
++}
++
++// ---------------------------------------------------------------------------
++// Read the array of BasicTypes from a signature, and compute where the
++// arguments should go. Values in the VMRegPair regs array refer to 4-byte
++// quantities. Values less than VMRegImpl::stack0 are registers, those above
++// refer to 4-byte stack slots. All stack slots are based off of the stack pointer
++// as framesizes are fixed.
++// VMRegImpl::stack0 refers to the first slot 0(sp).
++// and VMRegImpl::stack0+1 refers to the memory word 4-byes higher. Register
++// up to RegisterImpl::number_of_registers) are the 64-bit
++// integer registers.
++
++// Note: the INPUTS in sig_bt are in units of Java argument words,
++// which are 64-bit. The OUTPUTS are in 32-bit units.
++
++// The Java calling convention is a "shifted" version of the C ABI.
++// By skipping the first C ABI register we can call non-static jni
++// methods with small numbers of arguments without having to shuffle
++// the arguments at all. Since we control the java ABI we ought to at
++// least get some advantage out of it.
++
++int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
++ VMRegPair *regs,
++ int total_args_passed) {
++ // Create the mapping between argument positions and
++ // registers.
++ static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
++ j_rarg0, j_rarg1, j_rarg2, j_rarg3,
++ j_rarg4, j_rarg5, j_rarg6, j_rarg7
++ };
++ static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
++ j_farg0, j_farg1, j_farg2, j_farg3,
++ j_farg4, j_farg5, j_farg6, j_farg7
++ };
++
++ uint int_args = 0;
++ uint fp_args = 0;
++ uint stk_args = 0; // inc by 2 each time
++
++ for (int i = 0; i < total_args_passed; i++) {
++ switch (sig_bt[i]) {
++ case T_BOOLEAN: // fall through
++ case T_CHAR: // fall through
++ case T_BYTE: // fall through
++ case T_SHORT: // fall through
++ case T_INT:
++ if (int_args < Argument::n_int_register_parameters_j) {
++ regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
++ } else {
++ regs[i].set1(VMRegImpl::stack2reg(stk_args));
++ stk_args += 2;
++ }
++ break;
++ case T_VOID:
++ // halves of T_LONG or T_DOUBLE
++ assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
++ regs[i].set_bad();
++ break;
++ case T_LONG: // fall through
++ assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
++ case T_OBJECT: // fall through
++ case T_ARRAY: // fall through
++ case T_ADDRESS:
++ if (int_args < Argument::n_int_register_parameters_j) {
++ regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
++ } else {
++ regs[i].set2(VMRegImpl::stack2reg(stk_args));
++ stk_args += 2;
++ }
++ break;
++ case T_FLOAT:
++ if (fp_args < Argument::n_float_register_parameters_j) {
++ regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
++ } else {
++ regs[i].set1(VMRegImpl::stack2reg(stk_args));
++ stk_args += 2;
++ }
++ break;
++ case T_DOUBLE:
++ assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
++ if (fp_args < Argument::n_float_register_parameters_j) {
++ regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
++ } else {
++ regs[i].set2(VMRegImpl::stack2reg(stk_args));
++ stk_args += 2;
++ }
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++ }
++
++ return align_up(stk_args, 2);
++}
++
++// Patch the callers callsite with entry to compiled code if it exists.
++static void patch_callers_callsite(MacroAssembler *masm) {
++ Label L;
++ __ ld(t0, Address(xmethod, in_bytes(Method::code_offset())));
++ __ beqz(t0, L);
++
++ __ enter();
++ __ push_CPU_state();
++
++ // VM needs caller's callsite
++ // VM needs target method
++ // This needs to be a long call since we will relocate this adapter to
++ // the codeBuffer and it may not reach
++
++#ifndef PRODUCT
++ assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
++#endif
++
++ __ mv(c_rarg0, xmethod);
++ __ mv(c_rarg1, ra);
++ RuntimeAddress target(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite));
++ __ relocate(target.rspec(), [&] {
++ int32_t offset;
++ __ la_patchable(t0, target, offset);
++ __ jalr(x1, t0, offset);
++ });
++
++ __ pop_CPU_state();
++ // restore sp
++ __ leave();
++ __ bind(L);
++}
++
++static void gen_c2i_adapter(MacroAssembler *masm,
++ int total_args_passed,
++ int comp_args_on_stack,
++ const BasicType *sig_bt,
++ const VMRegPair *regs,
++ Label& skip_fixup) {
++ // Before we get into the guts of the C2I adapter, see if we should be here
++ // at all. We've come from compiled code and are attempting to jump to the
++ // interpreter, which means the caller made a static call to get here
++ // (vcalls always get a compiled target if there is one). Check for a
++ // compiled target. If there is one, we need to patch the caller's call.
++ patch_callers_callsite(masm);
++
++ __ bind(skip_fixup);
++
++ int words_pushed = 0;
++
++ // Since all args are passed on the stack, total_args_passed *
++ // Interpreter::stackElementSize is the space we need.
++
++ int extraspace = total_args_passed * Interpreter::stackElementSize;
++
++ __ mv(x30, sp);
++
++ // stack is aligned, keep it that way
++ extraspace = align_up(extraspace, 2 * wordSize);
++
++ if (extraspace) {
++ __ sub(sp, sp, extraspace);
++ }
++
++ // Now write the args into the outgoing interpreter space
++ for (int i = 0; i < total_args_passed; i++) {
++ if (sig_bt[i] == T_VOID) {
++ assert(i > 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "missing half");
++ continue;
++ }
++
++ // offset to start parameters
++ int st_off = (total_args_passed - i - 1) * Interpreter::stackElementSize;
++ int next_off = st_off - Interpreter::stackElementSize;
++
++ // Say 4 args:
++ // i st_off
++ // 0 32 T_LONG
++ // 1 24 T_VOID
++ // 2 16 T_OBJECT
++ // 3 8 T_BOOL
++ // - 0 return address
++ //
++ // However to make thing extra confusing. Because we can fit a Java long/double in
++ // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
++ // leaves one slot empty and only stores to a single slot. In this case the
++ // slot that is occupied is the T_VOID slot. See I said it was confusing.
++
++ VMReg r_1 = regs[i].first();
++ VMReg r_2 = regs[i].second();
++ if (!r_1->is_valid()) {
++ assert(!r_2->is_valid(), "");
++ continue;
++ }
++ if (r_1->is_stack()) {
++ // memory to memory use t0
++ int ld_off = (r_1->reg2stack() * VMRegImpl::stack_slot_size
++ + extraspace
++ + words_pushed * wordSize);
++ if (!r_2->is_valid()) {
++ __ lwu(t0, Address(sp, ld_off));
++ __ sd(t0, Address(sp, st_off), /*temp register*/esp);
++ } else {
++ __ ld(t0, Address(sp, ld_off), /*temp register*/esp);
++
++ // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
++ // T_DOUBLE and T_LONG use two slots in the interpreter
++ if (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
++ // ld_off == LSW, ld_off+wordSize == MSW
++ // st_off == MSW, next_off == LSW
++ __ sd(t0, Address(sp, next_off), /*temp register*/esp);
++#ifdef ASSERT
++ // Overwrite the unused slot with known junk
++ __ mv(t0, 0xdeadffffdeadaaaaul);
++ __ sd(t0, Address(sp, st_off), /*temp register*/esp);
++#endif /* ASSERT */
++ } else {
++ __ sd(t0, Address(sp, st_off), /*temp register*/esp);
++ }
++ }
++ } else if (r_1->is_Register()) {
++ Register r = r_1->as_Register();
++ if (!r_2->is_valid()) {
++ // must be only an int (or less ) so move only 32bits to slot
++ __ sd(r, Address(sp, st_off));
++ } else {
++ // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
++ // T_DOUBLE and T_LONG use two slots in the interpreter
++ if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
++ // long/double in gpr
++#ifdef ASSERT
++ // Overwrite the unused slot with known junk
++ __ mv(t0, 0xdeadffffdeadaaabul);
++ __ sd(t0, Address(sp, st_off), /*temp register*/esp);
++#endif /* ASSERT */
++ __ sd(r, Address(sp, next_off));
++ } else {
++ __ sd(r, Address(sp, st_off));
++ }
++ }
++ } else {
++ assert(r_1->is_FloatRegister(), "");
++ if (!r_2->is_valid()) {
++ // only a float use just part of the slot
++ __ fsw(r_1->as_FloatRegister(), Address(sp, st_off));
++ } else {
++#ifdef ASSERT
++ // Overwrite the unused slot with known junk
++ __ mv(t0, 0xdeadffffdeadaaacul);
++ __ sd(t0, Address(sp, st_off), /*temp register*/esp);
++#endif /* ASSERT */
++ __ fsd(r_1->as_FloatRegister(), Address(sp, next_off));
++ }
++ }
++ }
++
++ __ mv(esp, sp); // Interp expects args on caller's expression stack
++
++ __ ld(t0, Address(xmethod, in_bytes(Method::interpreter_entry_offset())));
++ __ jr(t0);
++}
++
++void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
++ int total_args_passed,
++ int comp_args_on_stack,
++ const BasicType *sig_bt,
++ const VMRegPair *regs) {
++ // Cut-out for having no stack args.
++ int comp_words_on_stack = align_up(comp_args_on_stack * VMRegImpl::stack_slot_size, wordSize) >> LogBytesPerWord;
++ if (comp_args_on_stack != 0) {
++ __ sub(t0, sp, comp_words_on_stack * wordSize);
++ __ andi(sp, t0, -16);
++ }
++
++ // Will jump to the compiled code just as if compiled code was doing it.
++ // Pre-load the register-jump target early, to schedule it better.
++ __ ld(t1, Address(xmethod, in_bytes(Method::from_compiled_offset())));
++
++ // Now generate the shuffle code.
++ for (int i = 0; i < total_args_passed; i++) {
++ if (sig_bt[i] == T_VOID) {
++ assert(i > 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "missing half");
++ continue;
++ }
++
++ // Pick up 0, 1 or 2 words from SP+offset.
++
++ assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
++ "scrambled load targets?");
++ // Load in argument order going down.
++ int ld_off = (total_args_passed - i - 1) * Interpreter::stackElementSize;
++ // Point to interpreter value (vs. tag)
++ int next_off = ld_off - Interpreter::stackElementSize;
++
++ VMReg r_1 = regs[i].first();
++ VMReg r_2 = regs[i].second();
++ if (!r_1->is_valid()) {
++ assert(!r_2->is_valid(), "");
++ continue;
++ }
++ if (r_1->is_stack()) {
++ // Convert stack slot to an SP offset (+ wordSize to account for return address )
++ int st_off = regs[i].first()->reg2stack() * VMRegImpl::stack_slot_size;
++ if (!r_2->is_valid()) {
++ __ lw(t0, Address(esp, ld_off));
++ __ sd(t0, Address(sp, st_off), /*temp register*/t2);
++ } else {
++ //
++ // We are using two optoregs. This can be either T_OBJECT,
++ // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates
++ // two slots but only uses one for thr T_LONG or T_DOUBLE case
++ // So we must adjust where to pick up the data to match the
++ // interpreter.
++ //
++ // Interpreter local[n] == MSW, local[n+1] == LSW however locals
++ // are accessed as negative so LSW is at LOW address
++
++ // ld_off is MSW so get LSW
++ const int offset = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ?
++ next_off : ld_off;
++ __ ld(t0, Address(esp, offset));
++ // st_off is LSW (i.e. reg.first())
++ __ sd(t0, Address(sp, st_off), /*temp register*/t2);
++ }
++ } else if (r_1->is_Register()) { // Register argument
++ Register r = r_1->as_Register();
++ if (r_2->is_valid()) {
++ //
++ // We are using two VMRegs. This can be either T_OBJECT,
++ // T_ADDRESS, T_LONG, or T_DOUBLE the interpreter allocates
++ // two slots but only uses one for thr T_LONG or T_DOUBLE case
++ // So we must adjust where to pick up the data to match the
++ // interpreter.
++
++ const int offset = (sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) ?
++ next_off : ld_off;
++
++ // this can be a misaligned move
++ __ ld(r, Address(esp, offset));
++ } else {
++ // sign extend and use a full word?
++ __ lw(r, Address(esp, ld_off));
++ }
++ } else {
++ if (!r_2->is_valid()) {
++ __ flw(r_1->as_FloatRegister(), Address(esp, ld_off));
++ } else {
++ __ fld(r_1->as_FloatRegister(), Address(esp, next_off));
++ }
++ }
++ }
++
++ // 6243940 We might end up in handle_wrong_method if
++ // the callee is deoptimized as we race thru here. If that
++ // happens we don't want to take a safepoint because the
++ // caller frame will look interpreted and arguments are now
++ // "compiled" so it is much better to make this transition
++ // invisible to the stack walking code. Unfortunately if
++ // we try and find the callee by normal means a safepoint
++ // is possible. So we stash the desired callee in the thread
++ // and the vm will find there should this case occur.
++
++ __ sd(xmethod, Address(xthread, JavaThread::callee_target_offset()));
++
++ __ jr(t1);
++}
++
++// ---------------------------------------------------------------
++AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
++ int total_args_passed,
++ int comp_args_on_stack,
++ const BasicType *sig_bt,
++ const VMRegPair *regs,
++ AdapterFingerPrint* fingerprint) {
++ address i2c_entry = __ pc();
++ gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
++
++ address c2i_unverified_entry = __ pc();
++ Label skip_fixup;
++
++ Label ok;
++
++ const Register holder = t1;
++ const Register receiver = j_rarg0;
++ const Register tmp = t2; // A call-clobbered register not used for arg passing
++
++ // -------------------------------------------------------------------------
++ // Generate a C2I adapter. On entry we know xmethod holds the Method* during calls
++ // to the interpreter. The args start out packed in the compiled layout. They
++ // need to be unpacked into the interpreter layout. This will almost always
++ // require some stack space. We grow the current (compiled) stack, then repack
++ // the args. We finally end in a jump to the generic interpreter entry point.
++ // On exit from the interpreter, the interpreter will restore our SP (lest the
++ // compiled code, which relys solely on SP and not FP, get sick).
++
++ {
++ __ block_comment("c2i_unverified_entry {");
++ __ load_klass(t0, receiver, tmp);
++ __ ld(tmp, Address(holder, CompiledICHolder::holder_klass_offset()));
++ __ ld(xmethod, Address(holder, CompiledICHolder::holder_metadata_offset()));
++ __ beq(t0, tmp, ok);
++ __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
++
++ __ bind(ok);
++ // Method might have been compiled since the call site was patched to
++ // interpreted; if that is the case treat it as a miss so we can get
++ // the call site corrected.
++ __ ld(t0, Address(xmethod, in_bytes(Method::code_offset())));
++ __ beqz(t0, skip_fixup);
++ __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
++ __ block_comment("} c2i_unverified_entry");
++ }
++
++ address c2i_entry = __ pc();
++
++ // Class initialization barrier for static methods
++ address c2i_no_clinit_check_entry = NULL;
++ if (VM_Version::supports_fast_class_init_checks()) {
++ Label L_skip_barrier;
++
++ { // Bypass the barrier for non-static methods
++ __ lwu(t0, Address(xmethod, Method::access_flags_offset()));
++ __ test_bit(t1, t0, exact_log2(JVM_ACC_STATIC));
++ __ beqz(t1, L_skip_barrier); // non-static
++ }
++
++ __ load_method_holder(t1, xmethod);
++ __ clinit_barrier(t1, t0, &L_skip_barrier);
++ __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
++
++ __ bind(L_skip_barrier);
++ c2i_no_clinit_check_entry = __ pc();
++ }
++
++ BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
++ bs->c2i_entry_barrier(masm);
++
++ gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
++
++ __ flush();
++ return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry, c2i_no_clinit_check_entry);
++}
++
++int SharedRuntime::vector_calling_convention(VMRegPair *regs,
++ uint num_bits,
++ uint total_args_passed) {
++ Unimplemented();
++ return 0;
++}
++
++int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
++ VMRegPair *regs,
++ VMRegPair *regs2,
++ int total_args_passed) {
++ assert(regs2 == NULL, "not needed on riscv");
++
++ // We return the amount of VMRegImpl stack slots we need to reserve for all
++ // the arguments NOT counting out_preserve_stack_slots.
++
++ static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
++ c_rarg0, c_rarg1, c_rarg2, c_rarg3,
++ c_rarg4, c_rarg5, c_rarg6, c_rarg7
++ };
++ static const FloatRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
++ c_farg0, c_farg1, c_farg2, c_farg3,
++ c_farg4, c_farg5, c_farg6, c_farg7
++ };
++
++ uint int_args = 0;
++ uint fp_args = 0;
++ uint stk_args = 0; // inc by 2 each time
++
++ for (int i = 0; i < total_args_passed; i++) {
++ switch (sig_bt[i]) {
++ case T_BOOLEAN: // fall through
++ case T_CHAR: // fall through
++ case T_BYTE: // fall through
++ case T_SHORT: // fall through
++ case T_INT:
++ if (int_args < Argument::n_int_register_parameters_c) {
++ regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
++ } else {
++ regs[i].set1(VMRegImpl::stack2reg(stk_args));
++ stk_args += 2;
++ }
++ break;
++ case T_LONG: // fall through
++ assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
++ case T_OBJECT: // fall through
++ case T_ARRAY: // fall through
++ case T_ADDRESS: // fall through
++ case T_METADATA:
++ if (int_args < Argument::n_int_register_parameters_c) {
++ regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
++ } else {
++ regs[i].set2(VMRegImpl::stack2reg(stk_args));
++ stk_args += 2;
++ }
++ break;
++ case T_FLOAT:
++ if (fp_args < Argument::n_float_register_parameters_c) {
++ regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
++ } else if (int_args < Argument::n_int_register_parameters_c) {
++ regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
++ } else {
++ regs[i].set1(VMRegImpl::stack2reg(stk_args));
++ stk_args += 2;
++ }
++ break;
++ case T_DOUBLE:
++ assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
++ if (fp_args < Argument::n_float_register_parameters_c) {
++ regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
++ } else if (int_args < Argument::n_int_register_parameters_c) {
++ regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
++ } else {
++ regs[i].set2(VMRegImpl::stack2reg(stk_args));
++ stk_args += 2;
++ }
++ break;
++ case T_VOID: // Halves of longs and doubles
++ assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
++ regs[i].set_bad();
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++ }
++
++ return stk_args;
++}
++
++// On 64 bit we will store integer like items to the stack as
++// 64 bits items (riscv64 abi) even though java would only store
++// 32bits for a parameter. On 32bit it will simply be 32 bits
++// So this routine will do 32->32 on 32bit and 32->64 on 64bit
++static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
++ if (src.first()->is_stack()) {
++ if (dst.first()->is_stack()) {
++ // stack to stack
++ __ ld(t0, Address(fp, reg2offset_in(src.first())));
++ __ sd(t0, Address(sp, reg2offset_out(dst.first())));
++ } else {
++ // stack to reg
++ __ lw(dst.first()->as_Register(), Address(fp, reg2offset_in(src.first())));
++ }
++ } else if (dst.first()->is_stack()) {
++ // reg to stack
++ __ sd(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first())));
++ } else {
++ if (dst.first() != src.first()) {
++ // 32bits extend sign
++ __ sign_extend(dst.first()->as_Register(), src.first()->as_Register(), 32);
++ }
++ }
++}
++
++// An oop arg. Must pass a handle not the oop itself
++static void object_move(MacroAssembler* masm,
++ OopMap* map,
++ int oop_handle_offset,
++ int framesize_in_slots,
++ VMRegPair src,
++ VMRegPair dst,
++ bool is_receiver,
++ int* receiver_offset) {
++ // must pass a handle. First figure out the location we use as a handle
++ Register rHandle = dst.first()->is_stack() ? t1 : dst.first()->as_Register();
++
++ // See if oop is NULL if it is we need no handle
++
++ if (src.first()->is_stack()) {
++
++ // Oop is already on the stack as an argument
++ int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
++ map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
++ if (is_receiver) {
++ *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
++ }
++
++ __ ld(t0, Address(fp, reg2offset_in(src.first())));
++ __ la(rHandle, Address(fp, reg2offset_in(src.first())));
++ // conditionally move a NULL
++ Label notZero1;
++ __ bnez(t0, notZero1);
++ __ mv(rHandle, zr);
++ __ bind(notZero1);
++ } else {
++
++ // Oop is in an a register we must store it to the space we reserve
++ // on the stack for oop_handles and pass a handle if oop is non-NULL
++
++ const Register rOop = src.first()->as_Register();
++ int oop_slot = -1;
++ if (rOop == j_rarg0) {
++ oop_slot = 0;
++ } else if (rOop == j_rarg1) {
++ oop_slot = 1;
++ } else if (rOop == j_rarg2) {
++ oop_slot = 2;
++ } else if (rOop == j_rarg3) {
++ oop_slot = 3;
++ } else if (rOop == j_rarg4) {
++ oop_slot = 4;
++ } else if (rOop == j_rarg5) {
++ oop_slot = 5;
++ } else if (rOop == j_rarg6) {
++ oop_slot = 6;
++ } else {
++ assert(rOop == j_rarg7, "wrong register");
++ oop_slot = 7;
++ }
++
++ oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
++ int offset = oop_slot * VMRegImpl::stack_slot_size;
++
++ map->set_oop(VMRegImpl::stack2reg(oop_slot));
++ // Store oop in handle area, may be NULL
++ __ sd(rOop, Address(sp, offset));
++ if (is_receiver) {
++ *receiver_offset = offset;
++ }
++
++ //rOop maybe the same as rHandle
++ if (rOop == rHandle) {
++ Label isZero;
++ __ beqz(rOop, isZero);
++ __ la(rHandle, Address(sp, offset));
++ __ bind(isZero);
++ } else {
++ Label notZero2;
++ __ la(rHandle, Address(sp, offset));
++ __ bnez(rOop, notZero2);
++ __ mv(rHandle, zr);
++ __ bind(notZero2);
++ }
++ }
++
++ // If arg is on the stack then place it otherwise it is already in correct reg.
++ if (dst.first()->is_stack()) {
++ __ sd(rHandle, Address(sp, reg2offset_out(dst.first())));
++ }
++}
++
++// A float arg may have to do float reg int reg conversion
++static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
++ assert(src.first()->is_stack() && dst.first()->is_stack() ||
++ src.first()->is_reg() && dst.first()->is_reg() || src.first()->is_stack() && dst.first()->is_reg(), "Unexpected error");
++ if (src.first()->is_stack()) {
++ if (dst.first()->is_stack()) {
++ __ lwu(t0, Address(fp, reg2offset_in(src.first())));
++ __ sw(t0, Address(sp, reg2offset_out(dst.first())));
++ } else if (dst.first()->is_Register()) {
++ __ lwu(dst.first()->as_Register(), Address(fp, reg2offset_in(src.first())));
++ } else {
++ ShouldNotReachHere();
++ }
++ } else if (src.first() != dst.first()) {
++ if (src.is_single_phys_reg() && dst.is_single_phys_reg()) {
++ __ fmv_s(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
++ } else {
++ ShouldNotReachHere();
++ }
++ }
++}
++
++// A long move
++static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
++ if (src.first()->is_stack()) {
++ if (dst.first()->is_stack()) {
++ // stack to stack
++ __ ld(t0, Address(fp, reg2offset_in(src.first())));
++ __ sd(t0, Address(sp, reg2offset_out(dst.first())));
++ } else {
++ // stack to reg
++ __ ld(dst.first()->as_Register(), Address(fp, reg2offset_in(src.first())));
++ }
++ } else if (dst.first()->is_stack()) {
++ // reg to stack
++ __ sd(src.first()->as_Register(), Address(sp, reg2offset_out(dst.first())));
++ } else {
++ if (dst.first() != src.first()) {
++ __ mv(dst.first()->as_Register(), src.first()->as_Register());
++ }
++ }
++}
++
++// A double move
++static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
++ assert(src.first()->is_stack() && dst.first()->is_stack() ||
++ src.first()->is_reg() && dst.first()->is_reg() || src.first()->is_stack() && dst.first()->is_reg(), "Unexpected error");
++ if (src.first()->is_stack()) {
++ if (dst.first()->is_stack()) {
++ __ ld(t0, Address(fp, reg2offset_in(src.first())));
++ __ sd(t0, Address(sp, reg2offset_out(dst.first())));
++ } else if (dst.first()-> is_Register()) {
++ __ ld(dst.first()->as_Register(), Address(fp, reg2offset_in(src.first())));
++ } else {
++ ShouldNotReachHere();
++ }
++ } else if (src.first() != dst.first()) {
++ if (src.is_single_phys_reg() && dst.is_single_phys_reg()) {
++ __ fmv_d(dst.first()->as_FloatRegister(), src.first()->as_FloatRegister());
++ } else {
++ ShouldNotReachHere();
++ }
++ }
++}
++
++void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
++ // We always ignore the frame_slots arg and just use the space just below frame pointer
++ // which by this time is free to use
++ switch (ret_type) {
++ case T_FLOAT:
++ __ fsw(f10, Address(fp, -3 * wordSize));
++ break;
++ case T_DOUBLE:
++ __ fsd(f10, Address(fp, -3 * wordSize));
++ break;
++ case T_VOID: break;
++ default: {
++ __ sd(x10, Address(fp, -3 * wordSize));
++ }
++ }
++}
++
++void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
++ // We always ignore the frame_slots arg and just use the space just below frame pointer
++ // which by this time is free to use
++ switch (ret_type) {
++ case T_FLOAT:
++ __ flw(f10, Address(fp, -3 * wordSize));
++ break;
++ case T_DOUBLE:
++ __ fld(f10, Address(fp, -3 * wordSize));
++ break;
++ case T_VOID: break;
++ default: {
++ __ ld(x10, Address(fp, -3 * wordSize));
++ }
++ }
++}
++
++static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
++ RegSet x;
++ for ( int i = first_arg ; i < arg_count ; i++ ) {
++ if (args[i].first()->is_Register()) {
++ x = x + args[i].first()->as_Register();
++ } else if (args[i].first()->is_FloatRegister()) {
++ __ addi(sp, sp, -2 * wordSize);
++ __ fsd(args[i].first()->as_FloatRegister(), Address(sp, 0));
++ }
++ }
++ __ push_reg(x, sp);
++}
++
++static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
++ RegSet x;
++ for ( int i = first_arg ; i < arg_count ; i++ ) {
++ if (args[i].first()->is_Register()) {
++ x = x + args[i].first()->as_Register();
++ } else {
++ ;
++ }
++ }
++ __ pop_reg(x, sp);
++ for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
++ if (args[i].first()->is_Register()) {
++ ;
++ } else if (args[i].first()->is_FloatRegister()) {
++ __ fld(args[i].first()->as_FloatRegister(), Address(sp, 0));
++ __ add(sp, sp, 2 * wordSize);
++ }
++ }
++}
++
++// Unpack an array argument into a pointer to the body and the length
++// if the array is non-null, otherwise pass 0 for both.
++static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) { Unimplemented(); }
++
++class ComputeMoveOrder: public StackObj {
++ class MoveOperation: public ResourceObj {
++ friend class ComputeMoveOrder;
++ private:
++ VMRegPair _src;
++ VMRegPair _dst;
++ int _src_index;
++ int _dst_index;
++ bool _processed;
++ MoveOperation* _next;
++ MoveOperation* _prev;
++
++ static int get_id(VMRegPair r) { Unimplemented(); return 0; }
++
++ public:
++ MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
++ _src(src)
++ , _dst(dst)
++ , _src_index(src_index)
++ , _dst_index(dst_index)
++ , _processed(false)
++ , _next(NULL)
++ , _prev(NULL) { Unimplemented(); }
++
++ VMRegPair src() const { Unimplemented(); return _src; }
++ int src_id() const { Unimplemented(); return 0; }
++ int src_index() const { Unimplemented(); return 0; }
++ VMRegPair dst() const { Unimplemented(); return _src; }
++ void set_dst(int i, VMRegPair dst) { Unimplemented(); }
++ int dst_index() const { Unimplemented(); return 0; }
++ int dst_id() const { Unimplemented(); return 0; }
++ MoveOperation* next() const { Unimplemented(); return 0; }
++ MoveOperation* prev() const { Unimplemented(); return 0; }
++ void set_processed() { Unimplemented(); }
++ bool is_processed() const { Unimplemented(); return 0; }
++
++ // insert
++ void break_cycle(VMRegPair temp_register) { Unimplemented(); }
++
++ void link(GrowableArray<MoveOperation*>& killer) { Unimplemented(); }
++ };
++
++ private:
++ GrowableArray<MoveOperation*> edges;
++
++ public:
++ ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
++ BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) { Unimplemented(); }
++
++ // Collected all the move operations
++ void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) { Unimplemented(); }
++
++ // Walk the edges breaking cycles between moves. The result list
++ // can be walked in order to produce the proper set of loads
++ GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) { Unimplemented(); return 0; }
++};
++
++static void rt_call(MacroAssembler* masm, address dest) {
++ CodeBlob *cb = CodeCache::find_blob(dest);
++ RuntimeAddress target(dest);
++ if (cb) {
++ __ far_call(target);
++ } else {
++ __ relocate(target.rspec(), [&] {
++ int32_t offset;
++ __ la_patchable(t0, target, offset);
++ __ jalr(x1, t0, offset);
++ });
++ }
++}
++
++static void verify_oop_args(MacroAssembler* masm,
++ const methodHandle& method,
++ const BasicType* sig_bt,
++ const VMRegPair* regs) {
++ const Register temp_reg = x9; // not part of any compiled calling seq
++ if (VerifyOops) {
++ for (int i = 0; i < method->size_of_parameters(); i++) {
++ if (sig_bt[i] == T_OBJECT ||
++ sig_bt[i] == T_ARRAY) {
++ VMReg r = regs[i].first();
++ assert(r->is_valid(), "bad oop arg");
++ if (r->is_stack()) {
++ __ ld(temp_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
++ __ verify_oop(temp_reg);
++ } else {
++ __ verify_oop(r->as_Register());
++ }
++ }
++ }
++ }
++}
++
++static void gen_special_dispatch(MacroAssembler* masm,
++ const methodHandle& method,
++ const BasicType* sig_bt,
++ const VMRegPair* regs) {
++ verify_oop_args(masm, method, sig_bt, regs);
++ vmIntrinsics::ID iid = method->intrinsic_id();
++
++ // Now write the args into the outgoing interpreter space
++ bool has_receiver = false;
++ Register receiver_reg = noreg;
++ int member_arg_pos = -1;
++ Register member_reg = noreg;
++ int ref_kind = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
++ if (ref_kind != 0) {
++ member_arg_pos = method->size_of_parameters() - 1; // trailing MemberName argument
++ member_reg = x9; // known to be free at this point
++ has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
++ } else if (iid == vmIntrinsics::_invokeBasic || iid == vmIntrinsics::_linkToNative) {
++ has_receiver = true;
++ } else {
++ fatal("unexpected intrinsic id %d", vmIntrinsics::as_int(iid));
++ }
++
++ if (member_reg != noreg) {
++ // Load the member_arg into register, if necessary.
++ SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
++ VMReg r = regs[member_arg_pos].first();
++ if (r->is_stack()) {
++ __ ld(member_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
++ } else {
++ // no data motion is needed
++ member_reg = r->as_Register();
++ }
++ }
++
++ if (has_receiver) {
++ // Make sure the receiver is loaded into a register.
++ assert(method->size_of_parameters() > 0, "oob");
++ assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
++ VMReg r = regs[0].first();
++ assert(r->is_valid(), "bad receiver arg");
++ if (r->is_stack()) {
++ // Porting note: This assumes that compiled calling conventions always
++ // pass the receiver oop in a register. If this is not true on some
++ // platform, pick a temp and load the receiver from stack.
++ fatal("receiver always in a register");
++ receiver_reg = x12; // known to be free at this point
++ __ ld(receiver_reg, Address(sp, r->reg2stack() * VMRegImpl::stack_slot_size));
++ } else {
++ // no data motion is needed
++ receiver_reg = r->as_Register();
++ }
++ }
++
++ // Figure out which address we are really jumping to:
++ MethodHandles::generate_method_handle_dispatch(masm, iid,
++ receiver_reg, member_reg, /*for_compiler_entry:*/ true);
++}
++
++// ---------------------------------------------------------------------------
++// Generate a native wrapper for a given method. The method takes arguments
++// in the Java compiled code convention, marshals them to the native
++// convention (handlizes oops, etc), transitions to native, makes the call,
++// returns to java state (possibly blocking), unhandlizes any result and
++// returns.
++//
++// Critical native functions are a shorthand for the use of
++// GetPrimtiveArrayCritical and disallow the use of any other JNI
++// functions. The wrapper is expected to unpack the arguments before
++// passing them to the callee and perform checks before and after the
++// native call to ensure that they GCLocker
++// lock_critical/unlock_critical semantics are followed. Some other
++// parts of JNI setup are skipped like the tear down of the JNI handle
++// block and the check for pending exceptions it's impossible for them
++// to be thrown.
++//
++// They are roughly structured like this:
++// if (GCLocker::needs_gc()) SharedRuntime::block_for_jni_critical()
++// tranistion to thread_in_native
++// unpack arrray arguments and call native entry point
++// check for safepoint in progress
++// check if any thread suspend flags are set
++// call into JVM and possible unlock the JNI critical
++// if a GC was suppressed while in the critical native.
++// transition back to thread_in_Java
++// return to caller
++//
++nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
++ const methodHandle& method,
++ int compile_id,
++ BasicType* in_sig_bt,
++ VMRegPair* in_regs,
++ BasicType ret_type,
++ address critical_entry) {
++ if (method->is_method_handle_intrinsic()) {
++ vmIntrinsics::ID iid = method->intrinsic_id();
++ intptr_t start = (intptr_t)__ pc();
++ int vep_offset = ((intptr_t)__ pc()) - start;
++
++ // First instruction must be a nop as it may need to be patched on deoptimisation
++ {
++ Assembler::IncompressibleRegion ir(masm); // keep the nop as 4 bytes for patching.
++ MacroAssembler::assert_alignment(__ pc());
++ __ nop(); // 4 bytes
++ }
++ gen_special_dispatch(masm,
++ method,
++ in_sig_bt,
++ in_regs);
++ int frame_complete = ((intptr_t)__ pc()) - start; // not complete, period
++ __ flush();
++ int stack_slots = SharedRuntime::out_preserve_stack_slots(); // no out slots at all, actually
++ return nmethod::new_native_nmethod(method,
++ compile_id,
++ masm->code(),
++ vep_offset,
++ frame_complete,
++ stack_slots / VMRegImpl::slots_per_word,
++ in_ByteSize(-1),
++ in_ByteSize(-1),
++ (OopMapSet*)NULL);
++ }
++ bool is_critical_native = true;
++ address native_func = critical_entry;
++ if (native_func == NULL) {
++ native_func = method->native_function();
++ is_critical_native = false;
++ }
++ assert(native_func != NULL, "must have function");
++
++ // An OopMap for lock (and class if static)
++ OopMapSet *oop_maps = new OopMapSet();
++ assert_cond(oop_maps != NULL);
++ intptr_t start = (intptr_t)__ pc();
++
++ // We have received a description of where all the java arg are located
++ // on entry to the wrapper. We need to convert these args to where
++ // the jni function will expect them. To figure out where they go
++ // we convert the java signature to a C signature by inserting
++ // the hidden arguments as arg[0] and possibly arg[1] (static method)
++
++ const int total_in_args = method->size_of_parameters();
++ int total_c_args = total_in_args;
++ if (!is_critical_native) {
++ total_c_args += 1;
++ if (method->is_static()) {
++ total_c_args++;
++ }
++ } else {
++ for (int i = 0; i < total_in_args; i++) {
++ if (in_sig_bt[i] == T_ARRAY) {
++ total_c_args++;
++ }
++ }
++ }
++
++ BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
++ VMRegPair* out_regs = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
++ BasicType* in_elem_bt = NULL;
++
++ int argc = 0;
++ if (!is_critical_native) {
++ out_sig_bt[argc++] = T_ADDRESS;
++ if (method->is_static()) {
++ out_sig_bt[argc++] = T_OBJECT;
++ }
++
++ for (int i = 0; i < total_in_args ; i++ ) {
++ out_sig_bt[argc++] = in_sig_bt[i];
++ }
++ } else {
++ in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
++ SignatureStream ss(method->signature());
++ for (int i = 0; i < total_in_args ; i++ ) {
++ if (in_sig_bt[i] == T_ARRAY) {
++ // Arrays are passed as int, elem* pair
++ out_sig_bt[argc++] = T_INT;
++ out_sig_bt[argc++] = T_ADDRESS;
++ ss.skip_array_prefix(1); // skip one '['
++ assert(ss.is_primitive(), "primitive type expected");
++ in_elem_bt[i] = ss.type();
++ } else {
++ out_sig_bt[argc++] = in_sig_bt[i];
++ in_elem_bt[i] = T_VOID;
++ }
++ if (in_sig_bt[i] != T_VOID) {
++ assert(in_sig_bt[i] == ss.type() ||
++ in_sig_bt[i] == T_ARRAY, "must match");
++ ss.next();
++ }
++ }
++ }
++
++ // Now figure out where the args must be stored and how much stack space
++ // they require.
++ int out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
++
++ // Compute framesize for the wrapper. We need to handlize all oops in
++ // incoming registers
++
++ // Calculate the total number of stack slots we will need.
++
++ // First count the abi requirement plus all of the outgoing args
++ int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
++
++ // Now the space for the inbound oop handle area
++ int total_save_slots = 8 * VMRegImpl::slots_per_word; // 8 arguments passed in registers
++ if (is_critical_native) {
++ // Critical natives may have to call out so they need a save area
++ // for register arguments.
++ int double_slots = 0;
++ int single_slots = 0;
++ for ( int i = 0; i < total_in_args; i++) {
++ if (in_regs[i].first()->is_Register()) {
++ const Register reg = in_regs[i].first()->as_Register();
++ switch (in_sig_bt[i]) {
++ case T_BOOLEAN:
++ case T_BYTE:
++ case T_SHORT:
++ case T_CHAR:
++ case T_INT: single_slots++; break;
++ case T_ARRAY: // specific to LP64 (7145024)
++ case T_LONG: double_slots++; break;
++ default: ShouldNotReachHere();
++ }
++ } else if (in_regs[i].first()->is_FloatRegister()) {
++ ShouldNotReachHere();
++ }
++ }
++ total_save_slots = double_slots * 2 + single_slots;
++ // align the save area
++ if (double_slots != 0) {
++ stack_slots = align_up(stack_slots, 2);
++ }
++ }
++
++ int oop_handle_offset = stack_slots;
++ stack_slots += total_save_slots;
++
++ // Now any space we need for handlizing a klass if static method
++
++ int klass_slot_offset = 0;
++ int klass_offset = -1;
++ int lock_slot_offset = 0;
++ bool is_static = false;
++
++ if (method->is_static()) {
++ klass_slot_offset = stack_slots;
++ stack_slots += VMRegImpl::slots_per_word;
++ klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
++ is_static = true;
++ }
++
++ // Plus a lock if needed
++
++ if (method->is_synchronized()) {
++ lock_slot_offset = stack_slots;
++ stack_slots += VMRegImpl::slots_per_word;
++ }
++
++ // Now a place (+2) to save return values or temp during shuffling
++ // + 4 for return address (which we own) and saved fp
++ stack_slots += 6;
++
++ // Ok The space we have allocated will look like:
++ //
++ //
++ // FP-> | |
++ // | 2 slots (ra) |
++ // | 2 slots (fp) |
++ // |---------------------|
++ // | 2 slots for moves |
++ // |---------------------|
++ // | lock box (if sync) |
++ // |---------------------| <- lock_slot_offset
++ // | klass (if static) |
++ // |---------------------| <- klass_slot_offset
++ // | oopHandle area |
++ // |---------------------| <- oop_handle_offset (8 java arg registers)
++ // | outbound memory |
++ // | based arguments |
++ // | |
++ // |---------------------|
++ // | |
++ // SP-> | out_preserved_slots |
++ //
++ //
++
++
++ // Now compute actual number of stack words we need rounding to make
++ // stack properly aligned.
++ stack_slots = align_up(stack_slots, StackAlignmentInSlots);
++
++ int stack_size = stack_slots * VMRegImpl::stack_slot_size;
++
++ // First thing make an ic check to see if we should even be here
++
++ // We are free to use all registers as temps without saving them and
++ // restoring them except fp. fp is the only callee save register
++ // as far as the interpreter and the compiler(s) are concerned.
++
++
++ const Register ic_reg = t1;
++ const Register receiver = j_rarg0;
++
++ Label hit;
++ Label exception_pending;
++
++ __ verify_oop(receiver);
++ assert_different_registers(ic_reg, receiver, t0, t2);
++ __ cmp_klass(receiver, ic_reg, t0, t2 /* call-clobbered t2 as a tmp */, hit);
++
++ __ far_jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
++
++ // Verified entry point must be aligned
++ __ align(8);
++
++ __ bind(hit);
++
++ int vep_offset = ((intptr_t)__ pc()) - start;
++
++ // If we have to make this method not-entrant we'll overwrite its
++ // first instruction with a jump.
++ {
++ Assembler::IncompressibleRegion ir(masm); // keep the nop as 4 bytes for patching.
++ MacroAssembler::assert_alignment(__ pc());
++ __ nop(); // 4 bytes
++ }
++
++ if (VM_Version::supports_fast_class_init_checks() && method->needs_clinit_barrier()) {
++ Label L_skip_barrier;
++ __ mov_metadata(t1, method->method_holder()); // InstanceKlass*
++ __ clinit_barrier(t1, t0, &L_skip_barrier);
++ __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
++
++ __ bind(L_skip_barrier);
++ }
++
++ // Generate stack overflow check
++ __ bang_stack_with_offset(checked_cast<int>(StackOverflow::stack_shadow_zone_size()));
++
++ // Generate a new frame for the wrapper.
++ __ enter();
++ // -2 because return address is already present and so is saved fp
++ __ sub(sp, sp, stack_size - 2 * wordSize);
++
++ BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
++ assert_cond(bs != NULL);
++ bs->nmethod_entry_barrier(masm);
++
++ // Frame is now completed as far as size and linkage.
++ int frame_complete = ((intptr_t)__ pc()) - start;
++
++ // We use x18 as the oop handle for the receiver/klass
++ // It is callee save so it survives the call to native
++
++ const Register oop_handle_reg = x18;
++
++ //
++ // We immediately shuffle the arguments so that any vm call we have to
++ // make from here on out (sync slow path, jvmti, etc.) we will have
++ // captured the oops from our caller and have a valid oopMap for
++ // them.
++
++ // -----------------
++ // The Grand Shuffle
++
++ // The Java calling convention is either equal (linux) or denser (win64) than the
++ // c calling convention. However the because of the jni_env argument the c calling
++ // convention always has at least one more (and two for static) arguments than Java.
++ // Therefore if we move the args from java -> c backwards then we will never have
++ // a register->register conflict and we don't have to build a dependency graph
++ // and figure out how to break any cycles.
++ //
++
++ // Record esp-based slot for receiver on stack for non-static methods
++ int receiver_offset = -1;
++
++ // This is a trick. We double the stack slots so we can claim
++ // the oops in the caller's frame. Since we are sure to have
++ // more args than the caller doubling is enough to make
++ // sure we can capture all the incoming oop args from the
++ // caller.
++ //
++ OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
++ assert_cond(map != NULL);
++
++ int float_args = 0;
++ int int_args = 0;
++
++#ifdef ASSERT
++ bool reg_destroyed[RegisterImpl::number_of_registers];
++ bool freg_destroyed[FloatRegisterImpl::number_of_registers];
++ for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
++ reg_destroyed[r] = false;
++ }
++ for ( int f = 0 ; f < FloatRegisterImpl::number_of_registers ; f++ ) {
++ freg_destroyed[f] = false;
++ }
++
++#endif /* ASSERT */
++
++ // This may iterate in two different directions depending on the
++ // kind of native it is. The reason is that for regular JNI natives
++ // the incoming and outgoing registers are offset upwards and for
++ // critical natives they are offset down.
++ GrowableArray<int> arg_order(2 * total_in_args);
++ VMRegPair tmp_vmreg;
++ tmp_vmreg.set2(x9->as_VMReg());
++
++ if (!is_critical_native) {
++ for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
++ arg_order.push(i);
++ arg_order.push(c_arg);
++ }
++ } else {
++ // Compute a valid move order, using tmp_vmreg to break any cycles
++ ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
++ }
++
++ int temploc = -1;
++ for (int ai = 0; ai < arg_order.length(); ai += 2) {
++ int i = arg_order.at(ai);
++ int c_arg = arg_order.at(ai + 1);
++ __ block_comment(err_msg("mv %d -> %d", i, c_arg));
++ if (c_arg == -1) {
++ assert(is_critical_native, "should only be required for critical natives");
++ // This arg needs to be moved to a temporary
++ __ mv(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
++ in_regs[i] = tmp_vmreg;
++ temploc = i;
++ continue;
++ } else if (i == -1) {
++ assert(is_critical_native, "should only be required for critical natives");
++ // Read from the temporary location
++ assert(temploc != -1, "must be valid");
++ i = temploc;
++ temploc = -1;
++ }
++#ifdef ASSERT
++ if (in_regs[i].first()->is_Register()) {
++ assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
++ } else if (in_regs[i].first()->is_FloatRegister()) {
++ assert(!freg_destroyed[in_regs[i].first()->as_FloatRegister()->encoding()], "destroyed reg!");
++ }
++ if (out_regs[c_arg].first()->is_Register()) {
++ reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
++ } else if (out_regs[c_arg].first()->is_FloatRegister()) {
++ freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true;
++ }
++#endif /* ASSERT */
++ switch (in_sig_bt[i]) {
++ case T_ARRAY:
++ if (is_critical_native) {
++ unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
++ c_arg++;
++#ifdef ASSERT
++ if (out_regs[c_arg].first()->is_Register()) {
++ reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
++ } else if (out_regs[c_arg].first()->is_FloatRegister()) {
++ freg_destroyed[out_regs[c_arg].first()->as_FloatRegister()->encoding()] = true;
++ }
++#endif
++ int_args++;
++ break;
++ }
++ case T_OBJECT:
++ assert(!is_critical_native, "no oop arguments");
++ object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
++ ((i == 0) && (!is_static)),
++ &receiver_offset);
++ int_args++;
++ break;
++ case T_VOID:
++ break;
++
++ case T_FLOAT:
++ float_move(masm, in_regs[i], out_regs[c_arg]);
++ float_args++;
++ break;
++
++ case T_DOUBLE:
++ assert( i + 1 < total_in_args &&
++ in_sig_bt[i + 1] == T_VOID &&
++ out_sig_bt[c_arg + 1] == T_VOID, "bad arg list");
++ double_move(masm, in_regs[i], out_regs[c_arg]);
++ float_args++;
++ break;
++
++ case T_LONG :
++ long_move(masm, in_regs[i], out_regs[c_arg]);
++ int_args++;
++ break;
++
++ case T_ADDRESS:
++ assert(false, "found T_ADDRESS in java args");
++ break;
++
++ default:
++ move32_64(masm, in_regs[i], out_regs[c_arg]);
++ int_args++;
++ }
++ }
++
++ // point c_arg at the first arg that is already loaded in case we
++ // need to spill before we call out
++ int c_arg = total_c_args - total_in_args;
++
++ // Pre-load a static method's oop into c_rarg1.
++ if (method->is_static() && !is_critical_native) {
++
++ // load oop into a register
++ __ movoop(c_rarg1,
++ JNIHandles::make_local(method->method_holder()->java_mirror()),
++ /*immediate*/true);
++
++ // Now handlize the static class mirror it's known not-null.
++ __ sd(c_rarg1, Address(sp, klass_offset));
++ map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
++
++ // Now get the handle
++ __ la(c_rarg1, Address(sp, klass_offset));
++ // and protect the arg if we must spill
++ c_arg--;
++ }
++
++ // Change state to native (we save the return address in the thread, since it might not
++ // be pushed on the stack when we do a stack traversal).
++ // We use the same pc/oopMap repeatedly when we call out
++
++ Label native_return;
++ __ set_last_Java_frame(sp, noreg, native_return, t0);
++
++ Label dtrace_method_entry, dtrace_method_entry_done;
++ {
++ ExternalAddress target((address)&DTraceMethodProbes);
++ __ relocate(target.rspec(), [&] {
++ int32_t offset;
++ __ la_patchable(t0, target, offset);
++ __ lbu(t0, Address(t0, offset));
++ });
++ __ bnez(t0, dtrace_method_entry);
++ __ bind(dtrace_method_entry_done);
++ }
++
++ // RedefineClasses() tracing support for obsolete method entry
++ if (log_is_enabled(Trace, redefine, class, obsolete)) {
++ // protect the args we've loaded
++ save_args(masm, total_c_args, c_arg, out_regs);
++ __ mov_metadata(c_rarg1, method());
++ __ call_VM_leaf(
++ CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
++ xthread, c_rarg1);
++ restore_args(masm, total_c_args, c_arg, out_regs);
++ }
++
++ // Lock a synchronized method
++
++ // Register definitions used by locking and unlocking
++
++ const Register swap_reg = x10;
++ const Register obj_reg = x9; // Will contain the oop
++ const Register lock_reg = x30; // Address of compiler lock object (BasicLock)
++ const Register old_hdr = x30; // value of old header at unlock time
++ const Register tmp = ra;
++
++ Label slow_path_lock;
++ Label lock_done;
++
++ if (method->is_synchronized()) {
++
++ const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
++
++ // Get the handle (the 2nd argument)
++ __ mv(oop_handle_reg, c_rarg1);
++
++ // Get address of the box
++ __ la(lock_reg, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
++
++ // Load the oop from the handle
++ __ ld(obj_reg, Address(oop_handle_reg, 0));
++
++ if (UseBiasedLocking) {
++ __ biased_locking_enter(lock_reg, obj_reg, swap_reg, tmp, false, lock_done, &slow_path_lock);
++ }
++
++ // Load (object->mark() | 1) into swap_reg % x10
++ __ ld(t0, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
++ __ ori(swap_reg, t0, 1);
++
++ // Save (object->mark() | 1) into BasicLock's displaced header
++ __ sd(swap_reg, Address(lock_reg, mark_word_offset));
++
++ // src -> dest if dest == x10 else x10 <- dest
++ {
++ Label here;
++ __ cmpxchg_obj_header(x10, lock_reg, obj_reg, t0, lock_done, /*fallthrough*/NULL);
++ }
++
++ // Test if the oopMark is an obvious stack pointer, i.e.,
++ // 1) (mark & 3) == 0, and
++ // 2) sp <= mark < mark + os::pagesize()
++ // These 3 tests can be done by evaluating the following
++ // expression: ((mark - sp) & (3 - os::vm_page_size())),
++ // assuming both stack pointer and pagesize have their
++ // least significant 2 bits clear.
++ // NOTE: the oopMark is in swap_reg % 10 as the result of cmpxchg
++
++ __ sub(swap_reg, swap_reg, sp);
++ __ andi(swap_reg, swap_reg, 3 - os::vm_page_size());
++
++ // Save the test result, for recursive case, the result is zero
++ __ sd(swap_reg, Address(lock_reg, mark_word_offset));
++ __ bnez(swap_reg, slow_path_lock);
++
++ // Slow path will re-enter here
++ __ bind(lock_done);
++ }
++
++
++ // Finally just about ready to make the JNI call
++
++ // get JNIEnv* which is first argument to native
++ if (!is_critical_native) {
++ __ la(c_rarg0, Address(xthread, in_bytes(JavaThread::jni_environment_offset())));
++
++ // Now set thread in native
++ __ la(t1, Address(xthread, JavaThread::thread_state_offset()));
++ __ mv(t0, _thread_in_native);
++ __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore);
++ __ sw(t0, Address(t1));
++ }
++
++ rt_call(masm, native_func);
++
++ __ bind(native_return);
++
++ intptr_t return_pc = (intptr_t) __ pc();
++ oop_maps->add_gc_map(return_pc - start, map);
++
++ // Unpack native results.
++ if (ret_type != T_OBJECT && ret_type != T_ARRAY) {
++ __ cast_primitive_type(ret_type, x10);
++ }
++
++ Label safepoint_in_progress, safepoint_in_progress_done;
++ Label after_transition;
++
++ // If this is a critical native, check for a safepoint or suspend request after the call.
++ // If a safepoint is needed, transition to native, then to native_trans to handle
++ // safepoint like the native methods that are not critical natives.
++ if (is_critical_native) {
++ Label needs_safepoint;
++ __ safepoint_poll(needs_safepoint, false /* as_return */, true /* acquire */, false /* in_nmethod */);
++ __ lwu(t0, Address(xthread, JavaThread::suspend_flags_offset()));
++ __ bnez(t0, needs_safepoint);
++ __ j(after_transition);
++ __ bind(needs_safepoint);
++ }
++
++ // Switch thread to "native transition" state before reading the synchronization state.
++ // This additional state is necessary because reading and testing the synchronization
++ // state is not atomic w.r.t. GC, as this scenario demonstrates:
++ // Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
++ // VM thread changes sync state to synchronizing and suspends threads for GC.
++ // Thread A is resumed to finish this native method, but doesn't block here since it
++ // didn't see any synchronization is progress, and escapes.
++ __ mv(t0, _thread_in_native_trans);
++
++ __ sw(t0, Address(xthread, JavaThread::thread_state_offset()));
++
++ // Force this write out before the read below
++ __ membar(MacroAssembler::AnyAny);
++
++ // check for safepoint operation in progress and/or pending suspend requests
++ {
++ // We need an acquire here to ensure that any subsequent load of the
++ // global SafepointSynchronize::_state flag is ordered after this load
++ // of the thread-local polling word. We don't want this poll to
++ // return false (i.e. not safepointing) and a later poll of the global
++ // SafepointSynchronize::_state spuriously to return true.
++ // This is to avoid a race when we're in a native->Java transition
++ // racing the code which wakes up from a safepoint.
++
++ __ safepoint_poll(safepoint_in_progress, true /* at_return */, true /* acquire */, false /* in_nmethod */);
++ __ lwu(t0, Address(xthread, JavaThread::suspend_flags_offset()));
++ __ bnez(t0, safepoint_in_progress);
++ __ bind(safepoint_in_progress_done);
++ }
++
++ // change thread state
++ __ la(t1, Address(xthread, JavaThread::thread_state_offset()));
++ __ mv(t0, _thread_in_Java);
++ __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore);
++ __ sw(t0, Address(t1));
++ __ bind(after_transition);
++
++ Label reguard;
++ Label reguard_done;
++ __ lbu(t0, Address(xthread, JavaThread::stack_guard_state_offset()));
++ __ mv(t1, StackOverflow::stack_guard_yellow_reserved_disabled);
++ __ beq(t0, t1, reguard);
++ __ bind(reguard_done);
++
++ // native result if any is live
++
++ // Unlock
++ Label unlock_done;
++ Label slow_path_unlock;
++ if (method->is_synchronized()) {
++
++ // Get locked oop from the handle we passed to jni
++ __ ld(obj_reg, Address(oop_handle_reg, 0));
++
++ Label done;
++
++ if (UseBiasedLocking) {
++ __ biased_locking_exit(obj_reg, old_hdr, done);
++ }
++
++ // Simple recursive lock?
++ __ ld(t0, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
++ __ beqz(t0, done);
++
++ // Must save x10 if it is live now because cmpxchg must use it
++ if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
++ save_native_result(masm, ret_type, stack_slots);
++ }
++
++ // get address of the stack lock
++ __ la(x10, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
++ // get old displaced header
++ __ ld(old_hdr, Address(x10, 0));
++
++ // Atomic swap old header if oop still contains the stack lock
++ Label succeed;
++ __ cmpxchg_obj_header(x10, old_hdr, obj_reg, t0, succeed, &slow_path_unlock);
++ __ bind(succeed);
++
++ // slow path re-enters here
++ __ bind(unlock_done);
++ if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
++ restore_native_result(masm, ret_type, stack_slots);
++ }
++
++ __ bind(done);
++ }
++
++ Label dtrace_method_exit, dtrace_method_exit_done;
++ {
++ ExternalAddress target((address)&DTraceMethodProbes);
++ __ relocate(target.rspec(), [&] {
++ int32_t offset;
++ __ la_patchable(t0, target, offset);
++ __ lbu(t0, Address(t0, offset));
++ });
++ __ bnez(t0, dtrace_method_exit);
++ __ bind(dtrace_method_exit_done);
++ }
++
++ __ reset_last_Java_frame(false);
++
++ // Unbox oop result, e.g. JNIHandles::resolve result.
++ if (is_reference_type(ret_type)) {
++ __ resolve_jobject(x10, xthread, t1);
++ }
++
++ if (CheckJNICalls) {
++ // clear_pending_jni_exception_check
++ __ sd(zr, Address(xthread, JavaThread::pending_jni_exception_check_fn_offset()));
++ }
++
++ if (!is_critical_native) {
++ // reset handle block
++ __ ld(x12, Address(xthread, JavaThread::active_handles_offset()));
++ __ sd(zr, Address(x12, JNIHandleBlock::top_offset_in_bytes()));
++ }
++
++ __ leave();
++
++ if (!is_critical_native) {
++ // Any exception pending?
++ __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset())));
++ __ bnez(t0, exception_pending);
++ }
++
++ // We're done
++ __ ret();
++
++ // Unexpected paths are out of line and go here
++
++ if (!is_critical_native) {
++ // forward the exception
++ __ bind(exception_pending);
++
++ // and forward the exception
++ __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
++ }
++
++ // Slow path locking & unlocking
++ if (method->is_synchronized()) {
++
++ __ block_comment("Slow path lock {");
++ __ bind(slow_path_lock);
++
++ // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
++ // args are (oop obj, BasicLock* lock, JavaThread* thread)
++
++ // protect the args we've loaded
++ save_args(masm, total_c_args, c_arg, out_regs);
++
++ __ mv(c_rarg0, obj_reg);
++ __ mv(c_rarg1, lock_reg);
++ __ mv(c_rarg2, xthread);
++
++ // Not a leaf but we have last_Java_frame setup as we want
++ __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
++ restore_args(masm, total_c_args, c_arg, out_regs);
++
++#ifdef ASSERT
++ { Label L;
++ __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset())));
++ __ beqz(t0, L);
++ __ stop("no pending exception allowed on exit from monitorenter");
++ __ bind(L);
++ }
++#endif
++ __ j(lock_done);
++
++ __ block_comment("} Slow path lock");
++
++ __ block_comment("Slow path unlock {");
++ __ bind(slow_path_unlock);
++
++ if (ret_type == T_FLOAT || ret_type == T_DOUBLE) {
++ save_native_result(masm, ret_type, stack_slots);
++ }
++
++ __ mv(c_rarg2, xthread);
++ __ la(c_rarg1, Address(sp, lock_slot_offset * VMRegImpl::stack_slot_size));
++ __ mv(c_rarg0, obj_reg);
++
++ // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
++ // NOTE that obj_reg == x9 currently
++ __ ld(x9, Address(xthread, in_bytes(Thread::pending_exception_offset())));
++ __ sd(zr, Address(xthread, in_bytes(Thread::pending_exception_offset())));
++
++ rt_call(masm, CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C));
++
++#ifdef ASSERT
++ {
++ Label L;
++ __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset())));
++ __ beqz(t0, L);
++ __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
++ __ bind(L);
++ }
++#endif /* ASSERT */
++
++ __ sd(x9, Address(xthread, in_bytes(Thread::pending_exception_offset())));
++
++ if (ret_type == T_FLOAT || ret_type == T_DOUBLE) {
++ restore_native_result(masm, ret_type, stack_slots);
++ }
++ __ j(unlock_done);
++
++ __ block_comment("} Slow path unlock");
++
++ } // synchronized
++
++ // SLOW PATH Reguard the stack if needed
++
++ __ bind(reguard);
++ save_native_result(masm, ret_type, stack_slots);
++ rt_call(masm, CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
++ restore_native_result(masm, ret_type, stack_slots);
++ // and continue
++ __ j(reguard_done);
++
++ // SLOW PATH safepoint
++ {
++ __ block_comment("safepoint {");
++ __ bind(safepoint_in_progress);
++
++ // Don't use call_VM as it will see a possible pending exception and forward it
++ // and never return here preventing us from clearing _last_native_pc down below.
++ //
++ save_native_result(masm, ret_type, stack_slots);
++ __ mv(c_rarg0, xthread);
++#ifndef PRODUCT
++ assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
++#endif
++ RuntimeAddress target(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans));
++ __ relocate(target.rspec(), [&] {
++ int32_t offset;
++ __ la_patchable(t0, target, offset);
++ __ jalr(x1, t0, offset);
++ });
++
++ // Restore any method result value
++ restore_native_result(masm, ret_type, stack_slots);
++
++ __ j(safepoint_in_progress_done);
++ __ block_comment("} safepoint");
++ }
++
++ // SLOW PATH dtrace support
++ {
++ __ block_comment("dtrace entry {");
++ __ bind(dtrace_method_entry);
++
++ // We have all of the arguments setup at this point. We must not touch any register
++ // argument registers at this point (what if we save/restore them there are no oop?
++
++ save_args(masm, total_c_args, c_arg, out_regs);
++ __ mov_metadata(c_rarg1, method());
++ __ call_VM_leaf(
++ CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
++ xthread, c_rarg1);
++ restore_args(masm, total_c_args, c_arg, out_regs);
++ __ j(dtrace_method_entry_done);
++ __ block_comment("} dtrace entry");
++ }
++
++ {
++ __ block_comment("dtrace exit {");
++ __ bind(dtrace_method_exit);
++ save_native_result(masm, ret_type, stack_slots);
++ __ mov_metadata(c_rarg1, method());
++ __ call_VM_leaf(
++ CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
++ xthread, c_rarg1);
++ restore_native_result(masm, ret_type, stack_slots);
++ __ j(dtrace_method_exit_done);
++ __ block_comment("} dtrace exit");
++ }
++
++ __ flush();
++
++ nmethod *nm = nmethod::new_native_nmethod(method,
++ compile_id,
++ masm->code(),
++ vep_offset,
++ frame_complete,
++ stack_slots / VMRegImpl::slots_per_word,
++ (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
++ in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
++ oop_maps);
++ assert(nm != NULL, "create native nmethod fail!");
++ return nm;
++}
++
++// this function returns the adjust size (in number of words) to a c2i adapter
++// activation for use during deoptimization
++int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals) {
++ assert(callee_locals >= callee_parameters,
++ "test and remove; got more parms than locals");
++ if (callee_locals < callee_parameters) {
++ return 0; // No adjustment for negative locals
++ }
++ int diff = (callee_locals - callee_parameters) * Interpreter::stackElementWords;
++ // diff is counted in stack words
++ return align_up(diff, 2);
++}
++
++//------------------------------generate_deopt_blob----------------------------
++void SharedRuntime::generate_deopt_blob() {
++ // Allocate space for the code
++ ResourceMark rm;
++ // Setup code generation tools
++ int pad = 0;
++ CodeBuffer buffer("deopt_blob", 2048 + pad, 1024);
++ MacroAssembler* masm = new MacroAssembler(&buffer);
++ int frame_size_in_words = -1;
++ OopMap* map = NULL;
++ OopMapSet *oop_maps = new OopMapSet();
++ assert_cond(masm != NULL && oop_maps != NULL);
++ RegisterSaver reg_saver(COMPILER2_OR_JVMCI != 0);
++
++ // -------------
++ // This code enters when returning to a de-optimized nmethod. A return
++ // address has been pushed on the the stack, and return values are in
++ // registers.
++ // If we are doing a normal deopt then we were called from the patched
++ // nmethod from the point we returned to the nmethod. So the return
++ // address on the stack is wrong by NativeCall::instruction_size
++ // We will adjust the value so it looks like we have the original return
++ // address on the stack (like when we eagerly deoptimized).
++ // In the case of an exception pending when deoptimizing, we enter
++ // with a return address on the stack that points after the call we patched
++ // into the exception handler. We have the following register state from,
++ // e.g., the forward exception stub (see stubGenerator_riscv.cpp).
++ // x10: exception oop
++ // x9: exception handler
++ // x13: throwing pc
++ // So in this case we simply jam x13 into the useless return address and
++ // the stack looks just like we want.
++ //
++ // At this point we need to de-opt. We save the argument return
++ // registers. We call the first C routine, fetch_unroll_info(). This
++ // routine captures the return values and returns a structure which
++ // describes the current frame size and the sizes of all replacement frames.
++ // The current frame is compiled code and may contain many inlined
++ // functions, each with their own JVM state. We pop the current frame, then
++ // push all the new frames. Then we call the C routine unpack_frames() to
++ // populate these frames. Finally unpack_frames() returns us the new target
++ // address. Notice that callee-save registers are BLOWN here; they have
++ // already been captured in the vframeArray at the time the return PC was
++ // patched.
++ address start = __ pc();
++ Label cont;
++
++ // Prolog for non exception case!
++
++ // Save everything in sight.
++ map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words);
++
++ // Normal deoptimization. Save exec mode for unpack_frames.
++ __ mv(xcpool, Deoptimization::Unpack_deopt); // callee-saved
++ __ j(cont);
++
++ int reexecute_offset = __ pc() - start;
++
++ // Reexecute case
++ // return address is the pc describes what bci to do re-execute at
++
++ // No need to update map as each call to save_live_registers will produce identical oopmap
++ (void) reg_saver.save_live_registers(masm, 0, &frame_size_in_words);
++
++ __ mv(xcpool, Deoptimization::Unpack_reexecute); // callee-saved
++ __ j(cont);
++
++ int exception_offset = __ pc() - start;
++
++ // Prolog for exception case
++
++ // all registers are dead at this entry point, except for x10, and
++ // x13 which contain the exception oop and exception pc
++ // respectively. Set them in TLS and fall thru to the
++ // unpack_with_exception_in_tls entry point.
++
++ __ sd(x13, Address(xthread, JavaThread::exception_pc_offset()));
++ __ sd(x10, Address(xthread, JavaThread::exception_oop_offset()));
++
++ int exception_in_tls_offset = __ pc() - start;
++
++ // new implementation because exception oop is now passed in JavaThread
++
++ // Prolog for exception case
++ // All registers must be preserved because they might be used by LinearScan
++ // Exceptiop oop and throwing PC are passed in JavaThread
++ // tos: stack at point of call to method that threw the exception (i.e. only
++ // args are on the stack, no return address)
++
++ // The return address pushed by save_live_registers will be patched
++ // later with the throwing pc. The correct value is not available
++ // now because loading it from memory would destroy registers.
++
++ // NB: The SP at this point must be the SP of the method that is
++ // being deoptimized. Deoptimization assumes that the frame created
++ // here by save_live_registers is immediately below the method's SP.
++ // This is a somewhat fragile mechanism.
++
++ // Save everything in sight.
++ map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words);
++
++ // Now it is safe to overwrite any register
++
++ // Deopt during an exception. Save exec mode for unpack_frames.
++ __ mv(xcpool, Deoptimization::Unpack_exception); // callee-saved
++
++ // load throwing pc from JavaThread and patch it as the return address
++ // of the current frame. Then clear the field in JavaThread
++
++ __ ld(x13, Address(xthread, JavaThread::exception_pc_offset()));
++ __ sd(x13, Address(fp, frame::return_addr_offset * wordSize));
++ __ sd(zr, Address(xthread, JavaThread::exception_pc_offset()));
++
++#ifdef ASSERT
++ // verify that there is really an exception oop in JavaThread
++ __ ld(x10, Address(xthread, JavaThread::exception_oop_offset()));
++ __ verify_oop(x10);
++
++ // verify that there is no pending exception
++ Label no_pending_exception;
++ __ ld(t0, Address(xthread, Thread::pending_exception_offset()));
++ __ beqz(t0, no_pending_exception);
++ __ stop("must not have pending exception here");
++ __ bind(no_pending_exception);
++#endif
++
++ __ bind(cont);
++
++ // Call C code. Need thread and this frame, but NOT official VM entry
++ // crud. We cannot block on this call, no GC can happen.
++ //
++ // UnrollBlock* fetch_unroll_info(JavaThread* thread)
++
++ // fetch_unroll_info needs to call last_java_frame().
++
++ Label retaddr;
++ __ set_last_Java_frame(sp, noreg, retaddr, t0);
++#ifdef ASSERT
++ {
++ Label L;
++ __ ld(t0, Address(xthread,
++ JavaThread::last_Java_fp_offset()));
++ __ beqz(t0, L);
++ __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
++ __ bind(L);
++ }
++#endif // ASSERT
++ __ mv(c_rarg0, xthread);
++ __ mv(c_rarg1, xcpool);
++ RuntimeAddress target(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info));
++ __ relocate(target.rspec(), [&] {
++ int32_t offset;
++ __ la_patchable(t0, target, offset);
++ __ jalr(x1, t0, offset);
++ });
++ __ bind(retaddr);
++
++ // Need to have an oopmap that tells fetch_unroll_info where to
++ // find any register it might need.
++ oop_maps->add_gc_map(__ pc() - start, map);
++
++ __ reset_last_Java_frame(false);
++
++ // Load UnrollBlock* into x15
++ __ mv(x15, x10);
++
++ __ lwu(xcpool, Address(x15, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()));
++ Label noException;
++ __ mv(t0, Deoptimization::Unpack_exception);
++ __ bne(xcpool, t0, noException); // Was exception pending?
++ __ ld(x10, Address(xthread, JavaThread::exception_oop_offset()));
++ __ ld(x13, Address(xthread, JavaThread::exception_pc_offset()));
++ __ sd(zr, Address(xthread, JavaThread::exception_oop_offset()));
++ __ sd(zr, Address(xthread, JavaThread::exception_pc_offset()));
++
++ __ verify_oop(x10);
++
++ // Overwrite the result registers with the exception results.
++ __ sd(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10)));
++
++ __ bind(noException);
++
++ // Only register save data is on the stack.
++ // Now restore the result registers. Everything else is either dead
++ // or captured in the vframeArray.
++
++ // Restore fp result register
++ __ fld(f10, Address(sp, reg_saver.freg_offset_in_bytes(f10)));
++ // Restore integer result register
++ __ ld(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10)));
++
++ // Pop all of the register save area off the stack
++ __ add(sp, sp, frame_size_in_words * wordSize);
++
++ // All of the register save area has been popped of the stack. Only the
++ // return address remains.
++
++ // Pop all the frames we must move/replace.
++ //
++ // Frame picture (youngest to oldest)
++ // 1: self-frame (no frame link)
++ // 2: deopting frame (no frame link)
++ // 3: caller of deopting frame (could be compiled/interpreted).
++ //
++ // Note: by leaving the return address of self-frame on the stack
++ // and using the size of frame 2 to adjust the stack
++ // when we are done the return to frame 3 will still be on the stack.
++
++ // Pop deoptimized frame
++ __ lwu(x12, Address(x15, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
++ __ sub(x12, x12, 2 * wordSize);
++ __ add(sp, sp, x12);
++ __ ld(fp, Address(sp, 0));
++ __ ld(ra, Address(sp, wordSize));
++ __ addi(sp, sp, 2 * wordSize);
++ // RA should now be the return address to the caller (3)
++
++#ifdef ASSERT
++ // Compilers generate code that bang the stack by as much as the
++ // interpreter would need. So this stack banging should never
++ // trigger a fault. Verify that it does not on non product builds.
++ __ lwu(x9, Address(x15, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
++ __ bang_stack_size(x9, x12);
++#endif
++ // Load address of array of frame pcs into x12
++ __ ld(x12, Address(x15, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
++
++ // Load address of array of frame sizes into x14
++ __ ld(x14, Address(x15, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
++
++ // Load counter into x13
++ __ lwu(x13, Address(x15, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
++
++ // Now adjust the caller's stack to make up for the extra locals
++ // but record the original sp so that we can save it in the skeletal interpreter
++ // frame and the stack walking of interpreter_sender will get the unextended sp
++ // value and not the "real" sp value.
++
++ const Register sender_sp = x16;
++
++ __ mv(sender_sp, sp);
++ __ lwu(x9, Address(x15,
++ Deoptimization::UnrollBlock::
++ caller_adjustment_offset_in_bytes()));
++ __ sub(sp, sp, x9);
++
++ // Push interpreter frames in a loop
++ __ mv(t0, 0xDEADDEAD); // Make a recognizable pattern
++ __ mv(t1, t0);
++ Label loop;
++ __ bind(loop);
++ __ ld(x9, Address(x14, 0)); // Load frame size
++ __ addi(x14, x14, wordSize);
++ __ sub(x9, x9, 2 * wordSize); // We'll push pc and fp by hand
++ __ ld(ra, Address(x12, 0)); // Load pc
++ __ addi(x12, x12, wordSize);
++ __ enter(); // Save old & set new fp
++ __ sub(sp, sp, x9); // Prolog
++ // This value is corrected by layout_activation_impl
++ __ sd(zr, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize));
++ __ sd(sender_sp, Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable
++ __ mv(sender_sp, sp); // Pass sender_sp to next frame
++ __ addi(x13, x13, -1); // Decrement counter
++ __ bnez(x13, loop);
++
++ // Re-push self-frame
++ __ ld(ra, Address(x12));
++ __ enter();
++
++ // Allocate a full sized register save area. We subtract 2 because
++ // enter() just pushed 2 words
++ __ sub(sp, sp, (frame_size_in_words - 2) * wordSize);
++
++ // Restore frame locals after moving the frame
++ __ fsd(f10, Address(sp, reg_saver.freg_offset_in_bytes(f10)));
++ __ sd(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10)));
++
++ // Call C code. Need thread but NOT official VM entry
++ // crud. We cannot block on this call, no GC can happen. Call should
++ // restore return values to their stack-slots with the new SP.
++ //
++ // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
++
++ // Use fp because the frames look interpreted now
++ // Don't need the precise return PC here, just precise enough to point into this code blob.
++ address the_pc = __ pc();
++ __ set_last_Java_frame(sp, fp, the_pc, t0);
++
++ __ mv(c_rarg0, xthread);
++ __ mv(c_rarg1, xcpool); // second arg: exec_mode
++ target = RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames));
++ __ relocate(target.rspec(), [&] {
++ int32_t offset;
++ __ la_patchable(t0, target, offset);
++ __ jalr(x1, t0, offset);
++ });
++
++ // Set an oopmap for the call site
++ // Use the same PC we used for the last java frame
++ oop_maps->add_gc_map(the_pc - start,
++ new OopMap(frame_size_in_words, 0));
++
++ // Clear fp AND pc
++ __ reset_last_Java_frame(true);
++
++ // Collect return values
++ __ fld(f10, Address(sp, reg_saver.freg_offset_in_bytes(f10)));
++ __ ld(x10, Address(sp, reg_saver.reg_offset_in_bytes(x10)));
++
++ // Pop self-frame.
++ __ leave(); // Epilog
++
++ // Jump to interpreter
++ __ ret();
++
++ // Make sure all code is generated
++ masm->flush();
++
++ _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
++ assert(_deopt_blob != NULL, "create deoptimization blob fail!");
++ _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
++}
++
++// Number of stack slots between incoming argument block and the start of
++// a new frame. The PROLOG must add this many slots to the stack. The
++// EPILOG must remove this many slots.
++// RISCV needs two words for RA (return address) and FP (frame pointer).
++uint SharedRuntime::in_preserve_stack_slots() {
++ return 2 * VMRegImpl::slots_per_word;
++}
++
++uint SharedRuntime::out_preserve_stack_slots() {
++ return 0;
++}
++
++#ifdef COMPILER2
++//------------------------------generate_uncommon_trap_blob--------------------
++void SharedRuntime::generate_uncommon_trap_blob() {
++ // Allocate space for the code
++ ResourceMark rm;
++ // Setup code generation tools
++ CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
++ MacroAssembler* masm = new MacroAssembler(&buffer);
++ assert_cond(masm != NULL);
++
++ assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
++
++ address start = __ pc();
++
++ // Push self-frame. We get here with a return address in RA
++ // and sp should be 16 byte aligned
++ // push fp and retaddr by hand
++ __ addi(sp, sp, -2 * wordSize);
++ __ sd(ra, Address(sp, wordSize));
++ __ sd(fp, Address(sp, 0));
++ // we don't expect an arg reg save area
++#ifndef PRODUCT
++ assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
++#endif
++ // compiler left unloaded_class_index in j_rarg0 move to where the
++ // runtime expects it.
++ __ sign_extend(c_rarg1, j_rarg0, 32);
++
++ // we need to set the past SP to the stack pointer of the stub frame
++ // and the pc to the address where this runtime call will return
++ // although actually any pc in this code blob will do).
++ Label retaddr;
++ __ set_last_Java_frame(sp, noreg, retaddr, t0);
++
++ // Call C code. Need thread but NOT official VM entry
++ // crud. We cannot block on this call, no GC can happen. Call should
++ // capture callee-saved registers as well as return values.
++ //
++ // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index, jint exec_mode)
++ //
++ // n.b. 3 gp args, 0 fp args, integral return type
++
++ __ mv(c_rarg0, xthread);
++ __ mv(c_rarg2, Deoptimization::Unpack_uncommon_trap);
++ RuntimeAddress target(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap));
++ __ relocate(target.rspec(), [&] {
++ int32_t offset;
++ __ la_patchable(t0, target, offset);
++ __ jalr(x1, t0, offset);
++ });
++ __ bind(retaddr);
++
++ // Set an oopmap for the call site
++ OopMapSet* oop_maps = new OopMapSet();
++ OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
++ assert_cond(oop_maps != NULL && map != NULL);
++
++ // location of fp is known implicitly by the frame sender code
++
++ oop_maps->add_gc_map(__ pc() - start, map);
++
++ __ reset_last_Java_frame(false);
++
++ // move UnrollBlock* into x14
++ __ mv(x14, x10);
++
++#ifdef ASSERT
++ { Label L;
++ __ lwu(t0, Address(x14, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()));
++ __ mv(t1, Deoptimization::Unpack_uncommon_trap);
++ __ beq(t0, t1, L);
++ __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
++ __ bind(L);
++ }
++#endif
++
++ // Pop all the frames we must move/replace.
++ //
++ // Frame picture (youngest to oldest)
++ // 1: self-frame (no frame link)
++ // 2: deopting frame (no frame link)
++ // 3: caller of deopting frame (could be compiled/interpreted).
++
++ __ add(sp, sp, (SimpleRuntimeFrame::framesize) << LogBytesPerInt); // Epilog!
++
++ // Pop deoptimized frame (int)
++ __ lwu(x12, Address(x14,
++ Deoptimization::UnrollBlock::
++ size_of_deoptimized_frame_offset_in_bytes()));
++ __ sub(x12, x12, 2 * wordSize);
++ __ add(sp, sp, x12);
++ __ ld(fp, Address(sp, 0));
++ __ ld(ra, Address(sp, wordSize));
++ __ addi(sp, sp, 2 * wordSize);
++ // RA should now be the return address to the caller (3) frame
++
++#ifdef ASSERT
++ // Compilers generate code that bang the stack by as much as the
++ // interpreter would need. So this stack banging should never
++ // trigger a fault. Verify that it does not on non product builds.
++ __ lwu(x11, Address(x14,
++ Deoptimization::UnrollBlock::
++ total_frame_sizes_offset_in_bytes()));
++ __ bang_stack_size(x11, x12);
++#endif
++
++ // Load address of array of frame pcs into x12 (address*)
++ __ ld(x12, Address(x14,
++ Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
++
++ // Load address of array of frame sizes into x15 (intptr_t*)
++ __ ld(x15, Address(x14,
++ Deoptimization::UnrollBlock::
++ frame_sizes_offset_in_bytes()));
++
++ // Counter
++ __ lwu(x13, Address(x14,
++ Deoptimization::UnrollBlock::
++ number_of_frames_offset_in_bytes())); // (int)
++
++ // Now adjust the caller's stack to make up for the extra locals but
++ // record the original sp so that we can save it in the skeletal
++ // interpreter frame and the stack walking of interpreter_sender
++ // will get the unextended sp value and not the "real" sp value.
++
++ const Register sender_sp = t1; // temporary register
++
++ __ lwu(x11, Address(x14,
++ Deoptimization::UnrollBlock::
++ caller_adjustment_offset_in_bytes())); // (int)
++ __ mv(sender_sp, sp);
++ __ sub(sp, sp, x11);
++
++ // Push interpreter frames in a loop
++ Label loop;
++ __ bind(loop);
++ __ ld(x11, Address(x15, 0)); // Load frame size
++ __ sub(x11, x11, 2 * wordSize); // We'll push pc and fp by hand
++ __ ld(ra, Address(x12, 0)); // Save return address
++ __ enter(); // and old fp & set new fp
++ __ sub(sp, sp, x11); // Prolog
++ __ sd(sender_sp, Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize)); // Make it walkable
++ // This value is corrected by layout_activation_impl
++ __ sd(zr, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize));
++ __ mv(sender_sp, sp); // Pass sender_sp to next frame
++ __ add(x15, x15, wordSize); // Bump array pointer (sizes)
++ __ add(x12, x12, wordSize); // Bump array pointer (pcs)
++ __ subw(x13, x13, 1); // Decrement counter
++ __ bgtz(x13, loop);
++ __ ld(ra, Address(x12, 0)); // save final return address
++ // Re-push self-frame
++ __ enter(); // & old fp & set new fp
++
++ // Use fp because the frames look interpreted now
++ // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
++ // Don't need the precise return PC here, just precise enough to point into this code blob.
++ address the_pc = __ pc();
++ __ set_last_Java_frame(sp, fp, the_pc, t0);
++
++ // Call C code. Need thread but NOT official VM entry
++ // crud. We cannot block on this call, no GC can happen. Call should
++ // restore return values to their stack-slots with the new SP.
++ //
++ // BasicType unpack_frames(JavaThread* thread, int exec_mode)
++ //
++
++ // n.b. 2 gp args, 0 fp args, integral return type
++
++ // sp should already be aligned
++ __ mv(c_rarg0, xthread);
++ __ mv(c_rarg1, Deoptimization::Unpack_uncommon_trap);
++ target = RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames));
++ __ relocate(target.rspec(), [&] {
++ int32_t offset;
++ __ la_patchable(t0, target, offset);
++ __ jalr(x1, t0, offset);
++ });
++
++ // Set an oopmap for the call site
++ // Use the same PC we used for the last java frame
++ oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
++
++ // Clear fp AND pc
++ __ reset_last_Java_frame(true);
++
++ // Pop self-frame.
++ __ leave(); // Epilog
++
++ // Jump to interpreter
++ __ ret();
++
++ // Make sure all code is generated
++ masm->flush();
++
++ _uncommon_trap_blob = UncommonTrapBlob::create(&buffer, oop_maps,
++ SimpleRuntimeFrame::framesize >> 1);
++}
++#endif // COMPILER2
++
++//------------------------------generate_handler_blob------
++//
++// Generate a special Compile2Runtime blob that saves all registers,
++// and setup oopmap.
++//
++SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
++ ResourceMark rm;
++ OopMapSet *oop_maps = new OopMapSet();
++ assert_cond(oop_maps != NULL);
++ OopMap* map = NULL;
++
++ // Allocate space for the code. Setup code generation tools.
++ CodeBuffer buffer("handler_blob", 2048, 1024);
++ MacroAssembler* masm = new MacroAssembler(&buffer);
++ assert_cond(masm != NULL);
++
++ address start = __ pc();
++ address call_pc = NULL;
++ int frame_size_in_words = -1;
++ bool cause_return = (poll_type == POLL_AT_RETURN);
++ RegisterSaver reg_saver(poll_type == POLL_AT_VECTOR_LOOP /* save_vectors */);
++
++ // Save Integer and Float registers.
++ map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words);
++
++ // The following is basically a call_VM. However, we need the precise
++ // address of the call in order to generate an oopmap. Hence, we do all the
++ // work outselves.
++
++ Label retaddr;
++ __ set_last_Java_frame(sp, noreg, retaddr, t0);
++
++ // The return address must always be correct so that frame constructor never
++ // sees an invalid pc.
++
++ if (!cause_return) {
++ // overwrite the return address pushed by save_live_registers
++ // Additionally, x18 is a callee-saved register so we can look at
++ // it later to determine if someone changed the return address for
++ // us!
++ __ ld(x18, Address(xthread, JavaThread::saved_exception_pc_offset()));
++ __ sd(x18, Address(fp, frame::return_addr_offset * wordSize));
++ }
++
++ // Do the call
++ __ mv(c_rarg0, xthread);
++ RuntimeAddress target(call_ptr);
++ __ relocate(target.rspec(), [&] {
++ int32_t offset;
++ __ la_patchable(t0, target, offset);
++ __ jalr(x1, t0, offset);
++ });
++ __ bind(retaddr);
++
++ // Set an oopmap for the call site. This oopmap will map all
++ // oop-registers and debug-info registers as callee-saved. This
++ // will allow deoptimization at this safepoint to find all possible
++ // debug-info recordings, as well as let GC find all oops.
++
++ oop_maps->add_gc_map( __ pc() - start, map);
++
++ Label noException;
++
++ __ reset_last_Java_frame(false);
++
++ __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
++
++ __ ld(t0, Address(xthread, Thread::pending_exception_offset()));
++ __ beqz(t0, noException);
++
++ // Exception pending
++
++ reg_saver.restore_live_registers(masm);
++
++ __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
++
++ // No exception case
++ __ bind(noException);
++
++ Label no_adjust, bail;
++ if (!cause_return) {
++ // If our stashed return pc was modified by the runtime we avoid touching it
++ __ ld(t0, Address(fp, frame::return_addr_offset * wordSize));
++ __ bne(x18, t0, no_adjust);
++
++#ifdef ASSERT
++ // Verify the correct encoding of the poll we're about to skip.
++ // See NativeInstruction::is_lwu_to_zr()
++ __ lwu(t0, Address(x18));
++ __ andi(t1, t0, 0b0000011);
++ __ mv(t2, 0b0000011);
++ __ bne(t1, t2, bail); // 0-6:0b0000011
++ __ srli(t1, t0, 7);
++ __ andi(t1, t1, 0b00000);
++ __ bnez(t1, bail); // 7-11:0b00000
++ __ srli(t1, t0, 12);
++ __ andi(t1, t1, 0b110);
++ __ mv(t2, 0b110);
++ __ bne(t1, t2, bail); // 12-14:0b110
++#endif
++ // Adjust return pc forward to step over the safepoint poll instruction
++ __ add(x18, x18, NativeInstruction::instruction_size);
++ __ sd(x18, Address(fp, frame::return_addr_offset * wordSize));
++ }
++
++ __ bind(no_adjust);
++ // Normal exit, restore registers and exit.
++
++ reg_saver.restore_live_registers(masm);
++ __ ret();
++
++#ifdef ASSERT
++ __ bind(bail);
++ __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected");
++#endif
++
++ // Make sure all code is generated
++ masm->flush();
++
++ // Fill-out other meta info
++ return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
++}
++
++//
++// generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
++//
++// Generate a stub that calls into vm to find out the proper destination
++// of a java call. All the argument registers are live at this point
++// but since this is generic code we don't know what they are and the caller
++// must do any gc of the args.
++//
++RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
++ assert(StubRoutines::forward_exception_entry() != NULL, "must be generated before");
++
++ // allocate space for the code
++ ResourceMark rm;
++
++ CodeBuffer buffer(name, 1000, 512);
++ MacroAssembler* masm = new MacroAssembler(&buffer);
++ assert_cond(masm != NULL);
++
++ int frame_size_in_words = -1;
++ RegisterSaver reg_saver(false /* save_vectors */);
++
++ OopMapSet *oop_maps = new OopMapSet();
++ assert_cond(oop_maps != NULL);
++ OopMap* map = NULL;
++
++ int start = __ offset();
++
++ map = reg_saver.save_live_registers(masm, 0, &frame_size_in_words);
++
++ int frame_complete = __ offset();
++
++ {
++ Label retaddr;
++ __ set_last_Java_frame(sp, noreg, retaddr, t0);
++
++ __ mv(c_rarg0, xthread);
++ RuntimeAddress target(destination);
++ __ relocate(target.rspec(), [&] {
++ int32_t offset;
++ __ la_patchable(t0, target, offset);
++ __ jalr(x1, t0, offset);
++ });
++ __ bind(retaddr);
++ }
++
++ // Set an oopmap for the call site.
++ // We need this not only for callee-saved registers, but also for volatile
++ // registers that the compiler might be keeping live across a safepoint.
++
++ oop_maps->add_gc_map( __ offset() - start, map);
++
++ // x10 contains the address we are going to jump to assuming no exception got installed
++
++ // clear last_Java_sp
++ __ reset_last_Java_frame(false);
++ // check for pending exceptions
++ Label pending;
++ __ ld(t0, Address(xthread, Thread::pending_exception_offset()));
++ __ bnez(t0, pending);
++
++ // get the returned Method*
++ __ get_vm_result_2(xmethod, xthread);
++ __ sd(xmethod, Address(sp, reg_saver.reg_offset_in_bytes(xmethod)));
++
++ // x10 is where we want to jump, overwrite t0 which is saved and temporary
++ __ sd(x10, Address(sp, reg_saver.reg_offset_in_bytes(t0)));
++ reg_saver.restore_live_registers(masm);
++
++ // We are back the the original state on entry and ready to go.
++
++ __ jr(t0);
++
++ // Pending exception after the safepoint
++
++ __ bind(pending);
++
++ reg_saver.restore_live_registers(masm);
++
++ // exception pending => remove activation and forward to exception handler
++
++ __ sd(zr, Address(xthread, JavaThread::vm_result_offset()));
++
++ __ ld(x10, Address(xthread, Thread::pending_exception_offset()));
++ __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
++
++ // -------------
++ // make sure all code is generated
++ masm->flush();
++
++ // return the blob
++ return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
++}
++
++#ifdef COMPILER2
++RuntimeStub* SharedRuntime::make_native_invoker(address call_target,
++ int shadow_space_bytes,
++ const GrowableArray<VMReg>& input_registers,
++ const GrowableArray<VMReg>& output_registers) {
++ Unimplemented();
++ return nullptr;
++}
++
++//------------------------------generate_exception_blob---------------------------
++// creates exception blob at the end
++// Using exception blob, this code is jumped from a compiled method.
++// (see emit_exception_handler in riscv.ad file)
++//
++// Given an exception pc at a call we call into the runtime for the
++// handler in this method. This handler might merely restore state
++// (i.e. callee save registers) unwind the frame and jump to the
++// exception handler for the nmethod if there is no Java level handler
++// for the nmethod.
++//
++// This code is entered with a jmp.
++//
++// Arguments:
++// x10: exception oop
++// x13: exception pc
++//
++// Results:
++// x10: exception oop
++// x13: exception pc in caller
++// destination: exception handler of caller
++//
++// Note: the exception pc MUST be at a call (precise debug information)
++// Registers x10, x13, x12, x14, x15, t0 are not callee saved.
++//
++
++void OptoRuntime::generate_exception_blob() {
++ assert(!OptoRuntime::is_callee_saved_register(R13_num), "");
++ assert(!OptoRuntime::is_callee_saved_register(R10_num), "");
++ assert(!OptoRuntime::is_callee_saved_register(R12_num), "");
++
++ assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
++
++ // Allocate space for the code
++ ResourceMark rm;
++ // Setup code generation tools
++ CodeBuffer buffer("exception_blob", 2048, 1024);
++ MacroAssembler* masm = new MacroAssembler(&buffer);
++ assert_cond(masm != NULL);
++
++ // TODO check various assumptions made here
++ //
++ // make sure we do so before running this
++
++ address start = __ pc();
++
++ // push fp and retaddr by hand
++ // Exception pc is 'return address' for stack walker
++ __ addi(sp, sp, -2 * wordSize);
++ __ sd(ra, Address(sp, wordSize));
++ __ sd(fp, Address(sp));
++ // there are no callee save registers and we don't expect an
++ // arg reg save area
++#ifndef PRODUCT
++ assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
++#endif
++ // Store exception in Thread object. We cannot pass any arguments to the
++ // handle_exception call, since we do not want to make any assumption
++ // about the size of the frame where the exception happened in.
++ __ sd(x10, Address(xthread, JavaThread::exception_oop_offset()));
++ __ sd(x13, Address(xthread, JavaThread::exception_pc_offset()));
++
++ // This call does all the hard work. It checks if an exception handler
++ // exists in the method.
++ // If so, it returns the handler address.
++ // If not, it prepares for stack-unwinding, restoring the callee-save
++ // registers of the frame being removed.
++ //
++ // address OptoRuntime::handle_exception_C(JavaThread* thread)
++ //
++ // n.b. 1 gp arg, 0 fp args, integral return type
++
++ // the stack should always be aligned
++ address the_pc = __ pc();
++ __ set_last_Java_frame(sp, noreg, the_pc, t0);
++ __ mv(c_rarg0, xthread);
++ RuntimeAddress target(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C));
++ __ relocate(target.rspec(), [&] {
++ int32_t offset;
++ __ la_patchable(t0, target, offset);
++ __ jalr(x1, t0, offset);
++ });
++
++
++ // handle_exception_C is a special VM call which does not require an explicit
++ // instruction sync afterwards.
++
++ // Set an oopmap for the call site. This oopmap will only be used if we
++ // are unwinding the stack. Hence, all locations will be dead.
++ // Callee-saved registers will be the same as the frame above (i.e.,
++ // handle_exception_stub), since they were restored when we got the
++ // exception.
++
++ OopMapSet* oop_maps = new OopMapSet();
++ assert_cond(oop_maps != NULL);
++
++ oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
++
++ __ reset_last_Java_frame(false);
++
++ // Restore callee-saved registers
++
++ // fp is an implicitly saved callee saved register (i.e. the calling
++ // convention will save restore it in prolog/epilog) Other than that
++ // there are no callee save registers now that adapter frames are gone.
++ // and we dont' expect an arg reg save area
++ __ ld(fp, Address(sp));
++ __ ld(x13, Address(sp, wordSize));
++ __ addi(sp, sp , 2 * wordSize);
++
++ // x10: exception handler
++
++ // We have a handler in x10 (could be deopt blob).
++ __ mv(t0, x10);
++
++ // Get the exception oop
++ __ ld(x10, Address(xthread, JavaThread::exception_oop_offset()));
++ // Get the exception pc in case we are deoptimized
++ __ ld(x14, Address(xthread, JavaThread::exception_pc_offset()));
++#ifdef ASSERT
++ __ sd(zr, Address(xthread, JavaThread::exception_handler_pc_offset()));
++ __ sd(zr, Address(xthread, JavaThread::exception_pc_offset()));
++#endif
++ // Clear the exception oop so GC no longer processes it as a root.
++ __ sd(zr, Address(xthread, JavaThread::exception_oop_offset()));
++
++ // x10: exception oop
++ // t0: exception handler
++ // x14: exception pc
++ // Jump to handler
++
++ __ jr(t0);
++
++ // Make sure all code is generated
++ masm->flush();
++
++ // Set exception blob
++ _exception_blob = ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
++}
++#endif // COMPILER2
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/stubGenerator_riscv.cpp
+@@ -0,0 +1,3959 @@
++/*
++ * Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2023, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/macroAssembler.hpp"
++#include "asm/macroAssembler.inline.hpp"
++#include "compiler/oopMap.hpp"
++#include "gc/shared/barrierSet.hpp"
++#include "gc/shared/barrierSetAssembler.hpp"
++#include "interpreter/interpreter.hpp"
++#include "memory/universe.hpp"
++#include "nativeInst_riscv.hpp"
++#include "oops/instanceOop.hpp"
++#include "oops/method.hpp"
++#include "oops/objArrayKlass.hpp"
++#include "oops/oop.inline.hpp"
++#include "prims/methodHandles.hpp"
++#include "runtime/frame.inline.hpp"
++#include "runtime/handles.inline.hpp"
++#include "runtime/sharedRuntime.hpp"
++#include "runtime/stubCodeGenerator.hpp"
++#include "runtime/stubRoutines.hpp"
++#include "runtime/thread.inline.hpp"
++#include "utilities/align.hpp"
++#include "utilities/powerOfTwo.hpp"
++#ifdef COMPILER2
++#include "opto/runtime.hpp"
++#endif
++#if INCLUDE_ZGC
++#include "gc/z/zThreadLocalData.hpp"
++#endif
++
++// Declaration and definition of StubGenerator (no .hpp file).
++// For a more detailed description of the stub routine structure
++// see the comment in stubRoutines.hpp
++
++#undef __
++#define __ _masm->
++
++#ifdef PRODUCT
++#define BLOCK_COMMENT(str) /* nothing */
++#else
++#define BLOCK_COMMENT(str) __ block_comment(str)
++#endif
++
++#define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
++
++// Stub Code definitions
++
++class StubGenerator: public StubCodeGenerator {
++ private:
++
++#ifdef PRODUCT
++#define inc_counter_np(counter) ((void)0)
++#else
++ void inc_counter_np_(int& counter) {
++ __ la(t1, ExternalAddress((address)&counter));
++ __ lwu(t0, Address(t1, 0));
++ __ addiw(t0, t0, 1);
++ __ sw(t0, Address(t1, 0));
++ }
++#define inc_counter_np(counter) \
++ BLOCK_COMMENT("inc_counter " #counter); \
++ inc_counter_np_(counter);
++#endif
++
++ // Call stubs are used to call Java from C
++ //
++ // Arguments:
++ // c_rarg0: call wrapper address address
++ // c_rarg1: result address
++ // c_rarg2: result type BasicType
++ // c_rarg3: method Method*
++ // c_rarg4: (interpreter) entry point address
++ // c_rarg5: parameters intptr_t*
++ // c_rarg6: parameter size (in words) int
++ // c_rarg7: thread Thread*
++ //
++ // There is no return from the stub itself as any Java result
++ // is written to result
++ //
++ // we save x1 (ra) as the return PC at the base of the frame and
++ // link x8 (fp) below it as the frame pointer installing sp (x2)
++ // into fp.
++ //
++ // we save x10-x17, which accounts for all the c arguments.
++ //
++ // TODO: strictly do we need to save them all? they are treated as
++ // volatile by C so could we omit saving the ones we are going to
++ // place in global registers (thread? method?) or those we only use
++ // during setup of the Java call?
++ //
++ // we don't need to save x5 which C uses as an indirect result location
++ // return register.
++ //
++ // we don't need to save x6-x7 and x28-x31 which both C and Java treat as
++ // volatile
++ //
++ // we save x9, x18-x27, f8-f9, and f18-f27 which Java uses as temporary
++ // registers and C expects to be callee-save
++ //
++ // so the stub frame looks like this when we enter Java code
++ //
++ // [ return_from_Java ] <--- sp
++ // [ argument word n ]
++ // ...
++ // -34 [ argument word 1 ]
++ // -33 [ saved f27 ] <--- sp_after_call
++ // -32 [ saved f26 ]
++ // -31 [ saved f25 ]
++ // -30 [ saved f24 ]
++ // -29 [ saved f23 ]
++ // -28 [ saved f22 ]
++ // -27 [ saved f21 ]
++ // -26 [ saved f20 ]
++ // -25 [ saved f19 ]
++ // -24 [ saved f18 ]
++ // -23 [ saved f9 ]
++ // -22 [ saved f8 ]
++ // -21 [ saved x27 ]
++ // -20 [ saved x26 ]
++ // -19 [ saved x25 ]
++ // -18 [ saved x24 ]
++ // -17 [ saved x23 ]
++ // -16 [ saved x22 ]
++ // -15 [ saved x21 ]
++ // -14 [ saved x20 ]
++ // -13 [ saved x19 ]
++ // -12 [ saved x18 ]
++ // -11 [ saved x9 ]
++ // -10 [ call wrapper (x10) ]
++ // -9 [ result (x11) ]
++ // -8 [ result type (x12) ]
++ // -7 [ method (x13) ]
++ // -6 [ entry point (x14) ]
++ // -5 [ parameters (x15) ]
++ // -4 [ parameter size (x16) ]
++ // -3 [ thread (x17) ]
++ // -2 [ saved fp (x8) ]
++ // -1 [ saved ra (x1) ]
++ // 0 [ ] <--- fp == saved sp (x2)
++
++ // Call stub stack layout word offsets from fp
++ enum call_stub_layout {
++ sp_after_call_off = -33,
++
++ f27_off = -33,
++ f26_off = -32,
++ f25_off = -31,
++ f24_off = -30,
++ f23_off = -29,
++ f22_off = -28,
++ f21_off = -27,
++ f20_off = -26,
++ f19_off = -25,
++ f18_off = -24,
++ f9_off = -23,
++ f8_off = -22,
++
++ x27_off = -21,
++ x26_off = -20,
++ x25_off = -19,
++ x24_off = -18,
++ x23_off = -17,
++ x22_off = -16,
++ x21_off = -15,
++ x20_off = -14,
++ x19_off = -13,
++ x18_off = -12,
++ x9_off = -11,
++
++ call_wrapper_off = -10,
++ result_off = -9,
++ result_type_off = -8,
++ method_off = -7,
++ entry_point_off = -6,
++ parameters_off = -5,
++ parameter_size_off = -4,
++ thread_off = -3,
++ fp_f = -2,
++ retaddr_off = -1,
++ };
++
++ address generate_call_stub(address& return_address) {
++ assert((int)frame::entry_frame_after_call_words == -(int)sp_after_call_off + 1 &&
++ (int)frame::entry_frame_call_wrapper_offset == (int)call_wrapper_off,
++ "adjust this code");
++
++ StubCodeMark mark(this, "StubRoutines", "call_stub");
++ address start = __ pc();
++
++ const Address sp_after_call (fp, sp_after_call_off * wordSize);
++
++ const Address call_wrapper (fp, call_wrapper_off * wordSize);
++ const Address result (fp, result_off * wordSize);
++ const Address result_type (fp, result_type_off * wordSize);
++ const Address method (fp, method_off * wordSize);
++ const Address entry_point (fp, entry_point_off * wordSize);
++ const Address parameters (fp, parameters_off * wordSize);
++ const Address parameter_size(fp, parameter_size_off * wordSize);
++
++ const Address thread (fp, thread_off * wordSize);
++
++ const Address f27_save (fp, f27_off * wordSize);
++ const Address f26_save (fp, f26_off * wordSize);
++ const Address f25_save (fp, f25_off * wordSize);
++ const Address f24_save (fp, f24_off * wordSize);
++ const Address f23_save (fp, f23_off * wordSize);
++ const Address f22_save (fp, f22_off * wordSize);
++ const Address f21_save (fp, f21_off * wordSize);
++ const Address f20_save (fp, f20_off * wordSize);
++ const Address f19_save (fp, f19_off * wordSize);
++ const Address f18_save (fp, f18_off * wordSize);
++ const Address f9_save (fp, f9_off * wordSize);
++ const Address f8_save (fp, f8_off * wordSize);
++
++ const Address x27_save (fp, x27_off * wordSize);
++ const Address x26_save (fp, x26_off * wordSize);
++ const Address x25_save (fp, x25_off * wordSize);
++ const Address x24_save (fp, x24_off * wordSize);
++ const Address x23_save (fp, x23_off * wordSize);
++ const Address x22_save (fp, x22_off * wordSize);
++ const Address x21_save (fp, x21_off * wordSize);
++ const Address x20_save (fp, x20_off * wordSize);
++ const Address x19_save (fp, x19_off * wordSize);
++ const Address x18_save (fp, x18_off * wordSize);
++
++ const Address x9_save (fp, x9_off * wordSize);
++
++ // stub code
++
++ address riscv_entry = __ pc();
++
++ // set up frame and move sp to end of save area
++ __ enter();
++ __ addi(sp, fp, sp_after_call_off * wordSize);
++
++ // save register parameters and Java temporary/global registers
++ // n.b. we save thread even though it gets installed in
++ // xthread because we want to sanity check tp later
++ __ sd(c_rarg7, thread);
++ __ sw(c_rarg6, parameter_size);
++ __ sd(c_rarg5, parameters);
++ __ sd(c_rarg4, entry_point);
++ __ sd(c_rarg3, method);
++ __ sd(c_rarg2, result_type);
++ __ sd(c_rarg1, result);
++ __ sd(c_rarg0, call_wrapper);
++
++ __ sd(x9, x9_save);
++
++ __ sd(x18, x18_save);
++ __ sd(x19, x19_save);
++ __ sd(x20, x20_save);
++ __ sd(x21, x21_save);
++ __ sd(x22, x22_save);
++ __ sd(x23, x23_save);
++ __ sd(x24, x24_save);
++ __ sd(x25, x25_save);
++ __ sd(x26, x26_save);
++ __ sd(x27, x27_save);
++
++ __ fsd(f8, f8_save);
++ __ fsd(f9, f9_save);
++ __ fsd(f18, f18_save);
++ __ fsd(f19, f19_save);
++ __ fsd(f20, f20_save);
++ __ fsd(f21, f21_save);
++ __ fsd(f22, f22_save);
++ __ fsd(f23, f23_save);
++ __ fsd(f24, f24_save);
++ __ fsd(f25, f25_save);
++ __ fsd(f26, f26_save);
++ __ fsd(f27, f27_save);
++
++ // install Java thread in global register now we have saved
++ // whatever value it held
++ __ mv(xthread, c_rarg7);
++
++ // And method
++ __ mv(xmethod, c_rarg3);
++
++ // set up the heapbase register
++ __ reinit_heapbase();
++
++#ifdef ASSERT
++ // make sure we have no pending exceptions
++ {
++ Label L;
++ __ ld(t0, Address(xthread, in_bytes(Thread::pending_exception_offset())));
++ __ beqz(t0, L);
++ __ stop("StubRoutines::call_stub: entered with pending exception");
++ __ BIND(L);
++ }
++#endif
++ // pass parameters if any
++ __ mv(esp, sp);
++ __ slli(t0, c_rarg6, LogBytesPerWord);
++ __ sub(t0, sp, t0); // Move SP out of the way
++ __ andi(sp, t0, -2 * wordSize);
++
++ BLOCK_COMMENT("pass parameters if any");
++ Label parameters_done;
++ // parameter count is still in c_rarg6
++ // and parameter pointer identifying param 1 is in c_rarg5
++ __ beqz(c_rarg6, parameters_done);
++
++ address loop = __ pc();
++ __ ld(t0, Address(c_rarg5, 0));
++ __ addi(c_rarg5, c_rarg5, wordSize);
++ __ addi(c_rarg6, c_rarg6, -1);
++ __ push_reg(t0);
++ __ bgtz(c_rarg6, loop);
++
++ __ BIND(parameters_done);
++
++ // call Java entry -- passing methdoOop, and current sp
++ // xmethod: Method*
++ // x30: sender sp
++ BLOCK_COMMENT("call Java function");
++ __ mv(x30, sp);
++ __ jalr(c_rarg4);
++
++ // save current address for use by exception handling code
++
++ return_address = __ pc();
++
++ // store result depending on type (everything that is not
++ // T_OBJECT, T_LONG, T_FLOAT or T_DOUBLE is treated as T_INT)
++ // n.b. this assumes Java returns an integral result in x10
++ // and a floating result in j_farg0
++ __ ld(j_rarg2, result);
++ Label is_long, is_float, is_double, exit;
++ __ ld(j_rarg1, result_type);
++ __ mv(t0, (u1)T_OBJECT);
++ __ beq(j_rarg1, t0, is_long);
++ __ mv(t0, (u1)T_LONG);
++ __ beq(j_rarg1, t0, is_long);
++ __ mv(t0, (u1)T_FLOAT);
++ __ beq(j_rarg1, t0, is_float);
++ __ mv(t0, (u1)T_DOUBLE);
++ __ beq(j_rarg1, t0, is_double);
++
++ // handle T_INT case
++ __ sw(x10, Address(j_rarg2));
++
++ __ BIND(exit);
++
++ // pop parameters
++ __ addi(esp, fp, sp_after_call_off * wordSize);
++
++#ifdef ASSERT
++ // verify that threads correspond
++ {
++ Label L, S;
++ __ ld(t0, thread);
++ __ bne(xthread, t0, S);
++ __ get_thread(t0);
++ __ beq(xthread, t0, L);
++ __ BIND(S);
++ __ stop("StubRoutines::call_stub: threads must correspond");
++ __ BIND(L);
++ }
++#endif
++
++ // restore callee-save registers
++ __ fld(f27, f27_save);
++ __ fld(f26, f26_save);
++ __ fld(f25, f25_save);
++ __ fld(f24, f24_save);
++ __ fld(f23, f23_save);
++ __ fld(f22, f22_save);
++ __ fld(f21, f21_save);
++ __ fld(f20, f20_save);
++ __ fld(f19, f19_save);
++ __ fld(f18, f18_save);
++ __ fld(f9, f9_save);
++ __ fld(f8, f8_save);
++
++ __ ld(x27, x27_save);
++ __ ld(x26, x26_save);
++ __ ld(x25, x25_save);
++ __ ld(x24, x24_save);
++ __ ld(x23, x23_save);
++ __ ld(x22, x22_save);
++ __ ld(x21, x21_save);
++ __ ld(x20, x20_save);
++ __ ld(x19, x19_save);
++ __ ld(x18, x18_save);
++
++ __ ld(x9, x9_save);
++
++ __ ld(c_rarg0, call_wrapper);
++ __ ld(c_rarg1, result);
++ __ ld(c_rarg2, result_type);
++ __ ld(c_rarg3, method);
++ __ ld(c_rarg4, entry_point);
++ __ ld(c_rarg5, parameters);
++ __ ld(c_rarg6, parameter_size);
++ __ ld(c_rarg7, thread);
++
++ // leave frame and return to caller
++ __ leave();
++ __ ret();
++
++ // handle return types different from T_INT
++
++ __ BIND(is_long);
++ __ sd(x10, Address(j_rarg2, 0));
++ __ j(exit);
++
++ __ BIND(is_float);
++ __ fsw(j_farg0, Address(j_rarg2, 0), t0);
++ __ j(exit);
++
++ __ BIND(is_double);
++ __ fsd(j_farg0, Address(j_rarg2, 0), t0);
++ __ j(exit);
++
++ return start;
++ }
++
++ // Return point for a Java call if there's an exception thrown in
++ // Java code. The exception is caught and transformed into a
++ // pending exception stored in JavaThread that can be tested from
++ // within the VM.
++ //
++ // Note: Usually the parameters are removed by the callee. In case
++ // of an exception crossing an activation frame boundary, that is
++ // not the case if the callee is compiled code => need to setup the
++ // sp.
++ //
++ // x10: exception oop
++
++ address generate_catch_exception() {
++ StubCodeMark mark(this, "StubRoutines", "catch_exception");
++ address start = __ pc();
++
++ // same as in generate_call_stub():
++ const Address thread(fp, thread_off * wordSize);
++
++#ifdef ASSERT
++ // verify that threads correspond
++ {
++ Label L, S;
++ __ ld(t0, thread);
++ __ bne(xthread, t0, S);
++ __ get_thread(t0);
++ __ beq(xthread, t0, L);
++ __ bind(S);
++ __ stop("StubRoutines::catch_exception: threads must correspond");
++ __ bind(L);
++ }
++#endif
++
++ // set pending exception
++ __ verify_oop(x10);
++
++ __ sd(x10, Address(xthread, Thread::pending_exception_offset()));
++ __ mv(t0, (address)__FILE__);
++ __ sd(t0, Address(xthread, Thread::exception_file_offset()));
++ __ mv(t0, (int)__LINE__);
++ __ sw(t0, Address(xthread, Thread::exception_line_offset()));
++
++ // complete return to VM
++ assert(StubRoutines::_call_stub_return_address != NULL,
++ "_call_stub_return_address must have been generated before");
++ __ j(StubRoutines::_call_stub_return_address);
++
++ return start;
++ }
++
++ // Continuation point for runtime calls returning with a pending
++ // exception. The pending exception check happened in the runtime
++ // or native call stub. The pending exception in Thread is
++ // converted into a Java-level exception.
++ //
++ // Contract with Java-level exception handlers:
++ // x10: exception
++ // x13: throwing pc
++ //
++ // NOTE: At entry of this stub, exception-pc must be in RA !!
++
++ // NOTE: this is always used as a jump target within generated code
++ // so it just needs to be generated code with no x86 prolog
++
++ address generate_forward_exception() {
++ StubCodeMark mark(this, "StubRoutines", "forward exception");
++ address start = __ pc();
++
++ // Upon entry, RA points to the return address returning into
++ // Java (interpreted or compiled) code; i.e., the return address
++ // becomes the throwing pc.
++ //
++ // Arguments pushed before the runtime call are still on the stack
++ // but the exception handler will reset the stack pointer ->
++ // ignore them. A potential result in registers can be ignored as
++ // well.
++
++#ifdef ASSERT
++ // make sure this code is only executed if there is a pending exception
++ {
++ Label L;
++ __ ld(t0, Address(xthread, Thread::pending_exception_offset()));
++ __ bnez(t0, L);
++ __ stop("StubRoutines::forward exception: no pending exception (1)");
++ __ bind(L);
++ }
++#endif
++
++ // compute exception handler into x9
++
++ // call the VM to find the handler address associated with the
++ // caller address. pass thread in x10 and caller pc (ret address)
++ // in x11. n.b. the caller pc is in ra, unlike x86 where it is on
++ // the stack.
++ __ mv(c_rarg1, ra);
++ // ra will be trashed by the VM call so we move it to x9
++ // (callee-saved) because we also need to pass it to the handler
++ // returned by this call.
++ __ mv(x9, ra);
++ BLOCK_COMMENT("call exception_handler_for_return_address");
++ __ call_VM_leaf(CAST_FROM_FN_PTR(address,
++ SharedRuntime::exception_handler_for_return_address),
++ xthread, c_rarg1);
++ // we should not really care that ra is no longer the callee
++ // address. we saved the value the handler needs in x9 so we can
++ // just copy it to x13. however, the C2 handler will push its own
++ // frame and then calls into the VM and the VM code asserts that
++ // the PC for the frame above the handler belongs to a compiled
++ // Java method. So, we restore ra here to satisfy that assert.
++ __ mv(ra, x9);
++ // setup x10 & x13 & clear pending exception
++ __ mv(x13, x9);
++ __ mv(x9, x10);
++ __ ld(x10, Address(xthread, Thread::pending_exception_offset()));
++ __ sd(zr, Address(xthread, Thread::pending_exception_offset()));
++
++#ifdef ASSERT
++ // make sure exception is set
++ {
++ Label L;
++ __ bnez(x10, L);
++ __ stop("StubRoutines::forward exception: no pending exception (2)");
++ __ bind(L);
++ }
++#endif
++
++ // continue at exception handler
++ // x10: exception
++ // x13: throwing pc
++ // x9: exception handler
++ __ verify_oop(x10);
++ __ jr(x9);
++
++ return start;
++ }
++
++ // Non-destructive plausibility checks for oops
++ //
++ // Arguments:
++ // x10: oop to verify
++ // t0: error message
++ //
++ // Stack after saving c_rarg3:
++ // [tos + 0]: saved c_rarg3
++ // [tos + 1]: saved c_rarg2
++ // [tos + 2]: saved ra
++ // [tos + 3]: saved t1
++ // [tos + 4]: saved x10
++ // [tos + 5]: saved t0
++ address generate_verify_oop() {
++
++ StubCodeMark mark(this, "StubRoutines", "verify_oop");
++ address start = __ pc();
++
++ Label exit, error;
++
++ __ push_reg(RegSet::of(c_rarg2, c_rarg3), sp); // save c_rarg2 and c_rarg3
++
++ __ la(c_rarg2, ExternalAddress((address) StubRoutines::verify_oop_count_addr()));
++ __ ld(c_rarg3, Address(c_rarg2));
++ __ add(c_rarg3, c_rarg3, 1);
++ __ sd(c_rarg3, Address(c_rarg2));
++
++ // object is in x10
++ // make sure object is 'reasonable'
++ __ beqz(x10, exit); // if obj is NULL it is OK
++
++#if INCLUDE_ZGC
++ if (UseZGC) {
++ // Check if mask is good.
++ // verifies that ZAddressBadMask & x10 == 0
++ __ ld(c_rarg3, Address(xthread, ZThreadLocalData::address_bad_mask_offset()));
++ __ andr(c_rarg2, x10, c_rarg3);
++ __ bnez(c_rarg2, error);
++ }
++#endif
++
++ // Check if the oop is in the right area of memory
++ __ mv(c_rarg3, (intptr_t) Universe::verify_oop_mask());
++ __ andr(c_rarg2, x10, c_rarg3);
++ __ mv(c_rarg3, (intptr_t) Universe::verify_oop_bits());
++
++ // Compare c_rarg2 and c_rarg3.
++ __ bne(c_rarg2, c_rarg3, error);
++
++ // make sure klass is 'reasonable', which is not zero.
++ __ load_klass(x10, x10); // get klass
++ __ beqz(x10, error); // if klass is NULL it is broken
++
++ // return if everything seems ok
++ __ bind(exit);
++
++ __ pop_reg(RegSet::of(c_rarg2, c_rarg3), sp); // pop c_rarg2 and c_rarg3
++ __ ret();
++
++ // handle errors
++ __ bind(error);
++ __ pop_reg(RegSet::of(c_rarg2, c_rarg3), sp); // pop c_rarg2 and c_rarg3
++
++ __ push_reg(RegSet::range(x0, x31), sp);
++ // debug(char* msg, int64_t pc, int64_t regs[])
++ __ mv(c_rarg0, t0); // pass address of error message
++ __ mv(c_rarg1, ra); // pass return address
++ __ mv(c_rarg2, sp); // pass address of regs on stack
++#ifndef PRODUCT
++ assert(frame::arg_reg_save_area_bytes == 0, "not expecting frame reg save area");
++#endif
++ BLOCK_COMMENT("call MacroAssembler::debug");
++ __ call(CAST_FROM_FN_PTR(address, MacroAssembler::debug64));
++ __ ebreak();
++
++ return start;
++ }
++
++ // The inner part of zero_words().
++ //
++ // Inputs:
++ // x28: the HeapWord-aligned base address of an array to zero.
++ // x29: the count in HeapWords, x29 > 0.
++ //
++ // Returns x28 and x29, adjusted for the caller to clear.
++ // x28: the base address of the tail of words left to clear.
++ // x29: the number of words in the tail.
++ // x29 < MacroAssembler::zero_words_block_size.
++
++ address generate_zero_blocks() {
++ Label done;
++
++ const Register base = x28, cnt = x29;
++
++ __ align(CodeEntryAlignment);
++ StubCodeMark mark(this, "StubRoutines", "zero_blocks");
++ address start = __ pc();
++
++ {
++ // Clear the remaining blocks.
++ Label loop;
++ __ sub(cnt, cnt, MacroAssembler::zero_words_block_size);
++ __ bltz(cnt, done);
++ __ bind(loop);
++ for (int i = 0; i < MacroAssembler::zero_words_block_size; i++) {
++ __ sd(zr, Address(base, 0));
++ __ add(base, base, 8);
++ }
++ __ sub(cnt, cnt, MacroAssembler::zero_words_block_size);
++ __ bgez(cnt, loop);
++ __ bind(done);
++ __ add(cnt, cnt, MacroAssembler::zero_words_block_size);
++ }
++
++ __ ret();
++
++ return start;
++ }
++
++ typedef enum {
++ copy_forwards = 1,
++ copy_backwards = -1
++ } copy_direction;
++
++ // Bulk copy of blocks of 8 words.
++ //
++ // count is a count of words.
++ //
++ // Precondition: count >= 8
++ //
++ // Postconditions:
++ //
++ // The least significant bit of count contains the remaining count
++ // of words to copy. The rest of count is trash.
++ //
++ // s and d are adjusted to point to the remaining words to copy
++ //
++ void generate_copy_longs(Label &start, Register s, Register d, Register count,
++ copy_direction direction) {
++ int unit = wordSize * direction;
++ int bias = wordSize;
++
++ const Register tmp_reg0 = x13, tmp_reg1 = x14, tmp_reg2 = x15, tmp_reg3 = x16,
++ tmp_reg4 = x17, tmp_reg5 = x7, tmp_reg6 = x28, tmp_reg7 = x29;
++
++ const Register stride = x30;
++
++ assert_different_registers(t0, tmp_reg0, tmp_reg1, tmp_reg2, tmp_reg3,
++ tmp_reg4, tmp_reg5, tmp_reg6, tmp_reg7);
++ assert_different_registers(s, d, count, t0);
++
++ Label again, drain;
++ const char* stub_name = NULL;
++ if (direction == copy_forwards) {
++ stub_name = "forward_copy_longs";
++ } else {
++ stub_name = "backward_copy_longs";
++ }
++ StubCodeMark mark(this, "StubRoutines", stub_name);
++ __ align(CodeEntryAlignment);
++ __ bind(start);
++
++ if (direction == copy_forwards) {
++ __ sub(s, s, bias);
++ __ sub(d, d, bias);
++ }
++
++#ifdef ASSERT
++ // Make sure we are never given < 8 words
++ {
++ Label L;
++
++ __ mv(t0, 8);
++ __ bge(count, t0, L);
++ __ stop("genrate_copy_longs called with < 8 words");
++ __ bind(L);
++ }
++#endif
++
++ __ ld(tmp_reg0, Address(s, 1 * unit));
++ __ ld(tmp_reg1, Address(s, 2 * unit));
++ __ ld(tmp_reg2, Address(s, 3 * unit));
++ __ ld(tmp_reg3, Address(s, 4 * unit));
++ __ ld(tmp_reg4, Address(s, 5 * unit));
++ __ ld(tmp_reg5, Address(s, 6 * unit));
++ __ ld(tmp_reg6, Address(s, 7 * unit));
++ __ ld(tmp_reg7, Address(s, 8 * unit));
++ __ addi(s, s, 8 * unit);
++
++ __ sub(count, count, 16);
++ __ bltz(count, drain);
++
++ __ bind(again);
++
++ __ sd(tmp_reg0, Address(d, 1 * unit));
++ __ sd(tmp_reg1, Address(d, 2 * unit));
++ __ sd(tmp_reg2, Address(d, 3 * unit));
++ __ sd(tmp_reg3, Address(d, 4 * unit));
++ __ sd(tmp_reg4, Address(d, 5 * unit));
++ __ sd(tmp_reg5, Address(d, 6 * unit));
++ __ sd(tmp_reg6, Address(d, 7 * unit));
++ __ sd(tmp_reg7, Address(d, 8 * unit));
++
++ __ ld(tmp_reg0, Address(s, 1 * unit));
++ __ ld(tmp_reg1, Address(s, 2 * unit));
++ __ ld(tmp_reg2, Address(s, 3 * unit));
++ __ ld(tmp_reg3, Address(s, 4 * unit));
++ __ ld(tmp_reg4, Address(s, 5 * unit));
++ __ ld(tmp_reg5, Address(s, 6 * unit));
++ __ ld(tmp_reg6, Address(s, 7 * unit));
++ __ ld(tmp_reg7, Address(s, 8 * unit));
++
++ __ addi(s, s, 8 * unit);
++ __ addi(d, d, 8 * unit);
++
++ __ sub(count, count, 8);
++ __ bgez(count, again);
++
++ // Drain
++ __ bind(drain);
++
++ __ sd(tmp_reg0, Address(d, 1 * unit));
++ __ sd(tmp_reg1, Address(d, 2 * unit));
++ __ sd(tmp_reg2, Address(d, 3 * unit));
++ __ sd(tmp_reg3, Address(d, 4 * unit));
++ __ sd(tmp_reg4, Address(d, 5 * unit));
++ __ sd(tmp_reg5, Address(d, 6 * unit));
++ __ sd(tmp_reg6, Address(d, 7 * unit));
++ __ sd(tmp_reg7, Address(d, 8 * unit));
++ __ addi(d, d, 8 * unit);
++
++ {
++ Label L1, L2;
++ __ test_bit(t0, count, 2);
++ __ beqz(t0, L1);
++
++ __ ld(tmp_reg0, Address(s, 1 * unit));
++ __ ld(tmp_reg1, Address(s, 2 * unit));
++ __ ld(tmp_reg2, Address(s, 3 * unit));
++ __ ld(tmp_reg3, Address(s, 4 * unit));
++ __ addi(s, s, 4 * unit);
++
++ __ sd(tmp_reg0, Address(d, 1 * unit));
++ __ sd(tmp_reg1, Address(d, 2 * unit));
++ __ sd(tmp_reg2, Address(d, 3 * unit));
++ __ sd(tmp_reg3, Address(d, 4 * unit));
++ __ addi(d, d, 4 * unit);
++
++ __ bind(L1);
++
++ if (direction == copy_forwards) {
++ __ addi(s, s, bias);
++ __ addi(d, d, bias);
++ }
++
++ __ test_bit(t0, count, 1);
++ __ beqz(t0, L2);
++ if (direction == copy_backwards) {
++ __ addi(s, s, 2 * unit);
++ __ ld(tmp_reg0, Address(s));
++ __ ld(tmp_reg1, Address(s, wordSize));
++ __ addi(d, d, 2 * unit);
++ __ sd(tmp_reg0, Address(d));
++ __ sd(tmp_reg1, Address(d, wordSize));
++ } else {
++ __ ld(tmp_reg0, Address(s));
++ __ ld(tmp_reg1, Address(s, wordSize));
++ __ addi(s, s, 2 * unit);
++ __ sd(tmp_reg0, Address(d));
++ __ sd(tmp_reg1, Address(d, wordSize));
++ __ addi(d, d, 2 * unit);
++ }
++ __ bind(L2);
++ }
++
++ __ ret();
++ }
++
++ Label copy_f, copy_b;
++
++ // All-singing all-dancing memory copy.
++ //
++ // Copy count units of memory from s to d. The size of a unit is
++ // step, which can be positive or negative depending on the direction
++ // of copy. If is_aligned is false, we align the source address.
++ //
++ /*
++ * if (is_aligned) {
++ * if (count >= 32)
++ * goto copy32_loop;
++ * if (count >= 8)
++ * goto copy8_loop;
++ * goto copy_small;
++ * }
++ * bool is_backwards = step < 0;
++ * int granularity = uabs(step);
++ * count = count * granularity; * count bytes
++ *
++ * if (is_backwards) {
++ * s += count;
++ * d += count;
++ * }
++ *
++ * count limit maybe greater than 16, for better performance
++ * if (count < 16) {
++ * goto copy_small;
++ * }
++ *
++ * if ((dst % 8) == (src % 8)) {
++ * aligned;
++ * goto copy_big;
++ * }
++ *
++ * copy_big:
++ * if the amount to copy is more than (or equal to) 32 bytes goto copy32_loop
++ * else goto copy8_loop
++ * copy_small:
++ * load element one by one;
++ * done;
++ */
++
++ typedef void (MacroAssembler::*copy_insn)(Register Rd, const Address &adr, Register temp);
++
++ void copy_memory_v(Register s, Register d, Register count, Register tmp, int step) {
++ bool is_backward = step < 0;
++ int granularity = uabs(step);
++
++ const Register src = x30, dst = x31, vl = x14, cnt = x15, tmp1 = x16, tmp2 = x17;
++ assert_different_registers(s, d, cnt, vl, tmp, tmp1, tmp2);
++ Assembler::SEW sew = Assembler::elembytes_to_sew(granularity);
++ Label loop_forward, loop_backward, done;
++
++ __ mv(dst, d);
++ __ mv(src, s);
++ __ mv(cnt, count);
++
++ __ bind(loop_forward);
++ __ vsetvli(vl, cnt, sew, Assembler::m8);
++ if (is_backward) {
++ __ bne(vl, cnt, loop_backward);
++ }
++
++ __ vlex_v(v0, src, sew);
++ __ sub(cnt, cnt, vl);
++ __ slli(vl, vl, (int)sew);
++ __ add(src, src, vl);
++
++ __ vsex_v(v0, dst, sew);
++ __ add(dst, dst, vl);
++ __ bnez(cnt, loop_forward);
++
++ if (is_backward) {
++ __ j(done);
++
++ __ bind(loop_backward);
++ __ sub(tmp, cnt, vl);
++ __ slli(tmp, tmp, sew);
++ __ add(tmp1, s, tmp);
++ __ vlex_v(v0, tmp1, sew);
++ __ add(tmp2, d, tmp);
++ __ vsex_v(v0, tmp2, sew);
++ __ sub(cnt, cnt, vl);
++ __ bnez(cnt, loop_forward);
++ __ bind(done);
++ }
++ }
++
++ void copy_memory(bool is_aligned, Register s, Register d,
++ Register count, Register tmp, int step) {
++ if (UseRVV) {
++ return copy_memory_v(s, d, count, tmp, step);
++ }
++
++ bool is_backwards = step < 0;
++ int granularity = uabs(step);
++
++ const Register src = x30, dst = x31, cnt = x15, tmp3 = x16, tmp4 = x17, tmp5 = x14, tmp6 = x13;
++
++ Label same_aligned;
++ Label copy_big, copy32_loop, copy8_loop, copy_small, done;
++
++ copy_insn ld_arr = NULL, st_arr = NULL;
++ switch (granularity) {
++ case 1 :
++ ld_arr = (copy_insn)&MacroAssembler::lbu;
++ st_arr = (copy_insn)&MacroAssembler::sb;
++ break;
++ case 2 :
++ ld_arr = (copy_insn)&MacroAssembler::lhu;
++ st_arr = (copy_insn)&MacroAssembler::sh;
++ break;
++ case 4 :
++ ld_arr = (copy_insn)&MacroAssembler::lwu;
++ st_arr = (copy_insn)&MacroAssembler::sw;
++ break;
++ case 8 :
++ ld_arr = (copy_insn)&MacroAssembler::ld;
++ st_arr = (copy_insn)&MacroAssembler::sd;
++ break;
++ default :
++ ShouldNotReachHere();
++ }
++
++ __ beqz(count, done);
++ __ slli(cnt, count, exact_log2(granularity));
++ if (is_backwards) {
++ __ add(src, s, cnt);
++ __ add(dst, d, cnt);
++ } else {
++ __ mv(src, s);
++ __ mv(dst, d);
++ }
++
++ if (is_aligned) {
++ __ addi(tmp, cnt, -32);
++ __ bgez(tmp, copy32_loop);
++ __ addi(tmp, cnt, -8);
++ __ bgez(tmp, copy8_loop);
++ __ j(copy_small);
++ } else {
++ __ mv(tmp, 16);
++ __ blt(cnt, tmp, copy_small);
++
++ __ xorr(tmp, src, dst);
++ __ andi(tmp, tmp, 0b111);
++ __ bnez(tmp, copy_small);
++
++ __ bind(same_aligned);
++ __ andi(tmp, src, 0b111);
++ __ beqz(tmp, copy_big);
++ if (is_backwards) {
++ __ addi(src, src, step);
++ __ addi(dst, dst, step);
++ }
++ (_masm->*ld_arr)(tmp3, Address(src), t0);
++ (_masm->*st_arr)(tmp3, Address(dst), t0);
++ if (!is_backwards) {
++ __ addi(src, src, step);
++ __ addi(dst, dst, step);
++ }
++ __ addi(cnt, cnt, -granularity);
++ __ beqz(cnt, done);
++ __ j(same_aligned);
++
++ __ bind(copy_big);
++ __ mv(tmp, 32);
++ __ blt(cnt, tmp, copy8_loop);
++ }
++ __ bind(copy32_loop);
++ if (is_backwards) {
++ __ addi(src, src, -wordSize * 4);
++ __ addi(dst, dst, -wordSize * 4);
++ }
++ // we first load 32 bytes, then write it, so the direction here doesn't matter
++ __ ld(tmp3, Address(src));
++ __ ld(tmp4, Address(src, 8));
++ __ ld(tmp5, Address(src, 16));
++ __ ld(tmp6, Address(src, 24));
++ __ sd(tmp3, Address(dst));
++ __ sd(tmp4, Address(dst, 8));
++ __ sd(tmp5, Address(dst, 16));
++ __ sd(tmp6, Address(dst, 24));
++
++ if (!is_backwards) {
++ __ addi(src, src, wordSize * 4);
++ __ addi(dst, dst, wordSize * 4);
++ }
++ __ addi(tmp, cnt, -(32 + wordSize * 4));
++ __ addi(cnt, cnt, -wordSize * 4);
++ __ bgez(tmp, copy32_loop); // cnt >= 32, do next loop
++
++ __ beqz(cnt, done); // if that's all - done
++
++ __ addi(tmp, cnt, -8); // if not - copy the reminder
++ __ bltz(tmp, copy_small); // cnt < 8, go to copy_small, else fall throught to copy8_loop
++
++ __ bind(copy8_loop);
++ if (is_backwards) {
++ __ addi(src, src, -wordSize);
++ __ addi(dst, dst, -wordSize);
++ }
++ __ ld(tmp3, Address(src));
++ __ sd(tmp3, Address(dst));
++ if (!is_backwards) {
++ __ addi(src, src, wordSize);
++ __ addi(dst, dst, wordSize);
++ }
++ __ addi(tmp, cnt, -(8 + wordSize));
++ __ addi(cnt, cnt, -wordSize);
++ __ bgez(tmp, copy8_loop); // cnt >= 8, do next loop
++
++ __ beqz(cnt, done); // if that's all - done
++
++ __ bind(copy_small);
++ if (is_backwards) {
++ __ addi(src, src, step);
++ __ addi(dst, dst, step);
++ }
++ (_masm->*ld_arr)(tmp3, Address(src), t0);
++ (_masm->*st_arr)(tmp3, Address(dst), t0);
++ if (!is_backwards) {
++ __ addi(src, src, step);
++ __ addi(dst, dst, step);
++ }
++ __ addi(cnt, cnt, -granularity);
++ __ bgtz(cnt, copy_small);
++
++ __ bind(done);
++ }
++
++ // Scan over array at a for count oops, verifying each one.
++ // Preserves a and count, clobbers t0 and t1.
++ void verify_oop_array(size_t size, Register a, Register count, Register temp) {
++ Label loop, end;
++ __ mv(t1, zr);
++ __ slli(t0, count, exact_log2(size));
++ __ bind(loop);
++ __ bgeu(t1, t0, end);
++
++ __ add(temp, a, t1);
++ if (size == (size_t)wordSize) {
++ __ ld(temp, Address(temp, 0));
++ __ verify_oop(temp);
++ } else {
++ __ lwu(temp, Address(temp, 0));
++ __ decode_heap_oop(temp); // calls verify_oop
++ }
++ __ add(t1, t1, size);
++ __ j(loop);
++ __ bind(end);
++ }
++
++ // Arguments:
++ // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
++ // ignored
++ // is_oop - true => oop array, so generate store check code
++ // name - stub name string
++ //
++ // Inputs:
++ // c_rarg0 - source array address
++ // c_rarg1 - destination array address
++ // c_rarg2 - element count, treated as ssize_t, can be zero
++ //
++ // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
++ // the hardware handle it. The two dwords within qwords that span
++ // cache line boundaries will still be loaded and stored atomicly.
++ //
++ // Side Effects:
++ // disjoint_int_copy_entry is set to the no-overlap entry point
++ // used by generate_conjoint_int_oop_copy().
++ //
++ address generate_disjoint_copy(size_t size, bool aligned, bool is_oop, address* entry,
++ const char* name, bool dest_uninitialized = false) {
++ const Register s = c_rarg0, d = c_rarg1, count = c_rarg2;
++ RegSet saved_reg = RegSet::of(s, d, count);
++ __ align(CodeEntryAlignment);
++ StubCodeMark mark(this, "StubRoutines", name);
++ address start = __ pc();
++ __ enter();
++
++ if (entry != NULL) {
++ *entry = __ pc();
++ // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
++ BLOCK_COMMENT("Entry:");
++ }
++
++ DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_DISJOINT;
++ if (dest_uninitialized) {
++ decorators |= IS_DEST_UNINITIALIZED;
++ }
++ if (aligned) {
++ decorators |= ARRAYCOPY_ALIGNED;
++ }
++
++ BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
++ bs->arraycopy_prologue(_masm, decorators, is_oop, s, d, count, saved_reg);
++
++ if (is_oop) {
++ // save regs before copy_memory
++ __ push_reg(RegSet::of(d, count), sp);
++ }
++
++ {
++ // UnsafeCopyMemory page error: continue after ucm
++ bool add_entry = !is_oop && (!aligned || sizeof(jlong) == size);
++ UnsafeCopyMemoryMark ucmm(this, add_entry, true);
++ copy_memory(aligned, s, d, count, t0, size);
++ }
++
++ if (is_oop) {
++ __ pop_reg(RegSet::of(d, count), sp);
++ if (VerifyOops) {
++ verify_oop_array(size, d, count, t2);
++ }
++ }
++
++ bs->arraycopy_epilogue(_masm, decorators, is_oop, d, count, t0, RegSet());
++
++ __ leave();
++ __ mv(x10, zr); // return 0
++ __ ret();
++ return start;
++ }
++
++ // Arguments:
++ // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
++ // ignored
++ // is_oop - true => oop array, so generate store check code
++ // name - stub name string
++ //
++ // Inputs:
++ // c_rarg0 - source array address
++ // c_rarg1 - destination array address
++ // c_rarg2 - element count, treated as ssize_t, can be zero
++ //
++ // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
++ // the hardware handle it. The two dwords within qwords that span
++ // cache line boundaries will still be loaded and stored atomicly.
++ //
++ address generate_conjoint_copy(size_t size, bool aligned, bool is_oop, address nooverlap_target,
++ address* entry, const char* name,
++ bool dest_uninitialized = false) {
++ const Register s = c_rarg0, d = c_rarg1, count = c_rarg2;
++ RegSet saved_regs = RegSet::of(s, d, count);
++ StubCodeMark mark(this, "StubRoutines", name);
++ address start = __ pc();
++ __ enter();
++
++ if (entry != NULL) {
++ *entry = __ pc();
++ // caller can pass a 64-bit byte count here (from Unsafe.copyMemory)
++ BLOCK_COMMENT("Entry:");
++ }
++
++ // use fwd copy when (d-s) above_equal (count*size)
++ __ sub(t0, d, s);
++ __ slli(t1, count, exact_log2(size));
++ __ bgeu(t0, t1, nooverlap_target);
++
++ DecoratorSet decorators = IN_HEAP | IS_ARRAY;
++ if (dest_uninitialized) {
++ decorators |= IS_DEST_UNINITIALIZED;
++ }
++ if (aligned) {
++ decorators |= ARRAYCOPY_ALIGNED;
++ }
++
++ BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
++ bs->arraycopy_prologue(_masm, decorators, is_oop, s, d, count, saved_regs);
++
++ if (is_oop) {
++ // save regs before copy_memory
++ __ push_reg(RegSet::of(d, count), sp);
++ }
++
++ {
++ // UnsafeCopyMemory page error: continue after ucm
++ bool add_entry = !is_oop && (!aligned || sizeof(jlong) == size);
++ UnsafeCopyMemoryMark ucmm(this, add_entry, true);
++ copy_memory(aligned, s, d, count, t0, -size);
++ }
++
++ if (is_oop) {
++ __ pop_reg(RegSet::of(d, count), sp);
++ if (VerifyOops) {
++ verify_oop_array(size, d, count, t2);
++ }
++ }
++ bs->arraycopy_epilogue(_masm, decorators, is_oop, d, count, t0, RegSet());
++ __ leave();
++ __ mv(x10, zr); // return 0
++ __ ret();
++ return start;
++ }
++
++ // Arguments:
++ // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
++ // ignored
++ // name - stub name string
++ //
++ // Inputs:
++ // c_rarg0 - source array address
++ // c_rarg1 - destination array address
++ // c_rarg2 - element count, treated as ssize_t, can be zero
++ //
++ // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
++ // we let the hardware handle it. The one to eight bytes within words,
++ // dwords or qwords that span cache line boundaries will still be loaded
++ // and stored atomically.
++ //
++ // Side Effects:
++ // disjoint_byte_copy_entry is set to the no-overlap entry point //
++ // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
++ // we let the hardware handle it. The one to eight bytes within words,
++ // dwords or qwords that span cache line boundaries will still be loaded
++ // and stored atomically.
++ //
++ // Side Effects:
++ // disjoint_byte_copy_entry is set to the no-overlap entry point
++ // used by generate_conjoint_byte_copy().
++ //
++ address generate_disjoint_byte_copy(bool aligned, address* entry, const char* name) {
++ const bool not_oop = false;
++ return generate_disjoint_copy(sizeof (jbyte), aligned, not_oop, entry, name);
++ }
++
++ // Arguments:
++ // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
++ // ignored
++ // name - stub name string
++ //
++ // Inputs:
++ // c_rarg0 - source array address
++ // c_rarg1 - destination array address
++ // c_rarg2 - element count, treated as ssize_t, can be zero
++ //
++ // If 'from' and/or 'to' are aligned on 4-, 2-, or 1-byte boundaries,
++ // we let the hardware handle it. The one to eight bytes within words,
++ // dwords or qwords that span cache line boundaries will still be loaded
++ // and stored atomically.
++ //
++ address generate_conjoint_byte_copy(bool aligned, address nooverlap_target,
++ address* entry, const char* name) {
++ const bool not_oop = false;
++ return generate_conjoint_copy(sizeof (jbyte), aligned, not_oop, nooverlap_target, entry, name);
++ }
++
++ // Arguments:
++ // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
++ // ignored
++ // name - stub name string
++ //
++ // Inputs:
++ // c_rarg0 - source array address
++ // c_rarg1 - destination array address
++ // c_rarg2 - element count, treated as ssize_t, can be zero
++ //
++ // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
++ // let the hardware handle it. The two or four words within dwords
++ // or qwords that span cache line boundaries will still be loaded
++ // and stored atomically.
++ //
++ // Side Effects:
++ // disjoint_short_copy_entry is set to the no-overlap entry point
++ // used by generate_conjoint_short_copy().
++ //
++ address generate_disjoint_short_copy(bool aligned,
++ address* entry, const char* name) {
++ const bool not_oop = false;
++ return generate_disjoint_copy(sizeof (jshort), aligned, not_oop, entry, name);
++ }
++
++ // Arguments:
++ // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
++ // ignored
++ // name - stub name string
++ //
++ // Inputs:
++ // c_rarg0 - source array address
++ // c_rarg1 - destination array address
++ // c_rarg2 - element count, treated as ssize_t, can be zero
++ //
++ // If 'from' and/or 'to' are aligned on 4- or 2-byte boundaries, we
++ // let the hardware handle it. The two or four words within dwords
++ // or qwords that span cache line boundaries will still be loaded
++ // and stored atomically.
++ //
++ address generate_conjoint_short_copy(bool aligned, address nooverlap_target,
++ address* entry, const char* name) {
++ const bool not_oop = false;
++ return generate_conjoint_copy(sizeof (jshort), aligned, not_oop, nooverlap_target, entry, name);
++ }
++
++ // Arguments:
++ // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
++ // ignored
++ // name - stub name string
++ //
++ // Inputs:
++ // c_rarg0 - source array address
++ // c_rarg1 - destination array address
++ // c_rarg2 - element count, treated as ssize_t, can be zero
++ //
++ // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
++ // the hardware handle it. The two dwords within qwords that span
++ // cache line boundaries will still be loaded and stored atomicly.
++ //
++ // Side Effects:
++ // disjoint_int_copy_entry is set to the no-overlap entry point
++ // used by generate_conjoint_int_oop_copy().
++ //
++ address generate_disjoint_int_copy(bool aligned, address* entry,
++ const char* name, bool dest_uninitialized = false) {
++ const bool not_oop = false;
++ return generate_disjoint_copy(sizeof (jint), aligned, not_oop, entry, name);
++ }
++
++ // Arguments:
++ // aligned - true => Input and output aligned on a HeapWord == 8-byte boundary
++ // ignored
++ // name - stub name string
++ //
++ // Inputs:
++ // c_rarg0 - source array address
++ // c_rarg1 - destination array address
++ // c_rarg2 - element count, treated as ssize_t, can be zero
++ //
++ // If 'from' and/or 'to' are aligned on 4-byte boundaries, we let
++ // the hardware handle it. The two dwords within qwords that span
++ // cache line boundaries will still be loaded and stored atomicly.
++ //
++ address generate_conjoint_int_copy(bool aligned, address nooverlap_target,
++ address* entry, const char* name,
++ bool dest_uninitialized = false) {
++ const bool not_oop = false;
++ return generate_conjoint_copy(sizeof (jint), aligned, not_oop, nooverlap_target, entry, name);
++ }
++
++
++ // Arguments:
++ // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
++ // ignored
++ // name - stub name string
++ //
++ // Inputs:
++ // c_rarg0 - source array address
++ // c_rarg1 - destination array address
++ // c_rarg2 - element count, treated as size_t, can be zero
++ //
++ // Side Effects:
++ // disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
++ // no-overlap entry point used by generate_conjoint_long_oop_copy().
++ //
++ address generate_disjoint_long_copy(bool aligned, address* entry,
++ const char* name, bool dest_uninitialized = false) {
++ const bool not_oop = false;
++ return generate_disjoint_copy(sizeof (jlong), aligned, not_oop, entry, name);
++ }
++
++ // Arguments:
++ // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
++ // ignored
++ // name - stub name string
++ //
++ // Inputs:
++ // c_rarg0 - source array address
++ // c_rarg1 - destination array address
++ // c_rarg2 - element count, treated as size_t, can be zero
++ //
++ address generate_conjoint_long_copy(bool aligned,
++ address nooverlap_target, address* entry,
++ const char* name, bool dest_uninitialized = false) {
++ const bool not_oop = false;
++ return generate_conjoint_copy(sizeof (jlong), aligned, not_oop, nooverlap_target, entry, name);
++ }
++
++ // Arguments:
++ // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
++ // ignored
++ // name - stub name string
++ //
++ // Inputs:
++ // c_rarg0 - source array address
++ // c_rarg1 - destination array address
++ // c_rarg2 - element count, treated as size_t, can be zero
++ //
++ // Side Effects:
++ // disjoint_oop_copy_entry or disjoint_long_copy_entry is set to the
++ // no-overlap entry point used by generate_conjoint_long_oop_copy().
++ //
++ address generate_disjoint_oop_copy(bool aligned, address* entry,
++ const char* name, bool dest_uninitialized) {
++ const bool is_oop = true;
++ const size_t size = UseCompressedOops ? sizeof (jint) : sizeof (jlong);
++ return generate_disjoint_copy(size, aligned, is_oop, entry, name, dest_uninitialized);
++ }
++
++ // Arguments:
++ // aligned - true => Input and output aligned on a HeapWord boundary == 8 bytes
++ // ignored
++ // name - stub name string
++ //
++ // Inputs:
++ // c_rarg0 - source array address
++ // c_rarg1 - destination array address
++ // c_rarg2 - element count, treated as size_t, can be zero
++ //
++ address generate_conjoint_oop_copy(bool aligned,
++ address nooverlap_target, address* entry,
++ const char* name, bool dest_uninitialized) {
++ const bool is_oop = true;
++ const size_t size = UseCompressedOops ? sizeof (jint) : sizeof (jlong);
++ return generate_conjoint_copy(size, aligned, is_oop, nooverlap_target, entry,
++ name, dest_uninitialized);
++ }
++
++ // Helper for generating a dynamic type check.
++ // Smashes t0, t1.
++ void generate_type_check(Register sub_klass,
++ Register super_check_offset,
++ Register super_klass,
++ Label& L_success) {
++ assert_different_registers(sub_klass, super_check_offset, super_klass);
++
++ BLOCK_COMMENT("type_check:");
++
++ Label L_miss;
++
++ __ check_klass_subtype_fast_path(sub_klass, super_klass, noreg, &L_success, &L_miss, NULL, super_check_offset);
++ __ check_klass_subtype_slow_path(sub_klass, super_klass, noreg, noreg, &L_success, NULL);
++
++ // Fall through on failure!
++ __ BIND(L_miss);
++ }
++
++ //
++ // Generate checkcasting array copy stub
++ //
++ // Input:
++ // c_rarg0 - source array address
++ // c_rarg1 - destination array address
++ // c_rarg2 - element count, treated as ssize_t, can be zero
++ // c_rarg3 - size_t ckoff (super_check_offset)
++ // c_rarg4 - oop ckval (super_klass)
++ //
++ // Output:
++ // x10 == 0 - success
++ // x10 == -1^K - failure, where K is partial transfer count
++ //
++ address generate_checkcast_copy(const char* name, address* entry,
++ bool dest_uninitialized = false) {
++ Label L_load_element, L_store_element, L_do_card_marks, L_done, L_done_pop;
++
++ // Input registers (after setup_arg_regs)
++ const Register from = c_rarg0; // source array address
++ const Register to = c_rarg1; // destination array address
++ const Register count = c_rarg2; // elementscount
++ const Register ckoff = c_rarg3; // super_check_offset
++ const Register ckval = c_rarg4; // super_klass
++
++ RegSet wb_pre_saved_regs = RegSet::range(c_rarg0, c_rarg4);
++ RegSet wb_post_saved_regs = RegSet::of(count);
++
++ // Registers used as temps (x7, x9, x18 are save-on-entry)
++ const Register count_save = x19; // orig elementscount
++ const Register start_to = x18; // destination array start address
++ const Register copied_oop = x7; // actual oop copied
++ const Register r9_klass = x9; // oop._klass
++
++ //---------------------------------------------------------------
++ // Assembler stub will be used for this call to arraycopy
++ // if the two arrays are subtypes of Object[] but the
++ // destination array type is not equal to or a supertype
++ // of the source type. Each element must be separately
++ // checked.
++
++ assert_different_registers(from, to, count, ckoff, ckval, start_to,
++ copied_oop, r9_klass, count_save);
++
++ __ align(CodeEntryAlignment);
++ StubCodeMark mark(this, "StubRoutines", name);
++ address start = __ pc();
++
++ __ enter(); // required for proper stackwalking of RuntimeStub frame
++
++ // Caller of this entry point must set up the argument registers.
++ if (entry != NULL) {
++ *entry = __ pc();
++ BLOCK_COMMENT("Entry:");
++ }
++
++ // Empty array: Nothing to do
++ __ beqz(count, L_done);
++
++ __ push_reg(RegSet::of(x7, x9, x18, x19), sp);
++
++#ifdef ASSERT
++ BLOCK_COMMENT("assert consistent ckoff/ckval");
++ // The ckoff and ckval must be mutually consistent,
++ // even though caller generates both.
++ { Label L;
++ int sco_offset = in_bytes(Klass::super_check_offset_offset());
++ __ lwu(start_to, Address(ckval, sco_offset));
++ __ beq(ckoff, start_to, L);
++ __ stop("super_check_offset inconsistent");
++ __ bind(L);
++ }
++#endif //ASSERT
++
++ DecoratorSet decorators = IN_HEAP | IS_ARRAY | ARRAYCOPY_CHECKCAST | ARRAYCOPY_DISJOINT;
++ bool is_oop = true;
++ if (dest_uninitialized) {
++ decorators |= IS_DEST_UNINITIALIZED;
++ }
++
++ BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
++ bs->arraycopy_prologue(_masm, decorators, is_oop, from, to, count, wb_pre_saved_regs);
++
++ // save the original count
++ __ mv(count_save, count);
++
++ // Copy from low to high addresses
++ __ mv(start_to, to); // Save destination array start address
++ __ j(L_load_element);
++
++ // ======== begin loop ========
++ // (Loop is rotated; its entry is L_load_element.)
++ // Loop control:
++ // for count to 0 do
++ // copied_oop = load_heap_oop(from++)
++ // ... generate_type_check ...
++ // store_heap_oop(to++, copied_oop)
++ // end
++
++ __ align(OptoLoopAlignment);
++
++ __ BIND(L_store_element);
++ __ store_heap_oop(Address(to, 0), copied_oop, noreg, noreg, AS_RAW); // store the oop
++ __ add(to, to, UseCompressedOops ? 4 : 8);
++ __ sub(count, count, 1);
++ __ beqz(count, L_do_card_marks);
++
++ // ======== loop entry is here ========
++ __ BIND(L_load_element);
++ __ load_heap_oop(copied_oop, Address(from, 0), noreg, noreg, AS_RAW); // load the oop
++ __ add(from, from, UseCompressedOops ? 4 : 8);
++ __ beqz(copied_oop, L_store_element);
++
++ __ load_klass(r9_klass, copied_oop);// query the object klass
++ generate_type_check(r9_klass, ckoff, ckval, L_store_element);
++ // ======== end loop ========
++
++ // It was a real error; we must depend on the caller to finish the job.
++ // Register count = remaining oops, count_orig = total oops.
++ // Emit GC store barriers for the oops we have copied and report
++ // their number to the caller.
++
++ __ sub(count, count_save, count); // K = partially copied oop count
++ __ xori(count, count, -1); // report (-1^K) to caller
++ __ beqz(count, L_done_pop);
++
++ __ BIND(L_do_card_marks);
++ bs->arraycopy_epilogue(_masm, decorators, is_oop, start_to, count_save, t0, wb_post_saved_regs);
++
++ __ bind(L_done_pop);
++ __ pop_reg(RegSet::of(x7, x9, x18, x19), sp);
++ inc_counter_np(SharedRuntime::_checkcast_array_copy_ctr);
++
++ __ bind(L_done);
++ __ mv(x10, count);
++ __ leave();
++ __ ret();
++
++ return start;
++ }
++
++ // Perform range checks on the proposed arraycopy.
++ // Kills temp, but nothing else.
++ // Also, clean the sign bits of src_pos and dst_pos.
++ void arraycopy_range_checks(Register src, // source array oop (c_rarg0)
++ Register src_pos, // source position (c_rarg1)
++ Register dst, // destination array oo (c_rarg2)
++ Register dst_pos, // destination position (c_rarg3)
++ Register length,
++ Register temp,
++ Label& L_failed) {
++ BLOCK_COMMENT("arraycopy_range_checks:");
++
++ assert_different_registers(t0, temp);
++
++ // if [src_pos + length > arrayOop(src)->length()] then FAIL
++ __ lwu(t0, Address(src, arrayOopDesc::length_offset_in_bytes()));
++ __ addw(temp, length, src_pos);
++ __ bgtu(temp, t0, L_failed);
++
++ // if [dst_pos + length > arrayOop(dst)->length()] then FAIL
++ __ lwu(t0, Address(dst, arrayOopDesc::length_offset_in_bytes()));
++ __ addw(temp, length, dst_pos);
++ __ bgtu(temp, t0, L_failed);
++
++ // Have to clean up high 32 bits of 'src_pos' and 'dst_pos'.
++ __ zero_extend(src_pos, src_pos, 32);
++ __ zero_extend(dst_pos, dst_pos, 32);
++
++ BLOCK_COMMENT("arraycopy_range_checks done");
++ }
++
++ //
++ // Generate 'unsafe' array copy stub
++ // Though just as safe as the other stubs, it takes an unscaled
++ // size_t argument instead of an element count.
++ //
++ // Input:
++ // c_rarg0 - source array address
++ // c_rarg1 - destination array address
++ // c_rarg2 - byte count, treated as ssize_t, can be zero
++ //
++ // Examines the alignment of the operands and dispatches
++ // to a long, int, short, or byte copy loop.
++ //
++ address generate_unsafe_copy(const char* name,
++ address byte_copy_entry,
++ address short_copy_entry,
++ address int_copy_entry,
++ address long_copy_entry) {
++ assert_cond(byte_copy_entry != NULL && short_copy_entry != NULL &&
++ int_copy_entry != NULL && long_copy_entry != NULL);
++ Label L_long_aligned, L_int_aligned, L_short_aligned;
++ const Register s = c_rarg0, d = c_rarg1, count = c_rarg2;
++
++ __ align(CodeEntryAlignment);
++ StubCodeMark mark(this, "StubRoutines", name);
++ address start = __ pc();
++ __ enter(); // required for proper stackwalking of RuntimeStub frame
++
++ // bump this on entry, not on exit:
++ inc_counter_np(SharedRuntime::_unsafe_array_copy_ctr);
++
++ __ orr(t0, s, d);
++ __ orr(t0, t0, count);
++
++ __ andi(t0, t0, BytesPerLong - 1);
++ __ beqz(t0, L_long_aligned);
++ __ andi(t0, t0, BytesPerInt - 1);
++ __ beqz(t0, L_int_aligned);
++ __ test_bit(t0, t0, 0);
++ __ beqz(t0, L_short_aligned);
++ __ j(RuntimeAddress(byte_copy_entry));
++
++ __ BIND(L_short_aligned);
++ __ srli(count, count, LogBytesPerShort); // size => short_count
++ __ j(RuntimeAddress(short_copy_entry));
++ __ BIND(L_int_aligned);
++ __ srli(count, count, LogBytesPerInt); // size => int_count
++ __ j(RuntimeAddress(int_copy_entry));
++ __ BIND(L_long_aligned);
++ __ srli(count, count, LogBytesPerLong); // size => long_count
++ __ j(RuntimeAddress(long_copy_entry));
++
++ return start;
++ }
++
++ //
++ // Generate generic array copy stubs
++ //
++ // Input:
++ // c_rarg0 - src oop
++ // c_rarg1 - src_pos (32-bits)
++ // c_rarg2 - dst oop
++ // c_rarg3 - dst_pos (32-bits)
++ // c_rarg4 - element count (32-bits)
++ //
++ // Output:
++ // x10 == 0 - success
++ // x10 == -1^K - failure, where K is partial transfer count
++ //
++ address generate_generic_copy(const char* name,
++ address byte_copy_entry, address short_copy_entry,
++ address int_copy_entry, address oop_copy_entry,
++ address long_copy_entry, address checkcast_copy_entry) {
++ assert_cond(byte_copy_entry != NULL && short_copy_entry != NULL &&
++ int_copy_entry != NULL && oop_copy_entry != NULL &&
++ long_copy_entry != NULL && checkcast_copy_entry != NULL);
++ Label L_failed, L_failed_0, L_objArray;
++ Label L_copy_bytes, L_copy_shorts, L_copy_ints, L_copy_longs;
++
++ // Input registers
++ const Register src = c_rarg0; // source array oop
++ const Register src_pos = c_rarg1; // source position
++ const Register dst = c_rarg2; // destination array oop
++ const Register dst_pos = c_rarg3; // destination position
++ const Register length = c_rarg4;
++
++ // Registers used as temps
++ const Register dst_klass = c_rarg5;
++
++ __ align(CodeEntryAlignment);
++
++ StubCodeMark mark(this, "StubRoutines", name);
++
++ address start = __ pc();
++
++ __ enter(); // required for proper stackwalking of RuntimeStub frame
++
++ // bump this on entry, not on exit:
++ inc_counter_np(SharedRuntime::_generic_array_copy_ctr);
++
++ //-----------------------------------------------------------------------
++ // Assembler stub will be used for this call to arraycopy
++ // if the following conditions are met:
++ //
++ // (1) src and dst must not be null.
++ // (2) src_pos must not be negative.
++ // (3) dst_pos must not be negative.
++ // (4) length must not be negative.
++ // (5) src klass and dst klass should be the same and not NULL.
++ // (6) src and dst should be arrays.
++ // (7) src_pos + length must not exceed length of src.
++ // (8) dst_pos + length must not exceed length of dst.
++ //
++
++ // if [src == NULL] then return -1
++ __ beqz(src, L_failed);
++
++ // if [src_pos < 0] then return -1
++ __ sign_extend(t0, src_pos, 32);
++ __ bltz(t0, L_failed);
++
++ // if [dst == NULL] then return -1
++ __ beqz(dst, L_failed);
++
++ // if [dst_pos < 0] then return -1
++ __ sign_extend(t0, dst_pos, 32);
++ __ bltz(t0, L_failed);
++
++ // registers used as temp
++ const Register scratch_length = x28; // elements count to copy
++ const Register scratch_src_klass = x29; // array klass
++ const Register lh = x30; // layout helper
++
++ // if [length < 0] then return -1
++ __ sign_extend(scratch_length, length, 32); // length (elements count, 32-bits value)
++ __ bltz(scratch_length, L_failed);
++
++ __ load_klass(scratch_src_klass, src);
++#ifdef ASSERT
++ {
++ BLOCK_COMMENT("assert klasses not null {");
++ Label L1, L2;
++ __ bnez(scratch_src_klass, L2); // it is broken if klass is NULL
++ __ bind(L1);
++ __ stop("broken null klass");
++ __ bind(L2);
++ __ load_klass(t0, dst, t1);
++ __ beqz(t0, L1); // this would be broken also
++ BLOCK_COMMENT("} assert klasses not null done");
++ }
++#endif
++
++ // Load layout helper (32-bits)
++ //
++ // |array_tag| | header_size | element_type | |log2_element_size|
++ // 32 30 24 16 8 2 0
++ //
++ // array_tag: typeArray = 0x3, objArray = 0x2, non-array = 0x0
++ //
++
++ const int lh_offset = in_bytes(Klass::layout_helper_offset());
++
++ // Handle objArrays completely differently...
++ const jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
++ __ lw(lh, Address(scratch_src_klass, lh_offset));
++ __ mv(t0, objArray_lh);
++ __ beq(lh, t0, L_objArray);
++
++ // if [src->klass() != dst->klass()] then return -1
++ __ load_klass(t1, dst);
++ __ bne(t1, scratch_src_klass, L_failed);
++
++ // if [src->is_Array() != NULL] then return -1
++ // i.e. (lh >= 0)
++ __ bgez(lh, L_failed);
++
++ // At this point, it is known to be a typeArray (array_tag 0x3).
++#ifdef ASSERT
++ {
++ BLOCK_COMMENT("assert primitive array {");
++ Label L;
++ __ mv(t1, (int32_t)(Klass::_lh_array_tag_type_value << Klass::_lh_array_tag_shift));
++ __ bge(lh, t1, L);
++ __ stop("must be a primitive array");
++ __ bind(L);
++ BLOCK_COMMENT("} assert primitive array done");
++ }
++#endif
++
++ arraycopy_range_checks(src, src_pos, dst, dst_pos, scratch_length,
++ t1, L_failed);
++
++ // TypeArrayKlass
++ //
++ // src_addr = (src + array_header_in_bytes()) + (src_pos << log2elemsize)
++ // dst_addr = (dst + array_header_in_bytes()) + (dst_pos << log2elemsize)
++ //
++
++ const Register t0_offset = t0; // array offset
++ const Register x30_elsize = lh; // element size
++
++ // Get array_header_in_bytes()
++ int lh_header_size_width = exact_log2(Klass::_lh_header_size_mask + 1);
++ int lh_header_size_msb = Klass::_lh_header_size_shift + lh_header_size_width;
++ __ slli(t0_offset, lh, XLEN - lh_header_size_msb); // left shift to remove 24 ~ 32;
++ __ srli(t0_offset, t0_offset, XLEN - lh_header_size_width); // array_offset
++
++ __ add(src, src, t0_offset); // src array offset
++ __ add(dst, dst, t0_offset); // dst array offset
++ BLOCK_COMMENT("choose copy loop based on element size");
++
++ // next registers should be set before the jump to corresponding stub
++ const Register from = c_rarg0; // source array address
++ const Register to = c_rarg1; // destination array address
++ const Register count = c_rarg2; // elements count
++
++ // 'from', 'to', 'count' registers should be set in such order
++ // since they are the same as 'src', 'src_pos', 'dst'.
++
++ assert(Klass::_lh_log2_element_size_shift == 0, "fix this code");
++
++ // The possible values of elsize are 0-3, i.e. exact_log2(element
++ // size in bytes). We do a simple bitwise binary search.
++ __ BIND(L_copy_bytes);
++ __ test_bit(t0, x30_elsize, 1);
++ __ bnez(t0, L_copy_ints);
++ __ test_bit(t0, x30_elsize, 0);
++ __ bnez(t0, L_copy_shorts);
++ __ add(from, src, src_pos); // src_addr
++ __ add(to, dst, dst_pos); // dst_addr
++ __ sign_extend(count, scratch_length, 32); // length
++ __ j(RuntimeAddress(byte_copy_entry));
++
++ __ BIND(L_copy_shorts);
++ __ shadd(from, src_pos, src, t0, 1); // src_addr
++ __ shadd(to, dst_pos, dst, t0, 1); // dst_addr
++ __ sign_extend(count, scratch_length, 32); // length
++ __ j(RuntimeAddress(short_copy_entry));
++
++ __ BIND(L_copy_ints);
++ __ test_bit(t0, x30_elsize, 0);
++ __ bnez(t0, L_copy_longs);
++ __ shadd(from, src_pos, src, t0, 2); // src_addr
++ __ shadd(to, dst_pos, dst, t0, 2); // dst_addr
++ __ sign_extend(count, scratch_length, 32); // length
++ __ j(RuntimeAddress(int_copy_entry));
++
++ __ BIND(L_copy_longs);
++#ifdef ASSERT
++ {
++ BLOCK_COMMENT("assert long copy {");
++ Label L;
++ __ andi(lh, lh, Klass::_lh_log2_element_size_mask); // lh -> x30_elsize
++ __ sign_extend(lh, lh, 32);
++ __ mv(t0, LogBytesPerLong);
++ __ beq(x30_elsize, t0, L);
++ __ stop("must be long copy, but elsize is wrong");
++ __ bind(L);
++ BLOCK_COMMENT("} assert long copy done");
++ }
++#endif
++ __ shadd(from, src_pos, src, t0, 3); // src_addr
++ __ shadd(to, dst_pos, dst, t0, 3); // dst_addr
++ __ sign_extend(count, scratch_length, 32); // length
++ __ j(RuntimeAddress(long_copy_entry));
++
++ // ObjArrayKlass
++ __ BIND(L_objArray);
++ // live at this point: scratch_src_klass, scratch_length, src[_pos], dst[_pos]
++
++ Label L_plain_copy, L_checkcast_copy;
++ // test array classes for subtyping
++ __ load_klass(t2, dst);
++ __ bne(scratch_src_klass, t2, L_checkcast_copy); // usual case is exact equality
++
++ // Identically typed arrays can be copied without element-wise checks.
++ arraycopy_range_checks(src, src_pos, dst, dst_pos, scratch_length,
++ t1, L_failed);
++
++ __ shadd(from, src_pos, src, t0, LogBytesPerHeapOop);
++ __ add(from, from, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
++ __ shadd(to, dst_pos, dst, t0, LogBytesPerHeapOop);
++ __ add(to, to, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
++ __ sign_extend(count, scratch_length, 32); // length
++ __ BIND(L_plain_copy);
++ __ j(RuntimeAddress(oop_copy_entry));
++
++ __ BIND(L_checkcast_copy);
++ // live at this point: scratch_src_klass, scratch_length, t2 (dst_klass)
++ {
++ // Before looking at dst.length, make sure dst is also an objArray.
++ __ lwu(t0, Address(t2, lh_offset));
++ __ mv(t1, objArray_lh);
++ __ bne(t0, t1, L_failed);
++
++ // It is safe to examine both src.length and dst.length.
++ arraycopy_range_checks(src, src_pos, dst, dst_pos, scratch_length,
++ t2, L_failed);
++
++ __ load_klass(dst_klass, dst); // reload
++
++ // Marshal the base address arguments now, freeing registers.
++ __ shadd(from, src_pos, src, t0, LogBytesPerHeapOop);
++ __ add(from, from, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
++ __ shadd(to, dst_pos, dst, t0, LogBytesPerHeapOop);
++ __ add(to, to, arrayOopDesc::base_offset_in_bytes(T_OBJECT));
++ __ sign_extend(count, length, 32); // length (reloaded)
++ const Register sco_temp = c_rarg3; // this register is free now
++ assert_different_registers(from, to, count, sco_temp,
++ dst_klass, scratch_src_klass);
++
++ // Generate the type check.
++ const int sco_offset = in_bytes(Klass::super_check_offset_offset());
++ __ lwu(sco_temp, Address(dst_klass, sco_offset));
++
++ // Smashes t0, t1
++ generate_type_check(scratch_src_klass, sco_temp, dst_klass, L_plain_copy);
++
++ // Fetch destination element klass from the ObjArrayKlass header.
++ int ek_offset = in_bytes(ObjArrayKlass::element_klass_offset());
++ __ ld(dst_klass, Address(dst_klass, ek_offset));
++ __ lwu(sco_temp, Address(dst_klass, sco_offset));
++
++ // the checkcast_copy loop needs two extra arguments:
++ assert(c_rarg3 == sco_temp, "#3 already in place");
++ // Set up arguments for checkcast_copy_entry.
++ __ mv(c_rarg4, dst_klass); // dst.klass.element_klass
++ __ j(RuntimeAddress(checkcast_copy_entry));
++ }
++
++ __ BIND(L_failed);
++ __ mv(x10, -1);
++ __ leave(); // required for proper stackwalking of RuntimeStub frame
++ __ ret();
++
++ return start;
++ }
++
++ //
++ // Generate stub for array fill. If "aligned" is true, the
++ // "to" address is assumed to be heapword aligned.
++ //
++ // Arguments for generated stub:
++ // to: c_rarg0
++ // value: c_rarg1
++ // count: c_rarg2 treated as signed
++ //
++ address generate_fill(BasicType t, bool aligned, const char* name) {
++ __ align(CodeEntryAlignment);
++ StubCodeMark mark(this, "StubRoutines", name);
++ address start = __ pc();
++
++ BLOCK_COMMENT("Entry:");
++
++ const Register to = c_rarg0; // source array address
++ const Register value = c_rarg1; // value
++ const Register count = c_rarg2; // elements count
++
++ const Register bz_base = x28; // base for block_zero routine
++ const Register cnt_words = x29; // temp register
++ const Register tmp_reg = t1;
++
++ __ enter();
++
++ Label L_fill_elements, L_exit1;
++
++ int shift = -1;
++ switch (t) {
++ case T_BYTE:
++ shift = 0;
++
++ // Zero extend value
++ // 8 bit -> 16 bit
++ __ andi(value, value, 0xff);
++ __ mv(tmp_reg, value);
++ __ slli(tmp_reg, tmp_reg, 8);
++ __ orr(value, value, tmp_reg);
++
++ // 16 bit -> 32 bit
++ __ mv(tmp_reg, value);
++ __ slli(tmp_reg, tmp_reg, 16);
++ __ orr(value, value, tmp_reg);
++
++ __ mv(tmp_reg, 8 >> shift); // Short arrays (< 8 bytes) fill by element
++ __ bltu(count, tmp_reg, L_fill_elements);
++ break;
++ case T_SHORT:
++ shift = 1;
++ // Zero extend value
++ // 16 bit -> 32 bit
++ __ andi(value, value, 0xffff);
++ __ mv(tmp_reg, value);
++ __ slli(tmp_reg, tmp_reg, 16);
++ __ orr(value, value, tmp_reg);
++
++ // Short arrays (< 8 bytes) fill by element
++ __ mv(tmp_reg, 8 >> shift);
++ __ bltu(count, tmp_reg, L_fill_elements);
++ break;
++ case T_INT:
++ shift = 2;
++
++ // Short arrays (< 8 bytes) fill by element
++ __ mv(tmp_reg, 8 >> shift);
++ __ bltu(count, tmp_reg, L_fill_elements);
++ break;
++ default: ShouldNotReachHere();
++ }
++
++ // Align source address at 8 bytes address boundary.
++ Label L_skip_align1, L_skip_align2, L_skip_align4;
++ if (!aligned) {
++ switch (t) {
++ case T_BYTE:
++ // One byte misalignment happens only for byte arrays.
++ __ test_bit(t0, to, 0);
++ __ beqz(t0, L_skip_align1);
++ __ sb(value, Address(to, 0));
++ __ addi(to, to, 1);
++ __ addiw(count, count, -1);
++ __ bind(L_skip_align1);
++ // Fallthrough
++ case T_SHORT:
++ // Two bytes misalignment happens only for byte and short (char) arrays.
++ __ test_bit(t0, to, 1);
++ __ beqz(t0, L_skip_align2);
++ __ sh(value, Address(to, 0));
++ __ addi(to, to, 2);
++ __ addiw(count, count, -(2 >> shift));
++ __ bind(L_skip_align2);
++ // Fallthrough
++ case T_INT:
++ // Align to 8 bytes, we know we are 4 byte aligned to start.
++ __ test_bit(t0, to, 2);
++ __ beqz(t0, L_skip_align4);
++ __ sw(value, Address(to, 0));
++ __ addi(to, to, 4);
++ __ addiw(count, count, -(4 >> shift));
++ __ bind(L_skip_align4);
++ break;
++ default: ShouldNotReachHere();
++ }
++ }
++
++ //
++ // Fill large chunks
++ //
++ __ srliw(cnt_words, count, 3 - shift); // number of words
++
++ // 32 bit -> 64 bit
++ __ andi(value, value, 0xffffffff);
++ __ mv(tmp_reg, value);
++ __ slli(tmp_reg, tmp_reg, 32);
++ __ orr(value, value, tmp_reg);
++
++ __ slli(tmp_reg, cnt_words, 3 - shift);
++ __ subw(count, count, tmp_reg);
++ {
++ __ fill_words(to, cnt_words, value);
++ }
++
++ // Remaining count is less than 8 bytes. Fill it by a single store.
++ // Note that the total length is no less than 8 bytes.
++ if (t == T_BYTE || t == T_SHORT) {
++ __ beqz(count, L_exit1);
++ __ shadd(to, count, to, tmp_reg, shift); // points to the end
++ __ sd(value, Address(to, -8)); // overwrite some elements
++ __ bind(L_exit1);
++ __ leave();
++ __ ret();
++ }
++
++ // Handle copies less than 8 bytes.
++ Label L_fill_2, L_fill_4, L_exit2;
++ __ bind(L_fill_elements);
++ switch (t) {
++ case T_BYTE:
++ __ test_bit(t0, count, 0);
++ __ beqz(t0, L_fill_2);
++ __ sb(value, Address(to, 0));
++ __ addi(to, to, 1);
++ __ bind(L_fill_2);
++ __ test_bit(t0, count, 1);
++ __ beqz(t0, L_fill_4);
++ __ sh(value, Address(to, 0));
++ __ addi(to, to, 2);
++ __ bind(L_fill_4);
++ __ test_bit(t0, count, 2);
++ __ beqz(t0, L_exit2);
++ __ sw(value, Address(to, 0));
++ break;
++ case T_SHORT:
++ __ test_bit(t0, count, 0);
++ __ beqz(t0, L_fill_4);
++ __ sh(value, Address(to, 0));
++ __ addi(to, to, 2);
++ __ bind(L_fill_4);
++ __ test_bit(t0, count, 1);
++ __ beqz(t0, L_exit2);
++ __ sw(value, Address(to, 0));
++ break;
++ case T_INT:
++ __ beqz(count, L_exit2);
++ __ sw(value, Address(to, 0));
++ break;
++ default: ShouldNotReachHere();
++ }
++ __ bind(L_exit2);
++ __ leave();
++ __ ret();
++ return start;
++ }
++
++ void generate_arraycopy_stubs() {
++ address entry = NULL;
++ address entry_jbyte_arraycopy = NULL;
++ address entry_jshort_arraycopy = NULL;
++ address entry_jint_arraycopy = NULL;
++ address entry_oop_arraycopy = NULL;
++ address entry_jlong_arraycopy = NULL;
++ address entry_checkcast_arraycopy = NULL;
++
++ generate_copy_longs(copy_f, c_rarg0, c_rarg1, t1, copy_forwards);
++ generate_copy_longs(copy_b, c_rarg0, c_rarg1, t1, copy_backwards);
++
++ StubRoutines::riscv::_zero_blocks = generate_zero_blocks();
++
++ //*** jbyte
++ // Always need aligned and unaligned versions
++ StubRoutines::_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(false, &entry,
++ "jbyte_disjoint_arraycopy");
++ StubRoutines::_jbyte_arraycopy = generate_conjoint_byte_copy(false, entry,
++ &entry_jbyte_arraycopy,
++ "jbyte_arraycopy");
++ StubRoutines::_arrayof_jbyte_disjoint_arraycopy = generate_disjoint_byte_copy(true, &entry,
++ "arrayof_jbyte_disjoint_arraycopy");
++ StubRoutines::_arrayof_jbyte_arraycopy = generate_conjoint_byte_copy(true, entry, NULL,
++ "arrayof_jbyte_arraycopy");
++
++ //*** jshort
++ // Always need aligned and unaligned versions
++ StubRoutines::_jshort_disjoint_arraycopy = generate_disjoint_short_copy(false, &entry,
++ "jshort_disjoint_arraycopy");
++ StubRoutines::_jshort_arraycopy = generate_conjoint_short_copy(false, entry,
++ &entry_jshort_arraycopy,
++ "jshort_arraycopy");
++ StubRoutines::_arrayof_jshort_disjoint_arraycopy = generate_disjoint_short_copy(true, &entry,
++ "arrayof_jshort_disjoint_arraycopy");
++ StubRoutines::_arrayof_jshort_arraycopy = generate_conjoint_short_copy(true, entry, NULL,
++ "arrayof_jshort_arraycopy");
++
++ //*** jint
++ // Aligned versions
++ StubRoutines::_arrayof_jint_disjoint_arraycopy = generate_disjoint_int_copy(true, &entry,
++ "arrayof_jint_disjoint_arraycopy");
++ StubRoutines::_arrayof_jint_arraycopy = generate_conjoint_int_copy(true, entry, &entry_jint_arraycopy,
++ "arrayof_jint_arraycopy");
++ // In 64 bit we need both aligned and unaligned versions of jint arraycopy.
++ // entry_jint_arraycopy always points to the unaligned version
++ StubRoutines::_jint_disjoint_arraycopy = generate_disjoint_int_copy(false, &entry,
++ "jint_disjoint_arraycopy");
++ StubRoutines::_jint_arraycopy = generate_conjoint_int_copy(false, entry,
++ &entry_jint_arraycopy,
++ "jint_arraycopy");
++
++ //*** jlong
++ // It is always aligned
++ StubRoutines::_arrayof_jlong_disjoint_arraycopy = generate_disjoint_long_copy(true, &entry,
++ "arrayof_jlong_disjoint_arraycopy");
++ StubRoutines::_arrayof_jlong_arraycopy = generate_conjoint_long_copy(true, entry, &entry_jlong_arraycopy,
++ "arrayof_jlong_arraycopy");
++ StubRoutines::_jlong_disjoint_arraycopy = StubRoutines::_arrayof_jlong_disjoint_arraycopy;
++ StubRoutines::_jlong_arraycopy = StubRoutines::_arrayof_jlong_arraycopy;
++
++ //*** oops
++ {
++ // With compressed oops we need unaligned versions; notice that
++ // we overwrite entry_oop_arraycopy.
++ bool aligned = !UseCompressedOops;
++
++ StubRoutines::_arrayof_oop_disjoint_arraycopy
++ = generate_disjoint_oop_copy(aligned, &entry, "arrayof_oop_disjoint_arraycopy",
++ /*dest_uninitialized*/false);
++ StubRoutines::_arrayof_oop_arraycopy
++ = generate_conjoint_oop_copy(aligned, entry, &entry_oop_arraycopy, "arrayof_oop_arraycopy",
++ /*dest_uninitialized*/false);
++ // Aligned versions without pre-barriers
++ StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit
++ = generate_disjoint_oop_copy(aligned, &entry, "arrayof_oop_disjoint_arraycopy_uninit",
++ /*dest_uninitialized*/true);
++ StubRoutines::_arrayof_oop_arraycopy_uninit
++ = generate_conjoint_oop_copy(aligned, entry, NULL, "arrayof_oop_arraycopy_uninit",
++ /*dest_uninitialized*/true);
++ }
++
++ StubRoutines::_oop_disjoint_arraycopy = StubRoutines::_arrayof_oop_disjoint_arraycopy;
++ StubRoutines::_oop_arraycopy = StubRoutines::_arrayof_oop_arraycopy;
++ StubRoutines::_oop_disjoint_arraycopy_uninit = StubRoutines::_arrayof_oop_disjoint_arraycopy_uninit;
++ StubRoutines::_oop_arraycopy_uninit = StubRoutines::_arrayof_oop_arraycopy_uninit;
++
++ StubRoutines::_checkcast_arraycopy = generate_checkcast_copy("checkcast_arraycopy", &entry_checkcast_arraycopy);
++ StubRoutines::_checkcast_arraycopy_uninit = generate_checkcast_copy("checkcast_arraycopy_uninit", NULL,
++ /*dest_uninitialized*/true);
++
++
++ StubRoutines::_unsafe_arraycopy = generate_unsafe_copy("unsafe_arraycopy",
++ entry_jbyte_arraycopy,
++ entry_jshort_arraycopy,
++ entry_jint_arraycopy,
++ entry_jlong_arraycopy);
++
++ StubRoutines::_generic_arraycopy = generate_generic_copy("generic_arraycopy",
++ entry_jbyte_arraycopy,
++ entry_jshort_arraycopy,
++ entry_jint_arraycopy,
++ entry_oop_arraycopy,
++ entry_jlong_arraycopy,
++ entry_checkcast_arraycopy);
++
++ StubRoutines::_jbyte_fill = generate_fill(T_BYTE, false, "jbyte_fill");
++ StubRoutines::_jshort_fill = generate_fill(T_SHORT, false, "jshort_fill");
++ StubRoutines::_jint_fill = generate_fill(T_INT, false, "jint_fill");
++ StubRoutines::_arrayof_jbyte_fill = generate_fill(T_BYTE, true, "arrayof_jbyte_fill");
++ StubRoutines::_arrayof_jshort_fill = generate_fill(T_SHORT, true, "arrayof_jshort_fill");
++ StubRoutines::_arrayof_jint_fill = generate_fill(T_INT, true, "arrayof_jint_fill");
++ }
++
++ // Safefetch stubs.
++ void generate_safefetch(const char* name, int size, address* entry,
++ address* fault_pc, address* continuation_pc) {
++ // safefetch signatures:
++ // int SafeFetch32(int* adr, int errValue)
++ // intptr_t SafeFetchN (intptr_t* adr, intptr_t errValue)
++ //
++ // arguments:
++ // c_rarg0 = adr
++ // c_rarg1 = errValue
++ //
++ // result:
++ // PPC_RET = *adr or errValue
++ assert_cond(entry != NULL && fault_pc != NULL && continuation_pc != NULL);
++ StubCodeMark mark(this, "StubRoutines", name);
++
++ // Entry point, pc or function descriptor.
++ *entry = __ pc();
++
++ // Load *adr into c_rarg1, may fault.
++ *fault_pc = __ pc();
++ switch (size) {
++ case 4:
++ // int32_t
++ __ lw(c_rarg1, Address(c_rarg0, 0));
++ break;
++ case 8:
++ // int64_t
++ __ ld(c_rarg1, Address(c_rarg0, 0));
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++
++ // return errValue or *adr
++ *continuation_pc = __ pc();
++ __ mv(x10, c_rarg1);
++ __ ret();
++ }
++
++ // code for comparing 16 bytes of strings with same encoding
++ void compare_string_16_bytes_same(Label &DIFF1, Label &DIFF2) {
++ const Register result = x10, str1 = x11, cnt1 = x12, str2 = x13, tmp1 = x28, tmp2 = x29, tmp4 = x7, tmp5 = x31;
++ __ ld(tmp5, Address(str1));
++ __ addi(str1, str1, 8);
++ __ xorr(tmp4, tmp1, tmp2);
++ __ ld(cnt1, Address(str2));
++ __ addi(str2, str2, 8);
++ __ bnez(tmp4, DIFF1);
++ __ ld(tmp1, Address(str1));
++ __ addi(str1, str1, 8);
++ __ xorr(tmp4, tmp5, cnt1);
++ __ ld(tmp2, Address(str2));
++ __ addi(str2, str2, 8);
++ __ bnez(tmp4, DIFF2);
++ }
++
++ // code for comparing 8 characters of strings with Latin1 and Utf16 encoding
++ void compare_string_8_x_LU(Register tmpL, Register tmpU, Label &DIFF1,
++ Label &DIFF2) {
++ const Register strU = x12, curU = x7, strL = x29, tmp = x30;
++ __ ld(tmpL, Address(strL));
++ __ addi(strL, strL, 8);
++ __ ld(tmpU, Address(strU));
++ __ addi(strU, strU, 8);
++ __ inflate_lo32(tmp, tmpL);
++ __ mv(t0, tmp);
++ __ xorr(tmp, curU, t0);
++ __ bnez(tmp, DIFF2);
++
++ __ ld(curU, Address(strU));
++ __ addi(strU, strU, 8);
++ __ inflate_hi32(tmp, tmpL);
++ __ mv(t0, tmp);
++ __ xorr(tmp, tmpU, t0);
++ __ bnez(tmp, DIFF1);
++ }
++
++ // x10 = result
++ // x11 = str1
++ // x12 = cnt1
++ // x13 = str2
++ // x14 = cnt2
++ // x28 = tmp1
++ // x29 = tmp2
++ // x30 = tmp3
++ address generate_compare_long_string_different_encoding(bool isLU) {
++ __ align(CodeEntryAlignment);
++ StubCodeMark mark(this, "StubRoutines", isLU ? "compare_long_string_different_encoding LU" : "compare_long_string_different_encoding UL");
++ address entry = __ pc();
++ Label SMALL_LOOP, TAIL, TAIL_LOAD_16, LOAD_LAST, DIFF1, DIFF2,
++ DONE, CALCULATE_DIFFERENCE;
++ const Register result = x10, str1 = x11, cnt1 = x12, str2 = x13, cnt2 = x14,
++ tmp1 = x28, tmp2 = x29, tmp3 = x30, tmp4 = x7, tmp5 = x31;
++ RegSet spilled_regs = RegSet::of(tmp4, tmp5);
++
++ // cnt2 == amount of characters left to compare
++ // Check already loaded first 4 symbols
++ __ inflate_lo32(tmp3, isLU ? tmp1 : tmp2);
++ __ mv(isLU ? tmp1 : tmp2, tmp3);
++ __ addi(str1, str1, isLU ? wordSize / 2 : wordSize);
++ __ addi(str2, str2, isLU ? wordSize : wordSize / 2);
++ __ sub(cnt2, cnt2, 8); // Already loaded 4 symbols. Last 4 is special case.
++ __ push_reg(spilled_regs, sp);
++
++ if (isLU) {
++ __ add(str1, str1, cnt2);
++ __ shadd(str2, cnt2, str2, t0, 1);
++ } else {
++ __ shadd(str1, cnt2, str1, t0, 1);
++ __ add(str2, str2, cnt2);
++ }
++ __ xorr(tmp3, tmp1, tmp2);
++ __ mv(tmp5, tmp2);
++ __ bnez(tmp3, CALCULATE_DIFFERENCE);
++
++ Register strU = isLU ? str2 : str1,
++ strL = isLU ? str1 : str2,
++ tmpU = isLU ? tmp5 : tmp1, // where to keep U for comparison
++ tmpL = isLU ? tmp1 : tmp5; // where to keep L for comparison
++
++ __ sub(tmp2, strL, cnt2); // strL pointer to load from
++ __ slli(t0, cnt2, 1);
++ __ sub(cnt1, strU, t0); // strU pointer to load from
++
++ __ ld(tmp4, Address(cnt1));
++ __ addi(cnt1, cnt1, 8);
++ __ beqz(cnt2, LOAD_LAST); // no characters left except last load
++ __ sub(cnt2, cnt2, 16);
++ __ bltz(cnt2, TAIL);
++ __ bind(SMALL_LOOP); // smaller loop
++ __ sub(cnt2, cnt2, 16);
++ compare_string_8_x_LU(tmpL, tmpU, DIFF1, DIFF2);
++ compare_string_8_x_LU(tmpL, tmpU, DIFF1, DIFF2);
++ __ bgez(cnt2, SMALL_LOOP);
++ __ addi(t0, cnt2, 16);
++ __ beqz(t0, LOAD_LAST);
++ __ bind(TAIL); // 1..15 characters left until last load (last 4 characters)
++ // Address of 8 bytes before last 4 characters in UTF-16 string
++ __ shadd(cnt1, cnt2, cnt1, t0, 1);
++ // Address of 16 bytes before last 4 characters in Latin1 string
++ __ add(tmp2, tmp2, cnt2);
++ __ ld(tmp4, Address(cnt1, -8));
++ // last 16 characters before last load
++ compare_string_8_x_LU(tmpL, tmpU, DIFF1, DIFF2);
++ compare_string_8_x_LU(tmpL, tmpU, DIFF1, DIFF2);
++ __ j(LOAD_LAST);
++ __ bind(DIFF2);
++ __ mv(tmpU, tmp4);
++ __ bind(DIFF1);
++ __ mv(tmpL, t0);
++ __ j(CALCULATE_DIFFERENCE);
++ __ bind(LOAD_LAST);
++ // Last 4 UTF-16 characters are already pre-loaded into tmp4 by compare_string_8_x_LU.
++ // No need to load it again
++ __ mv(tmpU, tmp4);
++ __ ld(tmpL, Address(strL));
++ __ inflate_lo32(tmp3, tmpL);
++ __ mv(tmpL, tmp3);
++ __ xorr(tmp3, tmpU, tmpL);
++ __ beqz(tmp3, DONE);
++
++ // Find the first different characters in the longwords and
++ // compute their difference.
++ __ bind(CALCULATE_DIFFERENCE);
++ __ ctzc_bit(tmp4, tmp3);
++ __ srl(tmp1, tmp1, tmp4);
++ __ srl(tmp5, tmp5, tmp4);
++ __ andi(tmp1, tmp1, 0xFFFF);
++ __ andi(tmp5, tmp5, 0xFFFF);
++ __ sub(result, tmp1, tmp5);
++ __ bind(DONE);
++ __ pop_reg(spilled_regs, sp);
++ __ ret();
++ return entry;
++ }
++
++ address generate_method_entry_barrier() {
++ __ align(CodeEntryAlignment);
++ StubCodeMark mark(this, "StubRoutines", "nmethod_entry_barrier");
++
++ Label deoptimize_label;
++
++ address start = __ pc();
++
++ __ set_last_Java_frame(sp, fp, ra, t0);
++
++ __ enter();
++ __ add(t1, sp, wordSize);
++
++ __ sub(sp, sp, 4 * wordSize);
++
++ __ push_call_clobbered_registers();
++
++ __ mv(c_rarg0, t1);
++ __ call_VM_leaf(CAST_FROM_FN_PTR(address, BarrierSetNMethod::nmethod_stub_entry_barrier), 1);
++
++ __ reset_last_Java_frame(true);
++
++ __ mv(t0, x10);
++
++ __ pop_call_clobbered_registers();
++
++ __ bnez(t0, deoptimize_label);
++
++ __ leave();
++ __ ret();
++
++ __ BIND(deoptimize_label);
++
++ __ ld(t0, Address(sp, 0));
++ __ ld(fp, Address(sp, wordSize));
++ __ ld(ra, Address(sp, wordSize * 2));
++ __ ld(t1, Address(sp, wordSize * 3));
++
++ __ mv(sp, t0);
++ __ jr(t1);
++
++ return start;
++ }
++
++ // x10 = result
++ // x11 = str1
++ // x12 = cnt1
++ // x13 = str2
++ // x14 = cnt2
++ // x28 = tmp1
++ // x29 = tmp2
++ // x30 = tmp3
++ // x31 = tmp4
++ address generate_compare_long_string_same_encoding(bool isLL) {
++ __ align(CodeEntryAlignment);
++ StubCodeMark mark(this, "StubRoutines", isLL ?
++ "compare_long_string_same_encoding LL" : "compare_long_string_same_encoding UU");
++ address entry = __ pc();
++ Label SMALL_LOOP, CHECK_LAST, DIFF2, TAIL,
++ LENGTH_DIFF, DIFF, LAST_CHECK_AND_LENGTH_DIFF;
++ const Register result = x10, str1 = x11, cnt1 = x12, str2 = x13, cnt2 = x14,
++ tmp1 = x28, tmp2 = x29, tmp3 = x30, tmp4 = x7, tmp5 = x31;
++ RegSet spilled_regs = RegSet::of(tmp4, tmp5);
++
++ // cnt1/cnt2 contains amount of characters to compare. cnt1 can be re-used
++ // update cnt2 counter with already loaded 8 bytes
++ __ sub(cnt2, cnt2, wordSize / (isLL ? 1 : 2));
++ // update pointers, because of previous read
++ __ add(str1, str1, wordSize);
++ __ add(str2, str2, wordSize);
++ // less than 16 bytes left?
++ __ sub(cnt2, cnt2, isLL ? 16 : 8);
++ __ push_reg(spilled_regs, sp);
++ __ bltz(cnt2, TAIL);
++ __ bind(SMALL_LOOP);
++ compare_string_16_bytes_same(DIFF, DIFF2);
++ __ sub(cnt2, cnt2, isLL ? 16 : 8);
++ __ bgez(cnt2, SMALL_LOOP);
++ __ bind(TAIL);
++ __ addi(cnt2, cnt2, isLL ? 16 : 8);
++ __ beqz(cnt2, LAST_CHECK_AND_LENGTH_DIFF);
++ __ sub(cnt2, cnt2, isLL ? 8 : 4);
++ __ blez(cnt2, CHECK_LAST);
++ __ xorr(tmp4, tmp1, tmp2);
++ __ bnez(tmp4, DIFF);
++ __ ld(tmp1, Address(str1));
++ __ addi(str1, str1, 8);
++ __ ld(tmp2, Address(str2));
++ __ addi(str2, str2, 8);
++ __ sub(cnt2, cnt2, isLL ? 8 : 4);
++ __ bind(CHECK_LAST);
++ if (!isLL) {
++ __ add(cnt2, cnt2, cnt2); // now in bytes
++ }
++ __ xorr(tmp4, tmp1, tmp2);
++ __ bnez(tmp4, DIFF);
++ __ add(str1, str1, cnt2);
++ __ ld(tmp5, Address(str1));
++ __ add(str2, str2, cnt2);
++ __ ld(cnt1, Address(str2));
++ __ xorr(tmp4, tmp5, cnt1);
++ __ beqz(tmp4, LENGTH_DIFF);
++ // Find the first different characters in the longwords and
++ // compute their difference.
++ __ bind(DIFF2);
++ __ ctzc_bit(tmp3, tmp4, isLL); // count zero from lsb to msb
++ __ srl(tmp5, tmp5, tmp3);
++ __ srl(cnt1, cnt1, tmp3);
++ if (isLL) {
++ __ andi(tmp5, tmp5, 0xFF);
++ __ andi(cnt1, cnt1, 0xFF);
++ } else {
++ __ andi(tmp5, tmp5, 0xFFFF);
++ __ andi(cnt1, cnt1, 0xFFFF);
++ }
++ __ sub(result, tmp5, cnt1);
++ __ j(LENGTH_DIFF);
++ __ bind(DIFF);
++ __ ctzc_bit(tmp3, tmp4, isLL); // count zero from lsb to msb
++ __ srl(tmp1, tmp1, tmp3);
++ __ srl(tmp2, tmp2, tmp3);
++ if (isLL) {
++ __ andi(tmp1, tmp1, 0xFF);
++ __ andi(tmp2, tmp2, 0xFF);
++ } else {
++ __ andi(tmp1, tmp1, 0xFFFF);
++ __ andi(tmp2, tmp2, 0xFFFF);
++ }
++ __ sub(result, tmp1, tmp2);
++ __ j(LENGTH_DIFF);
++ __ bind(LAST_CHECK_AND_LENGTH_DIFF);
++ __ xorr(tmp4, tmp1, tmp2);
++ __ bnez(tmp4, DIFF);
++ __ bind(LENGTH_DIFF);
++ __ pop_reg(spilled_regs, sp);
++ __ ret();
++ return entry;
++ }
++
++ void generate_compare_long_strings() {
++ StubRoutines::riscv::_compare_long_string_LL = generate_compare_long_string_same_encoding(true);
++ StubRoutines::riscv::_compare_long_string_UU = generate_compare_long_string_same_encoding(false);
++ StubRoutines::riscv::_compare_long_string_LU = generate_compare_long_string_different_encoding(true);
++ StubRoutines::riscv::_compare_long_string_UL = generate_compare_long_string_different_encoding(false);
++ }
++
++ // x10 result
++ // x11 src
++ // x12 src count
++ // x13 pattern
++ // x14 pattern count
++ address generate_string_indexof_linear(bool needle_isL, bool haystack_isL)
++ {
++ const char* stubName = needle_isL
++ ? (haystack_isL ? "indexof_linear_ll" : "indexof_linear_ul")
++ : "indexof_linear_uu";
++ __ align(CodeEntryAlignment);
++ StubCodeMark mark(this, "StubRoutines", stubName);
++ address entry = __ pc();
++
++ int needle_chr_size = needle_isL ? 1 : 2;
++ int haystack_chr_size = haystack_isL ? 1 : 2;
++ int needle_chr_shift = needle_isL ? 0 : 1;
++ int haystack_chr_shift = haystack_isL ? 0 : 1;
++ bool isL = needle_isL && haystack_isL;
++ // parameters
++ Register result = x10, haystack = x11, haystack_len = x12, needle = x13, needle_len = x14;
++ // temporary registers
++ Register mask1 = x20, match_mask = x21, first = x22, trailing_zeros = x23, mask2 = x24, tmp = x25;
++ // redefinitions
++ Register ch1 = x28, ch2 = x29;
++ RegSet spilled_regs = RegSet::range(x20, x25) + RegSet::range(x28, x29);
++
++ __ push_reg(spilled_regs, sp);
++
++ Label L_LOOP, L_LOOP_PROCEED, L_SMALL, L_HAS_ZERO,
++ L_HAS_ZERO_LOOP, L_CMP_LOOP, L_CMP_LOOP_NOMATCH, L_SMALL_PROCEED,
++ L_SMALL_HAS_ZERO_LOOP, L_SMALL_CMP_LOOP_NOMATCH, L_SMALL_CMP_LOOP,
++ L_POST_LOOP, L_CMP_LOOP_LAST_CMP, L_HAS_ZERO_LOOP_NOMATCH,
++ L_SMALL_CMP_LOOP_LAST_CMP, L_SMALL_CMP_LOOP_LAST_CMP2,
++ L_CMP_LOOP_LAST_CMP2, DONE, NOMATCH;
++
++ __ ld(ch1, Address(needle));
++ __ ld(ch2, Address(haystack));
++ // src.length - pattern.length
++ __ sub(haystack_len, haystack_len, needle_len);
++
++ // first is needle[0]
++ __ andi(first, ch1, needle_isL ? 0xFF : 0xFFFF, first);
++ uint64_t mask0101 = UCONST64(0x0101010101010101);
++ uint64_t mask0001 = UCONST64(0x0001000100010001);
++ __ mv(mask1, haystack_isL ? mask0101 : mask0001);
++ __ mul(first, first, mask1);
++ uint64_t mask7f7f = UCONST64(0x7f7f7f7f7f7f7f7f);
++ uint64_t mask7fff = UCONST64(0x7fff7fff7fff7fff);
++ __ mv(mask2, haystack_isL ? mask7f7f : mask7fff);
++ if (needle_isL != haystack_isL) {
++ __ mv(tmp, ch1);
++ }
++ __ sub(haystack_len, haystack_len, wordSize / haystack_chr_size - 1);
++ __ blez(haystack_len, L_SMALL);
++
++ if (needle_isL != haystack_isL) {
++ __ inflate_lo32(ch1, tmp, match_mask, trailing_zeros);
++ }
++ // xorr, sub, orr, notr, andr
++ // compare and set match_mask[i] with 0x80/0x8000 (Latin1/UTF16) if ch2[i] == first[i]
++ // eg:
++ // first: aa aa aa aa aa aa aa aa
++ // ch2: aa aa li nx jd ka aa aa
++ // match_mask: 80 80 00 00 00 00 80 80
++ __ compute_match_mask(ch2, first, match_mask, mask1, mask2);
++
++ // search first char of needle, if success, goto L_HAS_ZERO;
++ __ bnez(match_mask, L_HAS_ZERO);
++ __ sub(haystack_len, haystack_len, wordSize / haystack_chr_size);
++ __ add(result, result, wordSize / haystack_chr_size);
++ __ add(haystack, haystack, wordSize);
++ __ bltz(haystack_len, L_POST_LOOP);
++
++ __ bind(L_LOOP);
++ __ ld(ch2, Address(haystack));
++ __ compute_match_mask(ch2, first, match_mask, mask1, mask2);
++ __ bnez(match_mask, L_HAS_ZERO);
++
++ __ bind(L_LOOP_PROCEED);
++ __ sub(haystack_len, haystack_len, wordSize / haystack_chr_size);
++ __ add(haystack, haystack, wordSize);
++ __ add(result, result, wordSize / haystack_chr_size);
++ __ bgez(haystack_len, L_LOOP);
++
++ __ bind(L_POST_LOOP);
++ __ mv(ch2, -wordSize / haystack_chr_size);
++ __ ble(haystack_len, ch2, NOMATCH); // no extra characters to check
++ __ ld(ch2, Address(haystack));
++ __ slli(haystack_len, haystack_len, LogBitsPerByte + haystack_chr_shift);
++ __ neg(haystack_len, haystack_len);
++ __ xorr(ch2, first, ch2);
++ __ sub(match_mask, ch2, mask1);
++ __ orr(ch2, ch2, mask2);
++ __ mv(trailing_zeros, -1); // all bits set
++ __ j(L_SMALL_PROCEED);
++
++ __ align(OptoLoopAlignment);
++ __ bind(L_SMALL);
++ __ slli(haystack_len, haystack_len, LogBitsPerByte + haystack_chr_shift);
++ __ neg(haystack_len, haystack_len);
++ if (needle_isL != haystack_isL) {
++ __ inflate_lo32(ch1, tmp, match_mask, trailing_zeros);
++ }
++ __ xorr(ch2, first, ch2);
++ __ sub(match_mask, ch2, mask1);
++ __ orr(ch2, ch2, mask2);
++ __ mv(trailing_zeros, -1); // all bits set
++
++ __ bind(L_SMALL_PROCEED);
++ __ srl(trailing_zeros, trailing_zeros, haystack_len); // mask. zeroes on useless bits.
++ __ notr(ch2, ch2);
++ __ andr(match_mask, match_mask, ch2);
++ __ andr(match_mask, match_mask, trailing_zeros); // clear useless bits and check
++ __ beqz(match_mask, NOMATCH);
++
++ __ bind(L_SMALL_HAS_ZERO_LOOP);
++ __ ctzc_bit(trailing_zeros, match_mask, haystack_isL, ch2, tmp); // count trailing zeros
++ __ addi(trailing_zeros, trailing_zeros, haystack_isL ? 7 : 15);
++ __ mv(ch2, wordSize / haystack_chr_size);
++ __ ble(needle_len, ch2, L_SMALL_CMP_LOOP_LAST_CMP2);
++ __ compute_index(haystack, trailing_zeros, match_mask, result, ch2, tmp, haystack_isL);
++ __ mv(trailing_zeros, wordSize / haystack_chr_size);
++ __ bne(ch1, ch2, L_SMALL_CMP_LOOP_NOMATCH);
++
++ __ bind(L_SMALL_CMP_LOOP);
++ __ shadd(first, trailing_zeros, needle, first, needle_chr_shift);
++ __ shadd(ch2, trailing_zeros, haystack, ch2, haystack_chr_shift);
++ needle_isL ? __ lbu(first, Address(first)) : __ lhu(first, Address(first));
++ haystack_isL ? __ lbu(ch2, Address(ch2)) : __ lhu(ch2, Address(ch2));
++ __ add(trailing_zeros, trailing_zeros, 1);
++ __ bge(trailing_zeros, needle_len, L_SMALL_CMP_LOOP_LAST_CMP);
++ __ beq(first, ch2, L_SMALL_CMP_LOOP);
++
++ __ bind(L_SMALL_CMP_LOOP_NOMATCH);
++ __ beqz(match_mask, NOMATCH);
++ __ ctzc_bit(trailing_zeros, match_mask, haystack_isL, tmp, ch2);
++ __ addi(trailing_zeros, trailing_zeros, haystack_isL ? 7 : 15);
++ __ add(result, result, 1);
++ __ add(haystack, haystack, haystack_chr_size);
++ __ j(L_SMALL_HAS_ZERO_LOOP);
++
++ __ align(OptoLoopAlignment);
++ __ bind(L_SMALL_CMP_LOOP_LAST_CMP);
++ __ bne(first, ch2, L_SMALL_CMP_LOOP_NOMATCH);
++ __ j(DONE);
++
++ __ align(OptoLoopAlignment);
++ __ bind(L_SMALL_CMP_LOOP_LAST_CMP2);
++ __ compute_index(haystack, trailing_zeros, match_mask, result, ch2, tmp, haystack_isL);
++ __ bne(ch1, ch2, L_SMALL_CMP_LOOP_NOMATCH);
++ __ j(DONE);
++
++ __ align(OptoLoopAlignment);
++ __ bind(L_HAS_ZERO);
++ __ ctzc_bit(trailing_zeros, match_mask, haystack_isL, tmp, ch2);
++ __ addi(trailing_zeros, trailing_zeros, haystack_isL ? 7 : 15);
++ __ slli(needle_len, needle_len, BitsPerByte * wordSize / 2);
++ __ orr(haystack_len, haystack_len, needle_len); // restore needle_len(32bits)
++ __ sub(result, result, 1); // array index from 0, so result -= 1
++
++ __ bind(L_HAS_ZERO_LOOP);
++ __ mv(needle_len, wordSize / haystack_chr_size);
++ __ srli(ch2, haystack_len, BitsPerByte * wordSize / 2);
++ __ bge(needle_len, ch2, L_CMP_LOOP_LAST_CMP2);
++ // load next 8 bytes from haystack, and increase result index
++ __ compute_index(haystack, trailing_zeros, match_mask, result, ch2, tmp, haystack_isL);
++ __ add(result, result, 1);
++ __ mv(trailing_zeros, wordSize / haystack_chr_size);
++ __ bne(ch1, ch2, L_CMP_LOOP_NOMATCH);
++
++ // compare one char
++ __ bind(L_CMP_LOOP);
++ __ shadd(needle_len, trailing_zeros, needle, needle_len, needle_chr_shift);
++ needle_isL ? __ lbu(needle_len, Address(needle_len)) : __ lhu(needle_len, Address(needle_len));
++ __ shadd(ch2, trailing_zeros, haystack, ch2, haystack_chr_shift);
++ haystack_isL ? __ lbu(ch2, Address(ch2)) : __ lhu(ch2, Address(ch2));
++ __ add(trailing_zeros, trailing_zeros, 1); // next char index
++ __ srli(tmp, haystack_len, BitsPerByte * wordSize / 2);
++ __ bge(trailing_zeros, tmp, L_CMP_LOOP_LAST_CMP);
++ __ beq(needle_len, ch2, L_CMP_LOOP);
++
++ __ bind(L_CMP_LOOP_NOMATCH);
++ __ beqz(match_mask, L_HAS_ZERO_LOOP_NOMATCH);
++ __ ctzc_bit(trailing_zeros, match_mask, haystack_isL, needle_len, ch2); // find next "first" char index
++ __ addi(trailing_zeros, trailing_zeros, haystack_isL ? 7 : 15);
++ __ add(haystack, haystack, haystack_chr_size);
++ __ j(L_HAS_ZERO_LOOP);
++
++ __ align(OptoLoopAlignment);
++ __ bind(L_CMP_LOOP_LAST_CMP);
++ __ bne(needle_len, ch2, L_CMP_LOOP_NOMATCH);
++ __ j(DONE);
++
++ __ align(OptoLoopAlignment);
++ __ bind(L_CMP_LOOP_LAST_CMP2);
++ __ compute_index(haystack, trailing_zeros, match_mask, result, ch2, tmp, haystack_isL);
++ __ add(result, result, 1);
++ __ bne(ch1, ch2, L_CMP_LOOP_NOMATCH);
++ __ j(DONE);
++
++ __ align(OptoLoopAlignment);
++ __ bind(L_HAS_ZERO_LOOP_NOMATCH);
++ // 1) Restore "result" index. Index was wordSize/str2_chr_size * N until
++ // L_HAS_ZERO block. Byte octet was analyzed in L_HAS_ZERO_LOOP,
++ // so, result was increased at max by wordSize/str2_chr_size - 1, so,
++ // respective high bit wasn't changed. L_LOOP_PROCEED will increase
++ // result by analyzed characters value, so, we can just reset lower bits
++ // in result here. Clear 2 lower bits for UU/UL and 3 bits for LL
++ // 2) restore needle_len and haystack_len values from "compressed" haystack_len
++ // 3) advance haystack value to represent next haystack octet. result & 7/3 is
++ // index of last analyzed substring inside current octet. So, haystack in at
++ // respective start address. We need to advance it to next octet
++ __ andi(match_mask, result, wordSize / haystack_chr_size - 1);
++ __ srli(needle_len, haystack_len, BitsPerByte * wordSize / 2);
++ __ andi(result, result, haystack_isL ? -8 : -4);
++ __ slli(tmp, match_mask, haystack_chr_shift);
++ __ sub(haystack, haystack, tmp);
++ __ sign_extend(haystack_len, haystack_len, 32);
++ __ j(L_LOOP_PROCEED);
++
++ __ align(OptoLoopAlignment);
++ __ bind(NOMATCH);
++ __ mv(result, -1);
++
++ __ bind(DONE);
++ __ pop_reg(spilled_regs, sp);
++ __ ret();
++ return entry;
++ }
++
++ void generate_string_indexof_stubs()
++ {
++ StubRoutines::riscv::_string_indexof_linear_ll = generate_string_indexof_linear(true, true);
++ StubRoutines::riscv::_string_indexof_linear_uu = generate_string_indexof_linear(false, false);
++ StubRoutines::riscv::_string_indexof_linear_ul = generate_string_indexof_linear(true, false);
++ }
++
++#ifdef COMPILER2
++ address generate_mulAdd()
++ {
++ __ align(CodeEntryAlignment);
++ StubCodeMark mark(this, "StubRoutines", "mulAdd");
++
++ address entry = __ pc();
++
++ const Register out = x10;
++ const Register in = x11;
++ const Register offset = x12;
++ const Register len = x13;
++ const Register k = x14;
++ const Register tmp = x28;
++
++ BLOCK_COMMENT("Entry:");
++ __ enter();
++ __ mul_add(out, in, offset, len, k, tmp);
++ __ leave();
++ __ ret();
++
++ return entry;
++ }
++
++ /**
++ * Arguments:
++ *
++ * Input:
++ * c_rarg0 - x address
++ * c_rarg1 - x length
++ * c_rarg2 - y address
++ * c_rarg3 - y length
++ * c_rarg4 - z address
++ * c_rarg5 - z length
++ */
++ address generate_multiplyToLen()
++ {
++ __ align(CodeEntryAlignment);
++ StubCodeMark mark(this, "StubRoutines", "multiplyToLen");
++ address entry = __ pc();
++
++ const Register x = x10;
++ const Register xlen = x11;
++ const Register y = x12;
++ const Register ylen = x13;
++ const Register z = x14;
++ const Register zlen = x15;
++
++ const Register tmp1 = x16;
++ const Register tmp2 = x17;
++ const Register tmp3 = x7;
++ const Register tmp4 = x28;
++ const Register tmp5 = x29;
++ const Register tmp6 = x30;
++ const Register tmp7 = x31;
++
++ BLOCK_COMMENT("Entry:");
++ __ enter(); // required for proper stackwalking of RuntimeStub frame
++ __ multiply_to_len(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7);
++ __ leave(); // required for proper stackwalking of RuntimeStub frame
++ __ ret();
++
++ return entry;
++ }
++
++ address generate_squareToLen()
++ {
++ __ align(CodeEntryAlignment);
++ StubCodeMark mark(this, "StubRoutines", "squareToLen");
++ address entry = __ pc();
++
++ const Register x = x10;
++ const Register xlen = x11;
++ const Register z = x12;
++ const Register zlen = x13;
++ const Register y = x14; // == x
++ const Register ylen = x15; // == xlen
++
++ const Register tmp1 = x16;
++ const Register tmp2 = x17;
++ const Register tmp3 = x7;
++ const Register tmp4 = x28;
++ const Register tmp5 = x29;
++ const Register tmp6 = x30;
++ const Register tmp7 = x31;
++
++ BLOCK_COMMENT("Entry:");
++ __ enter();
++ __ mv(y, x);
++ __ mv(ylen, xlen);
++ __ multiply_to_len(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7);
++ __ leave();
++ __ ret();
++
++ return entry;
++ }
++
++ // Arguments:
++ //
++ // Input:
++ // c_rarg0 - newArr address
++ // c_rarg1 - oldArr address
++ // c_rarg2 - newIdx
++ // c_rarg3 - shiftCount
++ // c_rarg4 - numIter
++ //
++ address generate_bigIntegerLeftShift() {
++ __ align(CodeEntryAlignment);
++ StubCodeMark mark(this, "StubRoutines", "bigIntegerLeftShiftWorker");
++ address entry = __ pc();
++
++ Label loop, exit;
++
++ Register newArr = c_rarg0;
++ Register oldArr = c_rarg1;
++ Register newIdx = c_rarg2;
++ Register shiftCount = c_rarg3;
++ Register numIter = c_rarg4;
++
++ Register shiftRevCount = c_rarg5;
++ Register oldArrNext = t1;
++
++ __ beqz(numIter, exit);
++ __ shadd(newArr, newIdx, newArr, t0, 2);
++
++ __ mv(shiftRevCount, 32);
++ __ sub(shiftRevCount, shiftRevCount, shiftCount);
++
++ __ bind(loop);
++ __ addi(oldArrNext, oldArr, 4);
++ __ vsetvli(t0, numIter, Assembler::e32, Assembler::m4);
++ __ vle32_v(v0, oldArr);
++ __ vle32_v(v4, oldArrNext);
++ __ vsll_vx(v0, v0, shiftCount);
++ __ vsrl_vx(v4, v4, shiftRevCount);
++ __ vor_vv(v0, v0, v4);
++ __ vse32_v(v0, newArr);
++ __ sub(numIter, numIter, t0);
++ __ shadd(oldArr, t0, oldArr, t1, 2);
++ __ shadd(newArr, t0, newArr, t1, 2);
++ __ bnez(numIter, loop);
++
++ __ bind(exit);
++ __ ret();
++
++ return entry;
++ }
++
++ // Arguments:
++ //
++ // Input:
++ // c_rarg0 - newArr address
++ // c_rarg1 - oldArr address
++ // c_rarg2 - newIdx
++ // c_rarg3 - shiftCount
++ // c_rarg4 - numIter
++ //
++ address generate_bigIntegerRightShift() {
++ __ align(CodeEntryAlignment);
++ StubCodeMark mark(this, "StubRoutines", "bigIntegerRightShiftWorker");
++ address entry = __ pc();
++
++ Label loop, exit;
++
++ Register newArr = c_rarg0;
++ Register oldArr = c_rarg1;
++ Register newIdx = c_rarg2;
++ Register shiftCount = c_rarg3;
++ Register numIter = c_rarg4;
++ Register idx = numIter;
++
++ Register shiftRevCount = c_rarg5;
++ Register oldArrNext = c_rarg6;
++ Register newArrCur = t0;
++ Register oldArrCur = t1;
++
++ __ beqz(idx, exit);
++ __ shadd(newArr, newIdx, newArr, t0, 2);
++
++ __ mv(shiftRevCount, 32);
++ __ sub(shiftRevCount, shiftRevCount, shiftCount);
++
++ __ bind(loop);
++ __ vsetvli(t0, idx, Assembler::e32, Assembler::m4);
++ __ sub(idx, idx, t0);
++ __ shadd(oldArrNext, idx, oldArr, t1, 2);
++ __ shadd(newArrCur, idx, newArr, t1, 2);
++ __ addi(oldArrCur, oldArrNext, 4);
++ __ vle32_v(v0, oldArrCur);
++ __ vle32_v(v4, oldArrNext);
++ __ vsrl_vx(v0, v0, shiftCount);
++ __ vsll_vx(v4, v4, shiftRevCount);
++ __ vor_vv(v0, v0, v4);
++ __ vse32_v(v0, newArrCur);
++ __ bnez(idx, loop);
++
++ __ bind(exit);
++ __ ret();
++
++ return entry;
++ }
++#endif
++
++#ifdef COMPILER2
++ class MontgomeryMultiplyGenerator : public MacroAssembler {
++
++ Register Pa_base, Pb_base, Pn_base, Pm_base, inv, Rlen, Ra, Rb, Rm, Rn,
++ Pa, Pb, Pn, Pm, Rhi_ab, Rlo_ab, Rhi_mn, Rlo_mn, tmp0, tmp1, tmp2, Ri, Rj;
++
++ RegSet _toSave;
++ bool _squaring;
++
++ public:
++ MontgomeryMultiplyGenerator (Assembler *as, bool squaring)
++ : MacroAssembler(as->code()), _squaring(squaring) {
++
++ // Register allocation
++
++ Register reg = c_rarg0;
++ Pa_base = reg; // Argument registers
++ if (squaring) {
++ Pb_base = Pa_base;
++ } else {
++ Pb_base = ++reg;
++ }
++ Pn_base = ++reg;
++ Rlen= ++reg;
++ inv = ++reg;
++ Pm_base = ++reg;
++
++ // Working registers:
++ Ra = ++reg; // The current digit of a, b, n, and m.
++ Rb = ++reg;
++ Rm = ++reg;
++ Rn = ++reg;
++
++ Pa = ++reg; // Pointers to the current/next digit of a, b, n, and m.
++ Pb = ++reg;
++ Pm = ++reg;
++ Pn = ++reg;
++
++ tmp0 = ++reg; // Three registers which form a
++ tmp1 = ++reg; // triple-precision accumuator.
++ tmp2 = ++reg;
++
++ Ri = x6; // Inner and outer loop indexes.
++ Rj = x7;
++
++ Rhi_ab = x28; // Product registers: low and high parts
++ Rlo_ab = x29; // of a*b and m*n.
++ Rhi_mn = x30;
++ Rlo_mn = x31;
++
++ // x18 and up are callee-saved.
++ _toSave = RegSet::range(x18, reg) + Pm_base;
++ }
++
++ private:
++ void save_regs() {
++ push_reg(_toSave, sp);
++ }
++
++ void restore_regs() {
++ pop_reg(_toSave, sp);
++ }
++
++ template <typename T>
++ void unroll_2(Register count, T block) {
++ Label loop, end, odd;
++ beqz(count, end);
++ test_bit(t0, count, 0);
++ bnez(t0, odd);
++ align(16);
++ bind(loop);
++ (this->*block)();
++ bind(odd);
++ (this->*block)();
++ addi(count, count, -2);
++ bgtz(count, loop);
++ bind(end);
++ }
++
++ template <typename T>
++ void unroll_2(Register count, T block, Register d, Register s, Register tmp) {
++ Label loop, end, odd;
++ beqz(count, end);
++ test_bit(tmp, count, 0);
++ bnez(tmp, odd);
++ align(16);
++ bind(loop);
++ (this->*block)(d, s, tmp);
++ bind(odd);
++ (this->*block)(d, s, tmp);
++ addi(count, count, -2);
++ bgtz(count, loop);
++ bind(end);
++ }
++
++ void pre1(RegisterOrConstant i) {
++ block_comment("pre1");
++ // Pa = Pa_base;
++ // Pb = Pb_base + i;
++ // Pm = Pm_base;
++ // Pn = Pn_base + i;
++ // Ra = *Pa;
++ // Rb = *Pb;
++ // Rm = *Pm;
++ // Rn = *Pn;
++ if (i.is_register()) {
++ slli(t0, i.as_register(), LogBytesPerWord);
++ } else {
++ mv(t0, i.as_constant());
++ slli(t0, t0, LogBytesPerWord);
++ }
++
++ mv(Pa, Pa_base);
++ add(Pb, Pb_base, t0);
++ mv(Pm, Pm_base);
++ add(Pn, Pn_base, t0);
++
++ ld(Ra, Address(Pa));
++ ld(Rb, Address(Pb));
++ ld(Rm, Address(Pm));
++ ld(Rn, Address(Pn));
++
++ // Zero the m*n result.
++ mv(Rhi_mn, zr);
++ mv(Rlo_mn, zr);
++ }
++
++ // The core multiply-accumulate step of a Montgomery
++ // multiplication. The idea is to schedule operations as a
++ // pipeline so that instructions with long latencies (loads and
++ // multiplies) have time to complete before their results are
++ // used. This most benefits in-order implementations of the
++ // architecture but out-of-order ones also benefit.
++ void step() {
++ block_comment("step");
++ // MACC(Ra, Rb, tmp0, tmp1, tmp2);
++ // Ra = *++Pa;
++ // Rb = *--Pb;
++ mulhu(Rhi_ab, Ra, Rb);
++ mul(Rlo_ab, Ra, Rb);
++ addi(Pa, Pa, wordSize);
++ ld(Ra, Address(Pa));
++ addi(Pb, Pb, -wordSize);
++ ld(Rb, Address(Pb));
++ acc(Rhi_mn, Rlo_mn, tmp0, tmp1, tmp2); // The pending m*n from the
++ // previous iteration.
++ // MACC(Rm, Rn, tmp0, tmp1, tmp2);
++ // Rm = *++Pm;
++ // Rn = *--Pn;
++ mulhu(Rhi_mn, Rm, Rn);
++ mul(Rlo_mn, Rm, Rn);
++ addi(Pm, Pm, wordSize);
++ ld(Rm, Address(Pm));
++ addi(Pn, Pn, -wordSize);
++ ld(Rn, Address(Pn));
++ acc(Rhi_ab, Rlo_ab, tmp0, tmp1, tmp2);
++ }
++
++ void post1() {
++ block_comment("post1");
++
++ // MACC(Ra, Rb, tmp0, tmp1, tmp2);
++ // Ra = *++Pa;
++ // Rb = *--Pb;
++ mulhu(Rhi_ab, Ra, Rb);
++ mul(Rlo_ab, Ra, Rb);
++ acc(Rhi_mn, Rlo_mn, tmp0, tmp1, tmp2); // The pending m*n
++ acc(Rhi_ab, Rlo_ab, tmp0, tmp1, tmp2);
++
++ // *Pm = Rm = tmp0 * inv;
++ mul(Rm, tmp0, inv);
++ sd(Rm, Address(Pm));
++
++ // MACC(Rm, Rn, tmp0, tmp1, tmp2);
++ // tmp0 = tmp1; tmp1 = tmp2; tmp2 = 0;
++ mulhu(Rhi_mn, Rm, Rn);
++
++#ifndef PRODUCT
++ // assert(m[i] * n[0] + tmp0 == 0, "broken Montgomery multiply");
++ {
++ mul(Rlo_mn, Rm, Rn);
++ add(Rlo_mn, tmp0, Rlo_mn);
++ Label ok;
++ beqz(Rlo_mn, ok);
++ stop("broken Montgomery multiply");
++ bind(ok);
++ }
++#endif
++ // We have very carefully set things up so that
++ // m[i]*n[0] + tmp0 == 0 (mod b), so we don't have to calculate
++ // the lower half of Rm * Rn because we know the result already:
++ // it must be -tmp0. tmp0 + (-tmp0) must generate a carry iff
++ // tmp0 != 0. So, rather than do a mul and an cad we just set
++ // the carry flag iff tmp0 is nonzero.
++ //
++ // mul(Rlo_mn, Rm, Rn);
++ // cad(zr, tmp0, Rlo_mn);
++ addi(t0, tmp0, -1);
++ sltu(t0, t0, tmp0); // Set carry iff tmp0 is nonzero
++ cadc(tmp0, tmp1, Rhi_mn, t0);
++ adc(tmp1, tmp2, zr, t0);
++ mv(tmp2, zr);
++ }
++
++ void pre2(Register i, Register len) {
++ block_comment("pre2");
++ // Pa = Pa_base + i-len;
++ // Pb = Pb_base + len;
++ // Pm = Pm_base + i-len;
++ // Pn = Pn_base + len;
++
++ sub(Rj, i, len);
++ // Rj == i-len
++
++ // Ra as temp register
++ slli(Ra, Rj, LogBytesPerWord);
++ add(Pa, Pa_base, Ra);
++ add(Pm, Pm_base, Ra);
++ slli(Ra, len, LogBytesPerWord);
++ add(Pb, Pb_base, Ra);
++ add(Pn, Pn_base, Ra);
++
++ // Ra = *++Pa;
++ // Rb = *--Pb;
++ // Rm = *++Pm;
++ // Rn = *--Pn;
++ add(Pa, Pa, wordSize);
++ ld(Ra, Address(Pa));
++ add(Pb, Pb, -wordSize);
++ ld(Rb, Address(Pb));
++ add(Pm, Pm, wordSize);
++ ld(Rm, Address(Pm));
++ add(Pn, Pn, -wordSize);
++ ld(Rn, Address(Pn));
++
++ mv(Rhi_mn, zr);
++ mv(Rlo_mn, zr);
++ }
++
++ void post2(Register i, Register len) {
++ block_comment("post2");
++ sub(Rj, i, len);
++
++ cad(tmp0, tmp0, Rlo_mn, t0); // The pending m*n, low part
++
++ // As soon as we know the least significant digit of our result,
++ // store it.
++ // Pm_base[i-len] = tmp0;
++ // Rj as temp register
++ slli(Rj, Rj, LogBytesPerWord);
++ add(Rj, Pm_base, Rj);
++ sd(tmp0, Address(Rj));
++
++ // tmp0 = tmp1; tmp1 = tmp2; tmp2 = 0;
++ cadc(tmp0, tmp1, Rhi_mn, t0); // The pending m*n, high part
++ adc(tmp1, tmp2, zr, t0);
++ mv(tmp2, zr);
++ }
++
++ // A carry in tmp0 after Montgomery multiplication means that we
++ // should subtract multiples of n from our result in m. We'll
++ // keep doing that until there is no carry.
++ void normalize(Register len) {
++ block_comment("normalize");
++ // while (tmp0)
++ // tmp0 = sub(Pm_base, Pn_base, tmp0, len);
++ Label loop, post, again;
++ Register cnt = tmp1, i = tmp2; // Re-use registers; we're done with them now
++ beqz(tmp0, post); {
++ bind(again); {
++ mv(i, zr);
++ mv(cnt, len);
++ slli(Rn, i, LogBytesPerWord);
++ add(Rm, Pm_base, Rn);
++ ld(Rm, Address(Rm));
++ add(Rn, Pn_base, Rn);
++ ld(Rn, Address(Rn));
++ mv(t0, 1); // set carry flag, i.e. no borrow
++ align(16);
++ bind(loop); {
++ notr(Rn, Rn);
++ add(Rm, Rm, t0);
++ add(Rm, Rm, Rn);
++ sltu(t0, Rm, Rn);
++ slli(Rn, i, LogBytesPerWord); // Rn as temp register
++ add(Rn, Pm_base, Rn);
++ sd(Rm, Address(Rn));
++ add(i, i, 1);
++ slli(Rn, i, LogBytesPerWord);
++ add(Rm, Pm_base, Rn);
++ ld(Rm, Address(Rm));
++ add(Rn, Pn_base, Rn);
++ ld(Rn, Address(Rn));
++ sub(cnt, cnt, 1);
++ } bnez(cnt, loop);
++ addi(tmp0, tmp0, -1);
++ add(tmp0, tmp0, t0);
++ } bnez(tmp0, again);
++ } bind(post);
++ }
++
++ // Move memory at s to d, reversing words.
++ // Increments d to end of copied memory
++ // Destroys tmp1, tmp2
++ // Preserves len
++ // Leaves s pointing to the address which was in d at start
++ void reverse(Register d, Register s, Register len, Register tmp1, Register tmp2) {
++ assert(tmp1 < x28 && tmp2 < x28, "register corruption");
++
++ slli(tmp1, len, LogBytesPerWord);
++ add(s, s, tmp1);
++ mv(tmp1, len);
++ unroll_2(tmp1, &MontgomeryMultiplyGenerator::reverse1, d, s, tmp2);
++ slli(tmp1, len, LogBytesPerWord);
++ sub(s, d, tmp1);
++ }
++ // [63...0] -> [31...0][63...32]
++ void reverse1(Register d, Register s, Register tmp) {
++ addi(s, s, -wordSize);
++ ld(tmp, Address(s));
++ ror_imm(tmp, tmp, 32, t0);
++ sd(tmp, Address(d));
++ addi(d, d, wordSize);
++ }
++
++ void step_squaring() {
++ // An extra ACC
++ step();
++ acc(Rhi_ab, Rlo_ab, tmp0, tmp1, tmp2);
++ }
++
++ void last_squaring(Register i) {
++ Label dont;
++ // if ((i & 1) == 0) {
++ test_bit(t0, i, 0);
++ bnez(t0, dont); {
++ // MACC(Ra, Rb, tmp0, tmp1, tmp2);
++ // Ra = *++Pa;
++ // Rb = *--Pb;
++ mulhu(Rhi_ab, Ra, Rb);
++ mul(Rlo_ab, Ra, Rb);
++ acc(Rhi_ab, Rlo_ab, tmp0, tmp1, tmp2);
++ } bind(dont);
++ }
++
++ void extra_step_squaring() {
++ acc(Rhi_mn, Rlo_mn, tmp0, tmp1, tmp2); // The pending m*n
++
++ // MACC(Rm, Rn, tmp0, tmp1, tmp2);
++ // Rm = *++Pm;
++ // Rn = *--Pn;
++ mulhu(Rhi_mn, Rm, Rn);
++ mul(Rlo_mn, Rm, Rn);
++ addi(Pm, Pm, wordSize);
++ ld(Rm, Address(Pm));
++ addi(Pn, Pn, -wordSize);
++ ld(Rn, Address(Pn));
++ }
++
++ void post1_squaring() {
++ acc(Rhi_mn, Rlo_mn, tmp0, tmp1, tmp2); // The pending m*n
++
++ // *Pm = Rm = tmp0 * inv;
++ mul(Rm, tmp0, inv);
++ sd(Rm, Address(Pm));
++
++ // MACC(Rm, Rn, tmp0, tmp1, tmp2);
++ // tmp0 = tmp1; tmp1 = tmp2; tmp2 = 0;
++ mulhu(Rhi_mn, Rm, Rn);
++
++#ifndef PRODUCT
++ // assert(m[i] * n[0] + tmp0 == 0, "broken Montgomery multiply");
++ {
++ mul(Rlo_mn, Rm, Rn);
++ add(Rlo_mn, tmp0, Rlo_mn);
++ Label ok;
++ beqz(Rlo_mn, ok); {
++ stop("broken Montgomery multiply");
++ } bind(ok);
++ }
++#endif
++ // We have very carefully set things up so that
++ // m[i]*n[0] + tmp0 == 0 (mod b), so we don't have to calculate
++ // the lower half of Rm * Rn because we know the result already:
++ // it must be -tmp0. tmp0 + (-tmp0) must generate a carry iff
++ // tmp0 != 0. So, rather than do a mul and a cad we just set
++ // the carry flag iff tmp0 is nonzero.
++ //
++ // mul(Rlo_mn, Rm, Rn);
++ // cad(zr, tmp, Rlo_mn);
++ addi(t0, tmp0, -1);
++ sltu(t0, t0, tmp0); // Set carry iff tmp0 is nonzero
++ cadc(tmp0, tmp1, Rhi_mn, t0);
++ adc(tmp1, tmp2, zr, t0);
++ mv(tmp2, zr);
++ }
++
++ // use t0 as carry
++ void acc(Register Rhi, Register Rlo,
++ Register tmp0, Register tmp1, Register tmp2) {
++ cad(tmp0, tmp0, Rlo, t0);
++ cadc(tmp1, tmp1, Rhi, t0);
++ adc(tmp2, tmp2, zr, t0);
++ }
++
++ public:
++ /**
++ * Fast Montgomery multiplication. The derivation of the
++ * algorithm is in A Cryptographic Library for the Motorola
++ * DSP56000, Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237.
++ *
++ * Arguments:
++ *
++ * Inputs for multiplication:
++ * c_rarg0 - int array elements a
++ * c_rarg1 - int array elements b
++ * c_rarg2 - int array elements n (the modulus)
++ * c_rarg3 - int length
++ * c_rarg4 - int inv
++ * c_rarg5 - int array elements m (the result)
++ *
++ * Inputs for squaring:
++ * c_rarg0 - int array elements a
++ * c_rarg1 - int array elements n (the modulus)
++ * c_rarg2 - int length
++ * c_rarg3 - int inv
++ * c_rarg4 - int array elements m (the result)
++ *
++ */
++ address generate_multiply() {
++ Label argh, nothing;
++ bind(argh);
++ stop("MontgomeryMultiply total_allocation must be <= 8192");
++
++ align(CodeEntryAlignment);
++ address entry = pc();
++
++ beqz(Rlen, nothing);
++
++ enter();
++
++ // Make room.
++ mv(Ra, 512);
++ bgt(Rlen, Ra, argh);
++ slli(Ra, Rlen, exact_log2(4 * sizeof(jint)));
++ sub(Ra, sp, Ra);
++ andi(sp, Ra, -2 * wordSize);
++
++ srliw(Rlen, Rlen, 1); // length in longwords = len/2
++
++ {
++ // Copy input args, reversing as we go. We use Ra as a
++ // temporary variable.
++ reverse(Ra, Pa_base, Rlen, Ri, Rj);
++ if (!_squaring)
++ reverse(Ra, Pb_base, Rlen, Ri, Rj);
++ reverse(Ra, Pn_base, Rlen, Ri, Rj);
++ }
++
++ // Push all call-saved registers and also Pm_base which we'll need
++ // at the end.
++ save_regs();
++
++#ifndef PRODUCT
++ // assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
++ {
++ ld(Rn, Address(Pn_base));
++ mul(Rlo_mn, Rn, inv);
++ mv(t0, -1);
++ Label ok;
++ beq(Rlo_mn, t0, ok);
++ stop("broken inverse in Montgomery multiply");
++ bind(ok);
++ }
++#endif
++
++ mv(Pm_base, Ra);
++
++ mv(tmp0, zr);
++ mv(tmp1, zr);
++ mv(tmp2, zr);
++
++ block_comment("for (int i = 0; i < len; i++) {");
++ mv(Ri, zr); {
++ Label loop, end;
++ bge(Ri, Rlen, end);
++
++ bind(loop);
++ pre1(Ri);
++
++ block_comment(" for (j = i; j; j--) {"); {
++ mv(Rj, Ri);
++ unroll_2(Rj, &MontgomeryMultiplyGenerator::step);
++ } block_comment(" } // j");
++
++ post1();
++ addw(Ri, Ri, 1);
++ blt(Ri, Rlen, loop);
++ bind(end);
++ block_comment("} // i");
++ }
++
++ block_comment("for (int i = len; i < 2*len; i++) {");
++ mv(Ri, Rlen); {
++ Label loop, end;
++ slli(t0, Rlen, 1);
++ bge(Ri, t0, end);
++
++ bind(loop);
++ pre2(Ri, Rlen);
++
++ block_comment(" for (j = len*2-i-1; j; j--) {"); {
++ slliw(Rj, Rlen, 1);
++ subw(Rj, Rj, Ri);
++ subw(Rj, Rj, 1);
++ unroll_2(Rj, &MontgomeryMultiplyGenerator::step);
++ } block_comment(" } // j");
++
++ post2(Ri, Rlen);
++ addw(Ri, Ri, 1);
++ slli(t0, Rlen, 1);
++ blt(Ri, t0, loop);
++ bind(end);
++ }
++ block_comment("} // i");
++
++ normalize(Rlen);
++
++ mv(Ra, Pm_base); // Save Pm_base in Ra
++ restore_regs(); // Restore caller's Pm_base
++
++ // Copy our result into caller's Pm_base
++ reverse(Pm_base, Ra, Rlen, Ri, Rj);
++
++ leave();
++ bind(nothing);
++ ret();
++
++ return entry;
++ }
++
++ /**
++ *
++ * Arguments:
++ *
++ * Inputs:
++ * c_rarg0 - int array elements a
++ * c_rarg1 - int array elements n (the modulus)
++ * c_rarg2 - int length
++ * c_rarg3 - int inv
++ * c_rarg4 - int array elements m (the result)
++ *
++ */
++ address generate_square() {
++ Label argh;
++ bind(argh);
++ stop("MontgomeryMultiply total_allocation must be <= 8192");
++
++ align(CodeEntryAlignment);
++ address entry = pc();
++
++ enter();
++
++ // Make room.
++ mv(Ra, 512);
++ bgt(Rlen, Ra, argh);
++ slli(Ra, Rlen, exact_log2(4 * sizeof(jint)));
++ sub(Ra, sp, Ra);
++ andi(sp, Ra, -2 * wordSize);
++
++ srliw(Rlen, Rlen, 1); // length in longwords = len/2
++
++ {
++ // Copy input args, reversing as we go. We use Ra as a
++ // temporary variable.
++ reverse(Ra, Pa_base, Rlen, Ri, Rj);
++ reverse(Ra, Pn_base, Rlen, Ri, Rj);
++ }
++
++ // Push all call-saved registers and also Pm_base which we'll need
++ // at the end.
++ save_regs();
++
++ mv(Pm_base, Ra);
++
++ mv(tmp0, zr);
++ mv(tmp1, zr);
++ mv(tmp2, zr);
++
++ block_comment("for (int i = 0; i < len; i++) {");
++ mv(Ri, zr); {
++ Label loop, end;
++ bind(loop);
++ bge(Ri, Rlen, end);
++
++ pre1(Ri);
++
++ block_comment("for (j = (i+1)/2; j; j--) {"); {
++ addi(Rj, Ri, 1);
++ srliw(Rj, Rj, 1);
++ unroll_2(Rj, &MontgomeryMultiplyGenerator::step_squaring);
++ } block_comment(" } // j");
++
++ last_squaring(Ri);
++
++ block_comment(" for (j = i/2; j; j--) {"); {
++ srliw(Rj, Ri, 1);
++ unroll_2(Rj, &MontgomeryMultiplyGenerator::extra_step_squaring);
++ } block_comment(" } // j");
++
++ post1_squaring();
++ addi(Ri, Ri, 1);
++ blt(Ri, Rlen, loop);
++
++ bind(end);
++ block_comment("} // i");
++ }
++
++ block_comment("for (int i = len; i < 2*len; i++) {");
++ mv(Ri, Rlen); {
++ Label loop, end;
++ bind(loop);
++ slli(t0, Rlen, 1);
++ bge(Ri, t0, end);
++
++ pre2(Ri, Rlen);
++
++ block_comment(" for (j = (2*len-i-1)/2; j; j--) {"); {
++ slli(Rj, Rlen, 1);
++ sub(Rj, Rj, Ri);
++ sub(Rj, Rj, 1);
++ srliw(Rj, Rj, 1);
++ unroll_2(Rj, &MontgomeryMultiplyGenerator::step_squaring);
++ } block_comment(" } // j");
++
++ last_squaring(Ri);
++
++ block_comment(" for (j = (2*len-i)/2; j; j--) {"); {
++ slli(Rj, Rlen, 1);
++ sub(Rj, Rj, Ri);
++ srliw(Rj, Rj, 1);
++ unroll_2(Rj, &MontgomeryMultiplyGenerator::extra_step_squaring);
++ } block_comment(" } // j");
++
++ post2(Ri, Rlen);
++ addi(Ri, Ri, 1);
++ slli(t0, Rlen, 1);
++ blt(Ri, t0, loop);
++
++ bind(end);
++ block_comment("} // i");
++ }
++
++ normalize(Rlen);
++
++ mv(Ra, Pm_base); // Save Pm_base in Ra
++ restore_regs(); // Restore caller's Pm_base
++
++ // Copy our result into caller's Pm_base
++ reverse(Pm_base, Ra, Rlen, Ri, Rj);
++
++ leave();
++ ret();
++
++ return entry;
++ }
++ };
++#endif // COMPILER2
++
++ // Continuation point for throwing of implicit exceptions that are
++ // not handled in the current activation. Fabricates an exception
++ // oop and initiates normal exception dispatching in this
++ // frame. Since we need to preserve callee-saved values (currently
++ // only for C2, but done for C1 as well) we need a callee-saved oop
++ // map and therefore have to make these stubs into RuntimeStubs
++ // rather than BufferBlobs. If the compiler needs all registers to
++ // be preserved between the fault point and the exception handler
++ // then it must assume responsibility for that in
++ // AbstractCompiler::continuation_for_implicit_null_exception or
++ // continuation_for_implicit_division_by_zero_exception. All other
++ // implicit exceptions (e.g., NullPointerException or
++ // AbstractMethodError on entry) are either at call sites or
++ // otherwise assume that stack unwinding will be initiated, so
++ // caller saved registers were assumed volatile in the compiler.
++
++#undef __
++#define __ masm->
++
++ address generate_throw_exception(const char* name,
++ address runtime_entry,
++ Register arg1 = noreg,
++ Register arg2 = noreg) {
++ // Information about frame layout at time of blocking runtime call.
++ // Note that we only have to preserve callee-saved registers since
++ // the compilers are responsible for supplying a continuation point
++ // if they expect all registers to be preserved.
++ // n.b. riscv asserts that frame::arg_reg_save_area_bytes == 0
++ assert_cond(runtime_entry != NULL);
++ enum layout {
++ fp_off = 0,
++ fp_off2,
++ return_off,
++ return_off2,
++ framesize // inclusive of return address
++ };
++
++ const int insts_size = 512;
++ const int locs_size = 64;
++
++ CodeBuffer code(name, insts_size, locs_size);
++ OopMapSet* oop_maps = new OopMapSet();
++ MacroAssembler* masm = new MacroAssembler(&code);
++ assert_cond(oop_maps != NULL && masm != NULL);
++
++ address start = __ pc();
++
++ // This is an inlined and slightly modified version of call_VM
++ // which has the ability to fetch the return PC out of
++ // thread-local storage and also sets up last_Java_sp slightly
++ // differently than the real call_VM
++
++ __ enter(); // Save FP and RA before call
++
++ assert(is_even(framesize / 2), "sp not 16-byte aligned");
++
++ // ra and fp are already in place
++ __ addi(sp, fp, 0 - ((unsigned)framesize << LogBytesPerInt)); // prolog
++
++ int frame_complete = __ pc() - start;
++
++ // Set up last_Java_sp and last_Java_fp
++ address the_pc = __ pc();
++ __ set_last_Java_frame(sp, fp, the_pc, t0);
++
++ // Call runtime
++ if (arg1 != noreg) {
++ assert(arg2 != c_rarg1, "clobbered");
++ __ mv(c_rarg1, arg1);
++ }
++ if (arg2 != noreg) {
++ __ mv(c_rarg2, arg2);
++ }
++ __ mv(c_rarg0, xthread);
++ BLOCK_COMMENT("call runtime_entry");
++ __ call(runtime_entry);
++
++ // Generate oop map
++ OopMap* map = new OopMap(framesize, 0);
++ assert_cond(map != NULL);
++
++ oop_maps->add_gc_map(the_pc - start, map);
++
++ __ reset_last_Java_frame(true);
++
++ __ leave();
++
++ // check for pending exceptions
++#ifdef ASSERT
++ Label L;
++ __ ld(t0, Address(xthread, Thread::pending_exception_offset()));
++ __ bnez(t0, L);
++ __ should_not_reach_here();
++ __ bind(L);
++#endif // ASSERT
++ __ far_jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
++
++
++ // codeBlob framesize is in words (not VMRegImpl::slot_size)
++ RuntimeStub* stub =
++ RuntimeStub::new_runtime_stub(name,
++ &code,
++ frame_complete,
++ (framesize >> (LogBytesPerWord - LogBytesPerInt)),
++ oop_maps, false);
++ assert(stub != NULL, "create runtime stub fail!");
++ return stub->entry_point();
++ }
++
++ // Initialization
++ void generate_initial() {
++ // Generate initial stubs and initializes the entry points
++
++ // entry points that exist in all platforms Note: This is code
++ // that could be shared among different platforms - however the
++ // benefit seems to be smaller than the disadvantage of having a
++ // much more complicated generator structure. See also comment in
++ // stubRoutines.hpp.
++
++ StubRoutines::_forward_exception_entry = generate_forward_exception();
++
++ StubRoutines::_call_stub_entry =
++ generate_call_stub(StubRoutines::_call_stub_return_address);
++
++ // is referenced by megamorphic call
++ StubRoutines::_catch_exception_entry = generate_catch_exception();
++
++ // Build this early so it's available for the interpreter.
++ StubRoutines::_throw_StackOverflowError_entry =
++ generate_throw_exception("StackOverflowError throw_exception",
++ CAST_FROM_FN_PTR(address,
++ SharedRuntime::throw_StackOverflowError));
++ StubRoutines::_throw_delayed_StackOverflowError_entry =
++ generate_throw_exception("delayed StackOverflowError throw_exception",
++ CAST_FROM_FN_PTR(address,
++ SharedRuntime::throw_delayed_StackOverflowError));
++ // Safefetch stubs.
++ generate_safefetch("SafeFetch32", sizeof(int), &StubRoutines::_safefetch32_entry,
++ &StubRoutines::_safefetch32_fault_pc,
++ &StubRoutines::_safefetch32_continuation_pc);
++ generate_safefetch("SafeFetchN", sizeof(intptr_t), &StubRoutines::_safefetchN_entry,
++ &StubRoutines::_safefetchN_fault_pc,
++ &StubRoutines::_safefetchN_continuation_pc);
++ }
++
++ void generate_all() {
++ // support for verify_oop (must happen after universe_init)
++ StubRoutines::_verify_oop_subroutine_entry = generate_verify_oop();
++ StubRoutines::_throw_AbstractMethodError_entry =
++ generate_throw_exception("AbstractMethodError throw_exception",
++ CAST_FROM_FN_PTR(address,
++ SharedRuntime::
++ throw_AbstractMethodError));
++
++ StubRoutines::_throw_IncompatibleClassChangeError_entry =
++ generate_throw_exception("IncompatibleClassChangeError throw_exception",
++ CAST_FROM_FN_PTR(address,
++ SharedRuntime::
++ throw_IncompatibleClassChangeError));
++
++ StubRoutines::_throw_NullPointerException_at_call_entry =
++ generate_throw_exception("NullPointerException at call throw_exception",
++ CAST_FROM_FN_PTR(address,
++ SharedRuntime::
++ throw_NullPointerException_at_call));
++ // arraycopy stubs used by compilers
++ generate_arraycopy_stubs();
++
++#ifdef COMPILER2
++ if (UseMulAddIntrinsic) {
++ StubRoutines::_mulAdd = generate_mulAdd();
++ }
++
++ if (UseMultiplyToLenIntrinsic) {
++ StubRoutines::_multiplyToLen = generate_multiplyToLen();
++ }
++
++ if (UseSquareToLenIntrinsic) {
++ StubRoutines::_squareToLen = generate_squareToLen();
++ }
++
++ if (UseMontgomeryMultiplyIntrinsic) {
++ StubCodeMark mark(this, "StubRoutines", "montgomeryMultiply");
++ MontgomeryMultiplyGenerator g(_masm, /*squaring*/false);
++ StubRoutines::_montgomeryMultiply = g.generate_multiply();
++ }
++
++ if (UseMontgomerySquareIntrinsic) {
++ StubCodeMark mark(this, "StubRoutines", "montgomerySquare");
++ MontgomeryMultiplyGenerator g(_masm, /*squaring*/true);
++ StubRoutines::_montgomerySquare = g.generate_square();
++ }
++
++ if (UseRVVForBigIntegerShiftIntrinsics) {
++ StubRoutines::_bigIntegerLeftShiftWorker = generate_bigIntegerLeftShift();
++ StubRoutines::_bigIntegerRightShiftWorker = generate_bigIntegerRightShift();
++ }
++#endif
++
++ generate_compare_long_strings();
++
++ generate_string_indexof_stubs();
++
++ BarrierSetNMethod* bs_nm = BarrierSet::barrier_set()->barrier_set_nmethod();
++ if (bs_nm != NULL) {
++ StubRoutines::riscv::_method_entry_barrier = generate_method_entry_barrier();
++ }
++
++ StubRoutines::riscv::set_completed();
++ }
++
++ public:
++ StubGenerator(CodeBuffer* code, bool all) : StubCodeGenerator(code) {
++ if (all) {
++ generate_all();
++ } else {
++ generate_initial();
++ }
++ }
++
++ ~StubGenerator() {}
++}; // end class declaration
++
++#define UCM_TABLE_MAX_ENTRIES 8
++void StubGenerator_generate(CodeBuffer* code, bool all) {
++ if (UnsafeCopyMemory::_table == NULL) {
++ UnsafeCopyMemory::create_table(UCM_TABLE_MAX_ENTRIES);
++ }
++
++ StubGenerator g(code, all);
++}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/stubRoutines_riscv.cpp
+@@ -0,0 +1,58 @@
++/*
++ * Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "runtime/deoptimization.hpp"
++#include "runtime/frame.inline.hpp"
++#include "runtime/stubRoutines.hpp"
++#include "runtime/thread.inline.hpp"
++#include "utilities/globalDefinitions.hpp"
++
++// Implementation of the platform-specific part of StubRoutines - for
++// a description of how to extend it, see the stubRoutines.hpp file.
++
++address StubRoutines::riscv::_get_previous_sp_entry = NULL;
++
++address StubRoutines::riscv::_f2i_fixup = NULL;
++address StubRoutines::riscv::_f2l_fixup = NULL;
++address StubRoutines::riscv::_d2i_fixup = NULL;
++address StubRoutines::riscv::_d2l_fixup = NULL;
++address StubRoutines::riscv::_float_sign_mask = NULL;
++address StubRoutines::riscv::_float_sign_flip = NULL;
++address StubRoutines::riscv::_double_sign_mask = NULL;
++address StubRoutines::riscv::_double_sign_flip = NULL;
++address StubRoutines::riscv::_zero_blocks = NULL;
++address StubRoutines::riscv::_compare_long_string_LL = NULL;
++address StubRoutines::riscv::_compare_long_string_UU = NULL;
++address StubRoutines::riscv::_compare_long_string_LU = NULL;
++address StubRoutines::riscv::_compare_long_string_UL = NULL;
++address StubRoutines::riscv::_string_indexof_linear_ll = NULL;
++address StubRoutines::riscv::_string_indexof_linear_uu = NULL;
++address StubRoutines::riscv::_string_indexof_linear_ul = NULL;
++address StubRoutines::riscv::_large_byte_array_inflate = NULL;
++address StubRoutines::riscv::_method_entry_barrier = NULL;
++
++bool StubRoutines::riscv::_completed = false;
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/stubRoutines_riscv.hpp
+@@ -0,0 +1,161 @@
++/*
++ * Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_STUBROUTINES_RISCV_HPP
++#define CPU_RISCV_STUBROUTINES_RISCV_HPP
++
++// This file holds the platform specific parts of the StubRoutines
++// definition. See stubRoutines.hpp for a description on how to
++// extend it.
++
++static bool returns_to_call_stub(address return_pc) {
++ return return_pc == _call_stub_return_address;
++}
++
++enum platform_dependent_constants {
++ code_size1 = 19000, // simply increase if too small (assembler will crash if too small)
++ code_size2 = 28000 // simply increase if too small (assembler will crash if too small)
++};
++
++class riscv {
++ friend class StubGenerator;
++
++ private:
++ static address _get_previous_sp_entry;
++
++ static address _f2i_fixup;
++ static address _f2l_fixup;
++ static address _d2i_fixup;
++ static address _d2l_fixup;
++
++ static address _float_sign_mask;
++ static address _float_sign_flip;
++ static address _double_sign_mask;
++ static address _double_sign_flip;
++
++ static address _zero_blocks;
++
++ static address _compare_long_string_LL;
++ static address _compare_long_string_LU;
++ static address _compare_long_string_UL;
++ static address _compare_long_string_UU;
++ static address _string_indexof_linear_ll;
++ static address _string_indexof_linear_uu;
++ static address _string_indexof_linear_ul;
++ static address _large_byte_array_inflate;
++
++ static address _method_entry_barrier;
++
++ static bool _completed;
++
++ public:
++
++ static address get_previous_sp_entry() {
++ return _get_previous_sp_entry;
++ }
++
++ static address f2i_fixup() {
++ return _f2i_fixup;
++ }
++
++ static address f2l_fixup() {
++ return _f2l_fixup;
++ }
++
++ static address d2i_fixup() {
++ return _d2i_fixup;
++ }
++
++ static address d2l_fixup() {
++ return _d2l_fixup;
++ }
++
++ static address float_sign_mask() {
++ return _float_sign_mask;
++ }
++
++ static address float_sign_flip() {
++ return _float_sign_flip;
++ }
++
++ static address double_sign_mask() {
++ return _double_sign_mask;
++ }
++
++ static address double_sign_flip() {
++ return _double_sign_flip;
++ }
++
++ static address zero_blocks() {
++ return _zero_blocks;
++ }
++
++ static address compare_long_string_LL() {
++ return _compare_long_string_LL;
++ }
++
++ static address compare_long_string_LU() {
++ return _compare_long_string_LU;
++ }
++
++ static address compare_long_string_UL() {
++ return _compare_long_string_UL;
++ }
++
++ static address compare_long_string_UU() {
++ return _compare_long_string_UU;
++ }
++
++ static address string_indexof_linear_ul() {
++ return _string_indexof_linear_ul;
++ }
++
++ static address string_indexof_linear_ll() {
++ return _string_indexof_linear_ll;
++ }
++
++ static address string_indexof_linear_uu() {
++ return _string_indexof_linear_uu;
++ }
++
++ static address large_byte_array_inflate() {
++ return _large_byte_array_inflate;
++ }
++
++ static address method_entry_barrier() {
++ return _method_entry_barrier;
++ }
++
++ static bool complete() {
++ return _completed;
++ }
++
++ static void set_completed() {
++ _completed = true;
++ }
++};
++
++#endif // CPU_RISCV_STUBROUTINES_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/templateInterpreterGenerator_riscv.cpp
+@@ -0,0 +1,1760 @@
++/*
++ * Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/macroAssembler.inline.hpp"
++#include "classfile/javaClasses.hpp"
++#include "gc/shared/barrierSetAssembler.hpp"
++#include "interpreter/bytecodeHistogram.hpp"
++#include "interpreter/bytecodeTracer.hpp"
++#include "interpreter/interp_masm.hpp"
++#include "interpreter/interpreter.hpp"
++#include "interpreter/interpreterRuntime.hpp"
++#include "interpreter/templateInterpreterGenerator.hpp"
++#include "interpreter/templateTable.hpp"
++#include "memory/resourceArea.hpp"
++#include "oops/arrayOop.hpp"
++#include "oops/method.hpp"
++#include "oops/methodData.hpp"
++#include "oops/oop.inline.hpp"
++#include "prims/jvmtiExport.hpp"
++#include "prims/jvmtiThreadState.hpp"
++#include "runtime/arguments.hpp"
++#include "runtime/deoptimization.hpp"
++#include "runtime/frame.inline.hpp"
++#include "runtime/jniHandles.hpp"
++#include "runtime/sharedRuntime.hpp"
++#include "runtime/stubRoutines.hpp"
++#include "runtime/synchronizer.hpp"
++#include "runtime/timer.hpp"
++#include "runtime/vframeArray.hpp"
++#include "utilities/debug.hpp"
++#include "utilities/powerOfTwo.hpp"
++#include <sys/types.h>
++
++#ifndef PRODUCT
++#include "oops/method.hpp"
++#endif // !PRODUCT
++
++// Size of interpreter code. Increase if too small. Interpreter will
++// fail with a guarantee ("not enough space for interpreter generation");
++// if too small.
++// Run with +PrintInterpreter to get the VM to print out the size.
++// Max size with JVMTI
++int TemplateInterpreter::InterpreterCodeSize = 256 * 1024;
++
++#define __ _masm->
++
++//-----------------------------------------------------------------------------
++
++address TemplateInterpreterGenerator::generate_slow_signature_handler() {
++ address entry = __ pc();
++
++ __ andi(esp, esp, -16);
++ __ mv(c_rarg3, esp);
++ // xmethod
++ // xlocals
++ // c_rarg3: first stack arg - wordSize
++ // adjust sp
++
++ __ addi(sp, c_rarg3, -18 * wordSize);
++ __ addi(sp, sp, -2 * wordSize);
++ __ sd(ra, Address(sp, 0));
++
++ __ call_VM(noreg,
++ CAST_FROM_FN_PTR(address,
++ InterpreterRuntime::slow_signature_handler),
++ xmethod, xlocals, c_rarg3);
++
++ // x10: result handler
++
++ // Stack layout:
++ // sp: return address <- sp
++ // 1 garbage
++ // 8 integer args (if static first is unused)
++ // 1 float/double identifiers
++ // 8 double args
++ // stack args <- esp
++ // garbage
++ // expression stack bottom
++ // bcp (NULL)
++ // ...
++
++ // Restore ra
++ __ ld(ra, Address(sp, 0));
++ __ addi(sp, sp , 2 * wordSize);
++
++ // Do FP first so we can use c_rarg3 as temp
++ __ lwu(c_rarg3, Address(sp, 9 * wordSize)); // float/double identifiers
++
++ for (int i = 0; i < Argument::n_float_register_parameters_c; i++) {
++ const FloatRegister r = g_FPArgReg[i];
++ Label d, done;
++
++ __ test_bit(t0, c_rarg3, i);
++ __ bnez(t0, d);
++ __ flw(r, Address(sp, (10 + i) * wordSize));
++ __ j(done);
++ __ bind(d);
++ __ fld(r, Address(sp, (10 + i) * wordSize));
++ __ bind(done);
++ }
++
++ // c_rarg0 contains the result from the call of
++ // InterpreterRuntime::slow_signature_handler so we don't touch it
++ // here. It will be loaded with the JNIEnv* later.
++ for (int i = 1; i < Argument::n_int_register_parameters_c; i++) {
++ const Register rm = g_INTArgReg[i];
++ __ ld(rm, Address(sp, i * wordSize));
++ }
++
++ __ addi(sp, sp, 18 * wordSize);
++ __ ret();
++
++ return entry;
++}
++
++// Various method entries
++address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
++ // xmethod: Method*
++ // x30: sender sp
++ // esp: args
++
++ if (!InlineIntrinsics) {
++ return NULL; // Generate a vanilla entry
++ }
++
++ // These don't need a safepoint check because they aren't virtually
++ // callable. We won't enter these intrinsics from compiled code.
++ // If in the future we added an intrinsic which was virtually callable
++ // we'd have to worry about how to safepoint so that this code is used.
++
++ // mathematical functions inlined by compiler
++ // (interpreter must provide identical implementation
++ // in order to avoid monotonicity bugs when switching
++ // from interpreter to compiler in the middle of some
++ // computation)
++ //
++ // stack:
++ // [ arg ] <-- esp
++ // [ arg ]
++ // retaddr in ra
++
++ address fn = NULL;
++ address entry_point = NULL;
++ Register continuation = ra;
++ switch (kind) {
++ case Interpreter::java_lang_math_abs:
++ entry_point = __ pc();
++ __ fld(f10, Address(esp));
++ __ fabs_d(f10, f10);
++ __ mv(sp, x30); // Restore caller's SP
++ break;
++ case Interpreter::java_lang_math_sqrt:
++ entry_point = __ pc();
++ __ fld(f10, Address(esp));
++ __ fsqrt_d(f10, f10);
++ __ mv(sp, x30);
++ break;
++ case Interpreter::java_lang_math_sin :
++ entry_point = __ pc();
++ __ fld(f10, Address(esp));
++ __ mv(sp, x30);
++ __ mv(x9, ra);
++ continuation = x9; // The first callee-saved register
++ if (StubRoutines::dsin() == NULL) {
++ fn = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);
++ } else {
++ fn = CAST_FROM_FN_PTR(address, StubRoutines::dsin());
++ }
++ __ call(fn);
++ break;
++ case Interpreter::java_lang_math_cos :
++ entry_point = __ pc();
++ __ fld(f10, Address(esp));
++ __ mv(sp, x30);
++ __ mv(x9, ra);
++ continuation = x9; // The first callee-saved register
++ if (StubRoutines::dcos() == NULL) {
++ fn = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);
++ } else {
++ fn = CAST_FROM_FN_PTR(address, StubRoutines::dcos());
++ }
++ __ call(fn);
++ break;
++ case Interpreter::java_lang_math_tan :
++ entry_point = __ pc();
++ __ fld(f10, Address(esp));
++ __ mv(sp, x30);
++ __ mv(x9, ra);
++ continuation = x9; // The first callee-saved register
++ if (StubRoutines::dtan() == NULL) {
++ fn = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);
++ } else {
++ fn = CAST_FROM_FN_PTR(address, StubRoutines::dtan());
++ }
++ __ call(fn);
++ break;
++ case Interpreter::java_lang_math_log :
++ entry_point = __ pc();
++ __ fld(f10, Address(esp));
++ __ mv(sp, x30);
++ __ mv(x9, ra);
++ continuation = x9; // The first callee-saved register
++ if (StubRoutines::dlog() == NULL) {
++ fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);
++ } else {
++ fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog());
++ }
++ __ call(fn);
++ break;
++ case Interpreter::java_lang_math_log10 :
++ entry_point = __ pc();
++ __ fld(f10, Address(esp));
++ __ mv(sp, x30);
++ __ mv(x9, ra);
++ continuation = x9; // The first callee-saved register
++ if (StubRoutines::dlog10() == NULL) {
++ fn = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10);
++ } else {
++ fn = CAST_FROM_FN_PTR(address, StubRoutines::dlog10());
++ }
++ __ call(fn);
++ break;
++ case Interpreter::java_lang_math_exp :
++ entry_point = __ pc();
++ __ fld(f10, Address(esp));
++ __ mv(sp, x30);
++ __ mv(x9, ra);
++ continuation = x9; // The first callee-saved register
++ if (StubRoutines::dexp() == NULL) {
++ fn = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);
++ } else {
++ fn = CAST_FROM_FN_PTR(address, StubRoutines::dexp());
++ }
++ __ call(fn);
++ break;
++ case Interpreter::java_lang_math_pow :
++ entry_point = __ pc();
++ __ mv(x9, ra);
++ continuation = x9;
++ __ fld(f10, Address(esp, 2 * Interpreter::stackElementSize));
++ __ fld(f11, Address(esp));
++ __ mv(sp, x30);
++ if (StubRoutines::dpow() == NULL) {
++ fn = CAST_FROM_FN_PTR(address, SharedRuntime::dpow);
++ } else {
++ fn = CAST_FROM_FN_PTR(address, StubRoutines::dpow());
++ }
++ __ call(fn);
++ break;
++ case Interpreter::java_lang_math_fmaD :
++ if (UseFMA) {
++ entry_point = __ pc();
++ __ fld(f10, Address(esp, 4 * Interpreter::stackElementSize));
++ __ fld(f11, Address(esp, 2 * Interpreter::stackElementSize));
++ __ fld(f12, Address(esp));
++ __ fmadd_d(f10, f10, f11, f12);
++ __ mv(sp, x30); // Restore caller's SP
++ }
++ break;
++ case Interpreter::java_lang_math_fmaF :
++ if (UseFMA) {
++ entry_point = __ pc();
++ __ flw(f10, Address(esp, 2 * Interpreter::stackElementSize));
++ __ flw(f11, Address(esp, Interpreter::stackElementSize));
++ __ flw(f12, Address(esp));
++ __ fmadd_s(f10, f10, f11, f12);
++ __ mv(sp, x30); // Restore caller's SP
++ }
++ break;
++ default:
++ ;
++ }
++ if (entry_point != NULL) {
++ __ jr(continuation);
++ }
++
++ return entry_point;
++}
++
++// Abstract method entry
++// Attempt to execute abstract method. Throw exception
++address TemplateInterpreterGenerator::generate_abstract_entry(void) {
++ // xmethod: Method*
++ // x30: sender SP
++
++ address entry_point = __ pc();
++
++ // abstract method entry
++
++ // pop return address, reset last_sp to NULL
++ __ empty_expression_stack();
++ __ restore_bcp(); // bcp must be correct for exception handler (was destroyed)
++ __ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
++
++ // throw exception
++ __ call_VM(noreg, CAST_FROM_FN_PTR(address,
++ InterpreterRuntime::throw_AbstractMethodErrorWithMethod),
++ xmethod);
++ // the call_VM checks for exception, so we should never return here.
++ __ should_not_reach_here();
++
++ return entry_point;
++}
++
++address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
++ address entry = __ pc();
++
++#ifdef ASSERT
++ {
++ Label L;
++ __ ld(t0, Address(fp, frame::interpreter_frame_monitor_block_top_offset * wordSize));
++ __ mv(t1, sp);
++ // maximal sp for current fp (stack grows negative)
++ // check if frame is complete
++ __ bge(t0, t1, L);
++ __ stop ("interpreter frame not set up");
++ __ bind(L);
++ }
++#endif // ASSERT
++ // Restore bcp under the assumption that the current frame is still
++ // interpreted
++ __ restore_bcp();
++
++ // expression stack must be empty before entering the VM if an
++ // exception happened
++ __ empty_expression_stack();
++ // throw exception
++ __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_StackOverflowError));
++ return entry;
++}
++
++address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() {
++ address entry = __ pc();
++ // expression stack must be empty before entering the VM if an
++ // exception happened
++ __ empty_expression_stack();
++ // setup parameters
++
++ // convention: expect aberrant index in register x11
++ __ zero_extend(c_rarg2, x11, 32);
++ // convention: expect array in register x13
++ __ mv(c_rarg1, x13);
++ __ call_VM(noreg,
++ CAST_FROM_FN_PTR(address,
++ InterpreterRuntime::
++ throw_ArrayIndexOutOfBoundsException),
++ c_rarg1, c_rarg2);
++ return entry;
++}
++
++address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
++ address entry = __ pc();
++
++ // object is at TOS
++ __ pop_reg(c_rarg1);
++
++ // expression stack must be empty before entering the VM if an
++ // exception happened
++ __ empty_expression_stack();
++
++ __ call_VM(noreg,
++ CAST_FROM_FN_PTR(address,
++ InterpreterRuntime::
++ throw_ClassCastException),
++ c_rarg1);
++ return entry;
++}
++
++address TemplateInterpreterGenerator::generate_exception_handler_common(
++ const char* name, const char* message, bool pass_oop) {
++ assert(!pass_oop || message == NULL, "either oop or message but not both");
++ address entry = __ pc();
++ if (pass_oop) {
++ // object is at TOS
++ __ pop_reg(c_rarg2);
++ }
++ // expression stack must be empty before entering the VM if an
++ // exception happened
++ __ empty_expression_stack();
++ // setup parameters
++ __ la(c_rarg1, Address((address)name));
++ if (pass_oop) {
++ __ call_VM(x10, CAST_FROM_FN_PTR(address,
++ InterpreterRuntime::
++ create_klass_exception),
++ c_rarg1, c_rarg2);
++ } else {
++ // kind of lame ExternalAddress can't take NULL because
++ // external_word_Relocation will assert.
++ if (message != NULL) {
++ __ la(c_rarg2, Address((address)message));
++ } else {
++ __ mv(c_rarg2, NULL_WORD);
++ }
++ __ call_VM(x10,
++ CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception),
++ c_rarg1, c_rarg2);
++ }
++ // throw exception
++ __ j(address(Interpreter::throw_exception_entry()));
++ return entry;
++}
++
++address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
++ address entry = __ pc();
++
++ // Restore stack bottom in case i2c adjusted stack
++ __ ld(esp, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize));
++ // and NULL it as marker that esp is now tos until next java call
++ __ sd(zr, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize));
++ __ restore_bcp();
++ __ restore_locals();
++ __ restore_constant_pool_cache();
++ __ get_method(xmethod);
++
++ if (state == atos) {
++ Register obj = x10;
++ Register mdp = x11;
++ Register tmp = x12;
++ __ ld(mdp, Address(xmethod, Method::method_data_offset()));
++ __ profile_return_type(mdp, obj, tmp);
++ }
++
++ // Pop N words from the stack
++ __ get_cache_and_index_at_bcp(x11, x12, 1, index_size);
++ __ ld(x11, Address(x11, ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()));
++ __ andi(x11, x11, ConstantPoolCacheEntry::parameter_size_mask);
++
++ __ shadd(esp, x11, esp, t0, 3);
++
++ // Restore machine SP
++ __ ld(t0, Address(xmethod, Method::const_offset()));
++ __ lhu(t0, Address(t0, ConstMethod::max_stack_offset()));
++ __ addi(t0, t0, frame::interpreter_frame_monitor_size() + 2);
++ __ ld(t1,
++ Address(fp, frame::interpreter_frame_initial_sp_offset * wordSize));
++ __ slli(t0, t0, 3);
++ __ sub(t0, t1, t0);
++ __ andi(sp, t0, -16);
++
++ __ check_and_handle_popframe(xthread);
++ __ check_and_handle_earlyret(xthread);
++
++ __ get_dispatch();
++ __ dispatch_next(state, step);
++
++ return entry;
++}
++
++address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state,
++ int step,
++ address continuation) {
++ address entry = __ pc();
++ __ restore_bcp();
++ __ restore_locals();
++ __ restore_constant_pool_cache();
++ __ get_method(xmethod);
++ __ get_dispatch();
++
++ // Calculate stack limit
++ __ ld(t0, Address(xmethod, Method::const_offset()));
++ __ lhu(t0, Address(t0, ConstMethod::max_stack_offset()));
++ __ addi(t0, t0, frame::interpreter_frame_monitor_size() + 2);
++ __ ld(t1, Address(fp, frame::interpreter_frame_initial_sp_offset * wordSize));
++ __ slli(t0, t0, 3);
++ __ sub(t0, t1, t0);
++ __ andi(sp, t0, -16);
++
++ // Restore expression stack pointer
++ __ ld(esp, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize));
++ // NULL last_sp until next java call
++ __ sd(zr, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize));
++
++ // handle exceptions
++ {
++ Label L;
++ __ ld(t0, Address(xthread, Thread::pending_exception_offset()));
++ __ beqz(t0, L);
++ __ call_VM(noreg,
++ CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_pending_exception));
++ __ should_not_reach_here();
++ __ bind(L);
++ }
++
++ if (continuation == NULL) {
++ __ dispatch_next(state, step);
++ } else {
++ __ jump_to_entry(continuation);
++ }
++ return entry;
++}
++
++address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
++ address entry = __ pc();
++ if (type == T_OBJECT) {
++ // retrieve result from frame
++ __ ld(x10, Address(fp, frame::interpreter_frame_oop_temp_offset * wordSize));
++ // and verify it
++ __ verify_oop(x10);
++ } else {
++ __ cast_primitive_type(type, x10);
++ }
++
++ __ ret(); // return from result handler
++ return entry;
++}
++
++address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state,
++ address runtime_entry) {
++ assert_cond(runtime_entry != NULL);
++ address entry = __ pc();
++ __ push(state);
++ __ call_VM(noreg, runtime_entry);
++ __ membar(MacroAssembler::AnyAny);
++ __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
++ return entry;
++}
++
++// Helpers for commoning out cases in the various type of method entries.
++//
++
++
++// increment invocation count & check for overflow
++//
++// Note: checking for negative value instead of overflow
++// so we have a 'sticky' overflow test
++//
++// xmethod: method
++//
++void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow) {
++ Label done;
++ // Note: In tiered we increment either counters in Method* or in MDO depending if we're profiling or not.
++ int increment = InvocationCounter::count_increment;
++ Label no_mdo;
++ if (ProfileInterpreter) {
++ // Are we profiling?
++ __ ld(x10, Address(xmethod, Method::method_data_offset()));
++ __ beqz(x10, no_mdo);
++ // Increment counter in the MDO
++ const Address mdo_invocation_counter(x10, in_bytes(MethodData::invocation_counter_offset()) +
++ in_bytes(InvocationCounter::counter_offset()));
++ const Address mask(x10, in_bytes(MethodData::invoke_mask_offset()));
++ __ increment_mask_and_jump(mdo_invocation_counter, increment, mask, t0, t1, false, overflow);
++ __ j(done);
++ }
++ __ bind(no_mdo);
++ // Increment counter in MethodCounters
++ const Address invocation_counter(t1,
++ MethodCounters::invocation_counter_offset() +
++ InvocationCounter::counter_offset());
++ __ get_method_counters(xmethod, t1, done);
++ const Address mask(t1, in_bytes(MethodCounters::invoke_mask_offset()));
++ __ increment_mask_and_jump(invocation_counter, increment, mask, t0, x11, false, overflow);
++ __ bind(done);
++}
++
++void TemplateInterpreterGenerator::generate_counter_overflow(Label& do_continue) {
++ __ mv(c_rarg1, zr);
++ __ call_VM(noreg,
++ CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), c_rarg1);
++ __ j(do_continue);
++}
++
++// See if we've got enough room on the stack for locals plus overhead
++// below JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
++// without going through the signal handler, i.e., reserved and yellow zones
++// will not be made usable. The shadow zone must suffice to handle the
++// overflow.
++// The expression stack grows down incrementally, so the normal guard
++// page mechanism will work for that.
++//
++// NOTE: Since the additional locals are also always pushed (wasn't
++// obvious in generate_method_entry) so the guard should work for them
++// too.
++//
++// Args:
++// x13: number of additional locals this frame needs (what we must check)
++// xmethod: Method*
++//
++// Kills:
++// x10
++void TemplateInterpreterGenerator::generate_stack_overflow_check(void) {
++
++ // monitor entry size: see picture of stack set
++ // (generate_method_entry) and frame_amd64.hpp
++ const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
++
++ // total overhead size: entry_size + (saved fp through expr stack
++ // bottom). be sure to change this if you add/subtract anything
++ // to/from the overhead area
++ const int overhead_size =
++ -(frame::interpreter_frame_initial_sp_offset * wordSize) + entry_size;
++
++ const int page_size = os::vm_page_size();
++
++ Label after_frame_check;
++
++ // see if the frame is greater than one page in size. If so,
++ // then we need to verify there is enough stack space remaining
++ // for the additional locals.
++ __ mv(t0, (page_size - overhead_size) / Interpreter::stackElementSize);
++ __ bleu(x13, t0, after_frame_check);
++
++ // compute sp as if this were going to be the last frame on
++ // the stack before the red zone
++
++ // locals + overhead, in bytes
++ __ mv(x10, overhead_size);
++ __ shadd(x10, x13, x10, t0, Interpreter::logStackElementSize); // 2 slots per parameter.
++
++ const Address stack_limit(xthread, JavaThread::stack_overflow_limit_offset());
++ __ ld(t0, stack_limit);
++
++#ifdef ASSERT
++ Label limit_okay;
++ // Verify that thread stack limit is non-zero.
++ __ bnez(t0, limit_okay);
++ __ stop("stack overflow limit is zero");
++ __ bind(limit_okay);
++#endif
++
++ // Add stack limit to locals.
++ __ add(x10, x10, t0);
++
++ // Check against the current stack bottom.
++ __ bgtu(sp, x10, after_frame_check);
++
++ // Remove the incoming args, peeling the machine SP back to where it
++ // was in the caller. This is not strictly necessary, but unless we
++ // do so the stack frame may have a garbage FP; this ensures a
++ // correct call stack that we can always unwind. The ANDI should be
++ // unnecessary because the sender SP in x30 is always aligned, but
++ // it doesn't hurt.
++ __ andi(sp, x30, -16);
++
++ // Note: the restored frame is not necessarily interpreted.
++ // Use the shared runtime version of the StackOverflowError.
++ assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "stub not yet generated");
++ __ far_jump(RuntimeAddress(StubRoutines::throw_StackOverflowError_entry()));
++
++ // all done with frame size check
++ __ bind(after_frame_check);
++}
++
++// Allocate monitor and lock method (asm interpreter)
++//
++// Args:
++// xmethod: Method*
++// xlocals: locals
++//
++// Kills:
++// x10
++// c_rarg0, c_rarg1, c_rarg2, c_rarg3, ...(param regs)
++// t0, t1 (temporary regs)
++void TemplateInterpreterGenerator::lock_method() {
++ // synchronize method
++ const Address access_flags(xmethod, Method::access_flags_offset());
++ const Address monitor_block_top(fp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
++ const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
++
++#ifdef ASSERT
++ __ lwu(x10, access_flags);
++ __ verify_access_flags(x10, JVM_ACC_SYNCHRONIZED, "method doesn't need synchronization", false);
++#endif // ASSERT
++
++ // get synchronization object
++ {
++ Label done;
++ __ lwu(x10, access_flags);
++ __ andi(t0, x10, JVM_ACC_STATIC);
++ // get receiver (assume this is frequent case)
++ __ ld(x10, Address(xlocals, Interpreter::local_offset_in_bytes(0)));
++ __ beqz(t0, done);
++ __ load_mirror(x10, xmethod);
++
++#ifdef ASSERT
++ {
++ Label L;
++ __ bnez(x10, L);
++ __ stop("synchronization object is NULL");
++ __ bind(L);
++ }
++#endif // ASSERT
++
++ __ bind(done);
++ }
++
++ // add space for monitor & lock
++ __ add(sp, sp, - entry_size); // add space for a monitor entry
++ __ add(esp, esp, - entry_size);
++ __ mv(t0, esp);
++ __ sd(t0, monitor_block_top); // set new monitor block top
++ // store object
++ __ sd(x10, Address(esp, BasicObjectLock::obj_offset_in_bytes()));
++ __ mv(c_rarg1, esp); // object address
++ __ lock_object(c_rarg1);
++}
++
++// Generate a fixed interpreter frame. This is identical setup for
++// interpreted methods and for native methods hence the shared code.
++//
++// Args:
++// ra: return address
++// xmethod: Method*
++// xlocals: pointer to locals
++// xcpool: cp cache
++// stack_pointer: previous sp
++void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call) {
++ // initialize fixed part of activation frame
++ if (native_call) {
++ __ add(esp, sp, - 14 * wordSize);
++ __ mv(xbcp, zr);
++ __ add(sp, sp, - 14 * wordSize);
++ // add 2 zero-initialized slots for native calls
++ __ sd(zr, Address(sp, 13 * wordSize));
++ __ sd(zr, Address(sp, 12 * wordSize));
++ } else {
++ __ add(esp, sp, - 12 * wordSize);
++ __ ld(t0, Address(xmethod, Method::const_offset())); // get ConstMethod
++ __ add(xbcp, t0, in_bytes(ConstMethod::codes_offset())); // get codebase
++ __ add(sp, sp, - 12 * wordSize);
++ }
++ __ sd(xbcp, Address(sp, wordSize));
++ __ sd(esp, Address(sp, 0));
++
++ if (ProfileInterpreter) {
++ Label method_data_continue;
++ __ ld(t0, Address(xmethod, Method::method_data_offset()));
++ __ beqz(t0, method_data_continue);
++ __ la(t0, Address(t0, in_bytes(MethodData::data_offset())));
++ __ bind(method_data_continue);
++ }
++
++ __ sd(xmethod, Address(sp, 7 * wordSize));
++ __ sd(ProfileInterpreter ? t0 : zr, Address(sp, 6 * wordSize));
++
++ // Get mirror and store it in the frame as GC root for this Method*
++ __ load_mirror(t2, xmethod);
++ __ sd(zr, Address(sp, 5 * wordSize));
++ __ sd(t2, Address(sp, 4 * wordSize));
++
++ __ ld(xcpool, Address(xmethod, Method::const_offset()));
++ __ ld(xcpool, Address(xcpool, ConstMethod::constants_offset()));
++ __ ld(xcpool, Address(xcpool, ConstantPool::cache_offset_in_bytes()));
++ __ sd(xcpool, Address(sp, 3 * wordSize));
++ __ sd(xlocals, Address(sp, 2 * wordSize));
++
++ __ sd(ra, Address(sp, 11 * wordSize));
++ __ sd(fp, Address(sp, 10 * wordSize));
++ __ la(fp, Address(sp, 12 * wordSize)); // include ra & fp
++
++ // set sender sp
++ // leave last_sp as null
++ __ sd(x30, Address(sp, 9 * wordSize));
++ __ sd(zr, Address(sp, 8 * wordSize));
++
++ // Move SP out of the way
++ if (!native_call) {
++ __ ld(t0, Address(xmethod, Method::const_offset()));
++ __ lhu(t0, Address(t0, ConstMethod::max_stack_offset()));
++ __ add(t0, t0, frame::interpreter_frame_monitor_size() + 2);
++ __ slli(t0, t0, 3);
++ __ sub(t0, sp, t0);
++ __ andi(sp, t0, -16);
++ }
++}
++
++// End of helpers
++
++// Various method entries
++//------------------------------------------------------------------------------------------------------------------------
++//
++//
++
++// Method entry for java.lang.ref.Reference.get.
++address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
++ // Code: _aload_0, _getfield, _areturn
++ // parameter size = 1
++ //
++ // The code that gets generated by this routine is split into 2 parts:
++ // 1. The "intrinsified" code for G1 (or any SATB based GC),
++ // 2. The slow path - which is an expansion of the regular method entry.
++ //
++ // Notes:-
++ // * In the G1 code we do not check whether we need to block for
++ // a safepoint. If G1 is enabled then we must execute the specialized
++ // code for Reference.get (except when the Reference object is null)
++ // so that we can log the value in the referent field with an SATB
++ // update buffer.
++ // If the code for the getfield template is modified so that the
++ // G1 pre-barrier code is executed when the current method is
++ // Reference.get() then going through the normal method entry
++ // will be fine.
++ // * The G1 code can, however, check the receiver object (the instance
++ // of java.lang.Reference) and jump to the slow path if null. If the
++ // Reference object is null then we obviously cannot fetch the referent
++ // and so we don't need to call the G1 pre-barrier. Thus we can use the
++ // regular method entry code to generate the NPE.
++ //
++ // This code is based on generate_accessor_entry.
++ //
++ // xmethod: Method*
++ // x30: senderSP must preserve for slow path, set SP to it on fast path
++
++ // ra is live. It must be saved around calls.
++
++ address entry = __ pc();
++
++ const int referent_offset = java_lang_ref_Reference::referent_offset();
++ guarantee(referent_offset > 0, "referent offset not initialized");
++
++ Label slow_path;
++ const Register local_0 = c_rarg0;
++ // Check if local 0 != NULL
++ // If the receiver is null then it is OK to jump to the slow path.
++ __ ld(local_0, Address(esp, 0));
++ __ beqz(local_0, slow_path);
++
++ __ mv(x9, x30); // Move senderSP to a callee-saved register
++
++ // Load the value of the referent field.
++ const Address field_address(local_0, referent_offset);
++ BarrierSetAssembler *bs = BarrierSet::barrier_set()->barrier_set_assembler();
++ bs->load_at(_masm, IN_HEAP | ON_WEAK_OOP_REF, T_OBJECT, local_0, field_address, /*tmp1*/ t1, /*tmp2*/ t0);
++
++ // areturn
++ __ andi(sp, x9, -16); // done with stack
++ __ ret();
++
++ // generate a vanilla interpreter entry as the slow path
++ __ bind(slow_path);
++ __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals));
++ return entry;
++}
++
++/**
++ * Method entry for static native methods:
++ * int java.util.zip.CRC32.update(int crc, int b)
++ */
++address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
++ // TODO: Unimplemented generate_CRC32_update_entry
++ return 0;
++}
++
++/**
++ * Method entry for static native methods:
++ * int java.util.zip.CRC32.updateBytes(int crc, byte[] b, int off, int len)
++ * int java.util.zip.CRC32.updateByteBuffer(int crc, long buf, int off, int len)
++ */
++address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
++ // TODO: Unimplemented generate_CRC32_updateBytes_entry
++ return 0;
++}
++
++/**
++ * Method entry for intrinsic-candidate (non-native) methods:
++ * int java.util.zip.CRC32C.updateBytes(int crc, byte[] b, int off, int end)
++ * int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long buf, int off, int end)
++ * Unlike CRC32, CRC32C does not have any methods marked as native
++ * CRC32C also uses an "end" variable instead of the length variable CRC32 uses
++ */
++address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
++ // TODO: Unimplemented generate_CRC32C_updateBytes_entry
++ return 0;
++}
++
++void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
++ // Bang each page in the shadow zone. We can't assume it's been done for
++ // an interpreter frame with greater than a page of locals, so each page
++ // needs to be checked. Only true for non-native.
++ const int n_shadow_pages = (int)(StackOverflow::stack_shadow_zone_size() / os::vm_page_size());
++ const int start_page = native_call ? n_shadow_pages : 1;
++ const int page_size = os::vm_page_size();
++ for (int pages = start_page; pages <= n_shadow_pages ; pages++) {
++ __ sub(t1, sp, pages * page_size);
++ __ sd(zr, Address(t1));
++ }
++}
++
++// Interpreter stub for calling a native method. (asm interpreter)
++// This sets up a somewhat different looking stack for calling the
++// native method than the typical interpreter frame setup.
++address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
++ // determine code generation flags
++ bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
++
++ // x11: Method*
++ // x30: sender sp
++
++ address entry_point = __ pc();
++
++ const Address constMethod (xmethod, Method::const_offset());
++ const Address access_flags (xmethod, Method::access_flags_offset());
++ const Address size_of_parameters(x12, ConstMethod::
++ size_of_parameters_offset());
++
++ // get parameter size (always needed)
++ __ ld(x12, constMethod);
++ __ load_unsigned_short(x12, size_of_parameters);
++
++ // Native calls don't need the stack size check since they have no
++ // expression stack and the arguments are already on the stack and
++ // we only add a handful of words to the stack.
++
++ // xmethod: Method*
++ // x12: size of parameters
++ // x30: sender sp
++
++ // for natives the size of locals is zero
++
++ // compute beginning of parameters (xlocals)
++ __ shadd(xlocals, x12, esp, xlocals, 3);
++ __ addi(xlocals, xlocals, -wordSize);
++
++ // Pull SP back to minimum size: this avoids holes in the stack
++ __ andi(sp, esp, -16);
++
++ // initialize fixed part of activation frame
++ generate_fixed_frame(true);
++
++ // make sure method is native & not abstract
++#ifdef ASSERT
++ __ lwu(x10, access_flags);
++ __ verify_access_flags(x10, JVM_ACC_NATIVE, "tried to execute non-native method as native", false);
++ __ verify_access_flags(x10, JVM_ACC_ABSTRACT, "tried to execute abstract method in interpreter");
++#endif
++
++ // Since at this point in the method invocation the exception
++ // handler would try to exit the monitor of synchronized methods
++ // which hasn't been entered yet, we set the thread local variable
++ // _do_not_unlock_if_synchronized to true. The remove_activation
++ // will check this flag.
++
++ const Address do_not_unlock_if_synchronized(xthread,
++ in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
++ __ mv(t1, true);
++ __ sb(t1, do_not_unlock_if_synchronized);
++
++ // increment invocation count & check for overflow
++ Label invocation_counter_overflow;
++ if (inc_counter) {
++ generate_counter_incr(&invocation_counter_overflow);
++ }
++
++ Label continue_after_compile;
++ __ bind(continue_after_compile);
++
++ bang_stack_shadow_pages(true);
++
++ // reset the _do_not_unlock_if_synchronized flag
++ __ sb(zr, do_not_unlock_if_synchronized);
++
++ // check for synchronized methods
++ // Must happen AFTER invocation_counter check and stack overflow check,
++ // so method is not locked if overflows.
++ if (synchronized) {
++ lock_method();
++ } else {
++ // no synchronization necessary
++#ifdef ASSERT
++ __ lwu(x10, access_flags);
++ __ verify_access_flags(x10, JVM_ACC_SYNCHRONIZED, "method needs synchronization");
++#endif
++ }
++
++ // start execution
++#ifdef ASSERT
++ __ verify_frame_setup();
++#endif
++
++ // jvmti support
++ __ notify_method_entry();
++
++ // work registers
++ const Register t = x18;
++ const Register result_handler = x19;
++
++ // allocate space for parameters
++ __ ld(t, Address(xmethod, Method::const_offset()));
++ __ load_unsigned_short(t, Address(t, ConstMethod::size_of_parameters_offset()));
++
++ __ slli(t, t, Interpreter::logStackElementSize);
++ __ sub(x30, esp, t);
++ __ andi(sp, x30, -16);
++ __ mv(esp, x30);
++
++ // get signature handler
++ {
++ Label L;
++ __ ld(t, Address(xmethod, Method::signature_handler_offset()));
++ __ bnez(t, L);
++ __ call_VM(noreg,
++ CAST_FROM_FN_PTR(address,
++ InterpreterRuntime::prepare_native_call),
++ xmethod);
++ __ ld(t, Address(xmethod, Method::signature_handler_offset()));
++ __ bind(L);
++ }
++
++ // call signature handler
++ assert(InterpreterRuntime::SignatureHandlerGenerator::from() == xlocals,
++ "adjust this code");
++ assert(InterpreterRuntime::SignatureHandlerGenerator::to() == sp,
++ "adjust this code");
++ assert(InterpreterRuntime::SignatureHandlerGenerator::temp() == t0,
++ "adjust this code");
++
++ // The generated handlers do not touch xmethod (the method).
++ // However, large signatures cannot be cached and are generated
++ // each time here. The slow-path generator can do a GC on return,
++ // so we must reload it after the call.
++ __ jalr(t);
++ __ get_method(xmethod); // slow path can do a GC, reload xmethod
++
++
++ // result handler is in x10
++ // set result handler
++ __ mv(result_handler, x10);
++ // pass mirror handle if static call
++ {
++ Label L;
++ __ lwu(t, Address(xmethod, Method::access_flags_offset()));
++ __ test_bit(t0, t, exact_log2(JVM_ACC_STATIC));
++ __ beqz(t0, L);
++ // get mirror
++ __ load_mirror(t, xmethod);
++ // copy mirror into activation frame
++ __ sd(t, Address(fp, frame::interpreter_frame_oop_temp_offset * wordSize));
++ // pass handle to mirror
++ __ addi(c_rarg1, fp, frame::interpreter_frame_oop_temp_offset * wordSize);
++ __ bind(L);
++ }
++
++ // get native function entry point in x28
++ {
++ Label L;
++ __ ld(x28, Address(xmethod, Method::native_function_offset()));
++ address unsatisfied = (SharedRuntime::native_method_throw_unsatisfied_link_error_entry());
++ __ mv(t1, unsatisfied);
++ __ ld(t1, Address(t1, 0));
++ __ bne(x28, t1, L);
++ __ call_VM(noreg,
++ CAST_FROM_FN_PTR(address,
++ InterpreterRuntime::prepare_native_call),
++ xmethod);
++ __ get_method(xmethod);
++ __ ld(x28, Address(xmethod, Method::native_function_offset()));
++ __ bind(L);
++ }
++
++ // pass JNIEnv
++ __ add(c_rarg0, xthread, in_bytes(JavaThread::jni_environment_offset()));
++
++ // It is enough that the pc() points into the right code
++ // segment. It does not have to be the correct return pc.
++ Label native_return;
++ __ set_last_Java_frame(esp, fp, native_return, x30);
++
++ // change thread state
++#ifdef ASSERT
++ {
++ Label L;
++ __ lwu(t, Address(xthread, JavaThread::thread_state_offset()));
++ __ addi(t0, zr, (u1)_thread_in_Java);
++ __ beq(t, t0, L);
++ __ stop("Wrong thread state in native stub");
++ __ bind(L);
++ }
++#endif
++
++ // Change state to native
++ __ la(t1, Address(xthread, JavaThread::thread_state_offset()));
++ __ mv(t0, _thread_in_native);
++ __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore);
++ __ sw(t0, Address(t1));
++
++ // Call the native method.
++ __ jalr(x28);
++ __ bind(native_return);
++ __ get_method(xmethod);
++ // result potentially in x10 or f10
++
++ // make room for the pushes we're about to do
++ __ sub(t0, esp, 4 * wordSize);
++ __ andi(sp, t0, -16);
++
++ // NOTE: The order of these pushes is known to frame::interpreter_frame_result
++ // in order to extract the result of a method call. If the order of these
++ // pushes change or anything else is added to the stack then the code in
++ // interpreter_frame_result must also change.
++ __ push(dtos);
++ __ push(ltos);
++
++ // change thread state
++ // Force all preceding writes to be observed prior to thread state change
++ __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore);
++
++ __ mv(t0, _thread_in_native_trans);
++ __ sw(t0, Address(xthread, JavaThread::thread_state_offset()));
++
++ // Force this write out before the read below
++ __ membar(MacroAssembler::AnyAny);
++
++ // check for safepoint operation in progress and/or pending suspend requests
++ {
++ Label L, Continue;
++
++ // We need an acquire here to ensure that any subsequent load of the
++ // global SafepointSynchronize::_state flag is ordered after this load
++ // of the thread-local polling word. We don't want this poll to
++ // return false (i.e. not safepointing) and a later poll of the global
++ // SafepointSynchronize::_state spuriously to return true.
++ //
++ // This is to avoid a race when we're in a native->Java transition
++ // racing the code which wakes up from a safepoint.
++ __ safepoint_poll(L, true /* at_return */, true /* acquire */, false /* in_nmethod */);
++ __ lwu(t1, Address(xthread, JavaThread::suspend_flags_offset()));
++ __ beqz(t1, Continue);
++ __ bind(L);
++
++ // Don't use call_VM as it will see a possible pending exception
++ // and forward it and never return here preventing us from
++ // clearing _last_native_pc down below. So we do a runtime call by
++ // hand.
++ //
++ __ mv(c_rarg0, xthread);
++ __ call(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans));
++ __ get_method(xmethod);
++ __ reinit_heapbase();
++ __ bind(Continue);
++ }
++
++ // change thread state
++ // Force all preceding writes to be observed prior to thread state change
++ __ membar(MacroAssembler::LoadStore | MacroAssembler::StoreStore);
++
++ __ mv(t0, _thread_in_Java);
++ __ sw(t0, Address(xthread, JavaThread::thread_state_offset()));
++
++ // reset_last_Java_frame
++ __ reset_last_Java_frame(true);
++
++ if (CheckJNICalls) {
++ // clear_pending_jni_exception_check
++ __ sd(zr, Address(xthread, JavaThread::pending_jni_exception_check_fn_offset()));
++ }
++
++ // reset handle block
++ __ ld(t, Address(xthread, JavaThread::active_handles_offset()));
++ __ sd(zr, Address(t, JNIHandleBlock::top_offset_in_bytes()));
++
++ // If result is an oop unbox and store it in frame where gc will see it
++ // and result handler will pick it up
++
++ {
++ Label no_oop;
++ __ la(t, ExternalAddress(AbstractInterpreter::result_handler(T_OBJECT)));
++ __ bne(t, result_handler, no_oop);
++ // Unbox oop result, e.g. JNIHandles::resolve result.
++ __ pop(ltos);
++ __ resolve_jobject(x10, xthread, t);
++ __ sd(x10, Address(fp, frame::interpreter_frame_oop_temp_offset * wordSize));
++ // keep stack depth as expected by pushing oop which will eventually be discarded
++ __ push(ltos);
++ __ bind(no_oop);
++ }
++
++ {
++ Label no_reguard;
++ __ lwu(t0, Address(xthread, in_bytes(JavaThread::stack_guard_state_offset())));
++ __ addi(t1, zr, (u1)StackOverflow::stack_guard_yellow_reserved_disabled);
++ __ bne(t0, t1, no_reguard);
++
++ __ push_call_clobbered_registers();
++ __ mv(c_rarg0, xthread);
++ __ call(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages));
++ __ pop_call_clobbered_registers();
++ __ bind(no_reguard);
++ }
++
++ // The method register is junk from after the thread_in_native transition
++ // until here. Also can't call_VM until the bcp has been
++ // restored. Need bcp for throwing exception below so get it now.
++ __ get_method(xmethod);
++
++ // restore bcp to have legal interpreter frame, i.e., bci == 0 <=>
++ // xbcp == code_base()
++ __ ld(xbcp, Address(xmethod, Method::const_offset())); // get ConstMethod*
++ __ add(xbcp, xbcp, in_bytes(ConstMethod::codes_offset())); // get codebase
++ // handle exceptions (exception handling will handle unlocking!)
++ {
++ Label L;
++ __ ld(t0, Address(xthread, Thread::pending_exception_offset()));
++ __ beqz(t0, L);
++ // Note: At some point we may want to unify this with the code
++ // used in call_VM_base(); i.e., we should use the
++ // StubRoutines::forward_exception code. For now this doesn't work
++ // here because the sp is not correctly set at this point.
++ __ MacroAssembler::call_VM(noreg,
++ CAST_FROM_FN_PTR(address,
++ InterpreterRuntime::throw_pending_exception));
++ __ should_not_reach_here();
++ __ bind(L);
++ }
++
++ // do unlocking if necessary
++ {
++ Label L;
++ __ lwu(t, Address(xmethod, Method::access_flags_offset()));
++ __ test_bit(t0, t, exact_log2(JVM_ACC_SYNCHRONIZED));
++ __ beqz(t0, L);
++ // the code below should be shared with interpreter macro
++ // assembler implementation
++ {
++ Label unlock;
++ // BasicObjectLock will be first in list, since this is a
++ // synchronized method. However, need to check that the object
++ // has not been unlocked by an explicit monitorexit bytecode.
++
++ // monitor expect in c_rarg1 for slow unlock path
++ __ la(c_rarg1, Address(fp, // address of first monitor
++ (intptr_t)(frame::interpreter_frame_initial_sp_offset *
++ wordSize - sizeof(BasicObjectLock))));
++
++ __ ld(t, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
++ __ bnez(t, unlock);
++
++ // Entry already unlocked, need to throw exception
++ __ MacroAssembler::call_VM(noreg,
++ CAST_FROM_FN_PTR(address,
++ InterpreterRuntime::throw_illegal_monitor_state_exception));
++ __ should_not_reach_here();
++
++ __ bind(unlock);
++ __ unlock_object(c_rarg1);
++ }
++ __ bind(L);
++ }
++
++ // jvmti support
++ // Note: This must happen _after_ handling/throwing any exceptions since
++ // the exception handler code notifies the runtime of method exits
++ // too. If this happens before, method entry/exit notifications are
++ // not properly paired (was bug - gri 11/22/99).
++ __ notify_method_exit(vtos, InterpreterMacroAssembler::NotifyJVMTI);
++
++ __ pop(ltos);
++ __ pop(dtos);
++
++ __ jalr(result_handler);
++
++ // remove activation
++ __ ld(esp, Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize)); // get sender sp
++ // remove frame anchor
++ __ leave();
++
++ // restore sender sp
++ __ mv(sp, esp);
++
++ __ ret();
++
++ if (inc_counter) {
++ // Handle overflow of counter and compile method
++ __ bind(invocation_counter_overflow);
++ generate_counter_overflow(continue_after_compile);
++ }
++
++ return entry_point;
++}
++
++//
++// Generic interpreted method entry to (asm) interpreter
++//
++address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
++
++ // determine code generation flags
++ const bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
++
++ // t0: sender sp
++ address entry_point = __ pc();
++
++ const Address constMethod(xmethod, Method::const_offset());
++ const Address access_flags(xmethod, Method::access_flags_offset());
++ const Address size_of_parameters(x13,
++ ConstMethod::size_of_parameters_offset());
++ const Address size_of_locals(x13, ConstMethod::size_of_locals_offset());
++
++ // get parameter size (always needed)
++ // need to load the const method first
++ __ ld(x13, constMethod);
++ __ load_unsigned_short(x12, size_of_parameters);
++
++ // x12: size of parameters
++
++ __ load_unsigned_short(x13, size_of_locals); // get size of locals in words
++ __ sub(x13, x13, x12); // x13 = no. of additional locals
++
++ // see if we've got enough room on the stack for locals plus overhead.
++ generate_stack_overflow_check();
++
++ // compute beginning of parameters (xlocals)
++ __ shadd(xlocals, x12, esp, t1, 3);
++ __ add(xlocals, xlocals, -wordSize);
++
++ // Make room for additional locals
++ __ slli(t1, x13, 3);
++ __ sub(t0, esp, t1);
++
++ // Padding between locals and fixed part of activation frame to ensure
++ // SP is always 16-byte aligned.
++ __ andi(sp, t0, -16);
++
++ // x13 - # of additional locals
++ // allocate space for locals
++ // explicitly initialize locals
++ {
++ Label exit, loop;
++ __ blez(x13, exit); // do nothing if x13 <= 0
++ __ bind(loop);
++ __ sd(zr, Address(t0));
++ __ add(t0, t0, wordSize);
++ __ add(x13, x13, -1); // until everything initialized
++ __ bnez(x13, loop);
++ __ bind(exit);
++ }
++
++ // And the base dispatch table
++ __ get_dispatch();
++
++ // initialize fixed part of activation frame
++ generate_fixed_frame(false);
++
++ // make sure method is not native & not abstract
++#ifdef ASSERT
++ __ lwu(x10, access_flags);
++ __ verify_access_flags(x10, JVM_ACC_NATIVE, "tried to execute native method as non-native");
++ __ verify_access_flags(x10, JVM_ACC_ABSTRACT, "tried to execute abstract method in interpreter");
++#endif
++
++ // Since at this point in the method invocation the exception
++ // handler would try to exit the monitor of synchronized methods
++ // which hasn't been entered yet, we set the thread local variable
++ // _do_not_unlock_if_synchronized to true. The remove_activation
++ // will check this flag.
++
++ const Address do_not_unlock_if_synchronized(xthread,
++ in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()));
++ __ mv(t1, true);
++ __ sb(t1, do_not_unlock_if_synchronized);
++
++ Label no_mdp;
++ const Register mdp = x13;
++ __ ld(mdp, Address(xmethod, Method::method_data_offset()));
++ __ beqz(mdp, no_mdp);
++ __ add(mdp, mdp, in_bytes(MethodData::data_offset()));
++ __ profile_parameters_type(mdp, x11, x12, x14); // use x11, x12, x14 as tmp registers
++ __ bind(no_mdp);
++
++ // increment invocation count & check for overflow
++ Label invocation_counter_overflow;
++ if (inc_counter) {
++ generate_counter_incr(&invocation_counter_overflow);
++ }
++
++ Label continue_after_compile;
++ __ bind(continue_after_compile);
++
++ bang_stack_shadow_pages(false);
++
++ // reset the _do_not_unlock_if_synchronized flag
++ __ sb(zr, do_not_unlock_if_synchronized);
++
++ // check for synchronized methods
++ // Must happen AFTER invocation_counter check and stack overflow check,
++ // so method is not locked if overflows.
++ if (synchronized) {
++ // Allocate monitor and lock method
++ lock_method();
++ } else {
++ // no synchronization necessary
++#ifdef ASSERT
++ __ lwu(x10, access_flags);
++ __ verify_access_flags(x10, JVM_ACC_SYNCHRONIZED, "method needs synchronization");
++#endif
++ }
++
++ // start execution
++#ifdef ASSERT
++ __ verify_frame_setup();
++#endif
++
++ // jvmti support
++ __ notify_method_entry();
++
++ __ dispatch_next(vtos);
++
++ // invocation counter overflow
++ if (inc_counter) {
++ // Handle overflow of counter and compile method
++ __ bind(invocation_counter_overflow);
++ generate_counter_overflow(continue_after_compile);
++ }
++
++ return entry_point;
++}
++
++//-----------------------------------------------------------------------------
++// Exceptions
++
++void TemplateInterpreterGenerator::generate_throw_exception() {
++ // Entry point in previous activation (i.e., if the caller was
++ // interpreted)
++ Interpreter::_rethrow_exception_entry = __ pc();
++ // Restore sp to interpreter_frame_last_sp even though we are going
++ // to empty the expression stack for the exception processing.
++ __ sd(zr, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize));
++ // x10: exception
++ // x13: return address/pc that threw exception
++ __ restore_bcp(); // xbcp points to call/send
++ __ restore_locals();
++ __ restore_constant_pool_cache();
++ __ reinit_heapbase(); // restore xheapbase as heapbase.
++ __ get_dispatch();
++
++ // Entry point for exceptions thrown within interpreter code
++ Interpreter::_throw_exception_entry = __ pc();
++ // If we came here via a NullPointerException on the receiver of a
++ // method, xthread may be corrupt.
++ __ get_method(xmethod);
++ // expression stack is undefined here
++ // x10: exception
++ // xbcp: exception bcp
++ __ verify_oop(x10);
++ __ mv(c_rarg1, x10);
++
++ // expression stack must be empty before entering the VM in case of
++ // an exception
++ __ empty_expression_stack();
++ // find exception handler address and preserve exception oop
++ __ call_VM(x13,
++ CAST_FROM_FN_PTR(address,
++ InterpreterRuntime::exception_handler_for_exception),
++ c_rarg1);
++
++ // Calculate stack limit
++ __ ld(t0, Address(xmethod, Method::const_offset()));
++ __ lhu(t0, Address(t0, ConstMethod::max_stack_offset()));
++ __ add(t0, t0, frame::interpreter_frame_monitor_size() + 4);
++ __ ld(t1, Address(fp, frame::interpreter_frame_initial_sp_offset * wordSize));
++ __ slli(t0, t0, 3);
++ __ sub(t0, t1, t0);
++ __ andi(sp, t0, -16);
++
++ // x10: exception handler entry point
++ // x13: preserved exception oop
++ // xbcp: bcp for exception handler
++ __ push_ptr(x13); // push exception which is now the only value on the stack
++ __ jr(x10); // jump to exception handler (may be _remove_activation_entry!)
++
++ // If the exception is not handled in the current frame the frame is
++ // removed and the exception is rethrown (i.e. exception
++ // continuation is _rethrow_exception).
++ //
++ // Note: At this point the bci is still the bxi for the instruction
++ // which caused the exception and the expression stack is
++ // empty. Thus, for any VM calls at this point, GC will find a legal
++ // oop map (with empty expression stack).
++
++ //
++ // JVMTI PopFrame support
++ //
++
++ Interpreter::_remove_activation_preserving_args_entry = __ pc();
++ __ empty_expression_stack();
++ // Set the popframe_processing bit in pending_popframe_condition
++ // indicating that we are currently handling popframe, so that
++ // call_VMs that may happen later do not trigger new popframe
++ // handling cycles.
++ __ lwu(x13, Address(xthread, JavaThread::popframe_condition_offset()));
++ __ ori(x13, x13, JavaThread::popframe_processing_bit);
++ __ sw(x13, Address(xthread, JavaThread::popframe_condition_offset()));
++
++ {
++ // Check to see whether we are returning to a deoptimized frame.
++ // (The PopFrame call ensures that the caller of the popped frame is
++ // either interpreted or compiled and deoptimizes it if compiled.)
++ // In this case, we can't call dispatch_next() after the frame is
++ // popped, but instead must save the incoming arguments and restore
++ // them after deoptimization has occurred.
++ //
++ // Note that we don't compare the return PC against the
++ // deoptimization blob's unpack entry because of the presence of
++ // adapter frames in C2.
++ Label caller_not_deoptimized;
++ __ ld(c_rarg1, Address(fp, frame::return_addr_offset * wordSize));
++ __ super_call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), c_rarg1);
++ __ bnez(x10, caller_not_deoptimized);
++
++ // Compute size of arguments for saving when returning to
++ // deoptimized caller
++ __ get_method(x10);
++ __ ld(x10, Address(x10, Method::const_offset()));
++ __ load_unsigned_short(x10, Address(x10, in_bytes(ConstMethod::
++ size_of_parameters_offset())));
++ __ slli(x10, x10, Interpreter::logStackElementSize);
++ __ restore_locals();
++ __ sub(xlocals, xlocals, x10);
++ __ add(xlocals, xlocals, wordSize);
++ // Save these arguments
++ __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
++ Deoptimization::
++ popframe_preserve_args),
++ xthread, x10, xlocals);
++
++ __ remove_activation(vtos,
++ /* throw_monitor_exception */ false,
++ /* install_monitor_exception */ false,
++ /* notify_jvmdi */ false);
++
++ // Inform deoptimization that it is responsible for restoring
++ // these arguments
++ __ mv(t0, JavaThread::popframe_force_deopt_reexecution_bit);
++ __ sw(t0, Address(xthread, JavaThread::popframe_condition_offset()));
++
++ // Continue in deoptimization handler
++ __ ret();
++
++ __ bind(caller_not_deoptimized);
++ }
++
++ __ remove_activation(vtos,
++ /* throw_monitor_exception */ false,
++ /* install_monitor_exception */ false,
++ /* notify_jvmdi */ false);
++
++ // Restore the last_sp and null it out
++ __ ld(esp, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize));
++ __ sd(zr, Address(fp, frame::interpreter_frame_last_sp_offset * wordSize));
++
++ __ restore_bcp();
++ __ restore_locals();
++ __ restore_constant_pool_cache();
++ __ get_method(xmethod);
++ __ get_dispatch();
++
++ // The method data pointer was incremented already during
++ // call profiling. We have to restore the mdp for the current bcp.
++ if (ProfileInterpreter) {
++ __ set_method_data_pointer_for_bcp();
++ }
++
++ // Clear the popframe condition flag
++ __ sw(zr, Address(xthread, JavaThread::popframe_condition_offset()));
++ assert(JavaThread::popframe_inactive == 0, "fix popframe_inactive");
++
++#if INCLUDE_JVMTI
++ {
++ Label L_done;
++
++ __ lbu(t0, Address(xbcp, 0));
++ __ mv(t1, Bytecodes::_invokestatic);
++ __ bne(t1, t0, L_done);
++
++ // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
++ // Detect such a case in the InterpreterRuntime function and return the member name argument,or NULL.
++
++ __ ld(c_rarg0, Address(xlocals, 0));
++ __ call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null),c_rarg0, xmethod, xbcp);
++
++ __ beqz(x10, L_done);
++
++ __ sd(x10, Address(esp, 0));
++ __ bind(L_done);
++ }
++#endif // INCLUDE_JVMTI
++
++ // Restore machine SP
++ __ ld(t0, Address(xmethod, Method::const_offset()));
++ __ lhu(t0, Address(t0, ConstMethod::max_stack_offset()));
++ __ add(t0, t0, frame::interpreter_frame_monitor_size() + 4);
++ __ ld(t1, Address(fp, frame::interpreter_frame_initial_sp_offset * wordSize));
++ __ slliw(t0, t0, 3);
++ __ sub(t0, t1, t0);
++ __ andi(sp, t0, -16);
++
++ __ dispatch_next(vtos);
++ // end of PopFrame support
++
++ Interpreter::_remove_activation_entry = __ pc();
++
++ // preserve exception over this code sequence
++ __ pop_ptr(x10);
++ __ sd(x10, Address(xthread, JavaThread::vm_result_offset()));
++ // remove the activation (without doing throws on illegalMonitorExceptions)
++ __ remove_activation(vtos, false, true, false);
++ // restore exception
++ __ get_vm_result(x10, xthread);
++
++ // In between activations - previous activation type unknown yet
++ // compute continuation point - the continuation point expects the
++ // following registers set up:
++ //
++ // x10: exception
++ // ra: return address/pc that threw exception
++ // sp: expression stack of caller
++ // fp: fp of caller
++ // FIXME: There's no point saving ra here because VM calls don't trash it
++ __ sub(sp, sp, 2 * wordSize);
++ __ sd(x10, Address(sp, 0)); // save exception
++ __ sd(ra, Address(sp, wordSize)); // save return address
++ __ super_call_VM_leaf(CAST_FROM_FN_PTR(address,
++ SharedRuntime::exception_handler_for_return_address),
++ xthread, ra);
++ __ mv(x11, x10); // save exception handler
++ __ ld(x10, Address(sp, 0)); // restore exception
++ __ ld(ra, Address(sp, wordSize)); // restore return address
++ __ add(sp, sp, 2 * wordSize);
++ // We might be returning to a deopt handler that expects x13 to
++ // contain the exception pc
++ __ mv(x13, ra);
++ // Note that an "issuing PC" is actually the next PC after the call
++ __ jr(x11); // jump to exception
++ // handler of caller
++}
++
++//
++// JVMTI ForceEarlyReturn support
++//
++address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
++ address entry = __ pc();
++
++ __ restore_bcp();
++ __ restore_locals();
++ __ empty_expression_stack();
++ __ load_earlyret_value(state);
++
++ __ ld(t0, Address(xthread, JavaThread::jvmti_thread_state_offset()));
++ Address cond_addr(t0, JvmtiThreadState::earlyret_state_offset());
++
++ // Clear the earlyret state
++ assert(JvmtiThreadState::earlyret_inactive == 0, "should be");
++ __ sd(zr, cond_addr);
++
++ __ remove_activation(state,
++ false, /* throw_monitor_exception */
++ false, /* install_monitor_exception */
++ true); /* notify_jvmdi */
++ __ ret();
++
++ return entry;
++}
++// end of ForceEarlyReturn support
++
++//-----------------------------------------------------------------------------
++// Helper for vtos entry point generation
++
++void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
++ address& bep,
++ address& cep,
++ address& sep,
++ address& aep,
++ address& iep,
++ address& lep,
++ address& fep,
++ address& dep,
++ address& vep) {
++ assert(t != NULL && t->is_valid() && t->tos_in() == vtos, "illegal template");
++ Label L;
++ aep = __ pc(); __ push_ptr(); __ j(L);
++ fep = __ pc(); __ push_f(); __ j(L);
++ dep = __ pc(); __ push_d(); __ j(L);
++ lep = __ pc(); __ push_l(); __ j(L);
++ bep = cep = sep =
++ iep = __ pc(); __ push_i();
++ vep = __ pc();
++ __ bind(L);
++ generate_and_dispatch(t);
++}
++
++//-----------------------------------------------------------------------------
++
++// Non-product code
++#ifndef PRODUCT
++address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
++ address entry = __ pc();
++
++ __ push_reg(ra);
++ __ push(state);
++ __ push_reg(RegSet::range(x10, x17) + RegSet::range(x5, x7) + RegSet::range(x28, x31), sp);
++ __ mv(c_rarg2, x10); // Pass itos
++ __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), c_rarg1, c_rarg2, c_rarg3);
++ __ pop_reg(RegSet::range(x10, x17) + RegSet::range(x5, x7) + RegSet::range(x28, x31), sp);
++ __ pop(state);
++ __ pop_reg(ra);
++ __ ret(); // return from result handler
++
++ return entry;
++}
++
++void TemplateInterpreterGenerator::count_bytecode() {
++ __ push_reg(t0);
++ __ push_reg(x10);
++ __ mv(x10, (address) &BytecodeCounter::_counter_value);
++ __ mv(t0, 1);
++ __ amoadd_d(zr, x10, t0, Assembler::aqrl);
++ __ pop_reg(x10);
++ __ pop_reg(t0);
++}
++
++void TemplateInterpreterGenerator::histogram_bytecode(Template* t) { ; }
++
++void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) { ; }
++
++void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
++ // Call a little run-time stub to avoid blow-up for each bytecode.
++ // The run-time runtime saves the right registers, depending on
++ // the tosca in-state for the given template.
++
++ assert(Interpreter::trace_code(t->tos_in()) != NULL, "entry must have been generated");
++ __ jal(Interpreter::trace_code(t->tos_in()));
++ __ reinit_heapbase();
++}
++
++void TemplateInterpreterGenerator::stop_interpreter_at() {
++ Label L;
++ __ push_reg(t0);
++ __ mv(t0, (address) &BytecodeCounter::_counter_value);
++ __ ld(t0, Address(t0));
++ __ mv(t1, StopInterpreterAt);
++ __ bne(t0, t1, L);
++ __ ebreak();
++ __ bind(L);
++ __ pop_reg(t0);
++}
++
++#endif // !PRODUCT
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/templateTable_riscv.cpp
+@@ -0,0 +1,3949 @@
++/*
++ * Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/macroAssembler.inline.hpp"
++#include "gc/shared/barrierSetAssembler.hpp"
++#include "gc/shared/collectedHeap.hpp"
++#include "gc/shared/tlab_globals.hpp"
++#include "interpreter/interp_masm.hpp"
++#include "interpreter/interpreter.hpp"
++#include "interpreter/interpreterRuntime.hpp"
++#include "interpreter/templateTable.hpp"
++#include "memory/universe.hpp"
++#include "oops/method.hpp"
++#include "oops/methodData.hpp"
++#include "oops/objArrayKlass.hpp"
++#include "oops/oop.inline.hpp"
++#include "prims/jvmtiExport.hpp"
++#include "prims/methodHandles.hpp"
++#include "runtime/frame.inline.hpp"
++#include "runtime/sharedRuntime.hpp"
++#include "runtime/stubRoutines.hpp"
++#include "runtime/synchronizer.hpp"
++#include "utilities/powerOfTwo.hpp"
++
++#define __ _masm->
++
++// Address computation: local variables
++
++static inline Address iaddress(int n) {
++ return Address(xlocals, Interpreter::local_offset_in_bytes(n));
++}
++
++static inline Address laddress(int n) {
++ return iaddress(n + 1);
++}
++
++static inline Address faddress(int n) {
++ return iaddress(n);
++}
++
++static inline Address daddress(int n) {
++ return laddress(n);
++}
++
++static inline Address aaddress(int n) {
++ return iaddress(n);
++}
++
++static inline Address iaddress(Register r, Register temp, InterpreterMacroAssembler* _masm) {
++ _masm->shadd(temp, r, xlocals, temp, 3);
++ return Address(temp, 0);
++}
++
++static inline Address laddress(Register r, Register temp, InterpreterMacroAssembler* _masm) {
++ _masm->shadd(temp, r, xlocals, temp, 3);
++ return Address(temp, Interpreter::local_offset_in_bytes(1));;
++}
++
++static inline Address faddress(Register r, Register temp, InterpreterMacroAssembler* _masm) {
++ return iaddress(r, temp, _masm);
++}
++
++static inline Address daddress(Register r, Register temp, InterpreterMacroAssembler* _masm) {
++ return laddress(r, temp, _masm);
++}
++
++static inline Address aaddress(Register r, Register temp, InterpreterMacroAssembler* _masm) {
++ return iaddress(r, temp, _masm);
++}
++
++static inline Address at_rsp() {
++ return Address(esp, 0);
++}
++
++// At top of Java expression stack which may be different than esp(). It
++// isn't for category 1 objects.
++static inline Address at_tos () {
++ return Address(esp, Interpreter::expr_offset_in_bytes(0));
++}
++
++static inline Address at_tos_p1() {
++ return Address(esp, Interpreter::expr_offset_in_bytes(1));
++}
++
++static inline Address at_tos_p2() {
++ return Address(esp, Interpreter::expr_offset_in_bytes(2));
++}
++
++static inline Address at_tos_p3() {
++ return Address(esp, Interpreter::expr_offset_in_bytes(3));
++}
++
++static inline Address at_tos_p4() {
++ return Address(esp, Interpreter::expr_offset_in_bytes(4));
++}
++
++static inline Address at_tos_p5() {
++ return Address(esp, Interpreter::expr_offset_in_bytes(5));
++}
++
++// Miscelaneous helper routines
++// Store an oop (or NULL) at the Address described by obj.
++// If val == noreg this means store a NULL
++static void do_oop_store(InterpreterMacroAssembler* _masm,
++ Address dst,
++ Register val,
++ DecoratorSet decorators) {
++ assert(val == noreg || val == x10, "parameter is just for looks");
++ __ store_heap_oop(dst, val, x29, x11, decorators);
++}
++
++static void do_oop_load(InterpreterMacroAssembler* _masm,
++ Address src,
++ Register dst,
++ DecoratorSet decorators) {
++ __ load_heap_oop(dst, src, x7, x11, decorators);
++}
++
++Address TemplateTable::at_bcp(int offset) {
++ assert(_desc->uses_bcp(), "inconsistent uses_bcp information");
++ return Address(xbcp, offset);
++}
++
++void TemplateTable::patch_bytecode(Bytecodes::Code bc, Register bc_reg,
++ Register temp_reg, bool load_bc_into_bc_reg/*=true*/,
++ int byte_no)
++{
++ if (!RewriteBytecodes) { return; }
++ Label L_patch_done;
++
++ switch (bc) {
++ case Bytecodes::_fast_aputfield: // fall through
++ case Bytecodes::_fast_bputfield: // fall through
++ case Bytecodes::_fast_zputfield: // fall through
++ case Bytecodes::_fast_cputfield: // fall through
++ case Bytecodes::_fast_dputfield: // fall through
++ case Bytecodes::_fast_fputfield: // fall through
++ case Bytecodes::_fast_iputfield: // fall through
++ case Bytecodes::_fast_lputfield: // fall through
++ case Bytecodes::_fast_sputfield: {
++ // We skip bytecode quickening for putfield instructions when
++ // the put_code written to the constant pool cache is zero.
++ // This is required so that every execution of this instruction
++ // calls out to InterpreterRuntime::resolve_get_put to do
++ // additional, required work.
++ assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
++ assert(load_bc_into_bc_reg, "we use bc_reg as temp");
++ __ get_cache_and_index_and_bytecode_at_bcp(temp_reg, bc_reg, temp_reg, byte_no, 1);
++ __ mv(bc_reg, bc);
++ __ beqz(temp_reg, L_patch_done);
++ break;
++ }
++ default:
++ assert(byte_no == -1, "sanity");
++ // the pair bytecodes have already done the load.
++ if (load_bc_into_bc_reg) {
++ __ mv(bc_reg, bc);
++ }
++ }
++
++ if (JvmtiExport::can_post_breakpoint()) {
++ Label L_fast_patch;
++ // if a breakpoint is present we can't rewrite the stream directly
++ __ load_unsigned_byte(temp_reg, at_bcp(0));
++ __ addi(temp_reg, temp_reg, -Bytecodes::_breakpoint); // temp_reg is temporary register.
++ __ bnez(temp_reg, L_fast_patch);
++ // Let breakpoint table handling rewrite to quicker bytecode
++ __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::set_original_bytecode_at), xmethod, xbcp, bc_reg);
++ __ j(L_patch_done);
++ __ bind(L_fast_patch);
++ }
++
++#ifdef ASSERT
++ Label L_okay;
++ __ load_unsigned_byte(temp_reg, at_bcp(0));
++ __ beq(temp_reg, bc_reg, L_okay);
++ __ addi(temp_reg, temp_reg, -(int) Bytecodes::java_code(bc));
++ __ beqz(temp_reg, L_okay);
++ __ stop("patching the wrong bytecode");
++ __ bind(L_okay);
++#endif
++
++ // patch bytecode
++ __ sb(bc_reg, at_bcp(0));
++ __ bind(L_patch_done);
++}
++
++// Individual instructions
++
++void TemplateTable::nop() {
++ transition(vtos, vtos);
++ // nothing to do
++}
++
++void TemplateTable::shouldnotreachhere() {
++ transition(vtos, vtos);
++ __ stop("should not reach here bytecode");
++}
++
++void TemplateTable::aconst_null()
++{
++ transition(vtos, atos);
++ __ mv(x10, zr);
++}
++
++void TemplateTable::iconst(int value)
++{
++ transition(vtos, itos);
++ __ mv(x10, value);
++}
++
++void TemplateTable::lconst(int value)
++{
++ transition(vtos, ltos);
++ __ mv(x10, value);
++}
++
++void TemplateTable::fconst(int value)
++{
++ transition(vtos, ftos);
++ static float fBuf[2] = {1.0, 2.0};
++ __ mv(t0, (intptr_t)fBuf);
++ switch (value) {
++ case 0:
++ __ fmv_w_x(f10, zr);
++ break;
++ case 1:
++ __ flw(f10, Address(t0, 0));
++ break;
++ case 2:
++ __ flw(f10, Address(t0, sizeof(float)));
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++}
++
++void TemplateTable::dconst(int value)
++{
++ transition(vtos, dtos);
++ static double dBuf[2] = {1.0, 2.0};
++ __ mv(t0, (intptr_t)dBuf);
++ switch (value) {
++ case 0:
++ __ fmv_d_x(f10, zr);
++ break;
++ case 1:
++ __ fld(f10, Address(t0, 0));
++ break;
++ case 2:
++ __ fld(f10, Address(t0, sizeof(double)));
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++}
++
++void TemplateTable::bipush()
++{
++ transition(vtos, itos);
++ __ load_signed_byte(x10, at_bcp(1));
++}
++
++void TemplateTable::sipush()
++{
++ transition(vtos, itos);
++ __ load_unsigned_short(x10, at_bcp(1));
++ __ revb_w_w(x10, x10);
++ __ sraiw(x10, x10, 16);
++}
++
++void TemplateTable::ldc(bool wide)
++{
++ transition(vtos, vtos);
++ Label call_ldc, notFloat, notClass, notInt, Done;
++
++ if (wide) {
++ __ get_unsigned_2_byte_index_at_bcp(x11, 1);
++ } else {
++ __ load_unsigned_byte(x11, at_bcp(1));
++ }
++ __ get_cpool_and_tags(x12, x10);
++
++ const int base_offset = ConstantPool::header_size() * wordSize;
++ const int tags_offset = Array<u1>::base_offset_in_bytes();
++
++ // get type
++ __ addi(x13, x11, tags_offset);
++ __ add(x13, x10, x13);
++ __ membar(MacroAssembler::AnyAny);
++ __ lbu(x13, Address(x13, 0));
++ __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
++
++ // unresolved class - get the resolved class
++ __ mv(t1, (u1)JVM_CONSTANT_UnresolvedClass);
++ __ beq(x13, t1, call_ldc);
++
++ // unresolved class in error state - call into runtime to throw the error
++ // from the first resolution attempt
++ __ mv(t1, (u1)JVM_CONSTANT_UnresolvedClassInError);
++ __ beq(x13, t1, call_ldc);
++
++ // resolved class - need to call vm to get java mirror of the class
++ __ mv(t1, (u1)JVM_CONSTANT_Class);
++ __ bne(x13, t1, notClass);
++
++ __ bind(call_ldc);
++ __ mv(c_rarg1, wide);
++ call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::ldc), c_rarg1);
++ __ push_ptr(x10);
++ __ verify_oop(x10);
++ __ j(Done);
++
++ __ bind(notClass);
++ __ mv(t1, (u1)JVM_CONSTANT_Float);
++ __ bne(x13, t1, notFloat);
++
++ // ftos
++ __ shadd(x11, x11, x12, x11, 3);
++ __ flw(f10, Address(x11, base_offset));
++ __ push_f(f10);
++ __ j(Done);
++
++ __ bind(notFloat);
++
++ __ mv(t1, (u1)JVM_CONSTANT_Integer);
++ __ bne(x13, t1, notInt);
++
++ // itos
++ __ shadd(x11, x11, x12, x11, 3);
++ __ lw(x10, Address(x11, base_offset));
++ __ push_i(x10);
++ __ j(Done);
++
++ __ bind(notInt);
++ condy_helper(Done);
++
++ __ bind(Done);
++}
++
++// Fast path for caching oop constants.
++void TemplateTable::fast_aldc(bool wide)
++{
++ transition(vtos, atos);
++
++ const Register result = x10;
++ const Register tmp = x11;
++ const Register rarg = x12;
++
++ const int index_size = wide ? sizeof(u2) : sizeof(u1);
++
++ Label resolved;
++
++ // We are resolved if the resolved reference cache entry contains a
++ // non-null object (String, MethodType, etc.)
++ assert_different_registers(result, tmp);
++ __ get_cache_index_at_bcp(tmp, 1, index_size);
++ __ load_resolved_reference_at_index(result, tmp);
++ __ bnez(result, resolved);
++
++ const address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
++
++ // first time invocation - must resolve first
++ __ mv(rarg, (int)bytecode());
++ __ call_VM(result, entry, rarg);
++
++ __ bind(resolved);
++
++ { // Check for the null sentinel.
++ // If we just called the VM, it already did the mapping for us,
++ // but it's harmless to retry.
++ Label notNull;
++
++ // Stash null_sentinel address to get its value later
++ int32_t offset = 0;
++ __ mv(rarg, Universe::the_null_sentinel_addr(), offset);
++ __ ld(tmp, Address(rarg, offset));
++ __ resolve_oop_handle(tmp);
++ __ bne(result, tmp, notNull);
++ __ mv(result, zr); // NULL object reference
++ __ bind(notNull);
++ }
++
++ if (VerifyOops) {
++ // Safe to call with 0 result
++ __ verify_oop(result);
++ }
++}
++
++void TemplateTable::ldc2_w()
++{
++ transition(vtos, vtos);
++ Label notDouble, notLong, Done;
++ __ get_unsigned_2_byte_index_at_bcp(x10, 1);
++
++ __ get_cpool_and_tags(x11, x12);
++ const int base_offset = ConstantPool::header_size() * wordSize;
++ const int tags_offset = Array<u1>::base_offset_in_bytes();
++
++ // get type
++ __ add(x12, x12, x10);
++ __ load_unsigned_byte(x12, Address(x12, tags_offset));
++ __ mv(t1, JVM_CONSTANT_Double);
++ __ bne(x12, t1, notDouble);
++
++ // dtos
++ __ shadd(x12, x10, x11, x12, 3);
++ __ fld(f10, Address(x12, base_offset));
++ __ push_d(f10);
++ __ j(Done);
++
++ __ bind(notDouble);
++ __ mv(t1, (int)JVM_CONSTANT_Long);
++ __ bne(x12, t1, notLong);
++
++ // ltos
++ __ shadd(x10, x10, x11, x10, 3);
++ __ ld(x10, Address(x10, base_offset));
++ __ push_l(x10);
++ __ j(Done);
++
++ __ bind(notLong);
++ condy_helper(Done);
++ __ bind(Done);
++}
++
++void TemplateTable::condy_helper(Label& Done)
++{
++ const Register obj = x10;
++ const Register rarg = x11;
++ const Register flags = x12;
++ const Register off = x13;
++
++ const address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_ldc);
++
++ __ mv(rarg, (int) bytecode());
++ __ call_VM(obj, entry, rarg);
++
++ __ get_vm_result_2(flags, xthread);
++
++ // VMr = obj = base address to find primitive value to push
++ // VMr2 = flags = (tos, off) using format of CPCE::_flags
++ __ mv(off, flags);
++ __ mv(t0, ConstantPoolCacheEntry::field_index_mask);
++ __ andrw(off, off, t0);
++
++ __ add(off, obj, off);
++ const Address field(off, 0); // base + R---->base + offset
++
++ __ slli(flags, flags, XLEN - (ConstantPoolCacheEntry::tos_state_shift + ConstantPoolCacheEntry::tos_state_bits));
++ __ srli(flags, flags, XLEN - ConstantPoolCacheEntry::tos_state_bits); // (1 << 5) - 4 --> 28~31==> flags:0~3
++
++ switch (bytecode()) {
++ case Bytecodes::_ldc: // fall through
++ case Bytecodes::_ldc_w: {
++ // tos in (itos, ftos, stos, btos, ctos, ztos)
++ Label notInt, notFloat, notShort, notByte, notChar, notBool;
++ __ mv(t1, itos);
++ __ bne(flags, t1, notInt);
++ // itos
++ __ lw(x10, field);
++ __ push(itos);
++ __ j(Done);
++
++ __ bind(notInt);
++ __ mv(t1, ftos);
++ __ bne(flags, t1, notFloat);
++ // ftos
++ __ load_float(field);
++ __ push(ftos);
++ __ j(Done);
++
++ __ bind(notFloat);
++ __ mv(t1, stos);
++ __ bne(flags, t1, notShort);
++ // stos
++ __ load_signed_short(x10, field);
++ __ push(stos);
++ __ j(Done);
++
++ __ bind(notShort);
++ __ mv(t1, btos);
++ __ bne(flags, t1, notByte);
++ // btos
++ __ load_signed_byte(x10, field);
++ __ push(btos);
++ __ j(Done);
++
++ __ bind(notByte);
++ __ mv(t1, ctos);
++ __ bne(flags, t1, notChar);
++ // ctos
++ __ load_unsigned_short(x10, field);
++ __ push(ctos);
++ __ j(Done);
++
++ __ bind(notChar);
++ __ mv(t1, ztos);
++ __ bne(flags, t1, notBool);
++ // ztos
++ __ load_signed_byte(x10, field);
++ __ push(ztos);
++ __ j(Done);
++
++ __ bind(notBool);
++ break;
++ }
++
++ case Bytecodes::_ldc2_w: {
++ Label notLong, notDouble;
++ __ mv(t1, ltos);
++ __ bne(flags, t1, notLong);
++ // ltos
++ __ ld(x10, field);
++ __ push(ltos);
++ __ j(Done);
++
++ __ bind(notLong);
++ __ mv(t1, dtos);
++ __ bne(flags, t1, notDouble);
++ // dtos
++ __ load_double(field);
++ __ push(dtos);
++ __ j(Done);
++
++ __ bind(notDouble);
++ break;
++ }
++
++ default:
++ ShouldNotReachHere();
++ }
++
++ __ stop("bad ldc/condy");
++}
++
++void TemplateTable::locals_index(Register reg, int offset)
++{
++ __ lbu(reg, at_bcp(offset));
++ __ neg(reg, reg);
++}
++
++void TemplateTable::iload() {
++ iload_internal();
++}
++
++void TemplateTable::nofast_iload() {
++ iload_internal(may_not_rewrite);
++}
++
++void TemplateTable::iload_internal(RewriteControl rc) {
++ transition(vtos, itos);
++ if (RewriteFrequentPairs && rc == may_rewrite) {
++ Label rewrite, done;
++ const Register bc = x14;
++
++ // get next bytecode
++ __ load_unsigned_byte(x11, at_bcp(Bytecodes::length_for(Bytecodes::_iload)));
++
++ // if _iload, wait to rewrite to iload2. We only want to rewrite the
++ // last two iloads in a pair. Comparing against fast_iload means that
++ // the next bytecode is neither an iload or a caload, and therefore
++ // an iload pair.
++ __ mv(t1, Bytecodes::_iload);
++ __ beq(x11, t1, done);
++
++ // if _fast_iload rewrite to _fast_iload2
++ __ mv(t1, Bytecodes::_fast_iload);
++ __ mv(bc, Bytecodes::_fast_iload2);
++ __ beq(x11, t1, rewrite);
++
++ // if _caload rewrite to _fast_icaload
++ __ mv(t1, Bytecodes::_caload);
++ __ mv(bc, Bytecodes::_fast_icaload);
++ __ beq(x11, t1, rewrite);
++
++ // else rewrite to _fast_iload
++ __ mv(bc, Bytecodes::_fast_iload);
++
++ // rewrite
++ // bc: new bytecode
++ __ bind(rewrite);
++ patch_bytecode(Bytecodes::_iload, bc, x11, false);
++ __ bind(done);
++
++ }
++
++ // do iload, get the local value into tos
++ locals_index(x11);
++ __ lw(x10, iaddress(x11, x10, _masm));
++}
++
++void TemplateTable::fast_iload2()
++{
++ transition(vtos, itos);
++ locals_index(x11);
++ __ lw(x10, iaddress(x11, x10, _masm));
++ __ push(itos);
++ locals_index(x11, 3);
++ __ lw(x10, iaddress(x11, x10, _masm));
++}
++
++void TemplateTable::fast_iload()
++{
++ transition(vtos, itos);
++ locals_index(x11);
++ __ lw(x10, iaddress(x11, x10, _masm));
++}
++
++void TemplateTable::lload()
++{
++ transition(vtos, ltos);
++ __ lbu(x11, at_bcp(1));
++ __ slli(x11, x11, LogBytesPerWord);
++ __ sub(x11, xlocals, x11);
++ __ ld(x10, Address(x11, Interpreter::local_offset_in_bytes(1)));
++}
++
++void TemplateTable::fload()
++{
++ transition(vtos, ftos);
++ locals_index(x11);
++ __ flw(f10, faddress(x11, t0, _masm));
++}
++
++void TemplateTable::dload()
++{
++ transition(vtos, dtos);
++ __ lbu(x11, at_bcp(1));
++ __ slli(x11, x11, LogBytesPerWord);
++ __ sub(x11, xlocals, x11);
++ __ fld(f10, Address(x11, Interpreter::local_offset_in_bytes(1)));
++}
++
++void TemplateTable::aload()
++{
++ transition(vtos, atos);
++ locals_index(x11);
++ __ ld(x10, iaddress(x11, x10, _masm));
++
++}
++
++void TemplateTable::locals_index_wide(Register reg) {
++ __ lhu(reg, at_bcp(2));
++ __ revb_h_h_u(reg, reg); // reverse bytes in half-word and zero-extend
++ __ neg(reg, reg);
++}
++
++void TemplateTable::wide_iload() {
++ transition(vtos, itos);
++ locals_index_wide(x11);
++ __ lw(x10, iaddress(x11, t0, _masm));
++}
++
++void TemplateTable::wide_lload()
++{
++ transition(vtos, ltos);
++ __ lhu(x11, at_bcp(2));
++ __ revb_h_h_u(x11, x11); // reverse bytes in half-word and zero-extend
++ __ slli(x11, x11, LogBytesPerWord);
++ __ sub(x11, xlocals, x11);
++ __ ld(x10, Address(x11, Interpreter::local_offset_in_bytes(1)));
++}
++
++void TemplateTable::wide_fload()
++{
++ transition(vtos, ftos);
++ locals_index_wide(x11);
++ __ flw(f10, faddress(x11, t0, _masm));
++}
++
++void TemplateTable::wide_dload()
++{
++ transition(vtos, dtos);
++ __ lhu(x11, at_bcp(2));
++ __ revb_h_h_u(x11, x11); // reverse bytes in half-word and zero-extend
++ __ slli(x11, x11, LogBytesPerWord);
++ __ sub(x11, xlocals, x11);
++ __ fld(f10, Address(x11, Interpreter::local_offset_in_bytes(1)));
++}
++
++void TemplateTable::wide_aload()
++{
++ transition(vtos, atos);
++ locals_index_wide(x11);
++ __ ld(x10, aaddress(x11, t0, _masm));
++}
++
++void TemplateTable::index_check(Register array, Register index)
++{
++ // destroys x11, t0
++ // check array
++ __ null_check(array, arrayOopDesc::length_offset_in_bytes());
++ // sign extend index for use by indexed load
++ // check index
++ const Register length = t0;
++ __ lwu(length, Address(array, arrayOopDesc::length_offset_in_bytes()));
++ if (index != x11) {
++ assert(x11 != array, "different registers");
++ __ mv(x11, index);
++ }
++ Label ok;
++ __ sign_extend(index, index, 32);
++ __ bltu(index, length, ok);
++ __ mv(x13, array);
++ __ mv(t0, Interpreter::_throw_ArrayIndexOutOfBoundsException_entry);
++ __ jr(t0);
++ __ bind(ok);
++}
++
++void TemplateTable::iaload()
++{
++ transition(itos, itos);
++ __ mv(x11, x10);
++ __ pop_ptr(x10);
++ // x10: array
++ // x11: index
++ index_check(x10, x11); // leaves index in x11
++ __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
++ __ shadd(x10, x11, x10, t0, 2);
++ __ access_load_at(T_INT, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg);
++ __ sign_extend(x10, x10, 32);
++}
++
++void TemplateTable::laload()
++{
++ transition(itos, ltos);
++ __ mv(x11, x10);
++ __ pop_ptr(x10);
++ // x10: array
++ // x11: index
++ index_check(x10, x11); // leaves index in x11
++ __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3);
++ __ shadd(x10, x11, x10, t0, 3);
++ __ access_load_at(T_LONG, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg);
++}
++
++void TemplateTable::faload()
++{
++ transition(itos, ftos);
++ __ mv(x11, x10);
++ __ pop_ptr(x10);
++ // x10: array
++ // x11: index
++ index_check(x10, x11); // leaves index in x11
++ __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
++ __ shadd(x10, x11, x10, t0, 2);
++ __ access_load_at(T_FLOAT, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg);
++}
++
++void TemplateTable::daload()
++{
++ transition(itos, dtos);
++ __ mv(x11, x10);
++ __ pop_ptr(x10);
++ // x10: array
++ // x11: index
++ index_check(x10, x11); // leaves index in x11
++ __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
++ __ shadd(x10, x11, x10, t0, 3);
++ __ access_load_at(T_DOUBLE, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg);
++}
++
++void TemplateTable::aaload()
++{
++ transition(itos, atos);
++ __ mv(x11, x10);
++ __ pop_ptr(x10);
++ // x10: array
++ // x11: index
++ index_check(x10, x11); // leaves index in x11
++ __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
++ __ shadd(x10, x11, x10, t0, LogBytesPerHeapOop);
++ do_oop_load(_masm,
++ Address(x10),
++ x10,
++ IS_ARRAY);
++}
++
++void TemplateTable::baload()
++{
++ transition(itos, itos);
++ __ mv(x11, x10);
++ __ pop_ptr(x10);
++ // x10: array
++ // x11: index
++ index_check(x10, x11); // leaves index in x11
++ __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
++ __ shadd(x10, x11, x10, t0, 0);
++ __ access_load_at(T_BYTE, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg);
++}
++
++void TemplateTable::caload()
++{
++ transition(itos, itos);
++ __ mv(x11, x10);
++ __ pop_ptr(x10);
++ // x10: array
++ // x11: index
++ index_check(x10, x11); // leaves index in x11
++ __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
++ __ shadd(x10, x11, x10, t0, 1);
++ __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg);
++}
++
++// iload followed by caload frequent pair
++void TemplateTable::fast_icaload()
++{
++ transition(vtos, itos);
++ // load index out of locals
++ locals_index(x12);
++ __ lw(x11, iaddress(x12, x11, _masm));
++ __ pop_ptr(x10);
++
++ // x10: array
++ // x11: index
++ index_check(x10, x11); // leaves index in x11, kills t0
++ __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1); // addi, max imm is 2^11
++ __ shadd(x10, x11, x10, t0, 1);
++ __ access_load_at(T_CHAR, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg);
++}
++
++void TemplateTable::saload()
++{
++ transition(itos, itos);
++ __ mv(x11, x10);
++ __ pop_ptr(x10);
++ // x10: array
++ // x11: index
++ index_check(x10, x11); // leaves index in x11, kills t0
++ __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_SHORT) >> 1);
++ __ shadd(x10, x11, x10, t0, 1);
++ __ access_load_at(T_SHORT, IN_HEAP | IS_ARRAY, x10, Address(x10), noreg, noreg);
++}
++
++void TemplateTable::iload(int n)
++{
++ transition(vtos, itos);
++ __ lw(x10, iaddress(n));
++}
++
++void TemplateTable::lload(int n)
++{
++ transition(vtos, ltos);
++ __ ld(x10, laddress(n));
++}
++
++void TemplateTable::fload(int n)
++{
++ transition(vtos, ftos);
++ __ flw(f10, faddress(n));
++}
++
++void TemplateTable::dload(int n)
++{
++ transition(vtos, dtos);
++ __ fld(f10, daddress(n));
++}
++
++void TemplateTable::aload(int n)
++{
++ transition(vtos, atos);
++ __ ld(x10, iaddress(n));
++}
++
++void TemplateTable::aload_0() {
++ aload_0_internal();
++}
++
++void TemplateTable::nofast_aload_0() {
++ aload_0_internal(may_not_rewrite);
++}
++
++void TemplateTable::aload_0_internal(RewriteControl rc) {
++ // According to bytecode histograms, the pairs:
++ //
++ // _aload_0, _fast_igetfield
++ // _aload_0, _fast_agetfield
++ // _aload_0, _fast_fgetfield
++ //
++ // occur frequently. If RewriteFrequentPairs is set, the (slow)
++ // _aload_0 bytecode checks if the next bytecode is either
++ // _fast_igetfield, _fast_agetfield or _fast_fgetfield and then
++ // rewrites the current bytecode into a pair bytecode; otherwise it
++ // rewrites the current bytecode into _fast_aload_0 that doesn't do
++ // the pair check anymore.
++ //
++ // Note: If the next bytecode is _getfield, the rewrite must be
++ // delayed, otherwise we may miss an opportunity for a pair.
++ //
++ // Also rewrite frequent pairs
++ // aload_0, aload_1
++ // aload_0, iload_1
++ // These bytecodes with a small amount of code are most profitable
++ // to rewrite
++ if (RewriteFrequentPairs && rc == may_rewrite) {
++ Label rewrite, done;
++ const Register bc = x14;
++
++ // get next bytecode
++ __ load_unsigned_byte(x11, at_bcp(Bytecodes::length_for(Bytecodes::_aload_0)));
++
++ // if _getfield then wait with rewrite
++ __ mv(t1, Bytecodes::Bytecodes::_getfield);
++ __ beq(x11, t1, done);
++
++ // if _igetfield then rewrite to _fast_iaccess_0
++ assert(Bytecodes::java_code(Bytecodes::_fast_iaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
++ __ mv(t1, Bytecodes::_fast_igetfield);
++ __ mv(bc, Bytecodes::_fast_iaccess_0);
++ __ beq(x11, t1, rewrite);
++
++ // if _agetfield then rewrite to _fast_aaccess_0
++ assert(Bytecodes::java_code(Bytecodes::_fast_aaccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
++ __ mv(t1, Bytecodes::_fast_agetfield);
++ __ mv(bc, Bytecodes::_fast_aaccess_0);
++ __ beq(x11, t1, rewrite);
++
++ // if _fgetfield then rewrite to _fast_faccess_0
++ assert(Bytecodes::java_code(Bytecodes::_fast_faccess_0) == Bytecodes::_aload_0, "fix bytecode definition");
++ __ mv(t1, Bytecodes::_fast_fgetfield);
++ __ mv(bc, Bytecodes::_fast_faccess_0);
++ __ beq(x11, t1, rewrite);
++
++ // else rewrite to _fast_aload0
++ assert(Bytecodes::java_code(Bytecodes::_fast_aload_0) == Bytecodes::_aload_0, "fix bytecode definition");
++ __ mv(bc, Bytecodes::Bytecodes::_fast_aload_0);
++
++ // rewrite
++ // bc: new bytecode
++ __ bind(rewrite);
++ patch_bytecode(Bytecodes::_aload_0, bc, x11, false);
++
++ __ bind(done);
++ }
++
++ // Do actual aload_0 (must do this after patch_bytecode which might call VM and GC might change oop).
++ aload(0);
++}
++
++void TemplateTable::istore()
++{
++ transition(itos, vtos);
++ locals_index(x11);
++ __ sw(x10, iaddress(x11, t0, _masm));
++}
++
++void TemplateTable::lstore()
++{
++ transition(ltos, vtos);
++ locals_index(x11);
++ __ sd(x10, laddress(x11, t0, _masm));
++}
++
++void TemplateTable::fstore() {
++ transition(ftos, vtos);
++ locals_index(x11);
++ __ fsw(f10, iaddress(x11, t0, _masm));
++}
++
++void TemplateTable::dstore() {
++ transition(dtos, vtos);
++ locals_index(x11);
++ __ fsd(f10, daddress(x11, t0, _masm));
++}
++
++void TemplateTable::astore()
++{
++ transition(vtos, vtos);
++ __ pop_ptr(x10);
++ locals_index(x11);
++ __ sd(x10, aaddress(x11, t0, _masm));
++}
++
++void TemplateTable::wide_istore() {
++ transition(vtos, vtos);
++ __ pop_i();
++ locals_index_wide(x11);
++ __ sw(x10, iaddress(x11, t0, _masm));
++}
++
++void TemplateTable::wide_lstore() {
++ transition(vtos, vtos);
++ __ pop_l();
++ locals_index_wide(x11);
++ __ sd(x10, laddress(x11, t0, _masm));
++}
++
++void TemplateTable::wide_fstore() {
++ transition(vtos, vtos);
++ __ pop_f();
++ locals_index_wide(x11);
++ __ fsw(f10, faddress(x11, t0, _masm));
++}
++
++void TemplateTable::wide_dstore() {
++ transition(vtos, vtos);
++ __ pop_d();
++ locals_index_wide(x11);
++ __ fsd(f10, daddress(x11, t0, _masm));
++}
++
++void TemplateTable::wide_astore() {
++ transition(vtos, vtos);
++ __ pop_ptr(x10);
++ locals_index_wide(x11);
++ __ sd(x10, aaddress(x11, t0, _masm));
++}
++
++void TemplateTable::iastore() {
++ transition(itos, vtos);
++ __ pop_i(x11);
++ __ pop_ptr(x13);
++ // x10: value
++ // x11: index
++ // x13: array
++ index_check(x13, x11); // prefer index in x11
++ __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_INT) >> 2);
++ __ shadd(t0, x11, x13, t0, 2);
++ __ access_store_at(T_INT, IN_HEAP | IS_ARRAY, Address(t0, 0), x10, noreg, noreg);
++}
++
++void TemplateTable::lastore() {
++ transition(ltos, vtos);
++ __ pop_i(x11);
++ __ pop_ptr(x13);
++ // x10: value
++ // x11: index
++ // x13: array
++ index_check(x13, x11); // prefer index in x11
++ __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_LONG) >> 3);
++ __ shadd(t0, x11, x13, t0, 3);
++ __ access_store_at(T_LONG, IN_HEAP | IS_ARRAY, Address(t0, 0), x10, noreg, noreg);
++}
++
++void TemplateTable::fastore() {
++ transition(ftos, vtos);
++ __ pop_i(x11);
++ __ pop_ptr(x13);
++ // f10: value
++ // x11: index
++ // x13: array
++ index_check(x13, x11); // prefer index in x11
++ __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_FLOAT) >> 2);
++ __ shadd(t0, x11, x13, t0, 2);
++ __ access_store_at(T_FLOAT, IN_HEAP | IS_ARRAY, Address(t0, 0), noreg /* ftos */, noreg, noreg);
++}
++
++void TemplateTable::dastore() {
++ transition(dtos, vtos);
++ __ pop_i(x11);
++ __ pop_ptr(x13);
++ // f10: value
++ // x11: index
++ // x13: array
++ index_check(x13, x11); // prefer index in x11
++ __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_DOUBLE) >> 3);
++ __ shadd(t0, x11, x13, t0, 3);
++ __ access_store_at(T_DOUBLE, IN_HEAP | IS_ARRAY, Address(t0, 0), noreg /* dtos */, noreg, noreg);
++}
++
++void TemplateTable::aastore() {
++ Label is_null, ok_is_subtype, done;
++ transition(vtos, vtos);
++ // stack: ..., array, index, value
++ __ ld(x10, at_tos()); // value
++ __ ld(x12, at_tos_p1()); // index
++ __ ld(x13, at_tos_p2()); // array
++
++ index_check(x13, x12); // kills x11
++ __ add(x14, x12, arrayOopDesc::base_offset_in_bytes(T_OBJECT) >> LogBytesPerHeapOop);
++ __ shadd(x14, x14, x13, x14, LogBytesPerHeapOop);
++
++ Address element_address(x14, 0);
++
++ // do array store check - check for NULL value first
++ __ beqz(x10, is_null);
++
++ // Move subklass into x11
++ __ load_klass(x11, x10);
++ // Move superklass into x10
++ __ load_klass(x10, x13);
++ __ ld(x10, Address(x10,
++ ObjArrayKlass::element_klass_offset()));
++ // Compress array + index * oopSize + 12 into a single register. Frees x12.
++
++ // Generate subtype check. Blows x12, x15
++ // Superklass in x10. Subklass in x11.
++ __ gen_subtype_check(x11, ok_is_subtype); //todo
++
++ // Come here on failure
++ // object is at TOS
++ __ j(Interpreter::_throw_ArrayStoreException_entry);
++
++ // Come here on success
++ __ bind(ok_is_subtype);
++
++ // Get the value we will store
++ __ ld(x10, at_tos());
++ // Now store using the appropriate barrier
++ do_oop_store(_masm, element_address, x10, IS_ARRAY);
++ __ j(done);
++
++ // Have a NULL in x10, x13=array, x12=index. Store NULL at ary[idx]
++ __ bind(is_null);
++ __ profile_null_seen(x12);
++
++ // Store a NULL
++ do_oop_store(_masm, element_address, noreg, IS_ARRAY);
++
++ // Pop stack arguments
++ __ bind(done);
++ __ add(esp, esp, 3 * Interpreter::stackElementSize);
++
++}
++
++void TemplateTable::bastore()
++{
++ transition(itos, vtos);
++ __ pop_i(x11);
++ __ pop_ptr(x13);
++ // x10: value
++ // x11: index
++ // x13: array
++ index_check(x13, x11); // prefer index in x11
++
++ // Need to check whether array is boolean or byte
++ // since both types share the bastore bytecode.
++ __ load_klass(x12, x13);
++ __ lwu(x12, Address(x12, Klass::layout_helper_offset()));
++ Label L_skip;
++ __ test_bit(t0, x12, exact_log2(Klass::layout_helper_boolean_diffbit()));
++ __ beqz(t0, L_skip);
++ __ andi(x10, x10, 1); // if it is a T_BOOLEAN array, mask the stored value to 0/1
++ __ bind(L_skip);
++
++ __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_BYTE) >> 0);
++
++ __ add(x11, x13, x11);
++ __ access_store_at(T_BYTE, IN_HEAP | IS_ARRAY, Address(x11, 0), x10, noreg, noreg);
++}
++
++void TemplateTable::castore()
++{
++ transition(itos, vtos);
++ __ pop_i(x11);
++ __ pop_ptr(x13);
++ // x10: value
++ // x11: index
++ // x13: array
++ index_check(x13, x11); // prefer index in x11
++ __ add(x11, x11, arrayOopDesc::base_offset_in_bytes(T_CHAR) >> 1);
++ __ shadd(t0, x11, x13, t0, 1);
++ __ access_store_at(T_CHAR, IN_HEAP | IS_ARRAY, Address(t0, 0), x10, noreg, noreg);
++}
++
++void TemplateTable::sastore()
++{
++ castore();
++}
++
++void TemplateTable::istore(int n)
++{
++ transition(itos, vtos);
++ __ sd(x10, iaddress(n));
++}
++
++void TemplateTable::lstore(int n)
++{
++ transition(ltos, vtos);
++ __ sd(x10, laddress(n));
++}
++
++void TemplateTable::fstore(int n)
++{
++ transition(ftos, vtos);
++ __ fsw(f10, faddress(n));
++}
++
++void TemplateTable::dstore(int n)
++{
++ transition(dtos, vtos);
++ __ fsd(f10, daddress(n));
++}
++
++void TemplateTable::astore(int n)
++{
++ transition(vtos, vtos);
++ __ pop_ptr(x10);
++ __ sd(x10, iaddress(n));
++}
++
++void TemplateTable::pop()
++{
++ transition(vtos, vtos);
++ __ addi(esp, esp, Interpreter::stackElementSize);
++}
++
++void TemplateTable::pop2()
++{
++ transition(vtos, vtos);
++ __ addi(esp, esp, 2 * Interpreter::stackElementSize);
++}
++
++void TemplateTable::dup()
++{
++ transition(vtos, vtos);
++ __ ld(x10, Address(esp, 0));
++ __ push_reg(x10);
++ // stack: ..., a, a
++}
++
++void TemplateTable::dup_x1()
++{
++ transition(vtos, vtos);
++ // stack: ..., a, b
++ __ ld(x10, at_tos()); // load b
++ __ ld(x12, at_tos_p1()); // load a
++ __ sd(x10, at_tos_p1()); // store b
++ __ sd(x12, at_tos()); // store a
++ __ push_reg(x10); // push b
++ // stack: ..., b, a, b
++}
++
++void TemplateTable::dup_x2()
++{
++ transition(vtos, vtos);
++ // stack: ..., a, b, c
++ __ ld(x10, at_tos()); // load c
++ __ ld(x12, at_tos_p2()); // load a
++ __ sd(x10, at_tos_p2()); // store c in a
++ __ push_reg(x10); // push c
++ // stack: ..., c, b, c, c
++ __ ld(x10, at_tos_p2()); // load b
++ __ sd(x12, at_tos_p2()); // store a in b
++ // stack: ..., c, a, c, c
++ __ sd(x10, at_tos_p1()); // store b in c
++ // stack: ..., c, a, b, c
++}
++
++void TemplateTable::dup2()
++{
++ transition(vtos, vtos);
++ // stack: ..., a, b
++ __ ld(x10, at_tos_p1()); // load a
++ __ push_reg(x10); // push a
++ __ ld(x10, at_tos_p1()); // load b
++ __ push_reg(x10); // push b
++ // stack: ..., a, b, a, b
++}
++
++void TemplateTable::dup2_x1()
++{
++ transition(vtos, vtos);
++ // stack: ..., a, b, c
++ __ ld(x12, at_tos()); // load c
++ __ ld(x10, at_tos_p1()); // load b
++ __ push_reg(x10); // push b
++ __ push_reg(x12); // push c
++ // stack: ..., a, b, c, b, c
++ __ sd(x12, at_tos_p3()); // store c in b
++ // stack: ..., a, c, c, b, c
++ __ ld(x12, at_tos_p4()); // load a
++ __ sd(x12, at_tos_p2()); // store a in 2nd c
++ // stack: ..., a, c, a, b, c
++ __ sd(x10, at_tos_p4()); // store b in a
++ // stack: ..., b, c, a, b, c
++}
++
++void TemplateTable::dup2_x2()
++{
++ transition(vtos, vtos);
++ // stack: ..., a, b, c, d
++ __ ld(x12, at_tos()); // load d
++ __ ld(x10, at_tos_p1()); // load c
++ __ push_reg(x10); // push c
++ __ push_reg(x12); // push d
++ // stack: ..., a, b, c, d, c, d
++ __ ld(x10, at_tos_p4()); // load b
++ __ sd(x10, at_tos_p2()); // store b in d
++ __ sd(x12, at_tos_p4()); // store d in b
++ // stack: ..., a, d, c, b, c, d
++ __ ld(x12, at_tos_p5()); // load a
++ __ ld(x10, at_tos_p3()); // load c
++ __ sd(x12, at_tos_p3()); // store a in c
++ __ sd(x10, at_tos_p5()); // store c in a
++ // stack: ..., c, d, a, b, c, d
++}
++
++void TemplateTable::swap()
++{
++ transition(vtos, vtos);
++ // stack: ..., a, b
++ __ ld(x12, at_tos_p1()); // load a
++ __ ld(x10, at_tos()); // load b
++ __ sd(x12, at_tos()); // store a in b
++ __ sd(x10, at_tos_p1()); // store b in a
++ // stack: ..., b, a
++}
++
++void TemplateTable::iop2(Operation op)
++{
++ transition(itos, itos);
++ // x10 <== x11 op x10
++ __ pop_i(x11);
++ switch (op) {
++ case add : __ addw(x10, x11, x10); break;
++ case sub : __ subw(x10, x11, x10); break;
++ case mul : __ mulw(x10, x11, x10); break;
++ case _and : __ andrw(x10, x11, x10); break;
++ case _or : __ orrw(x10, x11, x10); break;
++ case _xor : __ xorrw(x10, x11, x10); break;
++ case shl : __ sllw(x10, x11, x10); break;
++ case shr : __ sraw(x10, x11, x10); break;
++ case ushr : __ srlw(x10, x11, x10); break;
++ default : ShouldNotReachHere();
++ }
++}
++
++void TemplateTable::lop2(Operation op)
++{
++ transition(ltos, ltos);
++ // x10 <== x11 op x10
++ __ pop_l(x11);
++ switch (op) {
++ case add : __ add(x10, x11, x10); break;
++ case sub : __ sub(x10, x11, x10); break;
++ case mul : __ mul(x10, x11, x10); break;
++ case _and : __ andr(x10, x11, x10); break;
++ case _or : __ orr(x10, x11, x10); break;
++ case _xor : __ xorr(x10, x11, x10); break;
++ default : ShouldNotReachHere();
++ }
++}
++
++void TemplateTable::idiv()
++{
++ transition(itos, itos);
++ // explicitly check for div0
++ Label no_div0;
++ __ bnez(x10, no_div0);
++ __ mv(t0, Interpreter::_throw_ArithmeticException_entry);
++ __ jr(t0);
++ __ bind(no_div0);
++ __ pop_i(x11);
++ // x10 <== x11 idiv x10
++ __ corrected_idivl(x10, x11, x10, /* want_remainder */ false);
++}
++
++void TemplateTable::irem()
++{
++ transition(itos, itos);
++ // explicitly check for div0
++ Label no_div0;
++ __ bnez(x10, no_div0);
++ __ mv(t0, Interpreter::_throw_ArithmeticException_entry);
++ __ jr(t0);
++ __ bind(no_div0);
++ __ pop_i(x11);
++ // x10 <== x11 irem x10
++ __ corrected_idivl(x10, x11, x10, /* want_remainder */ true);
++}
++
++void TemplateTable::lmul()
++{
++ transition(ltos, ltos);
++ __ pop_l(x11);
++ __ mul(x10, x10, x11);
++}
++
++void TemplateTable::ldiv()
++{
++ transition(ltos, ltos);
++ // explicitly check for div0
++ Label no_div0;
++ __ bnez(x10, no_div0);
++ __ mv(t0, Interpreter::_throw_ArithmeticException_entry);
++ __ jr(t0);
++ __ bind(no_div0);
++ __ pop_l(x11);
++ // x10 <== x11 ldiv x10
++ __ corrected_idivq(x10, x11, x10, /* want_remainder */ false);
++}
++
++void TemplateTable::lrem()
++{
++ transition(ltos, ltos);
++ // explicitly check for div0
++ Label no_div0;
++ __ bnez(x10, no_div0);
++ __ mv(t0, Interpreter::_throw_ArithmeticException_entry);
++ __ jr(t0);
++ __ bind(no_div0);
++ __ pop_l(x11);
++ // x10 <== x11 lrem x10
++ __ corrected_idivq(x10, x11, x10, /* want_remainder */ true);
++}
++
++void TemplateTable::lshl()
++{
++ transition(itos, ltos);
++ // shift count is in x10
++ __ pop_l(x11);
++ __ sll(x10, x11, x10);
++}
++
++void TemplateTable::lshr()
++{
++ transition(itos, ltos);
++ // shift count is in x10
++ __ pop_l(x11);
++ __ sra(x10, x11, x10);
++}
++
++void TemplateTable::lushr()
++{
++ transition(itos, ltos);
++ // shift count is in x10
++ __ pop_l(x11);
++ __ srl(x10, x11, x10);
++}
++
++void TemplateTable::fop2(Operation op)
++{
++ transition(ftos, ftos);
++ switch (op) {
++ case add:
++ __ pop_f(f11);
++ __ fadd_s(f10, f11, f10);
++ break;
++ case sub:
++ __ pop_f(f11);
++ __ fsub_s(f10, f11, f10);
++ break;
++ case mul:
++ __ pop_f(f11);
++ __ fmul_s(f10, f11, f10);
++ break;
++ case div:
++ __ pop_f(f11);
++ __ fdiv_s(f10, f11, f10);
++ break;
++ case rem:
++ __ fmv_s(f11, f10);
++ __ pop_f(f10);
++ __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::frem));
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++}
++
++void TemplateTable::dop2(Operation op)
++{
++ transition(dtos, dtos);
++ switch (op) {
++ case add:
++ __ pop_d(f11);
++ __ fadd_d(f10, f11, f10);
++ break;
++ case sub:
++ __ pop_d(f11);
++ __ fsub_d(f10, f11, f10);
++ break;
++ case mul:
++ __ pop_d(f11);
++ __ fmul_d(f10, f11, f10);
++ break;
++ case div:
++ __ pop_d(f11);
++ __ fdiv_d(f10, f11, f10);
++ break;
++ case rem:
++ __ fmv_d(f11, f10);
++ __ pop_d(f10);
++ __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::drem));
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++}
++
++void TemplateTable::ineg()
++{
++ transition(itos, itos);
++ __ negw(x10, x10);
++}
++
++void TemplateTable::lneg()
++{
++ transition(ltos, ltos);
++ __ neg(x10, x10);
++}
++
++void TemplateTable::fneg()
++{
++ transition(ftos, ftos);
++ __ fneg_s(f10, f10);
++}
++
++void TemplateTable::dneg()
++{
++ transition(dtos, dtos);
++ __ fneg_d(f10, f10);
++}
++
++void TemplateTable::iinc()
++{
++ transition(vtos, vtos);
++ __ load_signed_byte(x11, at_bcp(2)); // get constant
++ locals_index(x12);
++ __ ld(x10, iaddress(x12, x10, _masm));
++ __ addw(x10, x10, x11);
++ __ sd(x10, iaddress(x12, t0, _masm));
++}
++
++void TemplateTable::wide_iinc()
++{
++ transition(vtos, vtos);
++ __ lwu(x11, at_bcp(2)); // get constant and index
++ __ revb_h_w_u(x11, x11); // reverse bytes in half-word (32bit) and zero-extend
++ __ zero_extend(x12, x11, 16);
++ __ neg(x12, x12);
++ __ slli(x11, x11, 32);
++ __ srai(x11, x11, 48);
++ __ ld(x10, iaddress(x12, t0, _masm));
++ __ addw(x10, x10, x11);
++ __ sd(x10, iaddress(x12, t0, _masm));
++}
++
++void TemplateTable::convert()
++{
++ // Checking
++#ifdef ASSERT
++ {
++ TosState tos_in = ilgl;
++ TosState tos_out = ilgl;
++ switch (bytecode()) {
++ case Bytecodes::_i2l: // fall through
++ case Bytecodes::_i2f: // fall through
++ case Bytecodes::_i2d: // fall through
++ case Bytecodes::_i2b: // fall through
++ case Bytecodes::_i2c: // fall through
++ case Bytecodes::_i2s: tos_in = itos; break;
++ case Bytecodes::_l2i: // fall through
++ case Bytecodes::_l2f: // fall through
++ case Bytecodes::_l2d: tos_in = ltos; break;
++ case Bytecodes::_f2i: // fall through
++ case Bytecodes::_f2l: // fall through
++ case Bytecodes::_f2d: tos_in = ftos; break;
++ case Bytecodes::_d2i: // fall through
++ case Bytecodes::_d2l: // fall through
++ case Bytecodes::_d2f: tos_in = dtos; break;
++ default : ShouldNotReachHere();
++ }
++ switch (bytecode()) {
++ case Bytecodes::_l2i: // fall through
++ case Bytecodes::_f2i: // fall through
++ case Bytecodes::_d2i: // fall through
++ case Bytecodes::_i2b: // fall through
++ case Bytecodes::_i2c: // fall through
++ case Bytecodes::_i2s: tos_out = itos; break;
++ case Bytecodes::_i2l: // fall through
++ case Bytecodes::_f2l: // fall through
++ case Bytecodes::_d2l: tos_out = ltos; break;
++ case Bytecodes::_i2f: // fall through
++ case Bytecodes::_l2f: // fall through
++ case Bytecodes::_d2f: tos_out = ftos; break;
++ case Bytecodes::_i2d: // fall through
++ case Bytecodes::_l2d: // fall through
++ case Bytecodes::_f2d: tos_out = dtos; break;
++ default : ShouldNotReachHere();
++ }
++ transition(tos_in, tos_out);
++ }
++#endif // ASSERT
++
++ // Conversion
++ switch (bytecode()) {
++ case Bytecodes::_i2l:
++ __ sign_extend(x10, x10, 32);
++ break;
++ case Bytecodes::_i2f:
++ __ fcvt_s_w(f10, x10);
++ break;
++ case Bytecodes::_i2d:
++ __ fcvt_d_w(f10, x10);
++ break;
++ case Bytecodes::_i2b:
++ __ sign_extend(x10, x10, 8);
++ break;
++ case Bytecodes::_i2c:
++ __ zero_extend(x10, x10, 16);
++ break;
++ case Bytecodes::_i2s:
++ __ sign_extend(x10, x10, 16);
++ break;
++ case Bytecodes::_l2i:
++ __ sign_extend(x10, x10, 32);
++ break;
++ case Bytecodes::_l2f:
++ __ fcvt_s_l(f10, x10);
++ break;
++ case Bytecodes::_l2d:
++ __ fcvt_d_l(f10, x10);
++ break;
++ case Bytecodes::_f2i:
++ __ fcvt_w_s_safe(x10, f10);
++ break;
++ case Bytecodes::_f2l:
++ __ fcvt_l_s_safe(x10, f10);
++ break;
++ case Bytecodes::_f2d:
++ __ fcvt_d_s(f10, f10);
++ break;
++ case Bytecodes::_d2i:
++ __ fcvt_w_d_safe(x10, f10);
++ break;
++ case Bytecodes::_d2l:
++ __ fcvt_l_d_safe(x10, f10);
++ break;
++ case Bytecodes::_d2f:
++ __ fcvt_s_d(f10, f10);
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++}
++
++void TemplateTable::lcmp()
++{
++ transition(ltos, itos);
++ __ pop_l(x11);
++ __ cmp_l2i(t0, x11, x10);
++ __ mv(x10, t0);
++}
++
++void TemplateTable::float_cmp(bool is_float, int unordered_result)
++{
++ // For instruction feq, flt and fle, the result is 0 if either operand is NaN
++ if (is_float) {
++ __ pop_f(f11);
++ // if unordered_result < 0:
++ // we want -1 for unordered or less than, 0 for equal and 1 for
++ // greater than.
++ // else:
++ // we want -1 for less than, 0 for equal and 1 for unordered or
++ // greater than.
++ // f11 primary, f10 secondary
++ __ float_compare(x10, f11, f10, unordered_result);
++ } else {
++ __ pop_d(f11);
++ // if unordered_result < 0:
++ // we want -1 for unordered or less than, 0 for equal and 1 for
++ // greater than.
++ // else:
++ // we want -1 for less than, 0 for equal and 1 for unordered or
++ // greater than.
++ // f11 primary, f10 secondary
++ __ double_compare(x10, f11, f10, unordered_result);
++ }
++}
++
++void TemplateTable::branch(bool is_jsr, bool is_wide)
++{
++ __ profile_taken_branch(x10, x11);
++ const ByteSize be_offset = MethodCounters::backedge_counter_offset() +
++ InvocationCounter::counter_offset();
++ const ByteSize inv_offset = MethodCounters::invocation_counter_offset() +
++ InvocationCounter::counter_offset();
++
++ // load branch displacement
++ if (!is_wide) {
++ __ lhu(x12, at_bcp(1));
++ __ revb_h_h(x12, x12); // reverse bytes in half-word and sign-extend
++ } else {
++ __ lwu(x12, at_bcp(1));
++ __ revb_w_w(x12, x12); // reverse bytes in word and sign-extend
++ }
++
++ // Handle all the JSR stuff here, then exit.
++ // It's much shorter and cleaner than intermingling with the non-JSR
++ // normal-branch stuff occurring below.
++
++ if (is_jsr) {
++ // compute return address as bci
++ __ ld(t1, Address(xmethod, Method::const_offset()));
++ __ add(t1, t1,
++ in_bytes(ConstMethod::codes_offset()) - (is_wide ? 5 : 3));
++ __ sub(x11, xbcp, t1);
++ __ push_i(x11);
++ // Adjust the bcp by the 16-bit displacement in x12
++ __ add(xbcp, xbcp, x12);
++ __ load_unsigned_byte(t0, Address(xbcp, 0));
++ // load the next target bytecode into t0, it is the argument of dispatch_only
++ __ dispatch_only(vtos, /*generate_poll*/true);
++ return;
++ }
++
++ // Normal (non-jsr) branch handling
++
++ // Adjust the bcp by the displacement in x12
++ __ add(xbcp, xbcp, x12);
++
++ assert(UseLoopCounter || !UseOnStackReplacement,
++ "on-stack-replacement requires loop counters");
++ Label backedge_counter_overflow;
++ Label dispatch;
++ if (UseLoopCounter) {
++ // increment backedge counter for backward branches
++ // x10: MDO
++ // x11: MDO bumped taken-count
++ // x12: target offset
++ __ bgtz(x12, dispatch); // count only if backward branch
++
++ // check if MethodCounters exists
++ Label has_counters;
++ __ ld(t0, Address(xmethod, Method::method_counters_offset()));
++ __ bnez(t0, has_counters);
++ __ push_reg(x10);
++ __ push_reg(x11);
++ __ push_reg(x12);
++ __ call_VM(noreg, CAST_FROM_FN_PTR(address,
++ InterpreterRuntime::build_method_counters), xmethod);
++ __ pop_reg(x12);
++ __ pop_reg(x11);
++ __ pop_reg(x10);
++ __ ld(t0, Address(xmethod, Method::method_counters_offset()));
++ __ beqz(t0, dispatch); // No MethodCounters allocated, OutOfMemory
++ __ bind(has_counters);
++
++ Label no_mdo;
++ int increment = InvocationCounter::count_increment;
++ if (ProfileInterpreter) {
++ // Are we profiling?
++ __ ld(x11, Address(xmethod, in_bytes(Method::method_data_offset())));
++ __ beqz(x11, no_mdo);
++ // Increment the MDO backedge counter
++ const Address mdo_backedge_counter(x11, in_bytes(MethodData::backedge_counter_offset()) +
++ in_bytes(InvocationCounter::counter_offset()));
++ const Address mask(x11, in_bytes(MethodData::backedge_mask_offset()));
++ __ increment_mask_and_jump(mdo_backedge_counter, increment, mask,
++ x10, t0, false,
++ UseOnStackReplacement ? &backedge_counter_overflow : &dispatch);
++ __ j(dispatch);
++ }
++ __ bind(no_mdo);
++ // Increment backedge counter in MethodCounters*
++ __ ld(t0, Address(xmethod, Method::method_counters_offset()));
++ const Address mask(t0, in_bytes(MethodCounters::backedge_mask_offset()));
++ __ increment_mask_and_jump(Address(t0, be_offset), increment, mask,
++ x10, t1, false,
++ UseOnStackReplacement ? &backedge_counter_overflow : &dispatch);
++ __ bind(dispatch);
++ }
++
++ // Pre-load the next target bytecode into t0
++ __ load_unsigned_byte(t0, Address(xbcp, 0));
++
++ // continue with the bytecode @ target
++ // t0: target bytecode
++ // xbcp: target bcp
++ __ dispatch_only(vtos, /*generate_poll*/true);
++
++ if (UseLoopCounter && UseOnStackReplacement) {
++ // invocation counter overflow
++ __ bind(backedge_counter_overflow);
++ __ neg(x12, x12);
++ __ add(x12, x12, xbcp); // branch xbcp
++ // IcoResult frequency_counter_overflow([JavaThread*], address branch_bcp)
++ __ call_VM(noreg,
++ CAST_FROM_FN_PTR(address,
++ InterpreterRuntime::frequency_counter_overflow),
++ x12);
++ __ load_unsigned_byte(x11, Address(xbcp, 0)); // restore target bytecode
++
++ // x10: osr nmethod (osr ok) or NULL (osr not possible)
++ // w11: target bytecode
++ // x12: temporary
++ __ beqz(x10, dispatch); // test result -- no osr if null
++ // nmethod may have been invalidated (VM may block upon call_VM return)
++ __ lbu(x12, Address(x10, nmethod::state_offset()));
++ if (nmethod::in_use != 0) {
++ __ sub(x12, x12, nmethod::in_use);
++ }
++ __ bnez(x12, dispatch);
++
++ // We have the address of an on stack replacement routine in x10
++ // We need to prepare to execute the OSR method. First we must
++ // migrate the locals and monitors off of the stack.
++
++ __ mv(x9, x10); // save the nmethod
++
++ call_VM(noreg, CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_begin));
++
++ // x10 is OSR buffer, move it to expected parameter location
++ __ mv(j_rarg0, x10);
++
++ // remove activation
++ // get sender esp
++ __ ld(esp,
++ Address(fp, frame::interpreter_frame_sender_sp_offset * wordSize));
++ // remove frame anchor
++ __ leave();
++ // Ensure compiled code always sees stack at proper alignment
++ __ andi(sp, esp, -16);
++
++ // and begin the OSR nmethod
++ __ ld(t0, Address(x9, nmethod::osr_entry_point_offset()));
++ __ jr(t0);
++ }
++}
++
++void TemplateTable::if_0cmp(Condition cc)
++{
++ transition(itos, vtos);
++ // assume branch is more often taken than not (loops use backward branches)
++ Label not_taken;
++
++ __ sign_extend(x10, x10, 32);
++ switch (cc) {
++ case equal:
++ __ bnez(x10, not_taken);
++ break;
++ case not_equal:
++ __ beqz(x10, not_taken);
++ break;
++ case less:
++ __ bgez(x10, not_taken);
++ break;
++ case less_equal:
++ __ bgtz(x10, not_taken);
++ break;
++ case greater:
++ __ blez(x10, not_taken);
++ break;
++ case greater_equal:
++ __ bltz(x10, not_taken);
++ break;
++ default:
++ break;
++ }
++
++ branch(false, false);
++ __ bind(not_taken);
++ __ profile_not_taken_branch(x10);
++}
++
++void TemplateTable::if_icmp(Condition cc)
++{
++ transition(itos, vtos);
++ // assume branch is more often taken than not (loops use backward branches)
++ Label not_taken;
++ __ pop_i(x11);
++ __ sign_extend(x10, x10, 32);
++ switch (cc) {
++ case equal:
++ __ bne(x11, x10, not_taken);
++ break;
++ case not_equal:
++ __ beq(x11, x10, not_taken);
++ break;
++ case less:
++ __ bge(x11, x10, not_taken);
++ break;
++ case less_equal:
++ __ bgt(x11, x10, not_taken);
++ break;
++ case greater:
++ __ ble(x11, x10, not_taken);
++ break;
++ case greater_equal:
++ __ blt(x11, x10, not_taken);
++ break;
++ default:
++ break;
++ }
++
++ branch(false, false);
++ __ bind(not_taken);
++ __ profile_not_taken_branch(x10);
++}
++
++void TemplateTable::if_nullcmp(Condition cc)
++{
++ transition(atos, vtos);
++ // assume branch is more often taken than not (loops use backward branches)
++ Label not_taken;
++ if (cc == equal) {
++ __ bnez(x10, not_taken);
++ } else {
++ __ beqz(x10, not_taken);
++ }
++ branch(false, false);
++ __ bind(not_taken);
++ __ profile_not_taken_branch(x10);
++}
++
++void TemplateTable::if_acmp(Condition cc)
++{
++ transition(atos, vtos);
++ // assume branch is more often taken than not (loops use backward branches)
++ Label not_taken;
++ __ pop_ptr(x11);
++
++ if (cc == equal) {
++ __ bne(x11, x10, not_taken);
++ } else if (cc == not_equal) {
++ __ beq(x11, x10, not_taken);
++ }
++ branch(false, false);
++ __ bind(not_taken);
++ __ profile_not_taken_branch(x10);
++}
++
++void TemplateTable::ret() {
++ transition(vtos, vtos);
++ locals_index(x11);
++ __ ld(x11, aaddress(x11, t1, _masm)); // get return bci, compute return bcp
++ __ profile_ret(x11, x12);
++ __ ld(xbcp, Address(xmethod, Method::const_offset()));
++ __ add(xbcp, xbcp, x11);
++ __ addi(xbcp, xbcp, in_bytes(ConstMethod::codes_offset()));
++ __ dispatch_next(vtos, 0, /*generate_poll*/true);
++}
++
++void TemplateTable::wide_ret() {
++ transition(vtos, vtos);
++ locals_index_wide(x11);
++ __ ld(x11, aaddress(x11, t0, _masm)); // get return bci, compute return bcp
++ __ profile_ret(x11, x12);
++ __ ld(xbcp, Address(xmethod, Method::const_offset()));
++ __ add(xbcp, xbcp, x11);
++ __ add(xbcp, xbcp, in_bytes(ConstMethod::codes_offset()));
++ __ dispatch_next(vtos, 0, /*generate_poll*/true);
++}
++
++void TemplateTable::tableswitch() {
++ Label default_case, continue_execution;
++ transition(itos, vtos);
++ // align xbcp
++ __ la(x11, at_bcp(BytesPerInt));
++ __ andi(x11, x11, -BytesPerInt);
++ // load lo & hi
++ __ lwu(x12, Address(x11, BytesPerInt));
++ __ lwu(x13, Address(x11, 2 * BytesPerInt));
++ __ revb_w_w(x12, x12); // reverse bytes in word (32bit) and sign-extend
++ __ revb_w_w(x13, x13); // reverse bytes in word (32bit) and sign-extend
++ // check against lo & hi
++ __ blt(x10, x12, default_case);
++ __ bgt(x10, x13, default_case);
++ // lookup dispatch offset
++ __ subw(x10, x10, x12);
++ __ shadd(x13, x10, x11, t0, 2);
++ __ lwu(x13, Address(x13, 3 * BytesPerInt));
++ __ profile_switch_case(x10, x11, x12);
++ // continue execution
++ __ bind(continue_execution);
++ __ revb_w_w(x13, x13); // reverse bytes in word (32bit) and sign-extend
++ __ add(xbcp, xbcp, x13);
++ __ load_unsigned_byte(t0, Address(xbcp));
++ __ dispatch_only(vtos, /*generate_poll*/true);
++ // handle default
++ __ bind(default_case);
++ __ profile_switch_default(x10);
++ __ lwu(x13, Address(x11, 0));
++ __ j(continue_execution);
++}
++
++void TemplateTable::lookupswitch() {
++ transition(itos, itos);
++ __ stop("lookupswitch bytecode should have been rewritten");
++}
++
++void TemplateTable::fast_linearswitch() {
++ transition(itos, vtos);
++ Label loop_entry, loop, found, continue_execution;
++ // bswap x10 so we can avoid bswapping the table entries
++ __ revb_w_w(x10, x10); // reverse bytes in word (32bit) and sign-extend
++ // align xbcp
++ __ la(x9, at_bcp(BytesPerInt)); // btw: should be able to get rid of
++ // this instruction (change offsets
++ // below)
++ __ andi(x9, x9, -BytesPerInt);
++ // set counter
++ __ lwu(x11, Address(x9, BytesPerInt));
++ __ revb_w(x11, x11);
++ __ j(loop_entry);
++ // table search
++ __ bind(loop);
++ __ shadd(t0, x11, x9, t0, 3);
++ __ lw(t0, Address(t0, 2 * BytesPerInt));
++ __ beq(x10, t0, found);
++ __ bind(loop_entry);
++ __ addi(x11, x11, -1);
++ __ bgez(x11, loop);
++ // default case
++ __ profile_switch_default(x10);
++ __ lwu(x13, Address(x9, 0));
++ __ j(continue_execution);
++ // entry found -> get offset
++ __ bind(found);
++ __ shadd(t0, x11, x9, t0, 3);
++ __ lwu(x13, Address(t0, 3 * BytesPerInt));
++ __ profile_switch_case(x11, x10, x9);
++ // continue execution
++ __ bind(continue_execution);
++ __ revb_w_w(x13, x13); // reverse bytes in word (32bit) and sign-extend
++ __ add(xbcp, xbcp, x13);
++ __ lbu(t0, Address(xbcp, 0));
++ __ dispatch_only(vtos, /*generate_poll*/true);
++}
++
++void TemplateTable::fast_binaryswitch() {
++ transition(itos, vtos);
++ // Implementation using the following core algorithm:
++ //
++ // int binary_search(int key, LookupswitchPair* array, int n)
++ // binary_search start:
++ // #Binary search according to "Methodik des Programmierens" by
++ // # Edsger W. Dijkstra and W.H.J. Feijen, Addison Wesley Germany 1985.
++ // int i = 0;
++ // int j = n;
++ // while (i + 1 < j) do
++ // # invariant P: 0 <= i < j <= n and (a[i] <= key < a[j] or Q)
++ // # with Q: for all i: 0 <= i < n: key < a[i]
++ // # where a stands for the array and assuming that the (inexisting)
++ // # element a[n] is infinitely big.
++ // int h = (i + j) >> 1
++ // # i < h < j
++ // if (key < array[h].fast_match())
++ // then [j = h]
++ // else [i = h]
++ // end
++ // # R: a[i] <= key < a[i+1] or Q
++ // # (i.e., if key is within array, i is the correct index)
++ // return i
++ // binary_search end
++
++
++ // Register allocation
++ const Register key = x10; // already set (tosca)
++ const Register array = x11;
++ const Register i = x12;
++ const Register j = x13;
++ const Register h = x14;
++ const Register temp = x15;
++
++ // Find array start
++ __ la(array, at_bcp(3 * BytesPerInt)); // btw: should be able to
++ // get rid of this
++ // instruction (change
++ // offsets below)
++ __ andi(array, array, -BytesPerInt);
++
++ // Initialize i & j
++ __ mv(i, zr); // i = 0
++ __ lwu(j, Address(array, -BytesPerInt)); // j = length(array)
++
++ // Convert j into native byteordering
++ __ revb_w(j, j);
++
++ // And start
++ Label entry;
++ __ j(entry);
++
++ // binary search loop
++ {
++ Label loop;
++ __ bind(loop);
++ __ addw(h, i, j); // h = i + j
++ __ srliw(h, h, 1); // h = (i + j) >> 1
++ // if [key < array[h].fast_match()]
++ // then [j = h]
++ // else [i = h]
++ // Convert array[h].match to native byte-ordering before compare
++ __ shadd(temp, h, array, temp, 3);
++ __ ld(temp, Address(temp, 0));
++ __ revb_w_w(temp, temp); // reverse bytes in word (32bit) and sign-extend
++
++ Label L_done, L_greater;
++ __ bge(key, temp, L_greater);
++ // if [key < array[h].fast_match()] then j = h
++ __ mv(j, h);
++ __ j(L_done);
++ __ bind(L_greater);
++ // if [key >= array[h].fast_match()] then i = h
++ __ mv(i, h);
++ __ bind(L_done);
++
++ // while [i + 1 < j]
++ __ bind(entry);
++ __ addiw(h, i, 1); // i + 1
++ __ blt(h, j, loop); // i + 1 < j
++ }
++
++ // end of binary search, result index is i (must check again!)
++ Label default_case;
++ // Convert array[i].match to native byte-ordering before compare
++ __ shadd(temp, i, array, temp, 3);
++ __ ld(temp, Address(temp, 0));
++ __ revb_w_w(temp, temp); // reverse bytes in word (32bit) and sign-extend
++ __ bne(key, temp, default_case);
++
++ // entry found -> j = offset
++ __ shadd(temp, i, array, temp, 3);
++ __ lwu(j, Address(temp, BytesPerInt));
++ __ profile_switch_case(i, key, array);
++ __ revb_w_w(j, j); // reverse bytes in word (32bit) and sign-extend
++
++ __ add(temp, xbcp, j);
++ __ load_unsigned_byte(t0, Address(temp, 0));
++
++ __ add(xbcp, xbcp, j);
++ __ la(xbcp, Address(xbcp, 0));
++ __ dispatch_only(vtos, /*generate_poll*/true);
++
++ // default case -> j = default offset
++ __ bind(default_case);
++ __ profile_switch_default(i);
++ __ lwu(j, Address(array, -2 * BytesPerInt));
++ __ revb_w_w(j, j); // reverse bytes in word (32bit) and sign-extend
++
++ __ add(temp, xbcp, j);
++ __ load_unsigned_byte(t0, Address(temp, 0));
++
++ __ add(xbcp, xbcp, j);
++ __ la(xbcp, Address(xbcp, 0));
++ __ dispatch_only(vtos, /*generate_poll*/true);
++}
++
++void TemplateTable::_return(TosState state)
++{
++ transition(state, state);
++ assert(_desc->calls_vm(),
++ "inconsistent calls_vm information"); // call in remove_activation
++
++ if (_desc->bytecode() == Bytecodes::_return_register_finalizer) {
++ assert(state == vtos, "only valid state");
++
++ __ ld(c_rarg1, aaddress(0));
++ __ load_klass(x13, c_rarg1);
++ __ lwu(x13, Address(x13, Klass::access_flags_offset()));
++ Label skip_register_finalizer;
++ __ test_bit(t0, x13, exact_log2(JVM_ACC_HAS_FINALIZER));
++ __ beqz(t0, skip_register_finalizer);
++
++ __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::register_finalizer), c_rarg1);
++
++ __ bind(skip_register_finalizer);
++ }
++
++ // Issue a StoreStore barrier after all stores but before return
++ // from any constructor for any class with a final field. We don't
++ // know if this is a finalizer, so we always do so.
++ if (_desc->bytecode() == Bytecodes::_return) {
++ __ membar(MacroAssembler::StoreStore);
++ }
++
++ // Narrow result if state is itos but result type is smaller.
++ // Need to narrow in the return bytecode rather than in generate_return_entry
++ // since compiled code callers expect the result to already be narrowed.
++ if (state == itos) {
++ __ narrow(x10);
++ }
++
++ __ remove_activation(state);
++ __ ret();
++}
++
++
++// ----------------------------------------------------------------------------
++// Volatile variables demand their effects be made known to all CPU's
++// in order. Store buffers on most chips allow reads & writes to
++// reorder; the JMM's ReadAfterWrite.java test fails in -Xint mode
++// without some kind of memory barrier (i.e., it's not sufficient that
++// the interpreter does not reorder volatile references, the hardware
++// also must not reorder them).
++//
++// According to the new Java Memory Model (JMM):
++// (1) All volatiles are serialized wrt to each other. ALSO reads &
++// writes act as aquire & release, so:
++// (2) A read cannot let unrelated NON-volatile memory refs that
++// happen after the read float up to before the read. It's OK for
++// non-volatile memory refs that happen before the volatile read to
++// float down below it.
++// (3) Similar a volatile write cannot let unrelated NON-volatile
++// memory refs that happen BEFORE the write float down to after the
++// write. It's OK for non-volatile memory refs that happen after the
++// volatile write to float up before it.
++//
++// We only put in barriers around volatile refs (they are expensive),
++// not _between_ memory refs (that would require us to track the
++// flavor of the previous memory refs). Requirements (2) and (3)
++// require some barriers before volatile stores and after volatile
++// loads. These nearly cover requirement (1) but miss the
++// volatile-store-volatile-load case. This final case is placed after
++// volatile-stores although it could just as well go before
++// volatile-loads.
++
++void TemplateTable::resolve_cache_and_index(int byte_no,
++ Register Rcache,
++ Register index,
++ size_t index_size) {
++ const Register temp = x9;
++ assert_different_registers(Rcache, index, temp);
++
++ Label resolved, clinit_barrier_slow;
++
++ Bytecodes::Code code = bytecode();
++ switch (code) {
++ case Bytecodes::_nofast_getfield: code = Bytecodes::_getfield; break;
++ case Bytecodes::_nofast_putfield: code = Bytecodes::_putfield; break;
++ default: break;
++ }
++
++ assert(byte_no == f1_byte || byte_no == f2_byte, "byte_no out of range");
++ __ get_cache_and_index_and_bytecode_at_bcp(Rcache, index, temp, byte_no, 1, index_size);
++ __ mv(t0, (int) code);
++ __ beq(temp, t0, resolved);
++
++ // resolve first time through
++ // Class initialization barrier slow path lands here as well.
++ __ bind(clinit_barrier_slow);
++
++ address entry = CAST_FROM_FN_PTR(address, InterpreterRuntime::resolve_from_cache);
++ __ mv(temp, (int) code);
++ __ call_VM(noreg, entry, temp);
++
++ // Update registers with resolved info
++ __ get_cache_and_index_at_bcp(Rcache, index, 1, index_size);
++ // n.b. unlike x86 Rcache is now rcpool plus the indexed offset
++ // so all clients ofthis method must be modified accordingly
++ __ bind(resolved);
++
++ // Class initialization barrier for static methods
++ if (VM_Version::supports_fast_class_init_checks() && bytecode() == Bytecodes::_invokestatic) {
++ __ load_resolved_method_at_index(byte_no, temp, Rcache);
++ __ load_method_holder(temp, temp);
++ __ clinit_barrier(temp, t0, NULL, &clinit_barrier_slow);
++ }
++}
++
++// The Rcache and index registers must be set before call
++// n.b unlike x86 cache already includes the index offset
++void TemplateTable::load_field_cp_cache_entry(Register obj,
++ Register cache,
++ Register index,
++ Register off,
++ Register flags,
++ bool is_static = false) {
++ assert_different_registers(cache, index, flags, off);
++
++ ByteSize cp_base_offset = ConstantPoolCache::base_offset();
++ // Field offset
++ __ ld(off, Address(cache, in_bytes(cp_base_offset +
++ ConstantPoolCacheEntry::f2_offset())));
++ // Flags
++ __ lwu(flags, Address(cache, in_bytes(cp_base_offset +
++ ConstantPoolCacheEntry::flags_offset())));
++
++ // klass overwrite register
++ if (is_static) {
++ __ ld(obj, Address(cache, in_bytes(cp_base_offset +
++ ConstantPoolCacheEntry::f1_offset())));
++ const int mirror_offset = in_bytes(Klass::java_mirror_offset());
++ __ ld(obj, Address(obj, mirror_offset));
++ __ resolve_oop_handle(obj);
++ }
++}
++
++void TemplateTable::load_invoke_cp_cache_entry(int byte_no,
++ Register method,
++ Register itable_index,
++ Register flags,
++ bool is_invokevirtual,
++ bool is_invokevfinal, /*unused*/
++ bool is_invokedynamic) {
++ // setup registers
++ const Register cache = t1;
++ const Register index = x14;
++ assert_different_registers(method, flags);
++ assert_different_registers(method, cache, index);
++ assert_different_registers(itable_index, flags);
++ assert_different_registers(itable_index, cache, index);
++ // determine constant pool cache field offsets
++ assert(is_invokevirtual == (byte_no == f2_byte), "is_invokevirtual flag redundant");
++ const int method_offset = in_bytes(ConstantPoolCache::base_offset() +
++ (is_invokevirtual ?
++ ConstantPoolCacheEntry::f2_offset() :
++ ConstantPoolCacheEntry::f1_offset()));
++ const int flags_offset = in_bytes(ConstantPoolCache::base_offset() +
++ ConstantPoolCacheEntry::flags_offset());
++ // access constant pool cache fields
++ const int index_offset = in_bytes(ConstantPoolCache::base_offset() +
++ ConstantPoolCacheEntry::f2_offset());
++
++ const size_t index_size = (is_invokedynamic ? sizeof(u4) : sizeof(u2));
++ resolve_cache_and_index(byte_no, cache, index, index_size);
++ __ ld(method, Address(cache, method_offset));
++
++ if (itable_index != noreg) {
++ __ ld(itable_index, Address(cache, index_offset));
++ }
++ __ lwu(flags, Address(cache, flags_offset));
++}
++
++// The registers cache and index expected to be set before call.
++// Correct values of the cache and index registers are preserved.
++void TemplateTable::jvmti_post_field_access(Register cache, Register index,
++ bool is_static, bool has_tos) {
++ // do the JVMTI work here to avoid disturbing the register state below
++ // We use c_rarg registers here beacause we want to use the register used in
++ // the call to the VM
++ if (JvmtiExport::can_post_field_access()) {
++ // Check to see if a field access watch has been set before we
++ // take the time to call into the VM.
++ Label L1;
++ assert_different_registers(cache, index, x10);
++ ExternalAddress target((address) JvmtiExport::get_field_access_count_addr());
++ __ relocate(target.rspec(), [&] {
++ int32_t offset;
++ __ la_patchable(t0, target, offset);
++ __ lwu(x10, Address(t0, offset));
++ });
++
++ __ beqz(x10, L1);
++
++ __ get_cache_and_index_at_bcp(c_rarg2, c_rarg3, 1);
++ __ la(c_rarg2, Address(c_rarg2, in_bytes(ConstantPoolCache::base_offset())));
++
++ if (is_static) {
++ __ mv(c_rarg1, zr); // NULL object reference
++ } else {
++ __ ld(c_rarg1, at_tos()); // get object pointer without popping it
++ __ verify_oop(c_rarg1);
++ }
++ // c_rarg1: object pointer or NULL
++ // c_rarg2: cache entry pointer
++ // c_rarg3: jvalue object on the stack
++ __ call_VM(noreg, CAST_FROM_FN_PTR(address,
++ InterpreterRuntime::post_field_access),
++ c_rarg1, c_rarg2, c_rarg3);
++ __ get_cache_and_index_at_bcp(cache, index, 1);
++ __ bind(L1);
++ }
++}
++
++void TemplateTable::pop_and_check_object(Register r)
++{
++ __ pop_ptr(r);
++ __ null_check(r); // for field access must check obj.
++ __ verify_oop(r);
++}
++
++void TemplateTable::getfield_or_static(int byte_no, bool is_static, RewriteControl rc)
++{
++ const Register cache = x12;
++ const Register index = x13;
++ const Register obj = x14;
++ const Register off = x9;
++ const Register flags = x10;
++ const Register raw_flags = x16;
++ const Register bc = x14; // uses same reg as obj, so don't mix them
++
++ resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
++ jvmti_post_field_access(cache, index, is_static, false);
++ load_field_cp_cache_entry(obj, cache, index, off, raw_flags, is_static);
++
++ if (!is_static) {
++ // obj is on the stack
++ pop_and_check_object(obj);
++ }
++
++ __ add(off, obj, off);
++ const Address field(off);
++
++ Label Done, notByte, notBool, notInt, notShort, notChar,
++ notLong, notFloat, notObj, notDouble;
++
++ __ slli(flags, raw_flags, XLEN - (ConstantPoolCacheEntry::tos_state_shift +
++ ConstantPoolCacheEntry::tos_state_bits));
++ __ srli(flags, flags, XLEN - ConstantPoolCacheEntry::tos_state_bits);
++
++ assert(btos == 0, "change code, btos != 0");
++ __ bnez(flags, notByte);
++
++ // Dont't rewrite getstatic, only getfield
++ if (is_static) {
++ rc = may_not_rewrite;
++ }
++
++ // btos
++ __ access_load_at(T_BYTE, IN_HEAP, x10, field, noreg, noreg);
++ __ push(btos);
++ // Rewrite bytecode to be faster
++ if (rc == may_rewrite) {
++ patch_bytecode(Bytecodes::_fast_bgetfield, bc, x11);
++ }
++ __ j(Done);
++
++ __ bind(notByte);
++ __ sub(t0, flags, (u1)ztos);
++ __ bnez(t0, notBool);
++
++ // ztos (same code as btos)
++ __ access_load_at(T_BOOLEAN, IN_HEAP, x10, field, noreg, noreg);
++ __ push(ztos);
++ // Rewirte bytecode to be faster
++ if (rc == may_rewrite) {
++ // uses btos rewriting, no truncating to t/f bit is needed for getfield
++ patch_bytecode(Bytecodes::_fast_bgetfield, bc, x11);
++ }
++ __ j(Done);
++
++ __ bind(notBool);
++ __ sub(t0, flags, (u1)atos);
++ __ bnez(t0, notObj);
++ // atos
++ do_oop_load(_masm, field, x10, IN_HEAP);
++ __ push(atos);
++ if (rc == may_rewrite) {
++ patch_bytecode(Bytecodes::_fast_agetfield, bc, x11);
++ }
++ __ j(Done);
++
++ __ bind(notObj);
++ __ sub(t0, flags, (u1)itos);
++ __ bnez(t0, notInt);
++ // itos
++ __ access_load_at(T_INT, IN_HEAP, x10, field, noreg, noreg);
++ __ sign_extend(x10, x10, 32);
++ __ push(itos);
++ // Rewrite bytecode to be faster
++ if (rc == may_rewrite) {
++ patch_bytecode(Bytecodes::_fast_igetfield, bc, x11);
++ }
++ __ j(Done);
++
++ __ bind(notInt);
++ __ sub(t0, flags, (u1)ctos);
++ __ bnez(t0, notChar);
++ // ctos
++ __ access_load_at(T_CHAR, IN_HEAP, x10, field, noreg, noreg);
++ __ push(ctos);
++ // Rewrite bytecode to be faster
++ if (rc == may_rewrite) {
++ patch_bytecode(Bytecodes::_fast_cgetfield, bc, x11);
++ }
++ __ j(Done);
++
++ __ bind(notChar);
++ __ sub(t0, flags, (u1)stos);
++ __ bnez(t0, notShort);
++ // stos
++ __ access_load_at(T_SHORT, IN_HEAP, x10, field, noreg, noreg);
++ __ push(stos);
++ // Rewrite bytecode to be faster
++ if (rc == may_rewrite) {
++ patch_bytecode(Bytecodes::_fast_sgetfield, bc, x11);
++ }
++ __ j(Done);
++
++ __ bind(notShort);
++ __ sub(t0, flags, (u1)ltos);
++ __ bnez(t0, notLong);
++ // ltos
++ __ access_load_at(T_LONG, IN_HEAP, x10, field, noreg, noreg);
++ __ push(ltos);
++ // Rewrite bytecode to be faster
++ if (rc == may_rewrite) {
++ patch_bytecode(Bytecodes::_fast_lgetfield, bc, x11);
++ }
++ __ j(Done);
++
++ __ bind(notLong);
++ __ sub(t0, flags, (u1)ftos);
++ __ bnez(t0, notFloat);
++ // ftos
++ __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
++ __ push(ftos);
++ // Rewrite bytecode to be faster
++ if (rc == may_rewrite) {
++ patch_bytecode(Bytecodes::_fast_fgetfield, bc, x11);
++ }
++ __ j(Done);
++
++ __ bind(notFloat);
++#ifdef ASSERT
++ __ sub(t0, flags, (u1)dtos);
++ __ bnez(t0, notDouble);
++#endif
++ // dtos
++ __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
++ __ push(dtos);
++ // Rewrite bytecode to be faster
++ if (rc == may_rewrite) {
++ patch_bytecode(Bytecodes::_fast_dgetfield, bc, x11);
++ }
++#ifdef ASSERT
++ __ j(Done);
++
++ __ bind(notDouble);
++ __ stop("Bad state");
++#endif
++
++ __ bind(Done);
++
++ Label notVolatile;
++ __ test_bit(t0, raw_flags, ConstantPoolCacheEntry::is_volatile_shift);
++ __ beqz(t0, notVolatile);
++ __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
++ __ bind(notVolatile);
++}
++
++void TemplateTable::getfield(int byte_no)
++{
++ getfield_or_static(byte_no, false);
++}
++
++void TemplateTable::nofast_getfield(int byte_no) {
++ getfield_or_static(byte_no, false, may_not_rewrite);
++}
++
++void TemplateTable::getstatic(int byte_no)
++{
++ getfield_or_static(byte_no, true);
++}
++
++// The registers cache and index expected to be set before call.
++// The function may destroy various registers, just not the cache and index registers.
++void TemplateTable::jvmti_post_field_mod(Register cache, Register index, bool is_static) {
++ transition(vtos, vtos);
++
++ ByteSize cp_base_offset = ConstantPoolCache::base_offset();
++
++ if (JvmtiExport::can_post_field_modification()) {
++ // Check to see if a field modification watch has been set before
++ // we take the time to call into the VM.
++ Label L1;
++ assert_different_registers(cache, index, x10);
++ ExternalAddress target((address)JvmtiExport::get_field_modification_count_addr());
++ __ relocate(target.rspec(), [&] {
++ int32_t offset;
++ __ la_patchable(t0, target, offset);
++ __ lwu(x10, Address(t0, offset));
++ });
++ __ beqz(x10, L1);
++
++ __ get_cache_and_index_at_bcp(c_rarg2, t0, 1);
++
++ if (is_static) {
++ // Life is simple. Null out the object pointer.
++ __ mv(c_rarg1, zr);
++ } else {
++ // Life is harder. The stack holds the value on top, followed by
++ // the object. We don't know the size of the value, though; it
++ // could be one or two words depending on its type. As a result,
++ // we must find the type to determine where the object is.
++ __ lwu(c_rarg3, Address(c_rarg2,
++ in_bytes(cp_base_offset +
++ ConstantPoolCacheEntry::flags_offset())));
++ __ srli(c_rarg3, c_rarg3, ConstantPoolCacheEntry::tos_state_shift);
++ ConstantPoolCacheEntry::verify_tos_state_shift();
++ Label nope2, done, ok;
++ __ ld(c_rarg1, at_tos_p1()); // initially assume a one word jvalue
++ __ sub(t0, c_rarg3, ltos);
++ __ beqz(t0, ok);
++ __ sub(t0, c_rarg3, dtos);
++ __ bnez(t0, nope2);
++ __ bind(ok);
++ __ ld(c_rarg1, at_tos_p2()); // ltos (two word jvalue);
++ __ bind(nope2);
++ }
++ // cache entry pointer
++ __ add(c_rarg2, c_rarg2, in_bytes(cp_base_offset));
++ // object (tos)
++ __ mv(c_rarg3, esp);
++ // c_rarg1: object pointer set up above (NULL if static)
++ // c_rarg2: cache entry pointer
++ // c_rarg3: jvalue object on the stack
++ __ call_VM(noreg,
++ CAST_FROM_FN_PTR(address,
++ InterpreterRuntime::post_field_modification),
++ c_rarg1, c_rarg2, c_rarg3);
++ __ get_cache_and_index_at_bcp(cache, index, 1);
++ __ bind(L1);
++ }
++}
++
++void TemplateTable::putfield_or_static(int byte_no, bool is_static, RewriteControl rc) {
++ transition(vtos, vtos);
++
++ const Register cache = x12;
++ const Register index = x13;
++ const Register obj = x12;
++ const Register off = x9;
++ const Register flags = x10;
++ const Register bc = x14;
++
++ resolve_cache_and_index(byte_no, cache, index, sizeof(u2));
++ jvmti_post_field_mod(cache, index, is_static);
++ load_field_cp_cache_entry(obj, cache, index, off, flags, is_static);
++
++ Label Done;
++ __ mv(x15, flags);
++
++ {
++ Label notVolatile;
++ __ test_bit(t0, x15, ConstantPoolCacheEntry::is_volatile_shift);
++ __ beqz(t0, notVolatile);
++ __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
++ __ bind(notVolatile);
++ }
++
++ Label notByte, notBool, notInt, notShort, notChar,
++ notLong, notFloat, notObj, notDouble;
++
++ __ slli(flags, flags, XLEN - (ConstantPoolCacheEntry::tos_state_shift +
++ ConstantPoolCacheEntry::tos_state_bits));
++ __ srli(flags, flags, XLEN - ConstantPoolCacheEntry::tos_state_bits);
++
++ assert(btos == 0, "change code, btos != 0");
++ __ bnez(flags, notByte);
++
++ // Don't rewrite putstatic, only putfield
++ if (is_static) {
++ rc = may_not_rewrite;
++ }
++
++ // btos
++ {
++ __ pop(btos);
++ // field address
++ if (!is_static) {
++ pop_and_check_object(obj);
++ }
++ __ add(off, obj, off); // if static, obj from cache, else obj from stack.
++ const Address field(off, 0); // off register as temparator register.
++ __ access_store_at(T_BYTE, IN_HEAP, field, x10, noreg, noreg);
++ if (rc == may_rewrite) {
++ patch_bytecode(Bytecodes::_fast_bputfield, bc, x11, true, byte_no);
++ }
++ __ j(Done);
++ }
++
++ __ bind(notByte);
++ __ sub(t0, flags, (u1)ztos);
++ __ bnez(t0, notBool);
++
++ // ztos
++ {
++ __ pop(ztos);
++ // field address
++ if (!is_static) {
++ pop_and_check_object(obj);
++ }
++ __ add(off, obj, off); // if static, obj from cache, else obj from stack.
++ const Address field(off, 0);
++ __ access_store_at(T_BOOLEAN, IN_HEAP, field, x10, noreg, noreg);
++ if (rc == may_rewrite) {
++ patch_bytecode(Bytecodes::_fast_zputfield, bc, x11, true, byte_no);
++ }
++ __ j(Done);
++ }
++
++ __ bind(notBool);
++ __ sub(t0, flags, (u1)atos);
++ __ bnez(t0, notObj);
++
++ // atos
++ {
++ __ pop(atos);
++ // field address
++ if (!is_static) {
++ pop_and_check_object(obj);
++ }
++ __ add(off, obj, off); // if static, obj from cache, else obj from stack.
++ const Address field(off, 0);
++ // Store into the field
++ do_oop_store(_masm, field, x10, IN_HEAP);
++ if (rc == may_rewrite) {
++ patch_bytecode(Bytecodes::_fast_aputfield, bc, x11, true, byte_no);
++ }
++ __ j(Done);
++ }
++
++ __ bind(notObj);
++ __ sub(t0, flags, (u1)itos);
++ __ bnez(t0, notInt);
++
++ // itos
++ {
++ __ pop(itos);
++ // field address
++ if (!is_static) {
++ pop_and_check_object(obj);
++ }
++ __ add(off, obj, off); // if static, obj from cache, else obj from stack.
++ const Address field(off, 0);
++ __ access_store_at(T_INT, IN_HEAP, field, x10, noreg, noreg);
++ if (rc == may_rewrite) {
++ patch_bytecode(Bytecodes::_fast_iputfield, bc, x11, true, byte_no);
++ }
++ __ j(Done);
++ }
++
++ __ bind(notInt);
++ __ sub(t0, flags, (u1)ctos);
++ __ bnez(t0, notChar);
++
++ // ctos
++ {
++ __ pop(ctos);
++ // field address
++ if (!is_static) {
++ pop_and_check_object(obj);
++ }
++ __ add(off, obj, off); // if static, obj from cache, else obj from stack.
++ const Address field(off, 0);
++ __ access_store_at(T_CHAR, IN_HEAP, field, x10, noreg, noreg);
++ if (rc == may_rewrite) {
++ patch_bytecode(Bytecodes::_fast_cputfield, bc, x11, true, byte_no);
++ }
++ __ j(Done);
++ }
++
++ __ bind(notChar);
++ __ sub(t0, flags, (u1)stos);
++ __ bnez(t0, notShort);
++
++ // stos
++ {
++ __ pop(stos);
++ // field address
++ if (!is_static) {
++ pop_and_check_object(obj);
++ }
++ __ add(off, obj, off); // if static, obj from cache, else obj from stack.
++ const Address field(off, 0);
++ __ access_store_at(T_SHORT, IN_HEAP, field, x10, noreg, noreg);
++ if (rc == may_rewrite) {
++ patch_bytecode(Bytecodes::_fast_sputfield, bc, x11, true, byte_no);
++ }
++ __ j(Done);
++ }
++
++ __ bind(notShort);
++ __ sub(t0, flags, (u1)ltos);
++ __ bnez(t0, notLong);
++
++ // ltos
++ {
++ __ pop(ltos);
++ // field address
++ if (!is_static) {
++ pop_and_check_object(obj);
++ }
++ __ add(off, obj, off); // if static, obj from cache, else obj from stack.
++ const Address field(off, 0);
++ __ access_store_at(T_LONG, IN_HEAP, field, x10, noreg, noreg);
++ if (rc == may_rewrite) {
++ patch_bytecode(Bytecodes::_fast_lputfield, bc, x11, true, byte_no);
++ }
++ __ j(Done);
++ }
++
++ __ bind(notLong);
++ __ sub(t0, flags, (u1)ftos);
++ __ bnez(t0, notFloat);
++
++ // ftos
++ {
++ __ pop(ftos);
++ // field address
++ if (!is_static) {
++ pop_and_check_object(obj);
++ }
++ __ add(off, obj, off); // if static, obj from cache, else obj from stack.
++ const Address field(off, 0);
++ __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg);
++ if (rc == may_rewrite) {
++ patch_bytecode(Bytecodes::_fast_fputfield, bc, x11, true, byte_no);
++ }
++ __ j(Done);
++ }
++
++ __ bind(notFloat);
++#ifdef ASSERT
++ __ sub(t0, flags, (u1)dtos);
++ __ bnez(t0, notDouble);
++#endif
++
++ // dtos
++ {
++ __ pop(dtos);
++ // field address
++ if (!is_static) {
++ pop_and_check_object(obj);
++ }
++ __ add(off, obj, off); // if static, obj from cache, else obj from stack.
++ const Address field(off, 0);
++ __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg);
++ if (rc == may_rewrite) {
++ patch_bytecode(Bytecodes::_fast_dputfield, bc, x11, true, byte_no);
++ }
++ }
++
++#ifdef ASSERT
++ __ j(Done);
++
++ __ bind(notDouble);
++ __ stop("Bad state");
++#endif
++
++ __ bind(Done);
++
++ {
++ Label notVolatile;
++ __ test_bit(t0, x15, ConstantPoolCacheEntry::is_volatile_shift);
++ __ beqz(t0, notVolatile);
++ __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
++ __ bind(notVolatile);
++ }
++}
++
++void TemplateTable::putfield(int byte_no)
++{
++ putfield_or_static(byte_no, false);
++}
++
++void TemplateTable::nofast_putfield(int byte_no) {
++ putfield_or_static(byte_no, false, may_not_rewrite);
++}
++
++void TemplateTable::putstatic(int byte_no) {
++ putfield_or_static(byte_no, true);
++}
++
++void TemplateTable::jvmti_post_fast_field_mod()
++{
++ if (JvmtiExport::can_post_field_modification()) {
++ // Check to see if a field modification watch has been set before
++ // we take the time to call into the VM.
++ Label L2;
++ ExternalAddress target((address)JvmtiExport::get_field_modification_count_addr());
++ __ relocate(target.rspec(), [&] {
++ int32_t offset;
++ __ la_patchable(t0, target, offset);
++ __ lwu(c_rarg3, Address(t0, offset));
++ });
++ __ beqz(c_rarg3, L2);
++ __ pop_ptr(x9); // copy the object pointer from tos
++ __ verify_oop(x9);
++ __ push_ptr(x9); // put the object pointer back on tos
++ // Save tos values before call_VM() clobbers them. Since we have
++ // to do it for every data type, we use the saved values as the
++ // jvalue object.
++ switch (bytecode()) { // load values into the jvalue object
++ case Bytecodes::_fast_aputfield: __ push_ptr(x10); break;
++ case Bytecodes::_fast_bputfield: // fall through
++ case Bytecodes::_fast_zputfield: // fall through
++ case Bytecodes::_fast_sputfield: // fall through
++ case Bytecodes::_fast_cputfield: // fall through
++ case Bytecodes::_fast_iputfield: __ push_i(x10); break;
++ case Bytecodes::_fast_dputfield: __ push_d(); break;
++ case Bytecodes::_fast_fputfield: __ push_f(); break;
++ case Bytecodes::_fast_lputfield: __ push_l(x10); break;
++
++ default:
++ ShouldNotReachHere();
++ }
++ __ mv(c_rarg3, esp); // points to jvalue on the stack
++ // access constant pool cache entry
++ __ get_cache_entry_pointer_at_bcp(c_rarg2, x10, 1);
++ __ verify_oop(x9);
++ // x9: object pointer copied above
++ // c_rarg2: cache entry pointer
++ // c_rarg3: jvalue object on the stack
++ __ call_VM(noreg,
++ CAST_FROM_FN_PTR(address,
++ InterpreterRuntime::post_field_modification),
++ x9, c_rarg2, c_rarg3);
++
++ switch (bytecode()) { // restore tos values
++ case Bytecodes::_fast_aputfield: __ pop_ptr(x10); break;
++ case Bytecodes::_fast_bputfield: // fall through
++ case Bytecodes::_fast_zputfield: // fall through
++ case Bytecodes::_fast_sputfield: // fall through
++ case Bytecodes::_fast_cputfield: // fall through
++ case Bytecodes::_fast_iputfield: __ pop_i(x10); break;
++ case Bytecodes::_fast_dputfield: __ pop_d(); break;
++ case Bytecodes::_fast_fputfield: __ pop_f(); break;
++ case Bytecodes::_fast_lputfield: __ pop_l(x10); break;
++ default: break;
++ }
++ __ bind(L2);
++ }
++}
++
++void TemplateTable::fast_storefield(TosState state)
++{
++ transition(state, vtos);
++
++ ByteSize base = ConstantPoolCache::base_offset();
++
++ jvmti_post_fast_field_mod();
++
++ // access constant pool cache
++ __ get_cache_and_index_at_bcp(x12, x11, 1);
++
++ // Must prevent reordering of the following cp cache loads with bytecode load
++ __ membar(MacroAssembler::LoadLoad);
++
++ // test for volatile with x13
++ __ lwu(x13, Address(x12, in_bytes(base +
++ ConstantPoolCacheEntry::flags_offset())));
++
++ // replace index with field offset from cache entry
++ __ ld(x11, Address(x12, in_bytes(base + ConstantPoolCacheEntry::f2_offset())));
++
++ {
++ Label notVolatile;
++ __ test_bit(t0, x13, ConstantPoolCacheEntry::is_volatile_shift);
++ __ beqz(t0, notVolatile);
++ __ membar(MacroAssembler::StoreStore | MacroAssembler::LoadStore);
++ __ bind(notVolatile);
++ }
++
++ // Get object from stack
++ pop_and_check_object(x12);
++
++ // field address
++ __ add(x11, x12, x11);
++ const Address field(x11, 0);
++
++ // access field
++ switch (bytecode()) {
++ case Bytecodes::_fast_aputfield:
++ do_oop_store(_masm, field, x10, IN_HEAP);
++ break;
++ case Bytecodes::_fast_lputfield:
++ __ access_store_at(T_LONG, IN_HEAP, field, x10, noreg, noreg);
++ break;
++ case Bytecodes::_fast_iputfield:
++ __ access_store_at(T_INT, IN_HEAP, field, x10, noreg, noreg);
++ break;
++ case Bytecodes::_fast_zputfield:
++ __ access_store_at(T_BOOLEAN, IN_HEAP, field, x10, noreg, noreg);
++ break;
++ case Bytecodes::_fast_bputfield:
++ __ access_store_at(T_BYTE, IN_HEAP, field, x10, noreg, noreg);
++ break;
++ case Bytecodes::_fast_sputfield:
++ __ access_store_at(T_SHORT, IN_HEAP, field, x10, noreg, noreg);
++ break;
++ case Bytecodes::_fast_cputfield:
++ __ access_store_at(T_CHAR, IN_HEAP, field, x10, noreg, noreg);
++ break;
++ case Bytecodes::_fast_fputfield:
++ __ access_store_at(T_FLOAT, IN_HEAP, field, noreg /* ftos */, noreg, noreg);
++ break;
++ case Bytecodes::_fast_dputfield:
++ __ access_store_at(T_DOUBLE, IN_HEAP, field, noreg /* dtos */, noreg, noreg);
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++
++ {
++ Label notVolatile;
++ __ test_bit(t0, x13, ConstantPoolCacheEntry::is_volatile_shift);
++ __ beqz(t0, notVolatile);
++ __ membar(MacroAssembler::StoreLoad | MacroAssembler::StoreStore);
++ __ bind(notVolatile);
++ }
++}
++
++void TemplateTable::fast_accessfield(TosState state)
++{
++ transition(atos, state);
++ // Do the JVMTI work here to avoid disturbing the register state below
++ if (JvmtiExport::can_post_field_access()) {
++ // Check to see if a field access watch has been set before we
++ // take the time to call into the VM.
++ Label L1;
++ ExternalAddress target((address)JvmtiExport::get_field_access_count_addr());
++ __ relocate(target.rspec(), [&] {
++ int32_t offset;
++ __ la_patchable(t0, target, offset);
++ __ lwu(x12, Address(t0, offset));
++ });
++ __ beqz(x12, L1);
++ // access constant pool cache entry
++ __ get_cache_entry_pointer_at_bcp(c_rarg2, t1, 1);
++ __ verify_oop(x10);
++ __ push_ptr(x10); // save object pointer before call_VM() clobbers it
++ __ mv(c_rarg1, x10);
++ // c_rarg1: object pointer copied above
++ // c_rarg2: cache entry pointer
++ __ call_VM(noreg,
++ CAST_FROM_FN_PTR(address,
++ InterpreterRuntime::post_field_access),
++ c_rarg1, c_rarg2);
++ __ pop_ptr(x10); // restore object pointer
++ __ bind(L1);
++ }
++
++ // access constant pool cache
++ __ get_cache_and_index_at_bcp(x12, x11, 1);
++
++ // Must prevent reordering of the following cp cache loads with bytecode load
++ __ membar(MacroAssembler::LoadLoad);
++
++ __ ld(x11, Address(x12, in_bytes(ConstantPoolCache::base_offset() +
++ ConstantPoolCacheEntry::f2_offset())));
++ __ lwu(x13, Address(x12, in_bytes(ConstantPoolCache::base_offset() +
++ ConstantPoolCacheEntry::flags_offset())));
++
++ // x10: object
++ __ verify_oop(x10);
++ __ null_check(x10);
++ __ add(x11, x10, x11);
++ const Address field(x11, 0);
++
++ // access field
++ switch (bytecode()) {
++ case Bytecodes::_fast_agetfield:
++ do_oop_load(_masm, field, x10, IN_HEAP);
++ __ verify_oop(x10);
++ break;
++ case Bytecodes::_fast_lgetfield:
++ __ access_load_at(T_LONG, IN_HEAP, x10, field, noreg, noreg);
++ break;
++ case Bytecodes::_fast_igetfield:
++ __ access_load_at(T_INT, IN_HEAP, x10, field, noreg, noreg);
++ __ sign_extend(x10, x10, 32);
++ break;
++ case Bytecodes::_fast_bgetfield:
++ __ access_load_at(T_BYTE, IN_HEAP, x10, field, noreg, noreg);
++ break;
++ case Bytecodes::_fast_sgetfield:
++ __ access_load_at(T_SHORT, IN_HEAP, x10, field, noreg, noreg);
++ break;
++ case Bytecodes::_fast_cgetfield:
++ __ access_load_at(T_CHAR, IN_HEAP, x10, field, noreg, noreg);
++ break;
++ case Bytecodes::_fast_fgetfield:
++ __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, field, noreg, noreg);
++ break;
++ case Bytecodes::_fast_dgetfield:
++ __ access_load_at(T_DOUBLE, IN_HEAP, noreg /* dtos */, field, noreg, noreg);
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++ {
++ Label notVolatile;
++ __ test_bit(t0, x13, ConstantPoolCacheEntry::is_volatile_shift);
++ __ beqz(t0, notVolatile);
++ __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
++ __ bind(notVolatile);
++ }
++}
++
++void TemplateTable::fast_xaccess(TosState state)
++{
++ transition(vtos, state);
++
++ // get receiver
++ __ ld(x10, aaddress(0));
++ // access constant pool cache
++ __ get_cache_and_index_at_bcp(x12, x13, 2);
++ __ ld(x11, Address(x12, in_bytes(ConstantPoolCache::base_offset() +
++ ConstantPoolCacheEntry::f2_offset())));
++
++ // make sure exception is reported in correct bcp range (getfield is
++ // next instruction)
++ __ addi(xbcp, xbcp, 1);
++ __ null_check(x10);
++ switch (state) {
++ case itos:
++ __ add(x10, x10, x11);
++ __ access_load_at(T_INT, IN_HEAP, x10, Address(x10, 0), noreg, noreg);
++ __ sign_extend(x10, x10, 32);
++ break;
++ case atos:
++ __ add(x10, x10, x11);
++ do_oop_load(_masm, Address(x10, 0), x10, IN_HEAP);
++ __ verify_oop(x10);
++ break;
++ case ftos:
++ __ add(x10, x10, x11);
++ __ access_load_at(T_FLOAT, IN_HEAP, noreg /* ftos */, Address(x10), noreg, noreg);
++ break;
++ default:
++ ShouldNotReachHere();
++ }
++
++ {
++ Label notVolatile;
++ __ lwu(x13, Address(x12, in_bytes(ConstantPoolCache::base_offset() +
++ ConstantPoolCacheEntry::flags_offset())));
++ __ test_bit(t0, x13, ConstantPoolCacheEntry::is_volatile_shift);
++ __ beqz(t0, notVolatile);
++ __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
++ __ bind(notVolatile);
++ }
++
++ __ sub(xbcp, xbcp, 1);
++}
++
++//-----------------------------------------------------------------------------
++// Calls
++
++void TemplateTable::prepare_invoke(int byte_no,
++ Register method, // linked method (or i-klass)
++ Register index, // itable index, MethodType, etc.
++ Register recv, // if caller wants to see it
++ Register flags // if caller wants to test it
++ ) {
++ // determine flags
++ const Bytecodes::Code code = bytecode();
++ const bool is_invokeinterface = code == Bytecodes::_invokeinterface;
++ const bool is_invokedynamic = code == Bytecodes::_invokedynamic;
++ const bool is_invokehandle = code == Bytecodes::_invokehandle;
++ const bool is_invokevirtual = code == Bytecodes::_invokevirtual;
++ const bool is_invokespecial = code == Bytecodes::_invokespecial;
++ const bool load_receiver = (recv != noreg);
++ const bool save_flags = (flags != noreg);
++ assert(load_receiver == (code != Bytecodes::_invokestatic && code != Bytecodes::_invokedynamic), "");
++ assert(save_flags == (is_invokeinterface || is_invokevirtual), "need flags for vfinal");
++ assert(flags == noreg || flags == x13, "");
++ assert(recv == noreg || recv == x12, "");
++
++ // setup registers & access constant pool cache
++ if (recv == noreg) {
++ recv = x12;
++ }
++ if (flags == noreg) {
++ flags = x13;
++ }
++ assert_different_registers(method, index, recv, flags);
++
++ // save 'interpreter return address'
++ __ save_bcp();
++
++ load_invoke_cp_cache_entry(byte_no, method, index, flags, is_invokevirtual, false, is_invokedynamic);
++
++ // maybe push appendix to arguments (just before return address)
++ if (is_invokedynamic || is_invokehandle) {
++ Label L_no_push;
++ __ test_bit(t0, flags, ConstantPoolCacheEntry::has_appendix_shift);
++ __ beqz(t0, L_no_push);
++ // Push the appendix as a trailing parameter.
++ // This must be done before we get the receiver,
++ // since the parameter_size includes it.
++ __ push_reg(x9);
++ __ mv(x9, index);
++ __ load_resolved_reference_at_index(index, x9);
++ __ pop_reg(x9);
++ __ push_reg(index); // push appendix (MethodType, CallSite, etc.)
++ __ bind(L_no_push);
++ }
++
++ // load receiver if needed (note: no return address pushed yet)
++ if (load_receiver) {
++ __ andi(recv, flags, ConstantPoolCacheEntry::parameter_size_mask); // parameter_size_mask = 1 << 8
++ __ shadd(t0, recv, esp, t0, 3);
++ __ ld(recv, Address(t0, -Interpreter::expr_offset_in_bytes(1)));
++ __ verify_oop(recv);
++ }
++
++ // compute return type
++ __ slli(t1, flags, XLEN - (ConstantPoolCacheEntry::tos_state_shift + ConstantPoolCacheEntry::tos_state_bits));
++ __ srli(t1, t1, XLEN - ConstantPoolCacheEntry::tos_state_bits); // (1 << 5) - 4 --> 28~31==> t1:0~3
++
++ // load return address
++ {
++ const address table_addr = (address) Interpreter::invoke_return_entry_table_for(code);
++ __ mv(t0, table_addr);
++ __ shadd(t0, t1, t0, t1, 3);
++ __ ld(ra, Address(t0, 0));
++ }
++}
++
++void TemplateTable::invokevirtual_helper(Register index,
++ Register recv,
++ Register flags)
++{
++ // Uses temporary registers x10, x13
++ assert_different_registers(index, recv, x10, x13);
++ // Test for an invoke of a final method
++ Label notFinal;
++ __ test_bit(t0, flags, ConstantPoolCacheEntry::is_vfinal_shift);
++ __ beqz(t0, notFinal);
++
++ const Register method = index; // method must be xmethod
++ assert(method == xmethod, "Method must be xmethod for interpreter calling convention");
++
++ // do the call - the index is actually the method to call
++ // that is, f2 is a vtable index if !is_vfinal, else f2 is a Method*
++
++ // It's final, need a null check here!
++ __ null_check(recv);
++
++ // profile this call
++ __ profile_final_call(x10);
++ __ profile_arguments_type(x10, method, x14, true);
++
++ __ jump_from_interpreted(method);
++
++ __ bind(notFinal);
++
++ // get receiver klass
++ __ null_check(recv, oopDesc::klass_offset_in_bytes());
++ __ load_klass(x10, recv);
++
++ // profile this call
++ __ profile_virtual_call(x10, xlocals, x13);
++
++ // get target Method & entry point
++ __ lookup_virtual_method(x10, index, method);
++ __ profile_arguments_type(x13, method, x14, true);
++ __ jump_from_interpreted(method);
++}
++
++void TemplateTable::invokevirtual(int byte_no)
++{
++ transition(vtos, vtos);
++ assert(byte_no == f2_byte, "use this argument");
++
++ prepare_invoke(byte_no, xmethod, noreg, x12, x13);
++
++ // xmethod: index (actually a Method*)
++ // x12: receiver
++ // x13: flags
++
++ invokevirtual_helper(xmethod, x12, x13);
++}
++
++void TemplateTable::invokespecial(int byte_no)
++{
++ transition(vtos, vtos);
++ assert(byte_no == f1_byte, "use this argument");
++
++ prepare_invoke(byte_no, xmethod, noreg, // get f1 Method*
++ x12); // get receiver also for null check
++ __ verify_oop(x12);
++ __ null_check(x12);
++ // do the call
++ __ profile_call(x10);
++ __ profile_arguments_type(x10, xmethod, xbcp, false);
++ __ jump_from_interpreted(xmethod);
++}
++
++void TemplateTable::invokestatic(int byte_no)
++{
++ transition(vtos, vtos);
++ assert(byte_no == f1_byte, "use this arugment");
++
++ prepare_invoke(byte_no, xmethod); // get f1 Method*
++ // do the call
++ __ profile_call(x10);
++ __ profile_arguments_type(x10, xmethod, x14, false);
++ __ jump_from_interpreted(xmethod);
++}
++
++void TemplateTable::fast_invokevfinal(int byte_no)
++{
++ __ call_Unimplemented();
++}
++
++void TemplateTable::invokeinterface(int byte_no) {
++ transition(vtos, vtos);
++ assert(byte_no == f1_byte, "use this argument");
++
++ prepare_invoke(byte_no, x10, xmethod, // get f1 Klass*, f2 Method*
++ x12, x13); // recv, flags
++
++ // x10: interface klass (from f1)
++ // xmethod: method (from f2)
++ // x12: receiver
++ // x13: flags
++
++ // First check for Object case, then private interface method,
++ // then regular interface method.
++
++ // Special case of invokeinterface called for virtual method of
++ // java.lang.Object. See cpCache.cpp for details
++ Label notObjectMethod;
++ __ test_bit(t0, x13, ConstantPoolCacheEntry::is_forced_virtual_shift);
++ __ beqz(t0, notObjectMethod);
++
++ invokevirtual_helper(xmethod, x12, x13);
++ __ bind(notObjectMethod);
++
++ Label no_such_interface;
++
++ // Check for private method invocation - indicated by vfinal
++ Label notVFinal;
++ __ test_bit(t0, x13, ConstantPoolCacheEntry::is_vfinal_shift);
++ __ beqz(t0, notVFinal);
++
++ // Check receiver klass into x13 - also a null check
++ __ null_check(x12, oopDesc::klass_offset_in_bytes());
++ __ load_klass(x13, x12);
++
++ Label subtype;
++ __ check_klass_subtype(x13, x10, x14, subtype);
++ // If we get here the typecheck failed
++ __ j(no_such_interface);
++ __ bind(subtype);
++
++ __ profile_final_call(x10);
++ __ profile_arguments_type(x10, xmethod, x14, true);
++ __ jump_from_interpreted(xmethod);
++
++ __ bind(notVFinal);
++
++ // Get receiver klass into x13 - also a null check
++ __ restore_locals();
++ __ null_check(x12, oopDesc::klass_offset_in_bytes());
++ __ load_klass(x13, x12);
++
++ Label no_such_method;
++
++ // Preserve method for the throw_AbstractMethodErrorVerbose.
++ __ mv(x28, xmethod);
++ // Receiver subtype check against REFC.
++ // Superklass in x10. Subklass in x13. Blows t1, x30
++ __ lookup_interface_method(// inputs: rec. class, interface, itable index
++ x13, x10, noreg,
++ // outputs: scan temp. reg, scan temp. reg
++ t1, x30,
++ no_such_interface,
++ /*return_method=*/false);
++
++ // profile this call
++ __ profile_virtual_call(x13, x30, x9);
++
++ // Get declaring interface class from method, and itable index
++ __ load_method_holder(x10, xmethod);
++ __ lwu(xmethod, Address(xmethod, Method::itable_index_offset()));
++ __ subw(xmethod, xmethod, Method::itable_index_max);
++ __ negw(xmethod, xmethod);
++
++ // Preserve recvKlass for throw_AbstractMethodErrorVerbose
++ __ mv(xlocals, x13);
++ __ lookup_interface_method(// inputs: rec. class, interface, itable index
++ xlocals, x10, xmethod,
++ // outputs: method, scan temp. reg
++ xmethod, x30,
++ no_such_interface);
++
++ // xmethod: Method to call
++ // x12: receiver
++ // Check for abstract method error
++ // Note: This should be done more efficiently via a throw_abstract_method_error
++ // interpreter entry point and a conditional jump to it in case of a null
++ // method.
++ __ beqz(xmethod, no_such_method);
++
++ __ profile_arguments_type(x13, xmethod, x30, true);
++
++ // do the call
++ // x12: receiver
++ // xmethod: Method
++ __ jump_from_interpreted(xmethod);
++ __ should_not_reach_here();
++
++ // exception handling code follows ...
++ // note: must restore interpreter registers to canonical
++ // state for exception handling to work correctly!
++
++ __ bind(no_such_method);
++ // throw exception
++ __ restore_bcp(); // bcp must be correct for exception handler (was destroyed)
++ __ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
++ // Pass arguments for generating a verbose error message.
++ __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorVerbose), x13, x28);
++ // the call_VM checks for exception, so we should never return here.
++ __ should_not_reach_here();
++
++ __ bind(no_such_interface);
++ // throw exceptiong
++ __ restore_bcp(); // bcp must be correct for exception handler (was destroyed)
++ __ restore_locals(); // make sure locals pointer is correct as well (was destroyed)
++ // Pass arguments for generating a verbose error message.
++ __ call_VM(noreg, CAST_FROM_FN_PTR(address,
++ InterpreterRuntime::throw_IncompatibleClassChangeErrorVerbose), x13, x10);
++ // the call_VM checks for exception, so we should never return here.
++ __ should_not_reach_here();
++ return;
++}
++
++void TemplateTable::invokehandle(int byte_no) {
++ transition(vtos, vtos);
++ assert(byte_no == f1_byte, "use this argument");
++
++ prepare_invoke(byte_no, xmethod, x10, x12);
++ __ verify_method_ptr(x12);
++ __ verify_oop(x12);
++ __ null_check(x12);
++
++ // FIXME: profile the LambdaForm also
++
++ // x30 is safe to use here as a temp reg because it is about to
++ // be clobbered by jump_from_interpreted().
++ __ profile_final_call(x30);
++ __ profile_arguments_type(x30, xmethod, x14, true);
++
++ __ jump_from_interpreted(xmethod);
++}
++
++void TemplateTable::invokedynamic(int byte_no) {
++ transition(vtos, vtos);
++ assert(byte_no == f1_byte, "use this argument");
++
++ prepare_invoke(byte_no, xmethod, x10);
++
++ // x10: CallSite object (from cpool->resolved_references[])
++ // xmethod: MH.linkToCallSite method (from f2)
++
++ // Note: x10_callsite is already pushed by prepare_invoke
++
++ // %%% should make a type profile for any invokedynamic that takes a ref argument
++ // profile this call
++ __ profile_call(xbcp);
++ __ profile_arguments_type(x13, xmethod, x30, false);
++
++ __ verify_oop(x10);
++
++ __ jump_from_interpreted(xmethod);
++}
++
++//-----------------------------------------------------------------------------
++// Allocation
++
++void TemplateTable::_new() {
++ transition(vtos, atos);
++
++ __ get_unsigned_2_byte_index_at_bcp(x13, 1);
++ Label slow_case;
++ Label done;
++ Label initialize_header;
++ Label initialize_object; // including clearing the fields
++
++ __ get_cpool_and_tags(x14, x10);
++ // Make sure the class we're about to instantiate has been resolved.
++ // This is done before loading InstanceKlass to be consistent with the order
++ // how Constant Pool is update (see ConstantPool::klass_at_put)
++ const int tags_offset = Array<u1>::base_offset_in_bytes();
++ __ add(t0, x10, x13);
++ __ la(t0, Address(t0, tags_offset));
++ __ membar(MacroAssembler::AnyAny);
++ __ lbu(t0, t0);
++ __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
++ __ sub(t1, t0, (u1)JVM_CONSTANT_Class);
++ __ bnez(t1, slow_case);
++
++ // get InstanceKlass
++ __ load_resolved_klass_at_offset(x14, x13, x14, t0);
++
++ // make sure klass is initialized & doesn't have finalizer
++ // make sure klass is fully initialized
++ __ lbu(t0, Address(x14, InstanceKlass::init_state_offset()));
++ __ sub(t1, t0, (u1)InstanceKlass::fully_initialized);
++ __ bnez(t1, slow_case);
++
++ // get instance_size in InstanceKlass (scaled to a count of bytes)
++ __ lwu(x13, Address(x14, Klass::layout_helper_offset()));
++ // test to see if it has a finalizer or is malformed in some way
++ __ test_bit(t0, x13, exact_log2(Klass::_lh_instance_slow_path_bit));
++ __ bnez(t0, slow_case);
++
++ // Allocate the instance:
++ // If TLAB is enabled:
++ // Try to allocate in the TLAB.
++ // If fails, go to the slow path.
++ // Else If inline contiguous allocations are enabled:
++ // Try to allocate in eden.
++ // If fails due to heap end, go to slow path
++ //
++ // If TLAB is enabled OR inline contiguous is enabled:
++ // Initialize the allocation.
++ // Exit.
++ // Go to slow path.
++ const bool allow_shared_alloc = Universe::heap()->supports_inline_contig_alloc();
++
++ if (UseTLAB) {
++ __ tlab_allocate(x10, x13, 0, noreg, x11, slow_case);
++
++ if (ZeroTLAB) {
++ // the fields have been already cleared
++ __ j(initialize_header);
++ } else {
++ // initialize both the header and fields
++ __ j(initialize_object);
++ }
++ } else {
++ // Allocation in the shared Eden, if allowed.
++ //
++ // x13: instance size in bytes
++ if (allow_shared_alloc) {
++ __ eden_allocate(x10, x13, 0, x28, slow_case);
++ }
++ }
++
++ // If USETLAB or allow_shared_alloc are true, the object is created above and
++ // there is an initialized need. Otherwise, skip and go to the slow path.
++ if (UseTLAB || allow_shared_alloc) {
++ // The object is initialized before the header. If the object size is
++ // zero, go directly to the header initialization.
++ __ bind(initialize_object);
++ __ sub(x13, x13, sizeof(oopDesc));
++ __ beqz(x13, initialize_header);
++
++ // Initialize obejct fields
++ {
++ __ add(x12, x10, sizeof(oopDesc));
++ Label loop;
++ __ bind(loop);
++ __ sd(zr, Address(x12));
++ __ add(x12, x12, BytesPerLong);
++ __ sub(x13, x13, BytesPerLong);
++ __ bnez(x13, loop);
++ }
++
++ // initialize object hader only.
++ __ bind(initialize_header);
++ if (UseBiasedLocking) {
++ __ ld(t0, Address(x14, Klass::prototype_header_offset()));
++ } else {
++ __ mv(t0, (intptr_t)markWord::prototype().value());
++ }
++ __ sd(t0, Address(x10, oopDesc::mark_offset_in_bytes()));
++ __ store_klass_gap(x10, zr); // zero klass gap for compressed oops
++ __ store_klass(x10, x14); // store klass last
++
++ {
++ SkipIfEqual skip(_masm, &DTraceAllocProbes, false);
++ // Trigger dtrace event for fastpath
++ __ push(atos); // save the return value
++ __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc), x10);
++ __ pop(atos); // restore the return value
++ }
++ __ j(done);
++ }
++
++ // slow case
++ __ bind(slow_case);
++ __ get_constant_pool(c_rarg1);
++ __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
++ call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::_new), c_rarg1, c_rarg2);
++ __ verify_oop(x10);
++
++ // continue
++ __ bind(done);
++ // Must prevent reordering of stores for object initialization with stores that publish the new object.
++ __ membar(MacroAssembler::StoreStore);
++}
++
++void TemplateTable::newarray() {
++ transition(itos, atos);
++ __ load_unsigned_byte(c_rarg1, at_bcp(1));
++ __ mv(c_rarg2, x10);
++ call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::newarray),
++ c_rarg1, c_rarg2);
++ // Must prevent reordering of stores for object initialization with stores that publish the new object.
++ __ membar(MacroAssembler::StoreStore);
++}
++
++void TemplateTable::anewarray() {
++ transition(itos, atos);
++ __ get_unsigned_2_byte_index_at_bcp(c_rarg2, 1);
++ __ get_constant_pool(c_rarg1);
++ __ mv(c_rarg3, x10);
++ call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::anewarray),
++ c_rarg1, c_rarg2, c_rarg3);
++ // Must prevent reordering of stores for object initialization with stores that publish the new object.
++ __ membar(MacroAssembler::StoreStore);
++}
++
++void TemplateTable::arraylength() {
++ transition(atos, itos);
++ __ null_check(x10, arrayOopDesc::length_offset_in_bytes());
++ __ lwu(x10, Address(x10, arrayOopDesc::length_offset_in_bytes()));
++}
++
++void TemplateTable::checkcast()
++{
++ transition(atos, atos);
++ Label done, is_null, ok_is_subtype, quicked, resolved;
++ __ beqz(x10, is_null);
++
++ // Get cpool & tags index
++ __ get_cpool_and_tags(x12, x13); // x12=cpool, x13=tags array
++ __ get_unsigned_2_byte_index_at_bcp(x9, 1); // x9=index
++ // See if bytecode has already been quicked
++ __ add(t0, x13, Array<u1>::base_offset_in_bytes());
++ __ add(x11, t0, x9);
++ __ membar(MacroAssembler::AnyAny);
++ __ lbu(x11, x11);
++ __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
++ __ sub(t0, x11, (u1)JVM_CONSTANT_Class);
++ __ beqz(t0, quicked);
++
++ __ push(atos); // save receiver for result, and for GC
++ call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
++ // vm_result_2 has metadata result
++ __ get_vm_result_2(x10, xthread);
++ __ pop_reg(x13); // restore receiver
++ __ j(resolved);
++
++ // Get superklass in x10 and subklass in x13
++ __ bind(quicked);
++ __ mv(x13, x10); // Save object in x13; x10 needed for subtype check
++ __ load_resolved_klass_at_offset(x12, x9, x10, t0); // x10 = klass
++
++ __ bind(resolved);
++ __ load_klass(x9, x13);
++
++ // Generate subtype check. Blows x12, x15. Object in x13.
++ // Superklass in x10. Subklass in x9.
++ __ gen_subtype_check(x9, ok_is_subtype);
++
++ // Come here on failure
++ __ push_reg(x13);
++ // object is at TOS
++ __ j(Interpreter::_throw_ClassCastException_entry);
++
++ // Come here on success
++ __ bind(ok_is_subtype);
++ __ mv(x10, x13); // Restore object in x13
++
++ // Collect counts on whether this test sees NULLs a lot or not.
++ if (ProfileInterpreter) {
++ __ j(done);
++ __ bind(is_null);
++ __ profile_null_seen(x12);
++ } else {
++ __ bind(is_null); // same as 'done'
++ }
++ __ bind(done);
++}
++
++void TemplateTable::instanceof() {
++ transition(atos, itos);
++ Label done, is_null, ok_is_subtype, quicked, resolved;
++ __ beqz(x10, is_null);
++
++ // Get cpool & tags index
++ __ get_cpool_and_tags(x12, x13); // x12=cpool, x13=tags array
++ __ get_unsigned_2_byte_index_at_bcp(x9, 1); // x9=index
++ // See if bytecode has already been quicked
++ __ add(t0, x13, Array<u1>::base_offset_in_bytes());
++ __ add(x11, t0, x9);
++ __ membar(MacroAssembler::AnyAny);
++ __ lbu(x11, x11);
++ __ membar(MacroAssembler::LoadLoad | MacroAssembler::LoadStore);
++ __ sub(t0, x11, (u1)JVM_CONSTANT_Class);
++ __ beqz(t0, quicked);
++
++ __ push(atos); // save receiver for result, and for GC
++ call_VM(x10, CAST_FROM_FN_PTR(address, InterpreterRuntime::quicken_io_cc));
++ // vm_result_2 has metadata result
++ __ get_vm_result_2(x10, xthread);
++ __ pop_reg(x13); // restore receiver
++ __ verify_oop(x13);
++ __ load_klass(x13, x13);
++ __ j(resolved);
++
++ // Get superklass in x10 and subklass in x13
++ __ bind(quicked);
++ __ load_klass(x13, x10);
++ __ load_resolved_klass_at_offset(x12, x9, x10, t0);
++
++ __ bind(resolved);
++
++ // Generate subtype check. Blows x12, x15
++ // Superklass in x10. Subklass in x13.
++ __ gen_subtype_check(x13, ok_is_subtype);
++
++ // Come here on failure
++ __ mv(x10, zr);
++ __ j(done);
++ // Come here on success
++ __ bind(ok_is_subtype);
++ __ mv(x10, 1);
++
++ // Collect counts on whether this test sees NULLs a lot or not.
++ if (ProfileInterpreter) {
++ __ j(done);
++ __ bind(is_null);
++ __ profile_null_seen(x12);
++ } else {
++ __ bind(is_null); // same as 'done'
++ }
++ __ bind(done);
++ // x10 = 0: obj == NULL or obj is not an instanceof the specified klass
++ // x10 = 1: obj != NULL and obj is an instanceof the specified klass
++}
++
++//-----------------------------------------------------------------------------
++// Breakpoints
++void TemplateTable::_breakpoint() {
++ // Note: We get here even if we are single stepping..
++ // jbug inists on setting breakpoints at every bytecode
++ // even if we are in single step mode.
++
++ transition(vtos, vtos);
++
++ // get the unpatched byte code
++ __ get_method(c_rarg1);
++ __ call_VM(noreg,
++ CAST_FROM_FN_PTR(address,
++ InterpreterRuntime::get_original_bytecode_at),
++ c_rarg1, xbcp);
++ __ mv(x9, x10);
++
++ // post the breakpoint event
++ __ call_VM(noreg,
++ CAST_FROM_FN_PTR(address, InterpreterRuntime::_breakpoint),
++ xmethod, xbcp);
++
++ // complete the execution of original bytecode
++ __ mv(t0, x9);
++ __ dispatch_only_normal(vtos);
++}
++
++//-----------------------------------------------------------------------------
++// Exceptions
++
++void TemplateTable::athrow() {
++ transition(atos, vtos);
++ __ null_check(x10);
++ __ j(Interpreter::throw_exception_entry());
++}
++
++//-----------------------------------------------------------------------------
++// Synchronization
++//
++// Note: monitorenter & exit are symmetric routines; which is reflected
++// in the assembly code structure as well
++//
++// Stack layout:
++//
++// [expressions ] <--- esp = expression stack top
++// ..
++// [expressions ]
++// [monitor entry] <--- monitor block top = expression stack bot
++// ..
++// [monitor entry]
++// [frame data ] <--- monitor block bot
++// ...
++// [saved fp ] <--- fp
++void TemplateTable::monitorenter()
++{
++ transition(atos, vtos);
++
++ // check for NULL object
++ __ null_check(x10);
++
++ const Address monitor_block_top(
++ fp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
++ const Address monitor_block_bot(
++ fp, frame::interpreter_frame_initial_sp_offset * wordSize);
++ const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
++
++ Label allocated;
++
++ // initialize entry pointer
++ __ mv(c_rarg1, zr); // points to free slot or NULL
++
++ // find a free slot in the monitor block (result in c_rarg1)
++ {
++ Label entry, loop, exit, notUsed;
++ __ ld(c_rarg3, monitor_block_top); // points to current entry,
++ // starting with top-most entry
++ __ la(c_rarg2, monitor_block_bot); // points to word before bottom
++
++ __ j(entry);
++
++ __ bind(loop);
++ // check if current entry is used
++ // if not used then remember entry in c_rarg1
++ __ ld(t0, Address(c_rarg3, BasicObjectLock::obj_offset_in_bytes()));
++ __ bnez(t0, notUsed);
++ __ mv(c_rarg1, c_rarg3);
++ __ bind(notUsed);
++ // check if current entry is for same object
++ // if same object then stop searching
++ __ beq(x10, t0, exit);
++ // otherwise advance to next entry
++ __ add(c_rarg3, c_rarg3, entry_size);
++ __ bind(entry);
++ // check if bottom reached
++ // if not at bottom then check this entry
++ __ bne(c_rarg3, c_rarg2, loop);
++ __ bind(exit);
++ }
++
++ __ bnez(c_rarg1, allocated); // check if a slot has been found and
++ // if found, continue with that on
++
++ // allocate one if there's no free slot
++ {
++ Label entry, loop;
++ // 1. compute new pointers // esp: old expression stack top
++ __ ld(c_rarg1, monitor_block_bot); // c_rarg1: old expression stack bottom
++ __ sub(esp, esp, entry_size); // move expression stack top
++ __ sub(c_rarg1, c_rarg1, entry_size); // move expression stack bottom
++ __ mv(c_rarg3, esp); // set start value for copy loop
++ __ sd(c_rarg1, monitor_block_bot); // set new monitor block bottom
++ __ sub(sp, sp, entry_size); // make room for the monitor
++
++ __ j(entry);
++ // 2. move expression stack contents
++ __ bind(loop);
++ __ ld(c_rarg2, Address(c_rarg3, entry_size)); // load expression stack
++ // word from old location
++ __ sd(c_rarg2, Address(c_rarg3, 0)); // and store it at new location
++ __ add(c_rarg3, c_rarg3, wordSize); // advance to next word
++ __ bind(entry);
++ __ bne(c_rarg3, c_rarg1, loop); // check if bottom reached.if not at bottom
++ // then copy next word
++ }
++
++ // call run-time routine
++ // c_rarg1: points to monitor entry
++ __ bind(allocated);
++
++ // Increment bcp to point to the next bytecode, so exception
++ // handling for async. exceptions work correctly.
++ // The object has already been poped from the stack, so the
++ // expression stack looks correct.
++ __ addi(xbcp, xbcp, 1);
++
++ // store object
++ __ sd(x10, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
++ __ lock_object(c_rarg1);
++
++ // check to make sure this monitor doesn't cause stack overflow after locking
++ __ save_bcp(); // in case of exception
++ __ generate_stack_overflow_check(0);
++
++ // The bcp has already been incremented. Just need to dispatch to
++ // next instruction.
++ __ dispatch_next(vtos);
++}
++
++void TemplateTable::monitorexit()
++{
++ transition(atos, vtos);
++
++ // check for NULL object
++ __ null_check(x10);
++
++ const Address monitor_block_top(
++ fp, frame::interpreter_frame_monitor_block_top_offset * wordSize);
++ const Address monitor_block_bot(
++ fp, frame::interpreter_frame_initial_sp_offset * wordSize);
++ const int entry_size = frame::interpreter_frame_monitor_size() * wordSize;
++
++ Label found;
++
++ // find matching slot
++ {
++ Label entry, loop;
++ __ ld(c_rarg1, monitor_block_top); // points to current entry,
++ // starting with top-most entry
++ __ la(c_rarg2, monitor_block_bot); // points to word before bottom
++ // of monitor block
++ __ j(entry);
++
++ __ bind(loop);
++ // check if current entry is for same object
++ __ ld(t0, Address(c_rarg1, BasicObjectLock::obj_offset_in_bytes()));
++ // if same object then stop searching
++ __ beq(x10, t0, found);
++ // otherwise advance to next entry
++ __ add(c_rarg1, c_rarg1, entry_size);
++ __ bind(entry);
++ // check if bottom reached
++ // if not at bottom then check this entry
++ __ bne(c_rarg1, c_rarg2, loop);
++ }
++
++ // error handling. Unlocking was not block-structured
++ __ call_VM(noreg, CAST_FROM_FN_PTR(address,
++ InterpreterRuntime::throw_illegal_monitor_state_exception));
++ __ should_not_reach_here();
++
++ // call run-time routine
++ __ bind(found);
++ __ push_ptr(x10); // make sure object is on stack (contract with oopMaps)
++ __ unlock_object(c_rarg1);
++ __ pop_ptr(x10); // discard object
++}
++
++// Wide instructions
++void TemplateTable::wide()
++{
++ __ load_unsigned_byte(x9, at_bcp(1));
++ __ mv(t0, (address)Interpreter::_wentry_point);
++ __ shadd(t0, x9, t0, t1, 3);
++ __ ld(t0, Address(t0));
++ __ jr(t0);
++}
++
++// Multi arrays
++void TemplateTable::multianewarray() {
++ transition(vtos, atos);
++ __ load_unsigned_byte(x10, at_bcp(3)); // get number of dimensions
++ // last dim is on top of stack; we want address of first one:
++ // first_addr = last_addr + (ndims - 1) * wordSize
++ __ shadd(c_rarg1, x10, esp, c_rarg1, 3);
++ __ sub(c_rarg1, c_rarg1, wordSize);
++ call_VM(x10,
++ CAST_FROM_FN_PTR(address, InterpreterRuntime::multianewarray),
++ c_rarg1);
++ __ load_unsigned_byte(x11, at_bcp(3));
++ __ shadd(esp, x11, esp, t0, 3);
++}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/templateTable_riscv.hpp
+@@ -0,0 +1,42 @@
++/*
++ * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_TEMPLATETABLE_RISCV_HPP
++#define CPU_RISCV_TEMPLATETABLE_RISCV_HPP
++
++static void prepare_invoke(int byte_no,
++ Register method, // linked method (or i-klass)
++ Register index = noreg, // itable index, MethodType, etc.
++ Register recv = noreg, // if caller wants to see it
++ Register flags = noreg // if caller wants to test it
++ );
++static void invokevirtual_helper(Register index, Register recv,
++ Register flags);
++
++// Helpers
++static void index_check(Register array, Register index);
++
++#endif // CPU_RISCV_TEMPLATETABLE_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/universalNativeInvoker_riscv.cpp
+@@ -0,0 +1,33 @@
++/*
++ * Copyright (c) 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "prims/universalNativeInvoker.hpp"
++#include "utilities/debug.hpp"
++
++address ProgrammableInvoker::generate_adapter(jobject jabi, jobject jlayout) {
++ Unimplemented();
++ return nullptr;
++}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/universalUpcallHandle_riscv.cpp
+@@ -0,0 +1,42 @@
++/*
++ * Copyright (c) 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "prims/universalUpcallHandler.hpp"
++#include "utilities/debug.hpp"
++
++address ProgrammableUpcallHandler::generate_upcall_stub(jobject jrec, jobject jabi, jobject jlayout) {
++ Unimplemented();
++ return nullptr;
++}
++
++address ProgrammableUpcallHandler::generate_optimized_upcall_stub(jobject mh, Method* entry, jobject jabi, jobject jconv) {
++ ShouldNotCallThis();
++ return nullptr;
++}
++
++bool ProgrammableUpcallHandler::supports_optimized_upcalls() {
++ return false;
++}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/vmStructs_riscv.hpp
+@@ -0,0 +1,42 @@
++/*
++ * Copyright (c) 2015, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_VMSTRUCTS_RISCV_HPP
++#define CPU_RISCV_VMSTRUCTS_RISCV_HPP
++
++// These are the CPU-specific fields, types and integer
++// constants required by the Serviceability Agent. This file is
++// referenced by vmStructs.cpp.
++
++#define VM_STRUCTS_CPU(nonstatic_field, static_field, unchecked_nonstatic_field, volatile_nonstatic_field, nonproduct_nonstatic_field, c2_nonstatic_field, unchecked_c1_static_field, unchecked_c2_static_field) \
++ volatile_nonstatic_field(JavaFrameAnchor, _last_Java_fp, intptr_t*)
++
++#define VM_TYPES_CPU(declare_type, declare_toplevel_type, declare_oop_type, declare_integer_type, declare_unsigned_integer_type, declare_c1_toplevel_type, declare_c2_type, declare_c2_toplevel_type)
++
++#define VM_INT_CONSTANTS_CPU(declare_constant, declare_preprocessor_constant, declare_c1_constant, declare_c2_constant, declare_c2_preprocessor_constant)
++
++#define VM_LONG_CONSTANTS_CPU(declare_constant, declare_preprocessor_constant, declare_c1_constant, declare_c2_constant, declare_c2_preprocessor_constant)
++
++#endif // CPU_RISCV_VMSTRUCTS_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/vm_version_ext_riscv.cpp
+@@ -0,0 +1,87 @@
++/*
++ * Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "memory/allocation.hpp"
++#include "memory/allocation.inline.hpp"
++#include "runtime/os.inline.hpp"
++#include "vm_version_ext_riscv.hpp"
++
++// VM_Version_Ext statics
++int VM_Version_Ext::_no_of_threads = 0;
++int VM_Version_Ext::_no_of_cores = 0;
++int VM_Version_Ext::_no_of_sockets = 0;
++bool VM_Version_Ext::_initialized = false;
++char VM_Version_Ext::_cpu_name[CPU_TYPE_DESC_BUF_SIZE] = {0};
++char VM_Version_Ext::_cpu_desc[CPU_DETAILED_DESC_BUF_SIZE] = {0};
++
++void VM_Version_Ext::initialize_cpu_information(void) {
++ // do nothing if cpu info has been initialized
++ if (_initialized) {
++ return;
++ }
++
++ _no_of_cores = os::processor_count();
++ _no_of_threads = _no_of_cores;
++ _no_of_sockets = _no_of_cores;
++ snprintf(_cpu_name, CPU_TYPE_DESC_BUF_SIZE - 1, "RISCV64");
++ snprintf(_cpu_desc, CPU_DETAILED_DESC_BUF_SIZE, "RISCV64 %s", _features_string);
++ _initialized = true;
++}
++
++int VM_Version_Ext::number_of_threads(void) {
++ initialize_cpu_information();
++ return _no_of_threads;
++}
++
++int VM_Version_Ext::number_of_cores(void) {
++ initialize_cpu_information();
++ return _no_of_cores;
++}
++
++int VM_Version_Ext::number_of_sockets(void) {
++ initialize_cpu_information();
++ return _no_of_sockets;
++}
++
++const char* VM_Version_Ext::cpu_name(void) {
++ initialize_cpu_information();
++ char* tmp = NEW_C_HEAP_ARRAY_RETURN_NULL(char, CPU_TYPE_DESC_BUF_SIZE, mtTracing);
++ if (NULL == tmp) {
++ return NULL;
++ }
++ strncpy(tmp, _cpu_name, CPU_TYPE_DESC_BUF_SIZE);
++ return tmp;
++}
++
++const char* VM_Version_Ext::cpu_description(void) {
++ initialize_cpu_information();
++ char* tmp = NEW_C_HEAP_ARRAY_RETURN_NULL(char, CPU_DETAILED_DESC_BUF_SIZE, mtTracing);
++ if (NULL == tmp) {
++ return NULL;
++ }
++ strncpy(tmp, _cpu_desc, CPU_DETAILED_DESC_BUF_SIZE);
++ return tmp;
++}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/vm_version_ext_riscv.hpp
+@@ -0,0 +1,55 @@
++/*
++ * Copyright (c) 2016, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_VM_VERSION_EXT_RISCV_HPP
++#define CPU_RISCV_VM_VERSION_EXT_RISCV_HPP
++
++#include "runtime/vm_version.hpp"
++#include "utilities/macros.hpp"
++
++class VM_Version_Ext : public VM_Version {
++ private:
++ static const size_t CPU_TYPE_DESC_BUF_SIZE = 256;
++ static const size_t CPU_DETAILED_DESC_BUF_SIZE = 4096;
++
++ static int _no_of_threads;
++ static int _no_of_cores;
++ static int _no_of_sockets;
++ static bool _initialized;
++ static char _cpu_name[CPU_TYPE_DESC_BUF_SIZE];
++ static char _cpu_desc[CPU_DETAILED_DESC_BUF_SIZE];
++
++ public:
++ static int number_of_threads(void);
++ static int number_of_cores(void);
++ static int number_of_sockets(void);
++
++ static const char* cpu_name(void);
++ static const char* cpu_description(void);
++ static void initialize_cpu_information(void);
++
++};
++
++#endif // CPU_RISCV_VM_VERSION_EXT_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/vm_version_riscv.cpp
+@@ -0,0 +1,225 @@
++/*
++ * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "runtime/java.hpp"
++#include "runtime/os.hpp"
++#include "runtime/vm_version.hpp"
++#include "utilities/formatBuffer.hpp"
++#include "utilities/macros.hpp"
++
++#include OS_HEADER_INLINE(os)
++
++const char* VM_Version::_uarch = "";
++const char* VM_Version::_vm_mode = "";
++uint32_t VM_Version::_initial_vector_length = 0;
++
++void VM_Version::initialize() {
++ _supports_cx8 = true;
++ _supports_atomic_getset4 = true;
++ _supports_atomic_getadd4 = true;
++ _supports_atomic_getset8 = true;
++ _supports_atomic_getadd8 = true;
++
++ get_os_cpu_info();
++
++ // check if satp.mode is supported, currently supports up to SV48(RV64)
++ if (get_satp_mode() > VM_SV48) {
++ vm_exit_during_initialization(
++ err_msg("Unsupported satp mode: %s. Only satp modes up to sv48 are supported for now.",
++ _vm_mode));
++ }
++
++ if (FLAG_IS_DEFAULT(UseFMA)) {
++ FLAG_SET_DEFAULT(UseFMA, true);
++ }
++
++ if (FLAG_IS_DEFAULT(AllocatePrefetchDistance)) {
++ FLAG_SET_DEFAULT(AllocatePrefetchDistance, 0);
++ }
++
++ if (UseAES || UseAESIntrinsics) {
++ if (UseAES && !FLAG_IS_DEFAULT(UseAES)) {
++ warning("AES instructions are not available on this CPU");
++ FLAG_SET_DEFAULT(UseAES, false);
++ }
++ if (UseAESIntrinsics && !FLAG_IS_DEFAULT(UseAESIntrinsics)) {
++ warning("AES intrinsics are not available on this CPU");
++ FLAG_SET_DEFAULT(UseAESIntrinsics, false);
++ }
++ }
++
++ if (UseAESCTRIntrinsics) {
++ warning("AES/CTR intrinsics are not available on this CPU");
++ FLAG_SET_DEFAULT(UseAESCTRIntrinsics, false);
++ }
++
++ if (UseSHA) {
++ warning("SHA instructions are not available on this CPU");
++ FLAG_SET_DEFAULT(UseSHA, false);
++ }
++
++ if (UseSHA1Intrinsics) {
++ warning("Intrinsics for SHA-1 crypto hash functions not available on this CPU.");
++ FLAG_SET_DEFAULT(UseSHA1Intrinsics, false);
++ }
++
++ if (UseSHA256Intrinsics) {
++ warning("Intrinsics for SHA-224 and SHA-256 crypto hash functions not available on this CPU.");
++ FLAG_SET_DEFAULT(UseSHA256Intrinsics, false);
++ }
++
++ if (UseSHA512Intrinsics) {
++ warning("Intrinsics for SHA-384 and SHA-512 crypto hash functions not available on this CPU.");
++ FLAG_SET_DEFAULT(UseSHA512Intrinsics, false);
++ }
++
++ if (UseSHA3Intrinsics) {
++ warning("Intrinsics for SHA3-224, SHA3-256, SHA3-384 and SHA3-512 crypto hash functions not available on this CPU.");
++ FLAG_SET_DEFAULT(UseSHA3Intrinsics, false);
++ }
++
++ if (UseCRC32Intrinsics) {
++ warning("CRC32 intrinsics are not available on this CPU.");
++ FLAG_SET_DEFAULT(UseCRC32Intrinsics, false);
++ }
++
++ if (UseCRC32CIntrinsics) {
++ warning("CRC32C intrinsics are not available on this CPU.");
++ FLAG_SET_DEFAULT(UseCRC32CIntrinsics, false);
++ }
++
++ if (UseMD5Intrinsics) {
++ warning("MD5 intrinsics are not available on this CPU.");
++ FLAG_SET_DEFAULT(UseMD5Intrinsics, false);
++ }
++
++ if (UseRVV) {
++ if (!(_features & CPU_V)) {
++ warning("RVV is not supported on this CPU");
++ FLAG_SET_DEFAULT(UseRVV, false);
++ } else {
++ // read vector length from vector CSR vlenb
++ _initial_vector_length = get_current_vector_length();
++ }
++ }
++
++ if (UseRVC && !(_features & CPU_C)) {
++ warning("RVC is not supported on this CPU");
++ FLAG_SET_DEFAULT(UseRVC, false);
++ }
++
++ if (FLAG_IS_DEFAULT(AvoidUnalignedAccesses)) {
++ FLAG_SET_DEFAULT(AvoidUnalignedAccesses, true);
++ }
++
++ if (UseZbb) {
++ if (FLAG_IS_DEFAULT(UsePopCountInstruction)) {
++ FLAG_SET_DEFAULT(UsePopCountInstruction, true);
++ }
++ } else {
++ FLAG_SET_DEFAULT(UsePopCountInstruction, false);
++ }
++
++ char buf[512];
++ buf[0] = '\0';
++ if (_uarch != NULL && strcmp(_uarch, "") != 0) snprintf(buf, sizeof(buf), "%s,", _uarch);
++ strcat(buf, "rv64");
++#define ADD_FEATURE_IF_SUPPORTED(id, name, bit) if (_features & CPU_##id) strcat(buf, name);
++ CPU_FEATURE_FLAGS(ADD_FEATURE_IF_SUPPORTED)
++#undef ADD_FEATURE_IF_SUPPORTED
++
++ _features_string = os::strdup(buf);
++
++#ifdef COMPILER2
++ c2_initialize();
++#endif // COMPILER2
++}
++
++#ifdef COMPILER2
++void VM_Version::c2_initialize() {
++ if (UseCMoveUnconditionally) {
++ FLAG_SET_DEFAULT(UseCMoveUnconditionally, false);
++ }
++
++ if (ConditionalMoveLimit > 0) {
++ FLAG_SET_DEFAULT(ConditionalMoveLimit, 0);
++ }
++
++ if (!UseRVV) {
++ FLAG_SET_DEFAULT(SpecialEncodeISOArray, false);
++ }
++
++ if (!UseRVV && MaxVectorSize) {
++ FLAG_SET_DEFAULT(MaxVectorSize, 0);
++ }
++
++ if (!UseRVV) {
++ FLAG_SET_DEFAULT(UseRVVForBigIntegerShiftIntrinsics, false);
++ }
++
++ if (UseRVV) {
++ if (FLAG_IS_DEFAULT(MaxVectorSize)) {
++ MaxVectorSize = _initial_vector_length;
++ } else if (MaxVectorSize < 16) {
++ warning("RVV does not support vector length less than 16 bytes. Disabling RVV.");
++ UseRVV = false;
++ } else if (is_power_of_2(MaxVectorSize)) {
++ if (MaxVectorSize > _initial_vector_length) {
++ warning("Current system only supports max RVV vector length %d. Set MaxVectorSize to %d",
++ _initial_vector_length, _initial_vector_length);
++ }
++ MaxVectorSize = _initial_vector_length;
++ } else {
++ vm_exit_during_initialization(err_msg("Unsupported MaxVectorSize: %d", (int)MaxVectorSize));
++ }
++ }
++
++ // disable prefetch
++ if (FLAG_IS_DEFAULT(AllocatePrefetchStyle)) {
++ FLAG_SET_DEFAULT(AllocatePrefetchStyle, 0);
++ }
++
++ if (FLAG_IS_DEFAULT(UseMulAddIntrinsic)) {
++ FLAG_SET_DEFAULT(UseMulAddIntrinsic, true);
++ }
++
++ if (FLAG_IS_DEFAULT(UseMultiplyToLenIntrinsic)) {
++ FLAG_SET_DEFAULT(UseMultiplyToLenIntrinsic, true);
++ }
++
++ if (FLAG_IS_DEFAULT(UseSquareToLenIntrinsic)) {
++ FLAG_SET_DEFAULT(UseSquareToLenIntrinsic, true);
++ }
++
++ if (FLAG_IS_DEFAULT(UseMontgomeryMultiplyIntrinsic)) {
++ FLAG_SET_DEFAULT(UseMontgomeryMultiplyIntrinsic, true);
++ }
++
++ if (FLAG_IS_DEFAULT(UseMontgomerySquareIntrinsic)) {
++ FLAG_SET_DEFAULT(UseMontgomerySquareIntrinsic, true);
++ }
++}
++#endif // COMPILER2
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/vm_version_riscv.hpp
+@@ -0,0 +1,82 @@
++/*
++ * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, 2020, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_VM_VERSION_RISCV_HPP
++#define CPU_RISCV_VM_VERSION_RISCV_HPP
++
++#include "runtime/abstract_vm_version.hpp"
++#include "runtime/arguments.hpp"
++#include "runtime/globals_extension.hpp"
++#include "utilities/sizes.hpp"
++
++class VM_Version : public Abstract_VM_Version {
++#ifdef COMPILER2
++private:
++ static void c2_initialize();
++#endif // COMPILER2
++
++// VM modes (satp.mode) privileged ISA 1.10
++enum VM_MODE {
++ VM_MBARE = 0,
++ VM_SV39 = 8,
++ VM_SV48 = 9,
++ VM_SV57 = 10,
++ VM_SV64 = 11
++};
++
++protected:
++ static const char* _uarch;
++ static const char* _vm_mode;
++ static uint32_t _initial_vector_length;
++ static void get_os_cpu_info();
++ static uint32_t get_current_vector_length();
++ static VM_MODE get_satp_mode();
++
++public:
++ // Initialization
++ static void initialize();
++
++ constexpr static bool supports_stack_watermark_barrier() { return true; }
++
++ enum Feature_Flag {
++#define CPU_FEATURE_FLAGS(decl) \
++ decl(I, "i", 8) \
++ decl(M, "m", 12) \
++ decl(A, "a", 0) \
++ decl(F, "f", 5) \
++ decl(D, "d", 3) \
++ decl(C, "c", 2) \
++ decl(V, "v", 21)
++
++#define DECLARE_CPU_FEATURE_FLAG(id, name, bit) CPU_##id = (1 << bit),
++ CPU_FEATURE_FLAGS(DECLARE_CPU_FEATURE_FLAG)
++#undef DECLARE_CPU_FEATURE_FLAG
++ };
++
++ static void initialize_cpu_information(void);
++};
++
++#endif // CPU_RISCV_VM_VERSION_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/vmreg_riscv.cpp
+@@ -0,0 +1,64 @@
++/*
++ * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/assembler.hpp"
++#include "code/vmreg.hpp"
++
++void VMRegImpl::set_regName() {
++ int i = 0;
++ Register reg = ::as_Register(0);
++ for ( ; i < ConcreteRegisterImpl::max_gpr ; ) {
++ for (int j = 0 ; j < RegisterImpl::max_slots_per_register ; j++) {
++ regName[i++] = reg->name();
++ }
++ reg = reg->successor();
++ }
++
++ FloatRegister freg = ::as_FloatRegister(0);
++ for ( ; i < ConcreteRegisterImpl::max_fpr ; ) {
++ for (int j = 0 ; j < FloatRegisterImpl::max_slots_per_register ; j++) {
++ regName[i++] = freg->name();
++ }
++ freg = freg->successor();
++ }
++
++ VectorRegister vreg = ::as_VectorRegister(0);
++ for ( ; i < ConcreteRegisterImpl::max_vpr ; ) {
++ for (int j = 0 ; j < VectorRegisterImpl::max_slots_per_register ; j++) {
++ regName[i++] = vreg->name();
++ }
++ vreg = vreg->successor();
++ }
++
++ for ( ; i < ConcreteRegisterImpl::number_of_registers ; i++) {
++ regName[i] = "NON-GPR-FPR-VPR";
++ }
++}
++
++VMReg VMRegImpl::vmStorageToVMReg(int type, int index) {
++ Unimplemented();
++ return VMRegImpl::Bad();
++}
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/vmreg_riscv.hpp
+@@ -0,0 +1,68 @@
++/*
++ * Copyright (c) 2006, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_VMREG_RISCV_HPP
++#define CPU_RISCV_VMREG_RISCV_HPP
++
++inline bool is_Register() {
++ return (unsigned int) value() < (unsigned int) ConcreteRegisterImpl::max_gpr;
++}
++
++inline bool is_FloatRegister() {
++ return value() >= ConcreteRegisterImpl::max_gpr && value() < ConcreteRegisterImpl::max_fpr;
++}
++
++inline bool is_VectorRegister() {
++ return value() >= ConcreteRegisterImpl::max_fpr && value() < ConcreteRegisterImpl::max_vpr;
++}
++
++inline Register as_Register() {
++ assert(is_Register(), "must be");
++ return ::as_Register(value() / RegisterImpl::max_slots_per_register);
++}
++
++inline FloatRegister as_FloatRegister() {
++ assert(is_FloatRegister() && is_even(value()), "must be");
++ return ::as_FloatRegister((value() - ConcreteRegisterImpl::max_gpr) /
++ FloatRegisterImpl::max_slots_per_register);
++}
++
++inline VectorRegister as_VectorRegister() {
++ assert(is_VectorRegister() && ((value() & (VectorRegisterImpl::max_slots_per_register - 1)) == 0), "must be");
++ return ::as_VectorRegister((value() - ConcreteRegisterImpl::max_fpr) /
++ VectorRegisterImpl::max_slots_per_register);
++}
++
++inline bool is_concrete() {
++ assert(is_reg(), "must be");
++ if (is_VectorRegister()) {
++ int base = value() - ConcreteRegisterImpl::max_fpr;
++ return (base % VectorRegisterImpl::max_slots_per_register) == 0;
++ } else {
++ return is_even(value());
++ }
++}
++
++#endif // CPU_RISCV_VMREG_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/vmreg_riscv.inline.hpp
+@@ -0,0 +1,46 @@
++/*
++ * Copyright (c) 2006, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef CPU_RISCV_VM_VMREG_RISCV_INLINE_HPP
++#define CPU_RISCV_VM_VMREG_RISCV_INLINE_HPP
++
++inline VMReg RegisterImpl::as_VMReg() {
++ if (this == noreg) {
++ return VMRegImpl::Bad();
++ }
++ return VMRegImpl::as_VMReg(encoding() * RegisterImpl::max_slots_per_register);
++}
++
++inline VMReg FloatRegisterImpl::as_VMReg() {
++ return VMRegImpl::as_VMReg((encoding() * FloatRegisterImpl::max_slots_per_register) +
++ ConcreteRegisterImpl::max_gpr);
++}
++
++inline VMReg VectorRegisterImpl::as_VMReg() {
++ return VMRegImpl::as_VMReg((encoding() * VectorRegisterImpl::max_slots_per_register) +
++ ConcreteRegisterImpl::max_fpr);
++}
++
++#endif // CPU_RISCV_VM_VMREG_RISCV_INLINE_HPP
+--- /dev/null
++++ b/src/hotspot/cpu/riscv/vtableStubs_riscv.cpp
+@@ -0,0 +1,260 @@
++/*
++ * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, Red Hat Inc. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/macroAssembler.inline.hpp"
++#include "assembler_riscv.inline.hpp"
++#include "code/vtableStubs.hpp"
++#include "interp_masm_riscv.hpp"
++#include "memory/resourceArea.hpp"
++#include "oops/compiledICHolder.hpp"
++#include "oops/instanceKlass.hpp"
++#include "oops/klassVtable.hpp"
++#include "runtime/sharedRuntime.hpp"
++#include "vmreg_riscv.inline.hpp"
++#ifdef COMPILER2
++#include "opto/runtime.hpp"
++#endif
++
++// machine-dependent part of VtableStubs: create VtableStub of correct size and
++// initialize its code
++
++#define __ masm->
++
++#ifndef PRODUCT
++extern "C" void bad_compiled_vtable_index(JavaThread* thread, oop receiver, int index);
++#endif
++
++VtableStub* VtableStubs::create_vtable_stub(int vtable_index) {
++ // Read "A word on VtableStub sizing" in share/code/vtableStubs.hpp for details on stub sizing.
++ const int stub_code_length = code_size_limit(true);
++ VtableStub* s = new(stub_code_length) VtableStub(true, vtable_index);
++ // Can be NULL if there is no free space in the code cache.
++ if (s == NULL) {
++ return NULL;
++ }
++
++ // Count unused bytes in instruction sequences of variable size.
++ // We add them to the computed buffer size in order to avoid
++ // overflow in subsequently generated stubs.
++ address start_pc = NULL;
++ int slop_bytes = 0;
++ int slop_delta = 0;
++
++ ResourceMark rm;
++ CodeBuffer cb(s->entry_point(), stub_code_length);
++ MacroAssembler* masm = new MacroAssembler(&cb);
++ assert_cond(masm != NULL);
++
++#if (!defined(PRODUCT) && defined(COMPILER2))
++ if (CountCompiledCalls) {
++ __ la(t2, ExternalAddress((address) SharedRuntime::nof_megamorphic_calls_addr()));
++ __ increment(Address(t2));
++ }
++#endif
++
++ // get receiver (need to skip return address on top of stack)
++ assert(VtableStub::receiver_location() == j_rarg0->as_VMReg(), "receiver expected in j_rarg0");
++
++ // get receiver klass
++ address npe_addr = __ pc();
++ __ load_klass(t2, j_rarg0);
++
++#ifndef PRODUCT
++ if (DebugVtables) {
++ Label L;
++ start_pc = __ pc();
++
++ // check offset vs vtable length
++ __ lwu(t0, Address(t2, Klass::vtable_length_offset()));
++ __ mv(t1, vtable_index * vtableEntry::size());
++ __ bgt(t0, t1, L);
++ __ enter();
++ __ mv(x12, vtable_index);
++
++ __ call_VM(noreg, CAST_FROM_FN_PTR(address, bad_compiled_vtable_index), j_rarg0, x12);
++ const ptrdiff_t estimate = 256;
++ const ptrdiff_t codesize = __ pc() - start_pc;
++ slop_delta = estimate - codesize; // call_VM varies in length, depending on data
++ slop_bytes += slop_delta;
++ assert(slop_delta >= 0, "vtable #%d: Code size estimate (%d) for DebugVtables too small, required: %d", vtable_index, (int)estimate, (int)codesize);
++
++ __ leave();
++ __ bind(L);
++ }
++#endif // PRODUCT
++
++ start_pc = __ pc();
++ __ lookup_virtual_method(t2, vtable_index, xmethod);
++ // lookup_virtual_method generates
++ // 4 instructions (maximum value encountered in normal case):li(lui + addiw) + add + ld
++ // 1 instruction (best case):ld * 1
++ slop_delta = 16 - (int)(__ pc() - start_pc);
++ slop_bytes += slop_delta;
++ assert(slop_delta >= 0, "negative slop(%d) encountered, adjust code size estimate!", slop_delta);
++
++#ifndef PRODUCT
++ if (DebugVtables) {
++ Label L;
++ __ beqz(xmethod, L);
++ __ ld(t0, Address(xmethod, Method::from_compiled_offset()));
++ __ bnez(t0, L);
++ __ stop("Vtable entry is NULL");
++ __ bind(L);
++ }
++#endif // PRODUCT
++
++ // x10: receiver klass
++ // xmethod: Method*
++ // x12: receiver
++ address ame_addr = __ pc();
++ __ ld(t0, Address(xmethod, Method::from_compiled_offset()));
++ __ jr(t0);
++
++ masm->flush();
++ bookkeeping(masm, tty, s, npe_addr, ame_addr, true, vtable_index, slop_bytes, 0);
++
++ return s;
++}
++
++VtableStub* VtableStubs::create_itable_stub(int itable_index) {
++ // Read "A word on VtableStub sizing" in share/code/vtableStubs.hpp for details on stub sizing.
++ const int stub_code_length = code_size_limit(false);
++ VtableStub* s = new(stub_code_length) VtableStub(false, itable_index);
++ // Can be NULL if there is no free space in the code cache.
++ if (s == NULL) {
++ return NULL;
++ }
++ // Count unused bytes in instruction sequences of variable size.
++ // We add them to the computed buffer size in order to avoid
++ // overflow in subsequently generated stubs.
++ address start_pc = NULL;
++ int slop_bytes = 0;
++ int slop_delta = 0;
++
++ ResourceMark rm;
++ CodeBuffer cb(s->entry_point(), stub_code_length);
++ MacroAssembler* masm = new MacroAssembler(&cb);
++ assert_cond(masm != NULL);
++
++#if (!defined(PRODUCT) && defined(COMPILER2))
++ if (CountCompiledCalls) {
++ __ la(x18, ExternalAddress((address) SharedRuntime::nof_megamorphic_calls_addr()));
++ __ increment(Address(x18));
++ }
++#endif
++
++ // get receiver (need to skip return address on top of stack)
++ assert(VtableStub::receiver_location() == j_rarg0->as_VMReg(), "receiver expected in j_rarg0");
++
++ // Entry arguments:
++ // t1: CompiledICHolder
++ // j_rarg0: Receiver
++
++ // This stub is called from compiled code which has no callee-saved registers,
++ // so all registers except arguments are free at this point.
++ const Register recv_klass_reg = x18;
++ const Register holder_klass_reg = x19; // declaring interface klass (DECC)
++ const Register resolved_klass_reg = xmethod; // resolved interface klass (REFC)
++ const Register temp_reg = x28;
++ const Register temp_reg2 = x29;
++ const Register icholder_reg = t1;
++
++ Label L_no_such_interface;
++
++ __ ld(resolved_klass_reg, Address(icholder_reg, CompiledICHolder::holder_klass_offset()));
++ __ ld(holder_klass_reg, Address(icholder_reg, CompiledICHolder::holder_metadata_offset()));
++
++ start_pc = __ pc();
++
++ // get receiver klass (also an implicit null-check)
++ address npe_addr = __ pc();
++ __ load_klass(recv_klass_reg, j_rarg0);
++
++ // Receiver subtype check against REFC.
++ __ lookup_interface_method(// inputs: rec. class, interface
++ recv_klass_reg, resolved_klass_reg, noreg,
++ // outputs: scan temp. reg1, scan temp. reg2
++ temp_reg2, temp_reg,
++ L_no_such_interface,
++ /*return_method=*/false);
++
++ const ptrdiff_t typecheckSize = __ pc() - start_pc;
++ start_pc = __ pc();
++
++ // Get selected method from declaring class and itable index
++ __ lookup_interface_method(// inputs: rec. class, interface, itable index
++ recv_klass_reg, holder_klass_reg, itable_index,
++ // outputs: method, scan temp. reg
++ xmethod, temp_reg,
++ L_no_such_interface);
++
++ const ptrdiff_t lookupSize = __ pc() - start_pc;
++
++ // Reduce "estimate" such that "padding" does not drop below 8.
++ const ptrdiff_t estimate = 256;
++ const ptrdiff_t codesize = typecheckSize + lookupSize;
++ slop_delta = (int)(estimate - codesize);
++ slop_bytes += slop_delta;
++ assert(slop_delta >= 0, "itable #%d: Code size estimate (%d) for lookup_interface_method too small, required: %d", itable_index, (int)estimate, (int)codesize);
++
++#ifdef ASSERT
++ if (DebugVtables) {
++ Label L2;
++ __ beqz(xmethod, L2);
++ __ ld(t0, Address(xmethod, Method::from_compiled_offset()));
++ __ bnez(t0, L2);
++ __ stop("compiler entrypoint is null");
++ __ bind(L2);
++ }
++#endif // ASSERT
++
++ // xmethod: Method*
++ // j_rarg0: receiver
++ address ame_addr = __ pc();
++ __ ld(t0, Address(xmethod, Method::from_compiled_offset()));
++ __ jr(t0);
++
++ __ bind(L_no_such_interface);
++ // Handle IncompatibleClassChangeError in itable stubs.
++ // More detailed error message.
++ // We force resolving of the call site by jumping to the "handle
++ // wrong method" stub, and so let the interpreter runtime do all the
++ // dirty work.
++ assert(SharedRuntime::get_handle_wrong_method_stub() != NULL, "check initialization order");
++ __ far_jump(RuntimeAddress(SharedRuntime::get_handle_wrong_method_stub()));
++
++ masm->flush();
++ bookkeeping(masm, tty, s, npe_addr, ame_addr, false, itable_index, slop_bytes, 0);
++
++ return s;
++}
++
++int VtableStub::pd_code_alignment() {
++ // RISCV cache line size is not an architected constant. We just align on word size.
++ const unsigned int icache_line_size = wordSize;
++ return icache_line_size;
++}
+--- a/src/hotspot/os/linux/os_linux.cpp
++++ b/src/hotspot/os/linux/os_linux.cpp
+@@ -2559,6 +2559,8 @@ void os::get_summary_cpu_info(char* cpui
+ strncpy(cpuinfo, "IA64", length);
+ #elif defined(PPC)
+ strncpy(cpuinfo, "PPC64", length);
++#elif defined(RISCV)
++ strncpy(cpuinfo, "RISCV64", length);
+ #elif defined(S390)
+ strncpy(cpuinfo, "S390", length);
+ #elif defined(SPARC)
+--- /dev/null
++++ b/src/hotspot/os_cpu/linux_riscv/assembler_linux_riscv.cpp
+@@ -0,0 +1,26 @@
++/*
++ * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++// nothing required here
+--- /dev/null
++++ b/src/hotspot/os_cpu/linux_riscv/atomic_linux_riscv.hpp
+@@ -0,0 +1,151 @@
++/*
++ * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef OS_CPU_LINUX_RISCV_ATOMIC_LINUX_RISCV_HPP
++#define OS_CPU_LINUX_RISCV_ATOMIC_LINUX_RISCV_HPP
++
++#include "runtime/vm_version.hpp"
++
++// Implementation of class atomic
++
++// Note that memory_order_conservative requires a full barrier after atomic stores.
++// See https://patchwork.kernel.org/patch/3575821/
++
++template<size_t byte_size>
++struct Atomic::PlatformAdd {
++ template<typename D, typename I>
++ D add_and_fetch(D volatile* dest, I add_value, atomic_memory_order order) const {
++ if (order != memory_order_relaxed) {
++ FULL_MEM_BARRIER;
++ }
++
++ D res = __atomic_add_fetch(dest, add_value, __ATOMIC_RELAXED);
++
++ if (order != memory_order_relaxed) {
++ FULL_MEM_BARRIER;
++ }
++ return res;
++ }
++
++ template<typename D, typename I>
++ D fetch_and_add(D volatile* dest, I add_value, atomic_memory_order order) const {
++ return add_and_fetch(dest, add_value, order) - add_value;
++ }
++};
++
++template<size_t byte_size>
++template<typename T>
++inline T Atomic::PlatformXchg<byte_size>::operator()(T volatile* dest,
++ T exchange_value,
++ atomic_memory_order order) const {
++ STATIC_ASSERT(byte_size == sizeof(T));
++ if (order != memory_order_relaxed) {
++ FULL_MEM_BARRIER;
++ }
++
++ T res = __atomic_exchange_n(dest, exchange_value, __ATOMIC_RELAXED);
++
++ if (order != memory_order_relaxed) {
++ FULL_MEM_BARRIER;
++ }
++ return res;
++}
++
++// __attribute__((unused)) on dest is to get rid of spurious GCC warnings.
++template<size_t byte_size>
++template<typename T>
++inline T Atomic::PlatformCmpxchg<byte_size>::operator()(T volatile* dest __attribute__((unused)),
++ T compare_value,
++ T exchange_value,
++ atomic_memory_order order) const {
++ STATIC_ASSERT(byte_size == sizeof(T));
++ T value = compare_value;
++ if (order != memory_order_relaxed) {
++ FULL_MEM_BARRIER;
++ }
++
++ __atomic_compare_exchange(dest, &value, &exchange_value, /* weak */ false,
++ __ATOMIC_RELAXED, __ATOMIC_RELAXED);
++
++ if (order != memory_order_relaxed) {
++ FULL_MEM_BARRIER;
++ }
++ return value;
++}
++
++template<>
++template<typename T>
++inline T Atomic::PlatformCmpxchg<4>::operator()(T volatile* dest __attribute__((unused)),
++ T compare_value,
++ T exchange_value,
++ atomic_memory_order order) const {
++ STATIC_ASSERT(4 == sizeof(T));
++
++ T old_value;
++ long rc;
++
++ if (order != memory_order_relaxed) {
++ FULL_MEM_BARRIER;
++ }
++
++ __asm__ __volatile__ (
++ "1: sext.w %1, %3 \n\t" // sign-extend compare_value
++ " lr.w %0, %2 \n\t"
++ " bne %0, %1, 2f \n\t"
++ " sc.w %1, %4, %2 \n\t"
++ " bnez %1, 1b \n\t"
++ "2: \n\t"
++ : /*%0*/"=&r" (old_value), /*%1*/"=&r" (rc), /*%2*/"+A" (*dest)
++ : /*%3*/"r" (compare_value), /*%4*/"r" (exchange_value)
++ : "memory" );
++
++ if (order != memory_order_relaxed) {
++ FULL_MEM_BARRIER;
++ }
++ return old_value;
++}
++
++template<size_t byte_size>
++struct Atomic::PlatformOrderedLoad<byte_size, X_ACQUIRE>
++{
++ template <typename T>
++ T operator()(const volatile T* p) const { T data; __atomic_load(const_cast<T*>(p), &data, __ATOMIC_ACQUIRE); return data; }
++};
++
++template<size_t byte_size>
++struct Atomic::PlatformOrderedStore<byte_size, RELEASE_X>
++{
++ template <typename T>
++ void operator()(volatile T* p, T v) const { __atomic_store(const_cast<T*>(p), &v, __ATOMIC_RELEASE); }
++};
++
++template<size_t byte_size>
++struct Atomic::PlatformOrderedStore<byte_size, RELEASE_X_FENCE>
++{
++ template <typename T>
++ void operator()(volatile T* p, T v) const { release_store(p, v); OrderAccess::fence(); }
++};
++
++#endif // OS_CPU_LINUX_RISCV_ATOMIC_LINUX_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/os_cpu/linux_riscv/bytes_linux_riscv.hpp
+@@ -0,0 +1,45 @@
++/*
++ * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef OS_CPU_LINUX_RISCV_BYTES_LINUX_RISCV_HPP
++#define OS_CPU_LINUX_RISCV_BYTES_LINUX_RISCV_HPP
++
++#include <byteswap.h>
++
++// Efficient swapping of data bytes from Java byte
++// ordering to native byte ordering and vice versa.
++inline u2 Bytes::swap_u2(u2 x) {
++ return bswap_16(x);
++}
++
++inline u4 Bytes::swap_u4(u4 x) {
++ return bswap_32(x);
++}
++
++inline u8 Bytes::swap_u8(u8 x) {
++ return bswap_64(x);
++}
++
++#endif // OS_CPU_LINUX_RISCV_BYTES_LINUX_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/os_cpu/linux_riscv/copy_linux_riscv.hpp
+@@ -0,0 +1,31 @@
++/*
++ * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef OS_CPU_LINUX_RISCV_VM_COPY_LINUX_RISCV_HPP
++#define OS_CPU_LINUX_RISCV_VM_COPY_LINUX_RISCV_HPP
++
++// Empty for build system
++
++#endif // OS_CPU_LINUX_RISCV_VM_COPY_LINUX_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/os_cpu/linux_riscv/gc/z/zSyscall_linux_riscv.hpp
+@@ -0,0 +1,42 @@
++/*
++ * Copyright (c) 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef OS_CPU_LINUX_RISCV_GC_Z_ZSYSCALL_LINUX_RISCV_HPP
++#define OS_CPU_LINUX_RISCV_GC_Z_ZSYSCALL_LINUX_RISCV_HPP
++
++#include <sys/syscall.h>
++
++//
++// Support for building on older Linux systems
++//
++
++#ifndef SYS_memfd_create
++#define SYS_memfd_create 279
++#endif
++#ifndef SYS_fallocate
++#define SYS_fallocate 47
++#endif
++
++#endif // OS_CPU_LINUX_RISCV_GC_Z_ZSYSCALL_LINUX_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/os_cpu/linux_riscv/globals_linux_riscv.hpp
+@@ -0,0 +1,43 @@
++/*
++ * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef OS_CPU_LINUX_RISCV_VM_GLOBALS_LINUX_RISCV_HPP
++#define OS_CPU_LINUX_RISCV_VM_GLOBALS_LINUX_RISCV_HPP
++
++// Sets the default values for platform dependent flags used by the runtime system.
++// (see globals.hpp)
++
++define_pd_global(bool, DontYieldALot, false);
++define_pd_global(intx, ThreadStackSize, 2048); // 0 => use system default
++define_pd_global(intx, VMThreadStackSize, 2048);
++
++define_pd_global(intx, CompilerThreadStackSize, 2048);
++
++define_pd_global(uintx, JVMInvokeMethodSlack, 8192);
++
++// Used on 64 bit platforms for UseCompressedOops base address
++define_pd_global(uintx, HeapBaseMinAddress, 2 * G);
++
++#endif // OS_CPU_LINUX_RISCV_VM_GLOBALS_LINUX_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/os_cpu/linux_riscv/orderAccess_linux_riscv.hpp
+@@ -0,0 +1,59 @@
++/*
++ * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef OS_CPU_LINUX_RISCV_ORDERACCESS_LINUX_RISCV_HPP
++#define OS_CPU_LINUX_RISCV_ORDERACCESS_LINUX_RISCV_HPP
++
++// Included in orderAccess.hpp header file.
++
++#include "runtime/vm_version.hpp"
++
++// Implementation of class OrderAccess.
++
++inline void OrderAccess::loadload() { acquire(); }
++inline void OrderAccess::storestore() { release(); }
++inline void OrderAccess::loadstore() { acquire(); }
++inline void OrderAccess::storeload() { fence(); }
++
++#define FULL_MEM_BARRIER __sync_synchronize()
++#define READ_MEM_BARRIER __atomic_thread_fence(__ATOMIC_ACQUIRE);
++#define WRITE_MEM_BARRIER __atomic_thread_fence(__ATOMIC_RELEASE);
++
++inline void OrderAccess::acquire() {
++ READ_MEM_BARRIER;
++}
++
++inline void OrderAccess::release() {
++ WRITE_MEM_BARRIER;
++}
++
++inline void OrderAccess::fence() {
++ FULL_MEM_BARRIER;
++}
++
++inline void OrderAccess::cross_modify_fence_impl() {
++}
++
++#endif // OS_CPU_LINUX_RISCV_ORDERACCESS_LINUX_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/os_cpu/linux_riscv/os_linux_riscv.cpp
+@@ -0,0 +1,475 @@
++/*
++ * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++// no precompiled headers
++#include "asm/macroAssembler.hpp"
++#include "classfile/vmSymbols.hpp"
++#include "code/codeCache.hpp"
++#include "code/icBuffer.hpp"
++#include "code/nativeInst.hpp"
++#include "code/vtableStubs.hpp"
++#include "interpreter/interpreter.hpp"
++#include "jvm.h"
++#include "memory/allocation.inline.hpp"
++#include "os_share_linux.hpp"
++#include "prims/jniFastGetField.hpp"
++#include "prims/jvm_misc.hpp"
++#include "runtime/arguments.hpp"
++#include "runtime/frame.inline.hpp"
++#include "runtime/interfaceSupport.inline.hpp"
++#include "runtime/java.hpp"
++#include "runtime/javaCalls.hpp"
++#include "runtime/mutexLocker.hpp"
++#include "runtime/osThread.hpp"
++#include "runtime/safepointMechanism.hpp"
++#include "runtime/sharedRuntime.hpp"
++#include "runtime/stubRoutines.hpp"
++#include "runtime/thread.inline.hpp"
++#include "runtime/timer.hpp"
++#include "signals_posix.hpp"
++#include "utilities/debug.hpp"
++#include "utilities/events.hpp"
++#include "utilities/vmError.hpp"
++
++// put OS-includes here
++# include <dlfcn.h>
++# include <fpu_control.h>
++# include <errno.h>
++# include <pthread.h>
++# include <signal.h>
++# include <stdio.h>
++# include <stdlib.h>
++# include <sys/mman.h>
++# include <sys/resource.h>
++# include <sys/socket.h>
++# include <sys/stat.h>
++# include <sys/time.h>
++# include <sys/types.h>
++# include <sys/utsname.h>
++# include <sys/wait.h>
++# include <poll.h>
++# include <pwd.h>
++# include <ucontext.h>
++# include <unistd.h>
++
++#define REG_LR 1
++#define REG_FP 8
++
++NOINLINE address os::current_stack_pointer() {
++ return (address)__builtin_frame_address(0);
++}
++
++char* os::non_memory_address_word() {
++ // Must never look like an address returned by reserve_memory,
++ // even in its subfields (as defined by the CPU immediate fields,
++ // if the CPU splits constants across multiple instructions).
++
++ return (char*) 0xffffffffffff;
++}
++
++address os::Posix::ucontext_get_pc(const ucontext_t * uc) {
++ return (address)uc->uc_mcontext.__gregs[REG_PC];
++}
++
++void os::Posix::ucontext_set_pc(ucontext_t * uc, address pc) {
++ uc->uc_mcontext.__gregs[REG_PC] = (intptr_t)pc;
++}
++
++intptr_t* os::Linux::ucontext_get_sp(const ucontext_t * uc) {
++ return (intptr_t*)uc->uc_mcontext.__gregs[REG_SP];
++}
++
++intptr_t* os::Linux::ucontext_get_fp(const ucontext_t * uc) {
++ return (intptr_t*)uc->uc_mcontext.__gregs[REG_FP];
++}
++
++address os::fetch_frame_from_context(const void* ucVoid,
++ intptr_t** ret_sp, intptr_t** ret_fp) {
++ address epc;
++ const ucontext_t* uc = (const ucontext_t*)ucVoid;
++
++ if (uc != NULL) {
++ epc = os::Posix::ucontext_get_pc(uc);
++ if (ret_sp != NULL) {
++ *ret_sp = os::Linux::ucontext_get_sp(uc);
++ }
++ if (ret_fp != NULL) {
++ *ret_fp = os::Linux::ucontext_get_fp(uc);
++ }
++ } else {
++ epc = NULL;
++ if (ret_sp != NULL) {
++ *ret_sp = (intptr_t *)NULL;
++ }
++ if (ret_fp != NULL) {
++ *ret_fp = (intptr_t *)NULL;
++ }
++ }
++
++ return epc;
++}
++
++frame os::fetch_compiled_frame_from_context(const void* ucVoid) {
++ const ucontext_t* uc = (const ucontext_t*)ucVoid;
++ // In compiled code, the stack banging is performed before RA
++ // has been saved in the frame. RA is live, and SP and FP
++ // belong to the caller.
++ intptr_t* frame_fp = os::Linux::ucontext_get_fp(uc);
++ intptr_t* frame_sp = os::Linux::ucontext_get_sp(uc);
++ address frame_pc = (address)(uc->uc_mcontext.__gregs[REG_LR]
++ - NativeInstruction::instruction_size);
++ return frame(frame_sp, frame_fp, frame_pc);
++}
++
++frame os::fetch_frame_from_context(const void* ucVoid) {
++ intptr_t* frame_sp = NULL;
++ intptr_t* frame_fp = NULL;
++ address epc = fetch_frame_from_context(ucVoid, &frame_sp, &frame_fp);
++ if (!is_readable_pointer(epc)) {
++ // Try to recover from calling into bad memory
++ // Assume new frame has not been set up, the same as
++ // compiled frame stack bang
++ return fetch_compiled_frame_from_context(ucVoid);
++ }
++ return frame(frame_sp, frame_fp, epc);
++}
++
++// By default, gcc always saves frame pointer rfp on this stack. This
++// may get turned off by -fomit-frame-pointer.
++frame os::get_sender_for_C_frame(frame* fr) {
++ return frame(fr->sender_sp(), fr->link(), fr->sender_pc());
++}
++
++NOINLINE frame os::current_frame() {
++ intptr_t **sender_sp = (intptr_t **)__builtin_frame_address(0);
++ if (sender_sp != NULL) {
++ frame myframe((intptr_t*)os::current_stack_pointer(),
++ sender_sp[frame::link_offset],
++ CAST_FROM_FN_PTR(address, os::current_frame));
++ if (os::is_first_C_frame(&myframe)) {
++ // stack is not walkable
++ return frame();
++ } else {
++ return os::get_sender_for_C_frame(&myframe);
++ }
++ } else {
++ ShouldNotReachHere();
++ return frame();
++ }
++}
++
++// Utility functions
++bool PosixSignals::pd_hotspot_signal_handler(int sig, siginfo_t* info,
++ ucontext_t* uc, JavaThread* thread) {
++
++ // decide if this trap can be handled by a stub
++ address stub = NULL;
++
++ address pc = NULL;
++
++ //%note os_trap_1
++ if (info != NULL && uc != NULL && thread != NULL) {
++ pc = (address) os::Posix::ucontext_get_pc(uc);
++
++ address addr = (address) info->si_addr;
++
++ // Make sure the high order byte is sign extended, as it may be masked away by the hardware.
++ if ((uintptr_t(addr) & (uintptr_t(1) << 55)) != 0) {
++ addr = address(uintptr_t(addr) | (uintptr_t(0xFF) << 56));
++ }
++
++ // Handle ALL stack overflow variations here
++ if (sig == SIGSEGV) {
++ // check if fault address is within thread stack
++ if (thread->is_in_full_stack(addr)) {
++ if (os::Posix::handle_stack_overflow(thread, addr, pc, uc, &stub)) {
++ return true; // continue
++ }
++ }
++ }
++
++ if (thread->thread_state() == _thread_in_Java) {
++ // Java thread running in Java code => find exception handler if any
++ // a fault inside compiled code, the interpreter, or a stub
++
++ // Handle signal from NativeJump::patch_verified_entry().
++ if ((sig == SIGILL || sig == SIGTRAP)
++ && nativeInstruction_at(pc)->is_sigill_zombie_not_entrant()) {
++ if (TraceTraps) {
++ tty->print_cr("trap: zombie_not_entrant (%s)", (sig == SIGTRAP) ? "SIGTRAP" : "SIGILL");
++ }
++ stub = SharedRuntime::get_handle_wrong_method_stub();
++ } else if (sig == SIGSEGV && SafepointMechanism::is_poll_address((address)info->si_addr)) {
++ stub = SharedRuntime::get_poll_stub(pc);
++ } else if (sig == SIGBUS /* && info->si_code == BUS_OBJERR */) {
++ // BugId 4454115: A read from a MappedByteBuffer can fault
++ // here if the underlying file has been truncated.
++ // Do not crash the VM in such a case.
++ CodeBlob* cb = CodeCache::find_blob_unsafe(pc);
++ CompiledMethod* nm = (cb != NULL) ? cb->as_compiled_method_or_null() : NULL;
++ bool is_unsafe_arraycopy = (thread->doing_unsafe_access() && UnsafeCopyMemory::contains_pc(pc));
++ if ((nm != NULL && nm->has_unsafe_access()) || is_unsafe_arraycopy) {
++ address next_pc = pc + NativeCall::instruction_size;
++ if (is_unsafe_arraycopy) {
++ next_pc = UnsafeCopyMemory::page_error_continue_pc(pc);
++ }
++ stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
++ }
++ } else if (sig == SIGILL && nativeInstruction_at(pc)->is_stop()) {
++ // Pull a pointer to the error message out of the instruction
++ // stream.
++ const uint64_t *detail_msg_ptr
++ = (uint64_t*)(pc + NativeInstruction::instruction_size);
++ const char *detail_msg = (const char *)*detail_msg_ptr;
++ const char *msg = "stop";
++ if (TraceTraps) {
++ tty->print_cr("trap: %s: (SIGILL)", msg);
++ }
++
++ // End life with a fatal error, message and detail message and the context.
++ // Note: no need to do any post-processing here (e.g. signal chaining)
++ va_list va_dummy;
++ VMError::report_and_die(thread, uc, NULL, 0, msg, detail_msg, va_dummy);
++ va_end(va_dummy);
++
++ ShouldNotReachHere();
++ } else if (sig == SIGFPE &&
++ (info->si_code == FPE_INTDIV || info->si_code == FPE_FLTDIV)) {
++ stub =
++ SharedRuntime::
++ continuation_for_implicit_exception(thread,
++ pc,
++ SharedRuntime::
++ IMPLICIT_DIVIDE_BY_ZERO);
++ } else if (sig == SIGSEGV &&
++ MacroAssembler::uses_implicit_null_check((void*)addr)) {
++ // Determination of interpreter/vtable stub/compiled code null exception
++ stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
++ }
++ } else if ((thread->thread_state() == _thread_in_vm ||
++ thread->thread_state() == _thread_in_native) &&
++ sig == SIGBUS && /* info->si_code == BUS_OBJERR && */
++ thread->doing_unsafe_access()) {
++ address next_pc = pc + NativeCall::instruction_size;
++ if (UnsafeCopyMemory::contains_pc(pc)) {
++ next_pc = UnsafeCopyMemory::page_error_continue_pc(pc);
++ }
++ stub = SharedRuntime::handle_unsafe_access(thread, next_pc);
++ }
++
++ // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in
++ // and the heap gets shrunk before the field access.
++ if ((sig == SIGSEGV) || (sig == SIGBUS)) {
++ address addr_slow = JNI_FastGetField::find_slowcase_pc(pc);
++ if (addr_slow != (address)-1) {
++ stub = addr_slow;
++ }
++ }
++ }
++
++ if (stub != NULL) {
++ // save all thread context in case we need to restore it
++ if (thread != NULL) {
++ thread->set_saved_exception_pc(pc);
++ }
++
++ os::Posix::ucontext_set_pc(uc, stub);
++ return true;
++ }
++
++ return false; // Mute compiler
++}
++
++void os::Linux::init_thread_fpu_state(void) {
++}
++
++int os::Linux::get_fpu_control_word(void) {
++ return 0;
++}
++
++void os::Linux::set_fpu_control_word(int fpu_control) {
++}
++
++////////////////////////////////////////////////////////////////////////////////
++// thread stack
++
++// Minimum usable stack sizes required to get to user code. Space for
++// HotSpot guard pages is added later.
++size_t os::Posix::_compiler_thread_min_stack_allowed = 72 * K;
++size_t os::Posix::_java_thread_min_stack_allowed = 72 * K;
++size_t os::Posix::_vm_internal_thread_min_stack_allowed = 72 * K;
++
++// return default stack size for thr_type
++size_t os::Posix::default_stack_size(os::ThreadType thr_type) {
++ // default stack size (compiler thread needs larger stack)
++ size_t s = (thr_type == os::compiler_thread ? 4 * M : 1 * M);
++ return s;
++}
++
++/////////////////////////////////////////////////////////////////////////////
++// helper functions for fatal error handler
++
++static const char* reg_abi_names[] = {
++ "pc",
++ "x1(ra)", "x2(sp)", "x3(gp)", "x4(tp)",
++ "x5(t0)", "x6(t1)", "x7(t2)",
++ "x8(s0)", "x9(s1)",
++ "x10(a0)", "x11(a1)", "x12(a2)", "x13(a3)", "x14(a4)", "x15(a5)", "x16(a6)", "x17(a7)",
++ "x18(s2)", "x19(s3)", "x20(s4)", "x21(s5)", "x22(s6)", "x23(s7)", "x24(s8)", "x25(s9)", "x26(s10)", "x27(s11)",
++ "x28(t3)", "x29(t4)","x30(t5)", "x31(t6)"
++};
++
++void os::print_context(outputStream *st, const void *context) {
++ if (context == NULL) {
++ return;
++ }
++
++ const ucontext_t *uc = (const ucontext_t*)context;
++ st->print_cr("Registers:");
++ for (int r = 0; r < 32; r++) {
++ st->print("%-*.*s=", 8, 8, reg_abi_names[r]);
++ print_location(st, uc->uc_mcontext.__gregs[r]);
++ }
++ st->cr();
++
++ intptr_t *frame_sp = (intptr_t *)os::Linux::ucontext_get_sp(uc);
++ st->print_cr("Top of Stack: (sp=" PTR_FORMAT ")", p2i(frame_sp));
++ print_hex_dump(st, (address)frame_sp, (address)(frame_sp + 64), sizeof(intptr_t));
++ st->cr();
++
++ // Note: it may be unsafe to inspect memory near pc. For example, pc may
++ // point to garbage if entry point in an nmethod is corrupted. Leave
++ // this at the end, and hope for the best.
++ address pc = os::fetch_frame_from_context(uc).pc();
++ print_instructions(st, pc, UseRVC ? sizeof(char) : (int)NativeInstruction::instruction_size);
++ st->cr();
++}
++
++void os::print_register_info(outputStream *st, const void *context) {
++ if (context == NULL) {
++ return;
++ }
++
++ const ucontext_t *uc = (const ucontext_t*)context;
++
++ st->print_cr("Register to memory mapping:");
++ st->cr();
++
++ // this is horrendously verbose but the layout of the registers in the
++ // context does not match how we defined our abstract Register set, so
++ // we can't just iterate through the gregs area
++
++ // this is only for the "general purpose" registers
++
++ for (int r = 0; r < 32; r++)
++ st->print_cr("%-*.*s=" INTPTR_FORMAT, 8, 8, reg_abi_names[r], (uintptr_t)uc->uc_mcontext.__gregs[r]);
++ st->cr();
++}
++
++void os::setup_fpu() {
++}
++
++#ifndef PRODUCT
++void os::verify_stack_alignment() {
++ assert(((intptr_t)os::current_stack_pointer() & (StackAlignmentInBytes-1)) == 0, "incorrect stack alignment");
++}
++#endif
++
++int os::extra_bang_size_in_bytes() {
++ return 0;
++}
++
++extern "C" {
++ int SpinPause() {
++ return 0;
++ }
++
++ void _Copy_conjoint_jshorts_atomic(const jshort* from, jshort* to, size_t count) {
++ if (from > to) {
++ const jshort *end = from + count;
++ while (from < end) {
++ *(to++) = *(from++);
++ }
++ } else if (from < to) {
++ const jshort *end = from;
++ from += count - 1;
++ to += count - 1;
++ while (from >= end) {
++ *(to--) = *(from--);
++ }
++ }
++ }
++ void _Copy_conjoint_jints_atomic(const jint* from, jint* to, size_t count) {
++ if (from > to) {
++ const jint *end = from + count;
++ while (from < end) {
++ *(to++) = *(from++);
++ }
++ } else if (from < to) {
++ const jint *end = from;
++ from += count - 1;
++ to += count - 1;
++ while (from >= end) {
++ *(to--) = *(from--);
++ }
++ }
++ }
++ void _Copy_conjoint_jlongs_atomic(const jlong* from, jlong* to, size_t count) {
++ if (from > to) {
++ const jlong *end = from + count;
++ while (from < end) {
++ os::atomic_copy64(from++, to++);
++ }
++ } else if (from < to) {
++ const jlong *end = from;
++ from += count - 1;
++ to += count - 1;
++ while (from >= end) {
++ os::atomic_copy64(from--, to--);
++ }
++ }
++ }
++
++ void _Copy_arrayof_conjoint_bytes(const HeapWord* from,
++ HeapWord* to,
++ size_t count) {
++ memmove(to, from, count);
++ }
++ void _Copy_arrayof_conjoint_jshorts(const HeapWord* from,
++ HeapWord* to,
++ size_t count) {
++ memmove(to, from, count * 2);
++ }
++ void _Copy_arrayof_conjoint_jints(const HeapWord* from,
++ HeapWord* to,
++ size_t count) {
++ memmove(to, from, count * 4);
++ }
++ void _Copy_arrayof_conjoint_jlongs(const HeapWord* from,
++ HeapWord* to,
++ size_t count) {
++ memmove(to, from, count * 8);
++ }
++};
+--- /dev/null
++++ b/src/hotspot/os_cpu/linux_riscv/os_linux_riscv.hpp
+@@ -0,0 +1,40 @@
++/*
++ * Copyright (c) 1999, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef OS_CPU_LINUX_RISCV_VM_OS_LINUX_RISCV_HPP
++#define OS_CPU_LINUX_RISCV_VM_OS_LINUX_RISCV_HPP
++
++ static void setup_fpu();
++
++ // Used to register dynamic code cache area with the OS
++ // Note: Currently only used in 64 bit Windows implementations
++ static bool register_code_area(char *low, char *high) { return true; }
++
++ // Atomically copy 64 bits of data
++ static void atomic_copy64(const volatile void *src, volatile void *dst) {
++ *(jlong *) dst = *(const jlong *) src;
++ }
++
++#endif // OS_CPU_LINUX_RISCV_VM_OS_LINUX_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/os_cpu/linux_riscv/prefetch_linux_riscv.inline.hpp
+@@ -0,0 +1,38 @@
++/*
++ * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef OS_CPU_LINUX_RISCV_VM_PREFETCH_LINUX_RISCV_INLINE_HPP
++#define OS_CPU_LINUX_RISCV_VM_PREFETCH_LINUX_RISCV_INLINE_HPP
++
++#include "runtime/prefetch.hpp"
++
++
++inline void Prefetch::read (void *loc, intx interval) {
++}
++
++inline void Prefetch::write(void *loc, intx interval) {
++}
++
++#endif // OS_CPU_LINUX_RISCV_VM_PREFETCH_LINUX_RISCV_INLINE_HPP
+--- /dev/null
++++ b/src/hotspot/os_cpu/linux_riscv/thread_linux_riscv.cpp
+@@ -0,0 +1,92 @@
++/*
++ * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "runtime/frame.inline.hpp"
++#include "runtime/thread.inline.hpp"
++
++frame JavaThread::pd_last_frame() {
++ assert(has_last_Java_frame(), "must have last_Java_sp() when suspended");
++ return frame(_anchor.last_Java_sp(), _anchor.last_Java_fp(), _anchor.last_Java_pc());
++}
++
++// For Forte Analyzer AsyncGetCallTrace profiling support - thread is
++// currently interrupted by SIGPROF
++bool JavaThread::pd_get_top_frame_for_signal_handler(frame* fr_addr,
++ void* ucontext, bool isInJava) {
++
++ assert(Thread::current() == this, "caller must be current thread");
++ return pd_get_top_frame(fr_addr, ucontext, isInJava);
++}
++
++bool JavaThread::pd_get_top_frame_for_profiling(frame* fr_addr, void* ucontext, bool isInJava) {
++ return pd_get_top_frame(fr_addr, ucontext, isInJava);
++}
++
++bool JavaThread::pd_get_top_frame(frame* fr_addr, void* ucontext, bool isInJava) {
++ // If we have a last_Java_frame, then we should use it even if
++ // isInJava == true. It should be more reliable than ucontext info.
++ if (has_last_Java_frame() && frame_anchor()->walkable()) {
++ *fr_addr = pd_last_frame();
++ return true;
++ }
++
++ // At this point, we don't have a last_Java_frame, so
++ // we try to glean some information out of the ucontext
++ // if we were running Java code when SIGPROF came in.
++ if (isInJava) {
++ ucontext_t* uc = (ucontext_t*) ucontext;
++
++ intptr_t* ret_fp = NULL;
++ intptr_t* ret_sp = NULL;
++ address addr = os::fetch_frame_from_context(uc, &ret_sp, &ret_fp);
++ if (addr == NULL || ret_sp == NULL ) {
++ // ucontext wasn't useful
++ return false;
++ }
++
++ frame ret_frame(ret_sp, ret_fp, addr);
++ if (!ret_frame.safe_for_sender(this)) {
++#ifdef COMPILER2
++ frame ret_frame2(ret_sp, NULL, addr);
++ if (!ret_frame2.safe_for_sender(this)) {
++ // nothing else to try if the frame isn't good
++ return false;
++ }
++ ret_frame = ret_frame2;
++#else
++ // nothing else to try if the frame isn't good
++ return false;
++#endif /* COMPILER2 */
++ }
++ *fr_addr = ret_frame;
++ return true;
++ }
++
++ // nothing else to try
++ return false;
++}
++
++void JavaThread::cache_global_variables() { }
+--- /dev/null
++++ b/src/hotspot/os_cpu/linux_riscv/thread_linux_riscv.hpp
+@@ -0,0 +1,48 @@
++/*
++ * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef OS_CPU_LINUX_RISCV_THREAD_LINUX_RISCV_HPP
++#define OS_CPU_LINUX_RISCV_THREAD_LINUX_RISCV_HPP
++
++ private:
++ void pd_initialize() {
++ _anchor.clear();
++ }
++
++ frame pd_last_frame();
++
++ public:
++ static ByteSize last_Java_fp_offset() {
++ return byte_offset_of(JavaThread, _anchor) + JavaFrameAnchor::last_Java_fp_offset();
++ }
++
++ bool pd_get_top_frame_for_signal_handler(frame* fr_addr, void* ucontext,
++ bool isInJava);
++
++ bool pd_get_top_frame_for_profiling(frame* fr_addr, void* ucontext, bool isInJava);
++private:
++ bool pd_get_top_frame(frame* fr_addr, void* ucontext, bool isInJava);
++
++#endif // OS_CPU_LINUX_RISCV_THREAD_LINUX_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/os_cpu/linux_riscv/vmStructs_linux_riscv.hpp
+@@ -0,0 +1,55 @@
++/*
++ * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#ifndef OS_CPU_LINUX_RISCV_VM_VMSTRUCTS_LINUX_RISCV_HPP
++#define OS_CPU_LINUX_RISCV_VM_VMSTRUCTS_LINUX_RISCV_HPP
++
++// These are the OS and CPU-specific fields, types and integer
++// constants required by the Serviceability Agent. This file is
++// referenced by vmStructs.cpp.
++
++#define VM_STRUCTS_OS_CPU(nonstatic_field, static_field, unchecked_nonstatic_field, volatile_nonstatic_field, nonproduct_nonstatic_field, c2_nonstatic_field, unchecked_c1_static_field, unchecked_c2_static_field) \
++ \
++ /******************************/ \
++ /* Threads (NOTE: incomplete) */ \
++ /******************************/ \
++ nonstatic_field(OSThread, _thread_id, OSThread::thread_id_t) \
++ nonstatic_field(OSThread, _pthread_id, pthread_t)
++
++
++#define VM_TYPES_OS_CPU(declare_type, declare_toplevel_type, declare_oop_type, declare_integer_type, declare_unsigned_integer_type, declare_c1_toplevel_type, declare_c2_type, declare_c2_toplevel_type) \
++ \
++ /**********************/ \
++ /* Posix Thread IDs */ \
++ /**********************/ \
++ \
++ declare_integer_type(OSThread::thread_id_t) \
++ declare_unsigned_integer_type(pthread_t)
++
++#define VM_INT_CONSTANTS_OS_CPU(declare_constant, declare_preprocessor_constant, declare_c1_constant, declare_c2_constant, declare_c2_preprocessor_constant)
++
++#define VM_LONG_CONSTANTS_OS_CPU(declare_constant, declare_preprocessor_constant, declare_c1_constant, declare_c2_constant, declare_c2_preprocessor_constant)
++
++#endif // OS_CPU_LINUX_RISCV_VM_VMSTRUCTS_LINUX_RISCV_HPP
+--- /dev/null
++++ b/src/hotspot/os_cpu/linux_riscv/vm_version_linux_riscv.cpp
+@@ -0,0 +1,137 @@
++/*
++ * Copyright (c) 2006, 2021, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++#include "precompiled.hpp"
++#include "asm/register.hpp"
++#include "runtime/os.hpp"
++#include "runtime/os.inline.hpp"
++#include "runtime/vm_version.hpp"
++
++#include <asm/hwcap.h>
++#include <sys/auxv.h>
++
++#ifndef HWCAP_ISA_I
++#define HWCAP_ISA_I (1 << ('I' - 'A'))
++#endif
++
++#ifndef HWCAP_ISA_M
++#define HWCAP_ISA_M (1 << ('M' - 'A'))
++#endif
++
++#ifndef HWCAP_ISA_A
++#define HWCAP_ISA_A (1 << ('A' - 'A'))
++#endif
++
++#ifndef HWCAP_ISA_F
++#define HWCAP_ISA_F (1 << ('F' - 'A'))
++#endif
++
++#ifndef HWCAP_ISA_D
++#define HWCAP_ISA_D (1 << ('D' - 'A'))
++#endif
++
++#ifndef HWCAP_ISA_C
++#define HWCAP_ISA_C (1 << ('C' - 'A'))
++#endif
++
++#ifndef HWCAP_ISA_V
++#define HWCAP_ISA_V (1 << ('V' - 'A'))
++#endif
++
++#define read_csr(csr) \
++({ \
++ register unsigned long __v; \
++ __asm__ __volatile__ ("csrr %0, %1" \
++ : "=r" (__v) \
++ : "i" (csr) \
++ : "memory"); \
++ __v; \
++})
++
++uint32_t VM_Version::get_current_vector_length() {
++ assert(_features & CPU_V, "should not call this");
++ return (uint32_t)read_csr(CSR_VLENB);
++}
++
++VM_Version::VM_MODE VM_Version::get_satp_mode() {
++ if (!strcmp(_vm_mode, "sv39")) {
++ return VM_SV39;
++ } else if (!strcmp(_vm_mode, "sv48")) {
++ return VM_SV48;
++ } else if (!strcmp(_vm_mode, "sv57")) {
++ return VM_SV57;
++ } else if (!strcmp(_vm_mode, "sv64")) {
++ return VM_SV64;
++ } else {
++ return VM_MBARE;
++ }
++}
++
++void VM_Version::get_os_cpu_info() {
++
++ uint64_t auxv = getauxval(AT_HWCAP);
++
++ static_assert(CPU_I == HWCAP_ISA_I, "Flag CPU_I must follow Linux HWCAP");
++ static_assert(CPU_M == HWCAP_ISA_M, "Flag CPU_M must follow Linux HWCAP");
++ static_assert(CPU_A == HWCAP_ISA_A, "Flag CPU_A must follow Linux HWCAP");
++ static_assert(CPU_F == HWCAP_ISA_F, "Flag CPU_F must follow Linux HWCAP");
++ static_assert(CPU_D == HWCAP_ISA_D, "Flag CPU_D must follow Linux HWCAP");
++ static_assert(CPU_C == HWCAP_ISA_C, "Flag CPU_C must follow Linux HWCAP");
++ static_assert(CPU_V == HWCAP_ISA_V, "Flag CPU_V must follow Linux HWCAP");
++
++ // RISC-V has four bit-manipulation ISA-extensions: Zba/Zbb/Zbc/Zbs.
++ // Availability for those extensions could not be queried from HWCAP.
++ // TODO: Add proper detection for those extensions.
++ _features = auxv & (
++ HWCAP_ISA_I |
++ HWCAP_ISA_M |
++ HWCAP_ISA_A |
++ HWCAP_ISA_F |
++ HWCAP_ISA_D |
++ HWCAP_ISA_C |
++ HWCAP_ISA_V);
++
++ if (FILE *f = fopen("/proc/cpuinfo", "r")) {
++ char buf[512], *p;
++ while (fgets(buf, sizeof (buf), f) != NULL) {
++ if ((p = strchr(buf, ':')) != NULL) {
++ if (strncmp(buf, "mmu", sizeof "mmu" - 1) == 0) {
++ if (_vm_mode[0] != '\0') {
++ continue;
++ }
++ char* vm_mode = os::strdup(p + 2);
++ vm_mode[strcspn(vm_mode, "\n")] = '\0';
++ _vm_mode = vm_mode;
++ } else if (strncmp(buf, "uarch", sizeof "uarch" - 1) == 0) {
++ char* uarch = os::strdup(p + 2);
++ uarch[strcspn(uarch, "\n")] = '\0';
++ _uarch = uarch;
++ break;
++ }
++ }
++ }
++ fclose(f);
++ }
++}
+--- a/src/hotspot/share/c1/c1_LIR.cpp
++++ b/src/hotspot/share/c1/c1_LIR.cpp
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2000, 2021, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2000, 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -188,6 +188,9 @@ void LIR_Op2::verify() const {
+ #ifdef ASSERT
+ switch (code()) {
+ case lir_cmove:
++#ifdef RISCV
++ assert(false, "lir_cmove is LIR_Op4 on RISCV");
++#endif
+ case lir_xchg:
+ break;
+
+@@ -238,8 +241,12 @@ void LIR_Op2::verify() const {
+
+
+ LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BlockBegin* block)
++#ifdef RISCV
++ : LIR_Op2(lir_branch, cond, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
++#else
+ : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
+ , _cond(cond)
++#endif
+ , _label(block->label())
+ , _block(block)
+ , _ublock(NULL)
+@@ -247,8 +254,12 @@ LIR_OpBranch::LIR_OpBranch(LIR_Condition
+ }
+
+ LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, CodeStub* stub) :
++#ifdef RISCV
++ LIR_Op2(lir_branch, cond, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
++#else
+ LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
+ , _cond(cond)
++#endif
+ , _label(stub->entry())
+ , _block(NULL)
+ , _ublock(NULL)
+@@ -256,8 +267,12 @@ LIR_OpBranch::LIR_OpBranch(LIR_Condition
+ }
+
+ LIR_OpBranch::LIR_OpBranch(LIR_Condition cond, BlockBegin* block, BlockBegin* ublock)
++#ifdef RISCV
++ : LIR_Op2(lir_cond_float_branch, cond, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
++#else
+ : LIR_Op(lir_cond_float_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*)NULL)
+ , _cond(cond)
++#endif
+ , _label(block->label())
+ , _block(block)
+ , _ublock(ublock)
+@@ -279,13 +294,13 @@ void LIR_OpBranch::change_ublock(BlockBe
+ }
+
+ void LIR_OpBranch::negate_cond() {
+- switch (_cond) {
+- case lir_cond_equal: _cond = lir_cond_notEqual; break;
+- case lir_cond_notEqual: _cond = lir_cond_equal; break;
+- case lir_cond_less: _cond = lir_cond_greaterEqual; break;
+- case lir_cond_lessEqual: _cond = lir_cond_greater; break;
+- case lir_cond_greaterEqual: _cond = lir_cond_less; break;
+- case lir_cond_greater: _cond = lir_cond_lessEqual; break;
++ switch (cond()) {
++ case lir_cond_equal: set_cond(lir_cond_notEqual); break;
++ case lir_cond_notEqual: set_cond(lir_cond_equal); break;
++ case lir_cond_less: set_cond(lir_cond_greaterEqual); break;
++ case lir_cond_lessEqual: set_cond(lir_cond_greater); break;
++ case lir_cond_greaterEqual: set_cond(lir_cond_less); break;
++ case lir_cond_greater: set_cond(lir_cond_lessEqual); break;
+ default: ShouldNotReachHere();
+ }
+ }
+@@ -513,6 +528,15 @@ void LIR_OpVisitState::visit(LIR_Op* op)
+ assert(op->as_OpBranch() != NULL, "must be");
+ LIR_OpBranch* opBranch = (LIR_OpBranch*)op;
+
++#ifdef RISCV
++ assert(opBranch->_tmp1->is_illegal() && opBranch->_tmp2->is_illegal() &&
++ opBranch->_tmp3->is_illegal() && opBranch->_tmp4->is_illegal() &&
++ opBranch->_tmp5->is_illegal(), "not used");
++
++ if (opBranch->_opr1->is_valid()) do_input(opBranch->_opr1);
++ if (opBranch->_opr2->is_valid()) do_input(opBranch->_opr2);
++#endif
++
+ if (opBranch->_info != NULL) do_info(opBranch->_info);
+ assert(opBranch->_result->is_illegal(), "not used");
+ if (opBranch->_stub != NULL) opBranch->stub()->visit(this);
+@@ -601,6 +625,21 @@ void LIR_OpVisitState::visit(LIR_Op* op)
+ // to the result operand, otherwise the backend fails
+ case lir_cmove:
+ {
++#ifdef RISCV
++ assert(op->as_Op4() != NULL, "must be");
++ LIR_Op4* op4 = (LIR_Op4*)op;
++
++ assert(op4->_info == NULL && op4->_tmp1->is_illegal() && op4->_tmp2->is_illegal() &&
++ op4->_tmp3->is_illegal() && op4->_tmp4->is_illegal() && op4->_tmp5->is_illegal(), "not used");
++ assert(op4->_opr1->is_valid() && op4->_opr2->is_valid() && op4->_result->is_valid(), "used");
++
++ do_input(op4->_opr1);
++ do_input(op4->_opr2);
++ if (op4->_opr3->is_valid()) do_input(op4->_opr3);
++ if (op4->_opr4->is_valid()) do_input(op4->_opr4);
++ do_temp(op4->_opr2);
++ do_output(op4->_result);
++#else
+ assert(op->as_Op2() != NULL, "must be");
+ LIR_Op2* op2 = (LIR_Op2*)op;
+
+@@ -612,6 +651,7 @@ void LIR_OpVisitState::visit(LIR_Op* op)
+ do_input(op2->_opr2);
+ do_temp(op2->_opr2);
+ do_output(op2->_result);
++#endif
+
+ break;
+ }
+@@ -1042,6 +1082,12 @@ void LIR_Op3::emit_code(LIR_Assembler* m
+ masm->emit_op3(this);
+ }
+
++#ifdef RISCV
++void LIR_Op4::emit_code(LIR_Assembler* masm) {
++ masm->emit_op4(this);
++}
++#endif
++
+ void LIR_OpLock::emit_code(LIR_Assembler* masm) {
+ masm->emit_lock(this);
+ if (stub()) {
+@@ -1078,6 +1124,10 @@ LIR_List::LIR_List(Compilation* compilat
+ , _file(NULL)
+ , _line(0)
+ #endif
++#ifdef RISCV
++ , _cmp_opr1(LIR_OprFact::illegalOpr)
++ , _cmp_opr2(LIR_OprFact::illegalOpr)
++#endif
+ { }
+
+
+@@ -1095,6 +1145,38 @@ void LIR_List::set_file_and_line(const c
+ }
+ #endif
+
++#ifdef RISCV
++void LIR_List::set_cmp_oprs(LIR_Op* op) {
++ switch (op->code()) {
++ case lir_cmp:
++ _cmp_opr1 = op->as_Op2()->in_opr1();
++ _cmp_opr2 = op->as_Op2()->in_opr2();
++ break;
++ case lir_branch: // fall through
++ case lir_cond_float_branch:
++ assert(op->as_OpBranch()->cond() == lir_cond_always ||
++ (_cmp_opr1 != LIR_OprFact::illegalOpr && _cmp_opr2 != LIR_OprFact::illegalOpr),
++ "conditional branches must have legal operands");
++ if (op->as_OpBranch()->cond() != lir_cond_always) {
++ op->as_Op2()->set_in_opr1(_cmp_opr1);
++ op->as_Op2()->set_in_opr2(_cmp_opr2);
++ }
++ break;
++ case lir_cmove:
++ op->as_Op4()->set_in_opr3(_cmp_opr1);
++ op->as_Op4()->set_in_opr4(_cmp_opr2);
++ break;
++#if INCLUDE_ZGC
++ case lir_zloadbarrier_test:
++ _cmp_opr1 = FrameMap::as_opr(t1);
++ _cmp_opr2 = LIR_OprFact::intConst(0);
++ break;
++#endif
++ default:
++ break;
++ }
++}
++#endif
+
+ void LIR_List::append(LIR_InsertionBuffer* buffer) {
+ assert(this == buffer->lir_list(), "wrong lir list");
+@@ -1825,6 +1907,10 @@ void LIR_Op1::print_patch_code(outputStr
+ // LIR_OpBranch
+ void LIR_OpBranch::print_instr(outputStream* out) const {
+ print_condition(out, cond()); out->print(" ");
++#ifdef RISCV
++ in_opr1()->print(out); out->print(" ");
++ in_opr2()->print(out); out->print(" ");
++#endif
+ if (block() != NULL) {
+ out->print("[B%d] ", block()->block_id());
+ } else if (stub() != NULL) {
+@@ -1911,7 +1997,11 @@ void LIR_OpRoundFP::print_instr(outputSt
+
+ // LIR_Op2
+ void LIR_Op2::print_instr(outputStream* out) const {
++#ifdef RISCV
++ if (code() == lir_cmp || code() == lir_branch || code() == lir_cond_float_branch) {
++#else
+ if (code() == lir_cmove || code() == lir_cmp) {
++#endif
+ print_condition(out, condition()); out->print(" ");
+ }
+ in_opr1()->print(out); out->print(" ");
+@@ -1962,6 +2052,17 @@ void LIR_Op3::print_instr(outputStream*
+ result_opr()->print(out);
+ }
+
++#ifdef RISCV
++// LIR_Op4
++void LIR_Op4::print_instr(outputStream* out) const {
++ print_condition(out, condition()); out->print(" ");
++ in_opr1()->print(out); out->print(" ");
++ in_opr2()->print(out); out->print(" ");
++ in_opr3()->print(out); out->print(" ");
++ in_opr4()->print(out); out->print(" ");
++ result_opr()->print(out);
++}
++#endif
+
+ void LIR_OpLock::print_instr(outputStream* out) const {
+ hdr_opr()->print(out); out->print(" ");
+--- a/src/hotspot/share/c1/c1_LIR.hpp
++++ b/src/hotspot/share/c1/c1_LIR.hpp
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2000, 2021, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2000, 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -869,6 +869,9 @@ class LIR_Op2;
+ class LIR_OpDelay;
+ class LIR_Op3;
+ class LIR_OpAllocArray;
++#ifdef RISCV
++class LIR_Op4;
++#endif
+ class LIR_OpCall;
+ class LIR_OpJavaCall;
+ class LIR_OpRTCall;
+@@ -913,8 +916,10 @@ enum LIR_Code {
+ , lir_null_check
+ , lir_return
+ , lir_leal
++#ifndef RISCV
+ , lir_branch
+ , lir_cond_float_branch
++#endif
+ , lir_move
+ , lir_convert
+ , lir_alloc_object
+@@ -924,11 +929,17 @@ enum LIR_Code {
+ , lir_unwind
+ , end_op1
+ , begin_op2
++#ifdef RISCV
++ , lir_branch
++ , lir_cond_float_branch
++#endif
+ , lir_cmp
+ , lir_cmp_l2i
+ , lir_ucmp_fd2i
+ , lir_cmp_fd2i
++#ifndef RISCV
+ , lir_cmove
++#endif
+ , lir_add
+ , lir_sub
+ , lir_mul
+@@ -956,6 +967,11 @@ enum LIR_Code {
+ , lir_fmad
+ , lir_fmaf
+ , end_op3
++#ifdef RISCV
++ , begin_op4
++ , lir_cmove
++ , end_op4
++#endif
+ , begin_opJavaCall
+ , lir_static_call
+ , lir_optvirtual_call
+@@ -992,6 +1008,11 @@ enum LIR_Code {
+ , begin_opAssert
+ , lir_assert
+ , end_opAssert
++#if defined(RISCV) && defined(INCLUDE_ZGC)
++ , begin_opZLoadBarrierTest
++ , lir_zloadbarrier_test
++ , end_opZLoadBarrierTest
++#endif
+ };
+
+
+@@ -1128,6 +1149,9 @@ class LIR_Op: public CompilationResource
+ virtual LIR_Op1* as_Op1() { return NULL; }
+ virtual LIR_Op2* as_Op2() { return NULL; }
+ virtual LIR_Op3* as_Op3() { return NULL; }
++#ifdef RISCV
++ virtual LIR_Op4* as_Op4() { return NULL; }
++#endif
+ virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
+ virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return NULL; }
+ virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
+@@ -1399,47 +1423,6 @@ class LIR_OpRTCall: public LIR_OpCall {
+ virtual void verify() const;
+ };
+
+-
+-class LIR_OpBranch: public LIR_Op {
+- friend class LIR_OpVisitState;
+-
+- private:
+- LIR_Condition _cond;
+- Label* _label;
+- BlockBegin* _block; // if this is a branch to a block, this is the block
+- BlockBegin* _ublock; // if this is a float-branch, this is the unorderd block
+- CodeStub* _stub; // if this is a branch to a stub, this is the stub
+-
+- public:
+- LIR_OpBranch(LIR_Condition cond, Label* lbl)
+- : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
+- , _cond(cond)
+- , _label(lbl)
+- , _block(NULL)
+- , _ublock(NULL)
+- , _stub(NULL) { }
+-
+- LIR_OpBranch(LIR_Condition cond, BlockBegin* block);
+- LIR_OpBranch(LIR_Condition cond, CodeStub* stub);
+-
+- // for unordered comparisons
+- LIR_OpBranch(LIR_Condition cond, BlockBegin* block, BlockBegin* ublock);
+-
+- LIR_Condition cond() const { return _cond; }
+- Label* label() const { return _label; }
+- BlockBegin* block() const { return _block; }
+- BlockBegin* ublock() const { return _ublock; }
+- CodeStub* stub() const { return _stub; }
+-
+- void change_block(BlockBegin* b);
+- void change_ublock(BlockBegin* b);
+- void negate_cond();
+-
+- virtual void emit_code(LIR_Assembler* masm);
+- virtual LIR_OpBranch* as_OpBranch() { return this; }
+- virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
+-};
+-
+ class LIR_OpReturn: public LIR_Op1 {
+ friend class LIR_OpVisitState;
+
+@@ -1612,19 +1595,19 @@ class LIR_Op2: public LIR_Op {
+ void verify() const;
+
+ public:
+- LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL)
++ LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
+ : LIR_Op(code, LIR_OprFact::illegalOpr, info)
+ , _fpu_stack_size(0)
+ , _opr1(opr1)
+ , _opr2(opr2)
+- , _type(T_ILLEGAL)
++ , _type(type)
+ , _tmp1(LIR_OprFact::illegalOpr)
+ , _tmp2(LIR_OprFact::illegalOpr)
+ , _tmp3(LIR_OprFact::illegalOpr)
+ , _tmp4(LIR_OprFact::illegalOpr)
+ , _tmp5(LIR_OprFact::illegalOpr)
+ , _condition(condition) {
+- assert(code == lir_cmp || code == lir_assert, "code check");
++ assert(code == lir_cmp || code == lir_assert RISCV_ONLY(|| code == lir_branch || code == lir_cond_float_branch), "code check");
+ }
+
+ LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type)
+@@ -1656,7 +1639,7 @@ class LIR_Op2: public LIR_Op {
+ , _tmp4(LIR_OprFact::illegalOpr)
+ , _tmp5(LIR_OprFact::illegalOpr)
+ , _condition(lir_cond_unknown) {
+- assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
++ assert(code != lir_cmp && RISCV_ONLY(code != lir_branch && code != lir_cond_float_branch &&) is_in_range(code, begin_op2, end_op2), "code check");
+ }
+
+ LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr,
+@@ -1672,7 +1655,7 @@ class LIR_Op2: public LIR_Op {
+ , _tmp4(tmp4)
+ , _tmp5(tmp5)
+ , _condition(lir_cond_unknown) {
+- assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
++ assert(code != lir_cmp && RISCV_ONLY(code != lir_branch && code != lir_cond_float_branch &&) is_in_range(code, begin_op2, end_op2), "code check");
+ }
+
+ LIR_Opr in_opr1() const { return _opr1; }
+@@ -1684,10 +1667,18 @@ class LIR_Op2: public LIR_Op {
+ LIR_Opr tmp4_opr() const { return _tmp4; }
+ LIR_Opr tmp5_opr() const { return _tmp5; }
+ LIR_Condition condition() const {
++#ifdef RISCV
++ assert(code() == lir_cmp || code() == lir_branch || code() == lir_cond_float_branch || code() == lir_assert, "only valid for branch and assert"); return _condition;
++#else
+ assert(code() == lir_cmp || code() == lir_cmove || code() == lir_assert, "only valid for cmp and cmove and assert"); return _condition;
++#endif
+ }
+ void set_condition(LIR_Condition condition) {
++#ifdef RISCV
++ assert(code() == lir_cmp || code() == lir_branch || code() == lir_cond_float_branch, "only valid for branch"); _condition = condition;
++#else
+ assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove"); _condition = condition;
++#endif
+ }
+
+ void set_fpu_stack_size(int size) { _fpu_stack_size = size; }
+@@ -1701,6 +1692,62 @@ class LIR_Op2: public LIR_Op {
+ virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
+ };
+
++#ifdef RISCV
++class LIR_OpBranch: public LIR_Op2 {
++#else
++class LIR_OpBranch: public LIR_Op {
++#endif
++ friend class LIR_OpVisitState;
++
++ private:
++#ifndef RISCV
++ LIR_Condition _cond;
++#endif
++ Label* _label;
++ BlockBegin* _block; // if this is a branch to a block, this is the block
++ BlockBegin* _ublock; // if this is a float-branch, this is the unordered block
++ CodeStub* _stub; // if this is a branch to a stub, this is the stub
++
++ public:
++ LIR_OpBranch(LIR_Condition cond, Label* lbl)
++#ifdef RISCV
++ : LIR_Op2(lir_branch, cond, LIR_OprFact::illegalOpr, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
++#else
++ : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
++ , _cond(cond)
++#endif
++ , _label(lbl)
++ , _block(NULL)
++ , _ublock(NULL)
++ , _stub(NULL) { }
++
++ LIR_OpBranch(LIR_Condition cond, BlockBegin* block);
++ LIR_OpBranch(LIR_Condition cond, CodeStub* stub);
++
++ // for unordered comparisons
++ LIR_OpBranch(LIR_Condition cond, BlockBegin* block, BlockBegin* ublock);
++
++#ifdef RISCV
++ LIR_Condition cond() const { return condition(); }
++ void set_cond(LIR_Condition cond) { set_condition(cond); }
++#else
++ LIR_Condition cond() const { return _cond; }
++ void set_cond(LIR_Condition cond) { _cond = cond; }
++#endif
++ Label* label() const { return _label; }
++ BlockBegin* block() const { return _block; }
++ BlockBegin* ublock() const { return _ublock; }
++ CodeStub* stub() const { return _stub; }
++
++ void change_block(BlockBegin* b);
++ void change_ublock(BlockBegin* b);
++ void negate_cond();
++
++ virtual void emit_code(LIR_Assembler* masm);
++ virtual LIR_OpBranch* as_OpBranch() { return this; }
++ virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
++};
++
+ class LIR_OpAllocArray : public LIR_Op {
+ friend class LIR_OpVisitState;
+
+@@ -1764,6 +1811,65 @@ class LIR_Op3: public LIR_Op {
+ virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
+ };
+
++#ifdef RISCV
++class LIR_Op4: public LIR_Op {
++ friend class LIR_OpVisitState;
++ protected:
++ LIR_Opr _opr1;
++ LIR_Opr _opr2;
++ LIR_Opr _opr3;
++ LIR_Opr _opr4;
++ BasicType _type;
++ LIR_Opr _tmp1;
++ LIR_Opr _tmp2;
++ LIR_Opr _tmp3;
++ LIR_Opr _tmp4;
++ LIR_Opr _tmp5;
++ LIR_Condition _condition;
++
++ public:
++ LIR_Op4(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr opr4,
++ LIR_Opr result, BasicType type)
++ : LIR_Op(code, result, NULL)
++ , _opr1(opr1)
++ , _opr2(opr2)
++ , _opr3(opr3)
++ , _opr4(opr4)
++ , _type(type)
++ , _tmp1(LIR_OprFact::illegalOpr)
++ , _tmp2(LIR_OprFact::illegalOpr)
++ , _tmp3(LIR_OprFact::illegalOpr)
++ , _tmp4(LIR_OprFact::illegalOpr)
++ , _tmp5(LIR_OprFact::illegalOpr)
++ , _condition(condition) {
++ assert(code == lir_cmove, "code check");
++ assert(type != T_ILLEGAL, "cmove should have type");
++ }
++
++ LIR_Opr in_opr1() const { return _opr1; }
++ LIR_Opr in_opr2() const { return _opr2; }
++ LIR_Opr in_opr3() const { return _opr3; }
++ LIR_Opr in_opr4() const { return _opr4; }
++ BasicType type() const { return _type; }
++ LIR_Opr tmp1_opr() const { return _tmp1; }
++ LIR_Opr tmp2_opr() const { return _tmp2; }
++ LIR_Opr tmp3_opr() const { return _tmp3; }
++ LIR_Opr tmp4_opr() const { return _tmp4; }
++ LIR_Opr tmp5_opr() const { return _tmp5; }
++
++ LIR_Condition condition() const { return _condition; }
++ void set_condition(LIR_Condition condition) { _condition = condition; }
++
++ void set_in_opr1(LIR_Opr opr) { _opr1 = opr; }
++ void set_in_opr2(LIR_Opr opr) { _opr2 = opr; }
++ void set_in_opr3(LIR_Opr opr) { _opr3 = opr; }
++ void set_in_opr4(LIR_Opr opr) { _opr4 = opr; }
++ virtual void emit_code(LIR_Assembler* masm);
++ virtual LIR_Op4* as_Op4() { return this; }
++
++ virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
++};
++#endif
+
+ //--------------------------------
+ class LabelObj: public CompilationResourceObj {
+@@ -1986,6 +2092,10 @@ class LIR_List: public CompilationResour
+ const char * _file;
+ int _line;
+ #endif
++#ifdef RISCV
++ LIR_Opr _cmp_opr1;
++ LIR_Opr _cmp_opr2;
++#endif
+
+ public:
+ void append(LIR_Op* op) {
+@@ -1998,6 +2108,12 @@ class LIR_List: public CompilationResour
+ }
+ #endif // PRODUCT
+
++#ifdef RISCV
++ set_cmp_oprs(op);
++ // lir_cmp set cmp oprs only on riscv
++ if (op->code() == lir_cmp) return;
++#endif
++
+ _operations.append(op);
+
+ #ifdef ASSERT
+@@ -2014,6 +2130,10 @@ class LIR_List: public CompilationResour
+ void set_file_and_line(const char * file, int line);
+ #endif
+
++#ifdef RISCV
++ void set_cmp_oprs(LIR_Op* op);
++#endif
++
+ //---------- accessors ---------------
+ LIR_OpList* instructions_list() { return &_operations; }
+ int length() const { return _operations.length(); }
+@@ -2133,9 +2253,16 @@ class LIR_List: public CompilationResour
+ void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
+ void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
+
++#ifdef RISCV
++ void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type,
++ LIR_Opr cmp_opr1 = LIR_OprFact::illegalOpr, LIR_Opr cmp_opr2 = LIR_OprFact::illegalOpr) {
++ append(new LIR_Op4(lir_cmove, condition, src1, src2, cmp_opr1, cmp_opr2, dst, type));
++ }
++#else
+ void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type) {
+ append(new LIR_Op2(lir_cmove, condition, src1, src2, dst, type));
+ }
++#endif
+
+ void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
+ LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
+--- a/src/hotspot/share/c1/c1_LIRAssembler.cpp
++++ b/src/hotspot/share/c1/c1_LIRAssembler.cpp
+@@ -691,9 +691,11 @@ void LIR_Assembler::emit_op2(LIR_Op2* op
+ comp_fl2i(op->code(), op->in_opr1(), op->in_opr2(), op->result_opr(), op);
+ break;
+
++#ifndef RISCV
+ case lir_cmove:
+ cmove(op->condition(), op->in_opr1(), op->in_opr2(), op->result_opr(), op->type());
+ break;
++#endif
+
+ case lir_shl:
+ case lir_shr:
+@@ -756,6 +758,19 @@ void LIR_Assembler::emit_op2(LIR_Op2* op
+ }
+ }
+
++#ifdef RISCV
++void LIR_Assembler::emit_op4(LIR_Op4* op) {
++ switch(op->code()) {
++ case lir_cmove:
++ cmove(op->condition(), op->in_opr1(), op->in_opr2(), op->result_opr(), op->type(), op->in_opr3(), op->in_opr4());
++ break;
++
++ default:
++ Unimplemented();
++ break;
++ }
++}
++#endif
+
+ void LIR_Assembler::build_frame() {
+ _masm->build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
+--- a/src/hotspot/share/c1/c1_LIRAssembler.hpp
++++ b/src/hotspot/share/c1/c1_LIRAssembler.hpp
+@@ -186,6 +186,9 @@ class LIR_Assembler: public CompilationR
+ void emit_op1(LIR_Op1* op);
+ void emit_op2(LIR_Op2* op);
+ void emit_op3(LIR_Op3* op);
++#ifdef RISCV
++ void emit_op4(LIR_Op4* op);
++#endif
+ void emit_opBranch(LIR_OpBranch* op);
+ void emit_opLabel(LIR_OpLabel* op);
+ void emit_arraycopy(LIR_OpArrayCopy* op);
+@@ -218,8 +221,12 @@ class LIR_Assembler: public CompilationR
+ void volatile_move_op(LIR_Opr src, LIR_Opr result, BasicType type, CodeEmitInfo* info);
+ void comp_mem_op(LIR_Opr src, LIR_Opr result, BasicType type, CodeEmitInfo* info); // info set for null exceptions
+ void comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr result, LIR_Op2* op);
++#ifdef RISCV
++ void cmove(LIR_Condition code, LIR_Opr left, LIR_Opr right, LIR_Opr result, BasicType type,
++ LIR_Opr cmp_opr1 = LIR_OprFact::illegalOpr, LIR_Opr cmp_opr2 = LIR_OprFact::illegalOpr);
++#else
+ void cmove(LIR_Condition code, LIR_Opr left, LIR_Opr right, LIR_Opr result, BasicType type);
+-
++#endif
+ void call( LIR_OpJavaCall* op, relocInfo::relocType rtype);
+ void ic_call( LIR_OpJavaCall* op);
+ void vtable_call( LIR_OpJavaCall* op);
+--- a/src/hotspot/share/c1/c1_LinearScan.cpp
++++ b/src/hotspot/share/c1/c1_LinearScan.cpp
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2005, 2021, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2005, 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -1240,8 +1240,13 @@ void LinearScan::add_register_hints(LIR_
+ break;
+ }
+ case lir_cmove: {
++#ifdef RISCV
++ assert(op->as_Op4() != NULL, "lir_cmove must be LIR_Op4");
++ LIR_Op4* cmove = (LIR_Op4*)op;
++#else
+ assert(op->as_Op2() != NULL, "lir_cmove must be LIR_Op2");
+ LIR_Op2* cmove = (LIR_Op2*)op;
++#endif
+
+ LIR_Opr move_from = cmove->in_opr1();
+ LIR_Opr move_to = cmove->result_opr();
+@@ -3138,6 +3143,9 @@ void LinearScan::do_linear_scan() {
+ }
+ }
+
++#ifndef RISCV
++ // Disable these optimizations on riscv temporarily, because it does not
++ // work when the comparison operands are bound to branches or cmoves.
+ { TIME_LINEAR_SCAN(timer_optimize_lir);
+
+ EdgeMoveOptimizer::optimize(ir()->code());
+@@ -3145,6 +3153,7 @@ void LinearScan::do_linear_scan() {
+ // check that cfg is still correct after optimizations
+ ir()->verify();
+ }
++#endif
+
+ NOT_PRODUCT(print_lir(1, "Before Code Generation", false));
+ NOT_PRODUCT(LinearScanStatistic::compute(this, _stat_final));
+@@ -6368,14 +6377,23 @@ void ControlFlowOptimizer::delete_unnece
+ // There might be a cmove inserted for profiling which depends on the same
+ // compare. If we change the condition of the respective compare, we have
+ // to take care of this cmove as well.
++#ifdef RISCV
++ LIR_Op4* prev_cmove = NULL;
++#else
+ LIR_Op2* prev_cmove = NULL;
++#endif
+
+ for(int j = instructions->length() - 3; j >= 0 && prev_cmp == NULL; j--) {
+ prev_op = instructions->at(j);
+ // check for the cmove
+ if (prev_op->code() == lir_cmove) {
++#ifdef RISCV
++ assert(prev_op->as_Op4() != NULL, "cmove must be of type LIR_Op4");
++ prev_cmove = (LIR_Op4*)prev_op;
++#else
+ assert(prev_op->as_Op2() != NULL, "cmove must be of type LIR_Op2");
+ prev_cmove = (LIR_Op2*)prev_op;
++#endif
+ assert(prev_branch->cond() == prev_cmove->condition(), "should be the same");
+ }
+ if (prev_op->code() == lir_cmp) {
+--- a/src/hotspot/share/gc/shenandoah/shenandoahArguments.cpp
++++ b/src/hotspot/share/gc/shenandoah/shenandoahArguments.cpp
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2018, 2021, Red Hat, Inc. All rights reserved.
++ * Copyright (c) 2018, 2022, Red Hat, Inc. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -35,7 +35,7 @@
+ #include "utilities/defaultStream.hpp"
+
+ void ShenandoahArguments::initialize() {
+-#if !(defined AARCH64 || defined AMD64 || defined IA32 || defined PPC64)
++#if !(defined AARCH64 || defined AMD64 || defined IA32 || defined PPC64 || defined RISCV64)
+ vm_exit_during_initialization("Shenandoah GC is not supported on this platform.");
+ #endif
+
+--- a/src/hotspot/share/gc/z/c1/zBarrierSetC1.cpp
++++ b/src/hotspot/share/gc/z/c1/zBarrierSetC1.cpp
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2015, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2015, 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -94,7 +94,11 @@ private:
+
+ public:
+ LIR_OpZLoadBarrierTest(LIR_Opr opr) :
++#ifdef RISCV
++ LIR_Op(lir_zloadbarrier_test, LIR_OprFact::illegalOpr, NULL),
++#else
+ LIR_Op(),
++#endif
+ _opr(opr) {}
+
+ virtual void visit(LIR_OpVisitState* state) {
+--- a/src/hotspot/share/jfr/utilities/jfrBigEndian.hpp
++++ b/src/hotspot/share/jfr/utilities/jfrBigEndian.hpp
+@@ -102,7 +102,7 @@ inline T JfrBigEndian::read_unaligned(co
+ inline bool JfrBigEndian::platform_supports_unaligned_reads(void) {
+ #if defined(IA32) || defined(AMD64) || defined(PPC) || defined(S390)
+ return true;
+-#elif defined(ARM) || defined(AARCH64)
++#elif defined(ARM) || defined(AARCH64) || defined(RISCV)
+ return false;
+ #else
+ #warning "Unconfigured platform"
+--- a/src/hotspot/share/opto/regmask.hpp
++++ b/src/hotspot/share/opto/regmask.hpp
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 1997, 2021, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 1997, 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -99,7 +99,7 @@ class RegMask {
+ // requirement is internal to the allocator, and independent of any
+ // particular platform.
+ enum { SlotsPerLong = 2,
+- SlotsPerVecA = 8,
++ SlotsPerVecA = RISCV_ONLY(4) NOT_RISCV(8),
+ SlotsPerVecS = 1,
+ SlotsPerVecD = 2,
+ SlotsPerVecX = 4,
+--- a/src/hotspot/share/runtime/abstract_vm_version.cpp
++++ b/src/hotspot/share/runtime/abstract_vm_version.cpp
+@@ -183,7 +183,8 @@ const char* Abstract_VM_Version::jre_rel
+ AMD64_ONLY("amd64") \
+ IA32_ONLY("x86") \
+ IA64_ONLY("ia64") \
+- S390_ONLY("s390")
++ S390_ONLY("s390") \
++ RISCV64_ONLY("riscv64")
+ #endif // !ZERO
+ #endif // !CPU
+
+--- a/src/hotspot/share/runtime/thread.inline.hpp
++++ b/src/hotspot/share/runtime/thread.inline.hpp
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2012, 2021, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2012, 2022, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2021, Azul Systems, Inc. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+@@ -132,7 +132,7 @@ inline void JavaThread::set_pending_asyn
+ }
+
+ inline JavaThreadState JavaThread::thread_state() const {
+-#if defined(PPC64) || defined (AARCH64)
++#if defined(PPC64) || defined (AARCH64) || defined(RISCV64)
+ // Use membars when accessing volatile _thread_state. See
+ // Threads::create_vm() for size checks.
+ return (JavaThreadState) Atomic::load_acquire((volatile jint*)&_thread_state);
+@@ -144,7 +144,7 @@ inline JavaThreadState JavaThread::threa
+ inline void JavaThread::set_thread_state(JavaThreadState s) {
+ assert(current_or_null() == NULL || current_or_null() == this,
+ "state change should only be called by the current thread");
+-#if defined(PPC64) || defined (AARCH64)
++#if defined(PPC64) || defined (AARCH64) || defined(RISCV64)
+ // Use membars when accessing volatile _thread_state. See
+ // Threads::create_vm() for size checks.
+ Atomic::release_store((volatile jint*)&_thread_state, (jint)s);
+--- a/src/hotspot/share/utilities/macros.hpp
++++ b/src/hotspot/share/utilities/macros.hpp
+@@ -553,6 +553,32 @@
+
+ #define MACOS_AARCH64_ONLY(x) MACOS_ONLY(AARCH64_ONLY(x))
+
++#if defined(RISCV32) || defined(RISCV64)
++#define RISCV
++#define RISCV_ONLY(code) code
++#define NOT_RISCV(code)
++#else
++#undef RISCV
++#define RISCV_ONLY(code)
++#define NOT_RISCV(code) code
++#endif
++
++#ifdef RISCV32
++#define RISCV32_ONLY(code) code
++#define NOT_RISCV32(code)
++#else
++#define RISCV32_ONLY(code)
++#define NOT_RISCV32(code) code
++#endif
++
++#ifdef RISCV64
++#define RISCV64_ONLY(code) code
++#define NOT_RISCV64(code)
++#else
++#define RISCV64_ONLY(code)
++#define NOT_RISCV64(code) code
++#endif
++
+ #ifdef VM_LITTLE_ENDIAN
+ #define LITTLE_ENDIAN_ONLY(code) code
+ #define BIG_ENDIAN_ONLY(code)
+--- a/src/jdk.hotspot.agent/linux/native/libsaproc/LinuxDebuggerLocal.cpp
++++ b/src/jdk.hotspot.agent/linux/native/libsaproc/LinuxDebuggerLocal.cpp
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2002, 2021, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2002, 2022, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2019, 2021, NTT DATA.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+@@ -60,6 +60,10 @@
+ #include "sun_jvm_hotspot_debugger_aarch64_AARCH64ThreadContext.h"
+ #endif
+
++#ifdef riscv64
++#include "sun_jvm_hotspot_debugger_riscv64_RISCV64ThreadContext.h"
++#endif
++
+ class AutoJavaString {
+ JNIEnv* m_env;
+ jstring m_str;
+@@ -408,7 +412,7 @@ JNIEXPORT jbyteArray JNICALL Java_sun_jv
+ return (err == PS_OK)? array : 0;
+ }
+
+-#if defined(i586) || defined(amd64) || defined(ppc64) || defined(ppc64le) || defined(aarch64)
++#if defined(i586) || defined(amd64) || defined(ppc64) || defined(ppc64le) || defined(aarch64) || defined(riscv64)
+ extern "C"
+ JNIEXPORT jlongArray JNICALL Java_sun_jvm_hotspot_debugger_linux_LinuxDebuggerLocal_getThreadIntegerRegisterSet0
+ (JNIEnv *env, jobject this_obj, jint lwp_id) {
+@@ -440,6 +444,9 @@ JNIEXPORT jlongArray JNICALL Java_sun_jv
+ #ifdef aarch64
+ #define NPRGREG sun_jvm_hotspot_debugger_aarch64_AARCH64ThreadContext_NPRGREG
+ #endif
++#ifdef riscv64
++#define NPRGREG sun_jvm_hotspot_debugger_riscv64_RISCV64ThreadContext_NPRGREG
++#endif
+ #if defined(ppc64) || defined(ppc64le)
+ #define NPRGREG sun_jvm_hotspot_debugger_ppc64_PPC64ThreadContext_NPRGREG
+ #endif
+@@ -516,6 +523,44 @@ JNIEXPORT jlongArray JNICALL Java_sun_jv
+ }
+ #endif /* aarch64 */
+
++#if defined(riscv64)
++#define REG_INDEX(reg) sun_jvm_hotspot_debugger_riscv64_RISCV64ThreadContext_##reg
++
++ regs[REG_INDEX(PC)] = gregs.pc;
++ regs[REG_INDEX(LR)] = gregs.ra;
++ regs[REG_INDEX(SP)] = gregs.sp;
++ regs[REG_INDEX(R3)] = gregs.gp;
++ regs[REG_INDEX(R4)] = gregs.tp;
++ regs[REG_INDEX(R5)] = gregs.t0;
++ regs[REG_INDEX(R6)] = gregs.t1;
++ regs[REG_INDEX(R7)] = gregs.t2;
++ regs[REG_INDEX(R8)] = gregs.s0;
++ regs[REG_INDEX(R9)] = gregs.s1;
++ regs[REG_INDEX(R10)] = gregs.a0;
++ regs[REG_INDEX(R11)] = gregs.a1;
++ regs[REG_INDEX(R12)] = gregs.a2;
++ regs[REG_INDEX(R13)] = gregs.a3;
++ regs[REG_INDEX(R14)] = gregs.a4;
++ regs[REG_INDEX(R15)] = gregs.a5;
++ regs[REG_INDEX(R16)] = gregs.a6;
++ regs[REG_INDEX(R17)] = gregs.a7;
++ regs[REG_INDEX(R18)] = gregs.s2;
++ regs[REG_INDEX(R19)] = gregs.s3;
++ regs[REG_INDEX(R20)] = gregs.s4;
++ regs[REG_INDEX(R21)] = gregs.s5;
++ regs[REG_INDEX(R22)] = gregs.s6;
++ regs[REG_INDEX(R23)] = gregs.s7;
++ regs[REG_INDEX(R24)] = gregs.s8;
++ regs[REG_INDEX(R25)] = gregs.s9;
++ regs[REG_INDEX(R26)] = gregs.s10;
++ regs[REG_INDEX(R27)] = gregs.s11;
++ regs[REG_INDEX(R28)] = gregs.t3;
++ regs[REG_INDEX(R29)] = gregs.t4;
++ regs[REG_INDEX(R30)] = gregs.t5;
++ regs[REG_INDEX(R31)] = gregs.t6;
++
++#endif /* riscv64 */
++
+ #if defined(ppc64) || defined(ppc64le)
+ #define REG_INDEX(reg) sun_jvm_hotspot_debugger_ppc64_PPC64ThreadContext_##reg
+
+--- a/src/jdk.hotspot.agent/linux/native/libsaproc/libproc.h
++++ b/src/jdk.hotspot.agent/linux/native/libsaproc/libproc.h
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2003, 2021, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2003, 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -43,6 +43,8 @@
+ #elif defined(arm)
+ #include <asm/ptrace.h>
+ #define user_regs_struct pt_regs
++#elif defined(riscv64)
++#include <asm/ptrace.h>
+ #endif
+
+ // This C bool type must be int for compatibility with Linux calls and
+--- a/src/jdk.hotspot.agent/share/classes/sun/jvm/hotspot/HotSpotAgent.java
++++ b/src/jdk.hotspot.agent/share/classes/sun/jvm/hotspot/HotSpotAgent.java
+@@ -36,6 +36,7 @@ import sun.jvm.hotspot.debugger.MachineD
+ import sun.jvm.hotspot.debugger.MachineDescriptionAMD64;
+ import sun.jvm.hotspot.debugger.MachineDescriptionPPC64;
+ import sun.jvm.hotspot.debugger.MachineDescriptionAArch64;
++import sun.jvm.hotspot.debugger.MachineDescriptionRISCV64;
+ import sun.jvm.hotspot.debugger.MachineDescriptionIntelX86;
+ import sun.jvm.hotspot.debugger.NoSuchSymbolException;
+ import sun.jvm.hotspot.debugger.bsd.BsdDebuggerLocal;
+@@ -569,6 +570,8 @@ public class HotSpotAgent {
+ machDesc = new MachineDescriptionPPC64();
+ } else if (cpu.equals("aarch64")) {
+ machDesc = new MachineDescriptionAArch64();
++ } else if (cpu.equals("riscv64")) {
++ machDesc = new MachineDescriptionRISCV64();
+ } else {
+ try {
+ machDesc = (MachineDescription)
+--- /dev/null
++++ b/src/jdk.hotspot.agent/share/classes/sun/jvm/hotspot/debugger/MachineDescriptionRISCV64.java
+@@ -0,0 +1,40 @@
++/*
++ * Copyright (c) 2003, 2014, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++package sun.jvm.hotspot.debugger;
++
++public class MachineDescriptionRISCV64 extends MachineDescriptionTwosComplement implements MachineDescription {
++ public long getAddressSize() {
++ return 8;
++ }
++
++ public boolean isLP64() {
++ return true;
++ }
++
++ public boolean isBigEndian() {
++ return false;
++ }
++}
+--- a/src/jdk.hotspot.agent/share/classes/sun/jvm/hotspot/debugger/linux/LinuxCDebugger.java
++++ b/src/jdk.hotspot.agent/share/classes/sun/jvm/hotspot/debugger/linux/LinuxCDebugger.java
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2003, 2021, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2003, 2022, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2015, Red Hat Inc.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+@@ -33,11 +33,13 @@ import sun.jvm.hotspot.debugger.cdbg.*;
+ import sun.jvm.hotspot.debugger.x86.*;
+ import sun.jvm.hotspot.debugger.amd64.*;
+ import sun.jvm.hotspot.debugger.aarch64.*;
++import sun.jvm.hotspot.debugger.riscv64.*;
+ import sun.jvm.hotspot.debugger.ppc64.*;
+ import sun.jvm.hotspot.debugger.linux.x86.*;
+ import sun.jvm.hotspot.debugger.linux.amd64.*;
+ import sun.jvm.hotspot.debugger.linux.ppc64.*;
+ import sun.jvm.hotspot.debugger.linux.aarch64.*;
++import sun.jvm.hotspot.debugger.linux.riscv64.*;
+ import sun.jvm.hotspot.utilities.*;
+
+ class LinuxCDebugger implements CDebugger {
+@@ -105,7 +107,14 @@ class LinuxCDebugger implements CDebugge
+ Address pc = context.getRegisterAsAddress(AARCH64ThreadContext.PC);
+ if (pc == null) return null;
+ return new LinuxAARCH64CFrame(dbg, fp, pc);
+- } else {
++ } else if (cpu.equals("riscv64")) {
++ RISCV64ThreadContext context = (RISCV64ThreadContext) thread.getContext();
++ Address fp = context.getRegisterAsAddress(RISCV64ThreadContext.FP);
++ if (fp == null) return null;
++ Address pc = context.getRegisterAsAddress(RISCV64ThreadContext.PC);
++ if (pc == null) return null;
++ return new LinuxRISCV64CFrame(dbg, fp, pc);
++ } else {
+ // Runtime exception thrown by LinuxThreadContextFactory if unknown cpu
+ ThreadContext context = (ThreadContext) thread.getContext();
+ return context.getTopFrame(dbg);
+--- /dev/null
++++ b/src/jdk.hotspot.agent/share/classes/sun/jvm/hotspot/debugger/linux/riscv64/LinuxRISCV64CFrame.java
+@@ -0,0 +1,90 @@
++/*
++ * Copyright (c) 2003, 2013, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2015, Red Hat Inc.
++ * Copyright (c) 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++package sun.jvm.hotspot.debugger.linux.riscv64;
++
++import sun.jvm.hotspot.debugger.*;
++import sun.jvm.hotspot.debugger.riscv64.*;
++import sun.jvm.hotspot.debugger.linux.*;
++import sun.jvm.hotspot.debugger.cdbg.*;
++import sun.jvm.hotspot.debugger.cdbg.basic.*;
++
++public final class LinuxRISCV64CFrame extends BasicCFrame {
++ private static final int C_FRAME_LINK_OFFSET = -2;
++ private static final int C_FRAME_RETURN_ADDR_OFFSET = -1;
++
++ public LinuxRISCV64CFrame(LinuxDebugger dbg, Address fp, Address pc) {
++ super(dbg.getCDebugger());
++ this.fp = fp;
++ this.pc = pc;
++ this.dbg = dbg;
++ }
++
++ // override base class impl to avoid ELF parsing
++ public ClosestSymbol closestSymbolToPC() {
++ // try native lookup in debugger.
++ return dbg.lookup(dbg.getAddressValue(pc()));
++ }
++
++ public Address pc() {
++ return pc;
++ }
++
++ public Address localVariableBase() {
++ return fp;
++ }
++
++ public CFrame sender(ThreadProxy thread) {
++ RISCV64ThreadContext context = (RISCV64ThreadContext) thread.getContext();
++ Address rsp = context.getRegisterAsAddress(RISCV64ThreadContext.SP);
++
++ if ((fp == null) || fp.lessThan(rsp)) {
++ return null;
++ }
++
++ // Check alignment of fp
++ if (dbg.getAddressValue(fp) % (2 * ADDRESS_SIZE) != 0) {
++ return null;
++ }
++
++ Address nextFP = fp.getAddressAt(C_FRAME_LINK_OFFSET * ADDRESS_SIZE);
++ if (nextFP == null || nextFP.lessThanOrEqual(fp)) {
++ return null;
++ }
++ Address nextPC = fp.getAddressAt(C_FRAME_RETURN_ADDR_OFFSET * ADDRESS_SIZE);
++ if (nextPC == null) {
++ return null;
++ }
++ return new LinuxRISCV64CFrame(dbg, nextFP, nextPC);
++ }
++
++ // package/class internals only
++ private static final int ADDRESS_SIZE = 8;
++ private Address pc;
++ private Address sp;
++ private Address fp;
++ private LinuxDebugger dbg;
++}
+--- /dev/null
++++ b/src/jdk.hotspot.agent/share/classes/sun/jvm/hotspot/debugger/linux/riscv64/LinuxRISCV64ThreadContext.java
+@@ -0,0 +1,48 @@
++/*
++ * Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2015, Red Hat Inc.
++ * Copyright (c) 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++package sun.jvm.hotspot.debugger.linux.riscv64;
++
++import sun.jvm.hotspot.debugger.*;
++import sun.jvm.hotspot.debugger.riscv64.*;
++import sun.jvm.hotspot.debugger.linux.*;
++
++public class LinuxRISCV64ThreadContext extends RISCV64ThreadContext {
++ private LinuxDebugger debugger;
++
++ public LinuxRISCV64ThreadContext(LinuxDebugger debugger) {
++ super();
++ this.debugger = debugger;
++ }
++
++ public void setRegisterAsAddress(int index, Address value) {
++ setRegister(index, debugger.getAddressValue(value));
++ }
++
++ public Address getRegisterAsAddress(int index) {
++ return debugger.newAddress(getRegister(index));
++ }
++}
+--- /dev/null
++++ b/src/jdk.hotspot.agent/share/classes/sun/jvm/hotspot/debugger/proc/riscv64/ProcRISCV64Thread.java
+@@ -0,0 +1,88 @@
++/*
++ * Copyright (c) 2004, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2015, Red Hat Inc.
++ * Copyright (c) 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++package sun.jvm.hotspot.debugger.proc.riscv64;
++
++import sun.jvm.hotspot.debugger.*;
++import sun.jvm.hotspot.debugger.riscv64.*;
++import sun.jvm.hotspot.debugger.proc.*;
++import sun.jvm.hotspot.utilities.*;
++
++public class ProcRISCV64Thread implements ThreadProxy {
++ private ProcDebugger debugger;
++ private int id;
++
++ public ProcRISCV64Thread(ProcDebugger debugger, Address addr) {
++ this.debugger = debugger;
++
++ // FIXME: the size here should be configurable. However, making it
++ // so would produce a dependency on the "types" package from the
++ // debugger package, which is not desired.
++ this.id = (int) addr.getCIntegerAt(0, 4, true);
++ }
++
++ public ProcRISCV64Thread(ProcDebugger debugger, long id) {
++ this.debugger = debugger;
++ this.id = (int) id;
++ }
++
++ public ThreadContext getContext() throws IllegalThreadStateException {
++ ProcRISCV64ThreadContext context = new ProcRISCV64ThreadContext(debugger);
++ long[] regs = debugger.getThreadIntegerRegisterSet(id);
++ if (Assert.ASSERTS_ENABLED) {
++ Assert.that(regs.length == RISCV64ThreadContext.NPRGREG, "size mismatch");
++ }
++ for (int i = 0; i < regs.length; i++) {
++ context.setRegister(i, regs[i]);
++ }
++ return context;
++ }
++
++ public boolean canSetContext() throws DebuggerException {
++ return false;
++ }
++
++ public void setContext(ThreadContext context)
++ throws IllegalThreadStateException, DebuggerException {
++ throw new DebuggerException("Unimplemented");
++ }
++
++ public String toString() {
++ return "t@" + id;
++ }
++
++ public boolean equals(Object obj) {
++ if ((obj == null) || !(obj instanceof ProcRISCV64Thread)) {
++ return false;
++ }
++
++ return (((ProcRISCV64Thread) obj).id == id);
++ }
++
++ public int hashCode() {
++ return id;
++ }
++}
+--- /dev/null
++++ b/src/jdk.hotspot.agent/share/classes/sun/jvm/hotspot/debugger/proc/riscv64/ProcRISCV64ThreadContext.java
+@@ -0,0 +1,48 @@
++/*
++ * Copyright (c) 2004, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2015, Red Hat Inc.
++ * Copyright (c) 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++package sun.jvm.hotspot.debugger.proc.riscv64;
++
++import sun.jvm.hotspot.debugger.*;
++import sun.jvm.hotspot.debugger.riscv64.*;
++import sun.jvm.hotspot.debugger.proc.*;
++
++public class ProcRISCV64ThreadContext extends RISCV64ThreadContext {
++ private ProcDebugger debugger;
++
++ public ProcRISCV64ThreadContext(ProcDebugger debugger) {
++ super();
++ this.debugger = debugger;
++ }
++
++ public void setRegisterAsAddress(int index, Address value) {
++ setRegister(index, debugger.getAddressValue(value));
++ }
++
++ public Address getRegisterAsAddress(int index) {
++ return debugger.newAddress(getRegister(index));
++ }
++}
+--- /dev/null
++++ b/src/jdk.hotspot.agent/share/classes/sun/jvm/hotspot/debugger/proc/riscv64/ProcRISCV64ThreadFactory.java
+@@ -0,0 +1,46 @@
++/*
++ * Copyright (c) 2004, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2015, Red Hat Inc.
++ * Copyright (c) 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++package sun.jvm.hotspot.debugger.proc.riscv64;
++
++import sun.jvm.hotspot.debugger.*;
++import sun.jvm.hotspot.debugger.proc.*;
++
++public class ProcRISCV64ThreadFactory implements ProcThreadFactory {
++ private ProcDebugger debugger;
++
++ public ProcRISCV64ThreadFactory(ProcDebugger debugger) {
++ this.debugger = debugger;
++ }
++
++ public ThreadProxy createThreadWrapper(Address threadIdentifierAddr) {
++ return new ProcRISCV64Thread(debugger, threadIdentifierAddr);
++ }
++
++ public ThreadProxy createThreadWrapper(long id) {
++ return new ProcRISCV64Thread(debugger, id);
++ }
++}
+--- /dev/null
++++ b/src/jdk.hotspot.agent/share/classes/sun/jvm/hotspot/debugger/remote/riscv64/RemoteRISCV64Thread.java
+@@ -0,0 +1,55 @@
++/*
++ * Copyright (c) 2004, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2015, Red Hat Inc.
++ * Copyright (c) 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++package sun.jvm.hotspot.debugger.remote.riscv64;
++
++import sun.jvm.hotspot.debugger.*;
++import sun.jvm.hotspot.debugger.riscv64.*;
++import sun.jvm.hotspot.debugger.remote.*;
++import sun.jvm.hotspot.utilities.*;
++
++public class RemoteRISCV64Thread extends RemoteThread {
++ public RemoteRISCV64Thread(RemoteDebuggerClient debugger, Address addr) {
++ super(debugger, addr);
++ }
++
++ public RemoteRISCV64Thread(RemoteDebuggerClient debugger, long id) {
++ super(debugger, id);
++ }
++
++ public ThreadContext getContext() throws IllegalThreadStateException {
++ RemoteRISCV64ThreadContext context = new RemoteRISCV64ThreadContext(debugger);
++ long[] regs = (addr != null)? debugger.getThreadIntegerRegisterSet(addr) :
++ debugger.getThreadIntegerRegisterSet(id);
++ if (Assert.ASSERTS_ENABLED) {
++ Assert.that(regs.length == RISCV64ThreadContext.NPRGREG, "size of register set must match");
++ }
++ for (int i = 0; i < regs.length; i++) {
++ context.setRegister(i, regs[i]);
++ }
++ return context;
++ }
++}
+--- /dev/null
++++ b/src/jdk.hotspot.agent/share/classes/sun/jvm/hotspot/debugger/remote/riscv64/RemoteRISCV64ThreadContext.java
+@@ -0,0 +1,48 @@
++/*
++ * Copyright (c) 2004, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2015, Red Hat Inc.
++ * Copyright (c) 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++package sun.jvm.hotspot.debugger.remote.riscv64;
++
++import sun.jvm.hotspot.debugger.*;
++import sun.jvm.hotspot.debugger.riscv64.*;
++import sun.jvm.hotspot.debugger.remote.*;
++
++public class RemoteRISCV64ThreadContext extends RISCV64ThreadContext {
++ private RemoteDebuggerClient debugger;
++
++ public RemoteRISCV64ThreadContext(RemoteDebuggerClient debugger) {
++ super();
++ this.debugger = debugger;
++ }
++
++ public void setRegisterAsAddress(int index, Address value) {
++ setRegister(index, debugger.getAddressValue(value));
++ }
++
++ public Address getRegisterAsAddress(int index) {
++ return debugger.newAddress(getRegister(index));
++ }
++}
+--- /dev/null
++++ b/src/jdk.hotspot.agent/share/classes/sun/jvm/hotspot/debugger/remote/riscv64/RemoteRISCV64ThreadFactory.java
+@@ -0,0 +1,46 @@
++/*
++ * Copyright (c) 2004, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2015, Red Hat Inc.
++ * Copyright (c) 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++package sun.jvm.hotspot.debugger.remote.riscv64;
++
++import sun.jvm.hotspot.debugger.*;
++import sun.jvm.hotspot.debugger.remote.*;
++
++public class RemoteRISCV64ThreadFactory implements RemoteThreadFactory {
++ private RemoteDebuggerClient debugger;
++
++ public RemoteRISCV64ThreadFactory(RemoteDebuggerClient debugger) {
++ this.debugger = debugger;
++ }
++
++ public ThreadProxy createThreadWrapper(Address threadIdentifierAddr) {
++ return new RemoteRISCV64Thread(debugger, threadIdentifierAddr);
++ }
++
++ public ThreadProxy createThreadWrapper(long id) {
++ return new RemoteRISCV64Thread(debugger, id);
++ }
++}
+--- /dev/null
++++ b/src/jdk.hotspot.agent/share/classes/sun/jvm/hotspot/debugger/riscv/RISCV64ThreadContext.java
+@@ -0,0 +1,172 @@
++/*
++ * Copyright (c) 2003, 2012, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2015, Red Hat Inc.
++ * Copyright (c) 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++package sun.jvm.hotspot.debugger.riscv64;
++
++import java.lang.annotation.Native;
++
++import sun.jvm.hotspot.debugger.*;
++import sun.jvm.hotspot.debugger.cdbg.*;
++
++/** Specifies the thread context on riscv64 platforms; only a sub-portion
++ * of the context is guaranteed to be present on all operating
++ * systems. */
++
++public abstract class RISCV64ThreadContext implements ThreadContext {
++ // Taken from /usr/include/asm/sigcontext.h on Linux/RISCV64.
++
++ // /*
++ // * Signal context structure - contains all info to do with the state
++ // * before the signal handler was invoked.
++ // */
++ // struct sigcontext {
++ // struct user_regs_struct sc_regs;
++ // union __riscv_fp_state sc_fpregs;
++ // };
++ //
++ // struct user_regs_struct {
++ // unsigned long pc;
++ // unsigned long ra;
++ // unsigned long sp;
++ // unsigned long gp;
++ // unsigned long tp;
++ // unsigned long t0;
++ // unsigned long t1;
++ // unsigned long t2;
++ // unsigned long s0;
++ // unsigned long s1;
++ // unsigned long a0;
++ // unsigned long a1;
++ // unsigned long a2;
++ // unsigned long a3;
++ // unsigned long a4;
++ // unsigned long a5;
++ // unsigned long a6;
++ // unsigned long a7;
++ // unsigned long s2;
++ // unsigned long s3;
++ // unsigned long s4;
++ // unsigned long s5;
++ // unsigned long s6;
++ // unsigned long s7;
++ // unsigned long s8;
++ // unsigned long s9;
++ // unsigned long s10;
++ // unsigned long s11;
++ // unsigned long t3;
++ // unsigned long t4;
++ // unsigned long t5;
++ // unsigned long t6;
++ // };
++
++ // NOTE: the indices for the various registers must be maintained as
++ // listed across various operating systems. However, only a small
++ // subset of the registers' values are guaranteed to be present (and
++ // must be present for the SA's stack walking to work)
++
++ // One instance of the Native annotation is enough to trigger header generation
++ // for this file.
++ @Native
++ public static final int R0 = 0;
++ public static final int R1 = 1;
++ public static final int R2 = 2;
++ public static final int R3 = 3;
++ public static final int R4 = 4;
++ public static final int R5 = 5;
++ public static final int R6 = 6;
++ public static final int R7 = 7;
++ public static final int R8 = 8;
++ public static final int R9 = 9;
++ public static final int R10 = 10;
++ public static final int R11 = 11;
++ public static final int R12 = 12;
++ public static final int R13 = 13;
++ public static final int R14 = 14;
++ public static final int R15 = 15;
++ public static final int R16 = 16;
++ public static final int R17 = 17;
++ public static final int R18 = 18;
++ public static final int R19 = 19;
++ public static final int R20 = 20;
++ public static final int R21 = 21;
++ public static final int R22 = 22;
++ public static final int R23 = 23;
++ public static final int R24 = 24;
++ public static final int R25 = 25;
++ public static final int R26 = 26;
++ public static final int R27 = 27;
++ public static final int R28 = 28;
++ public static final int R29 = 29;
++ public static final int R30 = 30;
++ public static final int R31 = 31;
++
++ public static final int NPRGREG = 32;
++
++ public static final int PC = R0;
++ public static final int LR = R1;
++ public static final int SP = R2;
++ public static final int FP = R8;
++
++ private long[] data;
++
++ public RISCV64ThreadContext() {
++ data = new long[NPRGREG];
++ }
++
++ public int getNumRegisters() {
++ return NPRGREG;
++ }
++
++ public String getRegisterName(int index) {
++ switch (index) {
++ case LR: return "lr";
++ case SP: return "sp";
++ case PC: return "pc";
++ default:
++ return "r" + index;
++ }
++ }
++
++ public void setRegister(int index, long value) {
++ data[index] = value;
++ }
++
++ public long getRegister(int index) {
++ return data[index];
++ }
++
++ public CFrame getTopFrame(Debugger dbg) {
++ return null;
++ }
++
++ /** This can't be implemented in this class since we would have to
++ * tie the implementation to, for example, the debugging system */
++ public abstract void setRegisterAsAddress(int index, Address value);
++
++ /** This can't be implemented in this class since we would have to
++ * tie the implementation to, for example, the debugging system */
++ public abstract Address getRegisterAsAddress(int index);
++}
+--- a/src/jdk.hotspot.agent/share/classes/sun/jvm/hotspot/runtime/Threads.java
++++ b/src/jdk.hotspot.agent/share/classes/sun/jvm/hotspot/runtime/Threads.java
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2000, 2021, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2000, 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -34,6 +34,7 @@ import sun.jvm.hotspot.runtime.win32_aar
+ import sun.jvm.hotspot.runtime.linux_x86.LinuxX86JavaThreadPDAccess;
+ import sun.jvm.hotspot.runtime.linux_amd64.LinuxAMD64JavaThreadPDAccess;
+ import sun.jvm.hotspot.runtime.linux_aarch64.LinuxAARCH64JavaThreadPDAccess;
++import sun.jvm.hotspot.runtime.linux_riscv64.LinuxRISCV64JavaThreadPDAccess;
+ import sun.jvm.hotspot.runtime.linux_ppc64.LinuxPPC64JavaThreadPDAccess;
+ import sun.jvm.hotspot.runtime.bsd_x86.BsdX86JavaThreadPDAccess;
+ import sun.jvm.hotspot.runtime.bsd_amd64.BsdAMD64JavaThreadPDAccess;
+@@ -113,6 +114,8 @@ public class Threads {
+ access = new LinuxPPC64JavaThreadPDAccess();
+ } else if (cpu.equals("aarch64")) {
+ access = new LinuxAARCH64JavaThreadPDAccess();
++ } else if (cpu.equals("riscv64")) {
++ access = new LinuxRISCV64JavaThreadPDAccess();
+ } else {
+ try {
+ access = (JavaThreadPDAccess)
+--- /dev/null
++++ b/src/jdk.hotspot.agent/share/classes/sun/jvm/hotspot/runtime/linux_riscv64/LinuxRISCV64JavaThreadPDAccess.java
+@@ -0,0 +1,134 @@
++/*
++ * Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2015, Red Hat Inc.
++ * Copyright (c) 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++package sun.jvm.hotspot.runtime.linux_riscv64;
++
++import java.io.*;
++import java.util.*;
++import sun.jvm.hotspot.debugger.*;
++import sun.jvm.hotspot.debugger.riscv64.*;
++import sun.jvm.hotspot.runtime.*;
++import sun.jvm.hotspot.runtime.riscv64.*;
++import sun.jvm.hotspot.types.*;
++import sun.jvm.hotspot.utilities.*;
++import sun.jvm.hotspot.utilities.Observable;
++import sun.jvm.hotspot.utilities.Observer;
++
++public class LinuxRISCV64JavaThreadPDAccess implements JavaThreadPDAccess {
++ private static AddressField lastJavaFPField;
++ private static AddressField osThreadField;
++
++ // Field from OSThread
++ private static CIntegerField osThreadThreadIDField;
++
++ // This is currently unneeded but is being kept in case we change
++ // the currentFrameGuess algorithm
++ private static final long GUESS_SCAN_RANGE = 128 * 1024;
++
++ static {
++ VM.registerVMInitializedObserver(new Observer() {
++ public void update(Observable o, Object data) {
++ initialize(VM.getVM().getTypeDataBase());
++ }
++ });
++ }
++
++ private static synchronized void initialize(TypeDataBase db) {
++ Type type = db.lookupType("JavaThread");
++ osThreadField = type.getAddressField("_osthread");
++
++ Type anchorType = db.lookupType("JavaFrameAnchor");
++ lastJavaFPField = anchorType.getAddressField("_last_Java_fp");
++
++ Type osThreadType = db.lookupType("OSThread");
++ osThreadThreadIDField = osThreadType.getCIntegerField("_thread_id");
++ }
++
++ public Address getLastJavaFP(Address addr) {
++ return lastJavaFPField.getValue(addr.addOffsetTo(sun.jvm.hotspot.runtime.JavaThread.getAnchorField().getOffset()));
++ }
++
++ public Address getLastJavaPC(Address addr) {
++ return null;
++ }
++
++ public Address getBaseOfStackPointer(Address addr) {
++ return null;
++ }
++
++ public Frame getLastFramePD(JavaThread thread, Address addr) {
++ Address fp = thread.getLastJavaFP();
++ if (fp == null) {
++ return null; // no information
++ }
++ return new RISCV64Frame(thread.getLastJavaSP(), fp);
++ }
++
++ public RegisterMap newRegisterMap(JavaThread thread, boolean updateMap) {
++ return new RISCV64RegisterMap(thread, updateMap);
++ }
++
++ public Frame getCurrentFrameGuess(JavaThread thread, Address addr) {
++ ThreadProxy t = getThreadProxy(addr);
++ RISCV64ThreadContext context = (RISCV64ThreadContext) t.getContext();
++ RISCV64CurrentFrameGuess guesser = new RISCV64CurrentFrameGuess(context, thread);
++ if (!guesser.run(GUESS_SCAN_RANGE)) {
++ return null;
++ }
++ if (guesser.getPC() == null) {
++ return new RISCV64Frame(guesser.getSP(), guesser.getFP());
++ } else {
++ return new RISCV64Frame(guesser.getSP(), guesser.getFP(), guesser.getPC());
++ }
++ }
++
++ public void printThreadIDOn(Address addr, PrintStream tty) {
++ tty.print(getThreadProxy(addr));
++ }
++
++ public void printInfoOn(Address threadAddr, PrintStream tty) {
++ tty.print("Thread id: ");
++ printThreadIDOn(threadAddr, tty);
++ }
++
++ public Address getLastSP(Address addr) {
++ ThreadProxy t = getThreadProxy(addr);
++ RISCV64ThreadContext context = (RISCV64ThreadContext) t.getContext();
++ return context.getRegisterAsAddress(RISCV64ThreadContext.SP);
++ }
++
++ public ThreadProxy getThreadProxy(Address addr) {
++ // Addr is the address of the JavaThread.
++ // Fetch the OSThread (for now and for simplicity, not making a
++ // separate "OSThread" class in this package)
++ Address osThreadAddr = osThreadField.getValue(addr);
++ // Get the address of the _thread_id from the OSThread
++ Address threadIdAddr = osThreadAddr.addOffsetTo(osThreadThreadIDField.getOffset());
++
++ JVMDebugger debugger = VM.getVM().getDebugger();
++ return debugger.getThreadForIdentifierAddress(threadIdAddr);
++ }
++}
+--- /dev/null
++++ b/src/jdk.hotspot.agent/share/classes/sun/jvm/hotspot/runtime/riscv64/RISCV64CurrentFrameGuess.java
+@@ -0,0 +1,223 @@
++/*
++ * Copyright (c) 2003, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2015, 2019, Red Hat Inc.
++ * Copyright (c) 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++package sun.jvm.hotspot.runtime.riscv64;
++
++import sun.jvm.hotspot.debugger.*;
++import sun.jvm.hotspot.debugger.riscv64.*;
++import sun.jvm.hotspot.code.*;
++import sun.jvm.hotspot.interpreter.*;
++import sun.jvm.hotspot.runtime.*;
++import sun.jvm.hotspot.runtime.riscv64.*;
++
++/** <P> Should be able to be used on all riscv64 platforms we support
++ (Linux/riscv64) to implement JavaThread's "currentFrameGuess()"
++ functionality. Input is an RISCV64ThreadContext; output is SP, FP,
++ and PC for an RISCV64Frame. Instantiation of the RISCV64Frame is
++ left to the caller, since we may need to subclass RISCV64Frame to
++ support signal handler frames on Unix platforms. </P>
++
++ <P> Algorithm is to walk up the stack within a given range (say,
++ 512K at most) looking for a plausible PC and SP for a Java frame,
++ also considering those coming in from the context. If we find a PC
++ that belongs to the VM (i.e., in generated code like the
++ interpreter or CodeCache) then we try to find an associated FP.
++ We repeat this until we either find a complete frame or run out of
++ stack to look at. </P> */
++
++public class RISCV64CurrentFrameGuess {
++ private RISCV64ThreadContext context;
++ private JavaThread thread;
++ private Address spFound;
++ private Address fpFound;
++ private Address pcFound;
++
++ private static final boolean DEBUG = System.getProperty("sun.jvm.hotspot.runtime.riscv64.RISCV64Frame.DEBUG")
++ != null;
++
++ public RISCV64CurrentFrameGuess(RISCV64ThreadContext context,
++ JavaThread thread) {
++ this.context = context;
++ this.thread = thread;
++ }
++
++ /** Returns false if not able to find a frame within a reasonable range. */
++ public boolean run(long regionInBytesToSearch) {
++ Address sp = context.getRegisterAsAddress(RISCV64ThreadContext.SP);
++ Address pc = context.getRegisterAsAddress(RISCV64ThreadContext.PC);
++ Address fp = context.getRegisterAsAddress(RISCV64ThreadContext.FP);
++ if (sp == null) {
++ // Bail out if no last java frame either
++ if (thread.getLastJavaSP() != null) {
++ setValues(thread.getLastJavaSP(), thread.getLastJavaFP(), null);
++ return true;
++ }
++ return false;
++ }
++ Address end = sp.addOffsetTo(regionInBytesToSearch);
++ VM vm = VM.getVM();
++
++ setValues(null, null, null); // Assume we're not going to find anything
++
++ if (vm.isJavaPCDbg(pc)) {
++ if (vm.isClientCompiler()) {
++ // If the topmost frame is a Java frame, we are (pretty much)
++ // guaranteed to have a viable FP. We should be more robust
++ // than this (we have the potential for losing entire threads'
++ // stack traces) but need to see how much work we really have
++ // to do here. Searching the stack for an (SP, FP) pair is
++ // hard since it's easy to misinterpret inter-frame stack
++ // pointers as base-of-frame pointers; we also don't know the
++ // sizes of C1 frames (not registered in the nmethod) so can't
++ // derive them from SP.
++
++ setValues(sp, fp, pc);
++ return true;
++ } else {
++ if (vm.getInterpreter().contains(pc)) {
++ if (DEBUG) {
++ System.out.println("CurrentFrameGuess: choosing interpreter frame: sp = " +
++ sp + ", fp = " + fp + ", pc = " + pc);
++ }
++ setValues(sp, fp, pc);
++ return true;
++ }
++
++ // For the server compiler, FP is not guaranteed to be valid
++ // for compiled code. In addition, an earlier attempt at a
++ // non-searching algorithm (see below) failed because the
++ // stack pointer from the thread context was pointing
++ // (considerably) beyond the ostensible end of the stack, into
++ // garbage; walking from the topmost frame back caused a crash.
++ //
++ // This algorithm takes the current PC as a given and tries to
++ // find the correct corresponding SP by walking up the stack
++ // and repeatedly performing stackwalks (very inefficient).
++ //
++ // FIXME: there is something wrong with stackwalking across
++ // adapter frames...this is likely to be the root cause of the
++ // failure with the simpler algorithm below.
++
++ for (long offset = 0;
++ offset < regionInBytesToSearch;
++ offset += vm.getAddressSize()) {
++ try {
++ Address curSP = sp.addOffsetTo(offset);
++ Frame frame = new RISCV64Frame(curSP, null, pc);
++ RegisterMap map = thread.newRegisterMap(false);
++ while (frame != null) {
++ if (frame.isEntryFrame() && frame.entryFrameIsFirst()) {
++ // We were able to traverse all the way to the
++ // bottommost Java frame.
++ // This sp looks good. Keep it.
++ if (DEBUG) {
++ System.out.println("CurrentFrameGuess: Choosing sp = " + curSP + ", pc = " + pc);
++ }
++ setValues(curSP, null, pc);
++ return true;
++ }
++ frame = frame.sender(map);
++ }
++ } catch (Exception e) {
++ if (DEBUG) {
++ System.out.println("CurrentFrameGuess: Exception " + e + " at offset " + offset);
++ }
++ // Bad SP. Try another.
++ }
++ }
++
++ // Were not able to find a plausible SP to go with this PC.
++ // Bail out.
++ return false;
++ }
++ } else {
++ // If the current program counter was not known to us as a Java
++ // PC, we currently assume that we are in the run-time system
++ // and attempt to look to thread-local storage for saved SP and
++ // FP. Note that if these are null (because we were, in fact,
++ // in Java code, i.e., vtable stubs or similar, and the SA
++ // didn't have enough insight into the target VM to understand
++ // that) then we are going to lose the entire stack trace for
++ // the thread, which is sub-optimal. FIXME.
++
++ if (DEBUG) {
++ System.out.println("CurrentFrameGuess: choosing last Java frame: sp = " +
++ thread.getLastJavaSP() + ", fp = " + thread.getLastJavaFP());
++ }
++ if (thread.getLastJavaSP() == null) {
++ return false; // No known Java frames on stack
++ }
++
++ // The runtime has a nasty habit of not saving fp in the frame
++ // anchor, leaving us to grovel about in the stack to find a
++ // plausible address. Fortunately, this only happens in
++ // compiled code; there we always have a valid PC, and we always
++ // push LR and FP onto the stack as a pair, with FP at the lower
++ // address.
++ pc = thread.getLastJavaPC();
++ fp = thread.getLastJavaFP();
++ sp = thread.getLastJavaSP();
++
++ if (fp == null) {
++ CodeCache cc = vm.getCodeCache();
++ if (cc.contains(pc)) {
++ CodeBlob cb = cc.findBlob(pc);
++ if (DEBUG) {
++ System.out.println("FP is null. Found blob frame size " + cb.getFrameSize());
++ }
++ // See if we can derive a frame pointer from SP and PC
++ long link_offset = cb.getFrameSize() - 2 * VM.getVM().getAddressSize();
++ if (link_offset >= 0) {
++ fp = sp.addOffsetTo(link_offset);
++ }
++ }
++ }
++
++ // We found a PC in the frame anchor. Check that it's plausible, and
++ // if it is, use it.
++ if (vm.isJavaPCDbg(pc)) {
++ setValues(sp, fp, pc);
++ } else {
++ setValues(sp, fp, null);
++ }
++
++ return true;
++ }
++ }
++
++ public Address getSP() { return spFound; }
++ public Address getFP() { return fpFound; }
++ /** May be null if getting values from thread-local storage; take
++ care to call the correct RISCV64Frame constructor to recover this if
++ necessary */
++ public Address getPC() { return pcFound; }
++
++ private void setValues(Address sp, Address fp, Address pc) {
++ spFound = sp;
++ fpFound = fp;
++ pcFound = pc;
++ }
++}
+--- /dev/null
++++ b/src/jdk.hotspot.agent/share/classes/sun/jvm/hotspot/runtime/riscv64/RISCV64Frame.java
+@@ -0,0 +1,556 @@
++/*
++ * Copyright (c) 2001, 2019, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2015, 2019, Red Hat Inc.
++ * Copyright (c) 2021, 2022, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++package sun.jvm.hotspot.runtime.riscv64;
++
++import java.util.*;
++import sun.jvm.hotspot.code.*;
++import sun.jvm.hotspot.compiler.*;
++import sun.jvm.hotspot.debugger.*;
++import sun.jvm.hotspot.oops.*;
++import sun.jvm.hotspot.runtime.*;
++import sun.jvm.hotspot.types.*;
++import sun.jvm.hotspot.utilities.*;
++import sun.jvm.hotspot.utilities.Observable;
++import sun.jvm.hotspot.utilities.Observer;
++
++/** Specialization of and implementation of abstract methods of the
++ Frame class for the riscv64 family of CPUs. */
++
++public class RISCV64Frame extends Frame {
++ private static final boolean DEBUG;
++ static {
++ DEBUG = System.getProperty("sun.jvm.hotspot.runtime.RISCV64.RISCV64Frame.DEBUG") != null;
++ }
++
++ // Java frames
++ private static final int LINK_OFFSET = -2;
++ private static final int RETURN_ADDR_OFFSET = -1;
++ private static final int SENDER_SP_OFFSET = 0;
++
++ // Interpreter frames
++ private static final int INTERPRETER_FRAME_SENDER_SP_OFFSET = -3;
++ private static final int INTERPRETER_FRAME_LAST_SP_OFFSET = INTERPRETER_FRAME_SENDER_SP_OFFSET - 1;
++ private static final int INTERPRETER_FRAME_METHOD_OFFSET = INTERPRETER_FRAME_LAST_SP_OFFSET - 1;
++ private static int INTERPRETER_FRAME_MDX_OFFSET; // Non-core builds only
++ private static int INTERPRETER_FRAME_PADDING_OFFSET;
++ private static int INTERPRETER_FRAME_MIRROR_OFFSET;
++ private static int INTERPRETER_FRAME_CACHE_OFFSET;
++ private static int INTERPRETER_FRAME_LOCALS_OFFSET;
++ private static int INTERPRETER_FRAME_BCX_OFFSET;
++ private static int INTERPRETER_FRAME_INITIAL_SP_OFFSET;
++ private static int INTERPRETER_FRAME_MONITOR_BLOCK_TOP_OFFSET;
++ private static int INTERPRETER_FRAME_MONITOR_BLOCK_BOTTOM_OFFSET;
++
++ // Entry frames
++ private static int ENTRY_FRAME_CALL_WRAPPER_OFFSET = -10;
++
++ // Native frames
++ private static final int NATIVE_FRAME_INITIAL_PARAM_OFFSET = 2;
++
++ private static VMReg fp = new VMReg(8);
++
++ static {
++ VM.registerVMInitializedObserver(new Observer() {
++ public void update(Observable o, Object data) {
++ initialize(VM.getVM().getTypeDataBase());
++ }
++ });
++ }
++
++ private static synchronized void initialize(TypeDataBase db) {
++ INTERPRETER_FRAME_MDX_OFFSET = INTERPRETER_FRAME_METHOD_OFFSET - 1;
++ INTERPRETER_FRAME_PADDING_OFFSET = INTERPRETER_FRAME_MDX_OFFSET - 1;
++ INTERPRETER_FRAME_MIRROR_OFFSET = INTERPRETER_FRAME_PADDING_OFFSET - 1;
++ INTERPRETER_FRAME_CACHE_OFFSET = INTERPRETER_FRAME_MIRROR_OFFSET - 1;
++ INTERPRETER_FRAME_LOCALS_OFFSET = INTERPRETER_FRAME_CACHE_OFFSET - 1;
++ INTERPRETER_FRAME_BCX_OFFSET = INTERPRETER_FRAME_LOCALS_OFFSET - 1;
++ INTERPRETER_FRAME_INITIAL_SP_OFFSET = INTERPRETER_FRAME_BCX_OFFSET - 1;
++ INTERPRETER_FRAME_MONITOR_BLOCK_TOP_OFFSET = INTERPRETER_FRAME_INITIAL_SP_OFFSET;
++ INTERPRETER_FRAME_MONITOR_BLOCK_BOTTOM_OFFSET = INTERPRETER_FRAME_INITIAL_SP_OFFSET;
++ }
++
++
++ // an additional field beyond sp and pc:
++ Address raw_fp; // frame pointer
++ private Address raw_unextendedSP;
++
++ private RISCV64Frame() {
++ }
++
++ private void adjustForDeopt() {
++ if ( pc != null) {
++ // Look for a deopt pc and if it is deopted convert to original pc
++ CodeBlob cb = VM.getVM().getCodeCache().findBlob(pc);
++ if (cb != null && cb.isJavaMethod()) {
++ NMethod nm = (NMethod) cb;
++ if (pc.equals(nm.deoptHandlerBegin())) {
++ if (Assert.ASSERTS_ENABLED) {
++ Assert.that(this.getUnextendedSP() != null, "null SP in Java frame");
++ }
++ // adjust pc if frame is deoptimized.
++ pc = this.getUnextendedSP().getAddressAt(nm.origPCOffset());
++ deoptimized = true;
++ }
++ }
++ }
++ }
++
++ public RISCV64Frame(Address raw_sp, Address raw_fp, Address pc) {
++ this.raw_sp = raw_sp;
++ this.raw_unextendedSP = raw_sp;
++ this.raw_fp = raw_fp;
++ this.pc = pc;
++ adjustUnextendedSP();
++
++ // Frame must be fully constructed before this call
++ adjustForDeopt();
++
++ if (DEBUG) {
++ System.out.println("RISCV64Frame(sp, fp, pc): " + this);
++ dumpStack();
++ }
++ }
++
++ public RISCV64Frame(Address raw_sp, Address raw_fp) {
++ this.raw_sp = raw_sp;
++ this.raw_unextendedSP = raw_sp;
++ this.raw_fp = raw_fp;
++
++ // We cannot assume SP[-1] always contains a valid return PC (e.g. if
++ // the callee is a C/C++ compiled frame). If the PC is not known to
++ // Java then this.pc is null.
++ Address savedPC = raw_sp.getAddressAt(-1 * VM.getVM().getAddressSize());
++ if (VM.getVM().isJavaPCDbg(savedPC)) {
++ this.pc = savedPC;
++ }
++
++ adjustUnextendedSP();
++
++ // Frame must be fully constructed before this call
++ adjustForDeopt();
++
++ if (DEBUG) {
++ System.out.println("RISCV64Frame(sp, fp): " + this);
++ dumpStack();
++ }
++ }
++
++ public RISCV64Frame(Address raw_sp, Address raw_unextendedSp, Address raw_fp, Address pc) {
++ this.raw_sp = raw_sp;
++ this.raw_unextendedSP = raw_unextendedSp;
++ this.raw_fp = raw_fp;
++ this.pc = pc;
++ adjustUnextendedSP();
++
++ // Frame must be fully constructed before this call
++ adjustForDeopt();
++
++ if (DEBUG) {
++ System.out.println("RISCV64Frame(sp, unextendedSP, fp, pc): " + this);
++ dumpStack();
++ }
++
++ }
++
++ public Object clone() {
++ RISCV64Frame frame = new RISCV64Frame();
++ frame.raw_sp = raw_sp;
++ frame.raw_unextendedSP = raw_unextendedSP;
++ frame.raw_fp = raw_fp;
++ frame.pc = pc;
++ frame.deoptimized = deoptimized;
++ return frame;
++ }
++
++ public boolean equals(Object arg) {
++ if (arg == null) {
++ return false;
++ }
++
++ if (!(arg instanceof RISCV64Frame)) {
++ return false;
++ }
++
++ RISCV64Frame other = (RISCV64Frame) arg;
++
++ return (AddressOps.equal(getSP(), other.getSP()) &&
++ AddressOps.equal(getUnextendedSP(), other.getUnextendedSP()) &&
++ AddressOps.equal(getFP(), other.getFP()) &&
++ AddressOps.equal(getPC(), other.getPC()));
++ }
++
++ public int hashCode() {
++ if (raw_sp == null) {
++ return 0;
++ }
++
++ return raw_sp.hashCode();
++ }
++
++ public String toString() {
++ return "sp: " + (getSP() == null? "null" : getSP().toString()) +
++ ", unextendedSP: " + (getUnextendedSP() == null? "null" : getUnextendedSP().toString()) +
++ ", fp: " + (getFP() == null? "null" : getFP().toString()) +
++ ", pc: " + (pc == null? "null" : pc.toString());
++ }
++
++ // accessors for the instance variables
++ public Address getFP() { return raw_fp; }
++ public Address getSP() { return raw_sp; }
++ public Address getID() { return raw_sp; }
++
++ // FIXME: not implemented yet
++ public boolean isSignalHandlerFrameDbg() { return false; }
++ public int getSignalNumberDbg() { return 0; }
++ public String getSignalNameDbg() { return null; }
++
++ public boolean isInterpretedFrameValid() {
++ if (Assert.ASSERTS_ENABLED) {
++ Assert.that(isInterpretedFrame(), "Not an interpreted frame");
++ }
++
++ // These are reasonable sanity checks
++ if (getFP() == null || getFP().andWithMask(0x3) != null) {
++ return false;
++ }
++
++ if (getSP() == null || getSP().andWithMask(0x3) != null) {
++ return false;
++ }
++
++ if (getFP().addOffsetTo(INTERPRETER_FRAME_INITIAL_SP_OFFSET * VM.getVM().getAddressSize()).lessThan(getSP())) {
++ return false;
++ }
++
++ // These are hacks to keep us out of trouble.
++ // The problem with these is that they mask other problems
++ if (getFP().lessThanOrEqual(getSP())) {
++ // this attempts to deal with unsigned comparison above
++ return false;
++ }
++
++ if (getFP().minus(getSP()) > 4096 * VM.getVM().getAddressSize()) {
++ // stack frames shouldn't be large.
++ return false;
++ }
++
++ return true;
++ }
++
++ public Frame sender(RegisterMap regMap, CodeBlob cb) {
++ RISCV64RegisterMap map = (RISCV64RegisterMap) regMap;
++
++ if (Assert.ASSERTS_ENABLED) {
++ Assert.that(map != null, "map must be set");
++ }
++
++ // Default is we done have to follow them. The sender_for_xxx will
++ // update it accordingly
++ map.setIncludeArgumentOops(false);
++
++ if (isEntryFrame()) return senderForEntryFrame(map);
++ if (isInterpretedFrame()) return senderForInterpreterFrame(map);
++
++ if(cb == null) {
++ cb = VM.getVM().getCodeCache().findBlob(getPC());
++ } else {
++ if (Assert.ASSERTS_ENABLED) {
++ Assert.that(cb.equals(VM.getVM().getCodeCache().findBlob(getPC())), "Must be the same");
++ }
++ }
++
++ if (cb != null) {
++ return senderForCompiledFrame(map, cb);
++ }
++
++ // Must be native-compiled frame, i.e. the marshaling code for native
++ // methods that exists in the core system.
++ return new RISCV64Frame(getSenderSP(), getLink(), getSenderPC());
++ }
++
++ private Frame senderForEntryFrame(RISCV64RegisterMap map) {
++ if (DEBUG) {
++ System.out.println("senderForEntryFrame");
++ }
++ if (Assert.ASSERTS_ENABLED) {
++ Assert.that(map != null, "map must be set");
++ }
++ // Java frame called from C; skip all C frames and return top C
++ // frame of that chunk as the sender
++ RISCV64JavaCallWrapper jcw = (RISCV64JavaCallWrapper) getEntryFrameCallWrapper();
++ if (Assert.ASSERTS_ENABLED) {
++ Assert.that(!entryFrameIsFirst(), "next Java fp must be non zero");
++ Assert.that(jcw.getLastJavaSP().greaterThan(getSP()), "must be above this frame on stack");
++ }
++ RISCV64Frame fr;
++ if (jcw.getLastJavaPC() != null) {
++ fr = new RISCV64Frame(jcw.getLastJavaSP(), jcw.getLastJavaFP(), jcw.getLastJavaPC());
++ } else {
++ fr = new RISCV64Frame(jcw.getLastJavaSP(), jcw.getLastJavaFP());
++ }
++ map.clear();
++ if (Assert.ASSERTS_ENABLED) {
++ Assert.that(map.getIncludeArgumentOops(), "should be set by clear");
++ }
++ return fr;
++ }
++
++ //------------------------------------------------------------------------------
++ // frame::adjust_unextended_sp
++ private void adjustUnextendedSP() {
++ // If we are returning to a compiled MethodHandle call site, the
++ // saved_fp will in fact be a saved value of the unextended SP. The
++ // simplest way to tell whether we are returning to such a call site
++ // is as follows:
++
++ CodeBlob cb = cb();
++ NMethod senderNm = (cb == null) ? null : cb.asNMethodOrNull();
++ if (senderNm != null) {
++ // If the sender PC is a deoptimization point, get the original
++ // PC. For MethodHandle call site the unextended_sp is stored in
++ // saved_fp.
++ if (senderNm.isDeoptMhEntry(getPC())) {
++ raw_unextendedSP = getFP();
++ }
++ else if (senderNm.isDeoptEntry(getPC())) {
++ }
++ else if (senderNm.isMethodHandleReturn(getPC())) {
++ raw_unextendedSP = getFP();
++ }
++ }
++ }
++
++ private Frame senderForInterpreterFrame(RISCV64RegisterMap map) {
++ if (DEBUG) {
++ System.out.println("senderForInterpreterFrame");
++ }
++ Address unextendedSP = addressOfStackSlot(INTERPRETER_FRAME_SENDER_SP_OFFSET).getAddressAt(0);
++ Address sp = addressOfStackSlot(SENDER_SP_OFFSET);
++ // We do not need to update the callee-save register mapping because above
++ // us is either another interpreter frame or a converter-frame, but never
++ // directly a compiled frame.
++ // 11/24/04 SFG. With the removal of adapter frames this is no longer true.
++ // However c2 no longer uses callee save register for java calls so there
++ // are no callee register to find.
++
++ if (map.getUpdateMap())
++ updateMapWithSavedLink(map, addressOfStackSlot(LINK_OFFSET));
++
++ return new RISCV64Frame(sp, unextendedSP, getLink(), getSenderPC());
++ }
++
++ private void updateMapWithSavedLink(RegisterMap map, Address savedFPAddr) {
++ map.setLocation(fp, savedFPAddr);
++ }
++
++ private Frame senderForCompiledFrame(RISCV64RegisterMap map, CodeBlob cb) {
++ if (DEBUG) {
++ System.out.println("senderForCompiledFrame");
++ }
++
++ //
++ // NOTE: some of this code is (unfortunately) duplicated RISCV64CurrentFrameGuess
++ //
++
++ if (Assert.ASSERTS_ENABLED) {
++ Assert.that(map != null, "map must be set");
++ }
++
++ // frame owned by optimizing compiler
++ if (Assert.ASSERTS_ENABLED) {
++ Assert.that(cb.getFrameSize() >= 0, "must have non-zero frame size");
++ }
++ Address senderSP = getUnextendedSP().addOffsetTo(cb.getFrameSize());
++
++ // The return_address is always the word on the stack
++ Address senderPC = senderSP.getAddressAt(-1 * VM.getVM().getAddressSize());
++
++ // This is the saved value of FP which may or may not really be an FP.
++ // It is only an FP if the sender is an interpreter frame.
++ Address savedFPAddr = senderSP.addOffsetTo(-2 * VM.getVM().getAddressSize());
++
++ if (map.getUpdateMap()) {
++ // Tell GC to use argument oopmaps for some runtime stubs that need it.
++ // For C1, the runtime stub might not have oop maps, so set this flag
++ // outside of update_register_map.
++ map.setIncludeArgumentOops(cb.callerMustGCArguments());
++
++ if (cb.getOopMaps() != null) {
++ ImmutableOopMapSet.updateRegisterMap(this, cb, map, true);
++ }
++
++ // Since the prolog does the save and restore of FP there is no oopmap
++ // for it so we must fill in its location as if there was an oopmap entry
++ // since if our caller was compiled code there could be live jvm state in it.
++ updateMapWithSavedLink(map, savedFPAddr);
++ }
++
++ return new RISCV64Frame(senderSP, savedFPAddr.getAddressAt(0), senderPC);
++ }
++
++ protected boolean hasSenderPD() {
++ return true;
++ }
++
++ public long frameSize() {
++ return (getSenderSP().minus(getSP()) / VM.getVM().getAddressSize());
++ }
++
++ public Address getLink() {
++ try {
++ if (DEBUG) {
++ System.out.println("Reading link at " + addressOfStackSlot(LINK_OFFSET)
++ + " = " + addressOfStackSlot(LINK_OFFSET).getAddressAt(0));
++ }
++ return addressOfStackSlot(LINK_OFFSET).getAddressAt(0);
++ } catch (Exception e) {
++ if (DEBUG)
++ System.out.println("Returning null");
++ return null;
++ }
++ }
++
++ public Address getUnextendedSP() { return raw_unextendedSP; }
++
++ // Return address:
++ public Address getSenderPCAddr() { return addressOfStackSlot(RETURN_ADDR_OFFSET); }
++ public Address getSenderPC() { return getSenderPCAddr().getAddressAt(0); }
++
++ // return address of param, zero origin index.
++ public Address getNativeParamAddr(int idx) {
++ return addressOfStackSlot(NATIVE_FRAME_INITIAL_PARAM_OFFSET + idx);
++ }
++
++ public Address getSenderSP() { return addressOfStackSlot(SENDER_SP_OFFSET); }
++
++ public Address addressOfInterpreterFrameLocals() {
++ return addressOfStackSlot(INTERPRETER_FRAME_LOCALS_OFFSET);
++ }
++
++ private Address addressOfInterpreterFrameBCX() {
++ return addressOfStackSlot(INTERPRETER_FRAME_BCX_OFFSET);
++ }
++
++ public int getInterpreterFrameBCI() {
++ // FIXME: this is not atomic with respect to GC and is unsuitable
++ // for use in a non-debugging, or reflective, system. Need to
++ // figure out how to express this.
++ Address bcp = addressOfInterpreterFrameBCX().getAddressAt(0);
++ Address methodHandle = addressOfInterpreterFrameMethod().getAddressAt(0);
++ Method method = (Method)Metadata.instantiateWrapperFor(methodHandle);
++ return bcpToBci(bcp, method);
++ }
++
++ public Address addressOfInterpreterFrameMDX() {
++ return addressOfStackSlot(INTERPRETER_FRAME_MDX_OFFSET);
++ }
++
++ // expression stack
++ // (the max_stack arguments are used by the GC; see class FrameClosure)
++
++ public Address addressOfInterpreterFrameExpressionStack() {
++ Address monitorEnd = interpreterFrameMonitorEnd().address();
++ return monitorEnd.addOffsetTo(-1 * VM.getVM().getAddressSize());
++ }
++
++ public int getInterpreterFrameExpressionStackDirection() { return -1; }
++
++ // top of expression stack
++ public Address addressOfInterpreterFrameTOS() {
++ return getSP();
++ }
++
++ /** Expression stack from top down */
++ public Address addressOfInterpreterFrameTOSAt(int slot) {
++ return addressOfInterpreterFrameTOS().addOffsetTo(slot * VM.getVM().getAddressSize());
++ }
++
++ public Address getInterpreterFrameSenderSP() {
++ if (Assert.ASSERTS_ENABLED) {
++ Assert.that(isInterpretedFrame(), "interpreted frame expected");
++ }
++ return addressOfStackSlot(INTERPRETER_FRAME_SENDER_SP_OFFSET).getAddressAt(0);
++ }
++
++ // Monitors
++ public BasicObjectLock interpreterFrameMonitorBegin() {
++ return new BasicObjectLock(addressOfStackSlot(INTERPRETER_FRAME_MONITOR_BLOCK_BOTTOM_OFFSET));
++ }
++
++ public BasicObjectLock interpreterFrameMonitorEnd() {
++ Address result = addressOfStackSlot(INTERPRETER_FRAME_MONITOR_BLOCK_TOP_OFFSET).getAddressAt(0);
++ if (Assert.ASSERTS_ENABLED) {
++ // make sure the pointer points inside the frame
++ Assert.that(AddressOps.gt(getFP(), result), "result must < than frame pointer");
++ Assert.that(AddressOps.lte(getSP(), result), "result must >= than stack pointer");
++ }
++ return new BasicObjectLock(result);
++ }
++
++ public int interpreterFrameMonitorSize() {
++ return BasicObjectLock.size();
++ }
++
++ // Method
++ public Address addressOfInterpreterFrameMethod() {
++ return addressOfStackSlot(INTERPRETER_FRAME_METHOD_OFFSET);
++ }
++
++ // Constant pool cache
++ public Address addressOfInterpreterFrameCPCache() {
++ return addressOfStackSlot(INTERPRETER_FRAME_CACHE_OFFSET);
++ }
++
++ // Entry frames
++ public JavaCallWrapper getEntryFrameCallWrapper() {
++ return new RISCV64JavaCallWrapper(addressOfStackSlot(ENTRY_FRAME_CALL_WRAPPER_OFFSET).getAddressAt(0));
++ }
++
++ protected Address addressOfSavedOopResult() {
++ // offset is 2 for compiler2 and 3 for compiler1
++ return getSP().addOffsetTo((VM.getVM().isClientCompiler() ? 2 : 3) *
++ VM.getVM().getAddressSize());
++ }
++
++ protected Address addressOfSavedReceiver() {
++ return getSP().addOffsetTo(-4 * VM.getVM().getAddressSize());
++ }
++
++ private void dumpStack() {
++ for (Address addr = getSP().addOffsetTo(-4 * VM.getVM().getAddressSize());
++ AddressOps.lt(addr, getSP());
++ addr = addr.addOffsetTo(VM.getVM().getAddressSize())) {
++ System.out.println(addr + ": " + addr.getAddressAt(0));
++ }
++ System.out.println("-----------------------");
++ for (Address addr = getSP();
++ AddressOps.lte(addr, getSP().addOffsetTo(20 * VM.getVM().getAddressSize()));
++ addr = addr.addOffsetTo(VM.getVM().getAddressSize())) {
++ System.out.println(addr + ": " + addr.getAddressAt(0));
++ }
++ }
++}
+--- /dev/null
++++ b/src/jdk.hotspot.agent/share/classes/sun/jvm/hotspot/runtime/riscv64/RISCV64JavaCallWrapper.java
+@@ -0,0 +1,61 @@
++/*
++ * Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2015, Red Hat Inc.
++ * Copyright (c) 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++package sun.jvm.hotspot.runtime.riscv64;
++
++import java.util.*;
++import sun.jvm.hotspot.debugger.*;
++import sun.jvm.hotspot.types.*;
++import sun.jvm.hotspot.runtime.*;
++import sun.jvm.hotspot.utilities.*;
++import sun.jvm.hotspot.utilities.Observable;
++import sun.jvm.hotspot.utilities.Observer;
++
++public class RISCV64JavaCallWrapper extends JavaCallWrapper {
++ private static AddressField lastJavaFPField;
++
++ static {
++ VM.registerVMInitializedObserver(new Observer() {
++ public void update(Observable o, Object data) {
++ initialize(VM.getVM().getTypeDataBase());
++ }
++ });
++ }
++
++ private static synchronized void initialize(TypeDataBase db) {
++ Type type = db.lookupType("JavaFrameAnchor");
++
++ lastJavaFPField = type.getAddressField("_last_Java_fp");
++ }
++
++ public RISCV64JavaCallWrapper(Address addr) {
++ super(addr);
++ }
++
++ public Address getLastJavaFP() {
++ return lastJavaFPField.getValue(addr.addOffsetTo(anchorField.getOffset()));
++ }
++}
+--- /dev/null
++++ b/src/jdk.hotspot.agent/share/classes/sun/jvm/hotspot/runtime/riscv64/RISCV64RegisterMap.java
+@@ -0,0 +1,53 @@
++/*
++ * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2015, Red Hat Inc.
++ * Copyright (c) 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ *
++ */
++
++package sun.jvm.hotspot.runtime.riscv64;
++
++import sun.jvm.hotspot.debugger.*;
++import sun.jvm.hotspot.runtime.*;
++
++public class RISCV64RegisterMap extends RegisterMap {
++
++ /** This is the only public constructor */
++ public RISCV64RegisterMap(JavaThread thread, boolean updateMap) {
++ super(thread, updateMap);
++ }
++
++ protected RISCV64RegisterMap(RegisterMap map) {
++ super(map);
++ }
++
++ public Object clone() {
++ RISCV64RegisterMap retval = new RISCV64RegisterMap(this);
++ return retval;
++ }
++
++ // no PD state to clear or copy:
++ protected void clearPD() {}
++ protected void initializePD() {}
++ protected void initializeFromPD(RegisterMap map) {}
++ protected Address getLocationPD(VMReg reg) { return null; }
++}
+--- a/src/jdk.hotspot.agent/share/classes/sun/jvm/hotspot/utilities/PlatformInfo.java
++++ b/src/jdk.hotspot.agent/share/classes/sun/jvm/hotspot/utilities/PlatformInfo.java
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2000, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2000, 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -50,7 +50,7 @@ public class PlatformInfo {
+
+ public static boolean knownCPU(String cpu) {
+ final String[] KNOWN =
+- new String[] {"i386", "x86", "x86_64", "amd64", "ppc64", "ppc64le", "aarch64"};
++ new String[] {"i386", "x86", "x86_64", "amd64", "ppc64", "ppc64le", "aarch64", "riscv64"};
+
+ for(String s : KNOWN) {
+ if(s.equals(cpu))
+--- a/test/hotspot/jtreg/compiler/c2/TestBit.java
++++ b/test/hotspot/jtreg/compiler/c2/TestBit.java
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2020, 2021, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -33,7 +33,7 @@ import jdk.test.lib.process.ProcessTools
+ * @library /test/lib /
+ *
+ * @requires vm.flagless
+- * @requires os.arch=="aarch64" | os.arch=="amd64" | os.arch == "ppc64le"
++ * @requires os.arch=="aarch64" | os.arch=="amd64" | os.arch == "ppc64le" | os.arch == "riscv64"
+ * @requires vm.debug == true & vm.compiler2.enabled
+ *
+ * @run driver compiler.c2.TestBit
+@@ -55,7 +55,8 @@ public class TestBit {
+ String expectedTestBitInstruction =
+ "ppc64le".equals(System.getProperty("os.arch")) ? "ANDI" :
+ "aarch64".equals(System.getProperty("os.arch")) ? "tb" :
+- "amd64".equals(System.getProperty("os.arch")) ? "test" : null;
++ "amd64".equals(System.getProperty("os.arch")) ? "test" :
++ "riscv64".equals(System.getProperty("os.arch")) ? "andi" : null;
+
+ if (expectedTestBitInstruction != null) {
+ output.shouldContain(expectedTestBitInstruction);
+--- /dev/null
++++ b/test/hotspot/jtreg/compiler/floatingpoint/TestLibmIntrinsics.java
+@@ -0,0 +1,80 @@
++/*
++ * Copyright (c) 2022, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2022, Alibaba Group Holding Limited. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ */
++
++/*
++ * @test
++ * @summary Test libm intrinsics
++ * @library /test/lib /
++ *
++ * @build jdk.test.whitebox.WhiteBox
++ * @run driver jdk.test.lib.helpers.ClassFileInstaller jdk.test.whitebox.WhiteBox
++ * @run main/othervm -Xbootclasspath/a:. -XX:+UnlockDiagnosticVMOptions -XX:+WhiteBoxAPI
++ * -XX:-BackgroundCompilation -XX:-UseOnStackReplacement
++ * compiler.floatingpoint.TestLibmIntrinsics
++ */
++
++package compiler.floatingpoint;
++
++import compiler.whitebox.CompilerWhiteBoxTest;
++import jdk.test.whitebox.WhiteBox;
++
++import java.lang.reflect.Method;
++
++public class TestLibmIntrinsics {
++
++ private static final WhiteBox WHITE_BOX = WhiteBox.getWhiteBox();
++
++ private static final double pi = 3.1415926;
++
++ private static final double expected = 2.5355263553695413;
++
++ static double m() {
++ return Math.pow(pi, Math.sin(Math.cos(Math.tan(Math.log(Math.log10(Math.exp(pi)))))));
++ }
++
++ static public void main(String[] args) throws NoSuchMethodException {
++ Method test_method = compiler.floatingpoint.TestLibmIntrinsics.class.getDeclaredMethod("m");
++
++ double interpreter_result = m();
++
++ // Compile with C1 if possible
++ WHITE_BOX.enqueueMethodForCompilation(test_method, CompilerWhiteBoxTest.COMP_LEVEL_SIMPLE);
++
++ double c1_result = m();
++
++ WHITE_BOX.deoptimizeMethod(test_method);
++
++ // Compile it with C2 if possible
++ WHITE_BOX.enqueueMethodForCompilation(test_method, CompilerWhiteBoxTest.COMP_LEVEL_FULL_OPTIMIZATION);
++
++ double c2_result = m();
++
++ if (interpreter_result != c1_result ||
++ interpreter_result != c2_result ||
++ c1_result != c2_result) {
++ System.out.println("interpreter = " + interpreter_result + " c1 = " + c1_result + " c2 = " + c2_result);
++ throw new RuntimeException("Test Failed");
++ }
++ }
++}
+--- a/test/hotspot/jtreg/compiler/intrinsics/sha/cli/TestUseSHA1IntrinsicsOptionOnUnsupportedCPU.java
++++ b/test/hotspot/jtreg/compiler/intrinsics/sha/cli/TestUseSHA1IntrinsicsOptionOnUnsupportedCPU.java
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2014, 2021, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -39,6 +39,7 @@ package compiler.intrinsics.sha.cli;
+
+ import compiler.intrinsics.sha.cli.testcases.GenericTestCaseForOtherCPU;
+ import compiler.intrinsics.sha.cli.testcases.GenericTestCaseForUnsupportedAArch64CPU;
++import compiler.intrinsics.sha.cli.testcases.GenericTestCaseForUnsupportedRISCV64CPU;
+ import compiler.intrinsics.sha.cli.testcases.GenericTestCaseForUnsupportedX86CPU;
+ import compiler.intrinsics.sha.cli.testcases.UseSHAIntrinsicsSpecificTestCaseForUnsupportedCPU;
+
+@@ -49,6 +50,8 @@ public class TestUseSHA1IntrinsicsOption
+ DigestOptionsBase.USE_SHA1_INTRINSICS_OPTION),
+ new GenericTestCaseForUnsupportedAArch64CPU(
+ DigestOptionsBase.USE_SHA1_INTRINSICS_OPTION),
++ new GenericTestCaseForUnsupportedRISCV64CPU(
++ DigestOptionsBase.USE_SHA1_INTRINSICS_OPTION),
+ new UseSHAIntrinsicsSpecificTestCaseForUnsupportedCPU(
+ DigestOptionsBase.USE_SHA1_INTRINSICS_OPTION),
+ new GenericTestCaseForOtherCPU(
+--- a/test/hotspot/jtreg/compiler/intrinsics/sha/cli/TestUseSHA256IntrinsicsOptionOnUnsupportedCPU.java
++++ b/test/hotspot/jtreg/compiler/intrinsics/sha/cli/TestUseSHA256IntrinsicsOptionOnUnsupportedCPU.java
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2014, 2021, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -39,6 +39,7 @@ package compiler.intrinsics.sha.cli;
+
+ import compiler.intrinsics.sha.cli.testcases.GenericTestCaseForOtherCPU;
+ import compiler.intrinsics.sha.cli.testcases.GenericTestCaseForUnsupportedAArch64CPU;
++import compiler.intrinsics.sha.cli.testcases.GenericTestCaseForUnsupportedRISCV64CPU;
+ import compiler.intrinsics.sha.cli.testcases.GenericTestCaseForUnsupportedX86CPU;
+ import compiler.intrinsics.sha.cli.testcases.UseSHAIntrinsicsSpecificTestCaseForUnsupportedCPU;
+
+@@ -49,6 +50,8 @@ public class TestUseSHA256IntrinsicsOpti
+ DigestOptionsBase.USE_SHA256_INTRINSICS_OPTION),
+ new GenericTestCaseForUnsupportedAArch64CPU(
+ DigestOptionsBase.USE_SHA256_INTRINSICS_OPTION),
++ new GenericTestCaseForUnsupportedRISCV64CPU(
++ DigestOptionsBase.USE_SHA256_INTRINSICS_OPTION),
+ new UseSHAIntrinsicsSpecificTestCaseForUnsupportedCPU(
+ DigestOptionsBase.USE_SHA256_INTRINSICS_OPTION),
+ new GenericTestCaseForOtherCPU(
+--- a/test/hotspot/jtreg/compiler/intrinsics/sha/cli/TestUseSHA512IntrinsicsOptionOnUnsupportedCPU.java
++++ b/test/hotspot/jtreg/compiler/intrinsics/sha/cli/TestUseSHA512IntrinsicsOptionOnUnsupportedCPU.java
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2014, 2021, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -39,6 +39,7 @@ package compiler.intrinsics.sha.cli;
+
+ import compiler.intrinsics.sha.cli.testcases.GenericTestCaseForOtherCPU;
+ import compiler.intrinsics.sha.cli.testcases.GenericTestCaseForUnsupportedAArch64CPU;
++import compiler.intrinsics.sha.cli.testcases.GenericTestCaseForUnsupportedRISCV64CPU;
+ import compiler.intrinsics.sha.cli.testcases.GenericTestCaseForUnsupportedX86CPU;
+ import compiler.intrinsics.sha.cli.testcases.UseSHAIntrinsicsSpecificTestCaseForUnsupportedCPU;
+
+@@ -49,6 +50,8 @@ public class TestUseSHA512IntrinsicsOpti
+ DigestOptionsBase.USE_SHA512_INTRINSICS_OPTION),
+ new GenericTestCaseForUnsupportedAArch64CPU(
+ DigestOptionsBase.USE_SHA512_INTRINSICS_OPTION),
++ new GenericTestCaseForUnsupportedRISCV64CPU(
++ DigestOptionsBase.USE_SHA512_INTRINSICS_OPTION),
+ new UseSHAIntrinsicsSpecificTestCaseForUnsupportedCPU(
+ DigestOptionsBase.USE_SHA512_INTRINSICS_OPTION),
+ new GenericTestCaseForOtherCPU(
+--- a/test/hotspot/jtreg/compiler/intrinsics/sha/cli/TestUseSHAOptionOnUnsupportedCPU.java
++++ b/test/hotspot/jtreg/compiler/intrinsics/sha/cli/TestUseSHAOptionOnUnsupportedCPU.java
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2014, 2021, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -39,6 +39,7 @@ package compiler.intrinsics.sha.cli;
+
+ import compiler.intrinsics.sha.cli.testcases.GenericTestCaseForOtherCPU;
+ import compiler.intrinsics.sha.cli.testcases.GenericTestCaseForUnsupportedAArch64CPU;
++import compiler.intrinsics.sha.cli.testcases.GenericTestCaseForUnsupportedRISCV64CPU;
+ import compiler.intrinsics.sha.cli.testcases.GenericTestCaseForUnsupportedX86CPU;
+ import compiler.intrinsics.sha.cli.testcases.UseSHASpecificTestCaseForUnsupportedCPU;
+
+@@ -49,6 +50,8 @@ public class TestUseSHAOptionOnUnsupport
+ DigestOptionsBase.USE_SHA_OPTION),
+ new GenericTestCaseForUnsupportedAArch64CPU(
+ DigestOptionsBase.USE_SHA_OPTION),
++ new GenericTestCaseForUnsupportedRISCV64CPU(
++ DigestOptionsBase.USE_SHA_OPTION),
+ new UseSHASpecificTestCaseForUnsupportedCPU(
+ DigestOptionsBase.USE_SHA_OPTION),
+ new GenericTestCaseForOtherCPU(
+--- a/test/hotspot/jtreg/compiler/intrinsics/sha/cli/testcases/GenericTestCaseForOtherCPU.java
++++ b/test/hotspot/jtreg/compiler/intrinsics/sha/cli/testcases/GenericTestCaseForOtherCPU.java
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2014, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -32,7 +32,7 @@ import jdk.test.lib.cli.predicate.OrPred
+
+ /**
+ * Generic test case for SHA-related options targeted to any CPU except
+- * AArch64, PPC, S390x, and X86.
++ * AArch64, RISCV64, PPC, S390x, and X86.
+ */
+ public class GenericTestCaseForOtherCPU extends
+ DigestOptionsBase.TestCase {
+@@ -44,13 +44,14 @@ public class GenericTestCaseForOtherCPU
+ }
+
+ public GenericTestCaseForOtherCPU(String optionName, boolean checkUseSHA) {
+- // Execute the test case on any CPU except AArch64, PPC, S390x, and X86.
++ // Execute the test case on any CPU except AArch64, RISCV64, PPC, S390x, and X86.
+ super(optionName, new NotPredicate(
+ new OrPredicate(Platform::isAArch64,
++ new OrPredicate(Platform::isRISCV64,
+ new OrPredicate(Platform::isS390x,
+ new OrPredicate(Platform::isPPC,
+ new OrPredicate(Platform::isX64,
+- Platform::isX86))))));
++ Platform::isX86)))))));
+
+ this.checkUseSHA = checkUseSHA;
+ }
+@@ -59,7 +60,7 @@ public class GenericTestCaseForOtherCPU
+ protected void verifyWarnings() throws Throwable {
+ String shouldPassMessage = String.format("JVM should start with "
+ + "option '%s' without any warnings", optionName);
+- // Verify that on non-x86 and non-AArch64 CPU usage of SHA-related
++ // Verify that on non-x86, non-RISCV64 and non-AArch64 CPU usage of SHA-related
+ // options will not cause any warnings.
+ CommandLineOptionTest.verifySameJVMStartup(null,
+ new String[] { ".*" + optionName + ".*" }, shouldPassMessage,
+--- /dev/null
++++ b/test/hotspot/jtreg/compiler/intrinsics/sha/cli/testcases/GenericTestCaseForUnsupportedRISCV64CPU.java
+@@ -0,0 +1,115 @@
++/*
++ * Copyright (c) 2014, 2016, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2020, 2021, Huawei Technologies Co., Ltd. All rights reserved.
++ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
++ *
++ * This code is free software; you can redistribute it and/or modify it
++ * under the terms of the GNU General Public License version 2 only, as
++ * published by the Free Software Foundation.
++ *
++ * This code is distributed in the hope that it will be useful, but WITHOUT
++ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
++ * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
++ * version 2 for more details (a copy is included in the LICENSE file that
++ * accompanied this code).
++ *
++ * You should have received a copy of the GNU General Public License version
++ * 2 along with this work; if not, write to the Free Software Foundation,
++ * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
++ *
++ * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
++ * or visit www.oracle.com if you need additional information or have any
++ * questions.
++ */
++
++package compiler.intrinsics.sha.cli.testcases;
++
++import compiler.intrinsics.sha.cli.DigestOptionsBase;
++import jdk.test.lib.process.ExitCode;
++import jdk.test.lib.Platform;
++import jdk.test.lib.cli.CommandLineOptionTest;
++import jdk.test.lib.cli.predicate.AndPredicate;
++import jdk.test.lib.cli.predicate.NotPredicate;
++
++/**
++ * Generic test case for SHA-related options targeted to RISCV64 CPUs
++ * which don't support instruction required by the tested option.
++ */
++public class GenericTestCaseForUnsupportedRISCV64CPU extends
++ DigestOptionsBase.TestCase {
++
++ final private boolean checkUseSHA;
++
++ public GenericTestCaseForUnsupportedRISCV64CPU(String optionName) {
++ this(optionName, true);
++ }
++
++ public GenericTestCaseForUnsupportedRISCV64CPU(String optionName, boolean checkUseSHA) {
++ super(optionName, new AndPredicate(Platform::isRISCV64,
++ new NotPredicate(DigestOptionsBase.getPredicateForOption(
++ optionName))));
++
++ this.checkUseSHA = checkUseSHA;
++ }
++
++ @Override
++ protected void verifyWarnings() throws Throwable {
++ String shouldPassMessage = String.format("JVM startup should pass with"
++ + "option '-XX:-%s' without any warnings", optionName);
++ //Verify that option could be disabled without any warnings.
++ CommandLineOptionTest.verifySameJVMStartup(null, new String[] {
++ DigestOptionsBase.getWarningForUnsupportedCPU(optionName)
++ }, shouldPassMessage, shouldPassMessage, ExitCode.OK,
++ DigestOptionsBase.UNLOCK_DIAGNOSTIC_VM_OPTIONS,
++ CommandLineOptionTest.prepareBooleanFlag(optionName, false));
++
++ if (checkUseSHA) {
++ shouldPassMessage = String.format("If JVM is started with '-XX:-"
++ + "%s' '-XX:+%s', output should contain warning.",
++ DigestOptionsBase.USE_SHA_OPTION, optionName);
++
++ // Verify that when the tested option is enabled, then
++ // a warning will occur in VM output if UseSHA is disabled.
++ if (!optionName.equals(DigestOptionsBase.USE_SHA_OPTION)) {
++ CommandLineOptionTest.verifySameJVMStartup(
++ new String[] { DigestOptionsBase.getWarningForUnsupportedCPU(optionName) },
++ null,
++ shouldPassMessage,
++ shouldPassMessage,
++ ExitCode.OK,
++ DigestOptionsBase.UNLOCK_DIAGNOSTIC_VM_OPTIONS,
++ CommandLineOptionTest.prepareBooleanFlag(DigestOptionsBase.USE_SHA_OPTION, false),
++ CommandLineOptionTest.prepareBooleanFlag(optionName, true));
++ }
++ }
++ }
++
++ @Override
++ protected void verifyOptionValues() throws Throwable {
++ // Verify that option is disabled by default.
++ CommandLineOptionTest.verifyOptionValueForSameVM(optionName, "false",
++ String.format("Option '%s' should be disabled by default",
++ optionName),
++ DigestOptionsBase.UNLOCK_DIAGNOSTIC_VM_OPTIONS);
++
++ if (checkUseSHA) {
++ // Verify that option is disabled even if it was explicitly enabled
++ // using CLI options.
++ CommandLineOptionTest.verifyOptionValueForSameVM(optionName, "false",
++ String.format("Option '%s' should be off on unsupported "
++ + "RISCV64CPU even if set to true directly", optionName),
++ DigestOptionsBase.UNLOCK_DIAGNOSTIC_VM_OPTIONS,
++ CommandLineOptionTest.prepareBooleanFlag(optionName, true));
++
++ // Verify that option is disabled when +UseSHA was passed to JVM.
++ CommandLineOptionTest.verifyOptionValueForSameVM(optionName, "false",
++ String.format("Option '%s' should be off on unsupported "
++ + "RISCV64CPU even if %s flag set to JVM",
++ optionName, CommandLineOptionTest.prepareBooleanFlag(
++ DigestOptionsBase.USE_SHA_OPTION, true)),
++ DigestOptionsBase.UNLOCK_DIAGNOSTIC_VM_OPTIONS,
++ CommandLineOptionTest.prepareBooleanFlag(
++ DigestOptionsBase.USE_SHA_OPTION, true));
++ }
++ }
++}
+--- a/test/hotspot/jtreg/compiler/loopopts/superword/ProdRed_Double.java
++++ b/test/hotspot/jtreg/compiler/loopopts/superword/ProdRed_Double.java
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2015, 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -25,7 +25,7 @@
+ * @test
+ * @bug 8074981
+ * @summary Add C2 x86 Superword support for scalar product reduction optimizations : float test
+- * @requires os.arch=="x86" | os.arch=="i386" | os.arch=="amd64" | os.arch=="x86_64" | os.arch=="aarch64"
++ * @requires os.arch=="x86" | os.arch=="i386" | os.arch=="amd64" | os.arch=="x86_64" | os.arch=="aarch64" | os.arch=="riscv64"
+ *
+ * @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:LoopUnrollLimit=250
+ * -XX:CompileThresholdScaling=0.1
+--- a/test/hotspot/jtreg/compiler/loopopts/superword/ProdRed_Float.java
++++ b/test/hotspot/jtreg/compiler/loopopts/superword/ProdRed_Float.java
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2015, 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -25,7 +25,7 @@
+ * @test
+ * @bug 8074981
+ * @summary Add C2 x86 Superword support for scalar product reduction optimizations : float test
+- * @requires os.arch=="x86" | os.arch=="i386" | os.arch=="amd64" | os.arch=="x86_64" | os.arch=="aarch64"
++ * @requires os.arch=="x86" | os.arch=="i386" | os.arch=="amd64" | os.arch=="x86_64" | os.arch=="aarch64" | os.arch=="riscv64"
+ *
+ * @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:LoopUnrollLimit=250
+ * -XX:CompileThresholdScaling=0.1
+--- a/test/hotspot/jtreg/compiler/loopopts/superword/ProdRed_Int.java
++++ b/test/hotspot/jtreg/compiler/loopopts/superword/ProdRed_Int.java
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2015, 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -25,7 +25,7 @@
+ * @test
+ * @bug 8074981
+ * @summary Add C2 x86 Superword support for scalar product reduction optimizations : int test
+- * @requires os.arch=="x86" | os.arch=="i386" | os.arch=="amd64" | os.arch=="x86_64" | os.arch=="aarch64"
++ * @requires os.arch=="x86" | os.arch=="i386" | os.arch=="amd64" | os.arch=="x86_64" | os.arch=="aarch64" | os.arch=="riscv64"
+ *
+ * @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:LoopUnrollLimit=250
+ * -XX:CompileThresholdScaling=0.1
+--- a/test/hotspot/jtreg/compiler/loopopts/superword/ReductionPerf.java
++++ b/test/hotspot/jtreg/compiler/loopopts/superword/ReductionPerf.java
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2015, 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -25,7 +25,7 @@
+ * @test
+ * @bug 8074981
+ * @summary Add C2 x86 Superword support for scalar product reduction optimizations : int test
+- * @requires os.arch=="x86" | os.arch=="i386" | os.arch=="amd64" | os.arch=="x86_64" | os.arch=="aarch64"
++ * @requires os.arch=="x86" | os.arch=="i386" | os.arch=="amd64" | os.arch=="x86_64" | os.arch=="aarch64" | os.arch=="riscv64"
+ *
+ * @run main/othervm -XX:+IgnoreUnrecognizedVMOptions
+ * -XX:LoopUnrollLimit=250 -XX:CompileThresholdScaling=0.1
+--- a/test/hotspot/jtreg/compiler/loopopts/superword/SumRedAbsNeg_Double.java
++++ b/test/hotspot/jtreg/compiler/loopopts/superword/SumRedAbsNeg_Double.java
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2015, 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -25,7 +25,7 @@
+ * @test
+ * @bug 8138583
+ * @summary Add C2 AArch64 Superword support for scalar sum reduction optimizations : double abs & neg test
+- * @requires os.arch=="aarch64"
++ * @requires os.arch=="aarch64" | os.arch=="riscv64"
+ *
+ * @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:LoopUnrollLimit=250
+ * -XX:CompileThresholdScaling=0.1
+--- a/test/hotspot/jtreg/compiler/loopopts/superword/SumRedAbsNeg_Float.java
++++ b/test/hotspot/jtreg/compiler/loopopts/superword/SumRedAbsNeg_Float.java
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2015, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2015, 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -25,7 +25,7 @@
+ * @test
+ * @bug 8138583
+ * @summary Add C2 AArch64 Superword support for scalar sum reduction optimizations : float abs & neg test
+- * @requires os.arch=="aarch64"
++ * @requires os.arch=="aarch64" | os.arch=="riscv64"
+ *
+ * @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:LoopUnrollLimit=250
+ * -XX:CompileThresholdScaling=0.1
+--- a/test/hotspot/jtreg/compiler/loopopts/superword/SumRedSqrt_Double.java
++++ b/test/hotspot/jtreg/compiler/loopopts/superword/SumRedSqrt_Double.java
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -25,7 +25,7 @@
+ * @test
+ * @bug 8135028
+ * @summary Add C2 x86 Superword support for scalar sum reduction optimizations : double sqrt test
+- * @requires os.arch=="x86" | os.arch=="i386" | os.arch=="amd64" | os.arch=="x86_64" | os.arch=="aarch64"
++ * @requires os.arch=="x86" | os.arch=="i386" | os.arch=="amd64" | os.arch=="x86_64" | os.arch=="aarch64" | os.arch=="riscv64"
+ *
+ * @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:LoopUnrollLimit=250
+ * -XX:CompileThresholdScaling=0.1
+--- a/test/hotspot/jtreg/compiler/loopopts/superword/SumRed_Double.java
++++ b/test/hotspot/jtreg/compiler/loopopts/superword/SumRed_Double.java
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2015, 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -25,7 +25,7 @@
+ * @test
+ * @bug 8074981
+ * @summary Add C2 x86 Superword support for scalar sum reduction optimizations : double test
+- * @requires os.arch=="x86" | os.arch=="i386" | os.arch=="amd64" | os.arch=="x86_64" | os.arch=="aarch64"
++ * @requires os.arch=="x86" | os.arch=="i386" | os.arch=="amd64" | os.arch=="x86_64" | os.arch=="aarch64" | os.arch=="riscv64"
+ *
+ * @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:LoopUnrollLimit=250
+ * -XX:CompileThresholdScaling=0.1
+--- a/test/hotspot/jtreg/compiler/loopopts/superword/SumRed_Float.java
++++ b/test/hotspot/jtreg/compiler/loopopts/superword/SumRed_Float.java
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2015, 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -25,7 +25,7 @@
+ * @test
+ * @bug 8074981
+ * @summary Add C2 x86 Superword support for scalar sum reduction optimizations : float test
+- * @requires os.arch=="x86" | os.arch=="i386" | os.arch=="amd64" | os.arch=="x86_64" | os.arch=="aarch64"
++ * @requires os.arch=="x86" | os.arch=="i386" | os.arch=="amd64" | os.arch=="x86_64" | os.arch=="aarch64" | os.arch=="riscv64"
+ *
+ * @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:LoopUnrollLimit=250
+ * -XX:CompileThresholdScaling=0.1
+--- a/test/hotspot/jtreg/compiler/loopopts/superword/SumRed_Int.java
++++ b/test/hotspot/jtreg/compiler/loopopts/superword/SumRed_Int.java
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2015, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2015, 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -25,7 +25,7 @@
+ * @test
+ * @bug 8074981
+ * @summary Add C2 x86 Superword support for scalar sum reduction optimizations : int test
+- * @requires os.arch=="x86" | os.arch=="i386" | os.arch=="amd64" | os.arch=="x86_64" | os.arch=="aarch64"
++ * @requires os.arch=="x86" | os.arch=="i386" | os.arch=="amd64" | os.arch=="x86_64" | os.arch=="aarch64" | os.arch=="riscv64"
+ *
+ * @run main/othervm -XX:+IgnoreUnrecognizedVMOptions -XX:LoopUnrollLimit=250
+ * -XX:CompileThresholdScaling=0.1
+--- a/test/hotspot/jtreg/compiler/runtime/TestConstantsInError.java
++++ b/test/hotspot/jtreg/compiler/runtime/TestConstantsInError.java
+@@ -130,7 +130,7 @@ public abstract class TestConstantsInErr
+ results.shouldMatch("Test_C1/.*::test \\(3 bytes\\)$")
+ .shouldMatch("Test_C2/.*::test \\(3 bytes\\)$");
+
+- if (isC1 && Platform.isAArch64()) { // no code patching
++ if (isC1 && (Platform.isAArch64() || Platform.isRISCV64())) { // no code patching
+ results.shouldMatch("Test_C1/.*::test \\(3 bytes\\) made not entrant")
+ .shouldMatch("Test_C2/.*::test \\(3 bytes\\) made not entrant");
+ } else {
+@@ -168,7 +168,7 @@ public abstract class TestConstantsInErr
+ .shouldMatch("Test_MH3/.*::test \\(3 bytes\\)$")
+ .shouldMatch("Test_MH4/.*::test \\(3 bytes\\)$");
+
+- if (isC1 && Platform.isAArch64()) { // no code patching
++ if (isC1 && (Platform.isAArch64() || Platform.isRISCV64())) { // no code patching
+ results.shouldMatch("Test_MH1/.*::test \\(3 bytes\\) made not entrant")
+ .shouldMatch("Test_MH2/.*::test \\(3 bytes\\) made not entrant")
+ .shouldMatch("Test_MH3/.*::test \\(3 bytes\\) made not entrant")
+@@ -191,7 +191,7 @@ public abstract class TestConstantsInErr
+ results.shouldMatch("Test_MT1/.*::test \\(3 bytes\\)$")
+ .shouldMatch("Test_MT2/.*::test \\(3 bytes\\)$");
+
+- if (isC1 && Platform.isAArch64()) { // no code patching
++ if (isC1 && (Platform.isAArch64() || Platform.isRISCV64())) { // no code patching
+ results.shouldMatch("Test_MT1/.*::test \\(3 bytes\\) made not entrant")
+ .shouldMatch("Test_MT2/.*::test \\(3 bytes\\) made not entrant");
+ } else {
+--- a/test/hotspot/jtreg/compiler/runtime/criticalnatives/argumentcorruption/CheckLongArgs.java
++++ b/test/hotspot/jtreg/compiler/runtime/criticalnatives/argumentcorruption/CheckLongArgs.java
+@@ -24,7 +24,7 @@
+
+ /* @test
+ * @bug 8167409
+- * @requires (os.arch != "aarch64") & (os.arch != "arm") & (vm.flavor != "zero")
++ * @requires (os.arch != "aarch64") & (os.arch != "arm") & (os.arch != "riscv64") & (vm.flavor != "zero")
+ * @run main/othervm/native -Xcomp -XX:+CriticalJNINatives compiler.runtime.criticalnatives.argumentcorruption.CheckLongArgs
+ */
+ package compiler.runtime.criticalnatives.argumentcorruption;
+--- a/test/hotspot/jtreg/compiler/runtime/criticalnatives/lookup/LookUp.java
++++ b/test/hotspot/jtreg/compiler/runtime/criticalnatives/lookup/LookUp.java
+@@ -24,7 +24,7 @@
+
+ /* @test
+ * @bug 8167408
+- * @requires (os.arch != "aarch64") & (os.arch != "arm") & (vm.flavor != "zero")
++ * @requires (os.arch != "aarch64") & (os.arch != "arm") & (os.arch != "riscv64") & (vm.flavor != "zero")
+ * @run main/othervm/native -Xcomp -XX:+CriticalJNINatives compiler.runtime.criticalnatives.lookup.LookUp
+ */
+ package compiler.runtime.criticalnatives.lookup;
+--- a/test/hotspot/jtreg/compiler/testlibrary/sha/predicate/IntrinsicPredicates.java
++++ b/test/hotspot/jtreg/compiler/testlibrary/sha/predicate/IntrinsicPredicates.java
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2014, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2014, 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -68,14 +68,16 @@ public class IntrinsicPredicates {
+
+ public static final BooleanSupplier SHA1_INSTRUCTION_AVAILABLE
+ = new OrPredicate(new CPUSpecificPredicate("aarch64.*", new String[] { "sha1" }, null),
++ new OrPredicate(new CPUSpecificPredicate("riscv64.*", new String[] { "sha1" }, null),
+ new OrPredicate(new CPUSpecificPredicate("s390.*", new String[] { "sha1" }, null),
+ // x86 variants
+ new OrPredicate(new CPUSpecificPredicate("amd64.*", new String[] { "sha" }, null),
+ new OrPredicate(new CPUSpecificPredicate("i386.*", new String[] { "sha" }, null),
+- new CPUSpecificPredicate("x86.*", new String[] { "sha" }, null)))));
++ new CPUSpecificPredicate("x86.*", new String[] { "sha" }, null))))));
+
+ public static final BooleanSupplier SHA256_INSTRUCTION_AVAILABLE
+ = new OrPredicate(new CPUSpecificPredicate("aarch64.*", new String[] { "sha256" }, null),
++ new OrPredicate(new CPUSpecificPredicate("riscv64.*", new String[] { "sha256" }, null),
+ new OrPredicate(new CPUSpecificPredicate("s390.*", new String[] { "sha256" }, null),
+ new OrPredicate(new CPUSpecificPredicate("ppc64.*", new String[] { "sha" }, null),
+ new OrPredicate(new CPUSpecificPredicate("ppc64le.*", new String[] { "sha" }, null),
+@@ -84,10 +86,11 @@ public class IntrinsicPredicates {
+ new OrPredicate(new CPUSpecificPredicate("i386.*", new String[] { "sha" }, null),
+ new OrPredicate(new CPUSpecificPredicate("x86.*", new String[] { "sha" }, null),
+ new OrPredicate(new CPUSpecificPredicate("amd64.*", new String[] { "avx2", "bmi2" }, null),
+- new CPUSpecificPredicate("x86_64", new String[] { "avx2", "bmi2" }, null)))))))));
++ new CPUSpecificPredicate("x86_64", new String[] { "avx2", "bmi2" }, null))))))))));
+
+ public static final BooleanSupplier SHA512_INSTRUCTION_AVAILABLE
+ = new OrPredicate(new CPUSpecificPredicate("aarch64.*", new String[] { "sha512" }, null),
++ new OrPredicate(new CPUSpecificPredicate("riscv64.*", new String[] { "sha512" }, null),
+ new OrPredicate(new CPUSpecificPredicate("s390.*", new String[] { "sha512" }, null),
+ new OrPredicate(new CPUSpecificPredicate("ppc64.*", new String[] { "sha" }, null),
+ new OrPredicate(new CPUSpecificPredicate("ppc64le.*", new String[] { "sha" }, null),
+@@ -96,7 +99,7 @@ public class IntrinsicPredicates {
+ new OrPredicate(new CPUSpecificPredicate("i386.*", new String[] { "sha" }, null),
+ new OrPredicate(new CPUSpecificPredicate("x86.*", new String[] { "sha" }, null),
+ new OrPredicate(new CPUSpecificPredicate("amd64.*", new String[] { "avx2", "bmi2" }, null),
+- new CPUSpecificPredicate("x86_64", new String[] { "avx2", "bmi2" }, null)))))))));
++ new CPUSpecificPredicate("x86_64", new String[] { "avx2", "bmi2" }, null))))))))));
+
+ public static final BooleanSupplier SHA3_INSTRUCTION_AVAILABLE
+ // sha3 is only implemented on aarch64 for now
+--- a/test/hotspot/jtreg/runtime/NMT/CheckForProperDetailStackTrace.java
++++ b/test/hotspot/jtreg/runtime/NMT/CheckForProperDetailStackTrace.java
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2016, 2021, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2016, 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -133,7 +133,7 @@ public class CheckForProperDetailStackTr
+ // It's ok for ARM not to have symbols, because it does not support NMT detail
+ // when targeting thumb2. It's also ok for Windows not to have symbols, because
+ // they are only available if the symbols file is included with the build.
+- if (Platform.isWindows() || Platform.isARM()) {
++ if (Platform.isWindows() || Platform.isARM() || Platform.isRISCV64()) {
+ return; // we are done
+ }
+ output.reportDiagnosticSummary();
+--- a/test/hotspot/jtreg/runtime/ReservedStack/ReservedStackTest.java
++++ b/test/hotspot/jtreg/runtime/ReservedStack/ReservedStackTest.java
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2015, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2015, 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -240,7 +240,7 @@ public class ReservedStackTest {
+ return Platform.isAix() ||
+ (Platform.isLinux() &&
+ (Platform.isPPC() || Platform.isS390x() || Platform.isX64() ||
+- Platform.isX86() || Platform.isAArch64())) ||
++ Platform.isX86() || Platform.isAArch64() || Platform.isRISCV64())) ||
+ Platform.isOSX();
+ }
+
+--- a/test/hotspot/jtreg/serviceability/AsyncGetCallTrace/MyPackage/ASGCTBaseTest.java
++++ b/test/hotspot/jtreg/serviceability/AsyncGetCallTrace/MyPackage/ASGCTBaseTest.java
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2019, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2019, 2022, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2019, Google and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+@@ -29,7 +29,7 @@ package MyPackage;
+ * @summary Verifies that AsyncGetCallTrace is call-able and provides sane information.
+ * @compile ASGCTBaseTest.java
+ * @requires os.family == "linux"
+- * @requires os.arch=="x86" | os.arch=="i386" | os.arch=="amd64" | os.arch=="x86_64" | os.arch=="arm" | os.arch=="aarch64" | os.arch=="ppc64" | os.arch=="s390"
++ * @requires os.arch=="x86" | os.arch=="i386" | os.arch=="amd64" | os.arch=="x86_64" | os.arch=="arm" | os.arch=="aarch64" | os.arch=="ppc64" | os.arch=="s390" | os.arch=="riscv64"
+ * @requires vm.jvmti
+ * @run main/othervm/native -agentlib:AsyncGetCallTraceTest MyPackage.ASGCTBaseTest
+ */
+--- a/test/hotspot/jtreg/vmTestbase/nsk/share/jdi/ArgumentHandler.java
++++ b/test/hotspot/jtreg/vmTestbase/nsk/share/jdi/ArgumentHandler.java
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2001, 2021, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2001, 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -529,6 +529,7 @@ class CheckedFeatures {
+ {"linux-ppc64", "com.sun.jdi.SharedMemoryAttach"},
+ {"linux-ppc64le", "com.sun.jdi.SharedMemoryAttach"},
+ {"linux-s390x", "com.sun.jdi.SharedMemoryAttach"},
++ {"linux-riscv64", "com.sun.jdi.SharedMemoryAttach"},
+ {"macosx-amd64", "com.sun.jdi.SharedMemoryAttach"},
+ {"mac-x64", "com.sun.jdi.SharedMemoryAttach"},
+ {"macosx-aarch64", "com.sun.jdi.SharedMemoryAttach"},
+@@ -554,6 +555,7 @@ class CheckedFeatures {
+ {"linux-ppc64", "com.sun.jdi.SharedMemoryListen"},
+ {"linux-ppc64le", "com.sun.jdi.SharedMemoryListen"},
+ {"linux-s390x", "com.sun.jdi.SharedMemoryListen"},
++ {"linux-riscv64", "com.sun.jdi.SharedMemoryListen"},
+ {"macosx-amd64", "com.sun.jdi.SharedMemoryListen"},
+ {"mac-x64", "com.sun.jdi.SharedMemoryListen"},
+ {"macosx-aarch64", "com.sun.jdi.SharedMemoryListen"},
+@@ -600,6 +602,9 @@ class CheckedFeatures {
+ {"linux-s390x", "com.sun.jdi.CommandLineLaunch", "dt_shmem"},
+ {"linux-s390x", "com.sun.jdi.RawCommandLineLaunch", "dt_shmem"},
+
++ {"linux-riscv64", "com.sun.jdi.CommandLineLaunch", "dt_shmem"},
++ {"linux-riscv64", "com.sun.jdi.RawCommandLineLaunch", "dt_shmem"},
++
+ {"windows-i586", "com.sun.jdi.CommandLineLaunch", "dt_socket"},
+ {"windows-i586", "com.sun.jdi.RawCommandLineLaunch", "dt_socket"},
+
+@@ -637,6 +642,7 @@ class CheckedFeatures {
+ {"linux-ppc64", "dt_shmem"},
+ {"linux-ppc64le", "dt_shmem"},
+ {"linux-s390x", "dt_shmem"},
++ {"linux-riscv64", "dt_shmem"},
+ {"macosx-amd64", "dt_shmem"},
+ {"mac-x64", "dt_shmem"},
+ {"macosx-aarch64", "dt_shmem"},
+--- a/test/jdk/jdk/jfr/event/os/TestCPUInformation.java
++++ b/test/jdk/jdk/jfr/event/os/TestCPUInformation.java
+@@ -1,5 +1,5 @@
+ /*
+- * Copyright (c) 2013, 2020, Oracle and/or its affiliates. All rights reserved.
++ * Copyright (c) 2013, 2022, Oracle and/or its affiliates. All rights reserved.
+ * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
+ *
+ * This code is free software; you can redistribute it and/or modify it
+@@ -52,8 +52,8 @@ public class TestCPUInformation {
+ Events.assertField(event, "hwThreads").atLeast(1);
+ Events.assertField(event, "cores").atLeast(1);
+ Events.assertField(event, "sockets").atLeast(1);
+- Events.assertField(event, "cpu").containsAny("Intel", "AMD", "Unknown x86", "ARM", "PPC", "PowerPC", "AArch64", "s390");
+- Events.assertField(event, "description").containsAny("Intel", "AMD", "Unknown x86", "ARM", "PPC", "PowerPC", "AArch64", "s390");
++ Events.assertField(event, "cpu").containsAny("Intel", "AMD", "Unknown x86", "ARM", "PPC", "PowerPC", "AArch64", "RISCV64", "s390");
++ Events.assertField(event, "description").containsAny("Intel", "AMD", "Unknown x86", "ARM", "PPC", "PowerPC", "AArch64", "RISCV64", "s390");
+ }
+ }
+ }
+--- a/test/lib-test/jdk/test/lib/TestMutuallyExclusivePlatformPredicates.java
++++ b/test/lib-test/jdk/test/lib/TestMutuallyExclusivePlatformPredicates.java
+@@ -45,7 +45,7 @@ import java.util.Set;
+ */
+ public class TestMutuallyExclusivePlatformPredicates {
+ private static enum MethodGroup {
+- ARCH("isAArch64", "isARM", "isPPC", "isS390x", "isX64", "isX86"),
++ ARCH("isAArch64", "isARM", "isRISCV64", "isPPC", "isS390x", "isX64", "isX86"),
+ BITNESS("is32bit", "is64bit"),
+ OS("isAix", "isLinux", "isOSX", "isWindows"),
+ VM_TYPE("isClient", "isServer", "isMinimal", "isZero", "isEmbedded"),
+--- a/test/lib/jdk/test/lib/Platform.java
++++ b/test/lib/jdk/test/lib/Platform.java
+@@ -210,6 +210,10 @@ public class Platform {
+ return isArch("arm.*");
+ }
+
++ public static boolean isRISCV64() {
++ return isArch("riscv64");
++ }
++
+ public static boolean isPPC() {
+ return isArch("ppc.*");
+ }