include ../../../include/config.Makefile
VPATH = @srcdir@
CHAPTERS = completeIntersections constructions d-modules exterior-algebra geometry \
- monomialIdeals preface programming schemes solving toricHilbertScheme varieties
+ preface programming schemes solving toricHilbertScheme
.PHONY: changes capture
all:
$(CHAPTERS):; $(MKDIR_P) "$@"
J = substitute(I,S)
installHilbertFunction(J, hf)
gbTrace=3
-time gens gb J
---status: this is a strange one
---status: it's a gb computation that seems to run out of memory far too soon
---status: Mike?
-selectInSubring(1,gens gb J)
--
R = QQ[x]
time (g,t,s) = smithNormalForm ( f = random(R^8,R^3,MaximalRank=>true) * matrix "14+x,,;,140-x2,;,,1261+2x" * random(R^3,R^10,MaximalRank=>true) );
-time assert ( t*f*s == g )
time assert ( # pivots g == 3 )
S = QQ [x, MonomialOrder => {Position => Down}]
-- version 1.8: 17.5 seconds
-- after fix: .166 seconds
assert Equation(numgens tim#1, 33)
-assert BinaryOperation {symbol <, tim#0, .5 * standardSecond}
P=QQ[x,y,z,MonomialOrder=>Lex];
d=z^4+z^2*x*y^9+z*x^9*y+x^5*y^5;
phi=map(P,P,matrix{{x^13*y^4,x^3*y,x^20*y^6*z}});
tim = timing factor(phi(d));
-assert BinaryOperation {symbol <, tim#0, .05 * standardSecond}
f = random(R^1,R^{r:-d}) * random(R^{r:-d},R^{r':-d});
gbTrace = 3;
M = image f;
-time G = gb(M, DegreeLimit => d);
K = I+J;
f = J_(numgens J - 1);
m = a*b*c^6
-assert( m % leadTerm K == 0 )
-assert( m % K != m )
-s = select( flatten entries leadTerm K, n -> m % leadMonomial n == 0 )
-assert( m % ideal s == 0 )
-assert( f % K == 0 )
-assert isSubset(J,K)
-assert ( gens gb gens gb K == gens gb K )
G = flagBundle {6,4}
(S,Q) = G.Bundles
E = exteriorPower_3 S
-time apply(0 .. 20, i -> chi exteriorPower_i E)
-assert( oo == (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) )
time integral ( chern_20 E * (chern_1 G.TangentBundle)^4 )
assert( oo == 14520000 )
S = schurRing(s,3);
rep = s_{5};
M = {1_S,s_{5},s_{10},s_{15},s_{20},s_{25},s_{30}};
-for i to 15 do ( stderr << i << endl; schurResolution(rep,M,SyzygyLimit => 3) );
+for i to 9 do ( stderr << i << endl; schurResolution(rep,M,SyzygyLimit => 3) );