mark_tests_working_on_intel
authorDebian Science Team <debian-science-maintainers@lists.alioth.debian.org>
Sat, 14 Sep 2019 15:37:43 +0000 (16:37 +0100)
committerRebecca N. Palmer <rebecca_palmer@zoho.com>
Sat, 14 Sep 2019 15:37:43 +0000 (16:37 +0100)
Last-Update Sat, 14 Oct 2017 19:42:59 +0200
Bug-Debian: https://bugs.debian.org/877419
Author: Graham Inggs <ginggs@debian.org>
Last-Update: 2018-04-11

Gbp-Pq: Name mark_tests_working_on_intel.patch

pandas/tests/dtypes/test_cast.py
pandas/tests/frame/test_analytics.py
pandas/tests/frame/test_indexing.py
pandas/tests/frame/test_operators.py
pandas/tests/groupby/aggregate/test_other.py
pandas/tests/indexes/timedeltas/test_arithmetic.py
pandas/tests/series/test_constructors.py
pandas/tests/series/test_period.py
pandas/tests/test_algos.py
pandas/tests/test_resample.py

index 4a19682e2c558afd870406e85f48116351d701bd..c7f0783f5cfa04ee7e8e56db5b5f8495f0b623e7 100644 (file)
@@ -81,6 +81,7 @@ class TestMaybeDowncast(object):
             tm.assert_almost_equal(result, np.array([], dtype=np.int64))
             assert result.dtype == np.int64
 
+    @pytest.mark.intel
     def test_datetimelikes_nan(self):
         arr = np.array([1, 2, np.nan])
         exp = np.array([1, 2, np.datetime64('NaT')], dtype='datetime64[ns]')
index 437d3a9d2473081baf1cf3c999f8cf868aa15576..0e9d9a15c7fdeecd3e276cb128eecccd32b43aa4 100644 (file)
@@ -1013,6 +1013,7 @@ class TestDataFrameAnalytics(TestData):
         expected = pd.Series(result, index=['A', 'B'])
         tm.assert_series_equal(result, expected)
 
+    @pytest.mark.intel
     def test_sum_nanops_timedelta(self):
         # prod isn't defined on timedeltas
         idx = ['a', 'b', 'c']
index 6d74ce54faa94b371c48c9e1b9dd6c29b8f17beb..e06babff86906ea27e7f069c2b255f6382a46843 100644 (file)
@@ -2709,6 +2709,7 @@ class TestDataFrameIndexing(TestData):
         result = a.where(do_not_replace, b)
         assert_frame_equal(result, expected)
 
+    @pytest.mark.intel
     def test_where_datetime(self):
 
         # GH 3311
index fdf50805ad818483c605644d35e6f73b6db6365d..fee122a3cdd44c858766bf1e0df296c4fb75fb9a 100644 (file)
@@ -178,6 +178,7 @@ class TestDataFrameOperators(TestData):
             df)), 'b': date_range('20100101', periods=len(df))})
         check(df, df2)
 
+    @pytest.mark.intel
     def test_timestamp_compare(self):
         # make sure we can compare Timestamps on the right AND left hand side
         # GH4982
index 34489051efc18aa5471fbbaf19d4c322e4db8c0f..a584b87087edc1823a3ee72e83542b98473fdb83 100644 (file)
@@ -87,6 +87,7 @@ def test_agg_period_index():
     list(grouped)
 
 
+@pytest.mark.intel
 def test_agg_dict_parameter_cast_result_dtypes():
     # GH 12821
 
index 9035434046ccbd302c064a75d50f5da1573005a4..21fe56b2dd4517a990605f0078d923f76b7e099c 100644 (file)
@@ -908,6 +908,7 @@ class TestTimedeltaIndexArithmetic(object):
         tm.assert_series_equal(s + pd.Timedelta('00:30:00'), exp)
         tm.assert_series_equal(pd.Timedelta('00:30:00') + s, exp)
 
+    @pytest.mark.intel
     def test_timedelta_ops_with_missing_values(self):
         # setup
         s1 = pd.to_timedelta(Series(['00:00:01']))
index 906d2aacd5586f7b2eb56eba6c0e84ce6191131b..0035e174e4cfe562204e9718dd9ca63538538cfa 100644 (file)
@@ -1050,6 +1050,7 @@ class TestSeriesConstructors(TestData):
         series[2] = val
         assert isna(series[2])
 
+    @pytest.mark.intel
     def test_NaT_cast(self):
         # GH10747
         result = Series([np.nan]).astype('M8[ns]')
index 63726f27914f3d38d4f0b0a4055ff550aa5ef9d7..e91291863e0d02301e264a31c96b21dded77b0b3 100644 (file)
@@ -83,6 +83,7 @@ class TestSeriesPeriod(object):
         series[2] = val
         assert isna(series[2])
 
+    @pytest.mark.intel
     def test_NaT_cast(self):
         result = Series([np.nan]).astype('period[D]')
         expected = Series([NaT])
index 46bd879c2db87cc59813174cd27af7842ff3220b..a74e429c2894a2b9c2ee7c90c6149e1b83175272 100644 (file)
@@ -759,6 +759,7 @@ class TestValueCounts(object):
             expected = Series([2, 1, 1], index=[5., 10.3, np.nan])
             tm.assert_series_equal(result, expected)
 
+    @pytest.mark.intel
     def test_value_counts_normalized(self):
         # GH12558
         s = Series([1, 2, np.nan, np.nan, np.nan])
index c1257cce9a9a44de3f3dda2b482a4c68593c5f68..b8502ade3413aaa2eaa49eee53b148b55e4847ba 100644 (file)
@@ -2110,6 +2110,7 @@ class TestDatetimeIndex(Base):
 
         assert_frame_equal(frame.resample('60s').mean(), frame_3s)
 
+    @pytest.mark.intel
     def test_resample_timedelta_values(self):
         # GH 13119
         # check that timedelta dtype is preserved when NaT values are
@@ -2127,6 +2128,7 @@ class TestDatetimeIndex(Base):
         res = df['time'].resample('2D').first()
         tm.assert_series_equal(res, exp)
 
+    @pytest.mark.intel
     def test_resample_datetime_values(self):
         # GH 13119
         # check that datetime dtype is preserved when NaT values are