)
from statsmodels.tsa.tsatools import freq_to_period
+import warnings
+import sys
+import platform
+import re
+warn_ets = "ETSModel can give wrong results on 32 bit i386" if (bool(re.match('i.?86|x86',platform.uname()[4])) and sys.maxsize<2**33) else False
+
+
# Implementation details:
# * The smoothing equations are implemented only for models having all
missing="none",
):
+ if warn_ets:
+ warnings.warn(warn_ets)
super().__init__(
endog, exog=None, dates=dates, freq=freq, missing=missing
)
import pytest
import scipy.stats
-from statsmodels.tsa.exponential_smoothing.ets import ETSModel
+from statsmodels.tsa.exponential_smoothing.ets import ETSModel,warn_ets
import statsmodels.tsa.holtwinters as holtwinters
import statsmodels.tsa.statespace.exponential_smoothing as statespace
@pytest.mark.parametrize("method", ["estimated", "heuristic"])
+@pytest.mark.xfail(condition=bool(warn_ets),reason='known to fail on i386',strict=False)
def test_seasonal_order(reset_randomstate, method):
seasonal = np.arange(12.0)
time_series = np.array(list(seasonal) * 100)