static inline int from_bcd(RTCState *s, int a);
static inline int convert_hour(RTCState *s, int hour);
-static void rtc_periodic_cb(struct vcpu *v, void *opaque)
+static void rtc_toggle_irq(RTCState *s)
+{
+ struct domain *d = vrtc_domain(s);
+
+ ASSERT(spin_is_locked(&s->lock));
+ s->hw.cmos_data[RTC_REG_C] |= RTC_IRQF;
+ hvm_isa_irq_deassert(d, RTC_IRQ);
+ hvm_isa_irq_assert(d, RTC_IRQ);
+}
+
+void rtc_periodic_interrupt(void *opaque)
{
RTCState *s = opaque;
+
spin_lock(&s->lock);
- s->hw.cmos_data[RTC_REG_C] |= 0xc0;
+ s->hw.cmos_data[RTC_REG_C] |= RTC_PF;
+ if ( s->hw.cmos_data[RTC_REG_B] & RTC_PIE )
+ rtc_toggle_irq(s);
spin_unlock(&s->lock);
}
ASSERT(spin_is_locked(&s->lock));
period_code = s->hw.cmos_data[RTC_REG_A] & RTC_RATE_SELECT;
- if ( (period_code != 0) && (s->hw.cmos_data[RTC_REG_B] & RTC_PIE) )
+ switch ( s->hw.cmos_data[RTC_REG_A] & RTC_DIV_CTL )
{
- if ( period_code <= 2 )
+ case RTC_REF_CLCK_32KHZ:
+ if ( (period_code != 0) && (period_code <= 2) )
period_code += 7;
-
- period = 1 << (period_code - 1); /* period in 32 Khz cycles */
- period = DIV_ROUND((period * 1000000000ULL), 32768); /* period in ns */
- create_periodic_time(v, &s->pt, period, period, RTC_IRQ,
- rtc_periodic_cb, s);
- }
- else
- {
+ /* fall through */
+ case RTC_REF_CLCK_1MHZ:
+ case RTC_REF_CLCK_4MHZ:
+ if ( period_code != 0 )
+ {
+ period = 1 << (period_code - 1); /* period in 32 Khz cycles */
+ period = DIV_ROUND(period * 1000000000ULL, 32768); /* in ns */
+ create_periodic_time(v, &s->pt, period, period, RTC_IRQ, NULL, s);
+ break;
+ }
+ /* fall through */
+ default:
destroy_periodic_time(&s->pt);
+ break;
}
}
guest_usec = get_localtime_us(d) % USEC_PER_SEC;
if (guest_usec >= (USEC_PER_SEC - 244))
{
- /* RTC is in update cycle when enabling UIE */
+ /* RTC is in update cycle */
s->hw.cmos_data[RTC_REG_A] |= RTC_UIP;
next_update_time = (USEC_PER_SEC - guest_usec) * NS_PER_USEC;
expire_time = NOW() + next_update_time;
static void rtc_update_timer2(void *opaque)
{
RTCState *s = opaque;
- struct domain *d = vrtc_domain(s);
spin_lock(&s->lock);
if (!(s->hw.cmos_data[RTC_REG_B] & RTC_SET))
s->hw.cmos_data[RTC_REG_C] |= RTC_UF;
s->hw.cmos_data[RTC_REG_A] &= ~RTC_UIP;
if ((s->hw.cmos_data[RTC_REG_B] & RTC_UIE))
- {
- s->hw.cmos_data[RTC_REG_C] |= RTC_IRQF;
- hvm_isa_irq_deassert(d, RTC_IRQ);
- hvm_isa_irq_assert(d, RTC_IRQ);
- }
+ rtc_toggle_irq(s);
check_update_timer(s);
}
spin_unlock(&s->lock);
stop_timer(&s->alarm_timer);
- if ((s->hw.cmos_data[RTC_REG_B] & RTC_AIE) &&
- !(s->hw.cmos_data[RTC_REG_B] & RTC_SET))
+ if ( !(s->hw.cmos_data[RTC_REG_B] & RTC_SET) )
{
s->current_tm = gmtime(get_localtime(d));
rtc_copy_date(s);
alarm_sec = from_bcd(s, s->hw.cmos_data[RTC_SECONDS_ALARM]);
alarm_min = from_bcd(s, s->hw.cmos_data[RTC_MINUTES_ALARM]);
- alarm_hour = from_bcd(s, s->hw.cmos_data[RTC_HOURS_ALARM]);
- alarm_hour = convert_hour(s, alarm_hour);
+ alarm_hour = convert_hour(s, s->hw.cmos_data[RTC_HOURS_ALARM]);
cur_sec = from_bcd(s, s->hw.cmos_data[RTC_SECONDS]);
cur_min = from_bcd(s, s->hw.cmos_data[RTC_MINUTES]);
- cur_hour = from_bcd(s, s->hw.cmos_data[RTC_HOURS]);
- cur_hour = convert_hour(s, cur_hour);
+ cur_hour = convert_hour(s, s->hw.cmos_data[RTC_HOURS]);
next_update_time = USEC_PER_SEC - (get_localtime_us(d) % USEC_PER_SEC);
next_update_time = next_update_time * NS_PER_USEC + NOW();
static void rtc_alarm_cb(void *opaque)
{
RTCState *s = opaque;
- struct domain *d = vrtc_domain(s);
spin_lock(&s->lock);
if (!(s->hw.cmos_data[RTC_REG_B] & RTC_SET))
s->hw.cmos_data[RTC_REG_C] |= RTC_AF;
/* alarm interrupt */
if (s->hw.cmos_data[RTC_REG_B] & RTC_AIE)
- {
- s->hw.cmos_data[RTC_REG_C] |= RTC_IRQF;
- hvm_isa_irq_deassert(d, RTC_IRQ);
- hvm_isa_irq_assert(d, RTC_IRQ);
- }
+ rtc_toggle_irq(s);
alarm_timer_update(s);
}
spin_unlock(&s->lock);
{
RTCState *s = opaque;
struct domain *d = vrtc_domain(s);
- uint32_t orig;
+ uint32_t orig, mask;
spin_lock(&s->lock);
/* set mode: reset UIP mode */
s->hw.cmos_data[RTC_REG_A] &= ~RTC_UIP;
/* adjust cmos before stopping */
- if (!(s->hw.cmos_data[RTC_REG_B] & RTC_SET))
+ if (!(orig & RTC_SET))
{
s->current_tm = gmtime(get_localtime(d));
rtc_copy_date(s);
else
{
/* if disabling set mode, update the time */
- if ( s->hw.cmos_data[RTC_REG_B] & RTC_SET )
+ if ( orig & RTC_SET )
rtc_set_time(s);
}
- /* if the interrupt is already set when the interrupt become
- * enabled, raise an interrupt immediately*/
- if ((data & RTC_UIE) && !(s->hw.cmos_data[RTC_REG_B] & RTC_UIE))
- if (s->hw.cmos_data[RTC_REG_C] & RTC_UF)
+ /*
+ * If the interrupt is already set when the interrupt becomes
+ * enabled, raise an interrupt immediately.
+ * NB: RTC_{A,P,U}IE == RTC_{A,P,U}F respectively.
+ */
+ for ( mask = RTC_UIE; mask <= RTC_PIE; mask <<= 1 )
+ if ( (data & mask) && !(orig & mask) &&
+ (s->hw.cmos_data[RTC_REG_C] & mask) )
{
- hvm_isa_irq_deassert(d, RTC_IRQ);
- hvm_isa_irq_assert(d, RTC_IRQ);
+ rtc_toggle_irq(s);
+ break;
}
s->hw.cmos_data[RTC_REG_B] = data;
- if ( (data ^ orig) & RTC_PIE )
- rtc_timer_update(s);
- check_update_timer(s);
- alarm_timer_update(s);
+ if ( (data ^ orig) & RTC_SET )
+ check_update_timer(s);
+ if ( (data ^ orig) & (RTC_24H | RTC_DM_BINARY | RTC_SET) )
+ alarm_timer_update(s);
break;
case RTC_REG_C:
case RTC_REG_D:
static inline int to_bcd(RTCState *s, int a)
{
- if ( s->hw.cmos_data[RTC_REG_B] & 0x04 )
+ if ( s->hw.cmos_data[RTC_REG_B] & RTC_DM_BINARY )
return a;
else
return ((a / 10) << 4) | (a % 10);
static inline int from_bcd(RTCState *s, int a)
{
- if ( s->hw.cmos_data[RTC_REG_B] & 0x04 )
+ if ( s->hw.cmos_data[RTC_REG_B] & RTC_DM_BINARY )
return a;
else
return ((a >> 4) * 10) + (a & 0x0f);
/* Hours in 12 hour mode are in 1-12 range, not 0-11.
* So we need convert it before using it*/
-static inline int convert_hour(RTCState *s, int hour)
+static inline int convert_hour(RTCState *s, int raw)
{
+ int hour = from_bcd(s, raw & 0x7f);
+
if (!(s->hw.cmos_data[RTC_REG_B] & RTC_24H))
{
hour %= 12;
- if (s->hw.cmos_data[RTC_HOURS] & 0x80)
+ if (raw & 0x80)
hour += 12;
}
return hour;
tm->tm_sec = from_bcd(s, s->hw.cmos_data[RTC_SECONDS]);
tm->tm_min = from_bcd(s, s->hw.cmos_data[RTC_MINUTES]);
- tm->tm_hour = from_bcd(s, s->hw.cmos_data[RTC_HOURS] & 0x7f);
- tm->tm_hour = convert_hour(s, tm->tm_hour);
+ tm->tm_hour = convert_hour(s, s->hw.cmos_data[RTC_HOURS]);
tm->tm_wday = from_bcd(s, s->hw.cmos_data[RTC_DAY_OF_WEEK]);
tm->tm_mday = from_bcd(s, s->hw.cmos_data[RTC_DAY_OF_MONTH]);
tm->tm_mon = from_bcd(s, s->hw.cmos_data[RTC_MONTH]) - 1;