--- /dev/null
+## 0.2.9.0
+
+ * Add `Ord/Ord1/Ord2` instances. (Thanks, Oleg Grenrus)
+
+ * Use `SmallArray#` instead of `Array#` for GHC versions 7.10 and above.
+ (Thanks, Dmitry Ivanov)
+
+ * Adjust for `Semigroup => Monoid` proposal implementation.
+ (Thanks, Ryan Scott)
+
+### Bug fixes
+
+ * Fix a strictness bug in `fromListWith`.
+
+ * Enable eager blackholing for pre-8.2 GHC versions to work around
+ a runtime system bug. (Thanks, Ben Gamari)
+
+ * Avoid sketchy reimplementation of `ST` when compiling with recent
+ GHC.
+
+### Other changes
+
+ * Remove support for GHC versions before 7.8. (Thanks, Dmitry Ivanov)
+
+ * Add internal documentaton. (Thanks, Johan Tibell)
+
+## 0.2.8.0
+
+ * Add `Eq1/2`, `Show1/2`, `Read1` instances with `base-4.9`
+
+ * `Eq (HashSet a)` doesn't require `Hashable a` anymore, only `Eq a`.
+
+ * Add `Hashable1/2` with `hashable-1.2.6.0`
+
+ * Add `differenceWith` function.
+
+## 0.2.7.2
+
+ * Don't use -fregs-graphs
+
+ * Fix benchmark compilation on stack.
+
+## 0.2.7.1
+
+ * Fix linker error related to popcnt.
+
+ * Haddock improvements.
+
+ * Fix benchmark compilation when downloaded from Hackage.
+
+## 0.2.7.0
+
+ * Support criterion 1.1
+
+ * Add unionWithKey for hash maps.
+
+## 0.2.6.0
+
+ * Mark several modules as Trustworthy.
+
+ * Add Hashable instances for HashMap and HashSet.
+
+ * Add mapMaybe, mapMaybeWithKey, update, alter, and
+ intersectionWithKey.
+
+ * Add roles.
+
+ * Add Hashable and Semigroup instances.
+
+## 0.2.5.1 (2014-10-11)
+
+ * Support base-4.8
--- /dev/null
+{-# LANGUAGE BangPatterns, CPP, MagicHash, Rank2Types, UnboxedTuples #-}
+{-# OPTIONS_GHC -fno-full-laziness -funbox-strict-fields #-}
+
+-- | Zero based arrays.
+--
+-- Note that no bounds checking are performed.
+module Data.HashMap.Array
+ ( Array
+ , MArray
+
+ -- * Creation
+ , new
+ , new_
+ , singleton
+ , singletonM
+ , pair
+
+ -- * Basic interface
+ , length
+ , lengthM
+ , read
+ , write
+ , index
+ , indexM
+ , update
+ , updateWith'
+ , unsafeUpdateM
+ , insert
+ , insertM
+ , delete
+
+ , unsafeFreeze
+ , unsafeThaw
+ , run
+ , run2
+ , copy
+ , copyM
+
+ -- * Folds
+ , foldl'
+ , foldr
+
+ , thaw
+ , map
+ , map'
+ , traverse
+ , filter
+ , toList
+ ) where
+
+import qualified Data.Traversable as Traversable
+#if __GLASGOW_HASKELL__ < 709
+import Control.Applicative (Applicative)
+#endif
+import Control.DeepSeq
+import GHC.Exts(Int(..))
+import GHC.ST (ST(..))
+
+#if __GLASGOW_HASKELL__ >= 709
+import Prelude hiding (filter, foldr, length, map, read, traverse)
+#else
+import Prelude hiding (filter, foldr, length, map, read)
+#endif
+
+#if __GLASGOW_HASKELL__ >= 710
+import GHC.Exts (SmallArray#, newSmallArray#, readSmallArray#, writeSmallArray#,
+ indexSmallArray#, unsafeFreezeSmallArray#, unsafeThawSmallArray#,
+ SmallMutableArray#, sizeofSmallArray#, copySmallArray#, thawSmallArray#,
+ sizeofSmallMutableArray#, copySmallMutableArray#)
+
+#else
+import GHC.Exts (Array#, newArray#, readArray#, writeArray#,
+ indexArray#, unsafeFreezeArray#, unsafeThawArray#,
+ MutableArray#, sizeofArray#, copyArray#, thawArray#,
+ sizeofMutableArray#, copyMutableArray#)
+#endif
+
+#if defined(ASSERTS)
+import qualified Prelude
+#endif
+
+import Data.HashMap.Unsafe (runST)
+
+
+#if __GLASGOW_HASKELL__ >= 710
+type Array# a = SmallArray# a
+type MutableArray# a = SmallMutableArray# a
+
+newArray# = newSmallArray#
+readArray# = readSmallArray#
+writeArray# = writeSmallArray#
+indexArray# = indexSmallArray#
+unsafeFreezeArray# = unsafeFreezeSmallArray#
+unsafeThawArray# = unsafeThawSmallArray#
+sizeofArray# = sizeofSmallArray#
+copyArray# = copySmallArray#
+thawArray# = thawSmallArray#
+sizeofMutableArray# = sizeofSmallMutableArray#
+copyMutableArray# = copySmallMutableArray#
+#endif
+
+------------------------------------------------------------------------
+
+#if defined(ASSERTS)
+-- This fugly hack is brought by GHC's apparent reluctance to deal
+-- with MagicHash and UnboxedTuples when inferring types. Eek!
+# define CHECK_BOUNDS(_func_,_len_,_k_) \
+if (_k_) < 0 || (_k_) >= (_len_) then error ("Data.HashMap.Array." ++ (_func_) ++ ": bounds error, offset " ++ show (_k_) ++ ", length " ++ show (_len_)) else
+# define CHECK_OP(_func_,_op_,_lhs_,_rhs_) \
+if not ((_lhs_) _op_ (_rhs_)) then error ("Data.HashMap.Array." ++ (_func_) ++ ": Check failed: _lhs_ _op_ _rhs_ (" ++ show (_lhs_) ++ " vs. " ++ show (_rhs_) ++ ")") else
+# define CHECK_GT(_func_,_lhs_,_rhs_) CHECK_OP(_func_,>,_lhs_,_rhs_)
+# define CHECK_LE(_func_,_lhs_,_rhs_) CHECK_OP(_func_,<=,_lhs_,_rhs_)
+# define CHECK_EQ(_func_,_lhs_,_rhs_) CHECK_OP(_func_,==,_lhs_,_rhs_)
+#else
+# define CHECK_BOUNDS(_func_,_len_,_k_)
+# define CHECK_OP(_func_,_op_,_lhs_,_rhs_)
+# define CHECK_GT(_func_,_lhs_,_rhs_)
+# define CHECK_LE(_func_,_lhs_,_rhs_)
+# define CHECK_EQ(_func_,_lhs_,_rhs_)
+#endif
+
+data Array a = Array {
+ unArray :: !(Array# a)
+ }
+
+instance Show a => Show (Array a) where
+ show = show . toList
+
+length :: Array a -> Int
+length ary = I# (sizeofArray# (unArray ary))
+{-# INLINE length #-}
+
+-- | Smart constructor
+array :: Array# a -> Int -> Array a
+array ary _n = Array ary
+{-# INLINE array #-}
+
+data MArray s a = MArray {
+ unMArray :: !(MutableArray# s a)
+ }
+
+lengthM :: MArray s a -> Int
+lengthM mary = I# (sizeofMutableArray# (unMArray mary))
+{-# INLINE lengthM #-}
+
+-- | Smart constructor
+marray :: MutableArray# s a -> Int -> MArray s a
+marray mary _n = MArray mary
+{-# INLINE marray #-}
+
+------------------------------------------------------------------------
+
+instance NFData a => NFData (Array a) where
+ rnf = rnfArray
+
+rnfArray :: NFData a => Array a -> ()
+rnfArray ary0 = go ary0 n0 0
+ where
+ n0 = length ary0
+ go !ary !n !i
+ | i >= n = ()
+ | otherwise = rnf (index ary i) `seq` go ary n (i+1)
+{-# INLINE rnfArray #-}
+
+-- | Create a new mutable array of specified size, in the specified
+-- state thread, with each element containing the specified initial
+-- value.
+new :: Int -> a -> ST s (MArray s a)
+new n@(I# n#) b =
+ CHECK_GT("new",n,(0 :: Int))
+ ST $ \s ->
+ case newArray# n# b s of
+ (# s', ary #) -> (# s', marray ary n #)
+{-# INLINE new #-}
+
+new_ :: Int -> ST s (MArray s a)
+new_ n = new n undefinedElem
+
+singleton :: a -> Array a
+singleton x = runST (singletonM x)
+{-# INLINE singleton #-}
+
+singletonM :: a -> ST s (Array a)
+singletonM x = new 1 x >>= unsafeFreeze
+{-# INLINE singletonM #-}
+
+pair :: a -> a -> Array a
+pair x y = run $ do
+ ary <- new 2 x
+ write ary 1 y
+ return ary
+{-# INLINE pair #-}
+
+read :: MArray s a -> Int -> ST s a
+read ary _i@(I# i#) = ST $ \ s ->
+ CHECK_BOUNDS("read", lengthM ary, _i)
+ readArray# (unMArray ary) i# s
+{-# INLINE read #-}
+
+write :: MArray s a -> Int -> a -> ST s ()
+write ary _i@(I# i#) b = ST $ \ s ->
+ CHECK_BOUNDS("write", lengthM ary, _i)
+ case writeArray# (unMArray ary) i# b s of
+ s' -> (# s' , () #)
+{-# INLINE write #-}
+
+index :: Array a -> Int -> a
+index ary _i@(I# i#) =
+ CHECK_BOUNDS("index", length ary, _i)
+ case indexArray# (unArray ary) i# of (# b #) -> b
+{-# INLINE index #-}
+
+indexM :: Array a -> Int -> ST s a
+indexM ary _i@(I# i#) =
+ CHECK_BOUNDS("indexM", length ary, _i)
+ case indexArray# (unArray ary) i# of (# b #) -> return b
+{-# INLINE indexM #-}
+
+unsafeFreeze :: MArray s a -> ST s (Array a)
+unsafeFreeze mary
+ = ST $ \s -> case unsafeFreezeArray# (unMArray mary) s of
+ (# s', ary #) -> (# s', array ary (lengthM mary) #)
+{-# INLINE unsafeFreeze #-}
+
+unsafeThaw :: Array a -> ST s (MArray s a)
+unsafeThaw ary
+ = ST $ \s -> case unsafeThawArray# (unArray ary) s of
+ (# s', mary #) -> (# s', marray mary (length ary) #)
+{-# INLINE unsafeThaw #-}
+
+run :: (forall s . ST s (MArray s e)) -> Array e
+run act = runST $ act >>= unsafeFreeze
+{-# INLINE run #-}
+
+run2 :: (forall s. ST s (MArray s e, a)) -> (Array e, a)
+run2 k = runST (do
+ (marr,b) <- k
+ arr <- unsafeFreeze marr
+ return (arr,b))
+
+-- | Unsafely copy the elements of an array. Array bounds are not checked.
+copy :: Array e -> Int -> MArray s e -> Int -> Int -> ST s ()
+copy !src !_sidx@(I# sidx#) !dst !_didx@(I# didx#) _n@(I# n#) =
+ CHECK_LE("copy", _sidx + _n, length src)
+ CHECK_LE("copy", _didx + _n, lengthM dst)
+ ST $ \ s# ->
+ case copyArray# (unArray src) sidx# (unMArray dst) didx# n# s# of
+ s2 -> (# s2, () #)
+
+-- | Unsafely copy the elements of an array. Array bounds are not checked.
+copyM :: MArray s e -> Int -> MArray s e -> Int -> Int -> ST s ()
+copyM !src !_sidx@(I# sidx#) !dst !_didx@(I# didx#) _n@(I# n#) =
+ CHECK_BOUNDS("copyM: src", lengthM src, _sidx + _n - 1)
+ CHECK_BOUNDS("copyM: dst", lengthM dst, _didx + _n - 1)
+ ST $ \ s# ->
+ case copyMutableArray# (unMArray src) sidx# (unMArray dst) didx# n# s# of
+ s2 -> (# s2, () #)
+
+-- | /O(n)/ Insert an element at the given position in this array,
+-- increasing its size by one.
+insert :: Array e -> Int -> e -> Array e
+insert ary idx b = runST (insertM ary idx b)
+{-# INLINE insert #-}
+
+-- | /O(n)/ Insert an element at the given position in this array,
+-- increasing its size by one.
+insertM :: Array e -> Int -> e -> ST s (Array e)
+insertM ary idx b =
+ CHECK_BOUNDS("insertM", count + 1, idx)
+ do mary <- new_ (count+1)
+ copy ary 0 mary 0 idx
+ write mary idx b
+ copy ary idx mary (idx+1) (count-idx)
+ unsafeFreeze mary
+ where !count = length ary
+{-# INLINE insertM #-}
+
+-- | /O(n)/ Update the element at the given position in this array.
+update :: Array e -> Int -> e -> Array e
+update ary idx b = runST (updateM ary idx b)
+{-# INLINE update #-}
+
+-- | /O(n)/ Update the element at the given position in this array.
+updateM :: Array e -> Int -> e -> ST s (Array e)
+updateM ary idx b =
+ CHECK_BOUNDS("updateM", count, idx)
+ do mary <- thaw ary 0 count
+ write mary idx b
+ unsafeFreeze mary
+ where !count = length ary
+{-# INLINE updateM #-}
+
+-- | /O(n)/ Update the element at the given positio in this array, by
+-- applying a function to it. Evaluates the element to WHNF before
+-- inserting it into the array.
+updateWith' :: Array e -> Int -> (e -> e) -> Array e
+updateWith' ary idx f = update ary idx $! f (index ary idx)
+{-# INLINE updateWith' #-}
+
+-- | /O(1)/ Update the element at the given position in this array,
+-- without copying.
+unsafeUpdateM :: Array e -> Int -> e -> ST s ()
+unsafeUpdateM ary idx b =
+ CHECK_BOUNDS("unsafeUpdateM", length ary, idx)
+ do mary <- unsafeThaw ary
+ write mary idx b
+ _ <- unsafeFreeze mary
+ return ()
+{-# INLINE unsafeUpdateM #-}
+
+foldl' :: (b -> a -> b) -> b -> Array a -> b
+foldl' f = \ z0 ary0 -> go ary0 (length ary0) 0 z0
+ where
+ go ary n i !z
+ | i >= n = z
+ | otherwise = go ary n (i+1) (f z (index ary i))
+{-# INLINE foldl' #-}
+
+foldr :: (a -> b -> b) -> b -> Array a -> b
+foldr f = \ z0 ary0 -> go ary0 (length ary0) 0 z0
+ where
+ go ary n i z
+ | i >= n = z
+ | otherwise = f (index ary i) (go ary n (i+1) z)
+{-# INLINE foldr #-}
+
+undefinedElem :: a
+undefinedElem = error "Data.HashMap.Array: Undefined element"
+{-# NOINLINE undefinedElem #-}
+
+thaw :: Array e -> Int -> Int -> ST s (MArray s e)
+thaw !ary !_o@(I# o#) !n@(I# n#) =
+ CHECK_LE("thaw", _o + n, length ary)
+ ST $ \ s -> case thawArray# (unArray ary) o# n# s of
+ (# s2, mary# #) -> (# s2, marray mary# n #)
+{-# INLINE thaw #-}
+
+-- | /O(n)/ Delete an element at the given position in this array,
+-- decreasing its size by one.
+delete :: Array e -> Int -> Array e
+delete ary idx = runST (deleteM ary idx)
+{-# INLINE delete #-}
+
+-- | /O(n)/ Delete an element at the given position in this array,
+-- decreasing its size by one.
+deleteM :: Array e -> Int -> ST s (Array e)
+deleteM ary idx = do
+ CHECK_BOUNDS("deleteM", count, idx)
+ do mary <- new_ (count-1)
+ copy ary 0 mary 0 idx
+ copy ary (idx+1) mary idx (count-(idx+1))
+ unsafeFreeze mary
+ where !count = length ary
+{-# INLINE deleteM #-}
+
+map :: (a -> b) -> Array a -> Array b
+map f = \ ary ->
+ let !n = length ary
+ in run $ do
+ mary <- new_ n
+ go ary mary 0 n
+ where
+ go ary mary i n
+ | i >= n = return mary
+ | otherwise = do
+ write mary i $ f (index ary i)
+ go ary mary (i+1) n
+{-# INLINE map #-}
+
+-- | Strict version of 'map'.
+map' :: (a -> b) -> Array a -> Array b
+map' f = \ ary ->
+ let !n = length ary
+ in run $ do
+ mary <- new_ n
+ go ary mary 0 n
+ where
+ go ary mary i n
+ | i >= n = return mary
+ | otherwise = do
+ write mary i $! f (index ary i)
+ go ary mary (i+1) n
+{-# INLINE map' #-}
+
+fromList :: Int -> [a] -> Array a
+fromList n xs0 =
+ CHECK_EQ("fromList", n, Prelude.length xs0)
+ run $ do
+ mary <- new_ n
+ go xs0 mary 0
+ where
+ go [] !mary !_ = return mary
+ go (x:xs) mary i = do write mary i x
+ go xs mary (i+1)
+
+toList :: Array a -> [a]
+toList = foldr (:) []
+
+traverse :: Applicative f => (a -> f b) -> Array a -> f (Array b)
+traverse f = \ ary -> fromList (length ary) `fmap`
+ Traversable.traverse f (toList ary)
+{-# INLINE traverse #-}
+
+filter :: (a -> Bool) -> Array a -> Array a
+filter p = \ ary ->
+ let !n = length ary
+ in run $ do
+ mary <- new_ n
+ go ary mary 0 0 n
+ where
+ go ary mary i j n
+ | i >= n = if i == j
+ then return mary
+ else do mary2 <- new_ j
+ copyM mary 0 mary2 0 j
+ return mary2
+ | p el = write mary j el >> go ary mary (i+1) (j+1) n
+ | otherwise = go ary mary (i+1) j n
+ where el = index ary i
+{-# INLINE filter #-}
--- /dev/null
+{-# LANGUAGE BangPatterns, CPP, DeriveDataTypeable, MagicHash #-}
+{-# LANGUAGE ScopedTypeVariables #-}
+{-# LANGUAGE PatternGuards #-}
+{-# LANGUAGE RoleAnnotations #-}
+{-# LANGUAGE TypeFamilies #-}
+{-# OPTIONS_GHC -fno-full-laziness -funbox-strict-fields #-}
+
+module Data.HashMap.Base
+ (
+ HashMap(..)
+ , Leaf(..)
+
+ -- * Construction
+ , empty
+ , singleton
+
+ -- * Basic interface
+ , null
+ , size
+ , member
+ , lookup
+ , lookupDefault
+ , (!)
+ , insert
+ , insertWith
+ , unsafeInsert
+ , delete
+ , adjust
+ , update
+ , alter
+
+ -- * Combine
+ -- ** Union
+ , union
+ , unionWith
+ , unionWithKey
+ , unions
+
+ -- * Transformations
+ , map
+ , mapWithKey
+ , traverseWithKey
+
+ -- * Difference and intersection
+ , difference
+ , differenceWith
+ , intersection
+ , intersectionWith
+ , intersectionWithKey
+
+ -- * Folds
+ , foldl'
+ , foldlWithKey'
+ , foldr
+ , foldrWithKey
+
+ -- * Filter
+ , mapMaybe
+ , mapMaybeWithKey
+ , filter
+ , filterWithKey
+
+ -- * Conversions
+ , keys
+ , elems
+
+ -- ** Lists
+ , toList
+ , fromList
+ , fromListWith
+
+ -- Internals used by the strict version
+ , Hash
+ , Bitmap
+ , bitmapIndexedOrFull
+ , collision
+ , hash
+ , mask
+ , index
+ , bitsPerSubkey
+ , fullNodeMask
+ , sparseIndex
+ , two
+ , unionArrayBy
+ , update16
+ , update16M
+ , update16With'
+ , updateOrConcatWith
+ , updateOrConcatWithKey
+ , filterMapAux
+ , equalKeys
+ ) where
+
+#if __GLASGOW_HASKELL__ < 710
+import Control.Applicative ((<$>), Applicative(pure))
+import Data.Monoid (Monoid(mempty, mappend))
+import Data.Traversable (Traversable(..))
+import Data.Word (Word)
+#endif
+#if __GLASGOW_HASKELL__ >= 711
+import Data.Semigroup (Semigroup((<>)))
+#endif
+import Control.DeepSeq (NFData(rnf))
+import Control.Monad.ST (ST)
+import Data.Bits ((.&.), (.|.), complement, popCount)
+import Data.Data hiding (Typeable)
+import qualified Data.Foldable as Foldable
+import qualified Data.List as L
+import GHC.Exts ((==#), build, reallyUnsafePtrEquality#)
+import Prelude hiding (filter, foldr, lookup, map, null, pred)
+import Text.Read hiding (step)
+
+import qualified Data.HashMap.Array as A
+import qualified Data.Hashable as H
+import Data.Hashable (Hashable)
+import Data.HashMap.Unsafe (runST)
+import Data.HashMap.UnsafeShift (unsafeShiftL, unsafeShiftR)
+import Data.HashMap.List (isPermutationBy, unorderedCompare)
+import Data.Typeable (Typeable)
+
+import GHC.Exts (isTrue#)
+import qualified GHC.Exts as Exts
+
+#if MIN_VERSION_base(4,9,0)
+import Data.Functor.Classes
+#endif
+
+#if MIN_VERSION_hashable(1,2,5)
+import qualified Data.Hashable.Lifted as H
+#endif
+
+-- | A set of values. A set cannot contain duplicate values.
+------------------------------------------------------------------------
+
+-- | Convenience function. Compute a hash value for the given value.
+hash :: H.Hashable a => a -> Hash
+hash = fromIntegral . H.hash
+
+data Leaf k v = L !k v
+ deriving (Eq)
+
+instance (NFData k, NFData v) => NFData (Leaf k v) where
+ rnf (L k v) = rnf k `seq` rnf v
+
+-- Invariant: The length of the 1st argument to 'Full' is
+-- 2^bitsPerSubkey
+
+-- | A map from keys to values. A map cannot contain duplicate keys;
+-- each key can map to at most one value.
+data HashMap k v
+ = Empty
+ | BitmapIndexed !Bitmap !(A.Array (HashMap k v))
+ | Leaf !Hash !(Leaf k v)
+ | Full !(A.Array (HashMap k v))
+ | Collision !Hash !(A.Array (Leaf k v))
+ deriving (Typeable)
+
+type role HashMap nominal representational
+
+instance (NFData k, NFData v) => NFData (HashMap k v) where
+ rnf Empty = ()
+ rnf (BitmapIndexed _ ary) = rnf ary
+ rnf (Leaf _ l) = rnf l
+ rnf (Full ary) = rnf ary
+ rnf (Collision _ ary) = rnf ary
+
+instance Functor (HashMap k) where
+ fmap = map
+
+instance Foldable.Foldable (HashMap k) where
+ foldr f = foldrWithKey (const f)
+
+#if __GLASGOW_HASKELL__ >= 711
+instance (Eq k, Hashable k) => Semigroup (HashMap k v) where
+ (<>) = union
+ {-# INLINE (<>) #-}
+#endif
+
+instance (Eq k, Hashable k) => Monoid (HashMap k v) where
+ mempty = empty
+ {-# INLINE mempty #-}
+#if __GLASGOW_HASKELL__ >= 711
+ mappend = (<>)
+#else
+ mappend = union
+#endif
+ {-# INLINE mappend #-}
+
+instance (Data k, Data v, Eq k, Hashable k) => Data (HashMap k v) where
+ gfoldl f z m = z fromList `f` toList m
+ toConstr _ = fromListConstr
+ gunfold k z c = case constrIndex c of
+ 1 -> k (z fromList)
+ _ -> error "gunfold"
+ dataTypeOf _ = hashMapDataType
+ dataCast2 f = gcast2 f
+
+fromListConstr :: Constr
+fromListConstr = mkConstr hashMapDataType "fromList" [] Prefix
+
+hashMapDataType :: DataType
+hashMapDataType = mkDataType "Data.HashMap.Base.HashMap" [fromListConstr]
+
+type Hash = Word
+type Bitmap = Word
+type Shift = Int
+
+#if MIN_VERSION_base(4,9,0)
+instance Show2 HashMap where
+ liftShowsPrec2 spk slk spv slv d m =
+ showsUnaryWith (liftShowsPrec sp sl) "fromList" d (toList m)
+ where
+ sp = liftShowsPrec2 spk slk spv slv
+ sl = liftShowList2 spk slk spv slv
+
+instance Show k => Show1 (HashMap k) where
+ liftShowsPrec = liftShowsPrec2 showsPrec showList
+
+instance (Eq k, Hashable k, Read k) => Read1 (HashMap k) where
+ liftReadsPrec rp rl = readsData $
+ readsUnaryWith (liftReadsPrec rp' rl') "fromList" fromList
+ where
+ rp' = liftReadsPrec rp rl
+ rl' = liftReadList rp rl
+#endif
+
+instance (Eq k, Hashable k, Read k, Read e) => Read (HashMap k e) where
+ readPrec = parens $ prec 10 $ do
+ Ident "fromList" <- lexP
+ xs <- readPrec
+ return (fromList xs)
+
+ readListPrec = readListPrecDefault
+
+instance (Show k, Show v) => Show (HashMap k v) where
+ showsPrec d m = showParen (d > 10) $
+ showString "fromList " . shows (toList m)
+
+instance Traversable (HashMap k) where
+ traverse f = traverseWithKey (const f)
+
+#if MIN_VERSION_base(4,9,0)
+instance Eq2 HashMap where
+ liftEq2 = equal
+
+instance Eq k => Eq1 (HashMap k) where
+ liftEq = equal (==)
+#endif
+
+instance (Eq k, Eq v) => Eq (HashMap k v) where
+ (==) = equal (==) (==)
+
+equal :: (k -> k' -> Bool) -> (v -> v' -> Bool)
+ -> HashMap k v -> HashMap k' v' -> Bool
+equal eqk eqv t1 t2 = go (toList' t1 []) (toList' t2 [])
+ where
+ -- If the two trees are the same, then their lists of 'Leaf's and
+ -- 'Collision's read from left to right should be the same (modulo the
+ -- order of elements in 'Collision').
+
+ go (Leaf k1 l1 : tl1) (Leaf k2 l2 : tl2)
+ | k1 == k2 &&
+ leafEq l1 l2
+ = go tl1 tl2
+ go (Collision k1 ary1 : tl1) (Collision k2 ary2 : tl2)
+ | k1 == k2 &&
+ A.length ary1 == A.length ary2 &&
+ isPermutationBy leafEq (A.toList ary1) (A.toList ary2)
+ = go tl1 tl2
+ go [] [] = True
+ go _ _ = False
+
+ leafEq (L k v) (L k' v') = eqk k k' && eqv v v'
+
+#if MIN_VERSION_base(4,9,0)
+instance Ord2 HashMap where
+ liftCompare2 = cmp
+
+instance Ord k => Ord1 (HashMap k) where
+ liftCompare = cmp compare
+#endif
+
+-- | The order is total.
+--
+-- /Note:/ Because the hash is not guaranteed to be stable across library
+-- versions, OSes, or architectures, neither is an actual order of elements in
+-- 'HashMap' or an result of `compare`.is stable.
+instance (Ord k, Ord v) => Ord (HashMap k v) where
+ compare = cmp compare compare
+
+cmp :: (k -> k' -> Ordering) -> (v -> v' -> Ordering)
+ -> HashMap k v -> HashMap k' v' -> Ordering
+cmp cmpk cmpv t1 t2 = go (toList' t1 []) (toList' t2 [])
+ where
+ go (Leaf k1 l1 : tl1) (Leaf k2 l2 : tl2)
+ = compare k1 k2 `mappend`
+ leafCompare l1 l2 `mappend`
+ go tl1 tl2
+ go (Collision k1 ary1 : tl1) (Collision k2 ary2 : tl2)
+ = compare k1 k2 `mappend`
+ compare (A.length ary1) (A.length ary2) `mappend`
+ unorderedCompare leafCompare (A.toList ary1) (A.toList ary2) `mappend`
+ go tl1 tl2
+ go (Leaf _ _ : _) (Collision _ _ : _) = LT
+ go (Collision _ _ : _) (Leaf _ _ : _) = GT
+ go [] [] = EQ
+ go [] _ = LT
+ go _ [] = GT
+ go _ _ = error "cmp: Should never happend, toList' includes non Leaf / Collision"
+
+ leafCompare (L k v) (L k' v') = cmpk k k' `mappend` cmpv v v'
+
+-- Same as 'equal' but doesn't compare the values.
+equalKeys :: (k -> k' -> Bool) -> HashMap k v -> HashMap k' v' -> Bool
+equalKeys eq t1 t2 = go (toList' t1 []) (toList' t2 [])
+ where
+ go (Leaf k1 l1 : tl1) (Leaf k2 l2 : tl2)
+ | k1 == k2 && leafEq l1 l2
+ = go tl1 tl2
+ go (Collision k1 ary1 : tl1) (Collision k2 ary2 : tl2)
+ | k1 == k2 && A.length ary1 == A.length ary2 &&
+ isPermutationBy leafEq (A.toList ary1) (A.toList ary2)
+ = go tl1 tl2
+ go [] [] = True
+ go _ _ = False
+
+ leafEq (L k _) (L k' _) = eq k k'
+
+#if MIN_VERSION_hashable(1,2,5)
+instance H.Hashable2 HashMap where
+ liftHashWithSalt2 hk hv salt hm = go salt (toList' hm [])
+ where
+ -- go :: Int -> [HashMap k v] -> Int
+ go s [] = s
+ go s (Leaf _ l : tl)
+ = s `hashLeafWithSalt` l `go` tl
+ -- For collisions we hashmix hash value
+ -- and then array of values' hashes sorted
+ go s (Collision h a : tl)
+ = (s `H.hashWithSalt` h) `hashCollisionWithSalt` a `go` tl
+ go s (_ : tl) = s `go` tl
+
+ -- hashLeafWithSalt :: Int -> Leaf k v -> Int
+ hashLeafWithSalt s (L k v) = (s `hk` k) `hv` v
+
+ -- hashCollisionWithSalt :: Int -> A.Array (Leaf k v) -> Int
+ hashCollisionWithSalt s
+ = L.foldl' H.hashWithSalt s . arrayHashesSorted s
+
+ -- arrayHashesSorted :: Int -> A.Array (Leaf k v) -> [Int]
+ arrayHashesSorted s = L.sort . L.map (hashLeafWithSalt s) . A.toList
+
+instance (Hashable k) => H.Hashable1 (HashMap k) where
+ liftHashWithSalt = H.liftHashWithSalt2 H.hashWithSalt
+#endif
+
+instance (Hashable k, Hashable v) => Hashable (HashMap k v) where
+ hashWithSalt salt hm = go salt (toList' hm [])
+ where
+ go :: Int -> [HashMap k v] -> Int
+ go s [] = s
+ go s (Leaf _ l : tl)
+ = s `hashLeafWithSalt` l `go` tl
+ -- For collisions we hashmix hash value
+ -- and then array of values' hashes sorted
+ go s (Collision h a : tl)
+ = (s `H.hashWithSalt` h) `hashCollisionWithSalt` a `go` tl
+ go s (_ : tl) = s `go` tl
+
+ hashLeafWithSalt :: Int -> Leaf k v -> Int
+ hashLeafWithSalt s (L k v) = s `H.hashWithSalt` k `H.hashWithSalt` v
+
+ hashCollisionWithSalt :: Int -> A.Array (Leaf k v) -> Int
+ hashCollisionWithSalt s
+ = L.foldl' H.hashWithSalt s . arrayHashesSorted s
+
+ arrayHashesSorted :: Int -> A.Array (Leaf k v) -> [Int]
+ arrayHashesSorted s = L.sort . L.map (hashLeafWithSalt s) . A.toList
+
+ -- Helper to get 'Leaf's and 'Collision's as a list.
+toList' :: HashMap k v -> [HashMap k v] -> [HashMap k v]
+toList' (BitmapIndexed _ ary) a = A.foldr toList' a ary
+toList' (Full ary) a = A.foldr toList' a ary
+toList' l@(Leaf _ _) a = l : a
+toList' c@(Collision _ _) a = c : a
+toList' Empty a = a
+
+-- Helper function to detect 'Leaf's and 'Collision's.
+isLeafOrCollision :: HashMap k v -> Bool
+isLeafOrCollision (Leaf _ _) = True
+isLeafOrCollision (Collision _ _) = True
+isLeafOrCollision _ = False
+
+------------------------------------------------------------------------
+-- * Construction
+
+-- | /O(1)/ Construct an empty map.
+empty :: HashMap k v
+empty = Empty
+
+-- | /O(1)/ Construct a map with a single element.
+singleton :: (Hashable k) => k -> v -> HashMap k v
+singleton k v = Leaf (hash k) (L k v)
+
+------------------------------------------------------------------------
+-- * Basic interface
+
+-- | /O(1)/ Return 'True' if this map is empty, 'False' otherwise.
+null :: HashMap k v -> Bool
+null Empty = True
+null _ = False
+
+-- | /O(n)/ Return the number of key-value mappings in this map.
+size :: HashMap k v -> Int
+size t = go t 0
+ where
+ go Empty !n = n
+ go (Leaf _ _) n = n + 1
+ go (BitmapIndexed _ ary) n = A.foldl' (flip go) n ary
+ go (Full ary) n = A.foldl' (flip go) n ary
+ go (Collision _ ary) n = n + A.length ary
+
+-- | /O(log n)/ Return 'True' if the specified key is present in the
+-- map, 'False' otherwise.
+member :: (Eq k, Hashable k) => k -> HashMap k a -> Bool
+member k m = case lookup k m of
+ Nothing -> False
+ Just _ -> True
+{-# INLINABLE member #-}
+
+-- | /O(log n)/ Return the value to which the specified key is mapped,
+-- or 'Nothing' if this map contains no mapping for the key.
+lookup :: (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
+lookup k0 m0 = go h0 k0 0 m0
+ where
+ h0 = hash k0
+ go !_ !_ !_ Empty = Nothing
+ go h k _ (Leaf hx (L kx x))
+ | h == hx && k == kx = Just x -- TODO: Split test in two
+ | otherwise = Nothing
+ go h k s (BitmapIndexed b v)
+ | b .&. m == 0 = Nothing
+ | otherwise = go h k (s+bitsPerSubkey) (A.index v (sparseIndex b m))
+ where m = mask h s
+ go h k s (Full v) = go h k (s+bitsPerSubkey) (A.index v (index h s))
+ go h k _ (Collision hx v)
+ | h == hx = lookupInArray k v
+ | otherwise = Nothing
+{-# INLINABLE lookup #-}
+
+-- | /O(log n)/ Return the value to which the specified key is mapped,
+-- or the default value if this map contains no mapping for the key.
+lookupDefault :: (Eq k, Hashable k)
+ => v -- ^ Default value to return.
+ -> k -> HashMap k v -> v
+lookupDefault def k t = case lookup k t of
+ Just v -> v
+ _ -> def
+{-# INLINABLE lookupDefault #-}
+
+-- | /O(log n)/ Return the value to which the specified key is mapped.
+-- Calls 'error' if this map contains no mapping for the key.
+(!) :: (Eq k, Hashable k) => HashMap k v -> k -> v
+(!) m k = case lookup k m of
+ Just v -> v
+ Nothing -> error "Data.HashMap.Base.(!): key not found"
+{-# INLINABLE (!) #-}
+
+infixl 9 !
+
+-- | Create a 'Collision' value with two 'Leaf' values.
+collision :: Hash -> Leaf k v -> Leaf k v -> HashMap k v
+collision h e1 e2 =
+ let v = A.run $ do mary <- A.new 2 e1
+ A.write mary 1 e2
+ return mary
+ in Collision h v
+{-# INLINE collision #-}
+
+-- | Create a 'BitmapIndexed' or 'Full' node.
+bitmapIndexedOrFull :: Bitmap -> A.Array (HashMap k v) -> HashMap k v
+bitmapIndexedOrFull b ary
+ | b == fullNodeMask = Full ary
+ | otherwise = BitmapIndexed b ary
+{-# INLINE bitmapIndexedOrFull #-}
+
+-- | /O(log n)/ Associate the specified value with the specified
+-- key in this map. If this map previously contained a mapping for
+-- the key, the old value is replaced.
+insert :: (Eq k, Hashable k) => k -> v -> HashMap k v -> HashMap k v
+insert k0 v0 m0 = go h0 k0 v0 0 m0
+ where
+ h0 = hash k0
+ go !h !k x !_ Empty = Leaf h (L k x)
+ go h k x s t@(Leaf hy l@(L ky y))
+ | hy == h = if ky == k
+ then if x `ptrEq` y
+ then t
+ else Leaf h (L k x)
+ else collision h l (L k x)
+ | otherwise = runST (two s h k x hy ky y)
+ go h k x s t@(BitmapIndexed b ary)
+ | b .&. m == 0 =
+ let !ary' = A.insert ary i $! Leaf h (L k x)
+ in bitmapIndexedOrFull (b .|. m) ary'
+ | otherwise =
+ let !st = A.index ary i
+ !st' = go h k x (s+bitsPerSubkey) st
+ in if st' `ptrEq` st
+ then t
+ else BitmapIndexed b (A.update ary i st')
+ where m = mask h s
+ i = sparseIndex b m
+ go h k x s t@(Full ary) =
+ let !st = A.index ary i
+ !st' = go h k x (s+bitsPerSubkey) st
+ in if st' `ptrEq` st
+ then t
+ else Full (update16 ary i st')
+ where i = index h s
+ go h k x s t@(Collision hy v)
+ | h == hy = Collision h (updateOrSnocWith const k x v)
+ | otherwise = go h k x s $ BitmapIndexed (mask hy s) (A.singleton t)
+{-# INLINABLE insert #-}
+
+-- | In-place update version of insert
+unsafeInsert :: (Eq k, Hashable k) => k -> v -> HashMap k v -> HashMap k v
+unsafeInsert k0 v0 m0 = runST (go h0 k0 v0 0 m0)
+ where
+ h0 = hash k0
+ go !h !k x !_ Empty = return $! Leaf h (L k x)
+ go h k x s t@(Leaf hy l@(L ky y))
+ | hy == h = if ky == k
+ then if x `ptrEq` y
+ then return t
+ else return $! Leaf h (L k x)
+ else return $! collision h l (L k x)
+ | otherwise = two s h k x hy ky y
+ go h k x s t@(BitmapIndexed b ary)
+ | b .&. m == 0 = do
+ ary' <- A.insertM ary i $! Leaf h (L k x)
+ return $! bitmapIndexedOrFull (b .|. m) ary'
+ | otherwise = do
+ st <- A.indexM ary i
+ st' <- go h k x (s+bitsPerSubkey) st
+ A.unsafeUpdateM ary i st'
+ return t
+ where m = mask h s
+ i = sparseIndex b m
+ go h k x s t@(Full ary) = do
+ st <- A.indexM ary i
+ st' <- go h k x (s+bitsPerSubkey) st
+ A.unsafeUpdateM ary i st'
+ return t
+ where i = index h s
+ go h k x s t@(Collision hy v)
+ | h == hy = return $! Collision h (updateOrSnocWith const k x v)
+ | otherwise = go h k x s $ BitmapIndexed (mask hy s) (A.singleton t)
+{-# INLINABLE unsafeInsert #-}
+
+-- | Create a map from two key-value pairs which hashes don't collide.
+two :: Shift -> Hash -> k -> v -> Hash -> k -> v -> ST s (HashMap k v)
+two = go
+ where
+ go s h1 k1 v1 h2 k2 v2
+ | bp1 == bp2 = do
+ st <- go (s+bitsPerSubkey) h1 k1 v1 h2 k2 v2
+ ary <- A.singletonM st
+ return $! BitmapIndexed bp1 ary
+ | otherwise = do
+ mary <- A.new 2 $ Leaf h1 (L k1 v1)
+ A.write mary idx2 $ Leaf h2 (L k2 v2)
+ ary <- A.unsafeFreeze mary
+ return $! BitmapIndexed (bp1 .|. bp2) ary
+ where
+ bp1 = mask h1 s
+ bp2 = mask h2 s
+ idx2 | index h1 s < index h2 s = 1
+ | otherwise = 0
+{-# INLINE two #-}
+
+-- | /O(log n)/ Associate the value with the key in this map. If
+-- this map previously contained a mapping for the key, the old value
+-- is replaced by the result of applying the given function to the new
+-- and old value. Example:
+--
+-- > insertWith f k v map
+-- > where f new old = new + old
+insertWith :: (Eq k, Hashable k) => (v -> v -> v) -> k -> v -> HashMap k v
+ -> HashMap k v
+insertWith f k0 v0 m0 = go h0 k0 v0 0 m0
+ where
+ h0 = hash k0
+ go !h !k x !_ Empty = Leaf h (L k x)
+ go h k x s (Leaf hy l@(L ky y))
+ | hy == h = if ky == k
+ then Leaf h (L k (f x y))
+ else collision h l (L k x)
+ | otherwise = runST (two s h k x hy ky y)
+ go h k x s (BitmapIndexed b ary)
+ | b .&. m == 0 =
+ let ary' = A.insert ary i $! Leaf h (L k x)
+ in bitmapIndexedOrFull (b .|. m) ary'
+ | otherwise =
+ let st = A.index ary i
+ st' = go h k x (s+bitsPerSubkey) st
+ ary' = A.update ary i $! st'
+ in BitmapIndexed b ary'
+ where m = mask h s
+ i = sparseIndex b m
+ go h k x s (Full ary) =
+ let st = A.index ary i
+ st' = go h k x (s+bitsPerSubkey) st
+ ary' = update16 ary i $! st'
+ in Full ary'
+ where i = index h s
+ go h k x s t@(Collision hy v)
+ | h == hy = Collision h (updateOrSnocWith f k x v)
+ | otherwise = go h k x s $ BitmapIndexed (mask hy s) (A.singleton t)
+{-# INLINABLE insertWith #-}
+
+-- | In-place update version of insertWith
+unsafeInsertWith :: forall k v. (Eq k, Hashable k)
+ => (v -> v -> v) -> k -> v -> HashMap k v
+ -> HashMap k v
+unsafeInsertWith f k0 v0 m0 = runST (go h0 k0 v0 0 m0)
+ where
+ h0 = hash k0
+ go :: Hash -> k -> v -> Shift -> HashMap k v -> ST s (HashMap k v)
+ go !h !k x !_ Empty = return $! Leaf h (L k x)
+ go h k x s (Leaf hy l@(L ky y))
+ | hy == h = if ky == k
+ then return $! Leaf h (L k (f x y))
+ else return $! collision h l (L k x)
+ | otherwise = two s h k x hy ky y
+ go h k x s t@(BitmapIndexed b ary)
+ | b .&. m == 0 = do
+ ary' <- A.insertM ary i $! Leaf h (L k x)
+ return $! bitmapIndexedOrFull (b .|. m) ary'
+ | otherwise = do
+ st <- A.indexM ary i
+ st' <- go h k x (s+bitsPerSubkey) st
+ A.unsafeUpdateM ary i st'
+ return t
+ where m = mask h s
+ i = sparseIndex b m
+ go h k x s t@(Full ary) = do
+ st <- A.indexM ary i
+ st' <- go h k x (s+bitsPerSubkey) st
+ A.unsafeUpdateM ary i st'
+ return t
+ where i = index h s
+ go h k x s t@(Collision hy v)
+ | h == hy = return $! Collision h (updateOrSnocWith f k x v)
+ | otherwise = go h k x s $ BitmapIndexed (mask hy s) (A.singleton t)
+{-# INLINABLE unsafeInsertWith #-}
+
+-- | /O(log n)/ Remove the mapping for the specified key from this map
+-- if present.
+delete :: (Eq k, Hashable k) => k -> HashMap k v -> HashMap k v
+delete k0 m0 = go h0 k0 0 m0
+ where
+ h0 = hash k0
+ go !_ !_ !_ Empty = Empty
+ go h k _ t@(Leaf hy (L ky _))
+ | hy == h && ky == k = Empty
+ | otherwise = t
+ go h k s t@(BitmapIndexed b ary)
+ | b .&. m == 0 = t
+ | otherwise =
+ let !st = A.index ary i
+ !st' = go h k (s+bitsPerSubkey) st
+ in if st' `ptrEq` st
+ then t
+ else case st' of
+ Empty | A.length ary == 1 -> Empty
+ | A.length ary == 2 ->
+ case (i, A.index ary 0, A.index ary 1) of
+ (0, _, l) | isLeafOrCollision l -> l
+ (1, l, _) | isLeafOrCollision l -> l
+ _ -> bIndexed
+ | otherwise -> bIndexed
+ where
+ bIndexed = BitmapIndexed (b .&. complement m) (A.delete ary i)
+ l | isLeafOrCollision l && A.length ary == 1 -> l
+ _ -> BitmapIndexed b (A.update ary i st')
+ where m = mask h s
+ i = sparseIndex b m
+ go h k s t@(Full ary) =
+ let !st = A.index ary i
+ !st' = go h k (s+bitsPerSubkey) st
+ in if st' `ptrEq` st
+ then t
+ else case st' of
+ Empty ->
+ let ary' = A.delete ary i
+ bm = fullNodeMask .&. complement (1 `unsafeShiftL` i)
+ in BitmapIndexed bm ary'
+ _ -> Full (A.update ary i st')
+ where i = index h s
+ go h k _ t@(Collision hy v)
+ | h == hy = case indexOf k v of
+ Just i
+ | A.length v == 2 ->
+ if i == 0
+ then Leaf h (A.index v 1)
+ else Leaf h (A.index v 0)
+ | otherwise -> Collision h (A.delete v i)
+ Nothing -> t
+ | otherwise = t
+{-# INLINABLE delete #-}
+
+-- | /O(log n)/ Adjust the value tied to a given key in this map only
+-- if it is present. Otherwise, leave the map alone.
+adjust :: (Eq k, Hashable k) => (v -> v) -> k -> HashMap k v -> HashMap k v
+adjust f k0 m0 = go h0 k0 0 m0
+ where
+ h0 = hash k0
+ go !_ !_ !_ Empty = Empty
+ go h k _ t@(Leaf hy (L ky y))
+ | hy == h && ky == k = Leaf h (L k (f y))
+ | otherwise = t
+ go h k s t@(BitmapIndexed b ary)
+ | b .&. m == 0 = t
+ | otherwise = let st = A.index ary i
+ st' = go h k (s+bitsPerSubkey) st
+ ary' = A.update ary i $! st'
+ in BitmapIndexed b ary'
+ where m = mask h s
+ i = sparseIndex b m
+ go h k s (Full ary) =
+ let i = index h s
+ st = A.index ary i
+ st' = go h k (s+bitsPerSubkey) st
+ ary' = update16 ary i $! st'
+ in Full ary'
+ go h k _ t@(Collision hy v)
+ | h == hy = Collision h (updateWith f k v)
+ | otherwise = t
+{-# INLINABLE adjust #-}
+
+-- | /O(log n)/ The expression (@'update' f k map@) updates the value @x@ at @k@,
+-- (if it is in the map). If (f k x) is @'Nothing', the element is deleted.
+-- If it is (@'Just' y), the key k is bound to the new value y.
+update :: (Eq k, Hashable k) => (a -> Maybe a) -> k -> HashMap k a -> HashMap k a
+update f = alter (>>= f)
+{-# INLINABLE update #-}
+
+
+-- | /O(log n)/ The expression (@'alter' f k map@) alters the value @x@ at @k@, or
+-- absence thereof. @alter@ can be used to insert, delete, or update a value in a
+-- map. In short : @'lookup' k ('alter' f k m) = f ('lookup' k m)@.
+alter :: (Eq k, Hashable k) => (Maybe v -> Maybe v) -> k -> HashMap k v -> HashMap k v
+alter f k m =
+ case f (lookup k m) of
+ Nothing -> delete k m
+ Just v -> insert k v m
+{-# INLINABLE alter #-}
+
+------------------------------------------------------------------------
+-- * Combine
+
+-- | /O(n+m)/ The union of two maps. If a key occurs in both maps, the
+-- mapping from the first will be the mapping in the result.
+union :: (Eq k, Hashable k) => HashMap k v -> HashMap k v -> HashMap k v
+union = unionWith const
+{-# INLINABLE union #-}
+
+-- | /O(n+m)/ The union of two maps. If a key occurs in both maps,
+-- the provided function (first argument) will be used to compute the
+-- result.
+unionWith :: (Eq k, Hashable k) => (v -> v -> v) -> HashMap k v -> HashMap k v
+ -> HashMap k v
+unionWith f = unionWithKey (const f)
+{-# INLINE unionWith #-}
+
+-- | /O(n+m)/ The union of two maps. If a key occurs in both maps,
+-- the provided function (first argument) will be used to compute the
+-- result.
+unionWithKey :: (Eq k, Hashable k) => (k -> v -> v -> v) -> HashMap k v -> HashMap k v
+ -> HashMap k v
+unionWithKey f = go 0
+ where
+ -- empty vs. anything
+ go !_ t1 Empty = t1
+ go _ Empty t2 = t2
+ -- leaf vs. leaf
+ go s t1@(Leaf h1 l1@(L k1 v1)) t2@(Leaf h2 l2@(L k2 v2))
+ | h1 == h2 = if k1 == k2
+ then Leaf h1 (L k1 (f k1 v1 v2))
+ else collision h1 l1 l2
+ | otherwise = goDifferentHash s h1 h2 t1 t2
+ go s t1@(Leaf h1 (L k1 v1)) t2@(Collision h2 ls2)
+ | h1 == h2 = Collision h1 (updateOrSnocWithKey f k1 v1 ls2)
+ | otherwise = goDifferentHash s h1 h2 t1 t2
+ go s t1@(Collision h1 ls1) t2@(Leaf h2 (L k2 v2))
+ | h1 == h2 = Collision h1 (updateOrSnocWithKey (flip . f) k2 v2 ls1)
+ | otherwise = goDifferentHash s h1 h2 t1 t2
+ go s t1@(Collision h1 ls1) t2@(Collision h2 ls2)
+ | h1 == h2 = Collision h1 (updateOrConcatWithKey f ls1 ls2)
+ | otherwise = goDifferentHash s h1 h2 t1 t2
+ -- branch vs. branch
+ go s (BitmapIndexed b1 ary1) (BitmapIndexed b2 ary2) =
+ let b' = b1 .|. b2
+ ary' = unionArrayBy (go (s+bitsPerSubkey)) b1 b2 ary1 ary2
+ in bitmapIndexedOrFull b' ary'
+ go s (BitmapIndexed b1 ary1) (Full ary2) =
+ let ary' = unionArrayBy (go (s+bitsPerSubkey)) b1 fullNodeMask ary1 ary2
+ in Full ary'
+ go s (Full ary1) (BitmapIndexed b2 ary2) =
+ let ary' = unionArrayBy (go (s+bitsPerSubkey)) fullNodeMask b2 ary1 ary2
+ in Full ary'
+ go s (Full ary1) (Full ary2) =
+ let ary' = unionArrayBy (go (s+bitsPerSubkey)) fullNodeMask fullNodeMask
+ ary1 ary2
+ in Full ary'
+ -- leaf vs. branch
+ go s (BitmapIndexed b1 ary1) t2
+ | b1 .&. m2 == 0 = let ary' = A.insert ary1 i t2
+ b' = b1 .|. m2
+ in bitmapIndexedOrFull b' ary'
+ | otherwise = let ary' = A.updateWith' ary1 i $ \st1 ->
+ go (s+bitsPerSubkey) st1 t2
+ in BitmapIndexed b1 ary'
+ where
+ h2 = leafHashCode t2
+ m2 = mask h2 s
+ i = sparseIndex b1 m2
+ go s t1 (BitmapIndexed b2 ary2)
+ | b2 .&. m1 == 0 = let ary' = A.insert ary2 i $! t1
+ b' = b2 .|. m1
+ in bitmapIndexedOrFull b' ary'
+ | otherwise = let ary' = A.updateWith' ary2 i $ \st2 ->
+ go (s+bitsPerSubkey) t1 st2
+ in BitmapIndexed b2 ary'
+ where
+ h1 = leafHashCode t1
+ m1 = mask h1 s
+ i = sparseIndex b2 m1
+ go s (Full ary1) t2 =
+ let h2 = leafHashCode t2
+ i = index h2 s
+ ary' = update16With' ary1 i $ \st1 -> go (s+bitsPerSubkey) st1 t2
+ in Full ary'
+ go s t1 (Full ary2) =
+ let h1 = leafHashCode t1
+ i = index h1 s
+ ary' = update16With' ary2 i $ \st2 -> go (s+bitsPerSubkey) t1 st2
+ in Full ary'
+
+ leafHashCode (Leaf h _) = h
+ leafHashCode (Collision h _) = h
+ leafHashCode _ = error "leafHashCode"
+
+ goDifferentHash s h1 h2 t1 t2
+ | m1 == m2 = BitmapIndexed m1 (A.singleton $! go (s+bitsPerSubkey) t1 t2)
+ | m1 < m2 = BitmapIndexed (m1 .|. m2) (A.pair t1 t2)
+ | otherwise = BitmapIndexed (m1 .|. m2) (A.pair t2 t1)
+ where
+ m1 = mask h1 s
+ m2 = mask h2 s
+{-# INLINE unionWithKey #-}
+
+-- | Strict in the result of @f@.
+unionArrayBy :: (a -> a -> a) -> Bitmap -> Bitmap -> A.Array a -> A.Array a
+ -> A.Array a
+unionArrayBy f b1 b2 ary1 ary2 = A.run $ do
+ let b' = b1 .|. b2
+ mary <- A.new_ (popCount b')
+ -- iterate over nonzero bits of b1 .|. b2
+ -- it would be nice if we could shift m by more than 1 each time
+ let ba = b1 .&. b2
+ go !i !i1 !i2 !m
+ | m > b' = return ()
+ | b' .&. m == 0 = go i i1 i2 (m `unsafeShiftL` 1)
+ | ba .&. m /= 0 = do
+ A.write mary i $! f (A.index ary1 i1) (A.index ary2 i2)
+ go (i+1) (i1+1) (i2+1) (m `unsafeShiftL` 1)
+ | b1 .&. m /= 0 = do
+ A.write mary i =<< A.indexM ary1 i1
+ go (i+1) (i1+1) (i2 ) (m `unsafeShiftL` 1)
+ | otherwise = do
+ A.write mary i =<< A.indexM ary2 i2
+ go (i+1) (i1 ) (i2+1) (m `unsafeShiftL` 1)
+ go 0 0 0 (b' .&. negate b') -- XXX: b' must be non-zero
+ return mary
+ -- TODO: For the case where b1 .&. b2 == b1, i.e. when one is a
+ -- subset of the other, we could use a slightly simpler algorithm,
+ -- where we copy one array, and then update.
+{-# INLINE unionArrayBy #-}
+
+-- TODO: Figure out the time complexity of 'unions'.
+
+-- | Construct a set containing all elements from a list of sets.
+unions :: (Eq k, Hashable k) => [HashMap k v] -> HashMap k v
+unions = L.foldl' union empty
+{-# INLINE unions #-}
+
+------------------------------------------------------------------------
+-- * Transformations
+
+-- | /O(n)/ Transform this map by applying a function to every value.
+mapWithKey :: (k -> v1 -> v2) -> HashMap k v1 -> HashMap k v2
+mapWithKey f = go
+ where
+ go Empty = Empty
+ go (Leaf h (L k v)) = Leaf h $ L k (f k v)
+ go (BitmapIndexed b ary) = BitmapIndexed b $ A.map' go ary
+ go (Full ary) = Full $ A.map' go ary
+ go (Collision h ary) = Collision h $
+ A.map' (\ (L k v) -> L k (f k v)) ary
+{-# INLINE mapWithKey #-}
+
+-- | /O(n)/ Transform this map by applying a function to every value.
+map :: (v1 -> v2) -> HashMap k v1 -> HashMap k v2
+map f = mapWithKey (const f)
+{-# INLINE map #-}
+
+-- TODO: We should be able to use mutation to create the new
+-- 'HashMap'.
+
+-- | /O(n)/ Transform this map by accumulating an Applicative result
+-- from every value.
+traverseWithKey :: Applicative f => (k -> v1 -> f v2) -> HashMap k v1
+ -> f (HashMap k v2)
+traverseWithKey f = go
+ where
+ go Empty = pure Empty
+ go (Leaf h (L k v)) = Leaf h . L k <$> f k v
+ go (BitmapIndexed b ary) = BitmapIndexed b <$> A.traverse go ary
+ go (Full ary) = Full <$> A.traverse go ary
+ go (Collision h ary) =
+ Collision h <$> A.traverse (\ (L k v) -> L k <$> f k v) ary
+{-# INLINE traverseWithKey #-}
+
+------------------------------------------------------------------------
+-- * Difference and intersection
+
+-- | /O(n*log m)/ Difference of two maps. Return elements of the first map
+-- not existing in the second.
+difference :: (Eq k, Hashable k) => HashMap k v -> HashMap k w -> HashMap k v
+difference a b = foldlWithKey' go empty a
+ where
+ go m k v = case lookup k b of
+ Nothing -> insert k v m
+ _ -> m
+{-# INLINABLE difference #-}
+
+-- | /O(n*log m)/ Difference with a combining function. When two equal keys are
+-- encountered, the combining function is applied to the values of these keys.
+-- If it returns 'Nothing', the element is discarded (proper set difference). If
+-- it returns (@'Just' y@), the element is updated with a new value @y@.
+differenceWith :: (Eq k, Hashable k) => (v -> w -> Maybe v) -> HashMap k v -> HashMap k w -> HashMap k v
+differenceWith f a b = foldlWithKey' go empty a
+ where
+ go m k v = case lookup k b of
+ Nothing -> insert k v m
+ Just w -> maybe m (\y -> insert k y m) (f v w)
+{-# INLINABLE differenceWith #-}
+
+-- | /O(n*log m)/ Intersection of two maps. Return elements of the first
+-- map for keys existing in the second.
+intersection :: (Eq k, Hashable k) => HashMap k v -> HashMap k w -> HashMap k v
+intersection a b = foldlWithKey' go empty a
+ where
+ go m k v = case lookup k b of
+ Just _ -> insert k v m
+ _ -> m
+{-# INLINABLE intersection #-}
+
+-- | /O(n+m)/ Intersection of two maps. If a key occurs in both maps
+-- the provided function is used to combine the values from the two
+-- maps.
+intersectionWith :: (Eq k, Hashable k) => (v1 -> v2 -> v3) -> HashMap k v1
+ -> HashMap k v2 -> HashMap k v3
+intersectionWith f a b = foldlWithKey' go empty a
+ where
+ go m k v = case lookup k b of
+ Just w -> insert k (f v w) m
+ _ -> m
+{-# INLINABLE intersectionWith #-}
+
+-- | /O(n+m)/ Intersection of two maps. If a key occurs in both maps
+-- the provided function is used to combine the values from the two
+-- maps.
+intersectionWithKey :: (Eq k, Hashable k) => (k -> v1 -> v2 -> v3)
+ -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
+intersectionWithKey f a b = foldlWithKey' go empty a
+ where
+ go m k v = case lookup k b of
+ Just w -> insert k (f k v w) m
+ _ -> m
+{-# INLINABLE intersectionWithKey #-}
+
+------------------------------------------------------------------------
+-- * Folds
+
+-- | /O(n)/ Reduce this map by applying a binary operator to all
+-- elements, using the given starting value (typically the
+-- left-identity of the operator). Each application of the operator
+-- is evaluated before before using the result in the next
+-- application. This function is strict in the starting value.
+foldl' :: (a -> v -> a) -> a -> HashMap k v -> a
+foldl' f = foldlWithKey' (\ z _ v -> f z v)
+{-# INLINE foldl' #-}
+
+-- | /O(n)/ Reduce this map by applying a binary operator to all
+-- elements, using the given starting value (typically the
+-- left-identity of the operator). Each application of the operator
+-- is evaluated before before using the result in the next
+-- application. This function is strict in the starting value.
+foldlWithKey' :: (a -> k -> v -> a) -> a -> HashMap k v -> a
+foldlWithKey' f = go
+ where
+ go !z Empty = z
+ go z (Leaf _ (L k v)) = f z k v
+ go z (BitmapIndexed _ ary) = A.foldl' go z ary
+ go z (Full ary) = A.foldl' go z ary
+ go z (Collision _ ary) = A.foldl' (\ z' (L k v) -> f z' k v) z ary
+{-# INLINE foldlWithKey' #-}
+
+-- | /O(n)/ Reduce this map by applying a binary operator to all
+-- elements, using the given starting value (typically the
+-- right-identity of the operator).
+foldr :: (v -> a -> a) -> a -> HashMap k v -> a
+foldr f = foldrWithKey (const f)
+{-# INLINE foldr #-}
+
+-- | /O(n)/ Reduce this map by applying a binary operator to all
+-- elements, using the given starting value (typically the
+-- right-identity of the operator).
+foldrWithKey :: (k -> v -> a -> a) -> a -> HashMap k v -> a
+foldrWithKey f = go
+ where
+ go z Empty = z
+ go z (Leaf _ (L k v)) = f k v z
+ go z (BitmapIndexed _ ary) = A.foldr (flip go) z ary
+ go z (Full ary) = A.foldr (flip go) z ary
+ go z (Collision _ ary) = A.foldr (\ (L k v) z' -> f k v z') z ary
+{-# INLINE foldrWithKey #-}
+
+------------------------------------------------------------------------
+-- * Filter
+
+-- | Create a new array of the @n@ first elements of @mary@.
+trim :: A.MArray s a -> Int -> ST s (A.Array a)
+trim mary n = do
+ mary2 <- A.new_ n
+ A.copyM mary 0 mary2 0 n
+ A.unsafeFreeze mary2
+{-# INLINE trim #-}
+
+-- | /O(n)/ Transform this map by applying a function to every value
+-- and retaining only some of them.
+mapMaybeWithKey :: (k -> v1 -> Maybe v2) -> HashMap k v1 -> HashMap k v2
+mapMaybeWithKey f = filterMapAux onLeaf onColl
+ where onLeaf (Leaf h (L k v)) | Just v' <- f k v = Just (Leaf h (L k v'))
+ onLeaf _ = Nothing
+
+ onColl (L k v) | Just v' <- f k v = Just (L k v')
+ | otherwise = Nothing
+{-# INLINE mapMaybeWithKey #-}
+
+-- | /O(n)/ Transform this map by applying a function to every value
+-- and retaining only some of them.
+mapMaybe :: (v1 -> Maybe v2) -> HashMap k v1 -> HashMap k v2
+mapMaybe f = mapMaybeWithKey (const f)
+{-# INLINE mapMaybe #-}
+
+-- | /O(n)/ Filter this map by retaining only elements satisfying a
+-- predicate.
+filterWithKey :: forall k v. (k -> v -> Bool) -> HashMap k v -> HashMap k v
+filterWithKey pred = filterMapAux onLeaf onColl
+ where onLeaf t@(Leaf _ (L k v)) | pred k v = Just t
+ onLeaf _ = Nothing
+
+ onColl el@(L k v) | pred k v = Just el
+ onColl _ = Nothing
+{-# INLINE filterWithKey #-}
+
+
+-- | Common implementation for 'filterWithKey' and 'mapMaybeWithKey',
+-- allowing the former to former to reuse terms.
+filterMapAux :: forall k v1 v2
+ . (HashMap k v1 -> Maybe (HashMap k v2))
+ -> (Leaf k v1 -> Maybe (Leaf k v2))
+ -> HashMap k v1
+ -> HashMap k v2
+filterMapAux onLeaf onColl = go
+ where
+ go Empty = Empty
+ go t@Leaf{}
+ | Just t' <- onLeaf t = t'
+ | otherwise = Empty
+ go (BitmapIndexed b ary) = filterA ary b
+ go (Full ary) = filterA ary fullNodeMask
+ go (Collision h ary) = filterC ary h
+
+ filterA ary0 b0 =
+ let !n = A.length ary0
+ in runST $ do
+ mary <- A.new_ n
+ step ary0 mary b0 0 0 1 n
+ where
+ step :: A.Array (HashMap k v1) -> A.MArray s (HashMap k v2)
+ -> Bitmap -> Int -> Int -> Bitmap -> Int
+ -> ST s (HashMap k v2)
+ step !ary !mary !b i !j !bi n
+ | i >= n = case j of
+ 0 -> return Empty
+ 1 -> do
+ ch <- A.read mary 0
+ case ch of
+ t | isLeafOrCollision t -> return t
+ _ -> BitmapIndexed b <$> trim mary 1
+ _ -> do
+ ary2 <- trim mary j
+ return $! if j == maxChildren
+ then Full ary2
+ else BitmapIndexed b ary2
+ | bi .&. b == 0 = step ary mary b i j (bi `unsafeShiftL` 1) n
+ | otherwise = case go (A.index ary i) of
+ Empty -> step ary mary (b .&. complement bi) (i+1) j
+ (bi `unsafeShiftL` 1) n
+ t -> do A.write mary j t
+ step ary mary b (i+1) (j+1) (bi `unsafeShiftL` 1) n
+
+ filterC ary0 h =
+ let !n = A.length ary0
+ in runST $ do
+ mary <- A.new_ n
+ step ary0 mary 0 0 n
+ where
+ step :: A.Array (Leaf k v1) -> A.MArray s (Leaf k v2)
+ -> Int -> Int -> Int
+ -> ST s (HashMap k v2)
+ step !ary !mary i !j n
+ | i >= n = case j of
+ 0 -> return Empty
+ 1 -> do l <- A.read mary 0
+ return $! Leaf h l
+ _ | i == j -> do ary2 <- A.unsafeFreeze mary
+ return $! Collision h ary2
+ | otherwise -> do ary2 <- trim mary j
+ return $! Collision h ary2
+ | Just el <- onColl (A.index ary i)
+ = A.write mary j el >> step ary mary (i+1) (j+1) n
+ | otherwise = step ary mary (i+1) j n
+{-# INLINE filterMapAux #-}
+
+-- | /O(n)/ Filter this map by retaining only elements which values
+-- satisfy a predicate.
+filter :: (v -> Bool) -> HashMap k v -> HashMap k v
+filter p = filterWithKey (\_ v -> p v)
+{-# INLINE filter #-}
+
+------------------------------------------------------------------------
+-- * Conversions
+
+-- TODO: Improve fusion rules by modelled them after the Prelude ones
+-- on lists.
+
+-- | /O(n)/ Return a list of this map's keys. The list is produced
+-- lazily.
+keys :: HashMap k v -> [k]
+keys = L.map fst . toList
+{-# INLINE keys #-}
+
+-- | /O(n)/ Return a list of this map's values. The list is produced
+-- lazily.
+elems :: HashMap k v -> [v]
+elems = L.map snd . toList
+{-# INLINE elems #-}
+
+------------------------------------------------------------------------
+-- ** Lists
+
+-- | /O(n)/ Return a list of this map's elements. The list is
+-- produced lazily. The order of its elements is unspecified.
+toList :: HashMap k v -> [(k, v)]
+toList t = build (\ c z -> foldrWithKey (curry c) z t)
+{-# INLINE toList #-}
+
+-- | /O(n)/ Construct a map with the supplied mappings. If the list
+-- contains duplicate mappings, the later mappings take precedence.
+fromList :: (Eq k, Hashable k) => [(k, v)] -> HashMap k v
+fromList = L.foldl' (\ m (k, v) -> unsafeInsert k v m) empty
+{-# INLINABLE fromList #-}
+
+-- | /O(n*log n)/ Construct a map from a list of elements. Uses
+-- the provided function to merge duplicate entries.
+fromListWith :: (Eq k, Hashable k) => (v -> v -> v) -> [(k, v)] -> HashMap k v
+fromListWith f = L.foldl' (\ m (k, v) -> unsafeInsertWith f k v m) empty
+{-# INLINE fromListWith #-}
+
+------------------------------------------------------------------------
+-- Array operations
+
+-- | /O(n)/ Lookup the value associated with the given key in this
+-- array. Returns 'Nothing' if the key wasn't found.
+lookupInArray :: Eq k => k -> A.Array (Leaf k v) -> Maybe v
+lookupInArray k0 ary0 = go k0 ary0 0 (A.length ary0)
+ where
+ go !k !ary !i !n
+ | i >= n = Nothing
+ | otherwise = case A.index ary i of
+ (L kx v)
+ | k == kx -> Just v
+ | otherwise -> go k ary (i+1) n
+{-# INLINABLE lookupInArray #-}
+
+-- | /O(n)/ Lookup the value associated with the given key in this
+-- array. Returns 'Nothing' if the key wasn't found.
+indexOf :: Eq k => k -> A.Array (Leaf k v) -> Maybe Int
+indexOf k0 ary0 = go k0 ary0 0 (A.length ary0)
+ where
+ go !k !ary !i !n
+ | i >= n = Nothing
+ | otherwise = case A.index ary i of
+ (L kx _)
+ | k == kx -> Just i
+ | otherwise -> go k ary (i+1) n
+{-# INLINABLE indexOf #-}
+
+updateWith :: Eq k => (v -> v) -> k -> A.Array (Leaf k v) -> A.Array (Leaf k v)
+updateWith f k0 ary0 = go k0 ary0 0 (A.length ary0)
+ where
+ go !k !ary !i !n
+ | i >= n = ary
+ | otherwise = case A.index ary i of
+ (L kx y) | k == kx -> A.update ary i (L k (f y))
+ | otherwise -> go k ary (i+1) n
+{-# INLINABLE updateWith #-}
+
+updateOrSnocWith :: Eq k => (v -> v -> v) -> k -> v -> A.Array (Leaf k v)
+ -> A.Array (Leaf k v)
+updateOrSnocWith f = updateOrSnocWithKey (const f)
+{-# INLINABLE updateOrSnocWith #-}
+
+updateOrSnocWithKey :: Eq k => (k -> v -> v -> v) -> k -> v -> A.Array (Leaf k v)
+ -> A.Array (Leaf k v)
+updateOrSnocWithKey f k0 v0 ary0 = go k0 v0 ary0 0 (A.length ary0)
+ where
+ go !k v !ary !i !n
+ | i >= n = A.run $ do
+ -- Not found, append to the end.
+ mary <- A.new_ (n + 1)
+ A.copy ary 0 mary 0 n
+ A.write mary n (L k v)
+ return mary
+ | otherwise = case A.index ary i of
+ (L kx y) | k == kx -> A.update ary i (L k (f k v y))
+ | otherwise -> go k v ary (i+1) n
+{-# INLINABLE updateOrSnocWithKey #-}
+
+updateOrConcatWith :: Eq k => (v -> v -> v) -> A.Array (Leaf k v) -> A.Array (Leaf k v) -> A.Array (Leaf k v)
+updateOrConcatWith f = updateOrConcatWithKey (const f)
+{-# INLINABLE updateOrConcatWith #-}
+
+updateOrConcatWithKey :: Eq k => (k -> v -> v -> v) -> A.Array (Leaf k v) -> A.Array (Leaf k v) -> A.Array (Leaf k v)
+updateOrConcatWithKey f ary1 ary2 = A.run $ do
+ -- first: look up the position of each element of ary2 in ary1
+ let indices = A.map (\(L k _) -> indexOf k ary1) ary2
+ -- that tells us how large the overlap is:
+ -- count number of Nothing constructors
+ let nOnly2 = A.foldl' (\n -> maybe (n+1) (const n)) 0 indices
+ let n1 = A.length ary1
+ let n2 = A.length ary2
+ -- copy over all elements from ary1
+ mary <- A.new_ (n1 + nOnly2)
+ A.copy ary1 0 mary 0 n1
+ -- append or update all elements from ary2
+ let go !iEnd !i2
+ | i2 >= n2 = return ()
+ | otherwise = case A.index indices i2 of
+ Just i1 -> do -- key occurs in both arrays, store combination in position i1
+ L k v1 <- A.indexM ary1 i1
+ L _ v2 <- A.indexM ary2 i2
+ A.write mary i1 (L k (f k v1 v2))
+ go iEnd (i2+1)
+ Nothing -> do -- key is only in ary2, append to end
+ A.write mary iEnd =<< A.indexM ary2 i2
+ go (iEnd+1) (i2+1)
+ go n1 0
+ return mary
+{-# INLINABLE updateOrConcatWithKey #-}
+
+------------------------------------------------------------------------
+-- Manually unrolled loops
+
+-- | /O(n)/ Update the element at the given position in this array.
+update16 :: A.Array e -> Int -> e -> A.Array e
+update16 ary idx b = runST (update16M ary idx b)
+{-# INLINE update16 #-}
+
+-- | /O(n)/ Update the element at the given position in this array.
+update16M :: A.Array e -> Int -> e -> ST s (A.Array e)
+update16M ary idx b = do
+ mary <- clone16 ary
+ A.write mary idx b
+ A.unsafeFreeze mary
+{-# INLINE update16M #-}
+
+-- | /O(n)/ Update the element at the given position in this array, by applying a function to it.
+update16With' :: A.Array e -> Int -> (e -> e) -> A.Array e
+update16With' ary idx f = update16 ary idx $! f (A.index ary idx)
+{-# INLINE update16With' #-}
+
+-- | Unsafely clone an array of 16 elements. The length of the input
+-- array is not checked.
+clone16 :: A.Array e -> ST s (A.MArray s e)
+clone16 ary =
+ A.thaw ary 0 16
+
+------------------------------------------------------------------------
+-- Bit twiddling
+
+bitsPerSubkey :: Int
+bitsPerSubkey = 4
+
+maxChildren :: Int
+maxChildren = fromIntegral $ 1 `unsafeShiftL` bitsPerSubkey
+
+subkeyMask :: Bitmap
+subkeyMask = 1 `unsafeShiftL` bitsPerSubkey - 1
+
+sparseIndex :: Bitmap -> Bitmap -> Int
+sparseIndex b m = popCount (b .&. (m - 1))
+
+mask :: Word -> Shift -> Bitmap
+mask w s = 1 `unsafeShiftL` index w s
+{-# INLINE mask #-}
+
+-- | Mask out the 'bitsPerSubkey' bits used for indexing at this level
+-- of the tree.
+index :: Hash -> Shift -> Int
+index w s = fromIntegral $ (unsafeShiftR w s) .&. subkeyMask
+{-# INLINE index #-}
+
+-- | A bitmask with the 'bitsPerSubkey' least significant bits set.
+fullNodeMask :: Bitmap
+fullNodeMask = complement (complement 0 `unsafeShiftL` maxChildren)
+{-# INLINE fullNodeMask #-}
+
+-- | Check if two the two arguments are the same value. N.B. This
+-- function might give false negatives (due to GC moving objects.)
+ptrEq :: a -> a -> Bool
+ptrEq x y = isTrue# (reallyUnsafePtrEquality# x y ==# 1#)
+{-# INLINE ptrEq #-}
+
+------------------------------------------------------------------------
+-- IsList instance
+instance (Eq k, Hashable k) => Exts.IsList (HashMap k v) where
+ type Item (HashMap k v) = (k, v)
+ fromList = fromList
+ toList = toList
--- /dev/null
+{-# LANGUAGE CPP #-}
+{-# LANGUAGE Trustworthy #-}
+
+------------------------------------------------------------------------
+-- |
+-- Module : Data.HashMap.Lazy
+-- Copyright : 2010-2012 Johan Tibell
+-- License : BSD-style
+-- Maintainer : johan.tibell@gmail.com
+-- Stability : provisional
+-- Portability : portable
+--
+-- A map from /hashable/ keys to values. A map cannot contain
+-- duplicate keys; each key can map to at most one value. A 'HashMap'
+-- makes no guarantees as to the order of its elements.
+--
+-- The implementation is based on /hash array mapped tries/. A
+-- 'HashMap' is often faster than other tree-based set types,
+-- especially when key comparison is expensive, as in the case of
+-- strings.
+--
+-- Many operations have a average-case complexity of /O(log n)/. The
+-- implementation uses a large base (i.e. 16) so in practice these
+-- operations are constant time.
+module Data.HashMap.Lazy
+ (
+ -- * Strictness properties
+ -- $strictness
+
+ HashMap
+
+ -- * Construction
+ , empty
+ , singleton
+
+ -- * Basic interface
+ , HM.null
+ , size
+ , member
+ , HM.lookup
+ , lookupDefault
+ , (!)
+ , insert
+ , insertWith
+ , delete
+ , adjust
+ , update
+ , alter
+
+ -- * Combine
+ -- ** Union
+ , union
+ , unionWith
+ , unionWithKey
+ , unions
+
+ -- * Transformations
+ , HM.map
+ , mapWithKey
+ , traverseWithKey
+
+ -- * Difference and intersection
+ , difference
+ , differenceWith
+ , intersection
+ , intersectionWith
+ , intersectionWithKey
+
+ -- * Folds
+ , foldl'
+ , foldlWithKey'
+ , HM.foldr
+ , foldrWithKey
+
+ -- * Filter
+ , HM.filter
+ , filterWithKey
+ , mapMaybe
+ , mapMaybeWithKey
+
+ -- * Conversions
+ , keys
+ , elems
+
+ -- ** Lists
+ , toList
+ , fromList
+ , fromListWith
+ ) where
+
+import Data.HashMap.Base as HM
+
+-- $strictness
+--
+-- This module satisfies the following strictness property:
+--
+-- * Key arguments are evaluated to WHNF
--- /dev/null
+{-# LANGUAGE ScopedTypeVariables #-}
+{-# OPTIONS_GHC -fno-full-laziness -funbox-strict-fields #-}
+-- | Extra list functions
+--
+-- In separate module to aid testing.
+module Data.HashMap.List
+ ( isPermutationBy
+ , deleteBy
+ , unorderedCompare
+ ) where
+
+import Data.Maybe (fromMaybe)
+import Data.List (sortBy)
+import Data.Monoid
+import Prelude
+
+-- Note: previous implemenation isPermutation = null (as // bs)
+-- was O(n^2) too.
+--
+-- This assumes lists are of equal length
+isPermutationBy :: (a -> b -> Bool) -> [a] -> [b] -> Bool
+isPermutationBy f = go
+ where
+ f' = flip f
+
+ go [] [] = True
+ go (x : xs) (y : ys)
+ | f x y = go xs ys
+ | otherwise = fromMaybe False $ do
+ xs' <- deleteBy f' y xs
+ ys' <- deleteBy f x ys
+ return (go xs' ys')
+ go [] (_ : _) = False
+ go (_ : _) [] = False
+
+-- The idea:
+--
+-- Homogeonous version
+--
+-- uc :: (a -> a -> Ordering) -> [a] -> [a] -> Ordering
+-- uc c as bs = compare (sortBy c as) (sortBy c bs)
+--
+-- But as we have only (a -> b -> Ordering), we cannot directly compare
+-- elements from the same list.
+--
+-- So when comparing elements from the list, we count how many elements are
+-- "less and greater" in the other list, and use the count as a metric.
+--
+unorderedCompare :: (a -> b -> Ordering) -> [a] -> [b] -> Ordering
+unorderedCompare c as bs = go (sortBy cmpA as) (sortBy cmpB bs)
+ where
+ go [] [] = EQ
+ go [] (_ : _) = LT
+ go (_ : _) [] = GT
+ go (x : xs) (y : ys) = c x y `mappend` go xs ys
+
+ cmpA a a' = compare (inB a) (inB a')
+ cmpB b b' = compare (inA b) (inA b')
+
+ inB a = (length $ filter (\b -> c a b == GT) bs, negate $ length $ filter (\b -> c a b == LT) bs)
+ inA b = (length $ filter (\a -> c a b == LT) as, negate $ length $ filter (\a -> c a b == GT) as)
+
+-- Returns Nothing is nothing deleted
+deleteBy :: (a -> b -> Bool) -> a -> [b] -> Maybe [b]
+deleteBy _ _ [] = Nothing
+deleteBy eq x (y:ys) = if x `eq` y then Just ys else fmap (y :) (deleteBy eq x ys)
--- /dev/null
+{-# LANGUAGE BangPatterns, CPP, PatternGuards #-}
+{-# LANGUAGE Trustworthy #-}
+
+------------------------------------------------------------------------
+-- |
+-- Module : Data.HashMap.Strict
+-- Copyright : 2010-2012 Johan Tibell
+-- License : BSD-style
+-- Maintainer : johan.tibell@gmail.com
+-- Stability : provisional
+-- Portability : portable
+--
+-- A map from /hashable/ keys to values. A map cannot contain
+-- duplicate keys; each key can map to at most one value. A 'HashMap'
+-- makes no guarantees as to the order of its elements.
+--
+-- The implementation is based on /hash array mapped tries/. A
+-- 'HashMap' is often faster than other tree-based set types,
+-- especially when key comparison is expensive, as in the case of
+-- strings.
+--
+-- Many operations have a average-case complexity of /O(log n)/. The
+-- implementation uses a large base (i.e. 16) so in practice these
+-- operations are constant time.
+module Data.HashMap.Strict
+ (
+ -- * Strictness properties
+ -- $strictness
+
+ HashMap
+
+ -- * Construction
+ , empty
+ , singleton
+
+ -- * Basic interface
+ , HM.null
+ , size
+ , HM.member
+ , HM.lookup
+ , lookupDefault
+ , (!)
+ , insert
+ , insertWith
+ , delete
+ , adjust
+ , update
+ , alter
+
+ -- * Combine
+ -- ** Union
+ , union
+ , unionWith
+ , unionWithKey
+ , unions
+
+ -- * Transformations
+ , map
+ , mapWithKey
+ , traverseWithKey
+
+ -- * Difference and intersection
+ , difference
+ , differenceWith
+ , intersection
+ , intersectionWith
+ , intersectionWithKey
+
+ -- * Folds
+ , foldl'
+ , foldlWithKey'
+ , HM.foldr
+ , foldrWithKey
+
+ -- * Filter
+ , HM.filter
+ , filterWithKey
+ , mapMaybe
+ , mapMaybeWithKey
+
+ -- * Conversions
+ , keys
+ , elems
+
+ -- ** Lists
+ , toList
+ , fromList
+ , fromListWith
+ ) where
+
+import Data.Bits ((.&.), (.|.))
+import qualified Data.List as L
+import Data.Hashable (Hashable)
+import Prelude hiding (map)
+
+import qualified Data.HashMap.Array as A
+import qualified Data.HashMap.Base as HM
+import Data.HashMap.Base hiding (
+ alter, adjust, fromList, fromListWith, insert, insertWith, differenceWith,
+ intersectionWith, intersectionWithKey, map, mapWithKey, mapMaybe,
+ mapMaybeWithKey, singleton, update, unionWith, unionWithKey)
+import Data.HashMap.Unsafe (runST)
+
+-- $strictness
+--
+-- This module satisfies the following strictness properties:
+--
+-- 1. Key arguments are evaluated to WHNF;
+--
+-- 2. Keys and values are evaluated to WHNF before they are stored in
+-- the map.
+
+------------------------------------------------------------------------
+-- * Construction
+
+-- | /O(1)/ Construct a map with a single element.
+singleton :: (Hashable k) => k -> v -> HashMap k v
+singleton k !v = HM.singleton k v
+
+------------------------------------------------------------------------
+-- * Basic interface
+
+-- | /O(log n)/ Associate the specified value with the specified
+-- key in this map. If this map previously contained a mapping for
+-- the key, the old value is replaced.
+insert :: (Eq k, Hashable k) => k -> v -> HashMap k v -> HashMap k v
+insert k !v = HM.insert k v
+{-# INLINABLE insert #-}
+
+-- | /O(log n)/ Associate the value with the key in this map. If
+-- this map previously contained a mapping for the key, the old value
+-- is replaced by the result of applying the given function to the new
+-- and old value. Example:
+--
+-- > insertWith f k v map
+-- > where f new old = new + old
+insertWith :: (Eq k, Hashable k) => (v -> v -> v) -> k -> v -> HashMap k v
+ -> HashMap k v
+insertWith f k0 v0 m0 = go h0 k0 v0 0 m0
+ where
+ h0 = hash k0
+ go !h !k x !_ Empty = leaf h k x
+ go h k x s (Leaf hy l@(L ky y))
+ | hy == h = if ky == k
+ then leaf h k (f x y)
+ else x `seq` (collision h l (L k x))
+ | otherwise = x `seq` runST (two s h k x hy ky y)
+ go h k x s (BitmapIndexed b ary)
+ | b .&. m == 0 =
+ let ary' = A.insert ary i $! leaf h k x
+ in bitmapIndexedOrFull (b .|. m) ary'
+ | otherwise =
+ let st = A.index ary i
+ st' = go h k x (s+bitsPerSubkey) st
+ ary' = A.update ary i $! st'
+ in BitmapIndexed b ary'
+ where m = mask h s
+ i = sparseIndex b m
+ go h k x s (Full ary) =
+ let st = A.index ary i
+ st' = go h k x (s+bitsPerSubkey) st
+ ary' = update16 ary i $! st'
+ in Full ary'
+ where i = index h s
+ go h k x s t@(Collision hy v)
+ | h == hy = Collision h (updateOrSnocWith f k x v)
+ | otherwise = go h k x s $ BitmapIndexed (mask hy s) (A.singleton t)
+{-# INLINABLE insertWith #-}
+
+-- | In-place update version of insertWith
+unsafeInsertWith :: (Eq k, Hashable k) => (v -> v -> v) -> k -> v -> HashMap k v
+ -> HashMap k v
+unsafeInsertWith f k0 v0 m0 = runST (go h0 k0 v0 0 m0)
+ where
+ h0 = hash k0
+ go !h !k x !_ Empty = return $! leaf h k x
+ go h k x s (Leaf hy l@(L ky y))
+ | hy == h = if ky == k
+ then return $! leaf h k (f x y)
+ else do
+ let l' = x `seq` (L k x)
+ return $! collision h l l'
+ | otherwise = x `seq` two s h k x hy ky y
+ go h k x s t@(BitmapIndexed b ary)
+ | b .&. m == 0 = do
+ ary' <- A.insertM ary i $! leaf h k x
+ return $! bitmapIndexedOrFull (b .|. m) ary'
+ | otherwise = do
+ st <- A.indexM ary i
+ st' <- go h k x (s+bitsPerSubkey) st
+ A.unsafeUpdateM ary i st'
+ return t
+ where m = mask h s
+ i = sparseIndex b m
+ go h k x s t@(Full ary) = do
+ st <- A.indexM ary i
+ st' <- go h k x (s+bitsPerSubkey) st
+ A.unsafeUpdateM ary i st'
+ return t
+ where i = index h s
+ go h k x s t@(Collision hy v)
+ | h == hy = return $! Collision h (updateOrSnocWith f k x v)
+ | otherwise = go h k x s $ BitmapIndexed (mask hy s) (A.singleton t)
+{-# INLINABLE unsafeInsertWith #-}
+
+-- | /O(log n)/ Adjust the value tied to a given key in this map only
+-- if it is present. Otherwise, leave the map alone.
+adjust :: (Eq k, Hashable k) => (v -> v) -> k -> HashMap k v -> HashMap k v
+adjust f k0 m0 = go h0 k0 0 m0
+ where
+ h0 = hash k0
+ go !_ !_ !_ Empty = Empty
+ go h k _ t@(Leaf hy (L ky y))
+ | hy == h && ky == k = leaf h k (f y)
+ | otherwise = t
+ go h k s t@(BitmapIndexed b ary)
+ | b .&. m == 0 = t
+ | otherwise = let st = A.index ary i
+ st' = go h k (s+bitsPerSubkey) st
+ ary' = A.update ary i $! st'
+ in BitmapIndexed b ary'
+ where m = mask h s
+ i = sparseIndex b m
+ go h k s (Full ary) =
+ let i = index h s
+ st = A.index ary i
+ st' = go h k (s+bitsPerSubkey) st
+ ary' = update16 ary i $! st'
+ in Full ary'
+ go h k _ t@(Collision hy v)
+ | h == hy = Collision h (updateWith f k v)
+ | otherwise = t
+{-# INLINABLE adjust #-}
+
+-- | /O(log n)/ The expression (@'update' f k map@) updates the value @x@ at @k@,
+-- (if it is in the map). If (f k x) is @'Nothing', the element is deleted.
+-- If it is (@'Just' y), the key k is bound to the new value y.
+update :: (Eq k, Hashable k) => (a -> Maybe a) -> k -> HashMap k a -> HashMap k a
+update f = alter (>>= f)
+{-# INLINABLE update #-}
+
+-- | /O(log n)/ The expression (@'alter' f k map@) alters the value @x@ at @k@, or
+-- absence thereof. @alter@ can be used to insert, delete, or update a value in a
+-- map. In short : @'lookup' k ('alter' f k m) = f ('lookup' k m)@.
+alter :: (Eq k, Hashable k) => (Maybe v -> Maybe v) -> k -> HashMap k v -> HashMap k v
+alter f k m =
+ case f (HM.lookup k m) of
+ Nothing -> delete k m
+ Just v -> insert k v m
+{-# INLINABLE alter #-}
+
+------------------------------------------------------------------------
+-- * Combine
+
+-- | /O(n+m)/ The union of two maps. If a key occurs in both maps,
+-- the provided function (first argument) will be used to compute the result.
+unionWith :: (Eq k, Hashable k) => (v -> v -> v) -> HashMap k v -> HashMap k v
+ -> HashMap k v
+unionWith f = unionWithKey (const f)
+{-# INLINE unionWith #-}
+
+-- | /O(n+m)/ The union of two maps. If a key occurs in both maps,
+-- the provided function (first argument) will be used to compute the result.
+unionWithKey :: (Eq k, Hashable k) => (k -> v -> v -> v) -> HashMap k v -> HashMap k v
+ -> HashMap k v
+unionWithKey f = go 0
+ where
+ -- empty vs. anything
+ go !_ t1 Empty = t1
+ go _ Empty t2 = t2
+ -- leaf vs. leaf
+ go s t1@(Leaf h1 l1@(L k1 v1)) t2@(Leaf h2 l2@(L k2 v2))
+ | h1 == h2 = if k1 == k2
+ then leaf h1 k1 (f k1 v1 v2)
+ else collision h1 l1 l2
+ | otherwise = goDifferentHash s h1 h2 t1 t2
+ go s t1@(Leaf h1 (L k1 v1)) t2@(Collision h2 ls2)
+ | h1 == h2 = Collision h1 (updateOrSnocWithKey f k1 v1 ls2)
+ | otherwise = goDifferentHash s h1 h2 t1 t2
+ go s t1@(Collision h1 ls1) t2@(Leaf h2 (L k2 v2))
+ | h1 == h2 = Collision h1 (updateOrSnocWithKey (flip . f) k2 v2 ls1)
+ | otherwise = goDifferentHash s h1 h2 t1 t2
+ go s t1@(Collision h1 ls1) t2@(Collision h2 ls2)
+ | h1 == h2 = Collision h1 (updateOrConcatWithKey f ls1 ls2)
+ | otherwise = goDifferentHash s h1 h2 t1 t2
+ -- branch vs. branch
+ go s (BitmapIndexed b1 ary1) (BitmapIndexed b2 ary2) =
+ let b' = b1 .|. b2
+ ary' = unionArrayBy (go (s+bitsPerSubkey)) b1 b2 ary1 ary2
+ in bitmapIndexedOrFull b' ary'
+ go s (BitmapIndexed b1 ary1) (Full ary2) =
+ let ary' = unionArrayBy (go (s+bitsPerSubkey)) b1 fullNodeMask ary1 ary2
+ in Full ary'
+ go s (Full ary1) (BitmapIndexed b2 ary2) =
+ let ary' = unionArrayBy (go (s+bitsPerSubkey)) fullNodeMask b2 ary1 ary2
+ in Full ary'
+ go s (Full ary1) (Full ary2) =
+ let ary' = unionArrayBy (go (s+bitsPerSubkey)) fullNodeMask fullNodeMask
+ ary1 ary2
+ in Full ary'
+ -- leaf vs. branch
+ go s (BitmapIndexed b1 ary1) t2
+ | b1 .&. m2 == 0 = let ary' = A.insert ary1 i t2
+ b' = b1 .|. m2
+ in bitmapIndexedOrFull b' ary'
+ | otherwise = let ary' = A.updateWith' ary1 i $ \st1 ->
+ go (s+bitsPerSubkey) st1 t2
+ in BitmapIndexed b1 ary'
+ where
+ h2 = leafHashCode t2
+ m2 = mask h2 s
+ i = sparseIndex b1 m2
+ go s t1 (BitmapIndexed b2 ary2)
+ | b2 .&. m1 == 0 = let ary' = A.insert ary2 i $! t1
+ b' = b2 .|. m1
+ in bitmapIndexedOrFull b' ary'
+ | otherwise = let ary' = A.updateWith' ary2 i $ \st2 ->
+ go (s+bitsPerSubkey) t1 st2
+ in BitmapIndexed b2 ary'
+ where
+ h1 = leafHashCode t1
+ m1 = mask h1 s
+ i = sparseIndex b2 m1
+ go s (Full ary1) t2 =
+ let h2 = leafHashCode t2
+ i = index h2 s
+ ary' = update16With' ary1 i $ \st1 -> go (s+bitsPerSubkey) st1 t2
+ in Full ary'
+ go s t1 (Full ary2) =
+ let h1 = leafHashCode t1
+ i = index h1 s
+ ary' = update16With' ary2 i $ \st2 -> go (s+bitsPerSubkey) t1 st2
+ in Full ary'
+
+ leafHashCode (Leaf h _) = h
+ leafHashCode (Collision h _) = h
+ leafHashCode _ = error "leafHashCode"
+
+ goDifferentHash s h1 h2 t1 t2
+ | m1 == m2 = BitmapIndexed m1 (A.singleton $! go (s+bitsPerSubkey) t1 t2)
+ | m1 < m2 = BitmapIndexed (m1 .|. m2) (A.pair t1 t2)
+ | otherwise = BitmapIndexed (m1 .|. m2) (A.pair t2 t1)
+ where
+ m1 = mask h1 s
+ m2 = mask h2 s
+{-# INLINE unionWithKey #-}
+
+------------------------------------------------------------------------
+-- * Transformations
+
+-- | /O(n)/ Transform this map by applying a function to every value.
+mapWithKey :: (k -> v1 -> v2) -> HashMap k v1 -> HashMap k v2
+mapWithKey f = go
+ where
+ go Empty = Empty
+ go (Leaf h (L k v)) = leaf h k (f k v)
+ go (BitmapIndexed b ary) = BitmapIndexed b $ A.map' go ary
+ go (Full ary) = Full $ A.map' go ary
+ go (Collision h ary) =
+ Collision h $ A.map' (\ (L k v) -> let !v' = f k v in L k v') ary
+{-# INLINE mapWithKey #-}
+
+-- | /O(n)/ Transform this map by applying a function to every value.
+map :: (v1 -> v2) -> HashMap k v1 -> HashMap k v2
+map f = mapWithKey (const f)
+{-# INLINE map #-}
+
+
+------------------------------------------------------------------------
+-- * Filter
+
+-- | /O(n)/ Transform this map by applying a function to every value
+-- and retaining only some of them.
+mapMaybeWithKey :: (k -> v1 -> Maybe v2) -> HashMap k v1 -> HashMap k v2
+mapMaybeWithKey f = filterMapAux onLeaf onColl
+ where onLeaf (Leaf h (L k v)) | Just v' <- f k v = Just (leaf h k v')
+ onLeaf _ = Nothing
+
+ onColl (L k v) | Just v' <- f k v = Just (L k v')
+ | otherwise = Nothing
+{-# INLINE mapMaybeWithKey #-}
+
+-- | /O(n)/ Transform this map by applying a function to every value
+-- and retaining only some of them.
+mapMaybe :: (v1 -> Maybe v2) -> HashMap k v1 -> HashMap k v2
+mapMaybe f = mapMaybeWithKey (const f)
+{-# INLINE mapMaybe #-}
+
+
+-- TODO: Should we add a strict traverseWithKey?
+
+------------------------------------------------------------------------
+-- * Difference and intersection
+
+-- | /O(n*log m)/ Difference with a combining function. When two equal keys are
+-- encountered, the combining function is applied to the values of these keys.
+-- If it returns 'Nothing', the element is discarded (proper set difference). If
+-- it returns (@'Just' y@), the element is updated with a new value @y@.
+differenceWith :: (Eq k, Hashable k) => (v -> w -> Maybe v) -> HashMap k v -> HashMap k w -> HashMap k v
+differenceWith f a b = foldlWithKey' go empty a
+ where
+ go m k v = case HM.lookup k b of
+ Nothing -> insert k v m
+ Just w -> maybe m (\y -> insert k y m) (f v w)
+{-# INLINABLE differenceWith #-}
+
+-- | /O(n+m)/ Intersection of two maps. If a key occurs in both maps
+-- the provided function is used to combine the values from the two
+-- maps.
+intersectionWith :: (Eq k, Hashable k) => (v1 -> v2 -> v3) -> HashMap k v1
+ -> HashMap k v2 -> HashMap k v3
+intersectionWith f a b = foldlWithKey' go empty a
+ where
+ go m k v = case HM.lookup k b of
+ Just w -> insert k (f v w) m
+ _ -> m
+{-# INLINABLE intersectionWith #-}
+
+-- | /O(n+m)/ Intersection of two maps. If a key occurs in both maps
+-- the provided function is used to combine the values from the two
+-- maps.
+intersectionWithKey :: (Eq k, Hashable k) => (k -> v1 -> v2 -> v3)
+ -> HashMap k v1 -> HashMap k v2 -> HashMap k v3
+intersectionWithKey f a b = foldlWithKey' go empty a
+ where
+ go m k v = case HM.lookup k b of
+ Just w -> insert k (f k v w) m
+ _ -> m
+{-# INLINABLE intersectionWithKey #-}
+
+------------------------------------------------------------------------
+-- ** Lists
+
+-- | /O(n*log n)/ Construct a map with the supplied mappings. If the
+-- list contains duplicate mappings, the later mappings take
+-- precedence.
+fromList :: (Eq k, Hashable k) => [(k, v)] -> HashMap k v
+fromList = L.foldl' (\ m (k, !v) -> HM.unsafeInsert k v m) empty
+{-# INLINABLE fromList #-}
+
+-- | /O(n*log n)/ Construct a map from a list of elements. Uses
+-- the provided function f to merge duplicate entries (f newVal oldVal).
+--
+-- For example:
+--
+-- > fromListWith (+) [ (x, 1) | x <- xs ]
+--
+-- will create a map with number of occurrences of each element in xs.
+--
+-- > fromListWith (++) [ (k, [v]) | (k, v) <- xs ]
+--
+-- will group all values by their keys in a list 'xs :: [(k, v)]' and
+-- return a 'HashMap k [v]'.
+fromListWith :: (Eq k, Hashable k) => (v -> v -> v) -> [(k, v)] -> HashMap k v
+fromListWith f = L.foldl' (\ m (k, v) -> unsafeInsertWith f k v m) empty
+{-# INLINE fromListWith #-}
+
+------------------------------------------------------------------------
+-- Array operations
+
+updateWith :: Eq k => (v -> v) -> k -> A.Array (Leaf k v) -> A.Array (Leaf k v)
+updateWith f k0 ary0 = go k0 ary0 0 (A.length ary0)
+ where
+ go !k !ary !i !n
+ | i >= n = ary
+ | otherwise = case A.index ary i of
+ (L kx y) | k == kx -> let !v' = f y in A.update ary i (L k v')
+ | otherwise -> go k ary (i+1) n
+{-# INLINABLE updateWith #-}
+
+-- | Append the given key and value to the array. If the key is
+-- already present, instead update the value of the key by applying
+-- the given function to the new and old value (in that order). The
+-- value is always evaluated to WHNF before being inserted into the
+-- array.
+updateOrSnocWith :: Eq k => (v -> v -> v) -> k -> v -> A.Array (Leaf k v)
+ -> A.Array (Leaf k v)
+updateOrSnocWith f = updateOrSnocWithKey (const f)
+{-# INLINABLE updateOrSnocWith #-}
+
+-- | Append the given key and value to the array. If the key is
+-- already present, instead update the value of the key by applying
+-- the given function to the new and old value (in that order). The
+-- value is always evaluated to WHNF before being inserted into the
+-- array.
+updateOrSnocWithKey :: Eq k => (k -> v -> v -> v) -> k -> v -> A.Array (Leaf k v)
+ -> A.Array (Leaf k v)
+updateOrSnocWithKey f k0 v0 ary0 = go k0 v0 ary0 0 (A.length ary0)
+ where
+ go !k v !ary !i !n
+ | i >= n = A.run $ do
+ -- Not found, append to the end.
+ mary <- A.new_ (n + 1)
+ A.copy ary 0 mary 0 n
+ let !l = v `seq` (L k v)
+ A.write mary n l
+ return mary
+ | otherwise = case A.index ary i of
+ (L kx y) | k == kx -> let !v' = f k v y in A.update ary i (L k v')
+ | otherwise -> go k v ary (i+1) n
+{-# INLINABLE updateOrSnocWithKey #-}
+
+------------------------------------------------------------------------
+-- Smart constructors
+--
+-- These constructors make sure the value is in WHNF before it's
+-- inserted into the constructor.
+
+leaf :: Hash -> k -> v -> HashMap k v
+leaf h k !v = Leaf h (L k v)
+{-# INLINE leaf #-}
--- /dev/null
+{-# LANGUAGE CPP #-}
+
+#if !MIN_VERSION_base(4,9,0)
+{-# LANGUAGE MagicHash, Rank2Types, UnboxedTuples #-}
+#endif
+
+-- | This module exports a workaround for this bug:
+--
+-- http://hackage.haskell.org/trac/ghc/ticket/5916
+--
+-- Please read the comments in ghc/libraries/base/GHC/ST.lhs to
+-- understand what's going on here.
+--
+-- Code that uses this module should be compiled with -fno-full-laziness
+module Data.HashMap.Unsafe
+ ( runST
+ ) where
+
+#if MIN_VERSION_base(4,9,0)
+-- The GHC issue was fixed in GHC 8.0/base 4.9
+import Control.Monad.ST
+
+#else
+
+import GHC.Base (realWorld#)
+import qualified GHC.ST as ST
+
+-- | Return the value computed by a state transformer computation.
+-- The @forall@ ensures that the internal state used by the 'ST'
+-- computation is inaccessible to the rest of the program.
+runST :: (forall s. ST.ST s a) -> a
+runST st = runSTRep (case st of { ST.ST st_rep -> st_rep })
+{-# INLINE runST #-}
+
+runSTRep :: (forall s. ST.STRep s a) -> a
+runSTRep st_rep = case st_rep realWorld# of
+ (# _, r #) -> r
+{-# INLINE [0] runSTRep #-}
+#endif
--- /dev/null
+{-# LANGUAGE MagicHash #-}
+
+module Data.HashMap.UnsafeShift
+ ( unsafeShiftL
+ , unsafeShiftR
+ ) where
+
+import GHC.Exts (Word(W#), Int(I#), uncheckedShiftL#, uncheckedShiftRL#)
+
+unsafeShiftL :: Word -> Int -> Word
+unsafeShiftL (W# x#) (I# i#) = W# (x# `uncheckedShiftL#` i#)
+{-# INLINE unsafeShiftL #-}
+
+unsafeShiftR :: Word -> Int -> Word
+unsafeShiftR (W# x#) (I# i#) = W# (x# `uncheckedShiftRL#` i#)
+{-# INLINE unsafeShiftR #-}
--- /dev/null
+{-# LANGUAGE CPP, DeriveDataTypeable #-}
+#if __GLASGOW_HASKELL__ >= 708
+{-# LANGUAGE RoleAnnotations #-}
+{-# LANGUAGE TypeFamilies #-}
+#endif
+#if __GLASGOW_HASKELL__ >= 702
+{-# LANGUAGE Trustworthy #-}
+#endif
+
+------------------------------------------------------------------------
+-- |
+-- Module : Data.HashSet
+-- Copyright : 2011 Bryan O'Sullivan
+-- License : BSD-style
+-- Maintainer : johan.tibell@gmail.com
+-- Stability : provisional
+-- Portability : portable
+--
+-- A set of /hashable/ values. A set cannot contain duplicate items.
+-- A 'HashSet' makes no guarantees as to the order of its elements.
+--
+-- The implementation is based on /hash array mapped trie/. A
+-- 'HashSet' is often faster than other tree-based set types,
+-- especially when value comparison is expensive, as in the case of
+-- strings.
+--
+-- Many operations have a average-case complexity of /O(log n)/. The
+-- implementation uses a large base (i.e. 16) so in practice these
+-- operations are constant time.
+
+module Data.HashSet
+ (
+ HashSet
+
+ -- * Construction
+ , empty
+ , singleton
+
+ -- * Combine
+ , union
+ , unions
+
+ -- * Basic interface
+ , null
+ , size
+ , member
+ , insert
+ , delete
+
+ -- * Transformations
+ , map
+
+ -- * Difference and intersection
+ , difference
+ , intersection
+
+ -- * Folds
+ , foldl'
+ , foldr
+
+ -- * Filter
+ , filter
+
+ -- * Conversions
+
+ -- ** Lists
+ , toList
+ , fromList
+
+ -- * HashMaps
+ , toMap
+ , fromMap
+ ) where
+
+import Control.DeepSeq (NFData(..))
+import Data.Data hiding (Typeable)
+import Data.HashMap.Base (HashMap, foldrWithKey, equalKeys)
+import Data.Hashable (Hashable(hashWithSalt))
+#if __GLASGOW_HASKELL__ >= 711
+import Data.Semigroup (Semigroup(..))
+#elif __GLASGOW_HASKELL__ < 709
+import Data.Monoid (Monoid(..))
+#endif
+import GHC.Exts (build)
+import Prelude hiding (filter, foldr, map, null)
+import qualified Data.Foldable as Foldable
+import qualified Data.HashMap.Lazy as H
+import qualified Data.List as List
+import Data.Typeable (Typeable)
+import Text.Read
+
+#if __GLASGOW_HASKELL__ >= 708
+import qualified GHC.Exts as Exts
+#endif
+
+#if MIN_VERSION_base(4,9,0)
+import Data.Functor.Classes
+#endif
+
+#if MIN_VERSION_hashable(1,2,5)
+import qualified Data.Hashable.Lifted as H
+#endif
+
+-- | A set of values. A set cannot contain duplicate values.
+newtype HashSet a = HashSet {
+ asMap :: HashMap a ()
+ } deriving (Typeable)
+
+#if __GLASGOW_HASKELL__ >= 708
+type role HashSet nominal
+#endif
+
+instance (NFData a) => NFData (HashSet a) where
+ rnf = rnf . asMap
+ {-# INLINE rnf #-}
+
+instance (Eq a) => Eq (HashSet a) where
+ HashSet a == HashSet b = equalKeys (==) a b
+ {-# INLINE (==) #-}
+
+#if MIN_VERSION_base(4,9,0)
+instance Eq1 HashSet where
+ liftEq eq (HashSet a) (HashSet b) = equalKeys eq a b
+#endif
+
+instance (Ord a) => Ord (HashSet a) where
+ compare (HashSet a) (HashSet b) = compare a b
+ {-# INLINE compare #-}
+
+#if MIN_VERSION_base(4,9,0)
+instance Ord1 HashSet where
+ liftCompare c (HashSet a) (HashSet b) = liftCompare2 c compare a b
+#endif
+
+instance Foldable.Foldable HashSet where
+ foldr = Data.HashSet.foldr
+ {-# INLINE foldr #-}
+
+#if __GLASGOW_HASKELL__ >= 711
+instance (Hashable a, Eq a) => Semigroup (HashSet a) where
+ (<>) = union
+ {-# INLINE (<>) #-}
+#endif
+
+instance (Hashable a, Eq a) => Monoid (HashSet a) where
+ mempty = empty
+ {-# INLINE mempty #-}
+#if __GLASGOW_HASKELL__ >= 711
+ mappend = (<>)
+#else
+ mappend = union
+#endif
+ {-# INLINE mappend #-}
+
+instance (Eq a, Hashable a, Read a) => Read (HashSet a) where
+ readPrec = parens $ prec 10 $ do
+ Ident "fromList" <- lexP
+ xs <- readPrec
+ return (fromList xs)
+
+ readListPrec = readListPrecDefault
+
+#if MIN_VERSION_base(4,9,0)
+instance Show1 HashSet where
+ liftShowsPrec sp sl d m =
+ showsUnaryWith (liftShowsPrec sp sl) "fromList" d (toList m)
+#endif
+
+instance (Show a) => Show (HashSet a) where
+ showsPrec d m = showParen (d > 10) $
+ showString "fromList " . shows (toList m)
+
+instance (Data a, Eq a, Hashable a) => Data (HashSet a) where
+ gfoldl f z m = z fromList `f` toList m
+ toConstr _ = fromListConstr
+ gunfold k z c = case constrIndex c of
+ 1 -> k (z fromList)
+ _ -> error "gunfold"
+ dataTypeOf _ = hashSetDataType
+ dataCast1 f = gcast1 f
+
+#if MIN_VERSION_hashable(1,2,6)
+instance H.Hashable1 HashSet where
+ liftHashWithSalt h s = H.liftHashWithSalt2 h hashWithSalt s . asMap
+#endif
+
+instance (Hashable a) => Hashable (HashSet a) where
+ hashWithSalt salt = hashWithSalt salt . asMap
+
+fromListConstr :: Constr
+fromListConstr = mkConstr hashSetDataType "fromList" [] Prefix
+
+hashSetDataType :: DataType
+hashSetDataType = mkDataType "Data.HashSet" [fromListConstr]
+
+-- | /O(1)/ Construct an empty set.
+empty :: HashSet a
+empty = HashSet H.empty
+
+-- | /O(1)/ Construct a set with a single element.
+singleton :: Hashable a => a -> HashSet a
+singleton a = HashSet (H.singleton a ())
+{-# INLINABLE singleton #-}
+
+-- | /O(1)/ Convert to the equivalent 'HashMap'.
+toMap :: HashSet a -> HashMap a ()
+toMap = asMap
+
+-- | /O(1)/ Convert from the equivalent 'HashMap'.
+fromMap :: HashMap a () -> HashSet a
+fromMap = HashSet
+
+-- | /O(n+m)/ Construct a set containing all elements from both sets.
+--
+-- To obtain good performance, the smaller set must be presented as
+-- the first argument.
+union :: (Eq a, Hashable a) => HashSet a -> HashSet a -> HashSet a
+union s1 s2 = HashSet $ H.union (asMap s1) (asMap s2)
+{-# INLINE union #-}
+
+-- TODO: Figure out the time complexity of 'unions'.
+
+-- | Construct a set containing all elements from a list of sets.
+unions :: (Eq a, Hashable a) => [HashSet a] -> HashSet a
+unions = List.foldl' union empty
+{-# INLINE unions #-}
+
+-- | /O(1)/ Return 'True' if this set is empty, 'False' otherwise.
+null :: HashSet a -> Bool
+null = H.null . asMap
+{-# INLINE null #-}
+
+-- | /O(n)/ Return the number of elements in this set.
+size :: HashSet a -> Int
+size = H.size . asMap
+{-# INLINE size #-}
+
+-- | /O(log n)/ Return 'True' if the given value is present in this
+-- set, 'False' otherwise.
+member :: (Eq a, Hashable a) => a -> HashSet a -> Bool
+member a s = case H.lookup a (asMap s) of
+ Just _ -> True
+ _ -> False
+{-# INLINABLE member #-}
+
+-- | /O(log n)/ Add the specified value to this set.
+insert :: (Eq a, Hashable a) => a -> HashSet a -> HashSet a
+insert a = HashSet . H.insert a () . asMap
+{-# INLINABLE insert #-}
+
+-- | /O(log n)/ Remove the specified value from this set if
+-- present.
+delete :: (Eq a, Hashable a) => a -> HashSet a -> HashSet a
+delete a = HashSet . H.delete a . asMap
+{-# INLINABLE delete #-}
+
+-- | /O(n)/ Transform this set by applying a function to every value.
+-- The resulting set may be smaller than the source.
+map :: (Hashable b, Eq b) => (a -> b) -> HashSet a -> HashSet b
+map f = fromList . List.map f . toList
+{-# INLINE map #-}
+
+-- | /O(n)/ Difference of two sets. Return elements of the first set
+-- not existing in the second.
+difference :: (Eq a, Hashable a) => HashSet a -> HashSet a -> HashSet a
+difference (HashSet a) (HashSet b) = HashSet (H.difference a b)
+{-# INLINABLE difference #-}
+
+-- | /O(n)/ Intersection of two sets. Return elements present in both
+-- the first set and the second.
+intersection :: (Eq a, Hashable a) => HashSet a -> HashSet a -> HashSet a
+intersection (HashSet a) (HashSet b) = HashSet (H.intersection a b)
+{-# INLINABLE intersection #-}
+
+-- | /O(n)/ Reduce this set by applying a binary operator to all
+-- elements, using the given starting value (typically the
+-- left-identity of the operator). Each application of the operator
+-- is evaluated before before using the result in the next
+-- application. This function is strict in the starting value.
+foldl' :: (a -> b -> a) -> a -> HashSet b -> a
+foldl' f z0 = H.foldlWithKey' g z0 . asMap
+ where g z k _ = f z k
+{-# INLINE foldl' #-}
+
+-- | /O(n)/ Reduce this set by applying a binary operator to all
+-- elements, using the given starting value (typically the
+-- right-identity of the operator).
+foldr :: (b -> a -> a) -> a -> HashSet b -> a
+foldr f z0 = foldrWithKey g z0 . asMap
+ where g k _ z = f k z
+{-# INLINE foldr #-}
+
+-- | /O(n)/ Filter this set by retaining only elements satisfying a
+-- predicate.
+filter :: (a -> Bool) -> HashSet a -> HashSet a
+filter p = HashSet . H.filterWithKey q . asMap
+ where q k _ = p k
+{-# INLINE filter #-}
+
+-- | /O(n)/ Return a list of this set's elements. The list is
+-- produced lazily.
+toList :: HashSet a -> [a]
+toList t = build (\ c z -> foldrWithKey ((const .) c) z (asMap t))
+{-# INLINE toList #-}
+
+-- | /O(n*min(W, n))/ Construct a set from a list of elements.
+fromList :: (Eq a, Hashable a) => [a] -> HashSet a
+fromList = HashSet . List.foldl' (\ m k -> H.insert k () m) H.empty
+{-# INLINE fromList #-}
+
+#if __GLASGOW_HASKELL__ >= 708
+instance (Eq a, Hashable a) => Exts.IsList (HashSet a) where
+ type Item (HashSet a) = a
+ fromList = fromList
+ toList = toList
+#endif
--- /dev/null
+Copyright (c) 2010, Johan Tibell
+
+All rights reserved.
+
+Redistribution and use in source and binary forms, with or without
+modification, are permitted provided that the following conditions are met:
+
+ * Redistributions of source code must retain the above copyright
+ notice, this list of conditions and the following disclaimer.
+
+ * Redistributions in binary form must reproduce the above
+ copyright notice, this list of conditions and the following
+ disclaimer in the documentation and/or other materials provided
+ with the distribution.
+
+ * Neither the name of Johan Tibell nor the names of other
+ contributors may be used to endorse or promote products derived
+ from this software without specific prior written permission.
+
+THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
--- /dev/null
+import Distribution.Simple
+main = defaultMain
--- /dev/null
+{-# LANGUAGE CPP, DeriveGeneric, GADTs, PackageImports, RecordWildCards #-}
+
+module Main where
+
+import Control.DeepSeq
+import Control.DeepSeq.Generics (genericRnf)
+import Criterion.Main (bench, bgroup, defaultMain, env, nf, whnf)
+import Data.Bits ((.&.))
+import Data.Hashable (Hashable)
+import qualified Data.ByteString as BS
+import qualified "hashmap" Data.HashMap as IHM
+import qualified Data.HashMap.Strict as HM
+import qualified Data.IntMap as IM
+import qualified Data.Map as M
+import Data.List (foldl')
+import Data.Maybe (fromMaybe)
+import GHC.Generics (Generic)
+import Prelude hiding (lookup)
+
+import qualified Util.ByteString as UBS
+import qualified Util.Int as UI
+import qualified Util.String as US
+
+#if !MIN_VERSION_bytestring(0,10,0)
+instance NFData BS.ByteString
+#endif
+
+data B where
+ B :: NFData a => a -> B
+
+instance NFData B where
+ rnf (B b) = rnf b
+
+-- TODO: This a stopgap measure to keep the benchmark work with
+-- Criterion 1.0.
+data Env = Env {
+ n :: !Int,
+
+ elems :: ![(String, Int)],
+ keys :: ![String],
+ elemsBS :: ![(BS.ByteString, Int)],
+ keysBS :: ![BS.ByteString],
+ elemsI :: ![(Int, Int)],
+ keysI :: ![Int],
+ elemsI2 :: ![(Int, Int)], -- for union
+
+ keys' :: ![String],
+ keysBS' :: ![BS.ByteString],
+ keysI' :: ![Int],
+
+ keysDup :: ![String],
+ keysDupBS :: ![BS.ByteString],
+ keysDupI :: ![Int],
+ elemsDup :: ![(String, Int)],
+ elemsDupBS :: ![(BS.ByteString, Int)],
+ elemsDupI :: ![(Int, Int)],
+
+ hm :: !(HM.HashMap String Int),
+ hmbs :: !(HM.HashMap BS.ByteString Int),
+ hmi :: !(HM.HashMap Int Int),
+ hmi2 :: !(HM.HashMap Int Int),
+ m :: !(M.Map String Int),
+ mbs :: !(M.Map BS.ByteString Int),
+ im :: !(IM.IntMap Int),
+ ihm :: !(IHM.Map String Int),
+ ihmbs :: !(IHM.Map BS.ByteString Int)
+ } deriving Generic
+
+instance NFData Env where rnf = genericRnf
+
+setupEnv :: IO Env
+setupEnv = do
+ let n = 2^(12 :: Int)
+
+ elems = zip keys [1..n]
+ keys = US.rnd 8 n
+ elemsBS = zip keysBS [1..n]
+ keysBS = UBS.rnd 8 n
+ elemsI = zip keysI [1..n]
+ keysI = UI.rnd (n+n) n
+ elemsI2 = zip [n `div` 2..n + (n `div` 2)] [1..n] -- for union
+
+ keys' = US.rnd' 8 n
+ keysBS' = UBS.rnd' 8 n
+ keysI' = UI.rnd' (n+n) n
+
+ keysDup = US.rnd 2 n
+ keysDupBS = UBS.rnd 2 n
+ keysDupI = UI.rnd (n`div`4) n
+ elemsDup = zip keysDup [1..n]
+ elemsDupBS = zip keysDupBS [1..n]
+ elemsDupI = zip keysDupI [1..n]
+
+ hm = HM.fromList elems
+ hmbs = HM.fromList elemsBS
+ hmi = HM.fromList elemsI
+ hmi2 = HM.fromList elemsI2
+ m = M.fromList elems
+ mbs = M.fromList elemsBS
+ im = IM.fromList elemsI
+ ihm = IHM.fromList elems
+ ihmbs = IHM.fromList elemsBS
+ return Env{..}
+
+main :: IO ()
+main = do
+ defaultMain
+ [
+ env setupEnv $ \ ~(Env{..}) ->
+ -- * Comparison to other data structures
+ -- ** Map
+ bgroup "Map"
+ [ bgroup "lookup"
+ [ bench "String" $ whnf (lookupM keys) m
+ , bench "ByteString" $ whnf (lookupM keysBS) mbs
+ ]
+ , bgroup "lookup-miss"
+ [ bench "String" $ whnf (lookupM keys') m
+ , bench "ByteString" $ whnf (lookupM keysBS') mbs
+ ]
+ , bgroup "insert"
+ [ bench "String" $ whnf (insertM elems) M.empty
+ , bench "ByteStringString" $ whnf (insertM elemsBS) M.empty
+ ]
+ , bgroup "insert-dup"
+ [ bench "String" $ whnf (insertM elems) m
+ , bench "ByteStringString" $ whnf (insertM elemsBS) mbs
+ ]
+ , bgroup "delete"
+ [ bench "String" $ whnf (deleteM keys) m
+ , bench "ByteString" $ whnf (deleteM keysBS) mbs
+ ]
+ , bgroup "delete-miss"
+ [ bench "String" $ whnf (deleteM keys') m
+ , bench "ByteString" $ whnf (deleteM keysBS') mbs
+ ]
+ , bgroup "size"
+ [ bench "String" $ whnf M.size m
+ , bench "ByteString" $ whnf M.size mbs
+ ]
+ , bgroup "fromList"
+ [ bench "String" $ whnf M.fromList elems
+ , bench "ByteString" $ whnf M.fromList elemsBS
+ ]
+ ]
+
+ -- ** Map from the hashmap package
+ , env setupEnv $ \ ~(Env{..}) ->
+ bgroup "hashmap/Map"
+ [ bgroup "lookup"
+ [ bench "String" $ whnf (lookupIHM keys) ihm
+ , bench "ByteString" $ whnf (lookupIHM keysBS) ihmbs
+ ]
+ , bgroup "lookup-miss"
+ [ bench "String" $ whnf (lookupIHM keys') ihm
+ , bench "ByteString" $ whnf (lookupIHM keysBS') ihmbs
+ ]
+ , bgroup "insert"
+ [ bench "String" $ whnf (insertIHM elems) IHM.empty
+ , bench "ByteStringString" $ whnf (insertIHM elemsBS) IHM.empty
+ ]
+ , bgroup "insert-dup"
+ [ bench "String" $ whnf (insertIHM elems) ihm
+ , bench "ByteStringString" $ whnf (insertIHM elemsBS) ihmbs
+ ]
+ , bgroup "delete"
+ [ bench "String" $ whnf (deleteIHM keys) ihm
+ , bench "ByteString" $ whnf (deleteIHM keysBS) ihmbs
+ ]
+ , bgroup "delete-miss"
+ [ bench "String" $ whnf (deleteIHM keys') ihm
+ , bench "ByteString" $ whnf (deleteIHM keysBS') ihmbs
+ ]
+ , bgroup "size"
+ [ bench "String" $ whnf IHM.size ihm
+ , bench "ByteString" $ whnf IHM.size ihmbs
+ ]
+ , bgroup "fromList"
+ [ bench "String" $ whnf IHM.fromList elems
+ , bench "ByteString" $ whnf IHM.fromList elemsBS
+ ]
+ ]
+
+ -- ** IntMap
+ , env setupEnv $ \ ~(Env{..}) ->
+ bgroup "IntMap"
+ [ bench "lookup" $ whnf (lookupIM keysI) im
+ , bench "lookup-miss" $ whnf (lookupIM keysI') im
+ , bench "insert" $ whnf (insertIM elemsI) IM.empty
+ , bench "insert-dup" $ whnf (insertIM elemsI) im
+ , bench "delete" $ whnf (deleteIM keysI) im
+ , bench "delete-miss" $ whnf (deleteIM keysI') im
+ , bench "size" $ whnf IM.size im
+ , bench "fromList" $ whnf IM.fromList elemsI
+ ]
+
+ , env setupEnv $ \ ~(Env{..}) ->
+ bgroup "HashMap"
+ [ -- * Basic interface
+ bgroup "lookup"
+ [ bench "String" $ whnf (lookup keys) hm
+ , bench "ByteString" $ whnf (lookup keysBS) hmbs
+ , bench "Int" $ whnf (lookup keysI) hmi
+ ]
+ , bgroup "lookup-miss"
+ [ bench "String" $ whnf (lookup keys') hm
+ , bench "ByteString" $ whnf (lookup keysBS') hmbs
+ , bench "Int" $ whnf (lookup keysI') hmi
+ ]
+ , bgroup "insert"
+ [ bench "String" $ whnf (insert elems) HM.empty
+ , bench "ByteString" $ whnf (insert elemsBS) HM.empty
+ , bench "Int" $ whnf (insert elemsI) HM.empty
+ ]
+ , bgroup "insert-dup"
+ [ bench "String" $ whnf (insert elems) hm
+ , bench "ByteString" $ whnf (insert elemsBS) hmbs
+ , bench "Int" $ whnf (insert elemsI) hmi
+ ]
+ , bgroup "delete"
+ [ bench "String" $ whnf (delete keys) hm
+ , bench "ByteString" $ whnf (delete keysBS) hmbs
+ , bench "Int" $ whnf (delete keysI) hmi
+ ]
+ , bgroup "delete-miss"
+ [ bench "String" $ whnf (delete keys') hm
+ , bench "ByteString" $ whnf (delete keysBS') hmbs
+ , bench "Int" $ whnf (delete keysI') hmi
+ ]
+
+ -- Combine
+ , bench "union" $ whnf (HM.union hmi) hmi2
+
+ -- Transformations
+ , bench "map" $ whnf (HM.map (\ v -> v + 1)) hmi
+
+ -- * Difference and intersection
+ , bench "difference" $ whnf (HM.difference hmi) hmi2
+ , bench "intersection" $ whnf (HM.intersection hmi) hmi2
+
+ -- Folds
+ , bench "foldl'" $ whnf (HM.foldl' (+) 0) hmi
+ , bench "foldr" $ nf (HM.foldr (:) []) hmi
+
+ -- Filter
+ , bench "filter" $ whnf (HM.filter (\ v -> v .&. 1 == 0)) hmi
+ , bench "filterWithKey" $ whnf (HM.filterWithKey (\ k _ -> k .&. 1 == 0)) hmi
+
+ -- Size
+ , bgroup "size"
+ [ bench "String" $ whnf HM.size hm
+ , bench "ByteString" $ whnf HM.size hmbs
+ , bench "Int" $ whnf HM.size hmi
+ ]
+
+ -- fromList
+ , bgroup "fromList"
+ [ bgroup "long"
+ [ bench "String" $ whnf HM.fromList elems
+ , bench "ByteString" $ whnf HM.fromList elemsBS
+ , bench "Int" $ whnf HM.fromList elemsI
+ ]
+ , bgroup "short"
+ [ bench "String" $ whnf HM.fromList elemsDup
+ , bench "ByteString" $ whnf HM.fromList elemsDupBS
+ , bench "Int" $ whnf HM.fromList elemsDupI
+ ]
+ ]
+ -- fromListWith
+ , bgroup "fromListWith"
+ [ bgroup "long"
+ [ bench "String" $ whnf (HM.fromListWith (+)) elems
+ , bench "ByteString" $ whnf (HM.fromListWith (+)) elemsBS
+ , bench "Int" $ whnf (HM.fromListWith (+)) elemsI
+ ]
+ , bgroup "short"
+ [ bench "String" $ whnf (HM.fromListWith (+)) elemsDup
+ , bench "ByteString" $ whnf (HM.fromListWith (+)) elemsDupBS
+ , bench "Int" $ whnf (HM.fromListWith (+)) elemsDupI
+ ]
+ ]
+ ]
+ ]
+
+------------------------------------------------------------------------
+-- * HashMap
+
+lookup :: (Eq k, Hashable k) => [k] -> HM.HashMap k Int -> Int
+lookup xs m = foldl' (\z k -> fromMaybe z (HM.lookup k m)) 0 xs
+{-# SPECIALIZE lookup :: [Int] -> HM.HashMap Int Int -> Int #-}
+{-# SPECIALIZE lookup :: [String] -> HM.HashMap String Int -> Int #-}
+{-# SPECIALIZE lookup :: [BS.ByteString] -> HM.HashMap BS.ByteString Int
+ -> Int #-}
+
+insert :: (Eq k, Hashable k) => [(k, Int)] -> HM.HashMap k Int
+ -> HM.HashMap k Int
+insert xs m0 = foldl' (\m (k, v) -> HM.insert k v m) m0 xs
+{-# SPECIALIZE insert :: [(Int, Int)] -> HM.HashMap Int Int
+ -> HM.HashMap Int Int #-}
+{-# SPECIALIZE insert :: [(String, Int)] -> HM.HashMap String Int
+ -> HM.HashMap String Int #-}
+{-# SPECIALIZE insert :: [(BS.ByteString, Int)] -> HM.HashMap BS.ByteString Int
+ -> HM.HashMap BS.ByteString Int #-}
+
+delete :: (Eq k, Hashable k) => [k] -> HM.HashMap k Int -> HM.HashMap k Int
+delete xs m0 = foldl' (\m k -> HM.delete k m) m0 xs
+{-# SPECIALIZE delete :: [Int] -> HM.HashMap Int Int -> HM.HashMap Int Int #-}
+{-# SPECIALIZE delete :: [String] -> HM.HashMap String Int
+ -> HM.HashMap String Int #-}
+{-# SPECIALIZE delete :: [BS.ByteString] -> HM.HashMap BS.ByteString Int
+ -> HM.HashMap BS.ByteString Int #-}
+
+------------------------------------------------------------------------
+-- * Map
+
+lookupM :: Ord k => [k] -> M.Map k Int -> Int
+lookupM xs m = foldl' (\z k -> fromMaybe z (M.lookup k m)) 0 xs
+{-# SPECIALIZE lookupM :: [String] -> M.Map String Int -> Int #-}
+{-# SPECIALIZE lookupM :: [BS.ByteString] -> M.Map BS.ByteString Int -> Int #-}
+
+insertM :: Ord k => [(k, Int)] -> M.Map k Int -> M.Map k Int
+insertM xs m0 = foldl' (\m (k, v) -> M.insert k v m) m0 xs
+{-# SPECIALIZE insertM :: [(String, Int)] -> M.Map String Int
+ -> M.Map String Int #-}
+{-# SPECIALIZE insertM :: [(BS.ByteString, Int)] -> M.Map BS.ByteString Int
+ -> M.Map BS.ByteString Int #-}
+
+deleteM :: Ord k => [k] -> M.Map k Int -> M.Map k Int
+deleteM xs m0 = foldl' (\m k -> M.delete k m) m0 xs
+{-# SPECIALIZE deleteM :: [String] -> M.Map String Int -> M.Map String Int #-}
+{-# SPECIALIZE deleteM :: [BS.ByteString] -> M.Map BS.ByteString Int
+ -> M.Map BS.ByteString Int #-}
+
+------------------------------------------------------------------------
+-- * Map from the hashmap package
+
+lookupIHM :: (Eq k, Hashable k, Ord k) => [k] -> IHM.Map k Int -> Int
+lookupIHM xs m = foldl' (\z k -> fromMaybe z (IHM.lookup k m)) 0 xs
+{-# SPECIALIZE lookupIHM :: [String] -> IHM.Map String Int -> Int #-}
+{-# SPECIALIZE lookupIHM :: [BS.ByteString] -> IHM.Map BS.ByteString Int
+ -> Int #-}
+
+insertIHM :: (Eq k, Hashable k, Ord k) => [(k, Int)] -> IHM.Map k Int
+ -> IHM.Map k Int
+insertIHM xs m0 = foldl' (\m (k, v) -> IHM.insert k v m) m0 xs
+{-# SPECIALIZE insertIHM :: [(String, Int)] -> IHM.Map String Int
+ -> IHM.Map String Int #-}
+{-# SPECIALIZE insertIHM :: [(BS.ByteString, Int)] -> IHM.Map BS.ByteString Int
+ -> IHM.Map BS.ByteString Int #-}
+
+deleteIHM :: (Eq k, Hashable k, Ord k) => [k] -> IHM.Map k Int -> IHM.Map k Int
+deleteIHM xs m0 = foldl' (\m k -> IHM.delete k m) m0 xs
+{-# SPECIALIZE deleteIHM :: [String] -> IHM.Map String Int
+ -> IHM.Map String Int #-}
+{-# SPECIALIZE deleteIHM :: [BS.ByteString] -> IHM.Map BS.ByteString Int
+ -> IHM.Map BS.ByteString Int #-}
+
+------------------------------------------------------------------------
+-- * IntMap
+
+lookupIM :: [Int] -> IM.IntMap Int -> Int
+lookupIM xs m = foldl' (\z k -> fromMaybe z (IM.lookup k m)) 0 xs
+
+insertIM :: [(Int, Int)] -> IM.IntMap Int -> IM.IntMap Int
+insertIM xs m0 = foldl' (\m (k, v) -> IM.insert k v m) m0 xs
+
+deleteIM :: [Int] -> IM.IntMap Int -> IM.IntMap Int
+deleteIM xs m0 = foldl' (\m k -> IM.delete k m) m0 xs
--- /dev/null
+-- | Benchmarking utilities. For example, functions for generating
+-- random 'ByteString's.
+module Util.ByteString where
+
+import qualified Data.ByteString as S
+import qualified Data.ByteString.Char8 as C
+
+import Util.String as String
+
+-- | Generate a number of fixed length 'ByteString's where the content
+-- of the strings are letters in ascending order.
+asc :: Int -- ^ Length of each string
+ -> Int -- ^ Number of strings
+ -> [S.ByteString]
+asc strlen num = map C.pack $ String.asc strlen num
+
+-- | Generate a number of fixed length 'ByteString's where the content
+-- of the strings are letters in random order.
+rnd :: Int -- ^ Length of each string
+ -> Int -- ^ Number of strings
+ -> [S.ByteString]
+rnd strlen num = map C.pack $ String.rnd strlen num
+
+-- | Generate a number of fixed length 'ByteString's where the content
+-- of the strings are letters in random order, different from @rnd@.
+rnd' :: Int -- ^ Length of each string
+ -> Int -- ^ Number of strings
+ -> [S.ByteString]
+rnd' strlen num = map C.pack $ String.rnd' strlen num
--- /dev/null
+-- | Benchmarking utilities. For example, functions for generating
+-- random integers.
+module Util.Int where
+
+import System.Random (mkStdGen, randomRs)
+
+-- | Generate a number of uniform random integers in the interval
+-- @[0..upper]@.
+rnd :: Int -- ^ Upper bound (inclusive)
+ -> Int -- ^ Number of integers
+ -> [Int]
+rnd upper num = take num $ randomRs (0, upper) $ mkStdGen 1234
+
+-- | Generate a number of uniform random integers in the interval
+-- @[0..upper]@ different from @rnd@.
+rnd' :: Int -- ^ Upper bound (inclusive)
+ -> Int -- ^ Number of integers
+ -> [Int]
+rnd' upper num = take num $ randomRs (0, upper) $ mkStdGen 5678
--- /dev/null
+-- | Benchmarking utilities. For example, functions for generating
+-- random strings.
+module Util.String where
+
+import System.Random (mkStdGen, randomRs)
+
+-- | Generate a number of fixed length strings where the content of
+-- the strings are letters in ascending order.
+asc :: Int -- ^ Length of each string
+ -> Int -- ^ Number of strings
+ -> [String]
+asc strlen num = take num $ iterate (snd . inc) $ replicate strlen 'a'
+ where inc [] = (True, [])
+ inc (c:cs) = case inc cs of (True, cs') | c == 'z' -> (True, 'a' : cs')
+ | otherwise -> (False, succ c : cs')
+ (False, cs') -> (False, c : cs')
+
+-- | Generate a number of fixed length strings where the content of
+-- the strings are letters in random order.
+rnd :: Int -- ^ Length of each string
+ -> Int -- ^ Number of strings
+ -> [String]
+rnd strlen num = take num $ split $ randomRs ('a', 'z') $ mkStdGen 1234
+ where
+ split cs = case splitAt strlen cs of (str, cs') -> str : split cs'
+
+-- | Generate a number of fixed length strings where the content of
+-- the strings are letters in random order, different from rnd
+rnd' :: Int -- ^ Length of each string
+ -> Int -- ^ Number of strings
+ -> [String]
+rnd' strlen num = take num $ split $ randomRs ('a', 'z') $ mkStdGen 5678
+ where
+ split cs = case splitAt strlen cs of (str, cs') -> str : split cs'
--- /dev/null
+{-# LANGUAGE CPP, GeneralizedNewtypeDeriving #-}
+
+-- | Tests for the 'Data.HashMap.Lazy' module. We test functions by
+-- comparing them to a simpler model, an association list.
+
+module Main (main) where
+
+import Control.Monad ( guard )
+import qualified Data.Foldable as Foldable
+import Data.Function (on)
+import Data.Hashable (Hashable(hashWithSalt))
+import qualified Data.List as L
+import Data.Ord (comparing)
+#if defined(STRICT)
+import qualified Data.HashMap.Strict as HM
+#else
+import qualified Data.HashMap.Lazy as HM
+#endif
+import qualified Data.Map as M
+import Test.QuickCheck (Arbitrary, Property, (==>), (===))
+import Test.Framework (Test, defaultMain, testGroup)
+import Test.Framework.Providers.QuickCheck2 (testProperty)
+
+-- Key type that generates more hash collisions.
+newtype Key = K { unK :: Int }
+ deriving (Arbitrary, Eq, Ord, Read, Show)
+
+instance Hashable Key where
+ hashWithSalt salt k = hashWithSalt salt (unK k) `mod` 20
+
+------------------------------------------------------------------------
+-- * Properties
+
+------------------------------------------------------------------------
+-- ** Instances
+
+pEq :: [(Key, Int)] -> [(Key, Int)] -> Bool
+pEq xs = (M.fromList xs ==) `eq` (HM.fromList xs ==)
+
+pNeq :: [(Key, Int)] -> [(Key, Int)] -> Bool
+pNeq xs = (M.fromList xs /=) `eq` (HM.fromList xs /=)
+
+-- We cannot compare to `Data.Map` as ordering is different.
+pOrd1 :: [(Key, Int)] -> Bool
+pOrd1 xs = compare x x == EQ
+ where
+ x = HM.fromList xs
+
+pOrd2 :: [(Key, Int)] -> [(Key, Int)] -> [(Key, Int)] -> Bool
+pOrd2 xs ys zs = case (compare x y, compare y z) of
+ (EQ, o) -> compare x z == o
+ (o, EQ) -> compare x z == o
+ (LT, LT) -> compare x z == LT
+ (GT, GT) -> compare x z == GT
+ (LT, GT) -> True -- ys greater than xs and zs.
+ (GT, LT) -> True
+ where
+ x = HM.fromList xs
+ y = HM.fromList ys
+ z = HM.fromList zs
+
+pOrd3 :: [(Key, Int)] -> [(Key, Int)] -> Bool
+pOrd3 xs ys = case (compare x y, compare y x) of
+ (EQ, EQ) -> True
+ (LT, GT) -> True
+ (GT, LT) -> True
+ _ -> False
+ where
+ x = HM.fromList xs
+ y = HM.fromList ys
+
+pOrdEq :: [(Key, Int)] -> [(Key, Int)] -> Bool
+pOrdEq xs ys = case (compare x y, x == y) of
+ (EQ, True) -> True
+ (LT, False) -> True
+ (GT, False) -> True
+ _ -> False
+ where
+ x = HM.fromList xs
+ y = HM.fromList ys
+
+pReadShow :: [(Key, Int)] -> Bool
+pReadShow xs = M.fromList xs == read (show (M.fromList xs))
+
+pFunctor :: [(Key, Int)] -> Bool
+pFunctor = fmap (+ 1) `eq_` fmap (+ 1)
+
+pFoldable :: [(Int, Int)] -> Bool
+pFoldable = (L.sort . Foldable.foldr (:) []) `eq`
+ (L.sort . Foldable.foldr (:) [])
+
+pHashable :: [(Key, Int)] -> [Int] -> Int -> Property
+pHashable xs is salt =
+ x == y ==> hashWithSalt salt x === hashWithSalt salt y
+ where
+ xs' = L.nubBy (\(k,_) (k',_) -> k == k') xs
+ ys = shuffle is xs'
+ x = HM.fromList xs'
+ y = HM.fromList ys
+ -- Shuffle the list using indexes in the second
+ shuffle :: [Int] -> [a] -> [a]
+ shuffle idxs = L.map snd
+ . L.sortBy (comparing fst)
+ . L.zip (idxs ++ [L.maximum (0:is) + 1 ..])
+
+------------------------------------------------------------------------
+-- ** Basic interface
+
+pSize :: [(Key, Int)] -> Bool
+pSize = M.size `eq` HM.size
+
+pMember :: Key -> [(Key, Int)] -> Bool
+pMember k = M.member k `eq` HM.member k
+
+pLookup :: Key -> [(Key, Int)] -> Bool
+pLookup k = M.lookup k `eq` HM.lookup k
+
+pInsert :: Key -> Int -> [(Key, Int)] -> Bool
+pInsert k v = M.insert k v `eq_` HM.insert k v
+
+pDelete :: Key -> [(Key, Int)] -> Bool
+pDelete k = M.delete k `eq_` HM.delete k
+
+newtype AlwaysCollide = AC Int
+ deriving (Arbitrary, Eq, Ord, Show)
+
+instance Hashable AlwaysCollide where
+ hashWithSalt _ _ = 1
+
+-- White-box test that tests the case of deleting one of two keys from
+-- a map, where the keys' hash values collide.
+pDeleteCollision :: AlwaysCollide -> AlwaysCollide -> AlwaysCollide -> Int
+ -> Property
+pDeleteCollision k1 k2 k3 idx = (k1 /= k2) && (k2 /= k3) && (k1 /= k3) ==>
+ HM.member toKeep $ HM.delete toDelete $
+ HM.fromList [(k1, 1 :: Int), (k2, 2), (k3, 3)]
+ where
+ which = idx `mod` 3
+ toDelete
+ | which == 0 = k1
+ | which == 1 = k2
+ | which == 2 = k3
+ | otherwise = error "Impossible"
+ toKeep
+ | which == 0 = k2
+ | which == 1 = k3
+ | which == 2 = k1
+ | otherwise = error "Impossible"
+
+pInsertWith :: Key -> [(Key, Int)] -> Bool
+pInsertWith k = M.insertWith (+) k 1 `eq_` HM.insertWith (+) k 1
+
+pAdjust :: Key -> [(Key, Int)] -> Bool
+pAdjust k = M.adjust succ k `eq_` HM.adjust succ k
+
+pUpdateAdjust :: Key -> [(Key, Int)] -> Bool
+pUpdateAdjust k = M.update (Just . succ) k `eq_` HM.update (Just . succ) k
+
+pUpdateDelete :: Key -> [(Key, Int)] -> Bool
+pUpdateDelete k = M.update (const Nothing) k `eq_` HM.update (const Nothing) k
+
+pAlterAdjust :: Key -> [(Key, Int)] -> Bool
+pAlterAdjust k = M.alter (fmap succ) k `eq_` HM.alter (fmap succ) k
+
+pAlterInsert :: Key -> [(Key, Int)] -> Bool
+pAlterInsert k = M.alter (const $ Just 3) k `eq_` HM.alter (const $ Just 3) k
+
+pAlterDelete :: Key -> [(Key, Int)] -> Bool
+pAlterDelete k = M.alter (const Nothing) k `eq_` HM.alter (const Nothing) k
+
+------------------------------------------------------------------------
+-- ** Combine
+
+pUnion :: [(Key, Int)] -> [(Key, Int)] -> Bool
+pUnion xs ys = M.union (M.fromList xs) `eq_` HM.union (HM.fromList xs) $ ys
+
+pUnionWith :: [(Key, Int)] -> [(Key, Int)] -> Bool
+pUnionWith xs ys = M.unionWith (-) (M.fromList xs) `eq_`
+ HM.unionWith (-) (HM.fromList xs) $ ys
+
+pUnionWithKey :: [(Key, Int)] -> [(Key, Int)] -> Bool
+pUnionWithKey xs ys = M.unionWithKey go (M.fromList xs) `eq_`
+ HM.unionWithKey go (HM.fromList xs) $ ys
+ where
+ go :: Key -> Int -> Int -> Int
+ go (K k) i1 i2 = k - i1 + i2
+
+pUnions :: [[(Key, Int)]] -> Bool
+pUnions xss = M.toAscList (M.unions (map M.fromList xss)) ==
+ toAscList (HM.unions (map HM.fromList xss))
+
+------------------------------------------------------------------------
+-- ** Transformations
+
+pMap :: [(Key, Int)] -> Bool
+pMap = M.map (+ 1) `eq_` HM.map (+ 1)
+
+------------------------------------------------------------------------
+-- ** Difference and intersection
+
+pDifference :: [(Key, Int)] -> [(Key, Int)] -> Bool
+pDifference xs ys = M.difference (M.fromList xs) `eq_`
+ HM.difference (HM.fromList xs) $ ys
+
+pDifferenceWith :: [(Key, Int)] -> [(Key, Int)] -> Bool
+pDifferenceWith xs ys = M.differenceWith f (M.fromList xs) `eq_`
+ HM.differenceWith f (HM.fromList xs) $ ys
+ where
+ f x y = if x == 0 then Nothing else Just (x - y)
+
+pIntersection :: [(Key, Int)] -> [(Key, Int)] -> Bool
+pIntersection xs ys = M.intersection (M.fromList xs) `eq_`
+ HM.intersection (HM.fromList xs) $ ys
+
+pIntersectionWith :: [(Key, Int)] -> [(Key, Int)] -> Bool
+pIntersectionWith xs ys = M.intersectionWith (-) (M.fromList xs) `eq_`
+ HM.intersectionWith (-) (HM.fromList xs) $ ys
+
+pIntersectionWithKey :: [(Key, Int)] -> [(Key, Int)] -> Bool
+pIntersectionWithKey xs ys = M.intersectionWithKey go (M.fromList xs) `eq_`
+ HM.intersectionWithKey go (HM.fromList xs) $ ys
+ where
+ go :: Key -> Int -> Int -> Int
+ go (K k) i1 i2 = k - i1 - i2
+
+------------------------------------------------------------------------
+-- ** Folds
+
+pFoldr :: [(Int, Int)] -> Bool
+pFoldr = (L.sort . M.fold (:) []) `eq` (L.sort . HM.foldr (:) [])
+
+pFoldrWithKey :: [(Int, Int)] -> Bool
+pFoldrWithKey = (sortByKey . M.foldrWithKey f []) `eq`
+ (sortByKey . HM.foldrWithKey f [])
+ where f k v z = (k, v) : z
+
+pFoldl' :: Int -> [(Int, Int)] -> Bool
+pFoldl' z0 = foldlWithKey'Map (\ z _ v -> v + z) z0 `eq` HM.foldl' (+) z0
+
+foldlWithKey'Map :: (b -> k -> a -> b) -> b -> M.Map k a -> b
+#if MIN_VERSION_containers(4,2,0)
+foldlWithKey'Map = M.foldlWithKey'
+#else
+-- Equivalent except for bottoms, which we don't test.
+foldlWithKey'Map = M.foldlWithKey
+#endif
+
+------------------------------------------------------------------------
+-- ** Filter
+
+pMapMaybeWithKey :: [(Key, Int)] -> Bool
+pMapMaybeWithKey = M.mapMaybeWithKey f `eq_` HM.mapMaybeWithKey f
+ where f k v = guard (odd (unK k + v)) >> Just (v + 1)
+
+pMapMaybe :: [(Key, Int)] -> Bool
+pMapMaybe = M.mapMaybe f `eq_` HM.mapMaybe f
+ where f v = guard (odd v) >> Just (v + 1)
+
+pFilter :: [(Key, Int)] -> Bool
+pFilter = M.filter odd `eq_` HM.filter odd
+
+pFilterWithKey :: [(Key, Int)] -> Bool
+pFilterWithKey = M.filterWithKey p `eq_` HM.filterWithKey p
+ where p k v = odd (unK k + v)
+
+------------------------------------------------------------------------
+-- ** Conversions
+
+-- 'eq_' already calls fromList.
+pFromList :: [(Key, Int)] -> Bool
+pFromList = id `eq_` id
+
+pFromListWith :: [(Key, Int)] -> Bool
+pFromListWith kvs = (M.toAscList $ M.fromListWith (+) kvs) ==
+ (toAscList $ HM.fromListWith (+) kvs)
+
+pToList :: [(Key, Int)] -> Bool
+pToList = M.toAscList `eq` toAscList
+
+pElems :: [(Key, Int)] -> Bool
+pElems = (L.sort . M.elems) `eq` (L.sort . HM.elems)
+
+pKeys :: [(Key, Int)] -> Bool
+pKeys = (L.sort . M.keys) `eq` (L.sort . HM.keys)
+
+------------------------------------------------------------------------
+-- * Test list
+
+tests :: [Test]
+tests =
+ [
+ -- Instances
+ testGroup "instances"
+ [ testProperty "==" pEq
+ , testProperty "/=" pNeq
+ , testProperty "compare reflexive" pOrd1
+ , testProperty "compare transitive" pOrd2
+ , testProperty "compare antisymmetric" pOrd3
+ , testProperty "Ord => Eq" pOrdEq
+ , testProperty "Read/Show" pReadShow
+ , testProperty "Functor" pFunctor
+ , testProperty "Foldable" pFoldable
+ , testProperty "Hashable" pHashable
+ ]
+ -- Basic interface
+ , testGroup "basic interface"
+ [ testProperty "size" pSize
+ , testProperty "member" pMember
+ , testProperty "lookup" pLookup
+ , testProperty "insert" pInsert
+ , testProperty "delete" pDelete
+ , testProperty "deleteCollision" pDeleteCollision
+ , testProperty "insertWith" pInsertWith
+ , testProperty "adjust" pAdjust
+ , testProperty "updateAdjust" pUpdateAdjust
+ , testProperty "updateDelete" pUpdateDelete
+ , testProperty "alterAdjust" pAlterAdjust
+ , testProperty "alterInsert" pAlterInsert
+ , testProperty "alterDelete" pAlterDelete
+ ]
+ -- Combine
+ , testProperty "union" pUnion
+ , testProperty "unionWith" pUnionWith
+ , testProperty "unionWithKey" pUnionWithKey
+ , testProperty "unions" pUnions
+ -- Transformations
+ , testProperty "map" pMap
+ -- Folds
+ , testGroup "folds"
+ [ testProperty "foldr" pFoldr
+ , testProperty "foldrWithKey" pFoldrWithKey
+ , testProperty "foldl'" pFoldl'
+ ]
+ , testGroup "difference and intersection"
+ [ testProperty "difference" pDifference
+ , testProperty "differenceWith" pDifferenceWith
+ , testProperty "intersection" pIntersection
+ , testProperty "intersectionWith" pIntersectionWith
+ , testProperty "intersectionWithKey" pIntersectionWithKey
+ ]
+ -- Filter
+ , testGroup "filter"
+ [ testProperty "filter" pFilter
+ , testProperty "filterWithKey" pFilterWithKey
+ , testProperty "mapMaybe" pMapMaybe
+ , testProperty "mapMaybeWithKey" pMapMaybeWithKey
+ ]
+ -- Conversions
+ , testGroup "conversions"
+ [ testProperty "elems" pElems
+ , testProperty "keys" pKeys
+ , testProperty "fromList" pFromList
+ , testProperty "fromListWith" pFromListWith
+ , testProperty "toList" pToList
+ ]
+ ]
+
+------------------------------------------------------------------------
+-- * Model
+
+type Model k v = M.Map k v
+
+-- | Check that a function operating on a 'HashMap' is equivalent to
+-- one operating on a 'Model'.
+eq :: (Eq a, Eq k, Hashable k, Ord k)
+ => (Model k v -> a) -- ^ Function that modifies a 'Model'
+ -> (HM.HashMap k v -> a) -- ^ Function that modified a 'HashMap' in the same
+ -- way
+ -> [(k, v)] -- ^ Initial content of the 'HashMap' and 'Model'
+ -> Bool -- ^ True if the functions are equivalent
+eq f g xs = g (HM.fromList xs) == f (M.fromList xs)
+
+eq_ :: (Eq k, Eq v, Hashable k, Ord k)
+ => (Model k v -> Model k v) -- ^ Function that modifies a 'Model'
+ -> (HM.HashMap k v -> HM.HashMap k v) -- ^ Function that modified a
+ -- 'HashMap' in the same way
+ -> [(k, v)] -- ^ Initial content of the 'HashMap'
+ -- and 'Model'
+ -> Bool -- ^ True if the functions are
+ -- equivalent
+eq_ f g = (M.toAscList . f) `eq` (toAscList . g)
+
+------------------------------------------------------------------------
+-- * Test harness
+
+main :: IO ()
+main = defaultMain tests
+
+------------------------------------------------------------------------
+-- * Helpers
+
+sortByKey :: Ord k => [(k, v)] -> [(k, v)]
+sortByKey = L.sortBy (compare `on` fst)
+
+toAscList :: Ord k => HM.HashMap k v -> [(k, v)]
+toAscList = L.sortBy (compare `on` fst) . HM.toList
--- /dev/null
+{-# LANGUAGE CPP, GeneralizedNewtypeDeriving #-}
+
+-- | Tests for the 'Data.HashSet' module. We test functions by
+-- comparing them to a simpler model, a list.
+
+module Main (main) where
+
+import qualified Data.Foldable as Foldable
+import Data.Hashable (Hashable(hashWithSalt))
+import qualified Data.List as L
+import qualified Data.HashSet as S
+import qualified Data.Set as Set
+import Data.Ord (comparing)
+import Test.QuickCheck (Arbitrary, Property, (==>), (===))
+import Test.Framework (Test, defaultMain, testGroup)
+import Test.Framework.Providers.QuickCheck2 (testProperty)
+
+-- Key type that generates more hash collisions.
+newtype Key = K { unK :: Int }
+ deriving (Arbitrary, Enum, Eq, Integral, Num, Ord, Read, Show, Real)
+
+instance Hashable Key where
+ hashWithSalt salt k = hashWithSalt salt (unK k) `mod` 20
+
+------------------------------------------------------------------------
+-- * Properties
+
+------------------------------------------------------------------------
+-- ** Instances
+
+pEq :: [Key] -> [Key] -> Bool
+pEq xs = (Set.fromList xs ==) `eq` (S.fromList xs ==)
+
+pNeq :: [Key] -> [Key] -> Bool
+pNeq xs = (Set.fromList xs /=) `eq` (S.fromList xs /=)
+
+-- We cannot compare to `Data.Map` as ordering is different.
+pOrd1 :: [Key] -> Bool
+pOrd1 xs = compare x x == EQ
+ where
+ x = S.fromList xs
+
+pOrd2 :: [Key] -> [Key] -> [Key] -> Bool
+pOrd2 xs ys zs = case (compare x y, compare y z) of
+ (EQ, o) -> compare x z == o
+ (o, EQ) -> compare x z == o
+ (LT, LT) -> compare x z == LT
+ (GT, GT) -> compare x z == GT
+ (LT, GT) -> True -- ys greater than xs and zs.
+ (GT, LT) -> True
+ where
+ x = S.fromList xs
+ y = S.fromList ys
+ z = S.fromList zs
+
+pOrd3 :: [Key] -> [Key] -> Bool
+pOrd3 xs ys = case (compare x y, compare y x) of
+ (EQ, EQ) -> True
+ (LT, GT) -> True
+ (GT, LT) -> True
+ _ -> False
+ where
+ x = S.fromList xs
+ y = S.fromList ys
+
+pOrdEq :: [Key] -> [Key] -> Bool
+pOrdEq xs ys = case (compare x y, x == y) of
+ (EQ, True) -> True
+ (LT, False) -> True
+ (GT, False) -> True
+ _ -> False
+ where
+ x = S.fromList xs
+ y = S.fromList ys
+
+pReadShow :: [Key] -> Bool
+pReadShow xs = Set.fromList xs == read (show (Set.fromList xs))
+
+pFoldable :: [Int] -> Bool
+pFoldable = (L.sort . Foldable.foldr (:) []) `eq`
+ (L.sort . Foldable.foldr (:) [])
+
+pPermutationEq :: [Key] -> [Int] -> Bool
+pPermutationEq xs is = S.fromList xs == S.fromList ys
+ where
+ ys = shuffle is xs
+ shuffle idxs = L.map snd
+ . L.sortBy (comparing fst)
+ . L.zip (idxs ++ [L.maximum (0:is) + 1 ..])
+
+pHashable :: [Key] -> [Int] -> Int -> Property
+pHashable xs is salt =
+ x == y ==> hashWithSalt salt x === hashWithSalt salt y
+ where
+ xs' = L.nub xs
+ ys = shuffle is xs'
+ x = S.fromList xs'
+ y = S.fromList ys
+ shuffle idxs = L.map snd
+ . L.sortBy (comparing fst)
+ . L.zip (idxs ++ [L.maximum (0:is) + 1 ..])
+
+------------------------------------------------------------------------
+-- ** Basic interface
+
+pSize :: [Key] -> Bool
+pSize = Set.size `eq` S.size
+
+pMember :: Key -> [Key] -> Bool
+pMember k = Set.member k `eq` S.member k
+
+pInsert :: Key -> [Key] -> Bool
+pInsert a = Set.insert a `eq_` S.insert a
+
+pDelete :: Key -> [Key] -> Bool
+pDelete a = Set.delete a `eq_` S.delete a
+
+------------------------------------------------------------------------
+-- ** Combine
+
+pUnion :: [Key] -> [Key] -> Bool
+pUnion xs ys = Set.union (Set.fromList xs) `eq_`
+ S.union (S.fromList xs) $ ys
+
+------------------------------------------------------------------------
+-- ** Transformations
+
+pMap :: [Key] -> Bool
+pMap = Set.map (+ 1) `eq_` S.map (+ 1)
+
+------------------------------------------------------------------------
+-- ** Folds
+
+pFoldr :: [Int] -> Bool
+pFoldr = (L.sort . foldrSet (:) []) `eq`
+ (L.sort . S.foldr (:) [])
+
+foldrSet :: (a -> b -> b) -> b -> Set.Set a -> b
+#if MIN_VERSION_containers(0,4,2)
+foldrSet = Set.foldr
+#else
+foldrSet = Foldable.foldr
+#endif
+
+pFoldl' :: Int -> [Int] -> Bool
+pFoldl' z0 = foldl'Set (+) z0 `eq` S.foldl' (+) z0
+
+foldl'Set :: (a -> b -> a) -> a -> Set.Set b -> a
+#if MIN_VERSION_containers(0,4,2)
+foldl'Set = Set.foldl'
+#else
+foldl'Set = Foldable.foldl'
+#endif
+
+------------------------------------------------------------------------
+-- ** Filter
+
+pFilter :: [Key] -> Bool
+pFilter = Set.filter odd `eq_` S.filter odd
+
+------------------------------------------------------------------------
+-- ** Conversions
+
+pToList :: [Key] -> Bool
+pToList = Set.toAscList `eq` toAscList
+
+------------------------------------------------------------------------
+-- * Test list
+
+tests :: [Test]
+tests =
+ [
+ -- Instances
+ testGroup "instances"
+ [ testProperty "==" pEq
+ , testProperty "Permutation ==" pPermutationEq
+ , testProperty "/=" pNeq
+ , testProperty "compare reflexive" pOrd1
+ , testProperty "compare transitive" pOrd2
+ , testProperty "compare antisymmetric" pOrd3
+ , testProperty "Ord => Eq" pOrdEq
+ , testProperty "Read/Show" pReadShow
+ , testProperty "Foldable" pFoldable
+ , testProperty "Hashable" pHashable
+ ]
+ -- Basic interface
+ , testGroup "basic interface"
+ [ testProperty "size" pSize
+ , testProperty "member" pMember
+ , testProperty "insert" pInsert
+ , testProperty "delete" pDelete
+ ]
+ -- Combine
+ , testProperty "union" pUnion
+ -- Transformations
+ , testProperty "map" pMap
+ -- Folds
+ , testGroup "folds"
+ [ testProperty "foldr" pFoldr
+ , testProperty "foldl'" pFoldl'
+ ]
+ -- Filter
+ , testGroup "filter"
+ [ testProperty "filter" pFilter
+ ]
+ -- Conversions
+ , testGroup "conversions"
+ [ testProperty "toList" pToList
+ ]
+ ]
+
+------------------------------------------------------------------------
+-- * Model
+
+-- Invariant: the list is sorted in ascending order, by key.
+type Model a = Set.Set a
+
+-- | Check that a function operating on a 'HashMap' is equivalent to
+-- one operating on a 'Model'.
+eq :: (Eq a, Hashable a, Ord a, Eq b)
+ => (Model a -> b) -- ^ Function that modifies a 'Model' in the same
+ -- way
+ -> (S.HashSet a -> b) -- ^ Function that modified a 'HashSet'
+ -> [a] -- ^ Initial content of the 'HashSet' and 'Model'
+ -> Bool -- ^ True if the functions are equivalent
+eq f g xs = g (S.fromList xs) == f (Set.fromList xs)
+
+eq_ :: (Eq a, Hashable a, Ord a)
+ => (Model a -> Model a) -- ^ Function that modifies a 'Model'
+ -> (S.HashSet a -> S.HashSet a) -- ^ Function that modified a
+ -- 'HashSet' in the same way
+ -> [a] -- ^ Initial content of the 'HashSet'
+ -- and 'Model'
+ -> Bool -- ^ True if the functions are
+ -- equivalent
+eq_ f g = (Set.toAscList . f) `eq` (toAscList . g)
+
+------------------------------------------------------------------------
+-- * Test harness
+
+main :: IO ()
+main = defaultMain tests
+
+------------------------------------------------------------------------
+-- * Helpers
+
+toAscList :: Ord a => S.HashSet a -> [a]
+toAscList = L.sort . S.toList
--- /dev/null
+module Main (main) where
+
+import Data.HashMap.List
+import Data.List (nub, sort, sortBy)
+import Data.Ord (comparing)
+
+import Test.Framework (Test, defaultMain, testGroup)
+import Test.Framework.Providers.QuickCheck2 (testProperty)
+import Test.QuickCheck ((==>), (===), property, Property)
+
+tests :: Test
+tests = testGroup "Data.HashMap.List"
+ [ testProperty "isPermutationBy" pIsPermutation
+ , testProperty "isPermutationBy of different length" pIsPermutationDiffLength
+ , testProperty "pUnorderedCompare" pUnorderedCompare
+ , testGroup "modelUnorderedCompare"
+ [ testProperty "reflexive" modelUnorderedCompareRefl
+ , testProperty "anti-symmetric" modelUnorderedCompareAntiSymm
+ , testProperty "transitive" modelUnorderedCompareTrans
+ ]
+ ]
+
+pIsPermutation :: [Char] -> [Int] -> Bool
+pIsPermutation xs is = isPermutationBy (==) xs xs'
+ where
+ is' = nub is ++ [maximum (0:is) + 1 ..]
+ xs' = map fst . sortBy (comparing snd) $ zip xs is'
+
+pIsPermutationDiffLength :: [Int] -> [Int] -> Property
+pIsPermutationDiffLength xs ys =
+ length xs /= length ys ==> isPermutationBy (==) xs ys === False
+
+-- | Homogenous version of 'unorderedCompare'
+--
+-- *Compare smallest non-equal elements of the two lists*.
+modelUnorderedCompare :: Ord a => [a] -> [a] -> Ordering
+modelUnorderedCompare as bs = compare (sort as) (sort bs)
+
+modelUnorderedCompareRefl :: [Int] -> Property
+modelUnorderedCompareRefl xs = modelUnorderedCompare xs xs === EQ
+
+modelUnorderedCompareAntiSymm :: [Int] -> [Int] -> Property
+modelUnorderedCompareAntiSymm xs ys = case a of
+ EQ -> b === EQ
+ LT -> b === GT
+ GT -> b === LT
+ where
+ a = modelUnorderedCompare xs ys
+ b = modelUnorderedCompare ys xs
+
+modelUnorderedCompareTrans :: [Int] -> [Int] -> [Int] -> Property
+modelUnorderedCompareTrans xs ys zs =
+ case (modelUnorderedCompare xs ys, modelUnorderedCompare ys zs) of
+ (EQ, yz) -> xz === yz
+ (xy, EQ) -> xz === xy
+ (LT, LT) -> xz === LT
+ (GT, GT) -> xz === GT
+ (LT, GT) -> property True
+ (GT, LT) -> property True
+ where
+ xz = modelUnorderedCompare xs zs
+
+pUnorderedCompare :: [Int] -> [Int] -> Property
+pUnorderedCompare xs ys =
+ unorderedCompare compare xs ys === modelUnorderedCompare xs ys
+
+main :: IO ()
+main = defaultMain [tests]
--- /dev/null
+module Main where
+
+import Control.Applicative ((<$>))
+import Control.Monad (replicateM)
+import qualified Data.HashMap.Strict as HM
+import Data.List (delete)
+import Data.Maybe
+import Test.HUnit (Assertion, assert)
+import Test.Framework (Test, defaultMain)
+import Test.Framework.Providers.HUnit (testCase)
+import Test.Framework.Providers.QuickCheck2 (testProperty)
+import Test.QuickCheck
+
+issue32 :: Assertion
+issue32 = assert $ isJust $ HM.lookup 7 m'
+ where
+ ns = [0..16] :: [Int]
+ m = HM.fromList (zip ns (repeat []))
+ m' = HM.delete 10 m
+
+------------------------------------------------------------------------
+-- Issue #39
+
+-- First regression
+
+issue39 :: Assertion
+issue39 = assert $ hm1 == hm2
+ where
+ hm1 = HM.fromList ([a, b] `zip` [1, 1 :: Int ..])
+ hm2 = HM.fromList ([b, a] `zip` [1, 1 :: Int ..])
+ a = (1, -1) :: (Int, Int)
+ b = (-1, 1) :: (Int, Int)
+
+-- Second regression
+
+newtype Keys = Keys [Int]
+ deriving Show
+
+instance Arbitrary Keys where
+ arbitrary = sized $ \l -> do
+ pis <- replicateM (l+1) positiveInt
+ return (Keys $ prefixSum pis)
+
+ shrink (Keys ls) =
+ let l = length ls
+ in if l == 1
+ then []
+ else [ Keys (dropAt i ls) | i <- [0..l-1] ]
+
+positiveInt :: Gen Int
+positiveInt = (+1) . abs <$> arbitrary
+
+prefixSum :: [Int] -> [Int]
+prefixSum = loop 0
+ where
+ loop _ [] = []
+ loop prefix (l:ls) = let n = l + prefix
+ in n : loop n ls
+
+dropAt :: Int -> [a] -> [a]
+dropAt _ [] = []
+dropAt i (l:ls) | i == 0 = ls
+ | otherwise = l : dropAt (i-1) ls
+
+propEqAfterDelete :: Keys -> Bool
+propEqAfterDelete (Keys keys) =
+ let keyMap = mapFromKeys keys
+ k = head keys
+ in HM.delete k keyMap == mapFromKeys (delete k keys)
+
+mapFromKeys :: [Int] -> HM.HashMap Int ()
+mapFromKeys keys = HM.fromList (zip keys (repeat ()))
+
+------------------------------------------------------------------------
+-- * Test list
+
+tests :: [Test]
+tests =
+ [
+ testCase "issue32" issue32
+ , testCase "issue39a" issue39
+ , testProperty "issue39b" propEqAfterDelete
+ ]
+
+------------------------------------------------------------------------
+-- * Test harness
+
+main :: IO ()
+main = defaultMain tests
--- /dev/null
+{-# LANGUAGE CPP, FlexibleInstances, GeneralizedNewtypeDeriving #-}
+{-# OPTIONS_GHC -fno-warn-orphans #-}
+
+module Main (main) where
+
+import Data.Hashable (Hashable(hashWithSalt))
+import Test.ChasingBottoms.IsBottom
+import Test.Framework (Test, defaultMain, testGroup)
+import Test.Framework.Providers.QuickCheck2 (testProperty)
+import Test.QuickCheck (Arbitrary(arbitrary), Property, (===), (.&&.))
+import Test.QuickCheck.Function
+import Test.QuickCheck.Poly (A)
+import Data.Maybe (fromMaybe, isJust)
+import Control.Arrow (second)
+import Control.Monad (guard)
+import Data.Foldable (foldl')
+#if !MIN_VERSION_base(4,8,0)
+import Data.Functor ((<$))
+import Data.Foldable (all)
+import Prelude hiding (all)
+#endif
+
+import Data.HashMap.Strict (HashMap)
+import qualified Data.HashMap.Strict as HM
+
+-- Key type that generates more hash collisions.
+newtype Key = K { unK :: Int }
+ deriving (Arbitrary, Eq, Ord, Show)
+
+instance Hashable Key where
+ hashWithSalt salt k = hashWithSalt salt (unK k) `mod` 20
+
+instance (Arbitrary k, Arbitrary v, Eq k, Hashable k) =>
+ Arbitrary (HashMap k v) where
+ arbitrary = HM.fromList `fmap` arbitrary
+
+instance Show (Int -> Int) where
+ show _ = "<function>"
+
+instance Show (Int -> Int -> Int) where
+ show _ = "<function>"
+
+------------------------------------------------------------------------
+-- * Properties
+
+------------------------------------------------------------------------
+-- ** Strict module
+
+pSingletonKeyStrict :: Int -> Bool
+pSingletonKeyStrict v = isBottom $ HM.singleton (bottom :: Key) v
+
+pSingletonValueStrict :: Key -> Bool
+pSingletonValueStrict k = isBottom $ (HM.singleton k (bottom :: Int))
+
+pLookupDefaultKeyStrict :: Int -> HashMap Key Int -> Bool
+pLookupDefaultKeyStrict def m = isBottom $ HM.lookupDefault def bottom m
+
+pAdjustKeyStrict :: (Int -> Int) -> HashMap Key Int -> Bool
+pAdjustKeyStrict f m = isBottom $ HM.adjust f bottom m
+
+pAdjustValueStrict :: Key -> HashMap Key Int -> Bool
+pAdjustValueStrict k m
+ | k `HM.member` m = isBottom $ HM.adjust (const bottom) k m
+ | otherwise = case HM.keys m of
+ [] -> True
+ (k':_) -> isBottom $ HM.adjust (const bottom) k' m
+
+pInsertKeyStrict :: Int -> HashMap Key Int -> Bool
+pInsertKeyStrict v m = isBottom $ HM.insert bottom v m
+
+pInsertValueStrict :: Key -> HashMap Key Int -> Bool
+pInsertValueStrict k m = isBottom $ HM.insert k bottom m
+
+pInsertWithKeyStrict :: (Int -> Int -> Int) -> Int -> HashMap Key Int -> Bool
+pInsertWithKeyStrict f v m = isBottom $ HM.insertWith f bottom v m
+
+pInsertWithValueStrict :: (Int -> Int -> Int) -> Key -> Int -> HashMap Key Int
+ -> Bool
+pInsertWithValueStrict f k v m
+ | HM.member k m = isBottom $ HM.insertWith (const2 bottom) k v m
+ | otherwise = isBottom $ HM.insertWith f k bottom m
+
+pFromListKeyStrict :: Bool
+pFromListKeyStrict = isBottom $ HM.fromList [(undefined :: Key, 1 :: Int)]
+
+pFromListValueStrict :: Bool
+pFromListValueStrict = isBottom $ HM.fromList [(K 1, undefined)]
+
+pFromListWithKeyStrict :: (Int -> Int -> Int) -> Bool
+pFromListWithKeyStrict f =
+ isBottom $ HM.fromListWith f [(undefined :: Key, 1 :: Int)]
+
+-- The strictness properties of 'fromListWith' are not entirely
+-- trivial.
+-- fromListWith f kvs is strict in the first value seen for each
+-- key, but potentially lazy in the rest: the combining function
+-- could be lazy in the "new" value. fromListWith must, however,
+-- be strict in whatever value is actually inserted into the map.
+-- Getting all these properties specified efficiently seems tricky.
+-- Since it's not hard, we verify that the converted HashMap has
+-- no unforced values. Rather than trying to go into detail for the
+-- rest, this test compares the strictness behavior of fromListWith
+-- to that of insertWith. The latter should be easier to specify
+-- and (if we choose to do so) test thoroughly.
+--
+-- We'll fake up a representation of things that are possibly
+-- bottom by using Nothing to represent bottom. The combining
+-- (partial) function is represented by a "lazy total" function
+-- Maybe a -> Maybe a -> Maybe a, along with a function determining
+-- whether the result should be non-bottom, Maybe a -> Maybe a -> Bool,
+-- indicating how the combining function should behave if neither
+-- argument, just the first argument, just the second argument,
+-- or both arguments are bottom. It would be quite tempting to
+-- just use Maybe A -> Maybe A -> Maybe A, but that would not
+-- necessarily be continous.
+pFromListWithValueResultStrict :: [(Key, Maybe A)]
+ -> Fun (Maybe A, Maybe A) A
+ -> Fun (Maybe A, Maybe A) Bool
+ -> Property
+pFromListWithValueResultStrict lst comb_lazy calc_good_raw
+ = all (all isJust) recovered .&&. (recovered === recover (fmap recover fake_map))
+ where
+ recovered :: Maybe (HashMap Key (Maybe A))
+ recovered = recover (fmap recover real_map)
+ -- What we get out of the conversion using insertWith
+ fake_map = foldl' (\m (k,v) -> HM.insertWith real_comb k v m) HM.empty real_list
+
+ -- A continuous version of calc_good_raw
+ calc_good Nothing Nothing = cgr Nothing Nothing
+ calc_good Nothing y@(Just _) = cgr Nothing Nothing || cgr Nothing y
+ calc_good x@(Just _) Nothing = cgr Nothing Nothing || cgr x Nothing
+ calc_good x y = cgr Nothing Nothing || cgr Nothing y || cgr x Nothing || cgr x y
+ cgr = curry $ apply calc_good_raw
+
+ -- The Maybe A -> Maybe A -> Maybe A that we're after, representing a
+ -- potentially less total function than comb_lazy
+ comb x y = apply comb_lazy (x, y) <$ guard (calc_good x y)
+
+ -- What we get out of the conversion using fromListWith
+ real_map = HM.fromListWith real_comb real_list
+
+ -- A list that may have actual bottom values in it.
+ real_list = map (second (fromMaybe bottom)) lst
+
+ -- A genuinely partial function mirroring comb
+ real_comb x y = fromMaybe bottom $ comb (recover x) (recover y)
+
+ recover :: a -> Maybe a
+ recover a = a <$ guard (not $ isBottom a)
+
+------------------------------------------------------------------------
+-- * Test list
+
+tests :: [Test]
+tests =
+ [
+ -- Basic interface
+ testGroup "HashMap.Strict"
+ [ testProperty "singleton is key-strict" pSingletonKeyStrict
+ , testProperty "singleton is value-strict" pSingletonValueStrict
+ , testProperty "member is key-strict" $ keyStrict HM.member
+ , testProperty "lookup is key-strict" $ keyStrict HM.lookup
+ , testProperty "lookupDefault is key-strict" pLookupDefaultKeyStrict
+ , testProperty "! is key-strict" $ keyStrict (flip (HM.!))
+ , testProperty "delete is key-strict" $ keyStrict HM.delete
+ , testProperty "adjust is key-strict" pAdjustKeyStrict
+ , testProperty "adjust is value-strict" pAdjustValueStrict
+ , testProperty "insert is key-strict" pInsertKeyStrict
+ , testProperty "insert is value-strict" pInsertValueStrict
+ , testProperty "insertWith is key-strict" pInsertWithKeyStrict
+ , testProperty "insertWith is value-strict" pInsertWithValueStrict
+ , testProperty "fromList is key-strict" pFromListKeyStrict
+ , testProperty "fromList is value-strict" pFromListValueStrict
+ , testProperty "fromListWith is key-strict" pFromListWithKeyStrict
+ , testProperty "fromListWith is value-strict" pFromListWithValueResultStrict
+ ]
+ ]
+
+------------------------------------------------------------------------
+-- * Test harness
+
+main :: IO ()
+main = defaultMain tests
+
+------------------------------------------------------------------------
+-- * Utilities
+
+keyStrict :: (Key -> HashMap Key Int -> a) -> HashMap Key Int -> Bool
+keyStrict f m = isBottom $ f bottom m
+
+const2 :: a -> b -> c -> a
+const2 x _ _ = x
--- /dev/null
+name: unordered-containers
+version: 0.2.9.0
+synopsis: Efficient hashing-based container types
+description:
+ Efficient hashing-based container types. The containers have been
+ optimized for performance critical use, both in terms of large data
+ quantities and high speed.
+ .
+ The declared cost of each operation is either worst-case or
+ amortized, but remains valid even if structures are shared.
+license: BSD3
+license-file: LICENSE
+author: Johan Tibell
+maintainer: johan.tibell@gmail.com
+Homepage: https://github.com/tibbe/unordered-containers
+bug-reports: https://github.com/tibbe/unordered-containers/issues
+copyright: 2010-2014 Johan Tibell
+ 2010 Edward Z. Yang
+category: Data
+build-type: Simple
+cabal-version: >=1.8
+extra-source-files: CHANGES.md
+tested-with: GHC==8.4.1, GHC==8.2.2, GHC==8.0.2, GHC==7.10.3, GHC==7.8.4
+
+flag debug
+ description: Enable debug support
+ default: False
+
+library
+ exposed-modules:
+ Data.HashMap.Lazy
+ Data.HashMap.Strict
+ Data.HashSet
+ other-modules:
+ Data.HashMap.Array
+ Data.HashMap.Base
+ Data.HashMap.List
+ Data.HashMap.Unsafe
+ Data.HashMap.UnsafeShift
+
+ build-depends:
+ base >= 4.7 && < 5,
+ deepseq >= 1.1,
+ hashable >= 1.0.1.1 && < 1.3
+
+ other-extensions:
+ RoleAnnotations,
+ UnboxedTuples,
+ ScopedTypeVariables,
+ MagicHash,
+ BangPatterns
+
+ ghc-options: -Wall -O2 -fwarn-tabs -ferror-spans
+
+ if impl (ghc < 8.2)
+ -- This is absolutely necessary (but not sufficient) for correctness due to
+ -- the referential-transparency-breaking mutability in unsafeInsertWith. See
+ -- #147 and GHC #13615 for details. The bug was fixed in GHC 8.2.
+ ghc-options: -feager-blackholing
+ if flag(debug)
+ cpp-options: -DASSERTS
+
+test-suite hashmap-lazy-properties
+ hs-source-dirs: tests
+ main-is: HashMapProperties.hs
+ type: exitcode-stdio-1.0
+
+ build-depends:
+ base,
+ containers >= 0.4,
+ hashable >= 1.0.1.1,
+ QuickCheck >= 2.4.0.1,
+ test-framework >= 0.3.3,
+ test-framework-quickcheck2 >= 0.2.9,
+ unordered-containers
+
+ ghc-options: -Wall
+ cpp-options: -DASSERTS
+
+test-suite hashmap-strict-properties
+ hs-source-dirs: tests
+ main-is: HashMapProperties.hs
+ type: exitcode-stdio-1.0
+
+ build-depends:
+ base,
+ containers >= 0.4,
+ hashable >= 1.0.1.1,
+ QuickCheck >= 2.4.0.1,
+ test-framework >= 0.3.3,
+ test-framework-quickcheck2 >= 0.2.9,
+ unordered-containers
+
+ ghc-options: -Wall
+ cpp-options: -DASSERTS -DSTRICT
+
+test-suite hashset-properties
+ hs-source-dirs: tests
+ main-is: HashSetProperties.hs
+ type: exitcode-stdio-1.0
+
+ build-depends:
+ base,
+ containers >= 0.4,
+ hashable >= 1.0.1.1,
+ QuickCheck >= 2.4.0.1,
+ test-framework >= 0.3.3,
+ test-framework-quickcheck2 >= 0.2.9,
+ unordered-containers
+
+ ghc-options: -Wall
+ cpp-options: -DASSERTS
+
+test-suite list-tests
+ hs-source-dirs: tests .
+ main-is: List.hs
+ other-modules:
+ Data.HashMap.List
+ type: exitcode-stdio-1.0
+
+ build-depends:
+ base,
+ containers >= 0.4,
+ QuickCheck >= 2.4.0.1,
+ test-framework >= 0.3.3,
+ test-framework-quickcheck2 >= 0.2.9
+
+ ghc-options: -Wall
+ cpp-options: -DASSERTS
+
+test-suite regressions
+ hs-source-dirs: tests
+ main-is: Regressions.hs
+ type: exitcode-stdio-1.0
+
+ build-depends:
+ base,
+ hashable >= 1.0.1.1,
+ HUnit,
+ QuickCheck >= 2.4.0.1,
+ test-framework >= 0.3.3,
+ test-framework-hunit,
+ test-framework-quickcheck2,
+ unordered-containers
+
+ ghc-options: -Wall
+ cpp-options: -DASSERTS
+
+test-suite strictness-properties
+ hs-source-dirs: tests
+ main-is: Strictness.hs
+ type: exitcode-stdio-1.0
+
+ build-depends:
+ base,
+ ChasingBottoms,
+ containers >= 0.4.2,
+ hashable >= 1.0.1.1,
+ QuickCheck >= 2.4.0.1,
+ test-framework >= 0.3.3,
+ test-framework-quickcheck2 >= 0.2.9,
+ unordered-containers
+
+ ghc-options: -Wall
+ cpp-options: -DASSERTS
+
+benchmark benchmarks
+ -- We cannot depend on the unordered-containers library directly as
+ -- that creates a dependency cycle.
+ hs-source-dirs: . benchmarks
+
+ main-is: Benchmarks.hs
+ type: exitcode-stdio-1.0
+
+ other-modules:
+ Data.HashMap.Array
+ Data.HashMap.Base
+ Data.HashMap.Lazy
+ Data.HashMap.Strict
+ Data.HashMap.Unsafe
+ Data.HashMap.UnsafeShift
+ Data.HashSet
+ Util.ByteString
+ Util.Int
+ Util.String
+
+ build-depends:
+ base,
+ bytestring,
+ containers,
+ criterion >= 1.0 && < 1.3,
+ deepseq >= 1.1,
+ deepseq-generics,
+ hashable >= 1.0.1.1,
+ hashmap,
+ mtl,
+ random
+
+ ghc-options: -Wall -O2 -rtsopts -fwarn-tabs -ferror-spans
+ if flag(debug)
+ cpp-options: -DASSERTS
+
+source-repository head
+ type: git
+ location: https://github.com/tibbe/unordered-containers.git